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1 Introduction

Partial differential equations (PDEs) are equations involving the rate of change of
continuous variables in two or more dimensions. Some examples of things modeled
by PDEs are the transfer of heat through solids, the flow of air around an airplane,
and the deformation of blood vessels due to changes in blood pressure and flow
velocity. The PDEs we are interested in are the Navier-Stokes equations. They are
used to model and simulate the flow of incompressible Newtonian fluids, that is,
fluids where the density is constant and the viscosity is independent of the shear
rate. Efficient simulation of blood flow could lead to faster and more reliable diag-
nostication of cerebral aneurysms, giving earlier warning of danger of intracranial
bleeding and preventing unnecessary invasive procedures.Although blood is not a
Newtonian fluid, in most arteries it is close enough to Newtonian that the Navier-
Stokes equations are a reasonable model for arterial blood flow ([1], p.328).

Most PDEs, including the Navier-Stokes equations, do not have closed-form ana-
lytical solutions, or only have closed-form analytical solutions for a limited set of
boundary conditions. For this reason we usually instead seek an approximate numer-
ical solution. Constructing good numerical methods for solving the Navier-Stokes
equations has been an important field of research for a long time, and many different
numerical frameworks for simulating Navier-Stokes flow have been developed. We
will follow Deparis et al. [2] in using an implicit finite difference scheme to linearize
and discretize the equations in time, and the finite element method (FEM) with
mixed finite elements to discretize the coupled equations in the spatial dimensions.
The discretization process leads to an indefinite, ill-conditioned linear system of
equations, with a block structure shown in equation (1.1).

A

[
u
p

]
=
[
F BT

B C

] [
u
p

]
=
[
f
g

]
(1.1)

The system (1.1) is large and sparse. While direct solution methods for such systems
exist, systems with those two properties are often solved with an iterative solution
method. Iterative methods are good at exploiting the sparsity of a linear system
to minimize memory usage and computation time, but they have trouble with slow
convergence when used for ill-conditioned systems [3]. To speed up convergence and
solve the system in reasonable time, a preconditioner is required. A preconditioner
for a discrete system like (1.1) is a nonsingular matrix which in some way mimics the
inverse of the coefficient matrix A, and multiplying a system with a preconditioner
is referred to as preconditioning.

Many different preconditioners for (1.1) have been suggested in the literature, and
several general strategies for constructing such preconditioners are discussed in [3].
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Benzi et al. [4] propose a preconditioning strategy based on a skew-symmetric split-
ting of the coefficient matrix, while more recently Heister et al. [5] propose an
approach leveraging Grad-Div stabilization. Deparis et al. [2] compare several dif-
ferent preconditioners, including one based on SIMPLE iteration and one based on
the Yosida method, in the context of highly parallellized simulations of blood flow.

The time dependent Stokes equations can be seen as a simplificiaton of the Navier-
Stokes equations, and preconditioners developed for use on the discretized time
dependent Stokes equations can be modified to be applicable to (1.1), at least for
low Reynolds number flow where convection is not the dominant factor. Mardal
et al. [6] motivate a block diagonal preconditioner for the time dependent Stokes
equations by operator preconditioning of the continuous equations, while Cai [7]
proposes several projection method based preconditioners.

In this thesis, we will compare the Yosida method based preconditioner from [2], the
block triangular preconditioner from [6], and one projection method based precon-
ditioner from [7]. The performance of each preconditioner will be examined on both
the time dependent Stokes equations and the Navier-Stokes equations. We will also
consider a variant of the Yosida method based preconditioner, which can be seen as
a combination of that and the one based on the SIMPLE iteration. The results will
include eigenvalues and condition numbers of the preconditioned differential oper-
ators, the performance of the preconditioners on two 2D model problems, and the
performance of the preconditioners in a 3D blood flow simulation.

This thesis is organized in the following way: Chapter 2 introduces the mathematical
model, including the Navier-Stokes equations and two closely related problems, the
time dependent Stokes equations and the Oseen equations. In chapter 2 we also
introduce the finite element method. Some iterative solution methods for discrete
systems of linear equations, including the BiCGStab algorithm which was used in the
simulations done for this thesis, are the topic of chapter 3. In chapter 4 we define the
preconditioners that will be the focus of this thesis. Chapter 4 also includes a brief
analysis of the eigenvalues of the preconditioned systems. A detailed description of
the numerical work done is the topic of chapter 5, and the results are presented in
chapter 6. Chapter 7 contains a summary and discussion of the results in chapter 6.

The framework we have used for the numerical experiments is FEniCS [8], using the
Python interface dolfin. To easily build operators like those discussed in chapter 4,
we have taken advantage of the cbc.block module [9]. The source code for the numer-
ical work is available on the web page http://www.bitbucket.com/krisbrox/thesis.
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1.1 Notation

The following is a non-exhaustive list of symbols used throughout this thesis. We
will adopt the convention that a bold face character denotes a vector.

General Symbols
Ω An open subset of Rn

∂Ω boundary of Ω
u Velocity field
p Pressure
n Unit vector normal to ∂Ω
∇ · u Divergence of u
∇u Gradient of u
∆u Laplacian of u, defined by ∆ := ∇ · ∇
〈·, ·〉 L2-inner product on Ω
‖ · ‖k Norm defined by the Hk-inner product on Ω if k = 0, 1
‖ · ‖2 Euclidian norm

Parameters
µ Viscosity
ρ Density
ν Kinematic viscosity, defined as ν := µ/ρ
∆t Timestep
Re Reynolds number
h Discretization parameter, proportional to the length of the longest

edge of an element in a partition of Ω
Properties of matrices

σ(A) Set of singular values of A
λ(A) Set of eigenvalues of A
κ1(A) 2-norm condition number of A, defined by κ1(A) := max σA/min σA
κ2(A) Largest eigenvalue of A divided by the smallest (by moduli)

Function Spaces
L2(Ω) Space of square-integrable functions on Ω
Hk(Ω) Space of L2-functions on Ω with derivatives up to

order k which are also in L2(Ω)
Hk

0 (Ω) Space of functions in Hk(Ω) which equal zero on ∂Ω
H−1 Dual space of H1

Matrices
K Stiffness matrix
M Mass matrix
G Discrete gradient
D Discrete divergence
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2 Mathematical Model

2.1 The Navier-Stokes equations

The incompressible Navier-Stokes equations describe flow in incompressible, viscous
fluids. They are derived from Newtons second law, stress-strain relations and con-
servation of mass. For the derivation see e.g. White [10]. The equations are

ρ(∂u

∂t
+ u · ∇u)− µ∆u +∇p̂ = f̂ in Ω, t > 0, (2.1)

∇ · u = 0 in Ω, t > 0, (2.2)

with suitable boundary conditions. Here Ω is the fluid domain, u is the fluid velocity,
and p̂ is the pressure. f̂ are the external forces, and µ is the viscosity of the fluid. In
this thesis, we will usually scale the momentum equation (2.1) by 1

ρ
. Doing so, and

including boundary and initial conditions, leads to the following system of equations:

∂u

∂t
− ν ∆u + u · ∇u +∇p = f in Ω, t > 0,

∇ · u = 0 in Ω, t > 0,
u = gD on ∂ΩD,

ν
∂u

∂n
− pn = gN on ∂ΩN ,

u = u0 in Ω, t = 0.

(2.3)

Here, ∂Ω = ∂ΩD ∪ ∂ΩN is the boundary of Ω, divided into a Neumann part and a
Dirichlet part. The parameter ν = µ

ρ
is the kinematic viscosity, p = 1

ρ
p̂ is the scaled

pressure and f = 1
ρ
f̂ the scaled external forces. These equations are of fundamental

importance in studying flow of fluids at low to moderate speeds, e.g. water flowing
through a pipe, wind hitting a windmill or arterial bloodflow.

The equations (2.3) are non-linear, and analytic solutions only exist for a very
limited number of boundary conditions. The velocity field may change direction
rapidly in thin boundary layers close to solid walls, or as a consequence of complex
flow domain geometry [11]. This calls for fine meshes and small time steps, making
numerical approximations expensive to obtain. In addition, the saddle-point nature
of the problem makes efficient and robust solution methods difficult to find. For
these reasons, and due to their importance in industrial research and applications,
methods to numerically solve the Navier-Stokes equations efficiently has been, and
still is, an important area of research [11].
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Many characteristics of any given incompressible viscous fluid flow are predicted by
the Reynolds number of the flow. The definition of the Reynolds number is

Re = inertial forces
viscous forces = ρLv

µ
= Lv

ν
, (2.4)

where v is the velocity, L is a characteristic length, µ is the viscosity of the fluid, and
ρ is the density of the fluid. The velocity v and length L have different meanings in
different contexts, depending on the flow domain and boundary. When considering
flow through e.g. a circular pipe, the convention is to define

Re = QD

νA
, (2.5)

where D is the diameter, A the cross-sectional area, and Q the volumetric flow rate,
or mass flux. For flow in an unbounded domain past a thin plate, the Reynolds
number might be defined as in (2.4), with L the length of the plate, and v the
velocity of the fluid relative to the plate at the leading edge.

When Re is small the flow is laminar, i.e. the flow will be without eddies and
swirls, and without cross-currents perpedicular to the main direction of the flow.
If Re is large (above ∼ 2000), the flow will usually be fully turbulent. For flow at
moderate Reynolds numbers (100 to 1000), like most arterial blood flow, the effects
of turbulence are small.

In this thesis we will be considering two sets of equations which are closely related to
the Navier-Stokes equations: the time dependent Stokes equations and the modified
Oseen equations.

2.1.1 The modified Oseen equations

The modified Oseen equations

1
∆tu− ν ∆u + u1 · ∇u +∇p = f , in Ω,

∇ · u = 0, in Ω,
u = gD on ∂ΩD,

ν
∂u

∂n
− pn = gN on ∂ΩN ,

(2.6)

arise from applying an implicit timestepping procedure on the Navier-Stokes equa-
tions and linearizing the convective term un · ∇un as un−1 · ∇un. Here u = un is
the unknown velocity at some time tn = t0 + n∆t, u1 = un−1 is the known velocity
from the previous iteration, and f includes external forces and the velocity from the
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previous iteration. Solving the problem (2.6) is equivalent to solving the implicitly
time-discretized Navier-Stokes equations by applying one fixed-point iteration, so
we will treat a series of solutions of (2.6) as a solution of (2.3).

2.1.2 The time dependent Stokes equations

The time dependent Stokes equations read

∂u

∂t
− ν ∆u +∇p = f in Ω, t > 0,

∇ · u = 0 in Ω, t > 0.
u = gD on ∂ΩD,

ν
∂u

∂n
− pn = gN on ∂ΩN ,

u = u0 in Ω, t = 0.

(2.7)

Discretizing in time with an implicit finite difference leads to

1
∆tu− ν ∆u +∇p = f , in Ω,

∇ · u = 0, in Ω,
u = gD on ∂ΩD,

ν
∂u

∂n
− pn = gN on ∂ΩN ,

(2.8)

which is just the modified Oseen equations without the convective term. The sys-
tem (2.8) can be written as the stationary singular perturbation problem

(I − ε2 ∆)u +∇p = f ,

∇ · u = 0,
(2.9)

plus boundary conditions, where ε =
√
ν∆t and the pressure has been scaled by ∆t.

The equations (2.7) arise from discretizing (2.3) in time with a semi-implicit time-
stepping procedure, linearizing the convective term un+1 · ∇un+1 as un · ∇un and
absorbing it into f . The equations (2.7) can be seen as a simplification of the mod-
ified Oseen equations, and as such (2.7) can be useful for testing solution methods
for (2.3), as the performance of some particular solver or preconditioner on the time
dependent Stokes equations might give an indication of an upper bound for the
performance of the same solver or preconditioner on the modified oseen problem [6].
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2.2 The finite element method

As our model problem for introducing the finite element method we will use the
Poisson problem with homogeneous Dirichlet boundary conditions:
Find a function u(x) in some function space V (Ω) such that

−∆u(x) = f(x) ∀x ∈ Ω,
u(x) = 0 ∀x ∈ ∂Ω,

(2.10)

where Ω ∈ Rd is the domain and ∂Ω is the domain boundary. In the following we
omit the domain variables, i.e. we write u := u(x).

2.2.1 The weak formulation

The above set of equations is referred to as the strong formulation of the problem.
Solving the strong formulation directly is in many cases impractical. Enforcing
boundary conditions on a discretized strongly formulated problem poses difficulties,
especially for complex domains. Further, the double derivative in (2.10) can be
problematic [3]. Instead of working directly with the strong formulation, we will
find a weak formulation of the problem.

We multiply the first equation with some function v from a function space V̂ and
integrate over Ω to get

∫
Ω
−∆uv dx =

∫
Ω
fv dx. (2.11)

Provided the involved functions are sufficiently smooth, integrating the left-hand
side by parts gives

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx +

∫
∂Ω

∂u

∂n
v dS, (2.12)

Where the dot indicates a scalar product. Let

L2(Ω) = {u : Ω→ R
∣∣∣ ∫

Ω
u2 <∞}

and
H1

0 (Ω) = {u ∈ L2(Ω)
∣∣∣∇u ∈ L2(Ω), u|∂Ω = 0},

i.e. H1
0 (Ω) is the space of square integrable functions on Ω that equal 0 on ∂Ω, with

square integrable gradient. The gradient ∇u being square integrable means that
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each first-order partial derivative ∂v
∂xi

for i = 1, . . . , d, is square integrable. If we
equip this space with the inner product

(u, v)1,Ω =
∫

Ω
uv dx +

∫
Ω
∇u · ∇v dx,

and the associated norm

‖u‖1,Ω = (
∫

Ω
|u|2 + |∇u|2) 1

2 dx,

then H1
0 (Ω) space is the Sobolev space W 1,2(Ω), which is also a Hilbert space. In

the rest of this section we omit the Ω-subscript. Now we set V (Ω) = V = H1
0 (Ω)

and V̂ (Ω) = V̂ = H1
0 (Ω). The weak formulation of (2.10) is

Find u ∈ V such that, for all v ∈ V̂ ,∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx. (2.13)

Note that the second term in the right hand side of (2.10) is zero due to v vanishing
on ∂Ω.

We would like the problem (2.13) to be well posed, in the sense that there should
exist a unique solution to it. A sufficient condition for this is (2.13) satistying the
Lax-Milgram theorem (see e.g. Evans [12]). The version of the theorem that
applies in the current situation states that, if V (Ω) is a real Hilbert space, and
a(·, ·) is a symmetric bilinear form which is

(i) Bounded: |a(u, v)| < C‖u‖1‖v‖1, ∀u, v ∈ V , and

(ii) Coercive: a(u, u) ≥ D‖u‖2
1, ∀u ∈ V

for some constants C and D, then for any bounded linear functional l : V → R and
all v ∈ V , the equation

a(u, v) = l(v)
has a unique solution. A proof of this theorem can be found in [12].

In our current example, a(u, v) :=
∫

Ω∇u · ∇v dx and l(v) :=
∫

Ωfv dx. To show (i):

(‖u‖1‖v‖1)2 =
( ∫

Ω
u2 dx +

∫
Ω

(∇u)2 dx
)( ∫

Ω
v2 dx +

∫
Ω

(∇v)2 dx
)

≥
∫

Ω
(∇u)2 dx

∫
Ω

(∇v)2 dx

≥ |
∫

Ω
∇u · ∇v dx|2

= |a(u, v)|2

⇒|a(u, v)| ≤ C‖u‖1‖v‖1,
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where we used the Cauchy-Schwarz inequality between line two and line three. To
show that a(·, ·) is coercive, we need the Poincaré inequality: Given p ∈ [1,∞) and
Ω a bounded subset of Rn, there exists a constant C0 such that, for all f ∈ H1

0 (Ω),

‖f‖Lp(Ω) ≤ C0‖∇f‖Lp(Ω). (2.14)

Now, observe that

‖u‖2
1 =

∫
Ω
u2 + (∇u)2 dx ≤ (1 + C0)

∫
Ω

(∇u)2 dx,

implying

a(u, u) =
∫

Ω
(∇u)2 dx ≥ 1

1 + C0
‖u‖2

1,

which shows the coercivity of a with D = 1
1+C0

. Since a(·, ·) is both coercive and
bounded, the Lax-Milgram theorem guarantees the existence of a unique solution
to the problem 2.13 for any given l ∈ V ′.

If the strong formulation (2.10) has a solution, that solution coincides with the
solution of the corresponding weak formulation (2.13) ([3], p. 17). A solution to
the strong formulation needs to be twice differentiable in Ω, which is a much more
stringent requirement than square integrability of the first derivatives (Ibid.).

2.2.2 The finite element

We will follow Ciarlet’s definition of a finite element [13].

Definition 2.1. Let

(i) K ⊂ Rd be a bounded closed set with nonempty interior and piecewise smooth
boundary (The element domain).

(ii) V = V(K) be a finite-dimensional space of functions on K.

(iii) L = {l1, l2, . . . , lk} be a basis for V ′ (the nodal variables)

Then (K,V ,L) is called a finite element.

Definition 2.2. Let (K,V ,L) be a finite element. The basis {φ1, φ2, . . . , φn} of V
dual to L (i.e. li(φj) = δij) is called the nodal basis of V.

There are many different kinds of elements, but among the simplest and most com-
monly used are the Lagrange (or continuous Galerkin) elements. We will denote the
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Figure 1: P1 elements in 1D

Lagrange element of polynomial order q by Pq. The domain K we will divide into
k non-overlapping intervals in 1D, triangles in 2D and tetrahedras in 3D, so that
∪nj=1Kj = Ω.

Example 2.1. The basis P1 for V(K) is composed of the the piecewise linear func-
tions {φk}nj=1 satisfying φj(li) = δij. On the 1D reference element [−1, 1] with the
nodes/degrees of freedom {−1, 1} the basis functions are {0.5 − 0.5x, 0.5x − 0.5}
(see figure 1).

2.2.3 Discretization

To better illustrate the discretization process, we will use a more general form of
the Poisson problem:
Find u such that

−∆u(x) = f(x) ∀x ∈ Ω,
u(x) = gD(x) ∀x ∈ ∂ΩD, (2.15)

∂nu(x) = gN(x) ∀x ∈ ∂ΩN ,

where ∂nu = ∇u · n is the normal derivative of u at the boundary, ∂ΩD is the
Dirichlet part of the boundary and ∂ΩN is the Neumann part of the boundary. We
assume ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. The weak formulation of (2.15) is:
Find u ∈ V such that, for all v ∈ V̂ ,∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx +

∫
∂ΩN

gNv dS. (2.16)

12



Discretizing this as outlined in the previous section leads to:
Find uh ∈ Vh,gD,D such that∫

Ω
∇uh · ∇vh dx =

∫
Ω
fvh dx +

∫
∂ΩN

gNvh dS, ∀vh ∈ Vh,gD,D, (2.17)

where Vh,gD,D is the space spanned by our basis, chosen to equal gD on ∂ΩD. We
write uh as a linear combination of the basis functions, uh = ∑n

j=1 cjφj, and without
loss of generality set v = φi. Then

∫
Ω
(∇

n∑
j=1

cjφj) · ∇φi dx =
∫

Ω
fφi dx +

∫
∂ΩN

gNφi dS i = 1, 2, . . . , n, (2.18)

⇒
n∑
j=1

cj

∫
Ω
∇φi · ∇φj dx =

∫
Ω
fφi dx +

∫
∂ΩN

gNφi dS i = 1, 2, . . . , n. (2.19)

This is equivalent to the linear system

Au = b, (2.20)

where
Ai,j =

∫
Ω
∇φi · ∇φj dx, (2.21)

bi =
∫

Ω
fφi dx +

∫
∂ΩN

gNφi dS, (2.22)

and u is a vector containing the unknown cj for j = 1, 2, . . . , n.

The system (2.20) can be solved either directly with Gaussian elimination, or with an
iterative method like the conjugate gradient or Gauss-Seidel methods. The systems
we get with the finite element method are typically sparse (meaning the number of
nonzero entries in A is O(n)). The reason for this is that the basis functions used
have support on a finite, small subset of the domain, so the integral

∫
Ω∇φi ·∇φj dx is

zero for most i 6= j. In fact, the number of such integrals which are nonzero, for any
given i, can be independent of the dimension of A. This is evident when considering
e.g., in 2D, a partition of the unit square into m non-overlapping triangles, or in
1D, figure 1. Sparse systems, like (2.20), are often more easily solved by an iterative
solver than a direct one. This will be be discussed further in chapter 3.

An alternative, more abstract version of the above formulation of the finite element
method (exemplified by the Poisson problem) is as follows: the weak form of the
Poisson problem can be written

13



Find u ∈ V such that
Au = f, (2.23)

where A : V → V ′ is a differential operator, V is a Hilbert space with dual V ′ and
inner product 〈·, ·〉, and f ∈ V ′. Define a suitable test space V̂ and set

a(u, v) = 〈Au, v〉,
l(v) = 〈f, v〉, (2.24)

where a : V × V̂ → R is a bilinear form and l : V̂ → R is a linear functional on V̂ .
The problem (2.23) now reads

a(u, v) = l(v) ∀v ∈ V̂ . (2.25)

Choose a finite element and discretize the domain:

Find uh ∈ Vh such that
a(uh, vh) = l(vh) ∀vh ∈ V̂h. (2.26)

Write uh as a linear combination of the basis functions of Vh and solve the resulting
linear system.

2.2.4 Weak Formulations of the time dependent Stokes and Oseen problems

In this section we will find weak formulations and discretizations of the time depen-
dent Stokes problem and the Oseen problem. To discretize equations (2.7) and (2.6)
in space we will use the finite element method as outlined in chapter 2.2. For each set
of equations, we multiply the first equation with a test function v ∈ V̂ = H1

0,D(Ω),
and the second equation with a test function q ∈ P̂ = L2(Ω). Integrating by parts
where applicable, the weak formulation of problem (2.7) is:

Find (u, p) ∈ H1
gD,D

(Ω)× L2(Ω) such that, for all (v, q) ∈ V̂ × P̂ ,

1
∆t

∫
Ω

uv dx + ν
∫

Ω
∇u : ∇v dx +

∫
Ω
p∇ · v dx =

∫
Ω

fv dx,∫
Ω
q∇ · u dx = 0.

(2.27)

Here, f has been redefined to also contain the boundary terms arising from the
partial integrations of the ∆u and ∇p terms. Note that we have redefined the
equations to solve for the negative pressure, meaning we have substituted −p for p.

The weak formulation of the modified Oseen problem reads:
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Find (u, p) ∈ H1
gD,D

(Ω)× L2(Ω) such that, for all (v, q) ∈ V̂ × P̂ ,

1
∆t

∫
Ω

uv dx + ν
∫

Ω
∇u : ∇v dx +

∫
Ω

u1 · ∇uv dx +
∫

Ω
p∇ · v dx =

∫
Ω

fv dx,∫
Ω
q∇ · u dx = 0,

(2.28)
where as with the time dependent Stokes equations f has been redefined to also
contain the boundary terms and −p substituted for p.

Let {Vh × Ph}h∈(0,1] ⊂ H1(Ω) × L2(Ω) be finite element spaces, where h represents
the scale of the discretization of the domain. If hi is the length of the longest edge
of element domain number i, we define h as maxi hi. Let 〈·, ·〉 denote the L2 inner
product on Ω, and define

aε(uh,v) =
∫

Ω
uhv dx + ε2

∫
Ω
∇uh : ∇v dx.

Then the finite element formulation of (2.9) is:

Find (uh, p) ∈ Vh × Ph such that, for all (v, q) ∈ V̂h × P̂h,

aε(uh, v) + 〈ph,∇ · v〉 = 〈f,v〉 (2.29)
〈∇ · uh, q〉 = 0.

For (2.6) we define

fν(uh, v) = 1
∆t

∫
Ω

uhv dx + ν
∫

Ω
∇uh : ∇v dx +

∫
Ω

u1 · ∇uhv dx. (2.30)

The finite element formulation of (2.6) is:

Find (uh, p) ∈ Vh × Ph such that, for all (v, q) ∈ V̂h × P̂h,

fν(uh, v) + 〈ph,∇ · v〉 = 〈f,v〉 (2.31)
〈∇ · uh, q〉 = 0.

As outlined in section 2.2.3, for any given choice of bases Vh×Ph, the equations (2.29)
and (2.31) lead to linear systems on the form

A

[
u
p

]
=
[
F B
BT 0

] [
u
p

]
=
[
f
0

]
. (2.32)

We may equivalently write (2.32) as

Fu +Bp = f , (2.33)
BTu = 0. (2.34)
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Before choosing our bases for Vh and Ph, we need to know the conditions under
which the system (2.33)-(2.34) has a unique solution. For the following section we
have leaned heavily on [14].

Assuming that F is positive definite, we can multiply the first equation by F−1

to obtain an expression for u, and insert that into the second. This leads to the
following linear system for p:

BTF−1Bp = BTF−1f . (2.35)

The solution to (2.35) may then be plugged into 2.33, letting us solve

Fu = f −Bp (2.36)

for u. For the above process to output uniquely determined u and p, the Schur
complement BTF−1B needs to be non-singular. As F is positive definite by as-
sumption, this simplifies to requiring BTB to be non-singular. A necessary and
sufficient condition for BTB to be non-singular is Ker(B) = 0, which is equivalent
to

sup
v∈V̂h

∫
Ω
p∇ · v dx > 0, (2.37)

for all p ∈ Ph.

In addition to needing the discrete system to be solvable, we need it to converge
to the true solution as the mesh is refined. To guarantee convergence, our choice
of elements must fulfill the discrete inf sup-condition, commonly referred to as the
Ladyzenskaja-Babuška-Brezzi condition (see [15], [16]):

inf
p

sup
v

∫
Ω p∇ · v
‖v‖1‖p‖0

> β. (2.38)

Here, β is a positive, nonzero constant that is independent of the mesh resolution.
The condition (2.38) is of particular usefulness when determining which pairs of
finite element bases {φi}, {ψj} for Vh and Ph lead to a solvable linear system and a
stable, converging method [14].

The Taylor-Hood (P2-P1) elements are piecewise quadratic Lagrange polynomials
for the velocity, and piecewise linear Lagrange polynomials for the pressure, defined
on a mesh of triangles in 2D or tetrahedra in 3D. The P2-P1 elements are uniformly
stable for the time-dependent Stokes equations, in the sense that they fulfill the
discrete inf sup-condition (2.38). This is established in e.g. [17].

One relevant part of the finite element solution algorithm for these problems that we
have not mentioned here is how to enforce essential (Dirichlet) boundary conditions
in practice. One way of enforcing Dirichlet boundary conditions is following the
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Figure 2: The Taylor-Hood element in 3D

above procedure until (2.32) is reached, and then modifying the coefficient matrix
on the left-hand side as well as the vector on the right hand side to fulfill the
boundary conditions. This can be done in several ways, and the approach taken in
in this thesis is as follows: Assume the i’th component of u, ui = c1 is the velocity
in the x-direction at a node where the velocity is known and equal to (c1, c2, c3).
To make sure the computed solution of (2.32) has ui = c1, we set f i = c1 and
Ai,j = Aj,i = δi,j for each j = 1, . . . , n.
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3 Iterative solution methods

Discretizing a PDE with the finite element method results in a system of equations.
If those equations are linear, the system is on the form

Ax = b, A ∈ Rn×n, x, b ∈ Rn. (3.1)

A differential operator discretized by the finite element method is typically sparse,
meaning it contains only O(n) non-zero entries. If A is nonsingular, the system (3.1)
has the solution x = A−1b. Unfortunately, A−1 is typically a full matrix with
O(n2) non-zero entries. For this reason, solving the equation by computing the
inverse directly, by way of Gaussian elimination or LU factorization, requires O(n3)
operations in the general case, as well as O(n2) bytes of storage. This is very
inefficient.

Iterative methods allow us to capitalize on the sparsity of A, requiring only O(n)
operations and bytes of storage in the best case. It is also easier in practice to
approach this optimal performance with iterative methods than with direct methods.
The idea is to make an initial guess x0, followed by generating a sequence {xk} of
approximations (hopefully) converging to the solution x. Iterative methods thus
allow using any xk as an approximation to x, while any intermediate result in a
direct method will be of little use.

The Krylov subspace family of iterative methods is the one most used in solving
the kinds of problems we are interested in, especially nonsymmetric and highly ill-
conditioned problems like the discrete modified Oseen equations. We largely base
our exposition of Krylov subspace methods and the biconjugate gradient stabilized
algorithm on the book by Yousef Saad [18].

Definition 3.1. The r-order Krylov subspace generated by the n×n matrix A and
the vector y ∈ Rn is given by

Kr(A,y) = span{y, Ay, A2y, . . . , Ar−1y}. (3.2)

The idea behind Krylov subspace methods is to generate a sequence of approxima-
tions xk such that xk ∈ x0 +Kk(A, r0), i.e. xk is in the affine space spanned by x0
and {Alr0}k−1

l=0 , where r0 = b−Ax0. If the residual rk ∈ Kk+1(A, r0) at some point
in this process reaches a value sufficiently close to zero in an appropriate norm, we
have found an approximate solution. Many methods will ensure that the residuals
are linearly independent, guaranteeing convergence in at most n iterations (in the
absence of round-off errors). This is done by imposing the condition that

b− Axk ⊥ Lk,

18



where Lk is some other Krylov subspace. Different krylov subspace methods are
based on different choices of Lk, and can be divided broadly into two categories:
methods that choose Lk = Kk(A, r0), or the variation Lk = AKk, and methods that
choose Lk to be the Krylov subspace associated with AT , i.e. Lk = Kk(AT , r0).

3.1 The BiCGStab algorithm

A biorthogonal system in Rm is a pair of indexed families of vectors

{ui}ni=0,ui ∈ E ⊂ Rm and {vi}ni=0,vi ∈ F ⊂ Rm,

such that
〈ui,vj〉 = δi,j,

where 〈·, ·〉 is a bilinear mapping and δi,j is the Kronecker delta.

The Biconjugate Gradient Stabilized (BiCGStab) algorithm is a member of the
second family of Krylov subspace methods. It is the iterative solution method we
have used for all of the simulations in this thesis, and so we will give a brief overview
of it and its origins in this section. The MinRes algorithm is better than BiCGStab
in terms of both speed and memory requirements, but requires both a symmetric
A and a symmetric preconditioner, and three out of the four preconditioners we
were interested in are nonsymmetric, as is the discrete Oseen operator. Several
variants of the GMRES algorithm could have been used instead of BiCGStab in
the simulations we have done. The problem with GMRES is the need to keep
the intermediate vectors xk, leading to larger memory requirements and restarts.
We concluded after some preliminary testing that BiCGStab seemed to outperform
GMRES in our test cases, and made results more transparently comparable.

BiCGStab was developed by Vorst in [19]. The algorithm is derived from the Bicon-
jugate Gradient (BCG) and Conjugate gradient Squared (CGS) algorithms, both
based on the Lanczos biorthogonalization algorithm. These methods build a pair of
biorthogonal bases for the two subspaces

Kk(A,v0) = span(v0, Av0, A
2v0, . . . , A

k−1v0)

and
Kk(AT ,v0) = span(v0, A

Tv0, (AT )2v0, . . . , (AT )k−1v0).
The approximate solution xk to the system Ax = b is then the xk that makes rk
less than a predefined value ε in some chosen norm.

The BCG algorithm 3.1 requires AT . This is often not available, e.g. when A is
defined partly as a procedure and not as an explicit matrix. Moreover, the vectors p?j
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Algorithm 3.1. Biconjugate Gradi-
ent
1 Compute r0 := b− Axo.
2 Choose r?0 such that (r0, r

?
0) 6= 0.

3 Set p0 := r0, p?0 := r?0.
4 for j = 0, 1, . . . until convergence,
5 do αj := (rj, r?0)/(Apj,p

?
j)

6 xj+1 := xj + αjpj
7 rj+1 := rj − αjApj
8 r?j+1 := r?j − αjATp?j
9 βj+1 := (rj+1, r

?
j+1)/(rj, r?j)

10 pj+1 := rj+1 + βjpj
11 p?j+1 := r?j+1 + βjp

?
j+1

Algorithm 3.2. Conjugate Gradient
Squared
1 Compute r0 := b− Axo.
2 Choose r?0 such that (r0, r

?
0) 6= 0.

3 Set p0 := u0 := r0.
4 for j = 0, 1, . . . until convergence,
5 do αj := (rj, r?0)/(Apj, r

?
0)

6 qj := uj − αjApj
7 xj+1 := xj + αj(qj + uj)
8 rj+1 := rj − αjA(qj − uj)
9 βj+1 := (rj+1, r

?
0)/(rj, r?0)

10 uj+1 := rj + βjqj
11 pj+1 := uj+1 + βj(qj + βjpj)

generated with it do not contribute directly to the solution. The CGS algorithm 3.2
was developed as an improvement on BCG, with the aim of not requiring AT .

The residuals rj in BCG can be expressed as

rj = φj(A)r0,

where φj is a polynomial satisfying φj(0) = 1. Similarly, the conjugate-direction
polynomial πj is given by

pj = πj(A)r0.

In the same way, r?j = φj(AT )r?0 and p?j = π(AT )r?0. Then the scalar αj in BCG can
be written

αj =
(φ2

j(A)r0, r
?
0)

(Aπ2
j (A)r0, r?0) .

This indicates that if we can find a recursion for φ2
j(A)r0 and π2

j (A)r0, then com-
puting the scalars αj and βj can be done without having AT . That is what the CGS
algorithm 3.2 does, by computing rj s.t. it satisfies

rj = φ2
j(A)r0.

The problem with CGS is that squaring the residual polynomial can lead to a build
up of round-off errors, especially when convergence is irregular. The BiCGStab
algorithm was developed to deal with this problem. In BiCGStab, the residual
vectors are in the form

rj = ψj(A)φj(A)r0.

Here, φj is the same as in BCG, while ψj is a new polynomial defined to stabilize
the convergence of the procedure. In each step it is defined as

ψj+1(A) = (1− ωjA)ψj(A),
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Algorithm 3.3. Biconjugate Gradient Stabilized
1 Compute r0 := b− Axo.
2 Choose r?0 such that (r0, r

?
0) 6= 0.

3 Set p0 := r0.
4 for j = 0, 1, . . . until convergence,
5 do vj := Apj
6 ρj := (rj, r?0)
7 αj := ρj/(vj, r?0)
8 sj := rj − αjvj
9 tj := Asj
10 ωj := (tj, sj)/(tj, tj)
11 xj+1 := xj + αjpj + ωjsj
12 rj+1 := sj − ωjtj
13 βj := (rj+1,r?

0)
(rj ,r?

0) ×
αj

ωj

14 pj+1 := rj+1 + βj(pj − ωjvj)

where ωj is a scalar. The direction vectors are defined analogously by pj = ψj(A)πj(A)r0.
Finding recurrence relations to update rj+1 and pj+1, and determining ωj, leads to
algorithm 3.3.

The orthogonality property

(Pi(A)r0, Qj(AT )r?0) = 0, j < i, (3.3)

of the BiCGStab method guarantees, in the absence of breakdown, convergence in
at most m iterations. Breakdown is possible even in exact arithmetic. Several of
the scalars in algorithm 3.3 may in some iteration be zero. This can lead to e.g.
division by zero, or a loss of the orthogonality property (3.3). With finite-precision
arithmetic, near-zero coefficients can lead to an increase in numerical errors. The
reason for these problems is that, for general matrices, the bilinear form

(x,y) = (P (A)x, P (AT )y)

does not define an inner product, meaning (rj, r?0) or (r?0, Apj) may be zero, or
sufficiently close to zero, without the process having converged. A study of the
different ways the BiCGStab algorithm can break down is done in [20].

For most problems, we need to use a preconditioner with BiCGStab. Let K be our
preconditioner, and K = K1K2. Then we instead of solving Ax = b, solve the
equivalent system

Âx̂ = b̂,
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Algorithm 3.4. Preconditioned Biconjugate Gradient Stabilized
1 Compute r0 := b− Axo.
2 Set p0 := r?0 := r0.
3 Compute ρ0 = (r0, r

?
0)

4 for j = 0, 1, . . . until r < ε,
5 do
6 qj := Bpj vj := Aqj
7 αj = ρj/(r?0,vj)
8 sj := rj − αjvj
9 uj := Bsj

10 tj := Auj

11 γ := (tj, tj)
12 δ := (tj, sj)
13 if γ = 0 or δ = 0 return “Breakdown, zero inner product”
14 ωj = δ/γ
15 xj+1 := xj + αjqj + ωjuj

16 rj+1 := sj − ωjtj
17 ρj+1 := (rj+1, r

?
0)

18 r =
√

(rj+1, rj+1)
19 if r = 0 return “Breakdown, zero residual”
20 βj := ρj+1

ρj
× α

ω

21 if β = 0 return “Breakdown, zero beta”
22 pj+1 := rj+1 + β(pj − ωvj)

with Â = K−1
1 AK−1

2 , x̂ = K2x and b̂ = K−1
1 b. In the implementation in cbc.block,

K2 = I, i.e. we use left-preconditioning with K−1
1 = B.

Algorithm 3.4 has several opportunities to break down in each iteration, and in
practice BiCGStab breakdowns are a common occurence. Some factors contributing
to the likelihood of breakdown is

• The difference between the initial guess and the expected solution ‖x − x0‖
is too large. This may be the case when, e.g., simulating a time dependent
problem with a too-large time step.

• The preconditioned problem BAx = Bb is too ill-conditioned, i.e. the precon-
ditioner is not good enough.

However, when BiCGStab avoids breaking down it is fast and efficient in memory
usage, both for symmetric and nonsymmetric systems.
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4 Preconditioning

The rate at which most iterative methods, and in particular Krylov subspace meth-
ods, converge is related to the spectrum, meaning the set λ(A) of eigenvalues of A,
or the condition number κ(A) of A ([21], [22]). The condition number is defined as

κ(A) = ‖A‖‖A−1‖,

where ‖ · ‖ is some consistent matrix norm. As all matrix norms are equivalent
for some given dimension n × m, the condition number of a matrix with respect
to two different norms, ‖ · ‖a and ‖ · ‖b, can only differ by a constant factor. The
most commonly used definition of κ(A) is the condition number with respect to the
spectral norm

‖A‖ = ‖A‖2 = max σ(A),

⇒κ(A) = max σ(A)
min σ(A) ,

where σ(A) is the set of singular values of A i.e. the square roots of the eigenvalues
of A?A, where A? is the conjugate transpose of A.

If κ(A) is large, the iterative method for solving Ax = b might diverge, or converge
too slowly. The condition number of a discretized PDE typically, and also in the
case of the Stokes and Navier-Stokes equations, grows as 1/h2. h > 0 is proportional
to the mesh resolution, i.e. a finer mesh means a smaller h. For these reasons it is
necessary to precondition the system to solve it in reasonable time. To precondition
the system means to multiply equation (3.1) with a preconditioner P .

A commonly used criterium for a good preconditioner P for a matrix A is that P
should be order optimal with respect to the discretization parameter h. A precon-
ditioner is considered order optimal if:

(i) The condition number of PA is bounded independently of h, i.e. κ(PA) < c0
where the constant c0 is independent of the parameter h.

(ii) Evaluating P on a vector, Px, requires O(n) arithmetic operations.

(iii) Storing P requires O(n) bytes.

The above definition of order-optimality is taken from [23].

Another way to express (i), if A and P are both symmetric and positive, is to require
P to be spectrally equivalent to A−1. That P is spectrally equivalent to A−1 means
that there exists constants c1 and c2 such that

c1(A−1v, v) ≤ (Pv, v) ≤ c2(A−1v, v) ∀v ∈ Rn, (4.1)
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where (·, ·) denotes some inner product. If A−1 and P are spectrally equivalent
then the condition number of the preconditioned system is bounded by c2/c1, and
if c1 and c2 both are independent of h, then κ is independent of the discretization
parameter, and a uniform refinement of the mesh will not lead to a more slowly
converging iterative solution process. P = A−1 satisfies the first condition, but it is
typically dense and so fails the second and third. What we seek, in the symmetric
and positive case, is some kind of approximation P ≈ A−1 to the inverse of A that
is order optimal in the sense described above.

In the case where A is nonsymmetric and indefinite the above paragraph does not
apply. Iterative solution methods with well-known convergence properties, like the
mimimum residual method, cannot be applied to such a system. This makes finding
a good preconditioner difficult. The spectral norm may also not be the most useful
norm to define the condition number by. Instead, we might choose a norm that
depends in part on the parameters of the differential operator A is a discretization
of, or the dimension n of the discrete system, or both. Which properties of A the
preconditioner P should be designed to improve, i.e., what should the preconditioned
system PA look like in terms of eigenvalues, singular values, or something else,
probably depends crucially on the chosen iterative solution method. Clear answers to
this question exists for algorithms like the minimum residual and conjugent gradient
methods applied to symmetric, positive systems [24]. However, for general matrices
the convergence properties of the most commonly used Krylov subspace methods
are not as well understood.

4.1 Preconditioning the time dependent Stokes equations

4.1.1 Block diagonal preconditioner

While we are primarily interested in the (finite element-) discretized version of (2.27),
it can be useful to first consider the preconditioning of the continuous problem. Here
we will only consider the case of ∂ΩD = ∂Ω, with u

∣∣∣
∂ΩD

= gD = 0. We rewrite (2.27)
as

aε(u,v)− b(v, p) = 〈f,v〉 v ∈ V,
b(u, q) = 0 q ∈ Q, (4.2)

where aε(u,v) = 〈u,v〉 + ε2〈∇u,∇v〉 and b(u, q) = 〈∇ · u, q〉, and we assume
f ∈ H−1. We then introduce the operator

Aε =
(
I − ε2 ∆ ∇
∇· 0

)
, (4.3)
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where Aε : H1
0 (Ω)× L2(Ω)→ H−1(Ω)× L2(Ω) is defined by

〈Aε(u, p), (v, q)〉 = 〈u,v〉+ε2〈∇u,∇v〉−〈∇·v, p〉+〈∇·u, q〉,∀(v, q) ∈ H1
0 (Ω)×L2(Ω).

Here, 〈·, ·〉 has been used both to denote duality pairings and L2 inner products.

As ε tends to zero, I − ε2 ∆ will be dominated by the identity operator. This is a
problem, as we would like to have bounds on the norms of Aε and A−1

ε which are
independent of ε. To achieve this, we will define Aε on the space

Xε = (L2(Ω) ∩ ε ·H1
0 (Ω))n × ((H1(Ω) ∩ L2

0(Ω)) + ε−1L2
0(Ω)), (4.4)

where L2
0(Ω) is the space of L2 functions on Ω with mean value zero. The norm of

the space (L2(Ω) ∩ ε ·H1
0 (Ω))n is

‖v‖V = (‖v‖2
L2 + ε2‖∇v‖2

L2) 1
2

Note that for ε > 0, the space Xε is equal to H1
0 (Ω)×L2(Ω) as a set, and therefore Aε

is well defined on Xε. If X and Y are Hilbert spaces, both continuously contained
in some larger Hilbert spaces, then X + Y and X ∩ Y are also Hilbert spaces.
Additionaly, if X ∩ Y is dense in both X and Y then its dual is

(X ∩ Y )∗ = X∗ + Y ∗. (4.5)

These results concerning Hilbert spaces can be found in [25]. Due to (4.5), the dual
of Xε is

X ∗ε = (L2(Ω) + ε−1 ·H−1(Ω))n × ((H1(Ω) ∩ L2
0(Ω))∗ ∩ ε ·L2

0(Ω)). (4.6)

Having established this, we will now consider how to precondition (4.2). A suitable
preconditioner Bε : X ∗ε → Xε is one that maps X ∗ε to Xε, so that the composition

BεAε : Xε → X ∗ε → Xε (4.7)

maps Xε to itself. The operators

(I − ε2 ∆)−1 : (L2 + ε−1H−1
0 )n → (L2 ∩ ε ·H1

0 )n

and
ε2I + (−∆)−1 : ((H1 ∩ L2

0)∗ ∩ ε ·L2
0)→ (H1 ∩ L2

0 + ε−1L2
0)

have the properties we need, so we conclude that

Bε =
(

(I − ε2 ∆)−1 0
0 ε2I + (−∆)−1

)
(4.8)

25



fulfills the requirement stated in 4.7.

The mapping properties of the operator Aε, and the consequenses of those properties
for the preconditioning of (2.27), are thoroughly examined in [26] and [6], and we
refer to those papers for a comprehensive study of the problem and more detailed
derivation of (4.8).

The discrete analogue of (4.3) is a block matrix on the form

Aε =
[
F G
D 0

]
. (4.9)

The discretization of (4.8) is a block diagonal matrix on the form

Bε =
[
F−1 0

0 Ŝ−1

]
. (4.10)

Here F = M + ε2K, where M is a mass matrix, the finite element identity operator,
and K is a stiffness matrix, the finite element Laplace operator. D is the discrete
divergence, G is the discrete gradient, and Ŝ−1 = K−1+ε2M−1. Note the subsitution
of p with −p, making (4.9) symmetric (GT = D).

4.1.2 Projection method based preconditioner

Another idea for a preconditioner for the discretized time-dependent Stokes equa-
tions is explored in [7]. Take a discrete saddle-point system on the form[

F G
−D 0

] [
u
p

]
=
[
f
0

]
. (4.11)

Here F = ρ
∆tI − µL is the discrete operator for ρ

∆tI − µ∆, D for ∇·, and G for ∇.
Equation (4.11) is clearly equivalent to (2.32) if DT = G.

The following solution algorithm is presented in [7]:

(i) Solve for an intermediate velocity u?

Fu? = f . (4.12)

(ii) Project u? to the divergence free space by solving

ρ
uk+1 − u?

∆t = −Gφ

−Duk+1 = 0, (4.13)
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which leads to the following Poisson equation for the pressure:

− Lφ = − ρ

∆tDu? (4.14)

(iii) Update the velocity and correct the pressure term by

uk+1 = u? − ∆t
ρ
Gφ, (4.15)

pk+1 = φ− ∆t
ρ
µLφ. (4.16)

This algorithm can be written in matrix form as

P̃−1 =
[
I −G
0 ρ

∆tI − µL

] [
I 0
0 −(L)−1

] [
I 0
−D −I

] [
F−1 0

0 I

]
, (4.17)

or, combining the two leftmost matrices, as the following:

P−1 =
[
I GL−1

0 Ŝ−1

] [
I 0
−D −I

] [
F−1 0

0 I

]
, (4.18)

where Ŝ−1 = ρ
∆t(−L)−1 +µI. The idea is then to use this matrix as a preconditioner

for the discretized time dependent Stokes equations.

The formulation of (4.18) that we will use is

Pε =
[
I GK−1

0 Ŝ−1

] [
I 0
D −I

] [
F−1 0

0 I

]
. (4.19)

This formulation is a translation of (4.18) to the finite element formulation from
section 2.2.4, with the naming conventions we used for (4.9) and (4.10). That is, K
is a stiffness matrix, Ŝ−1 = νM−1 + ρ

∆tK
−1 is the same operator present in (4.10), G

is the (finite element) negative discrete gradient and D the (finite element) discrete
divergence. The difference in the parameters in Ŝ−1 here is due to the momentum
equation not being scaled by ∆t as it was in section 4.1.1 and 1

ρ
as it was in 2.1.

Note that the definition of A that we use in this thesis is, in contrast to the coefficient
matrix in equation (4.11),

A =
[
F G
D 0

]
. (4.20)

This difference in the sign of the continuity equation leads to both occurrences of D
in (4.19) also having opposite sign of what they have in (4.18), with the result that
the operator PεA here looks different from the same in [7].
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4.1.3 Yosida method based preconditioner

The third preconditioner we consider is one based on the Yosida method introduced
in [27]. Take a saddle point problem on the form

Ax =
[
F G
D 0

] [
un+1

pn+1

]
=
[
bn+1

1
bn+1

2

]

and observe that a block LU factorization of A is

A =
[
F 0
D −DF−1G

] [
I F−1G
0 I

]
. (4.21)

Approximating F−1 by a matrix H1 in the first block, and another matrix H2 in the
second, an inexact factorization of A is

Ã =
[
F 0
D −DH1G

] [
I H2G
0 I

]
=
[
F FH2G
D D(H2 −H1)G

]
. (4.22)

Different choices of H1 and H2 will lead to different schemes. In the Yosida method,

H1 = ∆tM−1, H2 = F−1.

This leads to the following pressure correction scheme:

F ũn+1 = bn+1
1 Tentative velocity,

−∆tDM−1Gpn+1 = bn+1
2 −Dũn+1 Pressure computation,

Fun+1 = F ũn+1 −Gpn+1 Velocity correction.

The scheme 4.23 expressed in matrix form is

AY =
[
F 0
D −∆tDM−1G

] [
I F−1G
0 I

]
=
[
F G
D D(F−1 −∆tM−1)G

]
. (4.23)

The matrix 4.23 was first used as a preconditioner by Deparis et al. in [2]. In
implementation, we use a factorization of the inverse of 4.23, i.e.

A−1
Y = Y1 =

( [F 0
D −∆tDM−1G

] [
I F−1G
0 I

] )−1

=
[
I F−1G
0 I

]−1 [
F 0
D −∆tDM−1G

]−1

=
[
I −F−1G
0 I

] [
F−1 0

(∆tDM−1G)−1DF−1 (−∆tDM−1G)−1

]

=
[
F−1 0

0 I

] [
I −G
0 I

] [
F 0
0 I

] [
I 0
0 −S̃−1

1

] [
I 0
−D I

] [
F−1 0

0 I

]
, (4.24)
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if
S̃−1

1 = (∆tDM−1G)−1. (4.25)
In practice, using the explicit inverse of M is not feasible. Instead, we will follow [2]
in approximating M with M̃ , where M̃i,i = ∑

j |Mi,j|, i.e. a diagonal matrix with
the row sums of M on the diagonal.

In addition to the lumped mass matrix approximation, we will look at a variant
where we use the inverse diagonal of F in the Schur complement, i.e. we set

S̃−1
2 = (DF̃−1G)−1, (4.26)

where F̃ is a diagonal matrix with F̃i,i = Fi,i. This variation we will refer to as Y2.
The reason why we include the variant is that it is an easy variation to implement,
and the performance of Y2 might scale better with regard to ν as that parameter
contributes to F̃ , but not to ∆tM̃ .

4.1.4 Analysis of the preconditioners

Our analysis of the Bε, Pε and Yosida preconditioners will be limited to examining
the eigenvalues of the preconditioned systems BεA, PεA, Y1A and Y2A. As Y1 and
Y2 only differ in the choice of Schur complement approximation, we study both as
one and refer to that as Yε. Similarly, we refer to both S̃−1

1 and S̃−1
2 by S̃−1 whenever

what we write applies to both.

To study the eigenvalues of

BεA =
[
F−1 0

0 Ŝ−1

] [
F G
D 0

]
, (4.27)

we consider the generalized eigenvalue problem[
F G
D 0

] [
u
p

]
= λ

[
F 0
0 Ŝ

] [
u
p

]
. (4.28)

We assume here that Ŝ−1 is invertible. This problem is examined in Elman, Silvester
& Wathen in [3], where it is shown that if Ŝ is the exact schur complement, then all
the eigenvalues λ in (4.28) lie in

{1
2 −
√

5
2 } ∪ {1} ∪ {

1
2 +
√

5
2 }.

That is, the eigenvalues are λ = 1, with multiplicity nu − np, and λ = 1
2 ±

√
5

2 , each
with multiplicity np. For the Schur complement approximation Ŝ−1 = K−1 + ε2M ,
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consider the following argument (adapted from p. 293 in [3]): Eliminate u in the
second equation of (4.28) using the first, to obtain

DF−1Gp = λ(λ− 1)Ŝp = γŜp.

Now, for each eigenvalue γ of Ŝ−1S, there is a pair of eigenvalues of (4.28) given by

λ = 1
2 −

1
2
√

1 + 4γ and λ = 1
2 + 1

2
√

1 + 4γ.

Now, in [7] it is shown that, for a certain finite difference discretization, the discrete
operator Ŝ−1S has eigenvalues

β2 < λ(Ŝ−1S) < 1,

where β is a constant that does not depend on the mesh resolution. This result is not
necessarily applicable to the finite element context of this thesis, but in chapter 6
we will examine the eigenvalues of Ŝ−1S numerically.

The matrix PεA is

PεA =
[
I GK−1

0 Ŝ−1

] [
I 0
D −I

] [
F−1 0

0 I

] [
F G
D 0

]
. (4.29)

If we do the multiplications, this can be written

PεA =
[
I (I +GK−1D)F−1G

0 Ŝ−1S

]
. (4.30)

Similarly, the system YεA is

YεA =
[
F−1 0

0 I

] [
I −G
0 I

] [
F 0
0 I

] [
I 0
0 −S̃−1

] [
I 0
−D I

] [
F−1 0

0 I

] [
F G
D 0

]
, (4.31)

which, carrying out the multiplications, we can write as

YεA =
[
I F−1G(I − S̃−1S)
0 S̃−1S

]
. (4.32)

As the determinant of a block triangular matrix is the product of the determinants of
the diagonal blocks, each eigenvalue of (4.32) and (4.30) is either 1, or an eigenvalue
of S̃−1S or Ŝ−1S, respectively. The formal analysis of the eigenvalues λ(S̃−1S) of
S̃−1S lies outside the scope of this thesis. They will instead be examined numerically
in chapter 6.
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The spectral norm of the matrix (4.30), defined as

‖PεA‖2 = sup
x∈Rn

‖PεAx‖2

‖x‖2
= max σ(PεA),

will depend on the operator in the (1,2)-block, (I + GK−1D)F−1G, in addition to
Ŝ−1S. We note that this operator is different from the (1,2)-block operator in (4.18)
from [7].

The spectral norm of the matrix (4.32) depends only on how close S̃−1S is to iden-
tity, or in other words how well S̃−1 approximates S−1. Whether the value of this
norm is important for the convergence of iterative methods applied to the precon-
ditioned system will be investigated through numerical experiments in chapter 6,
but we note that in a paper by Nachtigal et al. [21] it is argued that for the CGS
algorithm (3.2) convergence does not depend on singular values, but on eigenvalues
or pseudoeigenvalues. Further, the BiCGStab algorithm (3.4) is based on CGS.

The δ-pseudospectrum of a matrix A is the set of point z ∈ C which are eigenvalues
of some matrix A+E with ‖E‖ <= δ, for some δ > 0 [21]. We take a cursory look
at some pseudoeigenvalues of the preconditioned operators in chapter 5.

4.2 Preconditioning the modified Oseen problem

The linearized and finite element-discretized modified Oseen problem (2.31) is a
linear saddle point problem on the form

Ax =
[
F G
D 0

] [
u
p

]
=
[
f
0

]
, (4.33)

where G is the discrete gradient, D is the discrete divergence and F = 1
∆tM +νK+

C(u1) is the discretization of (2.30). Here M is a finite element mass matrix, K
is a finite element stiffness matrix and C(u1) the discretized convective term. As
in (4.9) we have subsituted −p for p.

It is easily verifiable that the inverse of A in (4.33) is given by

A−1 =
[
F−1 + F−1G(−DF−1G)DF−1 −F−1G(−DF−1G)−1

(DF−1G)−1DF−1 −(DF−1G)−1

]
(4.34)

=
[
F−1 − F−1GS−1DF−1 F−1GS−1

S−1DF−1 −S−1

]
. (4.35)

For our problems 2.27 and 2.28, the action of the inverse F−1 can be approximated
well with e.g. an algebraic multigrid method, while the inverse Schur complement
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S−1 poses some difficulty. Several approximations of S have been suggested, e.g.
in [28], [29].

Let F = 1
∆tM + νK + C(u1). In the Bε and Pε preconditioners, the heuristic we

used to approximate S−1 = (DF−1G)−1 for the modified Oseen problem is, assuming
commutativity of the continuous operators∇ and∇·, and ignoring the fact that they
operate on different fields, to write

−S−1 = (−DF−1G)−1

= (−D( 1
∆tM + νK + C(u1))−1G)−1

≈ (−∇ · ( 1
∆tI + ν(−∆) + u1 · ∇)−1∇)−1

≈ (−∇ · ∇( 1
∆tI + ν(−∆) + u1 · ∇)−1)−1

≈ (−∆)−1( 1
∆tI + ν(−∆) + u1 · ∇)

≈ 1
∆t(−∆)−1 + ν(−∆)−1(−∆) + (−∆)−1u1 · ∇

≈ 1
∆t(−∆)−1 + νI + (−∆)−1u1 · ∇

≈ 1
∆tK

−1 + νM−1 +K−1C(u1) = Ŝ−1.

The argument above is motivated partly by a similar approach being used in [28]
and the operator preconditioning arguments from [6], reproduced in section 4.1.1.

We have compared the same preconditioners we used for the time dependent Stokes
equations for 4.33, and we restate them here:

• The block triangular preconditioner described in 4.1,

BO =
[
F−1 0

0 Ŝ−1

]
. (4.36)

• The projection method based preconditioner described in 4.1.2,

PO =
[
I G(K)−1

0 Ŝ−1

] [
I 0
D −I

] [
F−1 0

0 I

]
. (4.37)

• The Yosida preconditioner (4.24) described in section 4.1.3,

Y1 =
[
F−1 0

0 I

] [
I −G
0 I

] [
F 0
0 I

] [
I 0
0 −S̃−1

1

] [
I 0
−D I

] [
F−1 0

0 I

]
. (4.38)
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• The variant of the Yosida preconditioner above that was discussed in sec-
tion 4.1.3,

Y2 =
[
F−1 0

0 I

] [
I −G
0 I

] [
F 0
0 I

] [
I 0
0 −S̃−1

2

] [
I 0
−C I

] [
F−1 0

0 I

]
. (4.39)

To summarize, the pressure Schur complement approximations in (4.36)-(4.39) are

Ŝ−1 = 1
∆tK

−1
p + νM−1

p +K−1
p C(u1), (4.40)

S̃−1
1 = (∆tDM̃−1G)−1, (4.41)
S̃−1

2 = (DF̃−1G)−1, (4.42)

where M̃ is a lumped mass matrix and F̃ is a diagonal matrix with F̃i,i = Fi,i.
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5 Description of numerical experiments

A note on notation used in this chapter: A is a partial differential operator dis-
cretized with the finite element method, either the time dependent Stokes equations
or the modified Oseen problem, and P−1 is a preconditioner. K and Mp means
a stiffness matrix on u and a mass matrix on p, respectively. As previously, D is
the divergence matrix and G is the gradient matrix. We will by S−1 denote an
approximation to the inverse pressure Schur complement.

When we talk about the performance of a preconditioner P−1, we will be referring
to the average number of BiCGStab iterations to solve a time step of a flow problem
when the discretized problem was preconditioned by P−1. In this context, better
performance means lower iteration count. The reason we do not measure perfor-
mance by time expenditure is that the simulations were done on several different
shared machines. By preconditioner robustness we mean insensitivity to both the
viscosity parameter ν and the maximum velocity magnitude vmax.

In all the numerical work presented in this chapter and the next we have used
continuous Galerkin elements of degree 2 for the velocity u, and continuous Galerkin
elements of degree 1 for the pressure p. We have not done any testing of parallell
implementations; each simulation was done on a single processor. Also note that we
have not done any monitoring of memory usage.

For reference we state the discretized differential operators. They are

AS =
[

1
∆tM + νK G

D 0

]
, (5.1)

AO =
[

1
∆tM + νK + C(u1) G

D 0

]
, (5.2)

for the time dependent Stokes equations and Oseen equations, respectively. We will
sometimes drop the subscript distinguishing the two operators when the context
ensures there will be no ambiguity. ν = µ

ρ
is the kinematic viscosity.

The preconditioners (4.10), (4.19), (4.38) and (4.39) were compared in several dif-
ferent ways:

• Calculation of the condition number

κ1 = κ1(P−1A) = ‖P−1A‖‖(P−1A)−1‖

of P−1A, for various mesh sizes and parameter values. This number will
in general differ for different choices of norm. We chose to find the 2-norm
condition number, given by σmax

σmin
, i.e. the ratio of the largest singular value of

P−1A and the smallest.
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• Calculation and plotting of the non-unitary eigenvalues of P−1A.

• Tabulation of the ratio of the largest eigenvalue and the smallest eigenvalue
(by moduli). We will denote this ratio by κ2 = κ2(P−1A).

• Comparison of performance and robustness for various mesh sizes and param-
eter values, on two model problems on the unit square.

• Performance in a less idealized setting, with physical parameters.

The analysis and results in [6] for the Bε preconditioner, and preliminary testing,
suggested that the performance of the preconditioners may be more dependent on
κ2 than κ1. For this reason we are interested in both.

5.1 Condition number computations

In all the test cases, the discrete system and the preconditioners were built with
dolfin [8], using cbc.block [9], and subsequently the matrices were exported to GNU
Octave [30] where we calculated the eigenvalues λ(P−1A),

κ1(P−1A) = max σ(P−1A)
min σ(P−1A) , (5.3)

κ2(P−1A) = maxλ∈λ(P−1A) |λ|
minλ∈λ(P−1A),λ 6=0 |λ|

. (5.4)

The calculations of the eigenvalues λ(P−1A) were done by solving the eigenvalue
problem P−1Ax = λIx, using the built-in QZ decomposition algorithm from Octave.
Finding the eigenvalues through instead solving the generalized eigenvalue problem
Ax = λPx was considered, but ultimately rejected. The reason being that the
approximations

Ŝ−1
S = 1

∆tK
−1
p + νM−1

p (Stokes)

Ŝ−1
O = 1

∆tK
−1
p + νM−1

p +K−1
p C(u1) (Oseen),

of the inverse schur pressure complement in the preconditioners Pε andBε would have
to be numerically inverted, something we wanted to avoid to minimize errors due to
finite-precision arithmetic. Although this would not be an issue when calculating the
eigenvalues of the Yosida-preconditioned system, in the interest of consistency we
opted for the same approach in that case. We will omit the subscripts distinguishing
the two variants of Ŝ−1 whenever the context ensures there will be no ambiguity.
The singular values σ(P−1A) were calculated by way of the Octave implementation
of the singular value decomposition.
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Figure 4: 8-by-8 unit square mesh

All numerically exact eigenvalue computations were done on an N-by-N triangle
mesh on the unit square, with two different boundary conditions. We will in some
text and figures refer to e.g. the mesh in figure 4 as having a mesh resolution of
h = 2− log2 N . The boundary conditions used were

(i) Lid-driven cavity: u(x, 1) = (s1(t), 0), no-slip for the rest of the boundary.
With these boundary conditions, p is only determined up to a constant, so
the matrix A is rank deficient by 1. For this reason we disregard the zero
eigenvalue of P−1, and instead use the second smallest (by modulo) to compute
the condition number. For the same reason the stiffness matrix Kp is not
invertible, so we added a mass matrix, and used (Kp +Mp)−1 in place of K−1

p

in the two preconditioners where K−1
p is used.

(ii) Velocity driven pipe flow: u(0, y) = (s2(t)4y(1 − y), 0), u(x, 0) = u(x, 1) =
(0, 0) and p(1, y) = 0.

The Schur complement approximations S̃−1
1 = (∆tDM̃−1G)−1 and S̃−1

2 = (DF̃−1G)−1,
used in, respectively, the Y1 and Y2 preconditioners, were the source of some difficul-
ties in implementation. Both required stabilization by a mass matrix in the absence
of boundary conditions on p, i.e. for the lid-driven cavity setup we replaced S̃ by
S̃ + M . In the two dimensional pipe flow setup, this was also necessary, as the
boundary conditions on p led to D being rank deficient to a degree equal to the
number of nodes on the outflow boundary. The changes we made to these operators
to avoid the difficulties in implementation we experienced were not motivated by
theory, but by experience and trial and error.

We set s1(t) = s2(t) = 1 and ∆t = 1, and calculated λ(P−1A), κ1(P−1A) and
κ2(P−1A) for each combination of equation, boundary conditions, preconditioner,
N ∈ {2, 4, 8, 16, 32} and ν ∈ {1, 0.1, 0.01, 0.005, 0.001}.

If we calculate the Reynolds number for the lid-driven cavity case as Re = ρvL
µ

= vL
ν
,
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where v is the maximum velocity and L the characteristic length (here the length
of the lid), we get Reldc = ν−1.

For the velocity driven pipe flow we calculate the Reynolds number as Re = ρQL
µA

=
QL
νA

. Here, L = D is the diameter of the 2D pipe, Q is the flux through the inlet
given by

∫
inlet u · n, where n is the normal vector to the inlet, and A the area of the

inlet. This gives Repipe = 2
3ν
−1.

The convective term u1 · ∇u in the Oseen equations contain the velocity from the
previous time step. As this initial data we use the velocity from the solution of

ν〈∇u,∇v〉+ 〈p,∇ · v〉 = 0,
〈q,∇ · u〉 = 0,

with the same boundary conditions. This choice of initial data is most likely not
ideal, especially for the lid-driven cavity boundary conditions. When the viscosity
ν is small the flow is not fully developed when we do the calculations.

P−1A is not normal, so the pseudospectra σδ(P−1A), defined in section 4.1.4, might
be relevant to the performance of the preconditioners(cf. [21]). To investigate the
pseudospectra of the preconditioners, we calculated λ(P−1AOseen +E), with E being
an n-by-n matrix with each Ei,j a random number in the interval (0, 2δ/n) for
δ = 10−3, 10−4, 10−5. With this definitition, ‖Eδ‖ ≈ 10−3, 10−4, 10−5. The boundary
conditions used for these calculations were those of lid-driven cavity flow.

To measure how much the eigenvalues of P−1A were perturbed by adding the random
matrix E, we sorted both the perturbed and non-perturbed eigenvalues according
to moduli, calculated the 2-norm of the difference of the two vectors of eigenvalues,
and scaled the result by the norm of the vector of eigenvalues of the original matrix.
For each preconditioner the resulting value γ was approximately constant in δ, but
inversely proportional to ν. Y2A had the largest such difference, with γ = 0.00389
when ν = 0.001 and δ = 0.001 and γ = 0.00335 when ν = 0.001 and δ = 10−5.
Scatterplots of the calculated pseudoeigenvalues were sufficiently indistinguishable
to the scatterplots of eigenvalues that we do not include them.

A thorough investigation into the pseudospectra of P−1A, which would include cal-
culating the size of the subset of C where the δ-pseudoeigenvalues of P−1A are found,
would require large amounts of time and computational power, and lies outside of
the scope of this thesis.

5.2 Simulations on the unit square

In this section we will describe the experiments done to compare the performance
of the preconditioners when we vary the resolution of the mesh and the Reynolds
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number. For all these simulations we solved the preconditioned linear system with
the biconjugate gradient stabilized method (BiCGStab), specifically the implemen-
tation (3.4) of BiCGStab in cbc.block. The convergence criterion for BiCGStab was
‖rn‖2 < 10−14 in all cases.

Figure 5: Developed flow at t=2, 2D pipe flow

The inverse stiffness matrices in the preconditioners were approximated with al-
gebraic multigrid (BoomerAMG) from the Hypre library through PETSc, and the
inverse mass matrices with successive over-relaxation (SOR) from PETSc, in both
cases using the interface of cbc.block [9]. For details on PETSc and the implemen-
tation of these preconditioners, we refer to [31].

Two sets of boundary conditions were used for these computations:

(i) Lid-driven cavity: u(x, 1) = (s1(t), 0), no-slip for the rest of the boundary.

(ii) Velocity driven pipe stream: u(0, y) = (s2(t)4y(1− y), 0), u(x, 0) = u(x, 1) =
(0, 0) and p(1, y) = 0.

The same adjustments to certain operators, described in section 5.1, were done here
to deal with rank deficiencies.

For both the preconditioned time dependent Stokes equations and the precondi-
tioned modified Oseen problem we used a cyclically time-varying boundary condi-
tion, setting

s1(t) = s2(t) = 0.5 + 0.5 cos2(πt). (5.5)

The initial condition in all simulations was the solution of the steady state Stokes
flow, with the same parameters and boundary conditions. Each simulation consisted
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Figure 6: Developed flow at t=2, lid-driven cavity

of 200 time steps with ∆t = 0.01. The numbers we report from each simulation
are the average number of BiCGStab iteration before convergence, taken over the
whole simulation. We experimented with running the simulation for a time before
collecting data, but doing so did not significantly alter results. This was done
for each combination of equation, preconditioner, ν = 1, 0.1, 0.01, 0.005, 0.001 and
N = 16, 32, 64, 128, 256.

For the preconditioners (4.10) and (4.19), on the time dependent Stokes equations,
using a smaller time step is equivalent to scaling the viscosity ν. We chose to use
the same parameters across all simulations to ease implementation and comparison
of results.

5.3 Arterial blood flow simulations

Figure 7: Mesh of cerebral aneurysm

In addition to the experiments detailed above, we also simulated blood flow through
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a cerebral artery with an aneurysm. The mesh used was based on an MRA image
of a surgically created bifurcation aneurysm in a beagle, taken from the study [32].
Boundary conditions were no-slip for the artery walls, zero pressure at the outlets,
and a time-varying parabolic velocity profile at the inlet. The inlet velocity profile
was generated with code from cbcflow [33]. As initial condition we used steady
Stokes flow. The reason for choosing this initial condition, and not let the fluid
start at rest, was that we had problems with BiCGStab breakdown when the flow
velocity magnitude varied too much over the domain.

We did two sets of simulations on the artery meshes, one set with a Reynolds number
of about 200, and one with a Reynolds number of about 400. We will refer to the first
set as low Reynolds number flow simulation, and the second as moderate Reynolds
number flow simulation.

In the low Reynolds number simulations the maximum magnitude velocity at the
inlet varied between v(x, t = 0)max = 77 mm s−1 and v(x, t = 0.1)max = 309 mm s−1,
while the flux varied between Qmin = 390 mm3 s−1 and Qmax = 1561 mm3 s−1. If
we define the Reynolds number (at the inlet) as Re = ρQD

µA
, we get Remin = 49

and Remax = 194. In the moderate Reynolds number flow simulations, the above
quantities were exactly twice as large. We used different time step sizes for the two
different sets of simulations: 0.0005 for the low Re simulations and 0.0001 for the
moderate Re simulations.

The results we report from these simulations are the average number of BiCGStab
iterations per time step with empirical standard deviation, as well as the average
time spent per timestep. Three different mesh resolutions were used, and we will
refer to them as rf0, rf1, and rf2. Using the P2 − P1 elements described in the
beginning of this chapter, the different mesh resolutions led to the following number
of unknowns:

• rf0 : n = 84836

• rf1 : n = 200763

• rf2 : n = 414297

The values for the viscosity and density are similar to those used in [32] (in that
paper the same parameters are µ = 0.0035 N

mm2 and ρ = 0.00105 g
mm3 ).

In the previous section we described how we stabilized the S̃−1
1 and S̃−1

2 operators
in the two dimensional case. When performing the experiments detailed above,
we discovered that adding a mass matrix to the Schur complement approximations
was not only unnecessary in the three dimensional case, but that doing so led to
the Y1-preconditioned system requiring on average more than three times as many
iterations, and the Y2-preconditioned system not converging within the set limit. For
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(a) Maximum velocity magnitude at the in-
let vs. time, one heart cycle of the low
Reynolds number simulations.

µ = 0.00345 N mm−2

ρ = 0.00106 g mm−3

ν = 3.255m2/ s2

radius(inlet) = 1.8 mm
Remax(inlet) = 194

∆t = 0.0005
(b) Parameters for the low Reynolds

number artery flow simulations.

this reason the arterial blood flow simulations were done with S̃−1
1 = (∆tDM̃−1G)−1

and S̃−1
2 = (DF̃−1G)−1, i.e. without the mass matrix stabilization described in the

previous section. We did not find the reason for the observed difference in the two-
and three dimensional experiments.
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(a) Maximum velocity magnitude at the inlet
vs. time, one heart cycle of the moderate
Reynolds number flow simulations.

µ = 0.00345 N mm−2

ρ = 0.00106 g mm−3

ν = 3.255m2/ s2

radius(inlet) = 1.8 mm
Remax(inlet) = 389

∆t = 0.0001
(b) Parameters for the moderate

Reynolds number artery flow
simulations.

6 Results

In this section we will refer to the block diagonal preconditioner defined on page 26
in section 4.1.1 by “Bε”, the projection method based preconditioner defined on
page 27 in section 4.1.2 by “Pε”. The Yosida preconditioner defined on page 28 in
section 4.1.3 we refer to as “Y1,” and the alternative Yosida preconditioner we will
refer to by “Y2.”

The variants of the preconditioners used for the Oseen equations will be referred to
by BO, PO, Y1 and Y2. They are defined on page 32 in section 4.2.

6.1 Numerically exact eigenvalues and condition numbers

6.1.1 Time-dependent stokes equations

The non-unitary eigenvalues λ(P−1AS) of the preconditioned operators in the time-
dependent Stokes case are presented below in figures 10-13. The operators were built
on a uniform N -by-N grid of squares, each divided into two triangles (see figure 4
for an example), where N = 32.

We see in figure 11 that the non-unitary eigenvalues of PεAS are within the interval
[0, 1) when the boundary conditions are those of lid-driven cavity flow. While it is
not obvious from the figures, the multiplicity of the 0-eigenvalue is 1. For the veloc-
ity driven pipe flow case, some eigenvalues are greater than one. The analysis in [7]
referred to in 4.1.4 does not take into account stabilization, and in the implementa-
tion used to produce these graphs the boundary conditions on the pressure function

42



as stabilization. This may be the reason for the eigenvalues above one in the velocity
driven pipe flow case. From figures 12 and 13, we see that the eigenvalues of Y1A
are all in the interval [0, 1], while the largest eigenvalues of Y2A are approximately
30 for both sets of boundary conditions. The spread of the eigenvalues of Y2A is
greatest when the kinematic viscosity ν is 0.1, while for the other preconditioners
the eigenvalues either increase or decrease approximately monotonically with ν.

Figure 10: Non-unitary eigenvalues of BεAS for each boundary condition sets.

We see in figure 10 that half of the non-unitary eigenvalues of BεA when N = 32
are distributed like those of PεA, and the other half is antisymmetric to the first
around the line y = 0.5. note that BεA has twice as many non-unitary eigenvalues
as the other preconditioned operators, as predicted in section 4.1.4. The eigenvalues
for each ν are so similar, it is difficult to distinguish the graphs.

Figure 11: Non-unitary eigenvalues of PεAS for each boundary condition set.
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The non-unitary eigenvalues of PεA plotted in figure 11 have a distribution that
is approximately constant in ν, with the exception of the largest eigenvalues when
there are Dirichlet boundary conditions for p.

Figure 12: Non-unitary eigenvalues of Y1AS, for each boundary condition set.

In figure 12 we see that the non-unitary eigenvalues of Y1A are mostly close to zero
when ν is large, with the distribution being more even for the smallest ν.

Figure 13: Non-unitary eigenvalues of Y2AS for each boundary condition set.

The eigenvalues of Y2A plotted in figure 13 are largest when ν = 0.01 and ν = 0.005.
The graphs for those two ν-values are nearly indistinguishable. The graph for ν = 1
seems qualitatively different from the rest, as it has a nearly constant spectrum.

Tables 1-4 show the 2-norm condition numbers of the preconditioned operators BεA,
PεA, Y1A, and Y2A, for both sets of boundary conditions. None of the precondition-
ers manage to keep the condition numbers for all values of ν in a reasonable range
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as N grows. When ν = 1, κ1(PεA) appears bounded, and the same seems to be the
case for κ1(Y2A).

Lid-driven cavity, κ1(BεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 492.9 13.94 39.31 57.20 102.1
2−2 1822 26.22 59.17 96.47 278.9
2−3 7140 79.64 82.77 154.2 501.1
2−4 28478 293.3 96.49 185.2 794.6
2−5 1e05 1147 108.9 201.8 935.8

Velocity driven pipe flow, κ1(BεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 451.8 15.73 41.19 59.54 99.36
2−2 1791 30.79 67.66 104.0 281.2
2−3 7130 79.55 100.1 175.1 514.7
2−4 28478 293.3 114.7 219.1 852.7
2−5 1e05 1147 122.1 238.4 1074

Table 1: 2-norm condition number of BεAS, for varying grid size and kinematic
viscosity.

The 2-norm condition numbers of BεA listed in table 1 all increase monotonically as
a function of h−1, but there is no clear pattern in the dependence on ν. Neither is
there a clear pattern in how large an increase in κ2 we see between different h-values.

Lid-driven cavity, κ1(PεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 7.95 11.80 42.40 61.73 109.5
2−2 8.71 16.16 61.03 99.38 284.6
2−3 8.99 18.79 84.04 156.0 505.3
2−4 9.14 20.44 97.37 186.3 796.8
2−5 9.21 21.18 104.1 202.6 937.0

Velocity driven pipe flow, κ1(PεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.73 13.49 44.14 63.95 106.4
2−2 9.57 18.98 69.78 107.2 287.0
2−3 10.53 23.00 101.3 176.8 518.7
2−4 11.25 24.91 115.5 220.1 854.6
2−5 11.69 25.77 122.3 239.2 1076

Table 2: 2-norm condition number of PεAS, for varying grid size and kinematic vis-
cosity.

In both test cases the condition number of PεA, shown in table 2, increase as a
monotonic function of both ν−1 and h−1. In the columns where ν = 1 we see
κ1(PεA) is close to constant, while in the column where ν = 0.001 the condition
number grows by a factor of 10 between the coarsest and finest grids.

The condition numbers of Y1A, listed in table 3, seems to behave in a fashion similar
to κ1(BεA), in that it grows with N for each value of ν in both test cases. We also
see the same “parabolic” behaviour if N is fixed and we view κ1 as a function of ν.

The behaviour of κ1(Y2A), shown in table 4, as a function of h−1 and ν is similar to
that of κ1(PεA). The condition number is nearly constant in h−1 when ν = 1, while
for ν = 0.001 it grows by a factor of 103 from h = 0.5 to h = 2−5.

Tables 5-8 show the ratios of the largest by the smallest eigenvalue, by moduli, of
BεA, PεA, Y1A, and Y2A. κ2(P−1A) appears uniformly bounded for both P−1 = Bε
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Lid-driven cavity, κ1(Y1AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 118.8 17.12 4.23 2.28 10.07
2−2 433.6 73.59 33.03 23.95 7.31
2−3 1744 333.8 136.1 143.9 72.65
2−4 6981 1399 437.7 451.4 576.5
2−5 27943 5694 1684 1280 1900

Velocity driven pipe flow, κ1(Y1AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 110.7 17.99 3.90 2.66 8.39
2−2 448.5 85.33 33.41 23.52 7.11
2−3 1819 381.9 143.2 146.6 72.04
2−4 7332 1603 490.5 485.6 578.1
2−5 29436 6521 1974 1472 1999

Table 3: 2-norm condition number of Y1AS, for varying grid size and kinematic vis-
cosity.

Lid-driven cavity, κ1(Y2AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.51 3.06 1.79 2.89 7.80
2−2 8.84 8.13 20.93 9.11 16.59
2−3 8.92 21.39 285.1 255.3 29.89
2−4 8.95 34.48 1133 1579 1127
2−5 8.97 40.34 2752 5292 7921

Velocity driven pipe flow, κ1(Y2AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 9.84 3.34 2.37 4.00 9.40
2−2 9.51 11.12 28.31 10.98 16.99
2−3 9.92 32.20 345.0 301.3 33.21
2−4 11.09 53.80 1439 1870 1207
2−5 11.96 66.62 3654 6592 9040

Table 4: 2-norm condition number of Y2AS, for varying grid size and kinematic vis-
cosity.

and P−1 = Pε. While the eigenvalue ratios of Y2A are not large, they grow with N
for all values of ν except ν = 1. In contrast to the other operators, κ2(Y1A) grows
with N for all values of ν.

Lid-driven cavity, κ2(BεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 12.97 11.92 8.67 7.77 6.65
2−2 13.25 12.49 10.31 9.35 7.31
2−3 13.44 13.07 11.88 11.22 9.16
2−4 13.52 13.35 12.75 12.39 11.00
2−5 13.56 13.48 13.19 13.01 12.26

Velocity driven pipe flow, κ2(BεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 13.22 11.38 8.34 7.49 6.31
2−2 13.81 12.71 10.35 9.37 7.33
2−3 14.31 13.66 11.95 11.25 9.16
2−4 14.72 14.34 13.23 12.66 11.01
2−5 14.97 14.75 14.07 13.71 12.46

Table 5: Eigenvalue ratios κ2(BεAS), for varying grid sizes and kinematic viscosity.

We see in table 5 that the eigenvalues of Bε are largely insensitve to both the grid
resolution and the viscosity parameter, as κ2(BεA) appears to be bounded above
both in h and ν.

In table 6 we see that κ2(PεA) behaves largely like κ2(BεA), with the entries of the
two tables being seperated by a factor of approximately 2 in favour of Pε. This is
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Lid-driven cavity, κ2(PεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 7.35 6.73 4.78 4.24 3.56
2−2 7.32 6.89 5.67 5.12 3.89
2−3 7.42 7.20 6.51 6.13 4.92
2−4 7.46 7.36 7.00 6.79 5.98
2−5 7.49 7.44 7.26 7.16 6.71

Velocity driven pipe flow, κ2(PεAS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 7.37 6.34 4.60 4.08 3.34
2−2 8.11 7.14 5.67 5.12 3.89
2−3 9.10 8.37 6.51 6.13 4.92
2−4 9.95 9.43 7.94 7.26 5.98
2−5 10.50 10.14 9.10 8.60 7.06

Table 6: Eigenvalue ratios κ2(PεAS), for varying grid sizes and kinematic viscosity.

consistent with the theory in section 4.1.4 and consistent with the plots of eigenvalues
above.

Lid-driven cavity, κ2(Y1AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 105.4 10.98 1.55 1.35 1.90
2−2 368.4 37.33 4.22 2.38 1.39
2−3 1447 145.2 15.01 7.78 2.07
2−4 5769 577.4 58.24 29.39 6.63
2−5 23055 2306 230.9 115.9 24.83

Velocity driven pipe flow, κ2(Y1AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 96.91 10.23 1.68 1.57 2.32
2−2 367.0 37.20 4.21 2.38 1.73
2−3 1447 145.2 15.02 7.78 2.08
2−4 5769 577.4 58.24 29.39 6.63
2−5 23055 2306 231.1 115.9 24.83

Table 7: Eigenvalue ratios κ2(Y1AS), for varying grid sizes and kinematic viscosity.

The eigenvalue ratios κ2(Y1A) shown in table 7 grow quickly in h−1, but decreases
nearly linearly in ν−1. This reflects the reliance of the Schur complement approxi-
mation S̃−1

1 = (∆tDM̃−1G) on a small time step and/or small viscosity.

Lid-driven cavity, κ2(Y2AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.64 2.71 1.19 1.34 1.88
2−2 8.47 5.17 2.42 1.68 1.43
2−3 8.50 10.25 7.40 4.95 1.67
2−4 8.51 13.86 19.07 14.60 4.82
2−5 8.52 16.08 39.76 37.65 16.13

Velocity driven pipe flow, κ2(Y2AS)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.99 2.81 1.46 1.67 2.30
2−2 8.75 5.78 2.53 1.70 1.77
2−3 9.34 11.18 7.53 4.98 1.66
2−4 10.56 15.88 19.66 14.86 4.86
2−5 11.44 19.67 42.17 38.77 16.23

Table 8: Eigenvalue ratios κ2(Y2AS), for varying grid sizes and kinematic viscosity.

In table 8 we see the improvement Y2 is to Y1, in that the eigenvalues of Y2 are less
sensitive to the viscosity parameter. When ν = 1, κ2(Y2A) is constant, or nearly
constant, in h. When ν = 0.001 the eigenvalue ratios look similar to κ2(Y1A) in
table 7.
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6.1.2 Modified Oseen problem

Figures 14-17 show the distribution of the non-unitary eigenvalues of the precondi-
tioned operators P−1A in the complex plane. The operators were built on was a
uniform N -by-N grid of squares, each divided into two triangles (see figure 4 for an
example), where N = 32.

When the viscosity parameter ν is 1, the eigenvalues of each are all mostly real, while
for ν < 1 they spread out in the complex plane. Half the plots show the eigenvalues
roughly contained in the unit disc. The eigenvalues λ(Y2A) are larger in magnitude
than the others, while the eigenvalues of BOA are clumped in two mirrored clusters.

Figure 14: Non-unitary eigenvalues of BOAO.

The eigenvalues λ(BOA) plotted in figure 14 are contained in two disjunct, mirrored
clusters. The distribution of the eigenvalues in the complex plane is the same as
λ(POA), but mirrored along the line real(λ) = 0.5

The non-unitary eigenvalues of the operator POA plotted in figure 15 are seen to all
be contained in the unit disc in the lid driven cavity test case. In the velocity driven
pipe flow test case the same is true, except for a small subset of the eigenvalues, the
size of which decreases with ν. The eigenvalues seem to cluster progressively closer
to the origin with a decreasing ν. We also see how close the preconditioned Oseen
operator is to the time dependent Stokes operator in terms of eigenvalues when ν is
large.

Figure 14 and 15 clearly demonstrate, as was argued in section 4.1.4, that the non-
unitary eigenvalues of BOA are mirrored about the line real(λ) = 0.5, with the same
distribution as those of POA.

The eigenvalues of Y1AO plotted in figure 16 were mostly clustered close to the
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Figure 15: Non-unitary eigenvalues of POAO.

Figure 16: Non-unitary eigenvalues of Y1AO.

origin, like they were for Y1AS. When ν = 0.001 the eigenvalues spread out in the
unit disc in the complex plane.

The non-unitary eigenvalues of Y2AO are in figure 17 seen to be similar in magnitude
to the eigenvalues of Y2AS. They are more spread out when ν = 0.01, and more
tightly clustered when ν = 1 and when ν = 0.001, which was what we saw in the
graphs in the previous section for the time dependent Stokes operator.

Tables 9-12 show the 2-norm condition numbers of the preconditioned operators.
These were largely similar to the tables in the previous section, except that they are
slightly larger when ν = 0.001.

The 2-norm condition numbers of BOA shown in table 9 grew with h−1 for all values

49



Figure 17: Non-unitary eigenvalues of Y2AO.

Lid-driven cavity, κ1(BOAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 492.7 14.01 40.10 60.42 114.9
2−2 1821 26.27 58.96 105.0 505.7
2−3 7139 79.60 88.47 171.8 1333
2−4 28477 293.2 105.5 220.2 1755
2−5 1e05 1147 113.8 242.5 1294

Velocity driven pipe flow, κ1(BOAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 450.2 14.30 50.07 76.52 127.7
2−2 1789 25.82 90.09 182.0 563.5
2−3 7128 79.40 125.0 293.5 1854
2−4 28476 293.1 144.6 333.7 3369
2−5 1e05 1147 156.5 359.9 3173

Table 9: 2-norm condition number of BOAO, for varying grid size and kinematic
viscosity.

of ν. κ1(BOA) was larger than it was for time dependent Stokes for the smallest
values of ν.

Lid-driven cavity, κ1(POAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 7.96 11.87 42.91 64.41 121.2
2−2 8.71 16.22 60.71 107.2 511.2
2−3 8.99 18.79 89.53 173.1 1337
2−4 9.14 20.40 106.2 221.0 1755
2−5 9.21 21.14 114.4 243.0 1295

Velocity driven pipe flow, κ1(POAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.89 12.08 51.35 78.41 130.6
2−2 9.49 15.58 91.14 184.0 569.4
2−3 10.25 18.41 124.6 293.3 1860
2−4 10.85 20.01 143.7 332.2 3368
2−5 11.30 20.83 154.9 357.7 3165

Table 10: 2-norm condition number of POAO, for varying grid size and kinematic
viscosity.

In table 10 we see that κ1(POA) increased as a function of h−1 and ν−1, except when
ν = 1 when the condition number was constant in h−1. We see somewhat larger
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condition numbers when viscosity is small, compared to the results in the previous
section where convection was not present.

Lid-driven cavity, κ1(Y1AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 118.7 17.12 5.91 4.94 8.05
2−2 433.4 73.70 43.46 54.60 111.4
2−3 1744 333.2 160.1 232.0 703.2
2−4 6981 1396 451.5 724.7 2904
2−5 27945 5683 1685 1529 6503

Velocity driven pipe flow, κ1(Y1AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 109.1 16.97 29.03 32.17 35.78
2−2 444.0 71.49 107.3 148.0 225.9
2−3 1803 328.8 318.1 503.1 1339
2−4 7263 1397 712.4 1308 4779
2−5 29144 5723 1589 2705 12706

Table 11: 2-norm condition number of Y1AO, for varying grid size and kinematic
viscosity.

The 2-norm condition numbers of Y1A, shown in table 11, were larger than in the
previous section (table 3) when ν is small, and nearly equal when ν is large. The
2-norm condition numbers of Y2A listed in table 12 grew in h−1 and ν−1, except
when ν = 1.

Lid-driven cavity, κ1(Y2AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.51 3.05 3.02 6.12 17.11
2−2 8.84 8.06 18.44 21.66 176.4
2−3 8.92 21.16 236.5 204.9 456.9
2−4 8.96 33.97 987.4 1322 2522
2−5 8.97 39.73 2488 4676 7089

Velocity driven pipe flow, κ1(Y2AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 10.20 4.08 21.12 34.12 58.26
2−2 9.71 9.29 34.93 79.91 336.9
2−3 9.76 22.29 116.1 218.5 917.7
2−4 10.76 33.06 494.8 644.0 3345
2−5 11.60 38.54 1552 2781 10271

Table 12: 2-norm condition number of Y2AO, for different grid sizes and kinematic
viscosities.

The eigenvalue ratios κ2(P−1A) for the Oseen problem are found in tables 13-16.
These are similar to the corresponding tables in section 6.1.1, the only difference
being that κ2(P−1AO) was larger than κ2(P−1AS) when ν = 0.001 for each h for all
the preconditioners.

The eigenvalue ratios κ2(BOA) listed in table 13 seem insensitive to h, and up to a
point also to ν. When ν = 0.001 the values are larger, but they still do not increase
in h. The behaviour of κ2(POA) was the same as that of κ2(BOA). The values
in the two sets of tables are seperated roughly by a constant factor of 2, like the
corresponding values in the previous section.

The eigenvalue ratios κ2(Y1A) are in table 15 seen to grow in h−1 for each ν-value,
without reaching any apparent bound. Like the others in this section, the two tables
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Lid-driven cavity, κ2(BOAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 12.98 11.96 8.79 8.03 7.52
2−2 13.24 12.42 10.29 9.61 12.24
2−3 13.44 13.04 11.79 11.22 18.26
2−4 13.52 13.34 12.72 12.36 22.88
2−5 13.56 13.47 13.18 13.00 21.86

Velocity driven pipe flow, κ2(BOAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 13.32 10.89 9.44 13.16 19.11
2−2 13.69 12.23 9.07 10.12 24.40
2−3 14.16 13.04 11.21 11.08 28.65
2−4 14.56 13.52 12.61 12.09 28.04
2−5 14.82 14.11 13.18 12.96 26.85

Table 13: Eigenvalue ratio κ2(BOAO), for varying grid size and kinematic viscosity.

Lid-driven cavity, κ2(POAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 7.36 6.76 5.00 4.57 4.20
2−2 7.32 6.89 5.79 5.44 7.09
2−3 7.42 7.20 6.53 6.24 10.96
2−4 7.46 7.36 7.00 6.81 13.91
2−5 7.49 7.44 7.26 7.16 13.28

Velocity driven pipe flow, κ2(POAO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 7.48 6.48 6.50 9.61 14.83
2−2 7.78 6.92 5.84 6.90 18.07
2−3 8.74 7.21 6.58 7.18 20.40
2−4 9.59 7.69 7.02 6.83 18.36
2−5 10.16 8.73 7.27 7.16 16.16

Table 14: Eigenvalue ratio κ2(POAO), for varying grid size and kinematic viscosity.

Lid-driven cavity, κ2(Y1AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 105.4 10.99 1.57 1.27 1.70
2−2 368.4 37.33 4.32 2.61 3.12
2−3 1449 145.1 15.23 8.12 8.62
2−4 5882 578.0 58.41 29.90 23.72
2−5 25000 2326 230.9 116.1 57.33

Velocity driven pipe flow, κ2(Y1AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 96.92 9.99 3.63 3.58 3.53
2−2 367.0 37.12 6.71 6.38 7.77
2−3 1447 145.1 15.33 15.63 18.97
2−4 5882 578.0 58.17 33.59 43.40
2−5 25000 2326 230.9 115.7 117.0

Table 15: Eigenvalue ratio κ2(Y1AO), for varying grid size and kinematic viscosity.

are very similar to the corresponding tables in the previous section, except the values
for ν = 0.001 are larger here. We see that Y1A was the only one of the operators
that had a very large relative distance between the smallest and largest eigenvalues.

κ2(Y2A) is in table 16 seen to be nearly constant in h−1 when ν = 1, but increasing
in h−1 for the other ν-values.
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Lid-driven cavity, κ2(Y2AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 8.64 2.71 1.19 1.29 1.74
2−2 8.47 5.08 2.43 1.95 3.67
2−3 8.50 9.97 6.25 4.55 7.70
2−4 8.51 13.32 16.14 12.69 18.58
2−5 8.52 15.72 33.99 31.01 39.16

Velocity driven pipe flow, κ2(Y2AO)
h\ν 1.0 0.1 0.01 0.005 0.001
2−1 9.16 2.04 2.83 3.56 4.68
2−2 8.84 4.15 2.56 3.98 10.55
2−3 8.94 7.46 3.49 4.08 13.51
2−4 10.13 11.41 7.91 8.91 14.91
2−5 11.03 14.84 20.98 16.55 39.53

Table 16: Eigenvalue ratio κ2(Y2AO), for varying grid size and kinematic viscosity.

6.2 Simulations on the unit square

N 16 32 64 128 256
κ2(AMG(K)K) 1.058 1.068 1.079 1.09 1.092
κ2(AMG(M)M) 1.055 1.051 1.05 1.051 1.051
κ2(AMG(A)A) 1.029 1.046 1.055 1.059 1.079

Table 17: Eigenvalue ratio estimate for some operators preconditioned by AMG. In
the bottom row, A = AStokes, ∆t = 0.01 and ν = 1.

In this section we present tables of the average number of iterations before conver-
gence of the BiCGStab method, for the same problem, preconditioner and parameter
combinations we listed results for earlier in this chapter. We set the maximum num-
ber of iterations to 400, so table entries “N/A” mean that combination did not
converge within that limit. Numbers in parenthesis are the empirical standard de-
viations. We do not include the standard deviation when it is less than five percent
of the average iteration number. The AMG approximation to the inverses seems to
not be sensitive to the mesh resolution.

Table 17 shows the estimated eigenvalue ratios of some of the operators used in the
preconditioners. The algebraic multigrid preconditioner mentioned in section 5.2
obviously does a good job of approximating the action of the inverse of the mass
matrix, stiffness matrix and the combination A of those. We estimated the eigenval-
ues by solving e.g. AMG(A)Au = AMG(A)f with the conjugate gradient method,
where the initial guess was a vector with uniformly distributed random numbers in
the interval [−0.5, 0.5]. For this we used the cbc.block module [9].

6.2.1 Time dependent Stokes flow simulations

All the tables in this section suggest that the performance of the preconditioners is
closely tied to the spectrum of P−1A. κ2(P−1A) increasing with N for a given ν in
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section 6.1.1 was closely correlated with a corresponding increase, as a function of
N , in the average number of iterations for the same P−1 and ν. No such correlation
can be seen between κ1(P−1A) and the number of iterations required to achieve the
desired error bound.

The nonexistance of any correlation between κ1 and the iteration number is high-
lighted by comparing the tables of results for Pε and Y1 in this section and sec-
tion 6.1.1. κ1(PεA) is approximately inversely proportional to ν, while the actual
performance of Pε improves as ν is decreased. On the other hand, κ1(Y1A) decreases
with ν, and Y1 performs better with a smaller ν.

Lid driven cavity flow, Bε

N\ν 1.0 0.1 0.01 0.005 0.001
16 94(13) 61(12) 33(3) 27(2) 23(2)
32 74(9) 72(14) 32(3) 29(4) 24(2)
64 73(7) 73(13) 36(4) 32(4) 26(2)
128 74(7) 61(8) 41(5) 32(3) 29(2)
256 76(8) 57(7) 43(6) 35(3) 32(3)

Velocity driven pipe flow, Bε

N\ν 1.0 0.1 0.01 0.005 0.001
16 51(7) 39(7) 33(3) 28(3) 28(3)
32 55(8) 41(6) 31(2) 31(3) 28(3)
64 57(6) 44(5) 32(3) 31(3) 28(3)
128 58(5) 49(6) 36(3) 32(3) 27(2)
256 60(5) 53(7) 39(4) 36(3) 30(3)

Table 18: Average number of BiCGStab iterations per timestep when using Bε, with
convergence criterion ‖r‖2 < 10−14.

In table 18 we see that the performance of Bε was somewhat variable, in that the
number of iterations per timestep had an empirical standard deviation of about
ten percent of the average over the simulation. The average number of iterations
increased slightly with the mesh resolution, but improved uniformly as ν was de-
creased.

Lid driven cavity flow, Pε
N\ν 1.0 0.1 0.01 0.005 0.001
16 19(1) 14 13 10 9
32 21 14(1) 11 10 9
64 22 16(1) 12 11 10
128 23 16(1) 13 12 10
256 23 17(1) 14 13 11

Velocity driven pipe flow, Pε
N\ν 1.0 0.1 0.01 0.005 0.001
16 16 12 16 11 10
32 18 14 11 11 11
64 20 15 12 11 10
128 21 17 13 12 10
256 22 18 15 14 12

Table 19: Average number of BiCGStab iterations per timestep when using Pε, with
convergence criterion ‖r‖2 < 10−14.

The preconditioner Pε resulted in a very stable and low number of iterations, tab-
ulated in table 19, independently of the mesh resolution and the value of ν. Here,
like in table 18 we see a uniform improvement in performance as ν was decreased.

54



Lid driven cavity flow, Y1
N\ν 1.0 0.1 0.01 0.005 0.001
16 43 13(2) 7 7 8
32 88(5) 28 8(1) 5 7
64 182(12)59(5) 17 11 4
128 N/A 117(8) 35(2) 23 10(1)
256 N/A 231(16)71(5) 50(4) 20

Velocity driven pipe flow, Y1
N\ν 1.0 0.1 0.01 0.005 0.001
16 40(2) 13 8 7 9
32 73 25 8(1) 6 8
64 139(8) 48(3) 17(1) 11 5
128 265(17)89(5) 31(2) 23(2) 9
256 N/A 167(12)55(3) 40(2) 19(1)

Table 20: Average number of BiCGStab iterations per timestep when using Y1, with
convergence criterion ‖r‖2 < 10−14.

Table 20 is evidence that the lumped mass matrix is a poor approximation of F .
When the viscosity ν was small enough the number of iterations was not much
higher than for Pε, and better than for Bε.When 1

∆t >> ν, F = 1
∆tM + νK is

dominated by the mass matrix. Given that the lumped mass matrix is a reasonable
approximation of a mass matrix, but a poor approximation of a stiffness matrix, the
poor performance when ν = 1 was not surprising.

Lid driven cavity flow, Y2
N\ν 1.0 0.1 0.01 0.005 0.001
16 25 21 17(1) 17 17
32 25 28(2) 19 16(1) 16
64 24 34(2) 30 24 15(1)
128 23 35(2) 49(3) 39(3) 22
256 21 36 72 63(6) 38(3)

Velocity driven pipe flow, Y2
N\ν 1.0 0.1 0.01 0.005 0.001
16 23 21 18(1) 17 19
32 23 28 20(1) 17 18
64 24 37(2) 32 26 17(1)
128 24 43 52 43 24
256 25 49 77(4) 71 43

Table 21: Average number of BiCGStab iterations per timestep when using Y2, with
convergence criterion ‖r‖2 < 10−14.

In table 21 we see that Y2 performed on par with Pε when the viscosity parameter was
equal to 1, but worse otherwise. The average number of iterations before convergence
increased with N for all values of ν except 1, although at worst that increase was
by a factor of 3 when N increased by a factor of 16.

6.2.2 Navier-Stokes flow simulations

In tables 22-25 we see that, for the parameter values and gridsizes tested, the pre-
conditioners performed approximately as well when convection was turned on. Only
when ν was 0.001, corresponding to a Reynolds number of about 1000, did perfor-
mance deteriorate compared to what we saw in the previous section.

55



Lid driven cavity flow, BO

N\ν 1.0 0.1 0.01 0.005 0.001
16 91(11) 64(17) 36(4) 28(3) 28(3)
32 70(6) 66(12) 34(4) 33(3) 32(3)
64 71(7) 57(7) 39(4) 38(4) 54(10)
128 73(6) 57(7) 43(4) 43(4) 75(18)
256 78(8) 58(8) 48(5) 48(5) 85(13)

Velocity driven pipe flow, BO

N\ν 1.0 0.1 0.01 0.005 0.001
16 49(7) 39(7) 34(4) 33(4) 32(4)
32 52(6) 40(5) 39(4) 39(4) 45(11)
64 55(6) 43(5) 41(5) 45(7) 103(58)
128 57(5) 46(5) 45(5) 49(6) 106(39)
256 57(6) 49(5) 47(5) 50(6) 100(29)

Table 22: Average number of BiCGStab iterations per timestep when using BO, with
convergence criterion ‖r‖2 < 10−14.

We see in table 22 that preconditioning the discrete Oseen equations with BO led
to some variance in the number of iterations, regardless of the grid resolution and
viscosity. For the smallest viscosity this was more pronounced, especially when
the boundary conditions were those of velocity driven pipe flow. A reason for the
difference between the two boundary condition sets might be that in the lid-driven
cavity setup the flow was less developed when results were recorded, and the gradient
of the velocity in that case was steeper.

Lid driven cavity flow, PO
N\ν 1.0 0.1 0.01 0.005 0.001
16 20(2) 14 14 10 10
32 21 15(1) 11 11 10
64 21 16(1) 13 13(1) 17(2)
128 22 16(1) 15 16(1) 22(2)
256 23 17(1) 16 17(1) 25(2)

Velocity driven pipe flow, PO
N\ν 1.0 0.1 0.01 0.005 0.001
16 16 13 13(1) 11 11
32 18 14 13(1) 13 13(1)
64 19 15 15 14(1) 24(7)
128 20 17 16(1) 17(1) 27(6)
256 21 18 17(1) 18(1) 26(5)

Table 23: Average number of BiCGStab iterations per timestep when using PO, with
convergence criterion ‖r‖2 < 10−14.

As we saw from the convectionless results in section 6.2.1, PO is both the most robust
of the preconditioners, and the best performing. Still we see, like we did for BO in
table 22, that the number of iterations required to get the residual in BiCGStab
below 10−14 increased when the Reynolds number passed some threshold < 1000.
The variance in the iteration count is clearly less with PO than BO

Table 24 tells the same story as table 20, namely that the Yosida preconditioner Y1
leads to slow convergence of BiCGStab for the larger ν when ∆t = 0.01. The number
of iterations increase with N no matter the Reynolds number, but was manageable
for even the largest grid sizes when Re ≥ 100.

The average number of iterations for the Y2-preconditioned Oseen problem tabulated
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Lid driven cavity flow, Y1
N\ν 1.0 0.1 0.01 0.005 0.001
16 43 13(1) 8 7 9
32 89(5) 28 9(1) 7 9
64 182(14)56(3) 18(1) 13 13(1)
128 N/A 114(7) 37 28 23(3)
256 N/A 238(19)74(5) 58(4) 43(4)

Velocity driven pipe flow, Y1
N\ν 1.0 0.1 0.01 0.005 0.001
16 39 13(1) 8 8 10
32 73 25 11(1) 10(1) 11(1)
64 139(8) 49 21 17(1) 24(16)
128 269(20)90(5) 40(3) 33(3) 31(7)
256 N/A 168(11)73(5) 64(6) 48(8)

Table 24: Average number of BiCGStab iterations per timestep when using Y1, with
convergence criterion ‖r‖2 < 10−14.

Lid driven cavity flow, Y2
N\ν 1.0 0.1 0.01 0.005 0.001
16 25 21 18(1) 18 19
32 25 30 21 20(1) 20(1)
64 24 39(2) 35(2) 32(2) 26(2)
128 24 45(3) 62(5) 56(5) 46(5)
256 23 50(3) 93(5) 96(9) 86(9)

Velocity driven pipe flow, Y2
N\ν 1.0 0.1 0.01 0.005 0.001
16 23 22 18(1) 18 19
32 23 30 25 22 24(3)
64 23 37 42 36(2) 35(16)
128 24 43 68(4) 67(5) 52(7)
256 25 48 104(8) 115(10)100(12)

Table 25: Average number of BiCGStab iterations per timestep when using Y2, with
convergence criterion ‖r‖2 < 10−14.

in table 25 was constant in N when the Reynolds number was small, but increased
withN when the Reynolds number was large. The increase in iterations as a function
of N for larger Reynolds numbers was of approximately the same magnitude as for
the Y1-preconditioned system, but Y2 was more robust with respect to ν than Y1,
at least when ∆t = 0.01 (as it was in all the simulations presented in this and the
previous section). The variance was larger larger for the smaller viscosity values.

Tables 22-25 show a very close correlation between the eigenvalue spectrum, mea-
sured by κ2(P−1A), of the preconditioned operators, and the average number of
iterations required to reach a certain residual norm ‖rn‖2 < 10−14 in the BiCGStab
algorithm. Like we saw in section 6.2.1, no such correlation is evident between the
2-norm condition number κ1(P−1A) and the performance of the preconditioners.

6.3 Arterial blood flow simulations

In table 26 we compare the time per BiCGStab iteration for each of the precondi-
tioners. Optimizing the implementation of the preconditioners to minimize compu-
tational time was not the focus of this part of the thesis. Using algebraic multigrid
to approximate inverse operators, the time it took to apply the preconditioners was

57



an approximately linear function of the number n of unknows in the discrete linear
system. Note that we have not compared the time to build the preconditioners each
time step. Table 26 should probably be taken with a grain of salt, as the simulations
were done over the span of a few days on a machine that was under variable load
by multiple users.

Tables 27-28 contain the results from the low Reynolds number flow simulations.
The tables show that each preconditioner was able to keep the average iteration
number near constant when the grid resolution is increased, also in the case of a
three dimensional flow problem with less simple boundary geometry. The average
computation time each time step grew approximately linearly with the number of
unknowns. The iteration counts and computation time measurements presented are
averages over two heart cycles (4000 time steps). In all these simulations the con-
vergence criterion was ‖r‖2 < 10−14, where r is the residual vector in the BiCGStab
method.

Tables 29-30 contain the results of the moderate Reynolds number simulations. The
maximum inlet flow velocity magnitude in these simulations was 605 mm s−1, giving
a Reynolds number of 400 in the part of the artery preceding the aneurysm. In con-
trast to the low Reynolds number simulations, here we see a significant improvement
in performance on the finest mesh, compared to the two coarser meshes. Whether
this is due to the higher velocity, or the smaller ∆t (which was 0.0001 here compared
to 0.0005 in the low Re simulations) is unknown.
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BO PO Y1 Y2
BO 1 0.8 0.5 0.5
PO 1.3 1 0.6 0.7
Y1 2.2 1.7 1 1.1
Y2 2.0 1.5 0.9 1

Table 26: Comparison of average computation time on one BiCGStab iteration for
each preconditioner, during the arterial blood flow simulations where
max Reinlet ≈ 200. The value in cell (i, j) is the ratio of the computa-
tion time for preconditioner i by the computation time for preconditioner
j. Thus, if the number in cell (i, j) is greater than one then precondi-
tioner i used more time per BiCGStab iteration than preconditioner j.
The values were taken from the largest simulations, the mesh referred to
as rf2.

Bifurcation Aneurysm, PO
Mesh Iterations St.dev. Time
rf0 34 1 18.6
rf1 35 2 35.6
rf2 35 3 63.9

(a)

Bifurcation Aneurysm, BO

Mesh Iterations St.dev. Time
rf0 82 7 23.6
rf1 87 10 55.9
rf2 99 16 137.7

(b)

Table 27: Tables of average iterations with standard deviation, and computa-
tion time per time step when using the preconditioners BO and PO.
max uinlet(t) = 302 mm s−1 and ∆t = 0.0005.

Bifurcation Aneurysm, Y1
Mesh Iterations St.dev. Time
rf0 30 1 16.9
rf1 28 2 34.2
rf2 29 3 89.0

(a)

Bifurcation Aneurysm, Y2
Mesh Iterations St.dev. Time
rf0 27 1 13.6
rf1 26 2 32.9
rf2 27 5 74.4

(b)

Table 28: Tables of average iterations with standard deviation, and compu-
tation time per time step when using the two Yosida variants.
max uinlet(t) = 302 mm s−1 and ∆t = 0.0005.
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Bifurcation Aneurysm, PO
Mesh Iterations St.dev. Time
rf0 39 1 8.3
rf1 40 2 17.8
rf2 34 2 42.2

(a)

Bifurcation Aneurysm, BO

Mesh Iterations St.dev. Time
rf0 110 10 20.4
rf1 116 11 42.0
rf2 87 9 91.0

(b)

Table 29: Tables of average iterations with standard deviation, and average com-
putation time per time step when using the preconditioners BO and PO.
max uinlet(t) = 605 mm s−1 and ∆t = 0.0001.

Bifurcation Aneurysm, Y1
Mesh Iterations St.dev. Time
rf0 68 3 21.8
rf1 62 3 43.2
rf2 34 1 69.6

(a)

Bifurcation Aneurysm, Y2
Mesh Iterations St.dev. Time
rf0 48 3 17.2
rf1 50 4 36.2
rf2 29 1 64.4

(b)

Table 30: Tables of average iterations with standard deviation, and average
computation time per time step when the two Yosida variants.
max uinlet(t) = 605 mm s−1 and ∆t = 0.0001.
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7 Discussion and conclusion

The block diagonal preconditioner Bε was studied extensively in ([6], [26]), and we
tested it in this thesis primarily as a basis for comparison. The calculated values
κ2(BεAS) we list in section 6.1.1 are approximately equal to the same results in
those papers. The iteration numbers in table 18 show that the preconditioner works
well in practice, when implemented in FEniCS and cbc.block. From the results in
tables 13 and 22 the adaption of the preconditioner to the Oseen equations seems
to work well, both keeping the eigenvalues clustered and leading to low iteration
numbers that don’t increase much when the mesh is refined. The caveat is that if
the convective term is too dominant, due to high velocities or too large timesteps,
the performance of the preconditioner deteriorates. Tables 27b and 29b shows that
although Bε leads to a higher iteration count on average, its simpler construction
compared to the other preconditioners considered makes it more competitive when
one considers computation time.

The Yosida preconditioner Y1 is not useful when F is not dominated by 1
∆tM . This

means, when convection is absent, that 1
∆t need to be much larger than ν. When

convection is present, there is an additional requirement that 1
∆tM also should domi-

nate the convective term C(u1). This is evident from tables 20 and 24. In section 6.3
we see that Y1, in the right conditions, can work approximately as well as the other
preconditioners in 3D simulations with high kinematic viscosity and velocity if the
time step is small enough.

The Yosida preconditioner variant Y2 performed well in the structured tests. It was
shown to not be as robust as Bε and Pε, with eigenvalues and iteration numbers
varying more with different parameter values and grid size. Table 28b shows that Y2
was the most efficient of the preconditioners in the low Reynolds number 3D case in
terms of number of iterations. This can be partly explained by the Reynolds number
being small during most of the simulation, as can be seen from the inlet velocity
profile in figure 9a, if the Y2 preconditioner performs better with a low time step
and low Reynolds number. In the moderate Reynolds number flow simulation Y2
performed best in terms of iterations on the finest mesh, but used more time than
Pε.

The overall best performing preconditioner, according to the results presented in the
previous chapter, is the projection method based preconditioner Pε suggested in [7].
Using it results in the tightest eigenvalue spread and on average the lowest number
of iterations with the BiCGStab algorithm. The number of iterations when using Pε
also vary little when velocity varies in time, contrary to Bε. Tables 19 and 23 show
the number of iterations when using PO staying below 25 for all parameter combi-
nations, except when convection becomes too dominant. A limit on the number of
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iterations per time step is also from table 27a, where the average is about 35 for all
mesh resolutions. The results of the moderate Reynolds flow number simulations
are more ambiguous, with the average iteration count being 39 and 40 on the two
coarser meshes, and 34 on the finest mesh.

As expected none of the preconditioners stay order optimal, in the sense of the num-
ber of BiCGStab iterations being independent of the grid resolution, when the flow
problem being solved is dominated by convection. This means that when velocities
are large or viscosity is small, i.e. when the Reynolds number is of order > 103,
using a coupled solver with one of the four preconditioners tested in this thesis is
not feasible for finer grids. While the results of the moderate reynolds number flow
show the performance of each preconditioner increasing with mesh refinement, the
time step in those simulations was so small that the problem was not dominated by
the convection. Experiments with using larger magnitude velocity boundary condi-
tions, without decreasing ∆t, all failed due to BiCGStab not converging within 400
iterations.

The tables of condition numbers for the preconditioned operators, when compared
with the tables of eigenvalue ratios and iteration numbers, suggest that κ1(P−1A) =
σmax/σmin is not a useful indicator of preconditioner performance in the precondi-
tioned BiCGStab algorithm. Conversely, the ratio κ2(P−1A) of the largest eigen-
value by the smallest, by moduli, is seen to be a good indicator of preconditioner
performance. This is consistent with what is argued for Bε in section 4.2 in [6]. We
did not see any clear relationship between the distribution in the complex plane of
the eigenvalues of the preconditioned operators, plotted in section 6.1.2, and the
performance of the preconditioners.

In [21] it is argued that for both the CGS and GMRES algorithms the speed of
convergence to a given error norm is determined not by eigenvalues or singular
values, but by the pseudospectrum of the coefficient matrix. It is possible that this is
the case for the BiCGStab algorithm as well, but constraints on time and resources
limited our investigation in this direction. Preliminary calculations suggest that
random perturbations of the preconditioned operators do not lead to much greater
perturbations in their eigenvalues.

This author is not aware of other work on the relationship between the properties of
the preconditioned discrete Oseen equations and the convergence of the BiCGStab
method. For work on the GMRES method applied to the preconditioned Oseen
problem, and some other approaches to solving the discrete Navier-Stokes equations
within a finite element framework, we refer to chapter 8 in the book by Elman,
Silvester and Wathen [3].
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8 A. Source code

We only include the implementation of the preconditioners used for the simulations
in sections 6.2 and 6.3 here. The rest of the source code is available on the web
address http://www.bitbucket.org/krisbrox/thesis.

8.1 A.1 cbc.block implementation of preconditioners

from block import ∗
from do l f i n import ∗
from block . a l g e b r a i c . pe t s c import co l l ap s e , ILU , InvDiag
from block . a l g e b r a i c . pe t s c import AMG, SOR, LumpedInvDiag

c l a s s B_eps ( ) :
de f __str__( s e l f ) :

r e turn ’B_eps ’
de f generate_prec ( s e l f , AA, p , q , u , v , P, bcu=None , bcp=None ,

u_1=None , dim=None ) :
mu = P.mu; dt = P. dt
rho= P. rho ; nu = mu/rho

[ [ A, B] , [C, _ ] ] = AA

i f bcp == None :
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx + p∗q∗dx ) )

e l s e :
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx ) )

I_p_nu = assemble ( (1/nu) ∗ p∗q∗dx )

# D i r i c h l e t bcs f o r the p r e s su r e
i f bcp != None :

f o r bc in bcp :
bc . apply (I_p_nu)
bc . apply (Kp_dt)

Sp = AMG(Kp_dt) + AMG(I_p_nu)
P = block_mat ( [ [AMG(A) , 0 ] ,

[ 0 , Sp ] ] )
r e turn P
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c l a s s P_eps ( ) :
de f __str__( s e l f ) :

r e turn ’P_eps ’

de f generate_prec ( s e l f , AA, p , q , u , v , P, bcu=None ,
bcp=None , u_1=None , dim=None ) :

rho = P. rho ; dt = P. dt ; mu = P.mu;
nu = mu/rho

[ [ A, G] , [D, _ ] ] = AA

i f bcp == None :
Kp = assemble ( dot ( grad (p ) , grad (q ) )∗ dx+p∗q∗dx )
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx+p∗q∗dx ) )

e l s e :
Kp = assemble ( dot ( grad (p ) , grad (q ) )∗ dx )
Kp_dt = assemble ( dt ∗ ( dot ( grad (p ) , grad (q ) )∗ dx ) )

I_p_nu = assemble ( (1/nu) ∗ p∗q∗dx )

# Set bcs f o r the p r e c ond i t i on e r
i f bcp != None :

f o r bc in bcp :
bc . apply (I_p_nu)
bc . apply (Kp)
bc . apply (Kp_dt)

Sp = AMG(Kp_dt) + AMG(I_p_nu)

P1 = block_mat ( [ [ 1 , G∗AMG(Kp) ] ,
[ 0 , Sp ] ] )

P2 = block_mat ( [ [ 1 , 0 ] ,
[D, −1] ])

P3 = block_mat ( [ [AMG(A) , 0 ] ,
[ 0 , 1 ] ] )

P = P1∗P2∗P3
return P
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c l a s s P_eps_NS ( ) :
de f __str__( s e l f ) :

r e turn ’P_eps_NS ’

de f generate_prec ( s e l f , AA, p , q , u , v , P, bcu=None ,
bcp=None , u_1=None , dim=None ) :

rho = P. rho ; dt = P. dt ; mu = P.mu;
nu = mu/rho

[ [ F , G] , [D, _ ] ] = AA

i f bcp == None :
Kp = assemble ( dot ( grad (p ) , grad (q ) )∗ dx + p∗q∗dx )
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx + p∗q∗dx ) )

e l s e :
Kp = assemble ( dot ( grad (p ) , grad (q ) )∗ dx )
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx ) )

Mp = assemble (p∗q∗dx )
Mp_nu = assemble ( (1/nu) ∗ p∗q∗dx )
Mu = assemble ( dot (u , v )∗dx )
C = assemble ( inne r ( dot (u_1 , nabla_grad (p ) ) , q )∗dx )

i f bcp != None :
f o r bc in bcp :

bc . apply (Mp_nu)
bc . apply (Kp)
bc . apply (Kp_dt)
bc . apply (C)

Sp1 = SOR(Mp_nu)
Sp2 = AMG(Kp_dt)
Sp3 = AMG(Kp)∗C
Sp = Sp1+Sp2+Sp3

P1 = block_mat ( [ [ 1 , G∗AMG(Kp) ] ,
[ 0 , Sp ] ] )

P2 = block_mat ( [ [ 1 , 0 ] ,
[D, −1] ])

P3 = block_mat ( [ [AMG(F) , 0 ] ,
[ 0 , 1 ] ] )

P = P1∗P2∗P3
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r e turn P
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c l a s s B_eps_NS ( ) :
de f __str__( s e l f ) :

r e turn ’B_eps_NS ’

de f generate_prec ( s e l f , AA, p , q , u , v , P, u_1=None ,
bcu=None , bcp=None , dim=None ) :

mu = P.mu; dt = P. dt ; rho = P. rho ;
nu = mu/rho

[ [ A, B] , [C, _ ] ] = AA

i f bcp == None :
Kp = assemble ( ( dot ( grad (p ) , grad (q ) )∗ dx+p∗q∗dx ) )
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx+p∗q∗dx ) )

e l s e :
Kp = assemble ( ( dot ( grad (p ) , grad (q ) )∗ dx ) )
Kp_dt = assemble ( dt ∗( dot ( grad (p ) , grad (q ) )∗ dx ) )

conv = assemble ( inne r ( dot (u_1 , nabla_grad (p ) ) , q )∗dx )
I_p_nu = assemble ( (1/nu)∗p∗q∗dx )

i f bcp != None :
f o r bc in bcp :

bc . apply (I_p_nu)
bc . apply (Kp)
bc . apply (Kp_dt)
bc . apply ( conv )

Sp1 = SOR(I_p_nu)
Sp2 = AMG(Kp_dt)
Sp3 = AMG(Kp)∗ conv
Sp = Sp1 + Sp2 + Sp3

P = block_mat ( [ [AMG(A) , 0 ] ,
[ 0 , Sp ] ] )

r e turn P
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c l a s s Y_2( ) :
de f __str__( s e l f ) :

r e turn ’Yosida_2 ’

de f generate_prec ( s e l f , AA, p , q , u , v , P, bcu=None ,
bcp=None , u_1=None , dim=3):

[ [ F , G] , [D, Q] ] = AA

Fp = AMG(F)
Mp = assemble (p∗q∗dx )
i f bcp != None :

f o r bc in bcp :
bc . apply (Mp)

i f dim == 2 :
S = D∗InvDiag (F)∗G + Mp

e l i f dim == 3 :
S = D∗InvDiag (F)∗G

Sp = AMG( c o l l a p s e (S ) )

p1 = block_mat ( [ [ Fp , 0 ] , [ 0 , 1 ] ] )
p2 = block_mat ( [ [ 1 , −G] , [ 0 , 1 ] ] )
p3 = block_mat ( [ [ F , 0 ] , [ 0 , 1 ] ] )

p4 = block_mat ( [ [ 1 , 0 ] , [ 0 , −Sp ] ] )
p5 = block_mat ( [ [ 1 , 0 ] , [−D, 1 ] ] )
p6 = block_mat ( [ [ Fp , 0 ] , [ 0 , 1 ] ] )

P = p1∗p2∗p3∗p4∗p5∗p6
return P
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c l a s s Y_1( ) :
de f __str__( s e l f ) :

r e turn ’Yosida_1 ’

de f generate_prec ( s e l f , AA, p , q , u , v , P, bcu=None ,
bcp=None , u_1=None , dim=3):

mu = P.mu
dt = P. dt

[ [ F , G] ,
[D, Q] ] = AA

Fp = AMG(F)

Mp = assemble (p∗q∗dx )
Mudt = assemble ( (1/ dt )∗ inner (u , v )∗dx )

i f bcu != None :
f o r bc in bcu :

bc . apply (Mudt)
i f bcp != None :

f o r bc in bcp :
bc . apply (Mp)

S = D∗LumpedInvDiag (Mudt)∗G + Mp
Sp = AMG( c o l l a p s e (S ) )

p1 = block_mat ( [ [ Fp , 0 ] , [ 0 , 1 ] ] )
p2 = block_mat ( [ [ 1 , −G] , [ 0 , 1 ] ] )
p3 = block_mat ( [ [ F , 0 ] , [ 0 , 1 ] ] )

p4 = block_mat ( [ [ 1 , 0 ] , [ 0 , −Sp ] ] )
p5 = block_mat ( [ [ 1 , 0 ] , [−D, 1 ] ] )
p6 = block_mat ( [ [ Fp , 0 ] , [ 0 , 1 ] ] )

P = p1∗p2∗p3∗p4∗p5∗p6
re turn P
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