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Abstract

Genetic, as well as environmental factors, may represent risk fac-
tors for multiple sclerosis. A question of particular interest is whether
risk factors may work synergistically. The main findings in this study
are that whereas two genetic risk factors and a history of smoking
have highly significant main effects on the risk (P-value <0.001), there
is not sufficient evidence to proclaim an interaction between any of
these genetic factors and smoking at a 5% level of significance. How-
ever, there is a significant interaction between gender and smoking.
The interaction indicates that smoking among males contributes more
to the risk of getting multiple sclerosis than smoking among females.
Previous Epstein Barr virus infection is a significant risk factor when
adjusting for smoking only. The data reveal a strong protective ef-
fect of snuffing. Contrary to the estimate of the effect of Epstein Barr
virus infection, the latter estimate is statistically significant also after
inclusion of several adjustment variables.
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1 Introduction

Multiple sclerosis is the most common autoimmune disorder that affects the
central nervous system. It is classified as a demyelinating condition. De-
myelination causes diminished or extinguished propagation of signals along
the axons of neurons. The condition can lead to a variety of physical and
sometimes cognitive symptoms. There is no cure. Treatment is symptomatic
and focused on prevention of inflammatory attacks and delay of progression
(Linker et al. [7]).

Multiple sclerosis is considered to be an autoimmune disease, although
no autoantigen has been identified (McFarland and Martin [8]). The causes
of the autoimmunity are not determined. Genetic, as well as environmental
factors may contribute to the susceptibility to multiple sclerosis. A relatively
strong genetic risk factor seems to be the presence of the Human Leukocyte
Antigen DRB1*15 allele. Absence of the Human Leukocyte Antigen A*02
allele is thought to provide protection (Lincoln et al. [6] and Brynedal et
al. [2]). Among the candidates for environmental risk factors are a history
of smoking, passive smoking or snuffing, low serum levels of vitamin D, and
infectious disease caused by the Epstein Barr virus. It is also well known
that women are more at risk of getting multiple sclerosis than men (Alonso
and Hernan [1]).

A hypothesis of particular interest to this study is that environmental
factors such as smoking may prime the immune system to degrade myelin or
cells that produce myelin. If that is the case, one would suspect statistical
interaction between enironmental and genetic factors. It should be noted
that such interaction could exist for other reasons than the hypothesized
priming mechanism.

To some extent the present study replicates a study conducted by Hed-
ström et al. published in 2011 in Brain [3]. Both are case control studies
with genetic and environmental data gathered for a group of cases consisting
of people diagnosed with multiple sclerosis, and a control group extracted
from the general population. In particular, Hedström et al. analyze, using
logistic regression, the effects on the probability of getting multiple sclerosis
of the following variables: a history of smoking, the presence of the Human
Leukocyte Antigen DRB1*15 allele and the lack of the Human Leukocyte
Antigen A*02 allele. In addition, they consider all interactions there can be
between these variables. They also state that they adjust for age, gender,
residential area and ancestry. There are no data for ancestry and residential
area in the prestent study.

Hedström et al. consider several additional genetic factors, but their
study found presence of the Human Leukocyte Antigen DRB1*15 allele to
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be the most important genetic risk factor, and presence of the Human Leuko-
cyte Antigen A*02 allele to be the most important genetic protective factor.
The genetic factors considered in the present study are restricted to these
two genetic factors. Both data sets include binary smoking data.

2 Material and Method

2.1 Material

The project is designed as a case control study. The sample of multi-
ple sclerosis cases consists of 530 individuals, collected and genotyped by
the Multiple Sclerosis Research Group at Oslo University Hospital (ous-
research.no/harbo). The sample of controls, which consists of 918 indivuals,
is recruited through the Norwegian Bone Marrow Registry in collaboration
with Professor Benedicte A. Lie. In total, 1448 individuals are included
in the study. In comparison, the Hedström et al. study [3] contains 843
multiple sclerosis cases and 1209 controls.

Generally, for each person i in the data set, the following is registered:

MSi =

{
0 if individual i does not have multiple sclerosis,
1 if individual i has multiple sclerosis.

This is the dependent variable. We shall consider seven explanatory vari-
ables. These are:

HLA–DRB1–15i =


0 if individual i is not carrier of

Human Leukocyte Antigen DRB1*15,
1 if individual i is carrier of

Human Leukocyte Antigen DRB1*15.

Being a carrier is thought to be a genetic risk factor. This factor is registered
for 1227 of the 1448 indivuduals.

HLA–A–02i =


0 if individual i is carrier of

Human Leukocyte Antigen A*02,
1 if individual i is not carrier of

Human Leukocyte Antigen A*02.

Being a carrier is thought to be a genetic protective factor. This factor is
registered for 1146 of the 1448 indivuduals.

Genderi =

{
0 if individual i is male,
1 if individual i is female.

This item is registered for all individuals that are included in the study.

3



Epstein–Barri =



0 if individual i has multiple sclerosis and has not had
an Epstein Barr virus infection prior to getting
multiple sclerosis, or if individual i does not have
multiple sclerosis and has never had an Epstein Barr
virus infection,

1 otherwise.

This factor is registered for 1306 of the 1448 indivuduals.

Smokeri =


0 if individual i has multiple sclerosis and has never

smoked prior to getting multiple sclerosis, or if
individual i does not have multiple sclerosis and has
never smoked,

1 otherwise.

This factor is registered for 1422 of the 1448 indivuduals.

Passive–Smokeri =



0 if individual i has multiple sclerosis and has
never been a passive smoker prior to getting
multiple sclerosis, or if individual i does not
have multiple sclerosis and has never been a
passive smoker,

1 otherwise.

This factor is registered for 1431 of the 1448 indivuduals.

Snufferi =


0 if individual i has multiple sclerosis and has never

been a snuffer prior to getting multiple sclerosis, or if
individual i does not have multiple sclerosis and has
never been a snuffer,

1 otherwise.

This factor is registered for 1432 of the 1448 indivuduals.
In addition, the data set contains information about person i’s age, per-

son i’s age at onset of the disease, person i’s Expanded Disability Status
Score, as well as whether the disease is of the Relapsing Remitting/Secondary
Progressive type or the Primary Progressive type. These information items
will not be used, due to reasons that will be considered in section 4, Discus-
sion.
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2.2 Method

The data are analyzed using regression analysis, which provides a way to
estimate the effects of the explanatory variables on the dependent variable.
Regressions can be used to calculate a prognosis for the dependent variable
given the values that the explanatory variables may take. However, that
an explanatory variable influences the dependent variable cannot in general
be interpreted as a causal effect. One main reason is that the explanatory
variable in general will be correlated with other variables that are at least in
part responsible for the causality. If these other variables are not included
as explanatory variables in the model, the effect estimate of the explanatory
variable under consideration will be biased. This bias is called omitted
variable bias. Including the variables that (partly) are responsible for the
causality, is called adjusting (controlling) for these variables. If one is able
to do that properly, regression analysis is a method that in principle can be
used to assess causal effects based on observational data. It should be kept
in mind, however, that it is generally unknown what controls one should
use. Furthermore, there are other sources of bias, the most important of
which may be sampling bias, measurement error, and reverse causality.

MS is the dependent variable in the regression analyses that will be per-
formed. Possible explanatory variables are Gender, Smoker, HLA–A–02,
HLA–DRB1–15, Passive–Smoker, Epstein–Barr, and Snuffer, as well
as product terms. Recall that the presence in a person’s genome of the
Human Leukocyte Antigen A*02 allele is considered to be a protective fac-
tor, so that not having that is considered to be a risk factor. Therefore, all
the variables take the value 1 only if they if they are thought a priori to
contribute to the risk of multiple sclerosis.

Let Y be the dependent variable, and X1, X2, . . . , Xk explanatory vari-
ables. The purpose of regression analysis is to approximate the unknown
regression function E(Y | X1, X2, . . . , Xk). The justification for using re-
gression analysis on a data set with binary dependent variable is that if Y
takes the values 0 and 1 only, then its expected value is the probability that
Y = 1, i.e.,

E(Y | X1, X2, . . . , Xk) = Pr(Y = 1 | X1, X2, . . . , Xk). (1)

If one uses linear regression, one postulates that the best model for E(Y |
X1, X2, . . . , Xk) is

E(Y | X1, X2, . . . , Xk) = β0 + β1X1 + β2X2 + . . . + βkXk. (2)

The parametres β0, β1, . . . , βk are estimated using the data. One ad-
vantage of this approach is that the interpretation of βi, i ∈ {0, . . . , k} is
particularly simple. If i 6= 0, βi equals the increase in the probability of
the dependent variable Y as a result in a unit’s increase in the explanatory
variable Xi.
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The major drawback of linear regression when the dependent variable is
binary is that linear regression may not fit the data well, especially outside
the range where there is a high density of observations. It may not be clear,
however, that that is a reasonable objection in cases where the explanatory
variables are also binary, as is the case here. A more serious objection may
be that estimates obtained by linear regression can be biased due to sample
selection, which is an obvious concern in case control studies.

A major alternative to linear regression if the dependent variable is bi-
nary is logistic regression (see Hosmer and Lemeshow [5] for an introduc-
tion). If one uses binary regression, one postulates that the best model for
E(Y | X1, X2, . . . , Xk) is

E(Y | X1, X2, . . . , Xk) =
1

1 + e−(β0+β1X1+β2X2+...+βkXk)
(3)

To simplify notation, let

Pr(Y = 1 | X1, X2, . . . , Xk) = P (Y ) (4)

and let t = β0 + β1X1 + β2X2 + . . . + βkXk. Recalling equation 1 we now
have that

ln

(
P (Y )

1− P (Y )

)
= ln

(
1

1+e−t

1− 1
1+e−t

)
= ln

(
1

1− e−t − 1

)
= ln

(
et
)

= t. (5)

This means that the odds P (Y )
1−P (Y ) equals e(β0+β1X1+β2X2+...+βkXk).

Consider now two states, one in which Xi = 1 and one in which Xi = 0,
while all other explanatory variables remain constant. Denote by Pr(Y |
Xi = 1) the probability that Y = 1 given that Xi = 1 and by Pr(Y | Xi = 0)
the probability that Y = 1 given that Xi = 0. Now the odds ratio

OR =

Pr(Y |Xi=1)
1−Pr(Y |Xi=1)

Pr(Y |Xi=0)
1−Pr(Y |Xi=0)

(6)

has a relatively simple interpretation: individuals having Xi = 1 (i.e., in-
dividuals exposed to the characteristic signified by Xi) are OR times more
likely to have Y = 1 (e.g., to be sick) than indivuduals having Xi = 0 (i.e.,
individuals not exposed to the characteristic signified by Xi). Furthermore,
the discussion above gives that OR can be expressed as

OR =
e(β0+β1X1+...+βi+...+βkXk)

e(β0+β1X1+...+βi−1Xi−1+βi+1Xi+1+...+βkXk)
= eβi , (7)

so when βi (and thereby eβi) is estimated using logistic regression, we have
a ready interpretation of that number.
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This can readily be generalized to the situation where in one state, vari-
ables Xm1 , . . . , Xmn , m1, . . . ,mn ∈ {0, . . . , k}, are all equal to 1, and in the
other state, the same variables Xm1 , . . . , Xmn , are all equal to 0, while all
other variables Xj , j 6∈ {m1, . . . ,mn} remain the same for both states. De-
note by Pr(Y | Xm1 = 1, . . . , Xmn = 1) the probability that Y = 1 given
that the first of these states occurs, and by Pr(Y | Xm1 = 0, . . . , Xmn = 0)
the probability that Y = 1 given that the second of these states occurs. Now
the odds ratio between the first and the second state is given by

OR =

Pr(Y |Xm1=1,...,Xmn=1)

1−Pr(Y |Xm1=1,...,Xmn=1)

Pr(Y |Xm1=0,...,Xmn=0)

1−Pr(Y |Xm1=0,...,Xmn=0)

, (8)

and OR can now be expressed as

OR = e(βm1+...+βmn ). (9)

We will now comment on the problem of selection bias in case control
studies. Using logistic regression, the estimated coefficients β̂i of βi, i ∈
{1, . . . , k} will not be vulnerable to selection bias due to the inherent struc-
ture of case control studies (but can of course be vulnerable to other sources
of bias like bias due to omitted variables, reverse causality and measure-
ment error). The intercept β0 cannot directly be estimated without bias
using data from a case control study. Because of the study design whereby
cases are chosen systematically, in our study based on their having multiple
sclerosis, the estimated risk will depend on the size of the case sample rel-
atively to the control sample. The bigger the case sample, keeping the size
of the control sample fixed, the higher the estimated risk. This kind of bias
can, however, be corrected. An unbiased estimator β̂∗0 for β0 is given by

β̂∗0 = β̂0 + ln

(
π

1− π

)
− ln

(
π̂

1− π̂

)
, (10)

where β̂0 is the estimate for β0 given by the regression analysis, π is the
true prevalence of the dependent variable in the population, and π̂ is the
prevalence in the sample (see web site [9], page 16).

To reduce variance in the parameter estimates, the number of controls
in a study should as a rule of thumb be at least five times as large as the
case group (see web site [9], page 17).

3 Results and Discussion

3.1 Regression results: unadjusted and main effects

Consider the regression model

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker, (11)
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where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 1.

β̂1 Standard Error P-value eβ̂1

Smoker 0.882 0.121 <0.001 2.416

Table 1: The unadjusted effect of smoking on the risk of getting multiple
scleroisis.

Conclusion: the null hypothesis that smoking has no effect on the risk
of getting multiple sclerosis is rejected based on these data.

Consider

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Gender, (12)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 2.

β̂1 Standard Error P-value eβ̂1

Gender 0.700 0.119 <0.001 2.014

Table 2: The unadjusted effect of being a female versus being a male on the
risk of getting multiple scleroisis.

Conclusion: the null hypothesis that gender does not affect the risk of
getting multiple sclerosis is rejected based on these data.

Consider

ln

(
P (MS)

1− P (MS)

)
=β0 + β1HLA–DRB1–15, (13)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 3:

β̂1 Standard Error P-value eβ̂1

HLA–DRB1–15 1.232 0.135 <0.001 3.430

Table 3: The unadjusted effect of having the Human Leukocyte Antigen
DRB1*15 allele on the risk of getting multiple scleroisis.

Conclusion: the null hypothesis that having the Human Leukocyte Anti-
gen DRB1*15 allele does not affect the risk of getting multiple sclerosis is
rejected based on these data.

Consider

ln

(
P (MS)

1− P (MS)

)
=β0 + β1HLA–A–02, (14)
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β̂1 Standard Error P-value eβ̂1

HLA–A–02 0.534 0.135 <0.001 1.705

Table 4: The unadjusted effect of not having the protective effect of the Hu-
man Leukocyte Antigen A*02 allele on the risk of getting multiple scleroisis.

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 4:

Conclusion: the null hypothesis that not having the protective effect of
Human Leukocyte Antigen A*02 allele does not affect the risk of getting
multiple sclerosis is rejected based on these data.

It is clear that there may be an association (correlation) between passive
smoking and smoking. Assuming that many passive smokers are also smok-
ers, then if one wants to estimate the effect of passive smoking only on the
risk of getting multiple sclerosis, one must adjust for smoking. The same
goes for snuffing: assuming that it is common to snuff as an alternative to
smoking, then if one is interested in the effect of snuffing only on the risk of
getting multiple sclerosis, one must adjust for smoking. As for Epstein Barr
virus infections, it may be that smokers are more likely to get them than
non-smokers, so again, to estimate the effect of Epstein Barr virus infection
only on the risk of getting MS, it may be wise to adjust for smoking. There-
fore, to reduce bias, we shall adjust for the variable Smoker as the effects
of the variables Epstein–Barr, Passive–Smoker, and Snuffer on the risk
of getting multiple sclerosis are estimated.

Consider

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2Passive–Smoker, (15)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 5:

β̂i, i = 1, 2 Standard Error P-value eβ̂i

Smoker 0.904 0.123 <0.001 2.469

Passive–Smoker -0.134 0.127 0.291 0.874

Table 5: The effect of passive smoking, while controlling for smoking.

There is a 29.1% probability of randomly obtaining the estimated re-
sult or a result more adverse to the null hypothesis of zero effect of pas-
sive smoking on the probability of getting multiple sclerosis. Conclusion:
The null hypothesis is not rejected based on these data, and the variable
Passive–Smoker will be omitted in regressions below.
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Consider

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2Snuffer, (16)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 6.

β̂i, i = 1, 2 Standard Error P-value eβ̂i

Smoker 0.948 0.123 <0.001 2.581

Snuffer -0.549 0.170 0.001 0.578

Table 6: The effect of snuffing, while controlling for smoking.

Conclusion: the null hypothesis that snuffing does not affect the risk of
getting multiple sclerosis is rejected based on these data. Indeed, the data
reveal a significant protective effect of snuffing.

If one finds no biological reason to believe in this result, one likely expla-
nation may be omitted variable bias. The habit of snuffing could represent
some other characteristic of the individual, e.g. something about the indi-
vidual’s social status, that could be the real protective factor. Results that
indicate that snuffing does not increase the risk of getting multiple sclerosis
have previously been found (Hedström et al. [4]).

Consider

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2Epstein–Barr, (17)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 7:

β̂i, i = 1, 2 Standard Error P-value eβ̂i

Smoker 0.940 0.132 <0.001 2.559

Epstein–Barr 0.489 0.165 0.003 1.631

Table 7: The effect of previous Epstein Barr virus infection, while controlling
for smoking.

Conclusion: the null hypothesis that previous Epstein Barr virus infec-
tion does not affect the risk of getting multiple sclerosis is rejected based on
these data.

So far we have found six variables to have significant effect on the risk of
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getting multiple sclerosis. Consider the regression that includes all of them:

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2Gender

+β3HLA–DRB1–15

+β4HLA–A–02

+β5Snuffer

+β6Epstein–Barr (18)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 8.

β̂i, i = 1, . . . , 6 Standard Error P-value eβ̂i

Smoker 1.141 0.181 <0.001 3.129

Gender 0.451 0.184 0.014 1.570

HLA–DRB1–15 1.393 0.160 <0.001 4.029

HLA–A–02 0.640 0.160 <0.001 1.896

Snuffer -0.817 0.287 0.004 0.442

Epstein–Barr 0.246 0.231 0.287 1.279

Table 8: The effect of the main regressors, including Epstein–Barr, but
excluding interaction terms.

There is a 28.7% probability of randomly obtaining the estimated result
or a result more adverse to the null hypothesis of zero effect of Epstein Barr
virus infection on the probability of getting multiple sclerosis. Conclusion:
The null hypothesis concerning Epstein–Barr is not rejected based on these
data with this regression.

It is notable that while the statistical significance of Epstein Barr virus
infection was lost as more variables were included into the regression, the es-
timated protective effect of snuffing is stronger in this expanded model, and
still significant. The inclusion of more controls has, if anything, strengthened
the hypothesis that snuffing is protective or that snuffing representes some-
thing that is protective. That the statistical significance of Epstein Barr
virus infection was lost may be due to a combination of lack of statistical
power and a high degree of association with one or more of the included vari-
ables. The previous estimated effect may have been mainly due to omitted
variable bias that now is corrected for.

3.2 Assessment of interactions

In the search for possible interactions, we are now left with the five ex-
planatory variables Smoker, Gender, HLA–DRB1–15, HLA–A–02, and
Snuffer. The variable Epstein–Barr is exluded.
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With five explanatory variables, there are ten possible first order inter-
actions. All but one are insignificant in a model that includes the above
mentioned five explanatory variables. The exception is the interaction be-
tween gender and smoking. The model is as follows:

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2Gender

+β3HLA–DRB1–15

+β4HLA–A–02

+β5Snuffer

+β6Smoker ×Gender (19)

where the notation P (Y ) is defined in equation 4. The results of the regres-
sion are shown in table 9.

β̂i, i = 1, . . . , 6 Standard Error P-value eβ̂i

Smoker 1.645 0.338 <0.001 5.183

Gender 1.040 0.328 0.002 2.829

HLA–DRB1–15 1.372 0.149 <0.001 3.942

HLA–A–02 0.588 0.149 <0.001 1.800

Snuffer -0.738 0.263 0.005 0.478

Smoker ×Gender -0.798 0.385 0.038 0.450

Table 9: The effect of the main regressors, excluding Epstein–Barr, but
including interaction between Smoker and Gender.

The estimates of the effects ofHLA–DRB1–15, HLA–A–02 and Snuffer
are essentially as they have been in previous regressions. The individual ef-
fects of Smoker and Gender are estimated to be substantially higher than
before. The interaction term Smoker×Gender is estimated to give a signif-
icant protective effect. The protective effect kicks in when Smoker = 1 and
Gender = 1. What this means is that the added risk that is due to smoking
is higher among men than among women, and among non-smokers, there
is an added risk due to being a woman versus being a man. So, restricting
one’s considerations to the risk of getting multiple sclerosis, one may con-
clude that the data indicate that smoking is more dangerous to men than
to women (but smoking is also a risk factor to women).

One should consider other possible explanations. In theory it could be
for instance that men smoke more heavily than women. That would be
something that is not reflected in the data. Other threats to internal validity
should also be considered. The lack of data on social status may be of
particular concern.
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The estimated effect of the interaction term itself can never be affected
by omitted variable bias as long as one controls for the variables that are
included in the interaction. For instance, if one is interested in the effect
of Smoker ×Gender only, it is always sufficient to control for Smoker and
Gender to be certain that any omitted variable bias is avoided. The reason
is almost trivial. Any omitted variables one might think could be correlated
with the interaction term must have this correlation via at least one of the
terms that are included in the interaction. But if one controls for these
terms, one automatically controls for any omitted variables.

3.3 A comparison to Hedström et al.

In this subsection we shall aim at reproducing two main results of Hedström
et al. [3]. One main finding of theirs is formulated as follows: “Compared
with non-smokers with neither of the genetic risk factors, the odds ratio
was 13.5 (8.1 − 22.6) for smokers with both genetic risk factors.” The cor-
responding odds ratio is, using the same notation as in equation 8,

OR =

Pr(MS|Smoker=1,HLA–DRB1–15=1,HLA–A–02=1)
1−Pr(MS|Smoker=1,HLA–DRB1–15=1,HLA–A–02=1)

Pr(MS|Smoker=0,HLA–DRB1–15=0,HLA–A–02=0)
1−Pr(MS|Smoker=0,HLA–DRB1–15=0,HLA–A–02=0)

. (20)

Consider the following model:

ln

(
P (MS)

1− P (MS)

)
=β0 + β1HLA–DRB1–15

+β2HLA–A–02

+β3Smoker, (21)

where the notation P (Y ) is defined in equation 4. Omitting control variables
may introduce omitted variable bias, but the estimate itself will be valid for
prognostic purposes. Therefore, for the purposes of prognostics, the model
21 is kept as simple as possible. The results of this regression are shown in
table 10.

β̂i, i = 1, . . . , 3 St. Err. P-value eβ̂i

HLA–DRB1–15 1.334 0.146 <0.001 3.797

HLA–A–02 0.608 0.147 <0.001 1.837

Smoker 1.005 0.162 <0.001 2.731

Table 10: The result of a regression designed to provide a prognosis of effect
of smoking and the two genetic risk factors.

The effect estimate is

ÔR = eβ̂1+β̂2+β̂3 = eβ̂1eβ̂2eβ̂3 = 3.797× 1.837× 2.731 = 19.0, (22)
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which is within the confidence interval (8.1−22.6) found by Hedström et al.
As for the confidence interal of this estimate, note that for stochastic

variables Yi, i ∈ {1, . . . , n},

V ar

(
n∑
i=1

Yi

)
=

n∑
i=1

V ar(Yi) + 2
∑∑

i<j
Cov(Yi, Yj). (23)

This means that the standard error SE of (β1 + β2 + β3) is given by

SE(β1 + β2 + β3) =√
V̂ ar(β1) + V̂ ar(β2) + V̂ ar(β3) + 2Ĉov(β1, β2) + 2Ĉov(β1, β3) + 2Ĉov(β2, β3).

(24)

For stochastic variables X and Y ,

Ĉov(X,Y ) = Ĉorr(X,Y )SE(X)SE(Y ). (25)

The three factors on the right hand side are known, so this reduces to

SE(β1 + β2 + β3)

=
√

0.0213 + 0.0216 + 0.0262 + 0.0045 + 0.0011 + 0.0022 = 0.278. (26)

The 95% confidence interval for the odds ratio is therefore approximately
given by(

e(β̂1+β̂2+β̂3−1.96SE), e(β̂1+β̂2+β̂3+1.96SE)
)

=

(
19.05

1.72
, 19.05× 1.72

)
= (11.1, 32.8) . (27)

Hedström et al.’s estimate 13.5 is within the interval (11.1− 32.8).
The other main finding in Hedström et al. that will be considered here

is stated as follows: “A significant interaction between two genetic risk fac-
tors, carriage of human leukocyte antigen DRB1*15 and absence of human
leukocyte antigen A*02 was observered among smokers whereas such an in-
teraction was absent among non-smokers.” It is natural to interpret this as
follows: the data set was split into two groups, one consisting of the non-
smokers, and one consisting of the smokers. For each of these groups, the
following model (possible with control variables added) was estimated:

ln

(
P (MS)

1− P (MS)

)
=β0 + β1HLA–DRB1–15

+β2HLA–A–02

+β3HLA–DRB1–15×HLA–A–02 (28)
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The estimate of the coefficient β̂3 of the interaction HLA–DRB1–15 ×
HLA–A–02 will not be biased due to omission of variables. That is be-
cause the variables that are included in the interaction term are included
in the model (see the last paragraph in subsection 3.2). The variables
HLA–DRB1–15 and HLA–A–02, i.e., the main effects, may well be biased
due to omission of variables, as previously discussed.

The results of the regression of equation 28 performed on the group of
non-smokers and on the group of smokers are given in tables 11 and 12
respectively.

β̂i, i = 1, . . . , 3 St. Err. P-value eβ̂i

HLA–DRB1–15 1.155 0.393 0.003 3.174

HLA–A–02 0.285 0.385 0.459 1.330

HLA–DRB1–15×HLA–A–02 0.162 0.543 0.765 1.176

Table 11: Estimate of the effect of the two genetic factors including their
interaction term on the risk of getting multiple sclerosis. Performed on the
group of non-smokers.

β̂i, i = 1, . . . , 3 St. Err. P-value eβ̂i

HLA–DRB1–15 1.119 0.247 <0.001 3.061

HLA–A–02 0.454 0.244 0.062 1.575

HLA–DRB1–15×HLA–A–02 0.515 0.349 0.140 1.674

Table 12: Estimate of the effect of the two genetic factors including their
interaction term on the risk of getting multiple sclerosis. Performed on the
group of smokers.

The data yield no significant interaction between carriage of Human
Leukocyte Antigen DRB1*15 and absence of Human Leukocyte Antigen
A*02 among non-smokers (P-value = 0.765), which means that part of Hed-
ström et al. ’s result is reproduced. Model 28 is closer to reproducing
a significant interaction between HLA–DRB1–15 and HLA–A–02 among
smokers (P-value = 0.140).

The lack of statistical strength of these analyses can be further illustrated
by considering the confidence intervals of the odds ratios

ÔR = eβ̂1+β̂2+β̂3 = eβ̂1eβ̂2eβ̂3 (29)

computed for the group of non-smokers and the group of smokers respec-
tively. The estimated odds ratios are

ÔRnon−smokers = 3.174× 1.330× 1.176 = 4.96 (30)

and
ÔRsmokers = 3.061× 1.575× 1.674 = 8.07. (31)
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The confidence intervals can be computed using formulas 24, 25 and 27. The
estimated standard errors are given by

SEnon−smokers(β1 + β2 + β3)

=
√

1.334 + 0.081 + 0.026 + 0.340− 0.271− 0.066 = 1.20 (32)

and

SEsmokers(β1 + β2 + β3)

=
√

1.252 + 0.206 + 0.265 + 0.557− 0.814− 0.326 = 1.07. (33)

The 95% confidence interval(
e(β̂1+β̂2+β̂3−1.96SE), e(β̂1+β̂2+β̂3+1.96SE)

)
(34)

is therefore approximately given by{ (
4.96
10.5 , 4.96× 10.5

)
= (0.47, 52.1) in the non-smoker case(

8.07
8.14 , 8.07× 8.14

)
= (0.99, 65.7) in the smoker case.

The point estimate of the effect of having both genetic risk factors among
non-smokers, 4.96, is within the confidence interval (0.99, 65.7) for the effect
of having both genetic risk factors among smokers. The point estimate of
the effect of having both genetic risk factors among smokers, 8.07 is within
the confidence interval (0.47, 52.1) for the effect of having both genetic risk
factors among non-smokers.

It is furthermore notable that both the confidence intervals include 1, so
there can be concluded no effect of both genetic risk factors neither among
non-smokers, nor among smokers at a 95% level of significance if we split up
the data and include the interaction term.

Instead of splitting the data set into the two groups of non-smokers and
smokers and estimate equation 28 for each of these groups, one can keep the
whole data set and estimate the following equation:

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2HLA–DRB1–15

+β3HLA–A–02

+β4HLA–DRB1–15×HLA–A–02

+β5HLA–DRB1–15× Smoker
+β6HLA–A–02× Smoker
+β7HLA–DRB1–15×HLA–A–02× Smoker, (35)

where the notation P (Y ) is defined in equation 4.

16



There is a close relationship between the two approaches. The reason
why is that if one uses the first method, one estimates the dependent variable
MS given each of the values that the variable Smoker can take, namelig
0 and 1, while if one uses the second method, one estimates MS given the
events generated by the variable Smoker. These are the same conditions.
Moreover, if for each variable that is included when using the first method
one includes exactly the same variables and in addition the interaction be-
tween Smoker and these variables (and no other variables) when using the
second method, one will obtain identical point estimates and confidence in-
tervals. For instance, the estimated coefficient 0.162 and standard error
0.543 of the interaction term among non-smokers can be recognized as coef-
ficient β4 and its standard error in model 35 (see table 13). The coefficient
of the interaction term among smokers, 0.515, can be recognized as the sum
of the coefficients β4 and β7 in model 35, and the standard error of this
coefficient, 0.349, can be computed as the standard error of the sum β4 +β7.

β̂i, i = 1, . . . , 7 St. Err. P-value eβ̂i

Smoker 0.852 0.333 0.011 2.344

HLA–DRB1–15 1.155 0.393 0.003 3.174

HLA–A–02 0.285 0.385 0.459 1.330

HLA–DRB1–15×HLA–A–02 0.162 0.543 0.765 1.176

HLA–DRB1–15× Smoker -0.036 0.464 0.938 0.964

HLA–A–02× Smoker 0.169 0.456 0.711 1.184

HLA–DRB1–15×HLA–A–02× Smoker 0.353 0.646 0.585 1.423

Table 13: The result of a regression designed to estimate the effect of the
interactions between smoking and the genetic risk factors.

It may be striking how insigificant the estimates are of most of the co-
efficients in table 13. One explanation is that model 35 includes terms that
are highly correlated. Removing some of these will yield more significant
estimates. Consider the following model:

ln

(
P (MS)

1− P (MS)

)
=β0 + β1Smoker

+β2HLA–DRB1–15

+β3HLA–A–02

+β4HLA–DRB1–15×HLA–A–02× Smoker. (36)

The results of the regression of equation 36 are shown in table 14. Note
that the estimate of the coefficient of the second order interaction term now
holds a 10% level of significance.

As for the interpretation of the second order interaction term and its
estimated coefficient, note first that HLA–DRB1–15×HLA–A–02×Smoker
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β̂i, i = 1, . . . , 4 St. Err. P-value eβ̂i

Smoker 0.884 0.173 <0.001 2.421

HLA–DRB1–15 1.158 0.176 <0.001 3.182

HLA–A–02 0.435 0.175 0.013 1.546

HLA–DRB1–15×HLA–A–02× Smoker 0.502 0.282 0.075 1.652

Table 14: The results of the regression of a model of interaction between
smoking and genetic risk factors. First order interaction factors are omitted.

has the same interpretation in equation 35 as it has in equation 36, as
it is the same variable. The estimated coeficients, however, are different
due to different statistical strength and, in general, different bias. But the
estimated value of the coefficient of the second order interaction term in
equation 36, 0.502, cannot be biased due to omission of variables. That is
because all the variables that constitute the interaction term are included
as controls in model 36 (see similar comments above, in particular the last
paragraph of subsection 3.2). For the same reason, the estimated coefficient
of the second order interaction term in model 35, 0.353, cannot biased due
to omission of variables, but this estimate has a greater standard error.

Recall that the estimated coefficient of the interaction between the ge-
netic factors HLA–DRB1–15 and HLA–A–02 among smokers, 0.515, equals
the sum of the coefficients β4 and β7 in model 35. Furthermore, the esti-
mated value of the coefficient of the second order interaction term in equa-
tion 36, 0.502, is the estimate of β7, given that β4 = β5 = β6 = 0. Therefore,
0.502 is the estimate of the interaction term among smokers, assuming there
is no interaction between the two genetic risk factors among non-smokers
(which is reasonable considering the results summarized in table 11), and
assuming there are no first order interactions between either of the genetic
risk factors and smoking (which we concluded already in section 3.2).

4 Discussion

It could be argued that table 9 summarizes the main results of this study.
Perhaps most striking is that the data with a high degree of significance
indicate that smoking among men increases the risk of getting multiple scle-
rosis more than fivefold, whereas smoking among women increases that risk
only about half as much, and that snuffing seems to approximately halve
the risk of getting multiple sclerosis. Again, it should be pointed out that
the data do not necessarily imply causal effects. In case of snuffing, one may
suspect that it represents something that is protective, and not that snuffing
in itself causes lower probability of getting multiple sclerosis.

There may be important effects that are measured via snuffing, or smok-
ing, thus giving a biased estimate of the direct effect. Social factors like
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income, education and social status come to mind. It may be a serious
drawback to the analysis that the data do not allow for adjusting for such
factors. The same comment goes for most environmental factors. In theory,
the genetic factors could also be linked to omitted factors, thus distorting
the estimate of any direct effects the genetic factors may have on getting
multiple sclerosis. What the true mechanisms may be is undetermined be
the present study, and may represent topics for future research.

It is presumed that in the case of a multiple sclerosis patient (i.e., a case),
it has been registered whether the factors represented by the explanatory
variables were present immediately prior to the onset of the disease. As for
the genetic data, that is obvious, for a person’s genes are constant over time.
The same goes for the person’s gender. In case of e.g. smoking, this is more
of an issue. For the purposes of predicting the onset of a chronic illness, it is
of interest whether one was a smoker prior to the onset of the disease. If the
patient started smoking after the onset of the disease, any causality must be
reverse, from getting multiple sclerosis to becoming a smoker. One problem
with the data may be that the individuals may not remember when he or
she started to smoke, or that getting the habit of smoking was not really
a binary event. The patient may have started out as a party-smoker, and
only later have become a habitual smoker. The transition may be blurry
and difficult to recall. The same type of comments go for passive smoking
and snuffing.

Even if a multiple scerosis patient started out smoking before he or
she got the disease, it is a possibility that the smoking did not contribute
to cause multiple scerosis, but rather that the person’s susceptibility to
getting multiple sclerosis contributed to cause the person to start to smoke.
A combination of the two is also possible. A regression will pick up the
assosiation, but will not by itself determine in what direction(s) any possible
causation goes.

Another problem is that it is not obvious that the smoking-data are
directly comparable between cases and controls, especially since it ignores
possible cumulative effects or effects of dose. For instance, a case may have
been smoking lightly for a few years before getting multiple scerosis at 30,
and a control may be someone at 60 who has been smoking heavily for more
than 40 years. One might believe that the difference in cumulative exposure
should somehow matter, but that is not reflected in the data.

The question whether one has been exposed to passive smoking can be
ambiguous. It may be obvious to some respondents filling in the questionaire
that if one is a smoker and one has never been exposed to passive smoking,
one should still be classified as a passive smoker. But the questionaire does
not actually ask the individual to fill in whether he or she has been a smoker
when answering the passive smoking question. As for the registry of whether
the individual has had an Epstein Barr virus infection, it may have been
difficult for people to recall whether they have had it at all, and in case of
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multiple scerosis patients, whether they had it prior to the onset of their
disease.

It is not entirely clear what would be meant by adjusting for age in
this context. The basic reason is that the regression is supposed to say
something about the risk of getting multiple sclerosis as a function of risk
factors. The context indicates that we are interested in the risk of getting
multiple sclerosis sometime during the entire life span. A variable Age would
indicate something qualitatively different, namely the risk of getting multiple
sclerosis sometime before or at Age. Therefore, the variable Age should not
be included in the regression, unless we are interested in the risk of getting
multiple sclerosis sometime before or at Age (and not in the lifetime risk).

The inclusion of the variable Age as a control variable may be prob-
lematic for yet another reason. Since age and genetic risk factors must be
considered to be completely unrelated, any omitted variable bias because
of omission of the variable Age must be the via environmental factors, i.e.,
smoking, snuffing, passive smoking or Epstein Barr virus infection. But in
case of multiple sclerosis patients, it is environmental exposure prior to the
onset of the disease that is relevant. So if the environmental information
says anything about the age of the patient, it must be via the mechanisms
by which cases were included in the study.

A regression with Age at onset of the disease (i.e. the age at which
the disease was diagnosed, which is not exactly the same), Type of multiple
sclerosis, or The patient’s Expanded Disability Status Score (EDSS) score as
explanatory variable is not possible. The reason is that any registered infor-
mation about these characteristics imply with certainty that the individual
has multiple sclerosis. The data items the age at onset of the disease, Type
of multiple sclerosis and The patient’s EDSS score represent a specification
of the variable MS, and are candiates to replace MS as the dependent vari-
able. It is, however, reasonable to start out with an analysis of MS, and
possibly proceed to analyses of the alternative dependent variables at a later
stage. One could argue that if one is primarily interested in the genetic fac-
tors, gender and smoking, and their possible interaction in causing multiple
sclerosis, it must surely be more important to have data on the amount and
duration of smoking than to try to assess the possible effect of smoking as
a binary variable on refined dependent variables.
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