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1 Introduction
In this thesis we will consider Markov operators on cones. More precisely, we
let (X, || · ||) be real Banach space, K ⊆ X be a closed and normal cone with
nonempty interior and e ∈ IntK an order unit. (The notations and notions
used here will be detailed in section 1).

A bounded, linear operator T : X → X is a Markov operator w.r.t. K
and e if T (K) ⊆ K and T (e) = e. We consider then the adjoint of T and a
homogeneous discrete time Markov system given by

πk+1 = T ∗(πk), k = 0, 1, 2, ...

where π0 ∈ X∗, is s.t. π0(x) ≥ 0 for all x ∈ K and π0(e) = 1. The final goal of
the theoretical part of this thesis which includes the first 6 sections is to give
a proper conditions on T that will guarantee the convergence of the Markov
system given above to a unique invariant measure. These conditions are
given in the theorem 6.1 in section 6, but before that, we will need to develop
certain theory and introduce some new concepts, tools and definitions. For
instance, we consider the quotient space X/Re, define a norm ||| · |||H on this
space and let

T̃ : X/Re→ X/Re

be the induced linear map given by

T̃ (x+ Re)) = T (x) + Re

for all x ∈ X. Furthermore, we consider the annihilator of Re in X∗ denoted
by M(e) and define a norm || · ||∗H on M(e). We also show that the dual of
((X/Re), ||| · |||H), is isometrically isomorphic to (M(e), || · ||∗H). The theorem
6.1 states then that if |||T̃ |||H ≤ 1, then there exists π ∈ P (e) s.t.

||(T ∗)n(µ)− π||∗H ≤ |||T̃ |||nH

for all n and all µ ∈ P (e) where

P (e) = {µ ∈ X∗ | µ(e) = 1 and µ(x) ≥ 0 ∀x ∈ K}.

As |||T̃ |||H < 1, this in particular means that ((T ∗)n(µ) − π) converges
to 0, as n → ∞, since |||T̃ |||nH , converges to 0, as n → ∞. This is a very
important result and in sections 7,8 and 9, we will apply this result to the
different concrete cases when X is equal to Rn, CR(Ω) and Sn respectively.
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Now, in order to apply theorem 6.1 to different examples, we need that
|||T̃ |||H < 1, hence we must be able to somehow calculate an estimate on
|||T̃ |||H . The theorem 6.2 is section 6 gives an expression for |||T̃ |||H in terms
of disjoint, extreme points of P (e), and we are going to use this expression in
sections 7,8 and 9 to calculate\estimate |||T̃ |||H in concrete examples. ("dis-
jointness" of elements in P (e) will be defined in section 4).

It is well known that a Markov chain with n-states can be described by
an n × n column stochastic matrix P where pi,j denotes the probability to
move from the state j to the state i in one step. Such matrix P is then
called the transition matrix for the Markov chain. The most standard ex-
ample of a Markov operator is therefore the operator T : Rn → Rn given by
T (x) = A(x) for all x ∈ Rn where A is an n × n row stochastic matrix. Its
adjoint is then T n : Rn → Rn given by T ∗(x) = Atx for all x ∈ R and, as A is
n×n row stochastic matrix, At is as an n×n column stochastic matrix.Thus
At is a transition matrix for a Markov chain.We are interested in convergence
of a Markov system xk+1 = Atxk to some unique stochastic vector π ∈ Rn
where the initial vector x0 is a stochastic vector in R and this is what we are
going to study in section 7. From Perron Frobenius theorem we know that
the Markov system given above will be convergent if At is regular. The less
known fact is that the system will be convergent if and only if At semiregular,
that is if there exists some k ∈ N s.t. Ak(Ak)t has only positive coefficients.
This is for instance stated in [ABS] in the theorem 1.1. In section 7 we will
show that this theorem is a direct consequence of the theorem 6.1 given in
this thesis.
More precisely, in section 7 we let X = Rn, K = Rn+ and e = ~1 = (1, 1, ..., 1).
Then, the operator T : Rn → Rn given by T (x) = Ax for all x ∈ Rn will be
a Markov operator w.r.t. K and e when A is an n×n row stochastic matrix.
In lemma 7.1 we will first show, using the theorem 6.2, that

|||T̃ |||H = 1−min
i<j

n∑
k=1

min{ai,k, ai,j}.

in this case. The expression

1−min
i<j

n∑
k=1

min{ai,k, aj,k}

is, for instance knows as Dobrushin ergodicity coefficient. We will then use
this expression to show that |||T̃ |||H < 1 if and only if AAT has only positive
coefficients. Thus, for AT being semiregular is equivalent to that there exists
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k ∈ N s.t. |||T̃ k|||H < 1. Relating this to the theorem 1.1. in [ABS], we
see that the Markov system given by T ∗(xk) = xk+1, converges some unique
stochastic vector in Rn if and only if there exists k ∈ N s.t |||T̃ k|||H < 1 .
This is stated in theorem 7.2 in section 7 and the proof of this theorem is
just an application of theorem 6.1, as mentioned. At the end of section 7,
in proposition 7.3, we show that Doeblin contraction coefficient is equal to
Dobrushin ergodicity coefficient, that is

1

2
max
i<j

∑
1≤k≤n

|ai,k − aj,k| = 1−min
i<j

n∑
k=1

min{ai,k, aj,k}.

Another interesting application of the theory in this thesis is in the case
when X = CR(Ω). Here CR(Ω) denotes the space of all continuous real valued
functions, on Ω, where Ω is a compact, Hausdorff topological space, and
CR(Ω) is equipped with supremums norm, || · ||∞. In remark 2.4, section
2, we show that the dual of (CR(Ω), || · ||∞) is the space of all signed Radon
measures on Ω equipped with the total variation norm, (Mr(Ω), || · ||). We let
in this case K be the cone in CR(Ω) consisting of all nonnegative functions
on Ω and the constant function 1 on Ω be the order unit. In section 8
we consider then Markov operators CR(Ω) w.r.t 1 and K.There are 2 such
examples in section 8, example 8.1 and example 8.2. In example 8.1, we let µ
be a nonzero Radon measure on Ω and we choose a nonnegative continuous
functions k̃ on Ω× Ω such that∫

Ω

k̃(x, y) dµ(y) = 1

for all x ∈ Ω. Then we let

Tk̃ : CR(Ω)→ CR(Ω)

be s.t. for all f ∈ CR(Ω), Tk̃(f) is the function given by

Tk̃(f)(x) =

∫
Ω

k̃(x, y) f(y) dµ(y)

for all x ∈ Ω. The operator Tk̃ is hence a Markov operator on CR(Ω) w.r.t.
1 and K. We show then that if

||k̃||∞ <
2

µ(Ω)
,

then |||T̃k̃|||H < 1, so that we can apply theorem 6.1. In example 8.2 we
choose w : Ω→ Ω to be a continuons map and we let

Tw : CR(Ω)→ CR(Ω)
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be given by Tw(f) = f ◦ w . Also in this case, Tw is a Markov operator on
CR(Ω) w.r.t. 1 and K. However, we show that |||T̃w||| ≥ 1, so we can not
apply theorem 6.1. in this example.

In section 9, which is the last section in this thesis, we let X = Sn be
the space of all Hermitian n× n matrices equipped with the operator norm,
K = S+

n be the cone in X consisting of all positive semidefinite n×n matrices
and In be the order unit. We consider then the Kraus map Φ : Sn → Sn
given by

Φ(A) =
m∑
i=1

V ∗i AVi

for all A ∈ Sn where
m∑
i=1

V ∗i Vi = In. The operator Φ is then the Markov

operator on Sn w.r.t. In and K and its adjoint Ψ : Sn → Sn is given by

Ψ(A) =
m∑
i=1

ViAV
∗
i

for all A ∈ Sn. We will show that |||Φ̃|||H ≤ 1, if and only if there are no
nonzero vectors µ, v ∈ Cn with the property that < Viu, Vjv > = 0 for all
i, j ∈ {1, ...,m}. In that case, we can hence apply theorem 6.1. Furthermore,
in theorem 9.7 at the end of section 9, we show that the Markov system

Πk+1 = Ψ(Π)k)

converges to a unique invariant measure if and only if there exists k0 ∈ N
s.t. |||Φ̃k0|||H < 1 . This is actually quite similar to theorem 7.2 mentioned
before in the introduction, which states that the Markov system

xk+1 = T ∗(xk)

converges to a unique stochastic vector in Rn if and only if there exists k0 ∈ N
s.t.

||| ˜T k0||| < 1.

The proof of theorem 9.7 also applies theorem 6.1, but is somewhat different
than the proof of theorem 7.2.
Another important topic of this thesis is to study the convergence of the
system

xk+1 = T (xk), k = 0, 1, ...
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We will show in theorem 6.1 that if |||T̃ |||H < 1, then there exist π ∈ P (e)
s.t.

||T n(X)− < π, x > e||H ≤ |||T̃ |||nH ||x||H
for all x ∈ X, where || · || is a certain seminorm on X that depends on e.
( We will define this seminorm in section 1. )
Since |||T̃ |||H < 1 in this case, it follows that T n(x) converges to < π, x > e,
w.r.t. || · ||H as n→∞ for all x ∈ X.
In others words, the system

xk+1 = T (xk), k = 0, 1, ...

converges w.r.t || · ||H to a scalar multiple of e, so called "consensus state".
This is also a very important result and we will apply this in theorem 9.6 to
show that every orbit of the system given by

Xk+1 = Φ(Xk), k = 0, 1, ...

converges to on equibrilium co- linear to In if and only if there exists k0 ∈ N
s.t. |||Φ̃k0||| < 1, where Φ : Sn → Sn is a Kraus map as described earlier in
this introduction.
This thesis builds on the 3. version of the article "Dobrushin ergodicity
coefficient for Markov operators on cones" writen by Stephane Guobert and
Zheng Qu. As it was written by my supervisor, prof. Erik C. Bedos , in the
project description for this thesis, the main aim of the thesis is to give on
improved and detailed presentation of the above mentioned article of Gaubert
and Qu.
The 3. version of the above mentioned article by Gaubert and Qu will be
denoted by [GQ] throughout this thesis.
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2 Preliminaries - Cones on vector spaces, order
units, Thompson’s norm and Hilbert’s semi-
norm

In this section we will give some definitions and introduce concepts like
cones on vector spaces, order units, Thompson’s norm and Hilbert’s semi-
norm. These concepts will be fundamental for the theory which will be devel-
oped and discussed later in the thesis. After introducing these concepts, we
will give some examples where these concepts occur. The examples 1.4 and
1.5 in this section are the same as examples 2.2 and 2.3 in [GQ] respectively.
However we give here detailed proofs and explanations for all the statements
used in those examples. In addition, we give an example that is not in [GQ].
It is example 1.6 it this section and deals with the applications of the above
mentioned concepts on the space CR(Ω), which is the space of all continuous
real valued functions on Ω where Ω is compact, Hausdorff topological space.

Let X be a real vector space, let K ⊆ X, K 6= ∅. We say that K is a
cone in X if K satisfies the following properties:

1. K +K ⊆ K

2. λK ⊆ K for all λ > 0

3. K ∩ (−K) = {0}.

Let ≤ denote the associated order on X, so x ≤ y ⇔ (y − x) ∈ K. For
u ∈ K, set

Iu = {x ∈ X | − u ≤ x ≤ u}.

Recall that A ⊂ X is called absorbing if

{t > 0 | x ∈ tA} 6= ∅

for every x ∈ X. An element u ∈ K is called an order unit for (X,K) if Iu
is absorbing.
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Furthermore, for x ≤ y, we define the order interval

[x, y] := {z ∈ X | x ≤ z ≤ y}.

If IntK 6= ∅ for x ∈ X and y ∈ Int(K) we define then

M(x/y) := inf{t ∈ R : x ≤ ty}

and m(x/y) := sup{t ∈ R : x ≥ ty}.

For an order unit u ∈ K, we define a Thompson’s norm w.r.t. u to be given
by ||x||T := max{M(x/u),−m(x/u)} for all x ∈ X.

We also define a Hilbert’s seminorm w.r.t. u to be given by

||x||H = M(x/u)−m(x/u).

We wish to prove that if (X, || · ||) is a real Banach space and K satisfies
certain properties, then || · || and || · ||T are equivalent. To prove this, we
will first state and prove 2 observations, before we give and prove the main
proposition, the proposition 1.2, where for instance this result is stated.

Observation 1 Let u ∈ K\{0}.

Then u is an order unit if and only if u is an "internal point" of K ( that is
∀x ∈ X ∃δ > 0 s.t. (u+ λx) ∈ K ∀x ∈ [−δ, δ] )

Observation 2 For u ∈ K \ {0}, set

Xu =
⋃
t≥0

tIu , Ku = K ∩Xu.

Then Xu is a subspace of X, Iu is an absorbing, absolutely convex subset of
Xu, Ku is a cone of Xu and u is an order unit for (Xu, Ku).
Let | · |u denote the Minkowski functional on Xu associated with Iu, so |x|u =
inf{t > 0 | x ∈ tIu}. Then | · |u is a seminorm on Xu s.t. |u|u = | − u| = 1.

Definition 1.1 Let (X, || · ||) be a real normed space, let K be a cone in X.
We say that K in normal if there is some constant M > 0 s.t ||x|| ≤ M ||y||
for all x, y ∈ K satisfying x ≤ y.

Proposition 1.2 Assume that (X, || · ||) is a real normed space, K is closed
and normal cone in X.Let u ∈ K \ {0}. Then we have the following
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1. | · |u is a norm on Xu and || · || ≤ α| · |u on Xu for some α > 0

2. If (X, || · ||) is a Banach space, then (Xu, | · |u) is a Banach space.

3. If u is an order-unit in (X,K), then X = Xu.

4. If u ∈ Int(K), where Int(K) is the interior of K in topological sense,
then u is order-unit in (X,K) and || · || , | · |u are equivalent norms on
X.

Moreover | · |u is the same as Thomson’s norm on X that we defined.

Proof of observation 1. We observe first that K is convex:
If x, y ∈ K, and δ ∈ [0, 1], then δx ∈ K and (1− δ)y ∈ K since tK ⊆ K for
all t > 0. Then (δx+ (1− δ)y) ∈ K. since K +K ⊆ K.

Let now x ∈ X and assume that Iu is absorbing. Since Iu is absorbing,
there exists t > 0 s.t. x ∈ tIu. This means that −tu ≤ x ≤ tu, so we have
that tu− x ∈ K and x+ tu ∈ K. It gives that u− 1

t
x ∈ K and u+ 1

t
x ∈ K.

Let now λ ∈
[
0, 1

t

]
.

Since u+ λx lies in the segment between u and u+ 1
t
x, we have

(u+ λx) ∈ K.

More precisely, as 0 < λt < 1 , we have (1 − λt)u ∈ K because 1 − λt > 0
and u ∈ K.

Hence

(1− λt)u+ λt(u+ 1
t
x) ∈ K.

Thus (u+ λx) = (1− λt)u+ λt(u+ 1
t
x) ∈ K.

Similarly if −1
t
≤ λ ≤ 0 , then u+ λx lies is the segment between u− 1

t
x

and u. Hence (u+ λx) ∈ K since K is convex.

Since x was and arbitrary, this shows that u is an internal point of K.

Assume now that u is an internal point of K, that is,

∀x ∈ X ∃δx > 0

s.t. (u+ λx) ∈ K ∀x ∈ [−δx, δx]
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Then in particular u+ δxx ∈ K and u− δxx are in K.

Let tx = 1
δx

Then −u ≤ 1
tx
x ≤ u, so x ∈ txIu.

This shows that for all x ∈ X, we have {t > 0 | x ∈ tIu} 6= ∅.

Hence Iu is absorbing. This complets the proof of observation 1.

Proof of observation 2. Xu is a subspace of X:

Let x, y ∈ Xu. Then there exist r, s >0 s.t. x ∈ rIu, y ∈ sIu.

Hence

−u ≤ 1
r
x ≤ u and −u ≤ 1

s
y ≤ u.

This means that

u− 1
r
x ∈ K,

u+ 1
r
x ∈ K,

u− 1
s
y ∈ K

and u+ 1
s
y ∈ K.

Since K is a cone, we must have

r
r+s

(u− 1
r
x) ∈ K

and s
r+s

(u− 1
s
y) ∈ K.

As K +K ⊆ K, we get that

r
r+s

(u− 1
r
x) + s

r+s
(u− 1

s
y) ∈ K,

so (u− 1
r+s

(x+ y)) ∈ K.

In the same way , we can show that

(u+ 1
r+s

(x+ y)) ∈ K.

Hence
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−u ≤ 1
(r+s)

(x+ y) ≤ u,

which gives that (x+ y) ∈ (r + s)Iu.

Thus (x+ y) ∈ Xu.

Let x ∈ Xu and consider cx for some c ∈ R.

a) If c > 0:

Since x ∈ Xu then x ∈ tIu for some t > 0.

Thus (u− 1
t
x) ∈ K

and (u+ 1
t
x) ∈ K.

Hence

(u− 1
ct
cx) ∈ K

and

(u+ 1
ct
cx) ∈ K.

This gives that

−u ≤ 1
ct
cx ≤ u.

So

cx ∈ ctIu.

Hence

cx ∈ Xu since ct > 0.

b)If c < 0:

Since (u+ 1
t
x) ∈ K, we have

(u+ 1
|c|t |c|x) ∈ K,

that is,

(u− cx
|c|t) ∈ K because |c| = −c.
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Also, since

(u− 1
t
x) ∈ K, we get that

(u− 1
|c|t |c|x) ∈ K

so (u+ cx
|c|t) ∈ K ( because c = −|c| ).

Hence

−u ≤ 1
|c|tcx ≤ u

which means that

cx ∈ |c|tIu.

So

cx ∈ Xu.

Finally, since

−u ≤ 0 ≤ u

we have 0 ∈ Iu, so 0 ∈ Xu.

Thus Xu is a subspace of X.

Consider Ku = K ∩Xu.

We claim that Ku is a cone in Xu:

If x, y ∈ Ku, then (x + y) ∈ K since x, y ∈ K and K + K ⊆ K. Also
(x+ y) ∈ Xu since x, y ∈ Xu and Xu is a subspace of X.

Hence (x+ y) ∈ K ∩Xu = Ku. This gives that Ku +Ku ⊆ Ku since
x, y ∈ Ku were arbitrary.

If x ∈ Ku and t > 0, then tx ∈ K since x ∈ K and tK ⊆ K. Also tx ∈ Xu

since x ∈ Xu and Xu is a subspace.
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Thus tx ∈ Ku This gives that tKu ⊆ Ku for all t ≥ 0 since x ∈ Ku and t > 0
were arbitrary.

Also Ku ∩ (−Ku) = (K ∩ (−K)) ∩Xu = {0}, so Ku is a cone in Xu.
Next we claim that Iu is an absorbing, absolutely convex subset of Xu:
Clearly, Iu is subset of Xu by definition of Xu. Let now x ∈ Xu.

Then x ∈ tIu for some t > 0,

so {t > 0 | x ∈ tIu} 6= ∅.

Hence Iu is absorbing in Xu. Thus u is an order unit in (Xu, Ku). In order
to show that Iu is absolutely convex, we have to show that Iu is convex and
balanced.

a) Iu is convex:

We have by definition

Iu = {x ∈ X| − u ≤ x ≤ u}

Let x, y ∈ Iu and λ ∈ (0, 1). Then u−(λx+(1−λ)y) = λ(u−x)+(1−λ)(u−y).

Now, u− x and u− y are in K since x, y ∈ Iu , hence

(λ(u− x) + (1− λ)(u− y)) ∈ K

because K is cone. Thus

(u− (λx+ (1− λ)y)) ∈ K,

so
λx+ (1− λ)y ≤ u.

Similarly , since

u+ (λx+ (1− λ)y) = λ(u+ x) + (1− λ)(u+ y)

and
(u+ x), (u+ y) ∈ K,

we have that
(u+ (λx+ (1− λ)y)) ∈ K.

Hence
−u ≤ λx+ (1− λ)y.
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Thus we get
−u ≤ λx+ (1− λ)y ≤ u,

which means that
λx+ (1− λ)y ∈ Iu.

Since λ ∈ (0, 1) was arbitrary, it follows that Iu is convex.

b) Iu is balanced:

Let x ∈ Iu and let λ ∈ R, |λ| ≤ 1.

If λ ≤ 0 , then −1 ≤ λ ≤ 0.

Furthermore λx+ u = u− |λ|x = |λ|(u− x) + (1− |λ|)u ∈ K,

since (u− x) and u are in K, |λ| ≥ 0 , 1− |λ| ≥ 0 and K is a cone.

Hence −u ≤ λx.

We have also

u− λx = u+ |λ|x = |λ|(u+ x) + (1− |λ|)u.

Again, since (u+ x) and u are in K, we get that

u− λx = |λ|(u+ x) + (1− |λ|)u ∈ K, so λx ≤ u.

Thus −u ≤ λx ≤ u , so λx ∈ Iu. This shows that Iu is balanced. Since Iu is
convex and balanced, it is absolutely convex.

We know from proposition 14.8 on page 525 in[MW] that the Minkowski
functional | · |u is a seminorm.

Finally we show that |u|u = 1 :
Clearly u ∈ Iu since u ≤ u and u ≥ −u because 2u ∈ K .
Hence

inf{t > 0| u ∈ tIu} ≤ 1.

Assume now that u ∈ λIu for some 0 < λ < 1

Then

−u ≤ 1

λ
u ≤ u.
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In particular 1
λ
≤ u, so u− 1

λ
u ∈ K.

Thus (1− 1
λ
)u ∈ K.

Since we have that 1
λ
> 1 , u ∈ K and tK ⊂ K for all t > 0, we get that

( 1
λ
− 1)u ∈ K.

Hence ( 1
λ
− 1)u ∈ K ∩ (−K) = {0}.

But 1
λ
− 1 > 0 and u 6= 0, so ( 1

λ
− 1)u 6= 0.

That is a contradiction,

Hence inf{t > 0|u ∈ tIu} = 1, so |u|u = 1. This completes the proof of
observation 2.

Proof of proposition 1.2

1)

Assume that x ∈ Xu.

Then there exists t > 0 s.t. x ∈ tIu.

As we have seen, this means that

−u ≤ 1
t
x ≤ u,

that is

(u− 1
t
x) ∈ K

and (u+ 1
t
x) ∈ K.

Hence 1
2
(u− 1

t
x) ∈ K

and 1
2
(u+ 1

t
x) ∈ K.

Thus

u− 1
2
(u− 1

t
x) = 1

2
(u+ 1

t
x) ∈ K.
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Hence
u ≥ 1

2
(u− 1

t
x).

Since u and 1
2
(u− 1

t
x) are in K 1

2
(u− 1

t
x) ≤ µ and K is normal by

assumption, we get that

M‖u‖ ≥ 1
2
‖u− 1

t
x‖.

Hence

2M ‖ u ‖≥‖ u− 1
t
x ‖≥ 1

t
‖ x ‖ − ‖ u ‖ .

So

(2M + 1) ‖ u ‖≥ 1
t
‖ x ‖,

which means that (2M + 1) ‖ u ‖ t ≥‖ x ‖ .

Since this is true for all t > 0 with x ∈ tIu, taking inf over such t′s

we get that (2M + 1) ‖ u ‖ |x|u ≥‖ x ‖. So ||x|| ≤ α|x|u with
α = (2M + 1)||u||.

We have already proved that | · |u is a seminorm.

Assume now that |x|u = 0

Then since (2M + 1) ‖ u ‖ |x|u ≥‖ x ‖ , it follows that ‖ x ‖= 0.

Hence x = 0 since ‖ · ‖ is a norm.

This shows that | · |u is a norm.

2)

Let {xn}n∈N be Cauchy in (Xu, | · |u). We observe that since {xn}n is Cauchy
w.r.t. | · |u , then {xn}n is Cauchy w.r.t. | · |u as || · || ≤ α| · |u. Since (X, || · ||)
is Banach space, there is an x ∈ X s.t. xn → x w.r.t. || · ||.

Given ε > 0, choose N s.t. |xn − xm|u < ε ∀n,m ≥ N.

Fix n ≥ N and consider y(n)
m = |xn − xm|u,m ≥ n.
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Then {y(n)
m }m is bounded , hence there exists a convergent subsequence

{y(n)
mk}k ⊆ {y

(n)
m }m.

Assume first that lim
k→∞

y(n)
mk

> 0.

As y(n)
mk = |xn − xmk |u , per definition of | · |u we can find some t(n)

k > 0 s.t.

0 < t
(n)
k − y

(n)
mk <

1
k
and

−u ≤ 1

t
(n)
k

(xn − xmk) ≤ u for all k.

That is

u− 1

t
(n)
k

(xn − xmk) ∈ K and

u+ 1

t
(n)
k

(xn − xmk) ∈ K for all k.

As K is closed w.r.t ‖ · ‖, and

u− 1

t
(n)
k

(xn − xmk) ∈ K

and u+ 1

t
(n)
k

(xn − xmk) ∈ K for all k,

we get that

lim
k→∞

(u− 1

t
(n)
k

(xn − xmk) ∈ K

and lim
k→∞

(u− 1

t
(n)
k

(xn − xmk) ∈ K,

since limits exist because

t(n) = lim
k→∞

t
(n)
k = lim

k→∞
y(n)
mk

> 0.

( here we use that

|t(n)
k − y

(n)
mk
| < 1

k

for all k so
lim
k→∞

tnk = lim
k→∞

y(n)
mk
. )
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Then we get that

(u− 1
t(n)

(xn − x)) ∈ K and (u+ 1
t(n)

(xn − x)) ∈ K,

so −u ≤ 1
t(n)

(xn − x) ≤ u.

Hence

(xn − x) ∈ t(n)Iu.

Now, as

y
(n)
mk = |xn − xmk |u < ε for all k ,

it follows that

t(n) = lim
k→∞

y(n)
mk
≤ ε.

As (xn − x) ∈ t(n)Iu we must have |xn − x|u ≤ t(n) ≤ ε.

This is true for all n ≥ N .
( Furthermore since (xn − x) ∈ t(n)Iu for all n ≥ N, it follows that

(xn − x) ∈ Xu

for all n ≥ N.
Hence

(x− xn) = −(xn − x) ∈ Xu

for all n ≥ N , because Xu is a subspace. Then x = (x− xn) + xn is in Xu ,
since x− xn and xu are in Xu for all n ≥ N and Xu is a subspace).

Assume now that

lim
k→∞

y(n)
mk

= 0

This means that

lim
k→∞
|xn − xmk |u = 0

As ‖ · ‖≤ α| · |u , we get that lim
k→∞

‖ xn − xmk ‖= 0

But
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lim
k→∞

‖ xn − xmk ‖=‖ xn − x ‖ as lim
k→∞

xmk = x w.r.t ‖ · ‖ .

Hence

‖ xn − x ‖= 0, so x = xn which is in Xu

Since | · |u is a norm, we get that

|xn − x| = 0 < ε (this is again true for all n ≥ N)

So we have proved that given ε > 0, if we choose N

s.t. |xn − xm|u < ε ∀n,m ≥ N,

then |xn − x|u < ε ∀n ≥ N.

Thus lim
n→∞

|xn − x|u = 0.

This shows that (Xu, | · |u) is a Banach space since {xn}n∈N was an arbitrary
Cauchy sequence in Xu and x ∈ Xu.

3)

If u is an order unit for (X,K), then Iu is absorbing per definition.

That is, for all x ∈ X , we have {t > 0|x ∈ tIu} 6= ∅

Thus, for all x ∈ X, there exists tx > 0 s.t. x ∈ txIu.
Hence

x ∈
⋃
t>0

tIu ∀x ∈ X, so X = Xu.

4)

If u ∈Int(K) then there exist δ > 0 s.t. B(u, δ) ⊂ Int(K).
(Here B(u, δ) := {x ∈ X| ||x− u|| < δ})

Hence, given x ∈ X with x 6= u, we have u+ λx ⊂ B(u, δ) ⊂ Int(K)

for all λ ∈ (− δ
‖x‖ ,

δ
‖x‖).
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This means that u is an internal point of K From observation 1 it follows
then that u is an order unit. From part 1) in proposition 1.2 it follows then
that there is an α > 0 s.t. || · || ≤ α| · |u. In order to prove that there is a
β > 0 s.t ‖ · |u ≤ β|| · ||, we first observe that part 3) of proposition 1.2 gives
that X = Xu since u is an order unit. Hence | · |u is defined on the whole
X, so we may consider (X, | · |u). and the map φ : (X, | · |u) → (X, || · ||)
given by φ(x) = x for all x ∈ X. As we already know, there is an α > 0
s.t. || · || ≤ α| · |u, so this gives that φ is bounded. Also, φ is bijective by
definition. Moreover, since (X, || · ||) is a Banach space, we have from part
2) of proposition 1.2 that (Xu, | · |u) is a Banach space. Thus (X, | · |u) is a
Banach space as X = Xu. Hence, we can apply the open mapping theorem
and deduce that φ−1 is bounded. But this means that there exists a β > 0
s.t. | · |u ≤ β|| · ||, so | · |u and || · || are equivalent.

Now, even if (X, || · ||) is not a Banach space, we still have the equivalence
of the norms as long we assume that u is the interior point of K in the
topological sense:
Since u ∈ Int(K), there exists a δ > 0 s.t. u± δ

||x||x ∈ K for all x ∈ X \ {0}.

Hence

−u ≤ δ
‖x‖x ≤ u, ∀x ∈ X \ {0}.

This means that
δ
‖x‖x ∈ Iu,∀x ∈ X \ {0},

so

x ∈ ‖x‖
δ
Iu, ∀x ∈ X \ {0}.

Hence

|x|u = inf{t > u|x ∈ tIu} ≤ ‖x‖
δ
∀x ∈ X \ {0}.

Thus we have that | · |u ≤ 1
δ
‖ · ‖ .

From 1) we know that ‖ · ‖≤ α| · |u.

Hence | · |u and ‖ · ‖ are equivalent also in the case when (X, || · ||) is not a
Banach space.

Now we wish to show that | · |u = || · ||T where || · ||T is the Thomson’s norm
on X defined in the begining of this section, that is

||x||T = max{Inf{t ∈ R | x ≤ tu}, − sup{t ∈ R | x ≥ tu}}.

We have
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− sup{t ∈ R|x ≥ tu}

= inf{−t ∈ R|x ≥ tu}

= inf{s ∈ R|x ≥ −su}.

( change of variables s = −t ).

If we consider t > 0, we see that

x ≤ tu⇔ tu− x ∈ K ⇔ u− 1
t
x ∈ K.

Since u ∈ Int(K), there exists a δ > 0 s.t. B(u, δ) ⊆ K.

Hence

(‖x‖
δ
,∞) ⊆ {t > 0|x ≤ tu}

since
(µ− 1

t
x) ∈ B(µ, δ) ⊆ K

for all t > ||x||
δ
.

Assume now that

0 < a < ‖x‖
δ

and (u− 1
a
x) ∈ K

Since K is convex and u , (u− 1
a
x) ∈ K we must have that v ∈ K for all v

that lies in the segment between u− 1
a
x and u.

This means that (u− 1
t
x) ∈ K for any t ≥ a.

Hence

[a,∞) ⊆ {t > 0|x ≤ tu}.

Thus either

{t > 0|x ≤ tu} = [a,∞) for some a > 0 or

{t > 0|x ≤ tu} = (0,∞).

Similarly, if we consider
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{t > 0|x ≥ −tu},

since we have
x ≥ −tu⇔ x+ tu ∈ K ⇔ u+

1

t
x ∈ K

we deduce that either

{t > 0|x ≥ −tu} = [b,∞) for some b > 0 or

{t > 0|x ≥ −tu} = (0,∞).

Hence we have 4 possible situations:

i) {t > 0|x ≤ tu} = [a,∞) and {t > 0|x ≥ −tu} = [b,∞) for some a b > 0.

Then

max{inf{[a,∞)}, inf{[b,∞)}}

= max{a, b} = inf{[a,∞) ∩ [b,∞)}

= inf{{t > 0|x ≤ tu} ∩ {t > 0|x ≥ −tu}}

= inf{t > 0| − tu ≤ x ≤ tu}

= inf{t > 0|x ∈ tIu} = |x|u.

ii) {t > 0|x ≤ tu} = (0,∞) and {t > 0|x ≥ −tu} = [b,∞) for some b > 0.

Then
max{inf{(0,∞)}, inf{(b,∞)}

= b = inf{[b,∞)} = inf{(0,∞) ∩ [b,∞)}

= inf{{t > 0|x ≤ tu} ∩ {t > 0|x ≥ −tu}}

= inf{t > 0| − tu ≤ x ≤ tu}

= |x|u.
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iii) {t > 0|x ≥ −tu} = [a,∞) for some a > 0 and {t > 0|x ≥ −tu} = (0,∞).
This case can be treated similarly as ii) .

iv) {t > 0|x ≤ tu} = {t > 0|x ≥ −tu} = (0,∞).
Then

= max{inf{t > 0|x ≤ tu}, inf{t > 0|x ≥ −tu}}

= 0 = inf{(0,∞)} = inf{{t > 0|x ≤ tu} ∩ {t > 0|x ≥ −tu}}

= inf{t > 0| − tu ≤ x ≤ tu} = |x|u.

So, in all cases, we have

max{inf{t > 0|x ≤ tu}, inf{t > 0|x ≥ −tu}} = |x|u.

Now we have to show that

max{inf{t ∈ R|x ≤ tu}, inf{t ∈ R|x ≥ −tu}}

= max{inf{t > 0|x ≤ tu}, inf{t > 0|x ≥ −tu}}

The idea is to show that for all x, we have that

max{inf{t ∈ R|x ≤ tu}, inf{t ∈ R|x > −tu}}

is greater or equal to zero. Then it would follow that we can replace t ∈ R
by t ≥ 0.

Now, if we assume that we can replace t ∈ R by t ≥ 0, we observe further
that, if 0 ∈ {t ≥ 0 | x ≤ tu}, then (0− x) ∈ K. so −x ∈ K.

Hence tu− x ∈ K for all t > 0 since K is a cone.

Then

0 = inf{t ≥ 0|x ≤ tu} = inf{t > 0|t ∈ R} = inf{t > 0|x ≤ tu}

since {t > 0 | x ≤ tu} contains all positive t’s.

A similar argument gives that

inf{t ≥ 0|x ≥ −tu} = inf{t > 0|x ≥ −tu}.
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Hence if we can replace t ∈ R by t ≥ 0, it follows that we can replace
further t ≥ 0 by t > 0.

Let us now show that we can replace t ∈ R by t ≥ 0 that is

max{inf{t ∈ R|x ≤ tu}, inf{t ∈ R|x ≥ −tu}} ≥ 0, ∀x ∈ Xu :

Assume first that there is an s < 0 s.t. x ≥ −su and that there exist t < 0
s.t. x ≤ tu.

Then

−su ≤ x ≤ tu

Since s, t < 0, we get that |s|u ≤ x ≤ −|t|u.

This means that −|t|u− x ∈ K

and x− |s|u ∈ K.

Since K +K ⊆ K, we get that:

(−|t| − |s|)u = (−|t|u− x) + (x− |s|u) ∈ K.

Since u ∈ K and |t|+ |s| > 0 because s, t < 0 we have

(|t|+ |s|)u ∈ K

Thus (|t|+ |s|)u ∈ K ∩ (−K).

That is a contradiction since (|t|+ |s|)u 6= 0, as |t|+ |s| > 0 and u 6= 0.

Hence, if there exists an s > 0 s.t. s ∈ {t ∈ R|x ≥ −tu},

then the set {t ∈ R|x ≤ tu} contains only nonnegative elements and vice
versa.

This shows that

max{inf{t ∈ R|x ≤ tu}, inf{t ∈ R|x ≥ −tu}} ≥ 0, for all x ∈ Xu

and the proof of proposition 1.2 is completed.

Comment: In [GQ] it is just stated without proof that || · || and || · ||T
are equivalent when K is closed and normal. For the proof they refer to the
article of Nussbaum. Here we have given our own proof of this result by
proving the proposition 1.2 .
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Let now (X, || · ||) be a normed space, u ∈ K − {0}, u ∈ Int(K) and K be a
normal, closed cone in X.

As we mentioned, one can also define the Hilbert seminorm at x ∈ X

by ‖ x ‖H= M(x/u)−m(x/u)

where

M(x/u) = inf{t ∈ R|x ≤ tu}

m(x/u) = sup{t ∈ R|x ≥ tu}.

Let Lu = Ru and the quotient space X/Lu be equiped with the quotient
norm ( ass. with the Thomson norm) i.e.

‖ x+ Lu ‖T= inf{‖ x− y ‖T |y ∈ Lu}

= inf{‖ x+ λu ‖T |λ ∈ R}

We will show the following lemma:

Lemma 1.3 ‖ x ‖H= 2 ‖ x+ Lu ‖T for all x ∈ X

Proof:

Claim 1) ‖ x+ λu ‖T= max(M(x/u) + λ,−m(x/u)− λ):

By definition

‖ x+ λu ‖T= max(M((x+ λu)/u),−m((x+ λu)/u))

We have that:

x+ λu ≤ tu⇔ tu− (x+ λu) ∈ K

⇔ (t− λ)u− x ∈ K

⇔ x ≤ (t− λ)u.

Hence t̃ ∈ {t ∈ R|(x+ λu) ≤ tu} if and only if

(t̃− λ) ∈ {t ∈ R|x ≤ tu}.

This gives that
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inf{t ∈ R|(x+ λu) ≤ tu}

inf{t ∈ R|x ≤ tu}+ λ.

Thus M((x+ λu)/u) = M(x/u) + λ.

Similarly it can be shown that

m((x+ λu) = m(x/u) + λ

Claim 2) Given a, b ∈ R, the expression max{a+ λ, b− λ} is minimal when
a+ λ = b− λ, that is when λ = 1

2
(b− a):

Consider the functions f, g :R→ R given by f(x) = x+ a, g(x) = −x+ b

Let x̃ be s.t. f(x̃) = g(x̃) , more precisely x̃ = 1
2
(b− a).

As f ′(x) = 1 and g′(x) = −1∀x ∈ R ,

we get that f(x) < f(x̃) = g(x̃) < g(x) ∀x < x̃ and

f(x) > f(x̃) = g(x̃) > g(x) ∀x > x̃

( since f is strictly increasing and g is strictly decreasing )

Hence

max{f(x), g(x)} = g(x) > g(x̃) = f(x̃) = max{f(x̃), g(x̃)}∀x < x̃ and

max{f(x), g(x)} = f(x) > f(x̃ = g(x̃) = max{f(x̃), g(x̃)}∀x > x̃

This proves the claim 2).

Claim 1 and claim 2 give that

inf ‖ x+ λu ‖T= inf
λ∈R

max{M(x/u) + λ,−m(x/u− λ)}

= M(x/u) + 1
2
(−m(x/u)−M(x/u))

= 1
2
(M(x/u)−m(x/u)) = 1

2
‖ x ‖H
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which proves the lemma 1.3 .Here we have used that the minimum of the

max{M(x/µ) + λ,−m(x/µ)− λ}

wil be attained at
λ =

1

2
(−m(x/µ)−M(x/µ)

by claim 2.

Now we will consider the examples that we mentioned in the introduction
of this section.

In examples 1.4 and 1.5 we will denote the respective order unit by e, as

done in [GQ]. In example 1.6, we will denote the respective order unit by u
as we have done so far in this section.
Example 1.4 We consider the finite dimensional vector space X = Rn with
its Euclidian norm, the standard positive cone K = Rn+ and the order unit
vector e =

−→
1 := (1, ..., 1)T . We claim that Thompson’s norm with respect

to −→1 is nothing but the sup norm

||x||T = max
i
|xi| = ||x||∞,

whereas Hilbert’s seminorm with respect to −→1 is the so called diameter:

||x||H = max
i≤i,j≤n

(xi − xj) = ∆(x).

Proof: We have:

x ≤ te⇔

(te− x) ∈ K ⇔

t ≥ xi ∀i 1 ≤ i ≤ n.

Clearly then
inf{t ∈ R|x ≤ te} = max

i
xi.

Similarly we have:

te ≤ x⇔

(x− te) ∈ K ⇔
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t ≤ xi ∀i 1 ≤ i ≤ n.

Hence

sup{t ∈ R|te ≤ x} = min
i
xi.

Thus

M(x/e) = max
i
xi

and
m(x/e) = min

i
xi.

Then we get that

‖ x ‖T= max(M(x/e),−m(x/e))

= max(max
i
xi , −min

i
xi).

Choose j and k s.t.

xj = max
i
xi

and
xk = min

i
xi.

Then

‖ x ‖T=

{
xj if xj ≥ −xk;
−xk if −xk ≥ xj.

1) If xj ≥ −xk, then ‖ x ‖T= xj.

Since
xj = max

i
xi,

we also have xj ≥ xk . Hence xj ≥ |xk|.
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Since
xj = max

i
xi and xk = min

i
xi

we must have
max
i
|xi| = max {|xj|, |xk|}.

But since xj ≥ |xk|, we get then that max {|xj|, |xk|} = xj.

Hence

max
i
|xi| = xj =‖ x ‖T .

2) If −xk ≥ xj, then ‖ x ‖T= −xk.

Since
xk = min

i
xi,

we have xk ≤ xj.

Hence −xk ≥ −xj. Combining these 2 inequalities together, (−xk ≥ xj)
and −xk ≥ −xj, we get that −xk ≥ |xj|.

Thus

|xk| = −xk ≥ |xj|,

so
max
i
|xi| = max{|xj|, |xk|} = |xk| = −xk =‖ x ‖T .

So in any case
max
i
|xi| =‖ x ‖T .

Furthermore

‖ x ‖H= M(x/e)−m(x/e) = max
i
xi −min

i
xj = xj − xk = max

1≤i,l≤n
(xi − xl)

Example 1.5 Let X = Sn be the space of all Hermitian matrices of dimension
n equipped with the operator norm and K = S+

n be the cone of positive semi-
definite matrices. Let the identity matrix In be the order unit: e = In. Then
we claim that ThompsonÂťs norm with respect to In is nothing but the
spectral radius of X, i.e..
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||X||T = max
1≤i≤n

|λi(X)| = ||λ(X)||∞,

where λ(X) := (λ1(X), ..., λn(X)), is the vector of ordered eigenvalues of X
counted with multiplicities, whereas HilbertÂťs seminorm with respect to In
is the diameter of the spectrum:

||X||H = max
1≤i,j≤n

(λi(X)− λj(X)) = ∆(λ(X)).

Proof: First we want to show that K = S+
n indeed is a cone in X:

It is clear that aK ⊂ K for all a ≥ 0 and K + K ⊆ K. Assume that
A ∈ K ∩ (−K). As A ∈ K, all eigenvalues of A are nonnegative and since
A ∈ (−K), then −A ∈ K, so all eigenvalues of A are less or equal to zero.
We must then have that all eigenvalues of A are 0. But since A is Hermitian
it is unitary diagonalisable.

Hence A = UDU∗ where U is a unitary matrix and D is a diagonal matrix
having the eigenvalues of A on its diagonal.

Since 0 is the only eigenvalue of A, we get that D is the zero matrix, hence
A = 0. So K ∩ (−K) = 0.

To simplify notation, from now on we let I = In. If X ≤ tI, then

tI −X ∈ K,

so tI−X has only non-negative eigenvalues . Again, since X is Hermitian, it
is unitary diagonalisable, so there exists an orthonormal basis of eigenvectors
for X.

Let λ = (λ1, ..., λn) be the eigenvalues counting multiplicities and
{v1, ..., vn} corresponding eigenvectors. Then they are eigenvectors for
tI −X with corresponding eigenvalues {t− λ1, ..., t− λn}.

So, {v1, ..., vn} is an orthonormal basis of eigenvectors for (tI −X) also.

Hence all the eigenvalues for tI −X are of the form t− λi, i ∈ {1, ..., n}.

This gives that (tI −X) ∈ K if and only t− λi ≥ 0, for all i with
i ∈ {1, ..., n}.
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We clearly then have

inf{t ∈ R|(tI −X) ∈ K} = max
i
λi.

That is

M(X/I) = max
i

λi.

A similar argument gives that

(X − tI) ∈ K ⇔ λi − t ≥ 0 ∀i.

since all the eigenvalues of X − tI are of the form λi− t where i ∈ {1, ..., n}.

Then

sup{t ∈ R|(X − tI) ∈ K} = min λi.

Thus

m(X/I) = min λi.

Hence

‖ X ‖T= max {max λi,−min λi} = max |λi|

by the same argument as in example 1.4.

Furthermore

‖ X ‖H= M(X/I)−m(X/I) = max λi −min λi

= max
1≤i,j,≤n

(λi − λj),

which proves the statement.

We should also show that I indeed is in Int(K), so that I actually is an
order unit:
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Let

A ∈ Sn s.t. ‖ I − A ‖< 1.

If λ is an eigenvalue for A, then 1− λ is an eigenvalue for I − A so

|1− λ| ≤‖ I − A ‖< 1.

Hence

|1− λ| < 1.

But then we must clearly have

0 < λ < 2.

In particular λ > 0.

Since λ was a general eigenvalue for A, we get that A is positive definite, so
A ∈ K.

Hence

I ∈ Int(K).

At the end, we show that K = S+
n is closed and normal.

K is closed:

Suppose for a contradiction that K is not closed in X. Then there exists a
sequence {An} ⊆ K s.t. An converges to some A in X \K as n→∞. Since
A is in X \ K, A is then Hermitian, but not a positive semidefinite, hence
there exists an x ∈ Cn s.t. < Ax, x > < 0. Furthermore, since An is in K for
all n, we have < Anx, x > ≥ 0 for all n.

Hence

|〈Anx, x〉 − 〈Ax, x〉|

= |〈Anx, x〉+ 〈Ax, x〉|

= 〈Anx, x〉+ |〈Ax, x〉| ≥ |〈Ax, x〉| > 0

for all n ∈ N.
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On the other hand,

|〈Anx, x〉 − 〈Ax, x〉|

= |〈(An − A)x, x〉| ≤‖ (An − A)x ‖‖ x ‖

≤‖ (An − A) ‖‖ x ‖2, and ||(An − A)||2||x||2 goes to 0 as n→∞

since ‖ An − A ‖→ 0 as n→∞

by assumption.

Hence we get a contradiction, so we deduce that K is closed.

K is normal:

Assume that A,B ∈ K and A ≤ B, that is (B − A) ∈ K.

Then

0 ≤ < (B − A)x, x > = < Bx, x > − < Ax, x > for all x ∈ Cn.

Since A and B are positive semidefinite , we have

‖ A ‖= sup
‖x‖≤1

< Ax, x >

and ‖ B ‖= sup
‖x‖≤1

< Bx, x >

Combining this and the fact that < Bx, x > ≥ < Ax, x > for all x ∈ Cn as
we proved, we get that ‖ B ‖≥‖ A ‖ . Since A,B ∈ K were arbitrary with
A ≤ B, we deduce that K is normal.

The example 1.4 and 1.5 are also given in [GQ], denoted by examples 2.1
and 2.2, but the proofs are omitted in [GQ]. The next example, example 1.6
is not given in [GQ].

Example 1.6 We now let Ω be a compact Hausdorff space and we let
X = CR(Ω), that is X is the space of all continuous real valued functions on
Ω.

X is then a Banach space with the norm ‖ · ‖∞, where
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‖ f ‖∞= sup
w∈Ω
|f(w)|.

We let

K = {f ∈ X|f(w) ≥ 0 ∀w ∈ Ω}

and we let the order unit u = 1, that is u is the constant function 1 in this
case.on Ω. It is obvious that K closed and normal cone w.r.t || · ||∞ and
that 1 ∈ Int(K).

Now we claim that

‖ f ‖T=‖ f ‖∞ ∀f ∈ X :

We have

‖ f ‖T= inf{t > 0| f ∈ tIu}

since ‖ · ‖T is equal to the Minkowski functional w.r.t Iu as we have proved.

So

‖ f ‖T= inf{t > 0| f ∈ tIu}

= inf{t > 0| − t ≤ f(w) ≤ t ∀w ∈ Ω}

= inf{t > 0| |f(w)| ≤ t ∀w ∈ Ω}.

If t is s.t. t ≥ |f(w)| ∀w ∈ Ω,

then clearly

t ≥ sup
w∈Ω
|f(w)| =‖ f ‖∞ .

Hence

inf{t > 0| t ≥ |f(w)| ∀w ∈ Ω} ≥‖ f ‖∞ .

On the other hand
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‖ f ‖∞= sup
w∈Ω
|f(w)| ≥ |f(w̃)| ∀w̃ ∈ Ω.

Hence

‖ f ‖∞∈ {t > 0| t ≥ |f(w)| ∀w ∈ Ω},

so ‖ f ‖∞≥ inf{t > 0| t ≥ |f(w)| ∀w ∈ Ω}.

Thus

‖ f ‖∞= inf{t > 0| t ≥ |f(w)| ∀w ∈ Ω} =‖ f ‖T .

which proves the claim.

Next we claim that

M(f/u) = max
w∈Ω

f(w) and m(f/w) = min
w∈Ω

f(w) :

(Comment: Since Ω is compact and f is continuous, real valued, we know
that f will attain a maximal and minimal value at some points w1 and w2 in
Ω, so it makes sense to write

max
w∈Ω

f(w) and min
w∈Ω

f(w).)

By definition,

M(f/u) = inf{t ∈ R| f(w) ≤ t ∀w ∈ Ω}, since the order unit u is the
constant function 1 in this case.

Clearly, if t ∈ R is s.t. t ≥ f(w) ∀w ∈ Ω, then

t ≥ max
w∈Ω

f(w)

Taking inf over such t’s, we get that

M(f/u) ≥ max
w∈Ω

f(w).

On the other hand,
max
w∈Ω

f(w) ≥ f(w̃) ∀w̃ ∈ Ω ,

so
max
w∈Ω

f(w) ∈ {t ∈ R | f(w) ≤ t ∀ w ∈ Ω}.
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Hence

max
w∈Ω

f(w) ≥ inf{t ∈ R | f(w) ≤ t ∀ w ∈ Ω} = M(f/u).

We conclude that
M(f/u) = max

w∈Ω
f(w).

In the similar way, we can show that

min
w∈Ω

f(w) = m(f/u).

Hence we get that

‖ f ‖H= (max
w∈Ω

f(w))− (min
w∈Ω

f(w))

= max
w,w′∈Ω

(f(w)− f(w
′
)) = 4(f).
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3 Thompson’s dual norm, the dual cone and
the abstract simlex

From now on in this thesis, unless else is specified, we let (X, ||·||) be a real
Banach space, K ⊆ X be a normal, closed cone with Int(K) 6= ∅, e ∈ IntK
be an order unit and || · ||T be a Thompson’ norm w.r.t. e.
In this section we consider the dual of (X, || · ||T ) and define a norm || · ||∗T
on this space. We also define the dual cone K∗ and the abstract simplex
P(e) in (X, || · ||T )∗. ( Those definitions can also be found in [GQ], section
2.) After defining these new concepts, we introduce remarks 2.1, 2.2 and
2.3, where we give the concrete expressions and descriptions for || · ||∗T , K∗
and P (e) in the cases when X is equal to Rn, Sn and CR(Ω). The remarks
2.1 and 2.2 are also given in [GQ] section 2, denoted by remark 3.1 and 3.2
respectively. However, here we give a detailed proof of all the statements in
those remarks. In addition we introduce the remark 2.3 not given in [GQ],
that deals with the dual of CR(Ω) which turns out to be the space of all
signed Radon measures on Ω equipped with the total variation norm.

We define
|| · ||∗T : (X, || · ||T )∗ → R+ by

||z||∗T = sup
||x||T≤1

| < z, x > | ∀z ∈ (X, || · ||T )∗

(here < z, x > means z(x))

(Comment; Since || · || and || · ||T are equivalent because K is closed and
normal, we have (X, || · ||)∗ = (X, || · ||T )∗. This space will be denoted by X∗
from now on.)

Furthermore, we define the dual cone K∗ in X∗ by

K∗ = {x ∈ X∗ | < z, x > ≥ 0 ∀x ∈ K}

and the abstract simplex by

P (e) = {µ ∈ K∗ | < µ, e > = 1}

Remark 2.1For the standard positive cone (Example 1.4 X = Rn, K = Rn+
and e =

−→
1 ) the dual space X∗ is X = Rn itself and the dual norm || · ||∗T is

the l1 norm:
||x||∗T =

∑
i

|xi| = ||x||1.

Furthermore the dual cone K∗ is Rn+ in this case.
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The abstract simplex P (
−→
1 ) is the standard simplex in Rn :

P (
−→
1 ) = {v ∈ Rn+ :

∑
i

vi = 1},

i.e., the set of probability measures on the discret space {1, ..., n}.

Proof : For each φ ∈ X∗ , if we let

y =


y1

y2
...
yn


where yk = φ(ek) , we see that φ(x) = x · y for all x ∈ Rn = X. Indeed,
ek · y = yk = φ(ek) for all k ∈ {1, ..., n} , {ek}1≤k≤n is a basis for Rn and φ
is linear, so it is completely determined by its values on e′ks. Hence
φ(x) = x · y for all x ∈ Rn, so we can identify X∗ with Rn .
If ||x||T ≤ 1, then ||x||∞ ≤ 1 since || · ||T = || · ||∞ by example 1.4, so we get
that

|φ(x)| = |x · y| = |
n∑
k=1

xkyk| ≤
n∑
k=1

|xk||yk| ≤ ||x||∞
n∑
k=1

|yk| ≤
n∑
k=1

|yk|.

On the other hand, if x ∈ Rn is given by

xk =

{ yk
|yk|

when yk 6= 0

0 when yk = 0

for all k ∈ {1, ..., n}, then ||x||∞ = 1 and

φ(x) = x · y =
n∑
k=1

|yk|.

Hence

||φ||∗T = ||y||∗T =
n∑
k=1

|yk| = ||y||1
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Next we show that K∗ = Rn+ :

Assume that φ ∈ K∗ and let y ∈ Rn be s.t. φ(x) = xẏ for all x ∈ Rn+.
(Such y ∈ Rn exists by what we have proved above.) Then, in particular
φ(ej) = yj ≥ 0 for all j ∈ {1, ..., n} since ej ∈ K for all j. Thus y ∈ Rn+.

On the other hand, if y ∈ Rn+ and x ∈ K, then x · y =
n∑
j=1

xjyj ≥ 0 since

xjyj ≥ 0 for all j ∈ {1, ..., n}. Hence φ given by φ(x) = x · y for all x ∈ X is
in K∗, and this shows that K∗ = Rn+.

Furthermore, for φ ∈ X∗ given by φ(x) = x · y for all x ∈ R, we have

φ(~1) = 1⇔ y ·~1 = 1⇔
n∑
k=1

yk = 1.

Combining this and the the fact that K∗ = Rn+, we get

P (~1) = {φ ∈ K∗ | φ(
−→
1 ) = 1} = {y ∈ Rn+|

n∑
k=1

yk = 1}.

This completes the proof of remark 2.1.

Remark 2.2 For the cone of semidefinite matrices (Example 1,5 X = Sn,
K = S+

n and e = In ), X∗ = Sn itself and the dual norm || · ||∗T it is the trace
norm:

||X||∗T =
∑

1≤i≤n

|λi(X)| = ||X||1, X ∈ Sn

The dual cone K∗ is equal to S∗n, the set of all positive semidefinite matrices.
The simplex P (In) is the set of positive semidefinite matrices with trace 1:

P (In) = {ρ ∈ S+
n : trace(ρ) = 1}.

Proof: We want to show first that for each φ ∈ X∗, there is a unique B ∈ X
s.t. φ(A) = Tr(AB) for all A ∈ X:

As φ is linear, it is completely determined by its values on a basis.

Let Vk,l be a matrix in X having 1 as its l, k − th component and its
k, l − th component and 0 otherwise.

F.ex. if n=2, then
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V2,1 =

{
0 1
1 0

}
Let Ṽk,l be a matrix in X having i as its k, l-th component, -i as its l, k-th
components and 0 otherwise.

F.ex. if n=2, then

Ṽ2,1 =

{
0 −i
i 0

}
In this notation,we always assume that k > l. Furthermore, let Vi,i be a

matrix having 1 as its i, i-th component and 0 otherwise.

Again if n=2 then

V1,1 =

{
1 0
0 0

}

V2,2 =

{
0 0
0 1

}
.

Clearly, we get that

β = {{Vi,i}1≤i≤n, {Vk,l}1≤l<k≤n, {Ṽk,l}1≤l<k≤n} is a basis for X.

Given (k, l) with 1 ≤ l < k ≤ n, it is easy to see that

Tr(Vk,lB) = bl,k + bk,l.

T r(Ṽk,l B) = i(bl,k − bk,l) where B = [bi,j]

If B ∈ X, we know that Re(bl,k) = Re(bk,l) Im((bl,k) = −Im(bk,l)

Hence, for any pair (k,l) with 1 ≤ l < k ≤ n, we get a unique solution of bl,k
and bk,l by considering the equations:

Tr((Vk,lB) = φ(Vk,l) = bl,k + bk,l = 2Re(bl,k),

T r((Ṽk,lB) = φ(Ṽk,l) = i(bl,k − bk,l) = 2Im(bl,k).
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Furthermore, since Tr((Vi,iB) = bi,i we also get a unique solution for bi,i,
namely bi,i = φ(Vi,i).

Hence there is a unique B ∈ X s.t. φ(A) = Tr(AB) for all A ∈ β.

But since β is a basis and φ is linear, we have then φ(A) = Tr(AB) for all
A ∈ X.

This shows that ψ : X → X∗ given by ψ(B) = φB where φB(A) = Tr(AB)
for all A ∈ X,

is an isomorphism, so we can identify X with X∗.

By definition,

P (In) = {φ ∈ K∗|φ(In) = 1}.

But, as we have shown, for each φ ∈ X∗, there is a B ∈ X s.t.

φ(A) = Tr(AB) for all A ∈ X.

Hence, if φ(In) = 1 , it follows that Tr((InB) = Tr((B) = 1.

So we can rewrite the expression for P (In) as

P (In) = {B ∈ S+
n |Tr(B) = 1}

by identifying φB with B for all ∈ X. ( It remains to show that S+
n can be

identified with K∗ and it will be done later. )

Let B ∈ X and consider φB ∈ X∗ given by φB(M) = Tr(MB) for all
M ∈ X. We want to show that ||φB||∗ = ||B||1

Let M ∈ X and assume that ||M ||T ≤ 1, that is |λi(M)| ≤ 1 for all
i ∈ {1, ..., n}. (Recall the example 1.5 where it was shown that
||M ||T = ||λ(M)||∞).

Since M and B are Hermitian, hence unitary diagonalisable, there are uni-
taries U1, U2 and diagonal matrices D1, D2 s.t.

M = U1D1U
∗
1 , B = U2D2U

∗
2 .

Then
Tr(MB) = Tr(U1D1U

∗
1 U2D2U

∗
2 )
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= Tr(D1U
∗
1U2 D2U

∗
2U1)

= Tr(D1(U∗1U2D2(U∗1U2)∗))

= Tr(D1(V D2V
∗)) = Tr(D1A)

where V = U∗1U2 and A = V D2V
∗. We have

Tr(D1A) =
n∑
j=1

λjaj,j

where A = [ai,j], and λj s are the eigenvalues of M so that

D1 =

 λ1 · · · 0
... . . . ...
0 · · · λn

 .
Let V = [vi,j] and write D2 as

D2 =

 η1 · · · 0
... . . . ...
0 · · · ηn

 .
Since A = V D2V

∗

=

 v11 · · · v1n
... . . . ...
vn1 · · · vnn


 η1 · · · 0

... . . . ...
0 · · · ηn


 v̄11 · · · v̄n1

... . . . ...
v̄1n · · · v̄nn



=

 v11 · · · v1n
... . . . ...
vn1 · · · vnn


 η1v̄11 · · · η1v̄n1

... . . . ...
ηnv̄1n · · · ηnv̄nn

 ,
we see that for each j ∈ {1, ..., n}, we have

aj,j =
n∑
k=1

ηk|vj,k|2.

Now, since

Tr(MB) = Tr(D1A) =
n∑
j=1

λjaj,j

and |λj| ≤ 1 for all j by assumption (||M ||T ≤ 1), we get that
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|φ(M)| = |Tr(MB)| = |
∑n

j=1 λjaj,j|

≤
n∑
j=1

|λj||aj,j| ≤
n∑
j=1

|aj,j|

=
n∑
j=1

|
n∑
k=1

ηk|vj,k|2| ≤
n∑
j=1

n∑
k=1

|ηk||vj,k|2 =
n∑
k=1

n∑
j=1

|ηk||vj,k|2 =
n∑
k=1

|ηk|

( since
n∑
j=1

|vj,k|2 = 1 for all k ∈ {1, ..., n} because V is unitary).

But since D2 =

 η1 · · · 0
... . . . ...
0 · · · ηn


and B = U2D2U

∗
2 , we have that ηk’s are the eigenvalues of B.

Since M was arbitrary with ||M ||T ≤ 1, we obtain that

||φB||∗T ≤
n∑
k=1

|ηk| = ||B||1

On the other hand, if we let M = U2D̃U
∗
2 where

D̃ =

 λ1 · · · 0
... . . . ...
0 · · · λn


and the λk’s are defined by

λk =

{ ηk
|ηk|

when ηk 6= 0

0 otherwise ,

we get that

φB(M) = Tr(MB) = Tr(U2D̃U
∗
2U2DU

∗
2 ) = Tr(U2D̃D2U

∗
2 ) = Tr(D̃D) =

n∑
k=1

|ηk|.
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As |λk| ≤ 1 for all k ∈ {1, ..., n},

we have ||M ||T ≤ 1.

Since

φB(M) =
n∑
k=1

|ηk|,

we get that

||φB||∗T ≥
n∑
k=1

|ηk|.

All this together gives that

||φB||∗T =
n∑
k=1

|ηk| = ||B||1,

for all B ∈ Sn.

Now we have to show that K∗ = Sn+ :

Let

Ej,j =

 0 · · · 0
... 1j,j

...
0 · · · 0



If B=U

 λ1 · · · 0
... . . . ...
0 · · · λn

 U∗ where U is unitary,

let then Aj,j = UEj,jU
∗. Hence Aj,j ∈ K, since the eigenvalues of Aj,j are 0

and 1.

Then

φB(Aj,j) = Tr(Aj,jB) = Tr(UEj,jU
∗U

 λ1 · · · 0
... . . . ...
0 · · · λn

 U∗)

= Tr(UEj,j

 λ1 · · · 0
... . . . ...
0 · · · λn

 U∗)
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= Tr(U∗UEj,j

 λ1 · · · 0
... . . . ...
0 · · · λn

 )

= Tr(Ej,j

 λ1 · · · 0
... . . . ...
0 · · · λn

) = λj.

If φB ∈ K∗, (where φB is given by φB(M) = Tr(MB) for all M ∈ Sn) we
must then have λj ≥ 0, since Aj,j ∈ K.

This is true for all j, hence B must be then a positive semidefinite. Thus
K∗ ⊆ Sn+. On the other hand, if B is positive semidefinite and M ∈ K, let
again M = U1D1U

∗
1 and B = U2D2U

∗
2 where

D1 =

 λ1 · · · 0
... . . . ...
0 · · · λn


D2 =

 η1 · · · 0
... . . . ...
0 · · · ηn


As we saw, Tr(MB) = Tr(D1A) where A = U∗1U2D2U

∗
2U1

We calculated that

Tr(D1A) =
n∑
j=1

λjaj,j =
n∑
j=1

λj(
n∑
k=1

ηk|vj,k|2) =
n∑
j=1

n∑
k=1

λjηk|vj,k|2

where V = [vj,k] = U∗1U2.

But since B was assumed to be positive semidefinite and the ηk’s are the
eigenvalues of B, it follows that ηk ≥ 0 for all k.

Hence

φB(M) = Tr(MB) = Tr(D1A) =
n∑
j=1

n∑
k=1

λjηk|vj,k|2 ≥ 0

( here we use that λj ≥ 0 for all j since M ∈ K).
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This is true for any M ∈ K, hence φB ∈ K∗. Thus Sn+ ⊆ K∗. We conclude
that K∗ = Sn+ and this completes the proof of the remark 2.2.

The remark 2.1 and 2.2 are also given in [GQ] denoted by remark 3.2 and 3.2
respectively, but the proofs are omitted in [GQ]. The next remark, remark
2.3 is not given in [GQ].

Remark 2.3 Let Ω be a compact Hausdorff space and let Mr(Ω) denote
the space of all signed Radon measures on Ω with the norm ‖ v ‖= |v|(Ω).
For v ∈Mr(Ω), let φv : CR(Ω)→ R be defined by

φv(f) =

∫
Ω

fdv.

Then v → φv is an isometric isomorphism of (Mr, (Ω), ‖ · ‖) onto
((CR(Ω))∗, ‖ · ‖).

Proof: Consider φ ∈ (CR(Ω))∗. Since φ is real, by theorem 13.13 in [MW], φ
can be written as φ = φ+ − φ− where φ+ , φ− ∈ (CR(Ω))∗ and φ+ , φ− are
positive linear functionals .

Since Ω is compact, by Riesz - Markov theorem, there are µ1 and µ2

positive Radon measures

s.t.

φ+(f) =

∫
Ω

fdµ1 ∀f ∈ CR(Ω),

φ−(f) =

∫
Ω

fdµ2 ∀f ∈ CR(Ω).

Let v = µ1 − µ2. Then v is a signed Radon measure. ( This will be proved
at the end of this section under " comment " )

Thus, if φ ∈ (CR(Ω))∗, then there is a signed Radon measure v s.t.

φ(f) =

∫
Ω

fdv ∀f ∈ CR(Ω).
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On the other hand, if v ∈Mr(Ω) and

φv(f) =

∫
Ω

fdv ∀f ∈ CR(Ω),

then φv is clearly a real valued linear functional on CR(Ω) since v is a
signed measure.

Furthermore, φv is bounded:

|φv(f)| = |
∫

Ω
fdv| = |

∫
Ω
fd(v+ − v−|

= |
∫

Ω
fdv+ −

∫
Ω
fdv−| ≤ |

∫
Ω
fdv+|+ |

∫
Ω
fdv−|

≤
∫

Ω
|f |dv+ +

∫
Ω
|f |dv− =

∫
Ω
|f |d(v+ + v−)

=
∫

Ω
|f |d|v| ≤ ||f ||∞|v|(Ω) ∀f ∈ CR(Ω).

Thus φv is bounded and ||φv|| ≤ |v|(Ω).

Hence φv ∈ (CR(Ω))∗

So we have an isomorphism between Mr(Ω) and (CR(Ω))∗ via the map
v → φv where v ∈Mr(Ω) and φv(f) =

∫
Ω
fdv ∀f ∈ CR(Ω).

Now we will prove that this isomorphism is an isometry. Then we have to
prove that for all φv ∈ (CR(Ω))∗ we have that ||φv|| ≥ |v|(Ω) when

φv(f) =
∫

Ω
fdv ∀f ∈ CR(Ω), v ∈Mr(Ω).

(We have already proved the opposite inequality. )

Let {P,N} be the Hahn decomposition for v, so v+(N) = v−(P ) = 0

Let ε > 0.

Choose K,L compact subsets of Ω s.t. K ⊆ P,L ⊆ N and v+(P \K) < ε
4

and v−(N \ L) < ε
4
(This is possible since v+, v− are regular Borel

measures.)

Since P
⋂
N = ∅ and K ⊆ P,L ⊆ N , it follows that K

⋂
L = ∅.

Furthermore, since K,L are compact and Ω is Hansdorff, it follows that K
and L are closed.
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Also, since Ω is compact Hausddorff, it is normal.

Hence, by Urisohn’s lemma

∃f1 ∈ (CR(Ω)) s.t. f1|K = 1, f1|L = 0 and 0 ≤ f1 ≤ 1.

Similarly there exists f2 ∈ CR(Ω) s.t. f2|K = 0, f2|L = 1 and 0 ≤ f2 ≤ 1.

Let f = f1 − f2.

Then f ∈ CR(Ω), ||f ||∞ ≤ 1 and f|K = 1, f|L = −1.

We claim that |
∫

Ω
fdv| ≥ |v|(Ω)− ε:

We have K ⊆ P,L ⊆ N and v+(P \K), v−(N \ L) < ε
4

and

f : Ω→ [−1, 1], f(K) = {1, } f(L) = {−1}.

Then we get |
∫

Ω
fdv| = |

∫
Ω
fdv+ −

∫
Ω
fdv−|

= |
∫
P
fdv+ −

∫
N
fdv−|

= |
∫
K
fdv+ +

∫
P\K fdv+ −

∫
L
fdv− −

∫
N\L fdv−|

= |
∫
K

1dv+ +
∫
L

1dv− +
∫
P\K fdv+ −

∫
N\L fdv−|

= |v+(K) + v−(L)− (
∫
N\L fdv− −

∫
P\K fdv+)|

≥ v+(K) + v−(L)− |(
∫
N\L fdv− −

∫
P\K fdv+|

≥ v+(K) + v−(L)− |
∫
N\L

fdv−| − |
∫
P\K

fdv+|

≥ v+(K) + v−(L)−
∫
N\L
|f |dv− −

∫
P\K
|f |dv+

≥ v+(K) + v−(L)−
∫
N\L

1dv− −
∫
P\K

1dv+

= v+(K) + v−(L)− v−(N \ L)− v+(P \K)
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> (v+(P )− ε
4
) + (v−(N)− ε

4
)− ε

4
− ε

4

> v+(P ) + v−(N)− ε = v+(Ω) + v−(Ω)− ε = |v|(Ω)− ε.

Since ||f ||∞ ≤ 1, we get that

||φv|| ≥ |φv(f)| = |
∫

Ω

fdv| ≥ |v|(Ω)− ε

Since ε > 0 was arbitrary, we get that

||φv|| ≥ |v|(Ω),

hence

||φv|| = |v|(Ω).

Thus v → φv is an isometric isomorphism.

Comment:

It was stated that if µ1 and µ2 are Radon measures on Ω, then v = µ1 − µ2

is signed Radon measure. We will prove this now:

Let A ⊆ Ω , A Borel. Given ε > 0 , choose U1, K1 and U2, K2 s.t.
K1 ⊆ A ⊆ U1 K2 ⊆ A ⊆ U2, K1, K2 compact, U1, U2 open and

µ1(U1 \K1) < ε
2
, µ2(U2 \K2) < ε

2
.

Let U = U1 ∩ U2 , K = K1 ∪K2.

Then U is open, K is compact, K ⊂ A ⊂ U ,

µ1(U \K) ≤ µ1(U1 \K1) < ε
2
,

and µ2(U \K) ≤ µ2(U2 \K2) < ε
2
.

Hence

v+(U \K) = v((U \K) ∩ P )

= µ1((U \K) ∩ P )− µ2((U \K) ∩ P )
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≤ µ1((U \K) ∩ P ) + µ2((U \K) ∩ P )

≤ µ1((U \K) + µ2((U \K) < ε
2

+ ε
2

= ε.

Similarly v−(U \K) < ε, so v+ and v− are regular.

Furthermore , if K ⊆ Ω is compact, then

v+(K) = v(K ∩ P ) = µ1(K ∩ P )− µ2(K ∩ P ))

≤ µ1(K) + µ2(K) <∞.

Similarly v−(K) <∞.

Hence v+ and v− are Radon measures.

Since Ω is compact and v+, v− are Radon measures, it follows that

v+(Ω), v−(Ω) <∞.

Let now again A ⊆ Ω, A Borel.

Then we have:

|v(A)| ≤ |v|(A) = v+(A) + v−(A) ≤ v+(Ω) + v−(Ω) <∞.

This shows that v is finite signed Radon measure and complets the proof.

We have shown in example 1.6 that || · ||Tw.r.t the constant function 1 in
the space CR(Ω) is exactly || · ||∞ when

K = {f ∈ CR(Ω) | f(x) ≥ 0 ∀x ∈ Ω}.

Hence the dual of (CR(Ω), || · ||T ) is actually (CR(Ω), || · ||∞)∗.

Since (CR(Ω), || · ||∞)∗ is isometrically isomorphic to Mr(Ω) equipped with
the total variation norm ( as we proved ), it follows that

||µ||∗T = |µ|(Ω) ∀µ ∈Mr(Ω).

Also, it is clear that the dual cone and simplex in this case are K∗ = M+(Ω),

P (1) = {µ ∈M+(Ω) | µ(Ω) = 1} = P (Ω),

so the simplex is the set of all probability Borel measures on Ω. To see that
K∗ = M+(Ω),, we refer to the exercise 13.75 in [MW] which states that a
linear functional φµ on Ω given by

φ(f) =

∫
Ω

f dµ

is nonnegative if and only if µ ∈M+(Ω).
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4 The dual unit ball and its relation to the ab-
stract simplex

In this section we refer to the 2. version of the article by Gaubert and Qu
denoted by [GQ2]. We consider again the space (X∗, || · ||∗T ) defined in section
2 and introduce lemma 3.2 where we give a description of the dual unit ball
B∗T (e) of the space (X∗, || · ||∗T ) in terms of the abstract simplex P (e) and
we also give a complete proof of this lemma. In order to prove lemma 3.2
, we first need to introduce lemma 3.1 which we will use later in the proof
of lemma 3.2. Lemma 3.1 is denoted by (6) in [GQ2] and is given without
proof. We give here a detailed proof of this lemma. After proving lemma 3.1
we prove the observation 3 which states that P (e) is a w∗ - compact subset of
B∗T (e). This observation will also be used in the proof of lemma 3.2. Finally
we state and prove lemma 3.2 . Lemma 3.2 is denoted by " lemma 3.1 " in
[GQ2]. In our proof of this lemma, we will mainly follow the proof of lemma
3.1 given in [GQ2], but we supply most of the statements that are used in
this proof with further, detailed explanations.

Lemma 3.1 Let K∗ be a dual cone in X∗ as defined in the begining of
the section 2. Then, for all z ∈ K∗ with z 6= 0 , we have < z, e > > 0 .
Furthermore, for all x ∈ X , we have

sup
z∈K∗, z 6=0

| < z, x > |
< z, e >

= ||x||T

Proof: We prove first that if z ∈ K∗ and z 6= 0, then < z, e > > 0:
Since e ∈ Int K, given x ∈ X there exists t > 0 s.t. (e + 1

t
x) ∈ K and

(e− 1
t
x) ∈ K

If z ∈ K∗, then < z, e > +1
t
< z, x > ≥ 0 and < z, e > −1

t
< z, x > ≥ 0

Hence, if < z, e > = 0, we must then have that 1
t
< z, x > ≥ 0 and

1
t
< z, x > ≤ 0. Thus we get that < z, x > = 0. Since x was arbitrary, we

deduce that z = 0.
So, if z 6= 0 and z ∈ K∗, then < z, e > > 0. This proves the first statement
of the lemma.
Now we prove the second statement.

Let x ∈ X, x 6= 0, let n ∈ N be s.t. ||x||T − 1
n
> 0 and let sn = ||x||T − 1

n
.

It follows that x 6∈ snIe,
since ||x||T = inf{t > 0 | x ∈ tIe}.

Hence, either
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(e− 1
sn
x) 6∈ K or (e+ 1

sn
x) 6∈ K.

Suppose (e+ 1
sn
x) 6∈ K.

Since K is convex and closed, by corollay 14.7 in [MW], (X is LCS since it
is a normed space)

∃z ∈ X∗ s.t. < z, e+ 1
sn
x > < inf z(K).

It follows then that inf z(K) > −∞.
Assume now that there exists an y ∈ K s.t. < z, y > < 0. Since K is a cone,
then λy ∈ K for all λ > 0.
Hence < z, λy > = λ < z, y > ∈ z(K) for all λ > 0. Since < z, y > < 0, it
follows that

lim
λ→∞

λ < z, y > = −∞.

Then we get that inf z(K) = −∞ and this is a contradiction. So there is
no y ∈ K s.t. < z, y > < 0, hence we have < z, y > ≥ 0 for all y ∈ K. Thus
z ∈ K∗.
Since z ∈ K∗, we get that inf z(K) ≥ 0. As 0 ∈ K, we deduce that
inf z(K) = 0.
Thus

< z, e+
1

sn
x > < inf z(K) = 0.

This gives that 1
sn
< z, x > < − < z, e > ≤ 0.

Hence 1
sn
| < z, x > | > < z, e > . Now, since z ∈ K∗ and z 6= 0 , we have

< z, e > > 0, by the first statement of the lemma. So we can divide with
<z,e>
Sn

on the both sides of the inequality and obtain

| < z, x > |
< z, e >

> sn = ||x||T −
1

n
.

Since z ∈ K∗, we get that

sup
z̃∈K∗,z̃ 6=0

| < z̃, x > |
< z̃, e >

≥ | < z, x > |
< z, e >

> sn = ||x||T −
1

n
.

Since this is true for all n with ||x||T − 1
n
> 0, letting n→∞,we obtain

sup
z̃∈K∗,z 6=0

| < z̃, x > |
< z̃, e >

≥ ||x||T .
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Now, if (e− 1
sn
x) 6∈ K, in the same way

∃w ∈ X∗s.t. < w, e− 1
sn
x > < inf w(K).

Then, using, similar arguments we can deduce that <w,x>
<w,e>

> sn = ||x||T − 1
n

and that w ∈ K∗.

Hence
sup

w̃∈K∗,w̃ 6=0

| < w̃, x > |
< w̃, e >

> sn = ||x||T −
1

n
.

Again, letting n→∞, we get that

sup
w∈K∗,w 6=0

| < w, x > |
< w, e >

≥ ||x||T .

Now we have to prove the opposite inequality, that is

sup
z∈K∗,z 6=0

| < z, x > |
< z, e >

≤ ||x||T :

We have

||x||T = inf{t > 0|x ∈ tIe}.

Assume that x ∈ tIe for some t > 0 and let z ∈ K∗, z 6= 0.

Then e− 1
t
x ∈ K and e+ 1

t
x ∈ K.

Hence

< z, e > −1

t
< z, x > ≥ 0 and < z, e > +

1

t
< z, x > ≥ 0.

Thus
− < z, e > ≤ 1

t
< z, x > ≤ < z, e > ,which gives that

1
t
| < z, x > | ≤ | < z, e > | = < z, e >

(since z ∈ K∗ < z, e > > 0, so < z, e > = | < z, e > |)

Hence
1

t

| < z, x > |
< z, e >

≤ 1,
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so
| < z, x > |
< z, e >

≤ t.

Since this is true for any t s.t. x ∈ tIe, taking inf over all such t’s, we get
that

| < z, x > |
< z, e >

≤ ||x||T .

Now, since z ∈ K∗, z 6= 0 was arbitrary, we get that

sup
z∈K∗
z 6=0

| < z, x > |
< z, e >

≤ ||x||T .

Combining these 2 inequalities together, we obtain that

sup
z∈K∗,z 6=0

| < z, x > |
< z, e >

= ||x||T .

This complets the proof of lemma 3.1
Next we have the following observation:

Observation 3 P (e) is a w∗− compact subset of B∗T (e) :

Proof: First we observe that P (e) ⊆ B∗T (e) :

Let µ̃ ∈ P (e). Then

| < µ̃, x > | ≤ sup
µ∈P (e)

| < µ, x > |

= sup
µ∈P (e)

| < µ, x > |
< µ, x >

≤ sup
z∈K∗
z 6=0

| < z, x > |
< z, e >

= ||x||T

(Here we have used that < µ, e > = 1 for all µ ∈ P (e), P (e) ⊆ K∗�{0} and
for the last equality, we have used lemma 3.1 )
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This is true for all x ∈ X, hence ||µ̃||∗T ≤ 1. Since µ̃ ∈ P (e) was arbitrary, we
get that P (e) ⊆ B∗T (e) .
Next we show that P (e) is w∗− closed:
Let {vα} be a net in P (e) and assume that vα → v in the w∗ topology. This
simply means that < vα, x >→< v, x > for all x ∈ X. Since < vα, x > ≥ 0
for all x ∈ K and for all α ( as vα ∈ P (e) ⊆ K∗ for all α ), we get that
< v, x > ≥ 0 for all x ∈ K. Thus v ∈ K∗.Also since < vα, e > = 1 for all α
as vα ∈ P (e) for all α, we get that < v, e > = 1 Thus v ∈ P (e). Hence P (e)
is w∗ - closed. Since B∗T (e) is w∗ - compact by Alaoglu’s theorem and P (e) is
a w∗ closed subset of B∗T (e), it follows that P (e) is w∗ compact. This proves
observation 3.

Lemma 3.2 The unit ball B∗T (e) of the space (X∗, || · ||∗T ) satisfies

B∗T (e) = conv(P (e) ∪ (−P (e))).

Proof: To simplify notation, throughout this proof we let P = P (e).

We will prove this lemma by proving the following:
a) ||x||T = sup

µ∈P
| < µ, x > | = sup

µ∈P∪(−P )

< µ, x >

b) B∗T (e) = convw
∗
(P ∪ (−P ))

c) convw
∗
(P ∪ (−P )) = conv(P ∪ (−P ))

Proof of a): Let z ∈ K∗ , z 6= 0. Then < z, e > > 0 as we have proved in
lemma 3.1. Also, if we let µ = z

<z,e>
, then clearly µ ∈ P . From lemma 3.1

we have

||x||T = sup
z∈K∗,z 6=0

| < z, x > |
< z, e >

.

Using all this together, we get that

||x||T = sup
z∈K∗,z 6=0

| < z, x > |
< z, e >

= sup
z∈K∗,z 6=0

| < z

< z, e >
, x > |

≤ sup
µ∈P
| < µ, x > |.
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On the other hand, if µ ∈ P then < µ, e > = 1 and µ ∈ K∗ by definition of
P, so

sup
µ∈P
| < µ, x > | = sup

µ∈P

| < µ, x > |
< µ, e >

≤ sup
z∈K∗,z 6=0

| < z, x > |
< z, e >

= ||x||T .

Hence

||x||T = sup
µ∈P
| < µ, x > |.

Now

||x||T = sup
µ∈P
| < µ, x > | = sup

µ∈P
{max{< µ, x >,− < µ, x >}}

= sup
µ∈P
{max{< µ, x >,< −µ, x >}} = sup

µ∈P∪(−P )

< µ, x > .

Thus

||x||T = sup
µ∈P
| < µ, x > | = sup

µ∈P∪(−P )

< µ, x > .

and this proves the part a).

Let now z ∈ X∗.

We then have

||z||∗T ≤ 1 ⇔ | < z, x > | ≤ ||x||T ∀x ∈ X.

Since

||x||T = sup
µ∈P∪(−P )

< µ, x > ,
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we get that ||z||∗T ≤ 1⇔ sup
µ∈P∪(−P )

< µ, x > ≥ | < z, x > | ∀x ∈ X. (1)

We wish to use this to prove the part b), that is

B∗T (e) = convw
∗
(P ∪ (−P )).

Proof of b) First we prove that B∗T (e) ⊆ conv(P ∪ (−P ))∗.

Suppose, this is not the case.

Then there exists a z ∈ B∗T (e) \ conv(P ∪ (−P ))

( Here we always consider the closure w.r.t the w∗ - topology. )

Since z /∈ conv(P ∪ (−P )), by prop. 14.9. part e) in [MW], there exists
φ ∈ (X∗)∗

s.t. φ(z) > sup φ(P ∪ (−P )).

( Here we use that X∗ with w∗ -topology is locally convex topological
space.)

Thus there exists scalar γ ∈ R

s.t. φ(z) > γ ≥ sup φ(P ∪ (−P )) ≥ φ(µ) ∀µ ∈ P ∪ (−P ).

Now, by theorem 1.3. in [C], we have (X∗, w∗)∗ ∼= X. Thus there exists an
x ∈ X s.t. φ(µ) = < µ, x > for all µ ∈ X∗

So < z, x > = φ(z) > γ ≥ φ(µ) = < µ, x > for all µ ∈ P ∪ (−P ).

Hence

< z, x > > γ ≥ sup
µ∈P∪(−P )

< µ, x > as γ ≥< µ, x > ∀µ ∈ P ∪ (−P ).

On the other hand since z ∈ B∗T (e), we have ||z||∗T < 1. By (1), it follows
then that
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< z, x > ≤ | < z, x > | ≤ sup
µ∈P∪(−P )

< µ, x >

Thus we get a contradiction.
We can conclude then that there is no

z ∈ B∗T (e) \ conv(P ∪ (−P )),

hence we must have
B∗T (e) ⊆ conv(P ∪ (−P )).

Now, we prove that
conv(P ∪ (−P )) ⊆ B∗T (e) :

By observation 3, P ⊆ B∗T (e) and then clearly also (−P ) ⊆ B∗T (e), so

P ∪ (−P ) ⊆ B∗T (e).

Since B∗T (e) is w∗ - compact by Alaoglu’s theorem and the w∗ - topology is
Hausdorff, we get that B∗T (e) is w∗ - closed. Also B∗T (e) is obviously convex.
Hence, by prop 14.9. part d) in [MW], conv(P ∪ (−P )) ⊆ B∗T (e). Combining
these 2 inclusions, we deduce that B∗T (e) = conv(P ∪ (−P )). This proves the
part b).

Proof of c): We observe first that if y ∈ conv(P ∪ (−P )), then

y =
n∑
k=1

akvk +
m∑
j=1

bjwj,

where ak ≥ 0, bj ≥ 0 ∀k, j

vk ∈ P, wj ∈ (−P ) ∀k, j

and
n∑
k=1

ak +
m∑
j=1

bj = 1.

Since wj ∈ (−P ) for all j, it follows that for all j there is some πj ∈ P s.t.
wj = −πj.

Hence

y =
n∑
k=1

akvk −
m∑
j=1

bjπj
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where vk, πj ∈ P ∀k, j.
Let

s =
n∑
k=1

ak t =
m∑
j=1

bj.

Then s, t ≥ 0 and s+ t = 1.

Furthermore, if we let

v =
n∑
k=1

ak
s
vk, π =

m∑
j=1

bj
t
πj when s, t > 0,

then < v, e > =
n∑
k=1

ak
s
< vk, e > =

n∑
k=1

ak
s

= 1 (since vk ∈ P ∀k).

Similarly < π, e > = 1 since < πj, e > = 1 for all j. Since ak, bj ≥ 0 for all
k, j and vk, πj ∈ P ⊆ K∗, we have that v and π are in K∗. Thus we get
that v, π ∈ P.

This shows that if y ∈ conv P ∪ (−P ), then y = sv − tπ where
v, π ∈ P s, t ≥ 0 and s + t = 1. Since B∗T = conv(P ∪ (−P )), if µ ∈ B∗T (e),
then there exists a net {µα}α∈A in conv(P ∪ (−P )), s.t. µα → µ in w∗ -
topology. But as we have shown, any such µα can be written as sαvα − tαπα
where vα, πα ∈ P, sα, tα ≥ 0 and sα + tα = 1. Since {vα}α∈A, {πα}α∈A
are nets in P, {sα}α∈A, {tα}α∈A are nets in [0,1] and P is w∗ - compact by
observation 3, by passing to a subnet if necessary, we may assume that vα−→

w∗
v

,πα−→
w∗
π for some v, π ∈ P and sα → s , tα → t for some s, t ∈ [0, 1].

Then the net {sαvα− tαπα}α∈A converges to (sv− tπ) in the w∗ -topology.

Moreover, since sα + tα = 1 for all α and (sα + tα)→ (s+ t) we get that
s+ t = 1.

But we have (sαvα − tαπα)−→
w∗

µ, so we must have µ = sv − tπ.

Since v, π ∈ P, s, t ∈ [0, 1] and s+ t = 1,
we have µ = sv − tπ ∈ conv(P ∪ (−P ). Since µ ∈ conv(P ∪ (−P )) was
arbitrary, we get that

conv(P ∪ (−P )) = conv(P ∪ (−P )).

Thus
B∗T (e) = conv(P ∪ (−P )) = conv(P ∪ (−P ))

and this complets the proof of lemma 3.2.
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5 Hilbert’s quotient norm and dual norm. Char-
acterisation of disjoint, extreme points of the
simplex.

In this section, we return back to the 3. version of the article of Gaubert
and Qu denoted by [GQ]. We will first consider the quotient space X/Re and
define a norm ||| · |||H on this space. In lemma 4.2 we will prove that the dual
of this space ((X/Re)∗, ||| · |||∗H) is isometrically isomorphic to (M(e), || · ||∗H)
where M(e) is the anihilator of Re in X∗ and || · ||∗H = 1

2
|| · ||∗T . ( Recall that

|| · ||∗T was already defined in section 2). After that we will consider the sim-
plex P (e), define "disjointness" of elements in P (e) and then give a concrete
description of disjoint, extreme points of P (e) in different examples\ remarks.
Throughout section 4 we will mainly follow section 4 in [GQ]. However, the
lemma 4.2 in [GQ] is slightly modified and reformulated here. In addition,
all remarks and examples in [GQ] are given here with complete proofs.

Given (X, e, || · ||T ), consider now the quotient space X/Re and define
Hilbert’s quotient norm ||| · |||H : X/Re→ R+ by

|||x+ Re|||H = 2 inf
λ∈R
||x+ λe||T .

Then ||| · |||H is a norm on X/Re :
Let ||| · |||T : X/Re→ R+ be given by

|||x+ Re|||T = 2 inf
λ∈R
||x+ λe||T .

Since (X, || · ||T ) is a Banach space and Re is a closed subspace of X, by theo-
rem 4.2 in chapter 3 in [C], we have that |||·|||T is a norm onX/Re. Now, since
|||·|||H = 1

2
|||·|||T by definition, it follows that |||·|||H is also a norm on X/Re.

Comment: In [GQ] they consider ((X/Re, || · ||H) instead of

((X/Re, ||| · |||H),

where || · ||H is a Hilbert seminorm on X w.r.t. e that is defined is section 1
( ||x||H = M(x/e)−m(X/e)). It turns out that ||x||H = |||x+ Re|||H for all
x ∈ X : By our definition,

|||x+ Re|||H = 2 inf
λ∈R
||x+ λe||T .
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Now, by lemma 1.4 is section 1 ( lemma 4.1 in [GQ] )

||x||H = 2 inf
λ∈R
||x+ λe||T .

Hence ||x||H = |||x+ Re|||H for all x ∈ X , so in [GQ] they actually identify
|| · ||H with ||| · |||H . However, it is not quite precise to write "((X/Re, || · ||H)"
as they do in [GQ] , since, by definition, || · ||H acts on X whereas ||| · |||H
acts on the quotient space X/Re.

Furthermore, let M(e) = {µ ∈ X∗| < µ, e > = 0} and define Hilbert’s
dual norm

|| · ||∗H : M(e)→ R+by

||µ||∗H =
1

2
||µ||∗T ∀µ ∈M(e).

We have then the following lemma:
Lemma 4.2 (X/Re∗, ||| · |||∗H) is isometrically isomorphic to
(M(e), || · ||∗H).

To prove this, we will first prove the following lemma:

Lemma 4.1 Let Z be a normed space with the norm ‖ · ‖1. Let ‖ · ‖2 be
another norm on Z given by ‖ z ‖2= C ‖ z ‖1 for all z ∈ Z where C > 0 is a
constant. Then

‖ ϕ ‖∗2=
1

C
‖ ϕ ‖∗1 for all ϕ ∈ Z∗

Proof: Assume that ‖ z ‖2≤ 1.

Then ‖ z ‖1≤ 1
C
, hence ‖ Cz ‖1≤ 1 which gives that

C|φ(z)| = |φ(Cz)| ≤‖ φ ‖∗1 ∀φ ∈ Z∗.

So
|φ(z)| ≤ 1

C
‖ φ ‖∗1 ∀φ ∈ Z∗.

Thus
sup
‖z‖2≤1

|φ(z)| =‖ φ ‖∗2 ≤
1

C
‖ φ ‖∗1 ∀φ ∈ Z∗.

Now, since we have

‖ · ‖1=
1

C
‖ · ‖2

on Z, by the same argument we can deduce that

‖ · ‖∗1≤
1
1
C

‖ · ‖∗2= C ‖ · ‖∗2 .
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So

1

C
‖ · ‖∗1≤‖ · ‖∗2 .

This gives that

‖ · ‖∗2= 1
C
‖ · ‖∗1,

which proves the lemma 4.1. Now we prove the lemma 4.2:
By theorem 10.2 in chapter 3 in [C], we have ((X/Re)∗, ||| · |||∗T ) is
isometrically isomorphic to (M(e), ‖ · ‖∗T ).

Since ||| · |||H is the norm on X/Re given by

||| · |||H = 2||| · |||T .

the lemma 4.1 gives

||| · |||∗H = 1
2
||| · |||∗T .

Since ((X/Re)∗, ||| · |||∗T ) is isometrically isomorphic to (M(e), ‖ · ‖∗T ) and
||| · |||∗H = 1

2
||| · |||∗T , it follows that ((X/Re)∗, ||| · |||∗H) is isometrically isomor-

phic to (M(e), 1
2
‖ · ‖∗T ). This proves lemma 4.2. since || · ||∗H = 1

2
|| · ||∗T by

definition.

The lemma 4.2 implies that the unit ball of the space (M(e), || · ||∗H),
denoted by B∗H(e), satisfies:

B∗H(e) = 2B∗T (e) ∩M(e).

Remark 4.3 In the case of the standard positive cone (example 1.4,
X = Rn, K = Rn and e = ~1) we claim that implies that for any two
probability µ, v ∈ P (~1). the dual norm ||µ−v||∗H is the total variation distance
between µ and v:

||µ− v||∗H =
1

2
||µ− v||1 = ||µ− v||TV

Proof We have already proved in remark 3.1 that in this case we have
|| · ||∗T = || · ||1.
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Hence
|| · ||∗H =

1

2
|| · ||∗T =

1

2
|| · ||1

Let now

w ∈M(e), that is
n∑
k=1

wi = 0.

Set
J = {i | 1 ≤ i ≤ n, wi ≥ 0},

J c = {i | 1 ≤ i ≤ n, wi < 0}.

If L ⊆ {1, ..., n}, then by definition of J and J c, we have

|
∑
i∈L

wi| = |
∑
i∈L∩J

wi +
∑

i∈L∩Jc
wi|

= |
∑
i∈L∩J

wi| − |
∑

i∈L∩Jc
wi| ≤ |

∑
i∈L∩J

wi|

=
∑
i∈L∩J

wi ≤
∑
i∈J

wi.

Since L ⊆ {1, ..., n} was arbitrary, we get that∑
i∈J

wi = sup
L⊆{1,...,n}

|
∑
i∈L

wi| = ||w||TV .

Now, since

0 =
n∑
i=1

wi =
∑
i∈J

wi +
∑
i∈Jc

wi =
∑
i∈J

|wi| −
∑
i∈Jc
|wi|,

we get that ∑
i∈J

|wi| =
∑
i∈Jc
|wi| =

∑
i∈J

wi (as wi ≥ 0 ∀i ∈ J).

Hence

||w||1 =
n∑
i=1

|wi| =
∑
i∈J

|wi|+
∑
i∈Jc
|wi|

= 2
∑
i∈J

wi = 2||w||TV .
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Thus 1
2
||w||1 = ||w||TV , so in general 1

2
||·||1 = ||·||TV onM(~1) as w ∈M(~1)

was arbitrary. This proves the statement in remark 4.3. The remark 4.3 is
also given in [GQ] , but without proof.

Definition 4.4 For all v, π ∈ P (e), we say that v and π are disjoint, denoted
by v ⊥ π, if

µ =
v + π

2

for all µ ∈ P (e) such that µ ≥ v
2
and µ ≥ π

2
. (This definition is also given

in [GQ]).The notation µ ≥ v
2
and µ ≥ π

2
,means that µ− v

2
and µ− π

2
are inK∗.

Example 4.5 In the case of the standard positive cone ( X = Rn, K = Rn+
and e = ~1), we claim that two points v, π in P (~1) are disjoint if and only if
for all i ∈ {1, ..., n}, vi = 0 or πi = 0 holds, meaning that v and π, thought
of as discrete probability measures, have disjoint supports:
Proof: We observe first that if v, π ∈ P (~1) then µ ≥ π

2
and µ ≥ v

2
if and

only if µi − πi
2
≥ 0 and µi − vi

2
≥ 0 for all i, since K∗ = R∗+ by remark 2.1.

Hence
µi ≥ max{vi

2
,
πi
2
} ∀i.

Let now
I = {i| i ∈ {1, ..., n} and πi ≥ vi}.

Then
n∑
i=1

max{vi
2
,
πi
2
} =

n∑
i=1

vi
2

+
∑
i∈I

(
πi
2
− vi

2
).

Since vi, πi ≥ 0 for all i, because v, π ∈ P (~1), we have:

∑
i∈I

(
πi
2
− vi

2
) ≤

∑
i∈I

πi
2
≤

n∑
i=1

πi
2

=
1

2
(since π ∈ P (e)).

This gives that:

n∑
i=1

max{vi
2
,
πi
2
} =

n∑
i=1

vi
2

+
∑
i∈I

(
πi
2
− vi

2
) =

=
1

2
+
∑
i∈I

(
πi
2
− vi

2
) ≤ 1

2
+

1

2
= 1.
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Assume now that v and π in P (~1) do not have disjoint support. This
means that we have vj 6= 0 and πj 6= 0 for some j ∈ {1, ..., n}.

Set

M = 1−
n∑
i=1

max{vi
2
,
πi
2
}.

Then M ≥ 0, as we have shown .

Let µ ∈ Rn be given by

µi =

{
max{vi

2
, πi

2
}+ M

n−1
for i 6= j;

max{vj
2
,
πj
2
} for i = j.

Then µi − πi
2
≥ 0 and µi − vi

2
≥ 0 for all i ∈ {1, ..., n}, so µ ≥ π

2
and µ ≥ v

2
.

Furthermore
n∑
i=1

µi = (
∑

i 6=j,1≤i≤n

(max{vi
2
,
πi
2
}+

M

n− 1
)) + max{vj

2
,
πj
2
}

= M +
n∑
i=1

max{vi
2
,
πi
2
} = 1,

so µ ∈ P (~1). But µ 6= π+v
2

since µj = max{vj
2
,
πj
2
} < vj+πj

2
because vj > 0

and πj > 0 .

Hence, if v, π ∈ P (~1) are s.t. whenever µ ∈ P (~1) and µ ≥ π
2
, µ ≥ v

2
, implies

that µ = v+π
2
, then v and π must have disjoint support.

Assume now that v, π ∈ P (~1) have disjoint support. Then for each i we
have that max {vi

2
, πi

2
} = vi

2
+ πi

2
since either vi = 0 or πi = 0. Then, if µ is

s.t. µ ≥ v
2
and µ ≥ π

2
, that is µi ≥ max{vi

2
, πi

2
} for all i, we get that

n∑
i=1

µi ≥
n∑
i=1

max{vi
2
,
πi
2
} =

n∑
i=1

vi + πi
2

=
n∑
i=1

vi
2

+
n∑
i=1

πi
2

=
1

2
+

1

2
= 1.

So, if we in addition want that µ ∈ P (~1), that is
n∑
i=1

µi = 1,

then we must have
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µi = max{vi
2
, πi

2
} = vi+πi

2
∀i.

But then µ = v+π
2
. This complets the proof.

The example 4.5 is also given in [GQ] but without proof.

We have the following characterization of the disjointness property.

Lemma 4.6 Let v, π ∈ P (e). The following assertions are equivalent:

a) v ⊥ π

b) The only elements ρ, σ ∈ P (e) satisfying v − π = ρ− σ are ρ = v and
σ = π.

Proof: a) =⇒ b) : Let any ρ, σ ∈ P (e) be such that v − π = ρ− σ. Then is
it immediate that v + σ = π + ρ. Let µ = v+σ

2
= π+ρ

2
. Then µ ∈ P (e), µ ≥ v

2

and µ ≥ π
2
. Since v ⊥ π, we obtain that µ = v+π

2
. It follows that ρ = v and

σ = π.
b) =⇒ a): Let µ ∈ P (e) be such that µ ≥ v

2
and µ ≥ π

2
. Then

v − π = (2µ− π)− (2µ− v).

From b) we know that 2µ− π = v.

We denote by extr(·) the set of extreme points of a convex set.

Proposition 4.7 The set of extreme points of B∗H(e), denoted by extr (B∗H(e)),
is characterized by:

extr (B∗H(e)) = {v − π | v, π ∈ extr(P (e)), v ⊥ π}.

Proof: It follows from lemma 3.2 that every µ ∈ B∗T (e) can be written as

µ = sv − tπ

with s+ t = 1, s, t ≥ 0, v, π ∈ P (e). Moreover, if µ ∈M(e), then

0 = < µ, e > = s < v, e > −t < π, e > = s− t.

Thus s = t = 1
2
. Therefore every µ ∈ B∗T (e) ∩M(e) can be written as

µ =
v − π

2
, v, π ∈ P (e).
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Therefore by (13), we have proved that

B∗H(e) = {v − π : v, π ∈ P (e)}.

Now let v, π ∈ P (e) and v ⊥ π. We are going to prove that v−π ∈ extrB∗H(e).
Let v1, π1, v2, π2 ∈ P (e) be such that

v − π =
v1 − π1

2
+
v2 − π2

2

Then
v − π =

v1 + v2

2
− π1 + π2

2

By lemma 4.6, the only possibility is 2v = v1 + v2 and 2π = π1 + π2. Since
v, π ∈ extrP (e) we obtain that v1 = v2 = v and π1 = π2 = π. Therefore
v − π ∈ extrB∗H(e)

Now let v, π ∈ P (e) such that v − π ∈ extr(B∗H(e)). Assume for contra-
diction that v is not extreme in P (e)( the case where π is not extreme can
be dealt with similarly). Then, we can find v1, v2 ∈ P (e), v1 6= v2, such that
v = v1+v2

2

It follows that
µ =

v1 − π
2

+
v2 − π

2

where v1− π, v2− π are distinct elements of B∗H(e), which is a contradiction.
Next we show that v ⊥ π. To this end let ρ, σ ∈ P (e) be such that

v − π = ρ− σ.

Then
v − π =

v − π + ρ− σ
2

=
v − σ

2
+
ρ− π

2
.

If σ 6= π, then v − σ 6= v − π and this contradicts the fact that v − π is
extremal. Therefore σ = π and ρ = v From Lemma 4.6, we deduce that
v ⊥ π. This completes the proof of lemma 4.6.

The lemma 4.6 and proposition 4.7 with proofs are alreeady given in [GQ].
We will give now a remark on the proof of proposition 4.7 that is not given
in [GQ].

Remark on the proof of prop 4.7

In this proof it is used the general assumption that if C is a convex set,
v ∈ C and v is not an extreme point of C, then
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∃v1, v2 ∈ C, v1 6= v2, s.t. v = v1+v2
2

.

We are going to prove this:

According to the definition 14.9. in [MW], if v is not an extreme point, then

∃v1, ..., vn ∈ C, α1, ..., αn ≥ 0

s.t. α1 + ...+ αn = 1,

v =
n∑
k=1

αkvk,

αi, αj > 0 for some i and j, i 6= j and either v 6= vi or v 6= vj .

Assume that v 6= vi.

Write v as
v = αivi +

∑
k 6=i,1≤k≤n

αkvk.

Since αj > 0, then

αi = 1−
∑

k 6=i,1≤k≤n

αk ≤ 1− αj < 1,

so we get that 1− αi 6= 0.

Then
v = αivi + (1− αi)w

where
w =

1

1− αi

∑
k 6=i,1≤k≤n

αkvk.

Assume now that αi ≤ 1− αi.

This implies that 1− 2αi ≥ 0. Also 2αi ≥ 0 as αi ∈ (0, 1).

Set
µ = 2αivi + (1− 2αi)w.

Then µ ∈ [vi, w].
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Also we have

1

2
(w + µ) =

1

2
w + αivi + (

1

2
− αi)w = αivi + (1− αi)w = v.

Now we wish to show that w 6= µ. Assume first that w = µ.

Then
2αiw = w − (1− 2αi)w = µ− (1− 2αi)w = 2αivi.

Since αi > 0, we must have w = vi.

But then v = αivi + (1− αi)w = αivi + (1− αi)vi = vi.

This contradicts the assumption in the begining that v 6= vi. Hence we
must have w 6= µ,, as we wanted to show.

Next, we show that w ∈ C :
We have

w =
1

1− αi

∑
k 6=i,1≤k≤n

αkvk.

Clearly αk
1−αi ≥ 0 for all k ∈ {1, ..., n}.

Furthermore
n∑
k=1

αk = 1 gives that 1− αi =
∑

k 6=i,1≤k≤n

αk.

Thus
1

1− αi

∑
k 6=i,1≤k≤n

αk = 1.

So w is a convex combination of elements in C, hence w ∈ C since C is
convex. But then µ ∈ C, as vi, w ∈ C and [µ ∈ vi, w]. So we have shown that
v = 1

2
(w + µ) where µ,w ∈ C and µ 6= w as desired.

Now, if αi ≥ 1− αi then 1− 2βi ≥ 0 where βi = 1− αi.
Let µ̃ = 2βiw + (1− 2βi)vi. Then µ̃ ∈ [vi, w] ⊆ C.
Furthermore

v =
1

2
(vi + µ̃).

If µ = vi, it would follow that w = vi since βi > 0. But then vi = v which is
a contradiction. Hence µ 6= vi, µ̃, vi ∈ C and v = 1

2
(µ + vi). This completes
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the proof.

Remark 4.8 In the case of the standard positive cone ( X = R, K = R+

and e = ~1) the set of extreme points is the set of standard basis vectors
{ei}i = 1, ..., n. The extreme points are pairwise disjoint.

Proof: Let µ ∈ P (
−→
1 ) and write

µ =
n∑
i=1

µiei

If there is k, j ∈ {1, ..., n}, s.t. µk > 0 and µj > 0, then

µ = µjej +
n∑

i=1,i 6=j

µiei = µjej + (1− µj)
n∑

i=1,i 6=j

µi
1− µj

ej.

( Observe that since µ ∈ P (
−→
1 ), then 1 =

∑n
i=1 µi and µi ≥ 0 for all i.

Hence

1− µj =
n∑

i=1,i 6=j

µi ≥ µk > 0,

so we can divide with 1− µj. )

Furthermore
n∑

i=1,i 6=j

µi
1− µj

=
1

(1− µj)

n∑
i=1,i 6=j

µi =
1

1− µj
(1− µj) = 1

Hence, since obviously ei ∈ P (
−→
1 ) for all i ∈ {1, ..., n} and P (

−→
1 ) is convex,

we get that

v =
n∑

i=1,i 6=j

µi
1− µj

ei ∈ P (
−→
1 ),

as v is a convex combination of elements in P (
−→
1 ). Since µ = µjej+(1−µj)v,

µj, (1− µj) > 0 and ej, v ∈ P (
−→
1 ), we get that µ /∈ extrP (

−→
1 ).

On the other hand, given ei ∈ P (
−→
1 ), if ei = λµ + (1 − λ)v for some

µ, v ∈ P (
−→
1 ) and some λ ∈ (0, 1), then λµi + (1− λ)vi = 1.

Since u, v ∈ P (
−→
1 ), we have that µi, vi ∈ [0, 1]. Hence, since λ ∈ (0, 1),

µ,vi ∈ [0, 1] and λµi + (1− λ)vi = 1, we deduce that µi = vi = 1.

But, since µ, v ∈ P (
−→
1 ), then
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n∑
j=1

µj =
n∑
j=1

vj = 1

and µj, vj ≥ 0 for all j, 1 ≤ j ≤ n. As µi = vi = 1, we then get that
µj = vj = 0 whenever j ∈ {1, ..., n} with j 6= i. Thus µ = v = ei, so
ei ∈ extrP (

−→
1 ). We conclude that

extr(P (
−→
1 )) = {ej | 1 ≤ j ≤ n}.

Let now k, j ∈ {1, ..., n} s.t k 6= j.
If µ ∈ P (

−→
1 ) and µ ≥ ej

2
, µ ≥ ek

2
, that is µj ≥ 1

2
and µk ≥ 1

2
, then we must

have µj = µk = 1
2
, and µ = 0 whenever i /∈ {j, k}. Because, if not, then since

µi ≥ 0 for all i ∈ {1, ...n}, (as µ ∈ P (
−→
1 ) ⊆ K = Rn+), we get that

n∑
i=1

µi > µk + µj ≥
1

2
+

1

2
= 1.

That is a contradiction since µ ∈ P (
−→
1 ). Thus µj = µk = 1

2
, µi = 0 whenever

i 6∈ {j, k}, which gives that µ =
ej
2

+ ei
2
. This shows that e′is are pairwise

disjoint and completes the proof. The remark 4.8 is also given in [GQ] but
without proof.

Remark 4.9 The set of extreme points in P (In) is {xx∗ | x ∈ Cn , x∗x = 1}

Furthermore, two extreme points xx∗ and yy∗ are disjoint if and only if
x∗y = 0.

Proof: Let x ∈ Cn.

Assume that x∗x = 1 and construct then an orthonormal basis for Cn
that contains x . Denote this basis by β and write β = {x, v1, ..., vn−1}. Then
(xx∗)x = x and (xx∗)vj = 0 for all j with 1 ≤ j ≤ n− 1.
Assume now that there exist A,B ∈ P (In) and α ∈ (0, 1) s.t.

αA+ (1− α)B = xx∗.

Since A,B ∈ P (In), then A,B ∈ S+
n , so we must have < Ay, y > ≥ 0 and

< By, y > ≥ 0 for all y ∈ Cn.

Since
0 = < (xx∗)vj, vj > = < αA+ (1− α)B)vj, vj >

= α < Avj, vj > +(1− α) < Bvj, vj >, ∀j ∈ {1, ..., n− 1},
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we must have < Avj, vj > = < Bvj, vj > = 0 for all j ∈ {1, ..., k − 1}, as α
and 1 − α are strictly positive. Hence both for A and for B, all v′js are the
eigenvectors with the corresponding eigenvalue 0. Inded, since A ≥ 0 and
B ≥ 0, there exist A

1
2 , B

1
2 . Hence

||A
1
2vj||2 = < Avj, vj > = 0,

so A
1
2vj = 0 for all j ∈ {1, ..., k − 1}.

Thus
Avj = A

1
2 (A

1
2vj) = 0

for all j ∈ {1, ..., k − 1}. The same argument applies for B.

Thus we have that {x, v1, ..., vn−1} is an orthonormal basis consisting of
eigenvectors both for A and for B. Since both A and B are in P (In), we must
have trace(A) = trace(B) = 1. So the sum of eigenvalues for A and the sum
of the eigenvalues for B must be equal to 1. Since 0 is the corresponding
eigenvalue for all v′js, both for A and for B, then the corresponding eigen-
value for x must be 1 ( both for A and for B ).
But this means that A = B = xx∗ and this shows that xx∗ is an extreme
point of P (In). Thus {xx∗|x ∈ Cn, x∗x = 1} ⊆ (P(In)) since x was arbitrary.

Let now M ∈ P (In).

If

M =
[
µ1 · · · µn

]


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 [ µ1 · · · µn
]∗

where {µ1, ..., µn} is an orthonormal basis for Cn, then M = µ1µ
∗
1. If not,

then using that M ∈ S+
n and that tr(M) = 1 we see that we can write M as

M =
[
µ1 · · · µn

]  λ1 · · · 0
... · · · ...
0 · · · λn

 [ µ1 · · · µn
]∗

where at least λ1 and λ2 are strictly greater than 0 and
n∑
k=1

λk = 1

(and λk ≥ 0 for k ≥ 3).

Let
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A =
[
µ1 · · · µn

]


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 [ µ1 · · · µn
]∗

and

B =
[
µ1 · · · µn

]


0 0 0 0
0 λ2

1−λ1 0
... . . . ...
0 0 · · · λn

1−λ1

 [ µ1 · · · µn
]∗

(this is well defined since

λ1 = 1−
n∑
k=2

λk ≤ 1− λ2 < 1

since λ2 > 0, so 1− λ1 6= 0).

Then
n∑
k=2

λk
1− λ1

=
1

1− λ1

n∑
k=2

λk =
1

1− λ1

(1− λ1) = 1,

so A,B ∈ P (In) and A 6= B as Aµ =1= µ1, Bµ1 = 0 and µ 6= 0.

Furthermore,

λ1A+ (1− λ1)B

=
[
µ1 · · · µn

](
λ1


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

+(1−λ1)


0 0 0 0
0 λ2

1−λ1 0
... . . . ...
0 0 · · · λn

1−λ1


)[

µ1 · · · µn
]∗

=
[
µ1 · · · µn

]


λ1 0 · · · 0
0 λ2 · · · 0
... · · · . . . ...
0 · · · 0 λn

 [ µ1 · · · µn
]∗

= M.

Hence M is a convex combination of A and B which are the elements of
P (In) and A 6= B, so M /∈ extrP (In).

This shows that extrP (In) = {xx∗ | x ∈ Cn x∗x = 1}.
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Thus we have proved the first part of remark 4.9 . This proof is omitted
in [GQ] . Now we will prove the second part of remark 4.9 . Here we will
mainly follow the proof given in [GQ], but we will supply most of the state-
ments used in this proof with further, detailed explanations.

Suppose first that x∗y = 0, x∗x = y∗y = 1 . Then we have the following
result: "If X ≥ xx∗, X ≥ yy∗, x∗x = y∗y = 1 and tr(X) = 2, then neces-
sarily X = xx∗ + yy∗." . The proof of this result and some comments about
it are given in "comments" at the end of the proof of remark 4.9. Now, if
X ∈ P (In), then tr(X) = 1. If, in addition, X ≥ 1

2
xx∗ and X ≥ 1

2
yy∗, then

the result given above implies that X = 1
2
(xx∗+yy∗). Hence xx∗ and yy∗ are

disjoint by definition .

Suppose now that xx∗ and yy∗ are disjoint extreme point of P (e). Observe
that this implies that x and y are linearly independent. Because, if not, then
there is some α ∈ C s.t. x = αy. Since xx∗ and yy∗ are assumed to be
extreme points of P (e), then we must have x∗x = 1 and y∗y = 1 by the first
statement of the remark 4.9 which we already proved . But then

1 = x∗x = |α|2y∗y = |α|2,

so 1 = |α|2.
Hence

xx∗ = |α|2yy∗ = yy∗.

As xx∗ = yy∗, they can clearly not be disjoint, so we get a contradiction.
Thus we must have that x and y are linearly independent, so

dim(Span{x, y}) = 2.

Let W = dim(Span{x, y}).
Then Cn = W ⊕W⊥ and if v ∈ W⊥, then v is an eigenvector of the matrix
xx∗−yy∗ with corresponding eigenvalue 0. Hence we can find an orthonormal
basis consisting of eigenvectors of xx∗−yy∗ = {µ, v.w1, ..., wn−2} where wj ∈
W⊥ for all j ∈ {1, ..., n− 2} Since this basis is orthonormal, it follows then
that

u, v ∈ (W⊥)⊥ = W = Span{x, y}.
( here we use that dimW = 2. )

Then xx∗ − yy∗

=
[
µ v w1 · · · wn−2

]


λ1 0 · · · 0
0 λ2 · · · 0
... · · · 0

...
0 · · · 0 0

 [ µ v w1 · · · wn−2

]∗
.
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Next since

Tr(xx∗ − yy∗) = Tr(xx∗)− Tr(yy∗) = 1− 1 = 0,

it follows that λ1 + λ2 = 0, so λ2 = −λ1 Hence

xx∗ − yy∗ = λ1(µµ∗ − vv∗)

( Here we choose λ2 ≤ 0 so that λ1 ≥ 0 ).

Now we want to show that λ1 ≤ 1.

Let
x = c1µ+ c2v,

y = d1µ+ d2v.

Since ||x|| = ||y|| = 1 ( because xx∗ = yy∗ = 1,) by Pythagoras’,

|c1|2 + |c2|2 = 1,

|d1|2 + |d2|2 = 1.

We also have:

(xx∗ − yy∗)µ = xx∗µ− yy∗µ

= [(c1µ+ c2v)(c1µ
∗ + c2v

∗)− (d1µ+ d2v)(d1µ
∗ + d2v

∗)]µ

= [(|c1|2µµ∗+c1c2µv
∗+c2c1vµ

∗+|c2|2vv∗)−(|d1|2µµ∗+d1d2µv
∗+d2d1vµ

∗+|d2|2vv∗)]µ

= |c1|2µ+ c2c1v − |d1|2µ− d2d1v

since µ∗µ = v∗v = 1 and v∗µ = 0.

As (xx∗− yy∗)µ = λ1µ because xx∗− yy∗ = λ1(µµ∗− vv∗) and v ∗ µ = 0, we
get that

(|c1|2 − |d1|2)µ+ (c2c1 − d2d1)v = λ1µ

Taking inner product on both sides with µ and again using that µ∗µ = 1 and
v∗µ = 0, we get that |c1|2 − |d1|2 = λ1. Since |c1|2, |d1|2 ∈ [0, 1] , λ1 ≥ 0 and
λ1 = |c1|2 − |d1|2, we get that λ1 ∈ [0, 1] so λ1 ≤ 1 as we wanted to show.
Furthermore:

xx∗ − yy∗ = λ1(µµ∗ − vv∗) = µµ∗ − (1− λ1)µµ∗ − λ1vv
∗

= µµ∗ − (1− λ1)µµ∗ + λ1vv
∗.
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Since µµ∗, vv∗ ∈ P (In), P (In) is convex and λ1 ∈ [0, 1], we have that
(1− λ1)µµ∗ + λ1vv

∗ ∈ P (In). Lemma 4.6, gives then that

xx∗ = µµ∗, yy∗ = (1− λ1)µµ∗ + λ1vv
∗

since xx∗ and yy∗ are disjoint by assumption.
Then (xx∗)µ = µµ∗µ = µ, so µ is the eigenvector of xx∗ with the correspond-
ing eigenvalue 1. Hence µ = α1x where |α1| = 1 since Exx∗

1 = Span{x} and
||x|| = ||µ|| = 1. Since yy∗ = (1− λ1)uu∗ + λ1vv

∗, we get that (yy∗)v = λ1v,
so v is the eigenvector of yy∗ with the eigenvalue λ1. Since λ1 > 0, then λ1

must be equal to 1 as 0 and 1 are the only eigenvalues of yy∗, and v = α2y
where |α2| = 1.
Hence

x∗y =
1

α1α2

µv = 0.

This complets the proof of the second statement in remark 4.9 .

Comments
We have the following observation:
Observation 4

If X ≥ xx∗, X ≥ yy∗, x, y are unitary vectors, x∗y = 0, and trace(X) = 2
then necessarily

X = xx∗ + yy∗.

Proof W.l.o.g let us assume that x = e1 and y = e2. Let

A = X − e1e
∗
1 − e2e

∗
2.

Then
trace(A) = 0,

and
A+ e1e

∗
1 ≥ 0,

A+ e2e
∗
2 ≥ 0.

The only difference between A and A+ e1e
∗
1 is on the first diagonal element.

We then deduce from (1) that the second to the last diagonal elements of A
must be nonnegative. Similarly, it follows from (2) that the first to the penul-
timate diagonal elements are nonnegative. Hence, all the diagonal elements
are nonnegative, and since trace(A) = 0 , all these diagonal elements are zero.
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Now, note that if B is a positive semidefinite matrice, all 2 × 2 princi-
pal submatrices of B are positive semidefinite, and so B2

ij ≤ BijBij, for all
i 6= j. By applying this to the matrix B := A + e1e

∗
1 ≥ 0, we deduce that

A2
ij = B2

ij ≤ BiiBjj = 0 for all i 6= j, and so, A is the zero matrix.

This observation and proof were given by Stephane Gaubert and Zheng Qu.

The next remark is not given in [GQ]. Remark 4.10 We consider now
the CR(Ω) where Ω is a compact, Hausdorff topological space Recall that
(CR(Ω), || · ||∞)∗ is isometrically isomorphic to Mr(Ω) where Mr(Ω) is the
space of all signed Radon measures on Ω. The simplex here is

P (Ω) = {µ ∈M+(Ω) : µ(Ω) = 1}

By exercise 14.86 on page 547 in [MW], we have that

P (Ω) = {δx : x ∈ Ω}.

It is clear that δ′xs are pairwise disjoint, since K∗ = M+(Ω) in this case.
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6 The operator norm induced by Hilbert’s quo-
tient norm

In this section we consider two real Banach spaces

(X1, || · ||) and (X2, || · ||).

We let K1 ⊆ X1 and K2 ⊆ X2 be respectively two closed, normal cones with
nonempty interiors K◦1 and K◦2 . Furthermore we let e1 ∈ K◦1 and e2 ∈ K◦2
be order units. From section 4 lemma 4.2 we know that the duals spaces of
the quotient spaces (X1/Re1, ||| · |||H) and (X2/Re2, ||| · |||H) are isometrically
isomorphic to (M(e1), || · ||∗H) and (M(e2), || · ||∗H) respectively.

We will state and prove here one of the 2 main theorems in this thesis,
the theorem 5.1 [GQ] However it was not written in the correct way in [GQ]
so it had to be reformulated. In [GQ] they let T : X1 → X2 be a bounded,
linear map satisfying T (e1) ∈ Re2 and they consider ”||T ||H”, where || · ||H ,
is a seminorm on X1 defined in section 1. It is not correct to defined an
operator norm w.r.t. seminorm, so this had to be reformulated. We define
instead the induced linear map

T̃ : X/Re1 → X2/Re2

by
T̃ (x+ Re1) = T (x) + Re2.

Then we show that T̃ is a well defined, bounded linear map w.r.t. ||| · |||H .
Hence we may consider |||T̃ |||H , that is the operator norm of T̃ w.r.t. ||| · |||H .
We also define S∗ : M(e2)→M(e1) by letting S∗ = T|M(e2)

and we show that
||S∗||∗H = |||T̃ |||H . First after introducing all these concepts, definitions and
relations between them, we finally state and prove the reformulated version
of the theorem 5.1.
This theorem gives then an expression for |||T̃ |||H in terms of disjoint, ex-
treme points of P (e2). In the proof of this theorem we will mainly follow the
proof given in [GQ], but we will supply most of the statements used in [GQ]
with detailed proofs and explanations.
At the end this section, we will introduce the remark 5.2 which states that
[0, e1]is the closed, convex hull of the set of its extreme points, when X1 of
finite dimension. This remark is also given in [GQ] but without proof. How-
ever, here we give a complete proof of this remark. The remark 5.2 will be
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used later in section 7 and 9 which deal with applications of the theory from
first 6 sections.

Let T : X1 → X2 be a bounded, linear map satisfying T (e1) ∈ Re2.

We define the induced map

T̃ : (X1/Re1, ||| · |||H)→ (X2/Re2, ||| · |||H) by

T̃ (x+ Re1) = T (x) + Re2

Then T̃ is well defined:

Assume that x+ Re1 = y + Re1, for some x, y ∈ X1.

Then x = y + ke1, for some k ∈ R. Furthermore T (e1) = ce2 for some c ∈ R.

Hence
T (x) = T (y) + kT (e1) = T (y) + kce2.

Then
T (x) + Re2 = (T (y) + kce2 + Re2) = T (y) + Re2,

so T̃ is well defined.

Furthermore T̃ is bounded:

Assume that
|||x+ Re1|||H = 1.

This means that inf
λ∈R
||x+ λe1||T =

1

2

Hence, there exists a sequence and {λn}n ⊂ R s.t.

1
2
≤ ||x+ λne1||T ≤ 1

2
+ 1

n
∀n ∈ N.

We have

T̃ (x+ Re1) = T (x) + Re2.

But since T (e1) ∈ Re2, we get that

T̃ (x+Re1) = T (x)+Re2 = T (x)+λnT (e1)+Re2 = T (x+λne1)+Re2 ∀n ∈ N.

Thus
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|||T̃ (x+ Re1)|||H = |||T (x+ λne1) + +Re2|||H

= 2 inf
η∈R
||T (x+ λne1) + ηe2||T ≤ 2||T (x+ λne1)||T ∀n.

Hence, for all n, we have:

|||T̃ (x+ Re1)|||H ≤ 2||T (x+ λne1)||T ≤ 2||x+ λne1||T ||T ||T

Since
lim
n→∞

||x+ λne1||T =
1

2
,

we get that |||T̃ (x+ Re1)|||H ≤ 21
2
||T ||T = ||T ||T so T̃ is bounded.

Also T̃ is obviously linear, since T is linear.

We can then define the map

(T̃ )∗ : ((X2/Re2)∗, ||| · |||∗H)→ ((X1/Re1)∗, ||| · |||∗H) given by

< T̃ ∗(l), x+ Re1 > = < l, T̃ (x+ Re1) > ∀l ∈ (X2/Re2)∗ ∀x ∈ X1

From [P] (2.3.20.),we have

|||(T̃ )∗|||∗H = |||T̃ |||H .

From lemma 4.2, we have that the maps

φ1 : (M(e1), 1
2
|| · ||∗T )→ ((X1/Re1)∗, ||| · |||∗H) and

φ2 : (M(e2), 1
2
|| · ||∗T )→ ((X2/Re2)∗, ||| · |||∗H) given by

< φ1(v), x+ Re1 > = < v, x > ∀v ∈M(e1) x ∈ X1 and

< φ2(µ), y + Re2 > = < µ, y > ∀µ ∈M(e2) y ∈ X2

are isometric isomorphisms.

We then define the map

S∗ : (M(e2), || · ||∗H)→ (M(e1), || · ||∗H) by S∗ = φ−1
1 ◦ (T̃ )∗ ◦ φ2.

So we have the following diagram:
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((X1/Re1)∗, ||| · |||∗H)
←−−−−

(T̃ )∗ ((X2/Re2)∗, ||| · |||∗H)
↑ φ1 ↑ φ2

(M(e1), || · ||∗H)
←−−−
S∗ (M(e2), || · ||∗H)

Claim: We have

< S∗(µ), x > = < µ, Tx > = < T ∗(µ), x > for all µ ∈M(e2) and x ∈ X,

that is

S∗ = T ∗|M(e2)
:

Proof:

< S∗(µ), x > = < (φ−1
1 (T̃ )∗φ2)(µ), x > = < ((T̃ )∗φ2)(µ), x+ R(e1) >

= < φ2(µ), T̃ (x+ Re1) > = < φ2(µ), Tx+ R(e2)

= < µ, Tx > = < T ∗(µ), x > �

Moreover we have

||S∗||∗H = |||(T̃ )∗|||∗H since φ1 and φ2 are isometric isomorphisms.

Since

|||(T̃ )∗|||∗H = |||T̃ |||H , we get that ||S∗||∗H = |||T̃ |||H .

Now we are ready to state and prove the reformulated version of the theorem
5.1.
Theorem 5.1 Let T : X1 → X2 be a bounded, linear map s.t.

T (e1) ∈ Re2

Then
|||T̃ |||H = ||S∗||∗H =

1

2
sup

v,π∈P (e2)

||T ∗(v)− T ∗(π)||∗T

= sup
v,π∈P (e2)

sup
x∈[o,e1]

< v − π, T (x) >

Moreover, the supremum can be restricted to the set of mutually disjoint
extreme points of P (e2) :
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|||T̃ |||H = ||S∗||∗H =
1

2
sup

v,π∈extP (e2), v⊥π
||T ∗(v)− T ∗(π)||∗T

= sup
v,π∈extP (e2),v⊥π

sup
x∈[o,e1]

< v − π, T (x) >

Proof We have already proved that |||T̃ |||H = ||S∗||∗H .

Moreover
||S∗||∗H = sup

µ∈B∗H(e2)

||S∗(µ)||∗H .

By the characterisation of B∗H(e2) obtained earlier, that is

B∗H(e2) = {v − π : v, π ∈ P (e2)}, we get that

sup
µ∈B∗H(e2)

||S∗(µ)||∗H = sup
v,π∈P (e2)

||S∗(v − π)||∗H .

Using that S∗ = T|M(e2)
and that T ∗ is linear, we obtain

sup
µ∈B∗H(e2)

||S∗(µ)||∗H = sup
v,π∈P (e2)

||S∗(v − π)||∗H

= sup
v,π∈P (e2)

||T ∗(v − π)||∗H = sup
v,π∈P (e2)

||T ∗(v)− T ∗(π))||∗H

=
1

2
sup

v,π∈P (e2)

||T ∗(v)− T ∗(π))||∗T

since || · ||∗H = 1
2
|| · ||∗T by definition.

Now we wish to show that

1

2
sup

v,π∈P (e2)
v⊥π

||T ∗(v)− T ∗(π)||∗T

= sup
v,π∈P (e2)

v⊥π

sup
x∈[0,e1]

< v − π, T (x) >
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Thus we have to show that

||T ∗(v)− T ∗(π)||∗T = 2 sup
x∈[0,e1]

< v − π, T (x) >

for all v, π ∈ P (e2).
We will show this by proving that BT (e1) can be written as

BT (e1) = 2[0, e1]− e1.

Then it would follow that whenever v, π ∈ P (e2), we have

||T ∗(v)− T ∗(π)||∗T = sup
||x||T≤1

| < T ∗(v)− T ∗(π), x > |

= sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), 2x̃− e1 > |.

When we have established this equality, we can proceed further by observing
that if v ∈ P (e2), then

< T ∗(v), e1 > = < v, T (e1) > = < v, ke2 > = k < v, e2 > = k

for some k ∈ R, since T (e1) ∈ Re2 and < v, e2 > = 1 as v ∈ P (e2). Similarly,
if π ∈ P (e2), we get that < T ∗(π), e1 > = k. Hence

< T ∗(v)− T ∗(π), e1 > = 0.

Thus

sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), 2x̃− e1 > | = sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), 2x̃ > |

= 2 sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), x̃ > |

whenever v, π ∈ P (e2).
Hence, if we can show that

sup
||x||T≤1

| < T ∗(v)− T ∗(π), x > |

= sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), 2x̃− e1 > |,

then we would get

||T ∗(v)− T ∗(π)||∗T = sup
||x||T≤1

| < T ∗(v)− T ∗(π), x > |
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= sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), 2x̃− e1 > |

= 2 sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), x̃|

whenever v, π ∈ P (e2).
Now, in order to prove that

sup
||x||T≤1

| < T ∗(v)− T ∗(π), x > | = sup
x̃∈[0,e1]

| < T ∗(v)− T ∗(π), 2x̃− e1 > |

it suffices to show that BT (e1) = 2[0, e1]− e1, as mentioned before.

Claim: BT (e2) = 2[0, e1]− e1

Proof: Assume that x ∈ BT (e1).
If ||x||T = 1,

then inf{t > 0|x ∈ tIe1} = 1, as

||x||T = inf{t > 0 | x ∈ tIe1}.

Since

||x||T = 1, for all n there exists a tn ∈ [1, 1 + 1
n
]

s.t. x ∈ tnIe1 which means that

(e1 − 1
tn
x) ∈ K and

(e1 + 1
tn
x) ∈ K.

Since K is closed, we get that

lim
n→∞

(e1 +
1

tn
x) = (e1 + x) ∈ K and

lim
n→∞

(e1 −
1

tn
x) = (e1 − x) ∈ K.

Hence

1
2
(e1 + x) ∈ K
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and e1 − 1
2
(e1 + x) = 1

2
(e1 − x) ∈ K

Thus 1
2
(e1 + x) ∈ [0, e1].

If ||x||T < 1, then

inf{t > 0|x ∈ tIe1} < 1.

Hence, by prop:14.8 part c) in [MW] we have that x ∈ Ie1 .

Thus (e1−x) ∈ K and (e1 +x) ∈ K that is 1
2
(e1−x) and 1

2
(e1 +x) are in K.

Then we can use the similar arguments as above to deduce that

1

2
(x+ e1) ∈ [0, e1].

Since x ∈ BT (e1) was arbitrary, we get 1
2
BT (e1) + e1 ⊆ [0, e1], or equivalently

BT (e1) ⊆ 2[0, e1]− e1.

Assume now that x̃ ∈ [0, e1]. Then x̃ ∈ K and e1 − x̃ ∈ K.

Hence

e1 − (2x̃− e1) = 2(e1 − x̃) ∈ K and e1 + (2x̃− e1) = 2x̃ ∈ K

If we let x = 2x̃− e1, we see then that (e1 + x), (e1 − x) ∈ K.

Hence

1 ≥ inf{t > 0|(e1 − 1
t
x) ∈ K and (e1 + 1

t
x) ∈ K}=

= inf{t > 0|x ∈ tIe1} = ||x||T .

Thus
2x̃− e1 = x

is in BT (e1). Since
x̃ ∈ [0, e1]

was arbitrary, we conclude that

2[0, e1]− e1 ⊆ BT (e1).

Combining these 2 inclusions, we get that

BT (e1) = 2[0, e1]− e1
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and this proves the claim. Hence we have proved the first part of the theorem
5.1.

Next, we will show that the supremum can be restricted to the set of
extreme points.
We show this by proving the following:
a) M(e2) is a locally convex topological space in its relative w∗ topology, and
B∗H(e2) is a w∗ compact subset of M(e2).
Furthermore

B∗H(e2) = conv(extr(B∗H(e2)))
w∗

Hence every ρ ∈ B∗H(e2) is a limit of a met

{ρα}α∈A ⊆ conv(extr(B∗H(e2)))

in the w∗−topology.
b) Let φ : M(e2)→ [0,∞) be given by

φ(µ) = ||S∗(µ)||∗H

Then
φ(µ) = sup

(x+Re1)∈BH(e1)

| < µ, T (x) > |

c) φ is w∗ lower semicontinuous
d) If ρ ∈ B∗H(e2), {ρα}α∈A is a net in conv(extrB∗H(e2)) and ρα → ρ in
w∗−topology , then φ(ρ) ≤ lim infα φ(ρα). ( Here lim infα φ(ρα) denotes the
limit of a net {βα}α∈A in R+ given by

βα = inf
α′,α≤α

{φ(ρα)} )

e)
sup{φ(ρ) : µ ∈ conv(extr(B∗H(e2)))}

= sup{φ(ρ) : µ ∈ (extr(B∗H(e2))}

f)
sup

µ∈B∗H(e2)

φ(µ) = sup
µ∈extr(B∗H(e2))

φ(µ))

g)
sup

µ∈extr(B∗H(e2))

||S(µ)||∗H

=
1

2
sup

v,π∈(extr(P (e2))

sup
x∈[0,e1]

< v − π, T (x) >
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Proof of a) By prop. 14.5 in [MW], a vector space with the topology induced
by a separating family of seminorms is locally convex topological vector space.
Hence M(e2) with the relative w∗ - topology is a locally convex topological
space ( since the w∗ - topology on X∗2 is induced by the family of seminorms
{ρx|x ∈ X2} where ρx(ϕ) = |ϕ(x)| for all ϕ ∈ X∗2 ).

We have also that B∗H(e2) is w∗ - compact:
Since the convergence of a net in X∗2 in the w∗ - topology is the same as the
pointwise convergence of this net on X2 and

M(e2) = {µ ∈ X∗2 | < µ, e2 > = 0}

it is obvious that M(e2) is w∗ closed in X∗2 .
Now, Banach - Alaoglu’s theorem gives that B∗T (e2) is w∗ - compact in X∗2
Hence 2B∗T (e2) is also w∗ -compact.

By definition, B∗H(e2) = 2B∗T (e2) ∩M(e2). Since M(e2) is w∗ - closed, it
follows that B∗H(e2) is w∗− closed subset of 2B∗T (e2). Hence B∗H(e2) is
w∗− compact in M(e2).
Since M(e2) with the relative w∗ - topology is LCS and B∗H(e2) is
w∗− compact and convex subset ofM(e2), the Krein - Milman theorem, gives

B∗H(e2) = conv(extr B∗H(e2))
w∗

.

Hence every ρ ∈ B∗H(e2)) is a limit in w∗ - topology of a net

{ρα}α∈A ∈ conv(extr B∗H(e2)).

This proves the part a).

Proof of b) Consider now the function: φ : µ→ ||S∗(µ)|||∗H from M(e2) into
[0,∞).

Since the map

ϕ : (M(e1), || · ||∗H)→ ((X1/Re1)∗, ||| · |||∗H)

given by

< ϕ(v), x+ Re1 > = < v, x > ∀v ∈M(e1), x ∈ X1

is an isometry, we get that

||S∗(µ)||∗H = |||ϕ(S∗(µ))|||∗H
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= sup
(x+Re1)∈BH(e1)

| < ϕ(S∗(µ)), x+ Re1 > |

= sup
(x+Re1)∈BH(e1)

| < S∗(µ), x > | = sup
(x+Re1)∈BH(e1)

| < µ, Tx > |.

Hence
φ(µ) = sup

(x+Re1)∈BH(e1)

| < µ, Tx > |.

This proves part b).
Proof of c) Since the w∗ - topology on X∗2 is the topology of pointwise con-
vergence, the map: φx : µ → | < µ, T (x) > | is w∗ - continuous for each
x ∈ X1.

If we let

φ : µ→ sup
(x+Re1)∈BH(e1)

| < µ, T (x) > | = sup
(x+Re1)∈BH(e1)

φx(µ),

we see that φ is a supremum of a family of weak star continuous maps. We
claim that this implies that φ is w∗ lower semicontinuous.
By definition on page 410 in [MW] a function f : Ω→ (−∞,∞] is weak star
lower semi continuous if f−1((r,∞]) is open in Ω for all r ∈ R. Since

φ(µ) = sup
(x+Re1)∈BH(e1)

φx(µ) ∀µ ∈M(e2),

we get that

φ−1((r,∞]) =
⋃

(x+Re1)∈BH(e1)

φ−1
x ((r,∞])

( Namely, if

φ(µ) = sup
(x+Re1)∈BH(e1)

φx(µ) > r

for some r ∈ R, then ∃x ∈ X1 s.t. (x+ Re1) ∈ BH(e1) and (φx(µ)) > r .
Hence
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µ ∈
⋃

(x+Re1)∈BH(e1)

φ−1
x ((r,∞])

so φ−1((r,∞]) ⊆
⋃

(x+Re1)∈BH(e1)

φ−1
x ((r,∞])

The other inclusion is trivial )

Since each φx is w∗− continuous for each x ∈ X1, we get that φ−1
x ((r,∞]) is

w∗− open for all x with x+ Re1 ∈ BH(e1), so

φ−1((r,∞]) =
⋃

(x+Re1)∈BH(e1)

φ−1
x ((r,∞])

is w∗− open.

Hence φ is w∗− lower semicontinuous, since r was arbitrary. This complets
the proof of part c).

Proof of d)

Since φ lower semicontinuous and ρα −→ ρ in the w∗ topology (where

ρα ∈ conv(extr(B∗H(e2))

for all α and

ρ ∈ B∗H(e2) = conv(extr(B∗H(e2)))
w∗

) )

we claim that
φ(ρ) ≤ lim inf

α
φ(ρα)

where lim infα φ(ρα) the limit of the net {βα}α given by βα = inf
α′,α≤α′

φ(ρα′) :

Note first that {βα} is a nondecreasing net, hence the limit of this net is well
defined.

Let c ∈ R, c < φ(ρ). Then ρ ∈ φ−1((c,∞]) and φ−1((c,∞]) is weak star
open ( since φ is weak star lower semicontinoous ).
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Since ρα → ρ in w∗ topology, there is an α0 ∈ A s.t. ρα ∈ φ−1((c,∞])
whenever α0 ≤ α, as φ−1((c,∞]) is w∗-open.

This gives that φ(ρα) ∈ (c,∞] which means that φ(ρα) > c, whenever
α0 ≤ α.

Hence
inf
α0≤α
{φ(ρα)} ≥ c.

Thus
lim
α

inf φ(ρα) ≥ inf
α0≤α
{φ(ρα)} ≥ c.

Since c was arbitrary with c < φ(ρ), we get that

lim
α

inf φ(ρα) ≥ φ(ρ)

and this proves the part d).

Proof of e): Since extr(B∗H(e2)) ⊆ conv(extr(B∗H(e2))) , then clearly

sup{φ(µ) : µ ∈ extr(B∗H(e2))} ≤ sup{φ(µ) : µ ∈ conv(extr(B∗H(e2)))}

so we have to prove the opposite inequality:

Let µ ∈ conv(extr(B∗H(e2))). Then

∃v1, ..., vn ∈ extrB∗H(e2) and

α1, ..., αn ≥ 0 s.t.
n∑
k=1

αk = 1 and

n∑
k=1

αkvk = µ.

We then get that:

φ(µ) = sup
(x+Re1)∈BH(e1)

| < µ, T (x) > | = sup
(x+Re1)∈BH(e1)

| <
n∑
k=1

αkvk, T (x) > |
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= sup
(x+Re1)∈BH(e1)

{|
n∑
k=1

αk < vk, T (x) > |}

≤
n∑
k=1

sup
(x+Re1)∈BH(e1)

{|αk < vk, T (x) > |}

=
n∑
k=1

αk sup
(x+Re1)∈BH(e1)

| < vk, T (x) > | =
n∑
k=1

αkφ(vk)

Furthermore, since v1, ..., vn ∈ extrBH(e2), we get that

φ(µ) ≤
n∑
k=1

αkφ(vk) ≤
n∑
k=1

αk sup{φ(v) : v ∈ extrB∗H(e2)}

= (sup{φ(v) : v ∈ extrB∗H(e2)})
n∑
k=1

αk = sup{φ(v) : v ∈ extrB∗H(e2)}

Since this is true for any µ ∈ conv(extrB∗H(e2)), we get that sup

sup{φ(µ) : µ ∈ conv(extrB∗H(e2))}

≤ sup{φ(v) : v ∈ extrB∗H(e2)} .

Combining these 2 inequalities together, we obtain the equality and this
proves the part e)
Proof of f) Given ρ ∈ B∗H(e2) by part a) there exists a net {ρα}α∈A in
conv(extr(B∗H(e2)) s.t ρα → ρ in the w∗ - topology. By part d), we must then
have that φ(ρ) ≤ lim infα φ(ρα).
Now, since

ρα ∈ conv(extr(B∗H(e2))

for all α, then

φ(ρα) ≤ sup{φ(µ) : µ ∈ conv(extr(B∗H(e2)))}

for all α.
Hence

lim inf
α
φ(ρα) ≤ sup{φ(µ) : µ ∈ conv(extr(B∗H(e2)))}
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Thus
φ(ρ) ≤ lim inf

α
φ(ρα)

≤ sup{φ(µ) : µ ∈ conv(extr(B∗H(e2)))}.
By part e)

sup{φ(µ) : µ ∈ conv(extr(B∗H(e2)))}
= sup{φ(µ) : µ ∈ (extr(B∗H(e2)))},

so we deduce that

φ(ρ) ≤ sup{φ(µ) : µ ∈ (extr(B∗H(e2)))}.

Since ρ ∈ B∗H(e2) was arbitrary, we get

sup
µ∈B∗H(e2)

φ(µ) ≤ sup
µ∈extr(B∗H(e2))

φ(µ).

On the other hand, since extrB∗H(e2) ⊆ B∗H(e2), we have

sup
µ∈extr(B∗H(e2))

φ(µ) ≤ sup
µ∈B∗H(e2)

φ(µ).

Thus

sup
µ∈B∗H(e2)

||S∗(µ)||∗H = sup
µ∈B∗H(e2)

φ(µ) = sup
µ∈extr(B∗H(e2))

φ(µ) = sup
µ∈extr(B∗H(e2))

||S∗(µ)||∗H .

Proof of g) Since extr(B∗H(e2) = {v − π| v, πextrP (e2), v ⊥ π} by prop. 4.7
in section 4, we have

sup
µ∈extr(B∗H(e2))

||S∗(µ)||∗H = sup
v,π∈extr(P (e2)),v⊥π

||S∗(v − π)||∗H

Since S∗ = T ∗|M(e2)
and T ∗ is linear, we get that:

sup
v,π∈extr(P (e2)),v⊥π

||S∗(v − π)||∗H = sup
v,π∈extr(P (e2)),v⊥π

||T ∗(v − π)||∗H

= sup
v,π∈extrP (e2),v⊥π

||T ∗(v)− T ∗(π)||∗H =
1

2
sup

v,π∈extrP (e2),v⊥π
||T ∗(v)− T ∗(π)||∗T
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Now, in the proof of the first part of theorem 5.1. we have shown that

||T ∗(v)− T ∗(π)||∗T = sup
x∈[0,e1]

2 < v − π, T (x) >

Hence
1

2
sup

v,π∈P (e2)
v⊥π

||T ∗(v)− T ∗(π)||∗T

= sup
v,π∈P (e2)

v⊥π

sup
x∈[0,e1]

< v − π, T (x) >

Thus
||S∗||∗H = sup

µ∈B∗H(e2)

||S∗(µ)||∗H

= sup
µ∈extr(B∗H(e2))

||S∗(µ)||∗H

=
1

2
sup

v,π∈P (e2)
v⊥π

||T ∗(v)− T ∗(π)||∗T

= sup
v,π∈P (e2)

v⊥π

sup
x∈extr[0,e1]

< v − π, T (x) >

and this completes the proof of the part g). Hence we have proved theorem
5.1 .

Remark 5.2Assume that X1 is finite dimensional. Then [0, e] = conv(ex([0, 1])).
Furthermore

sup
x∈[0,e1]

< v − π, T (x) > = sup
x∈ex([o,e1])

< v − π, T (x) >

for all v, π ∈ P (e2).
Proof: Let

BT (e1) = {x ∈ X1 | ||x||T ≤ 1}

We claim that [0, e1] is a closed, convex subset of BT (e1):

If x ∈ [0, e1], by definition of [0, e1] we have x ∈ K and e1 − x ∈ K.

Since x ∈ K and e1 ∈ K we have also (x+ e1) ∈ K. Thus (x+ e1) ∈ K and
(e1 − x) ∈ K, so we have −e1 ≤ x ≤ e1.

Hence
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||x||T = inf{t > 0 | − e1 ≤ 1
t
x ≤ e1} ≤ 1, so x ∈ BT (e1).

This gives that [0, e1] ⊆ BT (e1)

Next we show that [0, e1] is closed :

Let {zn}n∈N ⊆ [0, e1] and assume that ||zn − z||T → 0 as n→∞ for some
z ∈ X1.

Hence ||(e1 − zn)− (e1 − z)||T → 0 as n→∞

Since zn and e1 − zn are in K for all n and K is closed, we get that z and
e1 − z are in K. Thus z ∈ [0, e1] , so it follows that [0, e1] is closed.

Furthermore [0, e1] is convex:

If x, y ∈ [0, e1] and λ ∈ (0, 1), then λx+ (1− λ)y ∈ K since x, y ∈ K and K
is a convex.

Also

e1 − (λx+ (1− λ)y) = λ(e1 − x) + (1− λ)(e1 − y)) ∈ K

again since (e1 − x), (e1 − y) ∈ K and K is convex.

Hence

0 ≤ e1 − (λx+ (1− λ)y) ≤ e1 so (λx+ (1− λ)y) ∈ [0, e1]

so it follows that [0, e1] is convex since x, y ∈ [0, e1] and λ ∈ (0, 1) were
arbitrary.
Since dim X1 <∞, we have that BT (e1) is compact and since [0, e1] is closed
subset of BT (e1), it follows that [0, e1] is compact. Since [0, e1] also is convex,
the Krein - Milman theorem gives that

[0, e1] = conv(ex[0, e1]).

This proves the first statement of the remark 5.2. Now we will prove the
second statement:
Suppose that v, π ∈ P (e2). Then v, π are continuous, hence v ◦ T and π ◦ T
are continuous linear functionals on X1.
Therefore

sup
x∈conv(ex([0,e1]))

< v − π, T (x) > = sup
x∈conv(ex([0,e1]))

< v − π, T (x) >
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Now, by the first statement of remark 5.2, [0, e1] = conv(ex([0, e1])).
Hence, we have

sup
x∈[0,e1]

< v − π, T (x) > = sup
x∈conv(ex([0,e1]))

< v − π, T (x) >

= sup
x∈conv(ex([0,e1]))

< v − π, T (x) > .

Next, let x ∈ conv(ex[0, e1]).
Then

x =
n∑
k=1

αkwk,

where αk ≥ 0 for all k ∈ {1, ..., n},
n∑
k=1

αk = 1

and wk ∈ ex[0, e1] for all k ∈ {1, ..., n}.

Hence

< v − π, T (x) > = < v − π, T (
n∑
k=1

αkwk) > = < v − π,
n∑
k=1

αkT (wk) >

=
n∑
k=1

αk < v−π, T (wk) >≤
n∑
k=1

αk sup
w∈ex([0,e1])

< v−π, T (w) >= sup
w∈ex([0,e1])

< v−π, T (w) > .

Since x ∈ conv(ex([0, e1])) was arbitrary, we get that

sup
x∈conv(ex([0,e1]))

< v − π, T (x) > ≤ sup
x∈ex([0,e1])

< v − π, Tx > .

On the other hand, since ex([0, e1]) ⊆ conv(ex([0, e1])), we have that

sup
x∈ex([0,e1])

< v − π, Tx > ≤ sup
x∈conv(ex([0,e1]))

< v − π, Tx > .

Then we deduce that

sup
x∈ex([0,e1])

< v − π, T (x) > = sup
x∈convex([0,e1])

< v − π, T (x) > ∀v, π ∈ P (e2)

Since
sup

x∈conv(ex([0,e1]))

< v − π, T (x) >
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= sup
x∈[0,e1]

< v − π, T (x) >

for all v, π ∈ P (e2) as we have shown, we get that

sup
x∈ex[0,e1]

< v − π, T (x) > = sup
x∈[0,e1]

< v − π, T (x) > .

This proves the second statement of the remark 5.2.
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7 The convergence of homogeneous discrete time
Markov systems

In this section we let again (X, || · ||) be a real Banach space, K ⊆ X be
a closed, normal cone with nonempty interior, e ∈ Int K be an order unit.
All the norms and seminorms that depends on an order unit like || · ||T ,
|| · ||H , ||| · |||H etc, are assumed to be given w.r.t. e in this section.
We will state and prove here the most important theorem in this thesis, the
theorem 6.1, which considers a Markov operator T : X → X w.r.t. K and e.
Again, this theorem is also given in [GQ] but we have somewhat reformulated
it since we are considering |||T̃ |||H and ||S∗||∗H instead of ||T ||H and ||T ∗||∗H .
As we will see, this theorem gives a sufficient condition for the convergence
of homogeneous discrete time Markov system given by

µn+1 = (T ∗)(µk), k = 0, 1, ...

where µ0 ∈ P (e).
In fact, the theorem states for instance that if |||T̃ |||H ≤ 1, then there exists
a π ∈ P (e) s.t.

||(T ∗)n(µ)− π||∗H ≤ |||T̃ |||nH
for all µ ∈ P (e) and all n ∈ N.
In other words, if |||T̃ |||H ≤ 1, then there exists a unique invariant measure
s.t. the homogenous discrete time Markov system given above converges to
this measure regardless of the initial distribution.
The proof of the theorem given in this thesis mainly follows the proof given
in [GQ], however all the statements used in the proof in [GQ] are given here
with detailed proofs and explanations. At the end of the section we state and
prove the theorem 6.2 which is also given in [GQ].This theorem applies the
theorem 5.1 on the case when T : X → X is Markov operator w.r.t. K and
e and gives thus the expression of |||T̃ |||H in terms of disjoint extreme point
of P (e) is this particular case. The theorem 6.2 will be frequently applied
later in sections 7,8 and 9.

Theorem 6.1 Let T : X → X be a Markov operator with respect K and e.
If |||T̃ |||H < 1 or equivalently ‖ S∗ ‖∗H< 1 then there is π ∈ P (e) s.t. for all
x ∈ X and n ∈ N, we have

‖ T n(x)− < π, x > e ‖T≤ (|||T̃ |||H)n ‖ x ‖H

and ‖ (T ∗)n(µ)− π ‖∗H≤ (|||T̃ |||H)n
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for all µ ∈ P (e), and all n ∈ N.

Proof We will prove this theorem by proving the following :
a) Set

In(x) = [m(T n(x)/e),M(T n(x)/e)]

Then In+1(x) ⊆ In(x) for all x ∈ X.
Furthermore

|In(x)| ≤ ||T̃ |||nH ||x||H
for all n and there is a real number c(x) depending on x s.t.

{c(x)} =
⋂
n∈N

In(x).

b) Define ω : X × (Int K)→ R by ω(x/y) = M(x/y)−m(x, y).
Then we have

−ω(T n(x)/e)e ≤ (T n(x)− c(x)e) ≤ ω(T n(x)/e)e

for all x ∈ X and all n ∈ N.
Hence

||(T n(x)− c(x)e)||T ≤ ω(T n(x)/e)) ≤ |||T̃ |||nH ||x||H
for all x ∈ X and all n ∈ N.

c) Define π : X → C by < π, x > = c(x) where

{c(x)} =
⋂
n∈N

In(x)

as given in part a). Then π ∈ P (e).
d) For all µ ∈ P (x), we have ||µ||∗T = 1.
Furthermore,

||(T ∗)n(µ)− π||∗H ≤ ||| ˜T |||nH
for all n ∈ N and all µ ∈ P (e),
( Here π is the functional on X defined in c ), that is < π, x > = c(x) for
all x ∈ X.)

Proof of a) We want to show that

[m(T n+1(x)/e),M(T n+1(x)/e)]

⊆ [m(T n(x)/e),M(T n(x)/e)] ∀n :
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Assume that te− T nx ∈ K for some t ∈ R. Since T (K) ⊆ K , then

T (te− T n(x)) ∈ K,

so we have

T (te− T n(x)) = tT (e)− T n+1(x) = te− T n+1(x) ∈ K.

Hence

{t ∈ R| T n(x) ≤ te} ⊆ {t ∈ R| T n+1(x) ≤ te},

so M(T n(x)/e) = inf{t ∈ R|T n(x) ≤ te} ≥ inf{t ∈ R|T n+1(x) ≤ te}

= M(T n+1(x)/e).

Similarly, if

T n(x)− te ∈ K, then

T (T nx− te) = T n+1x− tT (e) = T n+1x− te ∈ K,

so {t ∈ R|T n(x) ≥ te} ⊆ {t ∈ R|T n+1(x) ≥ te}.

Hence

m(T n(x)/e) = sup{t ∈ R|T nx ≥ te}

≤ sup{t ∈ R|T n+1(x) ≥ te} = m(T n+1(x)/e).

This shows that

In+1(x) = [m(T n+1(x)/e),M(T n+1(x)/e)] ⊆ [m(T n(x)/e),M(T n(x))/e)] = In(x)

for all n, that is In+1(x) ⊆ In(x) for all n as desired.

Furthermore observe that each In(x) is included in I1(x) which is compact
in R, and each In(x) is closed.

Since the family of closed sets {In(x)}n∈N has finite intersection property,

(because given In1(x), ..., Ink(x) with n1 ≤ n2 ≤ ... ≤ nk then

In1(x) ⊇ In2(x) ⊇ ... ⊇ Ink(x),
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so
k⋂
j=1

Inj(x) = Ink(x) 6= ∅.)

theorem 11.5 in [MW] part b) gives that

∞⋂
n=1

In(x) 6= ∅.

We observed in section 4 that |||x+ Re|||H = ||x||H for all x ∈ X.

Furthermore, we have ( by definition ) that

T̃ (x+ Re) = T (x) + R e which gives that

T̃ 2(x+ Re) = T̃ (T̃ (x+ Re) = T̃ (Tx+ Re) = T (T (x)) + Re = T 2(x) + Re.

By induction, we get

T̃ n(x+ Re) = T n(x) + Re for all n ∈ N.

Hence,

‖ T n(x) ‖H= |||T n(x) + Re|||H = |||T̃ n(x+ Re)|||H ≤ |||T̃ n|||H |||(x+ Re)|||H

≤ |||T̃ |||nH |||(x+ Re)|||H = |||T̃ |||nH ‖ x ‖H .

But

||(T n(x))||H = M(T n(x)/e)−m(T n(x)/e) = |In(x)|

Hence

|In(x)| = ||(T n(x))||H ≤ |||T̃ |||nH ‖ x ‖H ,

which goes to 0 as n→∞, because |||T̃ |||H < 1 by assumption.

Since the length of In(x) - s gets arbitrary small when n→∞,and⋂
n∈N

In(x) 6= ∅

we must have that the intersection is reduced to a real number c(x) ∈ R
(which certainly depends on x since each In(x) depends on x).
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So

{c(x)} =
⋂
n

[m(T n(x)/e),M(T n(x)/e)]

This proves the part a).

Proof of b): Since

c(x) ∈ [m(T n(x)/e),M(T n(x)/e)] ∀n,

it follows that

m(T n(x)/e) ≤ c(x) ≤M(T n(x)/e) ∀n.

Hence

M(T n(x)/e)− c(x) ≥ 0 and c(x)−m(T n(x)/e) ≥ 0 ∀n.

Furthermore

(M(T n(x)/e−m(T n(x)/e))e− (T n(x)− c(x)e)

= M(T n(x)/e)e− T n(x) + (c(x)−m(T n(x)/e))e)

Now,
M(T n(x)/e) = inf{t ∈ R | (te− T n(x)) ∈ K}.

Thus there exists {tj}j∈N ⊆ R s.t.

lim
j→∞

tj = M(T n(x)/e)

and (tje− T n(x)) ∈ K

for all j ∈ N. So, we get that

M(T n(x)/e)e− T n(x) = lim
j→∞

(tje− T n(x)) ∈ K,

which is in K since K is closed.

Since
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λK ⊆ K ∀λ ≥ 0, and c(x)−m(T n(x)/e) ≥ 0

for all n ∈ N, we have

(c(x)−m(T n(x)/e))e ∈ K

for all n ∈ N.

Finally, since K +K ⊆ K, we have

(M(T n(x)/e)e− T n(x)) + (c(x)−m(T n(x)/e)e ∈ K.

that is
(M(T n(x)/e)−m(T n(x)/e))e− (T n(x)− c(x)e) ∈ K

for all n ∈ N.

Thus

T n(x)− c(x)e ≤ (M(T n(x)/e)−m(T n(x)/e))e = ω(T n(x)/e)e ∀n.

Since

m(T n(x)/e) = sup{t ∈ R | (T n(x)− te) ∈ K}

and using again that K is closed, by similar arguments as before we deduce
that

T n(x)−m(T n(x)/e)e ∈ K

FurthermoreM(T n(x)/e) ≥ c(x) for all n, so (M(T n(x)/e)−c(x))e ∈ K and

T n(x)− c(x)e+ ω(T n(x)/e)e

= T n(x)− c(x)e+M(T n(x)/e)e−m(T n(x)/e)e

= (T n(x)−m(T n(x)/e)e) + (M(T n(x)/e)− c(x))e (∗)

Since
(T n(x)−m(T n(x)/e)e), (M(T n(x)/e)− c(x))e

are in K and K +K ⊆ K , we get by (*) that

(T n(x)− c(x))e+ ω(T n(x)/e)e) ∈ K.

Hence
−ω(T n(x)/e)e ≤ T n(x)− c(x)e.
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So we have shown that

−ω(T n(x)/e)e ≤ (T n(x)− c(x))e) ≤ ω(T n(x)/e)e for all n.

But this means that for all n,

(T n(x)− c(x))e) ∈ w(T n(x)/e)Ie.

Since

‖ T n(x)− c(x)e ‖T= inf{t > 0|(T n(x)− c(x)e) ∈ tIe},

we get immediately that

‖ T n(x)− c(x)e ‖T≤ ω(T n(x)/e) ∀n.

But we have already shown that

ω(T n(x)/e) ≤ |||T̃ |||nH ‖ x ‖H ∀n.

Hence,

‖ T n(x)− c(x)e ‖T≤ |||T̃ |||nH ||x||H

for all n and this proves the part b).

Proof of c) As |||T̃ |||H < 1, we get that from part b) that

lim
n→∞

‖ T n(x)− c(x)e ‖T= 0,

for all x ∈ X, that is

lim
n→∞

T n(x) = c(x)e w.r.t. ‖ · ‖T

for all x ∈ X.

Define L: X → X by

L(x) = lim
n→∞

T n(x) = c(x)e.

Then L is well-defined since the limit exists ( as we have proved ) and it is
linear since T n’s are linear.

Furthermore, L is bounded:
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Since lim
n→∞

T n(x) exist for all n and all x ∈ X , we have that

sup
n
||T n(x)||T <∞ ∀x ∈ X.

By the uniform boundedness principle,

sup
n
||T n(x)||T <∞

(Here we have used that (X, || · ||T ) is a Banach space. This follows, since
(X, || · ||) is a Banach space and || · || and || · ||T are equivalent because K is
closed and normal.)

Now, for all x ∈ X with ||x||T ≤ 1,

set
||L(x)||T = lim

n→∞
||T n(x)||T ≤ sup

n
||T n(x)||T ≤ sup

n
||T n||T .

Hence,
sup
||x||T≤1

||L(x)||T ≤ sup
n
||T n||T <∞.

Thus L is bounded with

||L(x)||T ≤ sup
n
||T n||T .

From this we can deduce that π as defined in part c) is a continuous linear
functional:

First observe that L(x) = c(x)e = < π, x > e for all x ∈ X. Since L is linear
and e 6= 0 it follows that π is linear.
Since ||e||T = 1, we get

| < π, x > | = |c(x)| = |c(x)| ||e||T = ||c(x)e||T = ||L(x)||T ≤ ||L||T ||x||T

Hence π is bounded and ||π||∗T ≤ ||L||T so π ∈ X∗.

As T (e) = e, we have T n(e) = e for all n ∈ N.

Hence
< π, e > e = c(e)e = lim

n→∞
T n(e) = e,

so it follows that < π, e > = 1. Furthermore, if x ∈ K, then T n(x) ∈ K for
all n since T (K) ⊆ K,
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so, we get
c(x)e = lim

n→∞
T n(x) ∈ K

when x ∈ K.

Now, we have |c(x)|e ∈ K, since e ∈ K and |c(x)| ≥ 0.

Since K ∩ (−K) = {0}, and c(x)e, |c(x)|e ∈ K it follows that c(x) = |c(x)|
as e 6= 0. So we have shown that < π, x > = c(x) ≥ 0 ∀x ∈ K.

Hence π ∈ P (e). This proves part c).

Proof of part d) Since µ ∈ P (e), by the consequence of lemma 3.1, we have

||x||T = sup
v∈P (e)

| < v, x > | ≥ | < µ, x > |

for all x ∈ X.

So, if ||x||T ≤ 1, then | < µ, x > | ≤ 1.

Hence
||µ||∗T = sup

||x||T≤1

| < µ, x > | ≤ 1

On the other hand , < µ, e > = 1 and ||e||T = 1, so

sup
||x||T≤1

| < µ, x > | ≥ | < µ, e > | = 1

Thus
||µ||∗T = sup

||x||T≤1

| < µ, x > | = 1

which proves the first statement of part d).

Now we prove the second statement of the part d):

Since (T ∗)n = (T n)∗ for all n ∈ N, then for all µ ∈ P (e) we have:

< (T ∗)n(µ)− π, x > = < (T n)∗(µ)− π, x > = < (T n)∗(µ), x > − < π, x >

= < µ, T n(x) > − < π, x > = < µ, T n(x) > − < π, x > < µ, e >
(since < µ, e > = 1 when µ ∈ P (e).)

But < π, x > < µ, e > = < µ,< π, x > e > = < µ, c(x)e > since µ is linear.
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Hence

< (T ∗)n(µ)− π, x > = < µ, T n(x) > − < π, x > < µ, e >

= < µ, T n(x) > − < µ, c(x)e >

= < µ, T n(x)− c(x)e > ≤ ||µ||∗T ||T n(x)− c(x)e||T

= ||µ||∗T ||T n(x)− c(x)e||T ≤ ||µ||∗T |||T̃ |||nH ||x||H ,

for all n ∈ N, x ∈ X since we proved that

||T n(x)− c(x)e||T ≤ |||T̃ |||nH ||x||H .

for all n ∈ N, x ∈ X. Since µ ∈ P (e), we have ||µ||∗T = 1.
Hence

< (T ∗)n(µ)− π, x > ≤ ||µ||∗T |||T̃ |||nH ||x||H = |||T̃ |||nH ||x||H

Let now

φ : M(e)→ (X/Re)∗

be isometric isomorphism (which we considered in the begining of the
section 5) given by:

< φ(v), x+ Re > = < v, x > ∀v ∈M(e), x ∈ X.

We observe that

< (T ∗)n(µ), e > = < (T n)∗(µ), e > = < µ, T n(e) > = < µ, e > = 1

for all n ∈ N and all µ ∈M(e).

Hence

< (T ∗)n(µ)− π, e > = 1− < π, e > = 0

for all n ∈ N and all µ ∈M(e).

So

((T ∗)n(µ)− π) ∈M(e).

for all n and all µ ∈M(e).

Furthermore, we have
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< φ((T ∗)n(µ)− π), x+ Re > = < (T ∗)n(µ)− π, x > ≤ |||T̃ |||nH ||x||H

for all x ∈ X and all µ ∈M(e).

Since ||x||H = |||x+ Re|||H for all x ∈ X,

we get

< φ((T ∗)n(µ)− π), x+ Re > ≤ |||T̃ |||nH |||x+ Re|||H

for all n ∈ N and all µ ∈M(e).

This shows that

|||φ((T ∗)n(µ)− π)|||H ≤ |||T̃ |||nH .

for all n ∈ N and all µ ∈M(e).

( Indeed,

if < φ((T ∗)n(µ)− π), x+ Re > < 0, then

| < φ((T ∗)n(µ)− π), x+ Re > |

= − < φ((T ∗)n(µ)− π), x+ Re >

= < φ((T ∗)n(µ)− π),−x+ Re > ≤ |||T̃ |||nH ||| − x+ Re|||H

= |||T̃ |||nH |||x+ Re|||H .

If
< φ((T ∗)n(µ)− π), x+ Re > ≥ 0,

then
| < φ((T ∗)n(µ)− π), x+ Re > |

= < φ((T ∗)n(µ)− π), x+ Re > ≤ |||T̃ |||∗H |||x+ Re|||H

Hence, in any case

| < φ((T ∗)n(µ)− π), x+ Re > | ≤ |||T̃ |||nH |||x+ Re|||H)

so
|||φ((T ∗)nµ)− π|||H ≤ |||T̃ |||nH . )

Since φ is an isometry, obtain
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||(T ∗)n(µ)− π||∗H = |||φ((T ∗)n(µ)− π)|||H ≤ |||T̃ |||nH

and this proves the second statement of the part d).

This completes the proof of theorem 6.1. As mentioned before, now we will
introduce theorem 6.2 which is an application of theorem 5.1 to the particular
case when T : X → X is a Markov operator w.e.t. K and e.

Theorem 6.2 (Abstract Dolrushin’s ergodicity coefficient )

Let T : X → X be a Markov operator w.r.t. K and e.

Then

|||T̃ |||H = ||S∗||∗H = 1− inf
v,π∈extrP (e),v⊥π

inf
x∈[0,e]

< π, T (x) > + < v, T (e− x) >

Proof: By theorem 5.1, we have that

|||T̃ |||H = ||S∗||∗H = sup
v,π∈extrP (e),v⊥π

sup
x∈[0,e]

< v − π, T (x) >

Now, since T (e) = e, we get that

< v − π, T (x) > = 1− < π, T (x) > −(1− < v, T (x) >)

= 1− < π, T (x) > −(< v, e > − < v, T (x) >)

= 1− < π, T (x) > −(< v, T (e) > − < v, T (x) >)

= 1− < π, T (x) > −(< v, T (e)− T (x) >)

= 1− < π, T (x) > −(< v, T (e− x))

whenever v, π ∈ P (e)

Hence

|||T̃ |||H = ||S∗||∗H = sup
v,π∈extrP (e),v⊥π

sup
x∈[0,e]

< v − π, T (x) >

= sup
v,π∈extrP (e),v⊥π

sup
x∈[0,e]

(1− < π, T (x) > − < v, T (e− x) >

= 1− inf
v,π∈extrP (e),v⊥π

inf
x∈[0,e]

(1− < π, T (x) > − < v, T (e− x) >
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8 Applications to stochastic matrices

In this section we let X = Rn equipped with its usual Euclidian norm,
K = Rn+ be the standard positive cone, e = ~1. As mentioned in the intro-
duction of the thesis, throughout this section we will consider T : Rn → Rn
given by T (x) = Ax for all x ∈ Rn where A is an n×n row stochastic matrix.
The first part of lemma 7.1. in this section which states that

|||T̃ |||H = δ(A) = 1−min
i<j

n∑
k=1

min{ai,k, aj,k}

is also given in [GQ] in example 6.3 but without proof. However, we give
here the complete proof of lemma 7.1. Similarly, the proposition 7.3 which
states that

1−min
i<j

n∑
k=1

min{ai,k, aj,k} =
1

2
max
i<j

n∑
k=1

|ai,k − aj,k|

is given in the introduction in [GQ] without proof, whereas we give here a
detailed proof of this equality. The rest of the material in this section is not
given in [GQ].

Consider the case of the standard positive cone from example 1.4 that is
X = Rn, K = Rn+ and e =

−→
1 .

Let T : Rn → Rn be given by T (x) = Ax for all x ∈ Rn where A is an n× n
row stochastic matrix.
Then T is a Markov operator w.r.t K and ~1. Denote |||T̃ |||H by δ(A), that is
we let |||T̃ |||H = δ(A).
We have then the following lemma:
Lemma 7.1 Let T : Rn → Rn be the Markov operator defined above. Then
we have

δ(A) = 1−min
i<j

min
I⊆{1,...,n}

[∑
k∈I

ai,k +
∑
k/∈I

aj,k

]

= 1−min
i<j

n∑
s=1

min{ai,saj,s}

Furthermore, δ(A) < 1 if and only if AAt has only positive coefficients.
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Proof: We have

extr [
−→
0 ,
−→
1 ] = {vj : J ⊆ {1, ..., n}}

where
vj(i) =

{
1 if i ∈ J
0 if i /∈ J.

Let J c := {1, ..., n} \ J

By theorem 6.2 and remark 4.8, we get that

|||T̃ |||H = δ(A) = 1− min
v,π∈extr(P (1)),v⊥π

min
x∈[
−→
0 ,
−→
1 ]

(< π,Ax > + < v,A(
−→
1 −x) >).

= 1−min
i<j

min
x∈[
−→
0 ,
−→
1 ]

(etiAx+ etjA(
−→
1 − x))

By remark 5.2, since Rn is finite dimensional, the minimum will be attained
at an extreme point of [

−→
0 ,
−→
1 ], hence

δ(A) = 1−min
i<j

min
[
−→
0 ,
−→
1 ]

(etiAx+ etjA(
−→
1 − x))

= 1−min
i<j

min
x∈extr[

−→
0 ,
−→
1 ]

(etiAx+ etjA(
−→
1 − x))

= 1−min
i<j

min
J⊆{1,...,n}

(etiAvJ + etjA(
−→
1 − vJ))

= 1−min
i<j

min
J⊆{1,...,n}

(etiAvJ + etjAvJc))

= 1−min
i,j

min
J⊆{1,...,n}

(
∑
k∈J

ai,k +
∑
k/∈J

aj,k)
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where we have used that

AvJ =
∑
k∈J

aj,k

and AvJc =
∑
k/∈J

aj,k.

Fix now i, j ∈ {1, ..., n} and let J̃ = {k | 1 ≤ k ≤ n ai,k ≤ aj,k}.

Then

∑
k∈J̃

ai,k +
∑
k/∈J̃

aj,k = min
J⊆{1,...,n}

(
∑
k∈J

ai,k +
∑
k/∈J

aj,k) (∗)

( The explanation of (*) will be given at the end of this section. ) By
definition of J̃ ,

∑
k∈J̃

ai,k +
∑
k/∈J̃

aj,k =
n∑
k=1

min{ai,k, aj,k},

so

n∑
k=1

min{ai,k, aj,k} = min
J⊆{1,...,n}

(
∑
k∈J

ai,k +
∑
k/∈J

aj,k).

Hence, using this in the formula for δ(A) obtained earlier in this proof, we
get

δ(A) = 1−min
i,j

min
J⊆{1,...,n}

(
∑
k∈J

ai,k +
∑
k/∈J

aj,k) = 1−min
i,j

(
n∑
k=1

min{ai,k, aj,k}).
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which proves the first part of the lemma.

Thus

δ(A) < 1 ⇔ min
i,j

(
n∑
k=1

min{ai,k, aj,k}) > 0

⇔
n∑
k=1

min{ai,k, aj,k}) > 0 for all i, j ∈ {1, ..., n}

This now holds if and only if for all i, j ∈ {1, ..., n}, there exists
an k ∈ {1, ..., n} s.t ai,k > 0 and aj,k > 0, which again is true if and only if

n∑
k=1

(ai,k)(aj,k) > 0 for all i, j ∈ {1, ..., n}

If we now let S = AAt, we observe that

si,j =
n∑
k=1

(ai,k)(aj,k).

Hence we get that
n∑
k=0

(ai,k)(aj,k) > 0 for all i, j ∈ {1, ..., n} if and only if

AAT has only positive coefficients. Combining all these equivalences, we
conclude δ(A) < 1 if and only if AAT has only positive coefficients. This
complets the proof of lemma 7.1.

Now we have the following theorem:
Theorem 7.2 Let A be an n × n row stochastic matrix, let Q = At. Then
the following 3 conditions are equivalent:
a) There exists some k ∈ N s.t. δ(Ak) < 1.
b) Q has an attractor, that is there exists a stochastic vector µ ∈ Rn s.t.
Qnv → µ as n→∞ for all stochastic vectors v ∈ Rn.
c) There exists some k ∈ N s.t. Ak has (at least ) one column with only
positive coefficients.

Proof: a)⇒ b): Assume that a) holds.

First observe that Ak is also a row stochastic matrix.

Consider T : Rn → Rn given by T (x) = Akx.
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Since Ak is row stochastic, T is a Markov operator w.r.t. K and ~1

||S∗||∗H = |||T̃ |||H = δ(Ak) < 1, so S∗ is a contraction w.r.t. || · ||∗H .

Recall that S∗ = T ∗
|M(
−→
1 )
.

Now we observe that

T ∗(x) = (Ak)tx = (At)
k
x = Qkx ∀x ∈ Rn (**)

We also observe that if µ, v ∈ P (
−→
1 ), then (µ− v) ∈M(

−→
1 ).

Hence

||T ∗(µ)− T ∗(v)||∗H = ||T ∗(µ− v)||∗H = ||S∗(µ− v)||∗H ≤ ||S∗||∗H ||(µ− v)||∗H

for all µ, v ∈ P (
−→
1 ).

Recall also that P (
−→
1 ) in this case is the set of all stochastic vectors in Rn

by remark 3.1. and that || · ||∗H = 1
2
|| · ||1 by remark 4.3.

Using all this together with (**), we get that

||Qkµ−Qkv||1 = 2||T ∗(µ)− T ∗(v)||∗H ≤ ||S∗||∗H2||µ− v||∗H

= ||S∗||∗H ||µ− v||1 ∀µ, v ∈ P (
−→
1 ).

Thus, there is c < 1 (c = ||S∗ ||∗H) s.t.

||Qkµ−Qkv||1 ≤ c||µ− v||1

for all stochastic vectors µ, v ∈ Rn.

Now, by theorem 6.1, there exists a π ∈ P (
−→
1 ) s.t.

||(T ∗)n(µ)− π||∗H ≤ |||T̃ |||nH

for all µ ∈ P (
−→
1 ) and all n ∈ N. Then clearly ||(T ∗)n(µ) − π||∗H → 0 as

n→∞, because |||T̃ |||H < 1. Hence it follows that

||Qknµ− π||1 = 2||(T ∗)n(µ)− π||∗H → 0

as n→∞ for all stochastic vectors µ ∈ Rn. This shows that π is an attractor
for Qk.
Now we will prove that π is an attractor for Q.
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First we prove that Qπ = π :

Since π is an attractor for Qk, it follows that it Qkπ = π. But this gives that
Qπ = Q(Qkπ) = Qk(Qπ), so Qπ is also a stochastic vector that is fixed by
Qk.

Now, since
||Qkµ−Qkv||1 ≤ c||µ− v||1

for all stochastic vectors µ, v ∈ Rn and c = ||S∗||∗H < 1, it follows that a
stochastic vector fixed by Qk must be unique. Hence we get π = Qπ.
Next we prove that π is an attractor for Q:

Let µ ∈ Rn be an arbitrary stochastic vector. For n ∈ N, there is an r in
N and m < k s.t. n = rk +m.

Since Q is an n × n column stochastic, matrix, it is not difficult to see
that ||Qsx||1 ≤ ||x||1 for all s ∈ N and all x ∈ Rn .
Hence we have:

||Qn(µ− π)||1 = ||Qrk+m(µ− π)||1 = ||Qm(Qrk(µ− π)||1 ≤ ||Qrk(µ− π)||1.

We also have

||Qrk(µ− π)||1 ≤ ||S∗||∗H ||Q(r−1)k(µ− π)||1 = c||Q(r−1)k(µ− π)||1

where c = ||S∗||∗H < 1. It follows by induction that

||Qrk(µ− π)||1 ≤ cr||(µ− π)||1 = c(n
k
−m
k

)||(µ− π)||1 ≤ c
n
k
−1||(µ− π)||1

since m
k
< 1 and 0 < c < 1, so 1

c
m
k
< 1

c

Hence

||Qnµ− π||1 ≤ c
n
k
−1||(µ− π)||1

which gives that for any stochastic vector µ ∈ Rn, Qnµ→ π as n→∞. This
means that π is an attractor for Q.

b) ⇒ c)

Since Q has an attractor, there exists π ∈ P (
−→
1 ) s.t. for all µ ∈ P (

−→
1 ), we

have Qnµ → π as n → ∞. Let ej denote the j-th unit vector of Rn. Since
Qnej → π as n → ∞ for all j ∈ {1, ..., n}, we must have that qnj → π as
n→∞ for all j ∈ {1, ..., n} where qnj denotes j-th column of Qn.

Since π is stochastic, there exists an entry πs, of π s.t. πs > 0. Thus, for
each j with 1 ≤ j ≤ n, there is kj ∈ N s.t. the s-th entry of Qmej is strictly
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larger than 0 for all m ≥ kj. Put k = max{kj |1 ≤ j ≤ n }. It follows then
that s-the entry of Qkej is strictly larger than 0 for all j ∈ {1, ..., n}. But
since Qkej is exactly the j-th column of Qk, it follows that the s-th row of
Qk has only strictly positive coefficients. This gives that Ak has r-th column
with only positive coefficients because At = Q.

c) =⇒ a)

Assume that c) holds. As we just saw, there exists k ∈ N s.t. for some
r ∈ {1, ...n}, the r-th row of Qk has only positive coefficients. This gives
that:

((Qk)tQk)ij =
n∑
s=1

((Qk)tis(Q
k)sj) =

n∑
s=1

((Qk)tsi(Q
k)sj)

= (Qk)ri(Q
k)rj +

∑
s=1,s 6=r

(Qk)si(Q
k)sj

≥ (Qk)ri(Q
k)rj > 0

for all i, j ∈ {1, ..., n}.
Hence (Qk)tQk > 0, which means that Ak(Ak)t > 0. But by lemma 7.1, this
is equivalent to

δ(Ak) < 1.

Thus, there exists k ∈ N s.t. δ(Ak) < 1 and this complets the proof of
theorem 7.2. Comment: A similar version of theorem 7.2 is given in [ABS],
denoted by "theorem 1.1". It is given in the following way:
Theorem 1.1 Let P be an n × n stochastic matrix. Then the following
conditions are equivalent:
(1) P has an attractor.
(2) P is semiregular, i.e. there exists some s ∈ N such that (P s)TP s has only
positive coefficients.
(3) There exist some s ∈ N such that P s has (at least ) one row with only
positive coefficients.

Comparing to the theorem 7.2 in this thesis, we observe first that since A
is assumed to be an n × n row stochastic matrix in the theorem 7.2, then
Q = At is an n× n column stochastic matrix. Furthermore , by lemma 7.1,
we have that δ(Ak) < 1 if and only if Ak(Ak)t has only positive coefficients.
Again, as Q = At , it follows that δ(Ak) < 1 if and only if (Qk)TQk has only
positive coefficients.So the condition a) in theorem 7.2 is equivalent to that Q
is semiregular. Thus the theorem 7.2 in this thesis is actually a reformulated
version of the theorem 1.1 in [ABS]. However, we have proved this theorem
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by applying directly the theorem 6.1 from section 6, whereas in [ABS] they
first need to prove the completness of R w.r.t. ||x||1 and a lemma which they
denote by lemma 4.1 before they can prove the main theorem.
The rest of the proof theorem 7.2 in this thesis uses the similar techniques
as in the proof of theorem 1.1 in [ABS].

At the end of this section, we introduce the proposition 7.3 which gives
an alternative expression for δ(A) known as Doeblim contraction coefficient:
Proposition 7.3: Let A be n× n row stochastic matrix. Then we have

δ(A) =
1

2
max
i<j

∑
1≤j≤n

|ai,s − aj,s|.

Proof: From lemma 7.1, we already know that

δ(A) = 1−min
i<j

n∑
j=1

{ai,s, aj,s}.

Hence, it suffices to prove that

1−mini<j
n∑
s=1

{aai,s, aj,s} =
1

2
max
i<j

∑
1≤j≤n

|ai,s − aj,s|.

Given i, j ∈ {1, ..., n} with i < j, let K = {s ∈ {1, ..., n}|ai,s ≥ aj,s}.

Then

min{ai,s, aj,s} =

{
ai,s if s ∈ Kc

aj,s if s ∈ K.

where Kc = {1, ..., n} \K.

Also
|ai,s − aj,s|} =

{
ai,s − aj,s if s ∈ K
aj,s − ai,s if s ∈ Kc.

Hence we get

∑
1≤s≤n

|ai,s − aj,s| =
∑
s∈K

(ai,s − aj,s) +
∑
s∈Kc

(aj,s − ai,s)
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=
∑
s∈K

(ai,s + aj,s − 2aj,s) +
∑
s∈Kc

(ai,s + aj,s − 2ai,s)

=
∑

1≤s≤n

(ai,s + aj,s)− 2

[∑
s∈K

aj,s +
∑
s∈Kc

ai,s

]

= 2− 2

[∑
s∈K

min{ai,s, aj,s}+
∑
s∈Kc

min{ai,s, aj,s}

]

= 2− 2
∑

1≤s≤n

min{ai,s, aj,s}.

This gives that

1

2

∑
1≤s≤n

|ai,s − aj,s| = 1−
∑

1≤s≤n

min{ai,s, aj,s}.

So we get that

1

2
max
i≤j

∑
1≤s≤n

|ai,s − aj,s| = max
i≤j

(1−
∑

1≤s≤n

min{ai,s, aj,s})

= 1−min
i≤j

∑
1≤s≤n

min{ai,s, aj,s}

and this proves the proposition 7.3.

Additional comments:

Explanation of (*)

Let J ⊆ {1, ..., n} and 1 ≤ i, j ≤ n.

Then ∑
k∈J

ai,k +
∑
k/∈J

aj,k
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≥
∑
k∈J

min{ai,k, aj,k}+
∑
k/∈J

min{ai,k, aj,k} =
n∑
k=1

min{ai,k, aj,k}

=
∑
k∈J̃

ai,k +
∑
k/∈J̃

ai,k

( Remark on notation: Here k /∈ J and k /∈ J̃ means k ∈ {1, ..., n} \ J and
k ∈ {1, ..., n} \ J̃ respectively.)

Since we have this inequality for all J ⊆ {1, ..., n}, we get that

min
J⊆{1,...,n}

(
∑
k∈J

ai,k +
∑
k/∈J

aj,k) ≥
∑
k∈J̃

ai,k +
∑
k/∈J̃

aj,k

The inequality the other way is obvious since J̃ is a subset of {1, ..., n}
Hence we must have the equality.
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9 Application to Markov operators on CR(Ω)

As mentioned in the introduction of the thesis, in this section we let
X = CR(Ω) be equipped with the supremums norm, K ⊆ CR(Ω) be the cone
consisting of all nonnegative functions on Ω, the order unit u ∈ Int K be
equal to the constant function 1. The material in this section is not given in
[GQ].

Example 8.1: Consider now the space CR(Ω) with the sup norm, where Ω is
compact metric space.

Let k : Ω× Ω→ R be a continuous non - negative function and let µ be a
positive Radon measure on Ω s.t.

∫
Ω

k(x, y)dµ(y) > 0 ∀x ∈ Ω

(Here we assume that we have such k and µ ). Let then k̃ : Ω ∗ Ω→ R be
defined as

k̃(x, y) =
k(x, y)∫

Ω
k(x, y)dµ(y)

.

Then k̃ is continuous, nonnegative and
∫

Ω
k(x, y)dµ(y) = 1.

Let now FR(Ω) denote the space of all real valued functions on Ω and
consider the integral operator Tk : CR(Ω)→ FR(Ω). given by

Tk(f)(x) =
∫

Ω
k̃(x, y)f(y)dµ(y) ∀x ∈ Ω.

Then Tk is clearly linear.

We want to show that

Tk(CR(Ω)) ⊆ CR(Ω):

Let f ∈ CR(Ω)

Consider the function Tk(f) .
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If f ≡ 0 then Tk(f) ≡ 0 so Tk(f) is continuous.

If f 6= 0, then ||f ||∞ 6= 0

Since k̃ is uniformly continuous on Ω× Ω, given ε > 0, there exists δ > 0
s.t. if x, x0 ∈ Ω and d(x, x0) < δ, then

|k̃(x, y)− k̃(x0, y)| < ε
µ(Ω)||f ||∞

for all y ∈ Ω.

Then, if d(x, x0) < δ, we get that

|Tk(f)(x)− Tk(f)(x0)| = |
∫

Ω
(k̃(x, y)− k̃(x0, y))f(y)dµ(y)|

≤ ||f ||∞
∫

Ω
|k̃(x, y)− k̃(x0, y)|dµ(y) < ||f ||∞

∫
Ω

ε
µ(Ω)||f ||∞dµ(y) = ε

Since x0 ∈ Ω was arbitrary, this shows that Tk(f) is continuous . Thus
Tk : CR(Ω)→ CR(Ω).

Tk is then bounded, since

|Tk(f)(x)| = |
∫

Ω
k̃(x, y)f(y)dµ(y)| ≤

∫
Ω
k̃(x, y)|f(y)|dµ(y)

≤ ||f ||∞
∫

Ω
k̃(x, y)dµ(y) = ||f ||∞

for all x ∈ Ω, hence
||Tk(f)||∞ ≤ ||f ||∞

for all f ∈ CR(Ω)).

We observe that if f ∈ K, then since k̃ is non - negative and µ is positive
Radon measure, we get that

Tk(f)(x) =
∫

Ω
k̃(x, y)f(y)dµ(y) ≥ 0 ∀x ∈ Ω, so Tk(f) ∈ K.

Thus Tk(K) ⊆ K.

Furthermore

Tk(1)(x) =
∫

Ω
k̃(x, y)dµ(y) = 1 ∀x ∈ Ω so Tk(1) = 1.

Hence Tk is a Markov operator, w.r.t. K and the constant function 1.
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Consider now the adjoint of Tk, T ∗k . We have shown before that
(CR(Ω))∗ = Mr(Ω), where Mr(Ω) is the space of all signed Radon measures
on Ω.

Hence T ∗k : Mr(Ω)→Mr(Ω), and for given f ∈ CR(Ω) and v ∈Mr(Ω) we
have

< T ∗k (v), f > = < v, Tk(f) >

Let w = T ∗k (v).

Then ∫
Ω
f(y)dw(y) = < w, f > = < v, Tk(f) > =

∫
Ω
Tk(f)dv(x)

=
∫

Ω
(
∫

Ω
k̃(x, y)f(y)dµ(y))dv(x)

Let v = v+ − v− be Jordan decomposition of v. Then we have:∫
Ω

(∫
Ω

|k̃(x, y)f(y)|dµ(y)
)
dv+(x)

≤ ||k̃||∞ ||f ||∞ µ(Ω)v+(Ω) <∞.

since u, v+ are Radon measures and Ω is compact.
Similarly ∫

Ω

(∫
Ω

|k̃(x, y)f(y)|dµ(y)
)
dv−(x) <∞.

By Fubini’s theorem, we may change the order of the integration and get∫
Ω

(∫
Ω

k̃(x, y)f(y)dµ(y)
)
dv(x)

=

∫
Ω

(∫
Ω

k̃(x, y)f(y)dµ(y))
)
dv+(x)−

∫
Ω

(∫
Ω

k̃(x, y)f(y)|dµ(y)
)
dv−(x)

=

∫
Ω

(∫
Ω

k̃(x, y)f(y)dv+(x)
)
dµ(y)−

∫
Ω

(∫
Ω

k̃(x, y)f(y)|dv−(x)
)
dµ(y)

=

∫
Ω

(∫
Ω

k̃(x, y)f(y)dv(x)
)

)dµ(y).

Hence we get ∫
Ω
f(y)dw(y) =

∫
Ω

(
∫

Ω
k̃(x, y)f(y)dµ(y))dv(x)
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=
∫

Ω
(
∫

Ω
k̃(x, y)f(y)dv(x))dµ(y)

=
∫

Ω
f(y)(

∫
Ω
k̃(x, y)dv(x))dµ(y)

=
∫

Ω
f(y)ρ(y)dµ(y) where ρ(y) =

∫
Ω
k̃(x, y)dv(x))

Thus
∫

Ω
f(y)dw(y) =

∫
Ω
f(y)ρ(y)dµ(y) for all f ∈ CR(Ω).

Now, given y, y0 ∈ Ω we have

|ρ(y)− ρ(y0)| ≤
∫

Ω

|(k̃(x, y)− k̃(x, y0)| d|v|(x)

Again, since k̃ is uniformly continuous, given ε > 0 we can find δ > 0 s.t if
d(y, y0) < δ, then |(k̃(x, y)− k̃(x, y0)| ≤ ε

|v|(Ω)
for all x ∈ Ω.

Hence, given y0 ∈ Ω and ε > 0 if d(y, y0) < δ, then

|ρ(y)− ρ(y0)| ≤
∫

Ω

|(k̃(x, y)− k̃(x, y0)| d|v|(x) ≤ ε

|v|(Ω)
|v|(Ω) = ε.

This shows that ρ is continuous, hence Borel measurable. (Of course, we as-
sume here that |v|(Ω) 6= 0..If not, then v is a 0 measure, hence ρ is a constant
function equal to 0. But then, ρ is continuous hence Borel measurable.)
Since ρ is Borel measurable, the integral∫

E

ρ(y)dµ(y)

is well-defined for all E ⊆ B(Ω).
Let η : B(Ω)→ R be given by η(E) =

∫
E
ρ(y)dµ(y).

Then η is a signed Radon measure on Ω since µ is a Radon measure on Ω
and ρ is continous, hence bounded on Ω. By exercise 9.51 in [MW] we have∫

Ω

gdη =

∫
Ω

gpdµ

for all g ∈ L1(|η|) that is dη = ρdµ. Since η is signed Radon measure on Ω
and Ω is compact we have that |η|(Ω) is finite. Hence CR(Ω) ⊆ L1(|η)|), as
all f in CR(Ω) are bounded on Ω. So in particular, for all f ∈ CR(Ω), we have∫

Ω

f dη =

∫
Ω

fρ dµ
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by exercise 9.51 in [MW]
But ∫

Ω

f dη =

∫
Ω

fρ dµ

for all f ∈ CR(Ω) as we have shown, hence∫
Ω

f dη =

∫
Ω

f dw

for all f ∈ CR(Ω). So φη = φw, where φη, φw are in (CR(Ω))∗ given by

φη(f) =

∫
Ω

f dη ∀f ∈ CR(Ω),

φw(f) =

∫
Ω

f dw ∀f ∈ CR(Ω).

Since we have isometric isomorphism between the space of all signed Radon
measures on Ω and (CR(Ω))∗ via the map v :→ φv (as we proved in the
remark 2.3 ), it follows that η = w. . Hence ρdµ = dη = dw

So we have

dw = ρdµ

where w = T ∗k (v)

and ρ(y) =
∫

Ω
k̃(x, y)dv(x))

Then we get

d|w| = |ρ|dµ

since µ is a positive measure.

So

|T ∗k (v)|(Ω) = |w|(Ω) =
∫

Ω
|ρ(y)|dµ(y) =

∫
Ω
|
∫

Ω
k̃(x, y)dv(x)|dµ(y)∫

Ω
|
∫

Ω
k̃(x, y)dv+(x)−

∫
Ω
k̃(x, y)dv−(x)|dµ(y)

From section 5 we have

|||T̃k|||H = ||S∗k ||∗H where S∗k = T ∗k |M(1).
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Also we have

v ∈M(1)⇔
∫

Ω
1dv = 0⇔ v(Ω) = 0.

Hence, using that

|| · ||∗H =
1

2
|| · ||∗T

by definition and that ||v||∗T = |v|(Ω) for all v ∈Mr(Ω) by remark 2.3, we
obtain:

||S∗k ||∗H = ||T ∗k|M(1)
||∗H

= sup
v∈M(1), v 6=0

||T ∗K(v)||∗H
||v||∗H

= sup
v∈M(1), v 6=0

1
2
||T ∗K(v)||∗T

1
2
||v||∗T

= sup
v∈M(1), v 6=0

||T ∗K(v)||∗T
||v||∗T

= sup
v∈M(1), v 6=0

|T ∗K(v)|(Ω)

|v|(Ω)

= sup
v∈M(1), v 6=0

∫
Ω
|
∫

Ω
k̃(x, y)dv+(x)−

∫
Ω
k̃(x, y)dv−(x)|dµ(y)

v+(Ω) + v−(Ω)

Now, if v ∈M(1), then 0 = v(Ω) = v+(Ω)− v−(Ω).
Also

|v|(Ω) = v+(Ω) + v−(Ω).

Hence,

v+(Ω) = v−(Ω) = 1
2
|v|(Ω).

Since k̃ ≥ 0, we have∫
Ω
k̃(x, y)dv+(x),

∫
Ω
k̃(x, y)dv−(x) ≥ 0 ∀y ∈ Ω.
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So we get

|
∫

Ω

k̃(x, y)dv+(x)−
∫

Ω

k̃(x, y)dv−(x)|

≤ max{
∫

Ω
k̃(x, y)dv+(x),

∫
Ω
k̃(x, y)dv−(x)}

≤ max{
∫

Ω
||k̃||∞dv+,

∫
Ω
||k̃||∞dv−}

= max{||k̃||∞v+(Ω), ||k̃||∞v−(Ω)}

= 1
2
||k̃||∞|v|(Ω) for all y ∈ Ω.

Hence

||T ∗k|M(1)
||∗H = sup

v∈M(1), v 6=0

|T ∗K(v)|(Ω)

|v|(Ω)

≤ sup
v∈M(1), v 6=0

∫
Ω

1
2
||k̃||∞|v|(Ω)dµ

|v|(Ω)

= 1
2
||k̃||∞µ(Ω).

So, if k̃ is s.t. ||k̃||∞ < 2
µ(Ω

, then |||T̃k|||H < 1.

As a concrete example, let now Ω = [0, 2π], µ be the Lebesgue measure on
[0, 2π] and k : Ω × Ω→ R be given as k(x, y) = 1

4
sin(1

4
(x+ y)).

Then k is continuous.

If x, y ∈ [0, 2π], then 1
4
(x+ y) ∈ [0, π], hence k(x+ y) = 1

4
sin(1

4
(x+ y)) ≥ 0

for all x, y ∈ [0, 2π].

Furthermore

∫
Ω

k(x, y)dµ(y) =

∫ 2π

0

k(x, y)dy =

∫ 2π

0

1

4
sin(

1

4
(x+ y))dy

= [−cos1
4
(x+ y)]2π0 = cos(1

4
x)− cos1

4
(x+ 2π)
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= cos(1
4
x)− cos(1

4
x+ π

2
) = cos(1

4
x) + sin(1

4
x).

Using elementary calculus, it can be easily checked that

cos (
1

4
x) + sin (

1

4
x) ≥ 1

for all x ∈ [0, 2π].
In particular,

cos (
1

4
x) + sin (

1

4
x) > 0

for all x ∈ [0, 2π], so we can then define k̃ : Ω × Ω → R as described in the
begining of the section by betting

k̃(x, y) =
k(x, y)∫

Ω
k(x, y)dµ(y)

=
k(x, y)

cos (1
4
x) + sin(1

4
y)

Since cos(1
4
x) + sin(1

4
x ≥ 1 for all x ∈ [0, 2π], it follows that

||k̃||∞ = sup
x,y∈[0,2π]

1
4
sin(1

4
(x+ y))

(cos(1
4
x) + sin(1

4
x))
≤ 1

4
,

so
||k̃||∞ ≤

1

4
<

1

π
=

2

2π
=

2

µ(Ω)

since Ω = [0, 2π] and µ is the Lebesgue measure.
Hence, it follows that |||T̃k|||H < 1. The theorem 6.1 gives then that there
exists a unique invariant measure ṽ ∈ P ([0, 2π]) s.t.

|(T ∗k )n(v)− ṽ| ([0, 2π])→ 0 as n→∞

for all v ∈ [0, 2π].

Example 8.2: Again let Ω be a compact Hausdorff topological space,
consider CR(Ω).

Let w : Ω → Ω, be continuous and let Tw : CR(Ω) → CR(Ω) be given as
Tw(f) = f ◦ w. We then have:

Tw(f)(x) = f(w(x)) ≥ 0

for all x ∈ Ω whenever f ≥ 0.
Thus Tw(f) ≥ 0 whenever f ≥ 0, which means that Tw(K) ⊆ K. Furthermore
T (1) = 1 ◦ w = 1, so Tw is a Markov operator w.r.t K and 1.
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By theorem 5.1

|||T̃w|||H = sup
v,π∈extrP (1),v⊥π

sup
0≤f≤1

< v − π, Tw(f) >

= sup
x,y∈Ω,x 6=y

sup
0≤f≤1

< δx − δy, Tw(f) >

= sup
x,y∈Ω,x 6=y

sup
0≤f≤1

(

∫
Ω

f ◦ w dδx −
∫

Ω

f ◦ w dδy)

= sup
x,y∈Ω,x 6=y

sup
0≤f≤1

(f(w(x))− f(w(y)))

Now, if there exist x̃, ỹ ∈ Ω, x̃ 6= ỹ s.t. w(x̃) 6= w(ỹ), by Urisohn’s lemma,

there exists f̃ ∈ CR(Ω) s.t. f̃(w(x̃)) = 1 f̃(w(ỹ)) = 0 and 0 ≤ f̃ ≤ 1.

Thus
1 = f̃(w(x̃))− f̃(w(ỹ))

≤ sup
x,y∈Ω,x 6=y

sup
0≤f≤1

(f(w(x))− f(w(y))) = |||T̃w|||H ,

so |||T̃w|||H ≥ 1. This is a situation where we can not apply the theorem 6.1
.
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10 Application to Kraus maps
As mentioned in the introduction, of the thesis in this section we let X = Sn
be the space of all Hermitian matrices in Cn×n equipped with the operator
norm, we let K = S+

n be the cone in Sn consisting of all positive semidefinite
n × n matrices, and In be the order unit.We will mainly follow section 7 in
[GQ] but most of the statements used in [GQ] will be supplied with detailed
proofs and explanations. In addition, the examples 9.1, 9.2 and 9.8 and the
proof of theorem 9.7 in this section are not given in [GQ].
Corollary 9.3 in this section is denoted by corollary 7.1 in [GQ], corollary
9.4 is denoted by corollary 7.3 in [GQ], lemma 9.5 is denoted by lemma 7.6
in [GQ], theorem 9.6 is denoted by theorem 7.7 in [GQ] and theorem 9.7 is
denoted by theorem 7.8 in [GQ].

Non commutative Markov operators - Kraus maps:
Let

Φ : Sn → Sn

be defined by

Φ(X) =
m∑
i=1

V ∗i XVi

for all X ∈ Sn where v1, ..., vm are in Cn×n and

m∑
i=1

V ∗i Vi = In.

Such operator Φ is called a Kraus map.
Then

Φ(In) =
m∑
i=1

V ∗i Vi = In

and if X ∈ K, then for all x ∈ Cn, we get

< Φ(X)x, x > =
m∑
i=1

< V ∗i XVix, x > =
m∑
i=1

< XVix, Vix > ≥ 0

since X is a positive operator.
Thus

Φ(X) ∈ K, so Φ(K) ⊆ K since X ∈ K was arbitrary
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Hence Φ is a Markov operator w.r.t In and K.

Example 9.1 Let U ∈ Cn×n be unitary. For k ∈ {1, ...,m}, let

Dk =
1√
m

 eiθ
(k)
1 0

. . .
0 eiθ

(k)
n


where θ(k)

j ∈ [0, 2π] for all j ∈ {1, ..., n}.
Let Vk = UDkU

∗.
Then

m∑
k=1

V ∗k Vk =
m∑
k=1

((UD∗kU
∗)(UDkU

∗))

=
m∑
k=1

UD∗kDkU
∗ =

m∑
k=1

U(
1

m
In)U∗

=
1

m

m∑
k=1

UU∗ = In,

so the operator Φ given by

Φ(X) =
m∑
k=1

V ∗k XVk

for all X ∈ Sn is a Kraus map.

Example 9.2 Let

V1 =
1

2

[
1 −1
−1 1

]
,

V2 =
1

2

[
1 1
1 1

]
.

Then

V ∗1 V1 + V ∗2 V2 = 1
2

[
1 −1
−1 1

]
+1

2

[
1 1
1 1

]
= I2,
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so Φ given by Φ(X) = V ∗1 XV1 + V ∗2 XV2 for all X ∈ Sn is a Kraus map.

By remark 3.2. we can identify the dual of Sn with Sn itself via the map
B →< ·, B > where < X,B > = tr(XB) ∀X ∈ Sn.
The map B →< ·, B > is an isometric bijection as it was proved in remark
2.2.
If we define Ψ : Sn → Sn by

Ψ(X) =
m∑
i=1

ViXV
∗
i ,

for all X ∈ Sn, we see that

< X,Ψ(B) > = tr(XΨ(B)) = tr(
m∑
i=1

XViBV
∗
i ) =

m∑
i=1

tr(V ∗i XViB)

= tr((
m∑
i=1

V ∗i XVi)B) = tr(Φ(X)B) = < Φ(X), B > .

for all X ∈ Sn. Hence Ψ is the dual operator of Φ.
Observe that Ψ is trace preserving, since given X ∈ Sn, we have

tr(
m∑
i=1

(ViXV
∗
i ) =

m∑
i=1

tr(ViXV
∗
i ) =

m∑
i=1

tr(XV ∗i Vi) = tr(
m∑
i=1

XV ∗i Vi)

= tr(X(
m∑
i=1

V ∗i Vi)) = tr(XIn) = tr(X).

As we have shown in section 5, since Φ(In) = In, we get the induced map
Φ̃ : Sn/RIn → Sn/RIn given by Φ̃(X + RIn) = Φ(X) + RIn for all X ∈ Sn
Then

|||Φ̃|||H = sup
X∈Sn

X+RIn 6=0

|||Φ̃(X + RIn)|||H
|||X + RIn|||H

.

Now, as we have shown in section 4, the lemma 4.1. gives us

|||Φ(X) + RIn|||H = ||Φ(X)||H

and
|||X + RIn|||H = ||X||H ,

for all X ∈ Sn, hence

|||Φ̃|||H = sup
X∈Sn
||X||H 6=0

||Φ(X)||H
||X||H

.
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By example 1.5, ||X||H = λmax(X)− λmin(X) for all X ∈ Sn, hence

|||Φ̃|||H = sup
X∈Sn
||X||H 6=0

λmax(Φ(X))− λmin(Φ(X))

λmax(X)− λmin(X)
.

As we have proved before, the adjoint map of Φ̃ is the dual operator of Φ
restricted to M(In), that is Ψ|M(In)

= Ψ̃

and ||Ψ̃||∗H = sup
µ∈B∗H(In)

||Ψ̃(µ)||∗H

= sup
µ∈B∗H (In)

||µ||∗H=1

||Ψ̃(µ)||∗H = sup
µ∈B∗H (In)

||µ||∗H 6=0

||Ψ̃(µ)||∗H
||µ||∗H

.

By an earlier result in section 4, B∗H(In) = {ρ1 − ρ2 : ρ1, ρ2 ∈ P (In)},
hence

||Ψ̃||∗H = sup
µ∈B∗H (In)

||µ||∗H 6=0

||Ψ̃(µ)||∗H
||µ||∗H

= sup
ρ1,ρ2∈P (In)

ρ1 6=ρ2

||Ψ̃(ρ1 − ρ2)||∗H
||ρ1 − ρ2||∗H

= sup
ρ1,ρ2∈P (In)

ρ1 6=ρ2

||Ψ(ρ1 − ρ2)||∗H
||ρ1 − ρ2||∗H

( here we use that Ψ̃ = Ψ|M(In)
)

By definition, ||µ||∗H = 1
2
||µ||∗T ∀µ ∈M(In) and ||X||∗T = ||X||1 ∀X ∈ Sn by

remark 2.2 . Now, M(In) ⊆ S∗n = Sn, so ||µ||∗H = 1
2
||µ||∗T = 1

2
||µ||1.

Hence
||Ψ̃||∗H = sup

ρ1,ρ2∈P (In)
ρ1 6=ρ2

||Ψ(ρ1)−Ψ(ρ2)||∗H
||ρ1 − ρ2||∗H

= sup
ρ1,ρ2∈P (In)

ρ1 6=ρ2

1
2
||Ψ(ρ1)−Ψ(ρ2)||1

1
2
||ρ1 − ρ2||1

= sup
ρ1,ρ2∈P (In)

ρ1 6=ρ2

||Ψ(ρ1)−Ψ(ρ2)||1
||ρ1 − ρ2||1

.

In the next corollary, we will apply theorem 6.2 to derive a concrete expresion
for |||Φ̃|||H .
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Corollary 9.3 ( Noncommutative Dobrushin’s ergodicity coefficient ). Let
Φ be a Kraus map defined in the begining of this section. Then,

|||Φ̃|||H = ||Ψ̃||∗H = 1− inf
u,v:u∗v=0
u∗u=v∗v=1

inf
J⊆{1,...,n}

inf
X=[x1,...,xn]
XX∗=In

(
∑
i∈J

u∗Φ(xix
∗
i )u+

∑
i/∈J

v∗Φ(xix
∗
i )v)

Proof First we prove the following claim.
Claim 1: extr[0, In] = {P ∈ Sn : P 2 = P}.
If A ∈ [0, In], then A is a positive semidefinite and all its eigenvalues are
between 0 and 1. By lemma 3.3.7 in [P], a compact normal operator T has
an eigenvalue λ s.t |λ| = ||T ||. Since A is a finite rank operator, it is compact
and it is normal since it is self adjoint, so there is an eigenvalue λ for A s.t.
|λ| = ||A||. Since λ is an eigenvalue for A then λ ∈ [0, 1]as we observed above
so it follows that 0 ≤ ||A|| ≤ 1.
By prop 3.2.27 in [P], if T is normal then

||T || = sup
||x||≤1

{| < Tx, x > |}.

Since A = A∗, we get that

||A|| = sup
||x||≤1

{| < Ax, x > |}.

Consider now some P ∈ Sn, P is a projection.
Then there is an orthonormal basis of eigenvectors for P {x1, ..., xk, xk+1, ..., xn}
s.t.

P (xj) = x, ∀j 1 ≤ j ≤ k

P (xj) = 0, ∀j k + 1 ≤ j ≤ n.

So if A,B ∈ [0, In], 0 < λ < 1 and λA+ (1− λ)B = P , we get that

1 = ||xj||2 = < Pxj, xj > = λ < Axj, xj > +(1− λ) < Bxj, xj >

≤ λ||Axj|| ||xj||+ (1− λ)||Bxj|| ||xj||

≤ λ||A|| ||xj||2 + (1− λ)||B|| ||xj||2

= λ||A||+ (1− λ)||B|| ≤ λ+ (1− λ) = 1 for all j ∈ {1, ..., k}.

( A,B ∈ [0, In] implies that 0 ≤ ||A||, ||B|| ≤ 1 as we proved above .) Thus
we must have equality all the way.
In particular, we must have the equality between 1. and 2. line, that is:

λ < Axj, xj > +(1− λ) < Bxj, xj > = λ||Axj|| ||xj||+ (1− λ)||Bxj|| ||xj||
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Since
< Axj, xj > ≤ ||Axj|| ||xj||,

< Bxj, xj > ≤ ||Bxj|| ||xj||,

and λ, 1− λ > 0, we get that

< Axj, xj > = ||Axj|| ||xj|| and < Bxj, xj > = ||Bxj|| ||xj||

Hence there exists η(j)
1 and η(j)

2 in R s.t. Axj = η
(j)
1 xj and Bxj = η

(j)
2 xj. But

we also have the equality between 2. and 3. line, that is

λ||Axj|| ||xj||+ (1− λ)||Bxj|| ||xj||

= λ||A|| ||xj||2 + (1− λ)||B|| ||xj||2.

Again, since
||A|| ||xj|| ≥ ||Axj||

||B|| ||xj|| ≥ ||Bxj||

and λ, 1− λ > 0 we must have that

||Axj|| = ||A|| ||xj|| = ||A||

and ||Bxj|| = ||B|| ||xj|| = ||B||.

But we have that

||Axj|| = ||η(j)
1 xj|| = |η(j)

1 | ||xj|| = |η
(j)
1 |

and ||Bxj|| = ||η(j)
2 xj|| = |η(j)

2 | ||xj|| = |η
(j)
2 |

hence
|η(j)

1 | = ||A|| and |η(j)
2 | = ||B||.

Now, by the last equality, that is

λ||A||+ (1− λ)||B|| = λ+ (1− λ) = 1,

it follows that ||A|| = ||B|| = 1, since ||A||, ||B|| ∈ [0, 1] as we proved before.

Hence |η(j)
1 | = 1 and |η(j)

2 | = 1
Since A,B ∈ [0, In], in particular 0 ≤ A and 0 ≤ B, so A,B ∈ K = S+

n .
Then A and B have nonnegative eigenvalues. Since η(j)

1 , η
(j)
2 are eigenvalues
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of A and B respectively ( because Axj = η
(j)
1 xj Bxj = η

(j)
2 xj ), they are

nonnegative, so we have that η(j)
1 = η

(j)
2 = 1, because |η(j)

1 | = |η
(j)
2 | = 1.

Thus Axj = η
(j)
1 xj = xj and Bxj = η

(j)
2 xj = xj.

If k + 1 ≤ j ≤ n, then Pxj = 0.
Hence 0 = λ < Axj, xj > +(1− λ) < Bxj, xj > .
Since < Axj, xj > ≥ 0 and < Bxj, xj > ≥ 0 we get that

< Axj, xj > = < Bxj, xj > = 0.

Since 0 ≤ A and 0 ≤ B, there exist A
1
2 and B

1
2 so

< Axj, xj > = ||A
1
2xj||2 = 0

and
< Bxj, xj > = ||B

1
2xj||2 = 0.

Thus A
1
2xj = B

1
2xj = 0.

Hence
Axj = A

1
2 (A

1
2xj) = 0

and Bxj = B
1
2 (B

1
2xj) = 0.

We conclude that A and B have same eigenvectors with same eigenvalues as
P, so A = B = P . Hence P ∈ extr[0, In].
If A ∈ [0, In] and A is not a projection , then there exists λ ∈ (0, 1) s.t. λ is
an eigenvalue of A.
Write A as

A = U


λ 0 · · · 0
0 n1 · · · 0
...

... . . . ...
0 0 · · · nn−1

U∗
where U is unitary. Then

A = λU


1 0 · · · 0
0 n1 · · · 0
...

... . . . ...
0 0 · · · nn−1

U∗ +(1− λ)U


0 0 · · · 0
0 n1 · · · 0
...

... . . . ...
0 0 · · · nn−1

U∗
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Since A ∈ [0, In], we have that all eigenvalues of are in [0, 1] as we have
shown before.

We wrote A as

A = U


λ 0 · · · 0
0 η1 · · · 0
...

... . . . ...
0 0 · · · ηn−1

U∗

hence η′k s are eigenvalues of A for 1 ≤ k ≤ n− 1. Thus ηk ∈ [0, 1] for all
k ∈ {1, ..., n− 1}.

Let

B = U


1 0 · · · 0
0 η1 · · · 0
...

... . . . ...
0 0 · · · ηn−1

U∗

and C = U


0 0 · · · 0
0 η1 · · · 0
...

... . . . ...
0 0 · · · ηn−1

U∗

Then we have A = λB+(1−λ)C. The set of eigenvalues of B is {1, η1, ..., ηn−1}
and the set of eigenvalues for C is {0, η1, ..., ηn−1}.
Since ηk ∈ [0, 1] for all k ∈ {1, ..., n − 1}, we have that all eigenvalues of B
and C are in [0, 1].
Then it is easz to see that 0 ≤ B ≤ In and 0 ≤ C ≤ In, so B,C ∈ [0, In].
Since A 6= B, A 6= C, A = λB + (1− λ)C, and B,C ∈ [0, In] it follows that
A /∈ extr[0, In].
Thus extr[0, In] = {P ∈ Sn : P 2 = P} and this proves the claim.

By theorem 6.2, |||Φ̃|||H = ||Ψ̃||∗H

= 1− inf
v,π∈extrP (In)

v⊥π

inf
X∈[0,In]

(< π,Φ(X) > + < v,Φ(In −X) >)

= 1− inf
v,π∈extrP (In)

v⊥π

inf
X∈[0,In]

(tr(Φ(X)π) + tr(Φ(In −X)v))
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By remark 4.9, extrP (In) = {xx∗ | x ∈ Cn xx∗ = 1} and xx∗⊥yy∗ if and
only if x∗y = 0.
Hence

1− inf
v,π∈extrP (In)

v⊥π

inf
X∈[0,In]

(tr(Φ(X)π) + tr(Φ(In −X)v))

= 1− inf
µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
X∈[0,In]

(tr(Φ(X)µµ∗) + tr(Φ(In −X)vv∗)).

Now, if
A = [ai,j] = Φ(X)µµ∗ = (Φ(X)µ)µ∗,

we see that
ai,j = (Φ(X)µ)iµj.

Hence

trA = tr(Φ(X)µµ∗) =
n∑
j=1

(Φ(X)u)juj.

Thus

trA = tr(Φ(X)µu∗) =
n∑
j=1

(Φ(X)u)juj = u∗Φ(X)µ.

Similarly,
tr Φ(In −X)vv∗) = v∗Φ(In −X)v.

Also, by remark 5.2 , since Sn is of finite dimension, we have

[0, In] = cov(extr[0, In]),

so by linearity and continuity of Φ it suffices to consider the infimum over
extr [0, In].
So we get:

|||Φ̃|||H = ||Ψ̃||∗H
= 1− inf

µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
X∈[0,In]

(tr(Φ(X)µµ∗) + tr(Φ(In −X)vv∗))

= 1− inf
µ,v:µ∗v=0
µµ∗=v∗v=1

inf
X∈extr[0,In]

(tr(Φ(X)µµ∗) + tr(Φ(In −X)vv∗))

= 1− inf
µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
X∈extr[0,In]

(µ∗Φ(X)µ+ v∗Φ(In −X)v)

In the previous claim, we have proved that

X ∈ [0, In] = {P ∈ Sn : P 2 = P}.
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If P is a projection, there exists an orthonormal basis {x1, ..., xn} for Cn and
a J ⊆ {1, 2, ..., n} s.t. P (xk) = xk ∀k ∈ J , P (xk) = 0 ∀k /∈ J.
Thus {xk|k ∈ J} is an orthonormal basis for P (Cn).
Then, we have

P =
∑
i∈J

xix
∗
i .

Furthermore, since {x1, ..., xn} is an o.n.b for Cn, we get that X∗X = In
where X∗ = [x1, ..., xn]. On the other hand, if X = [x1, ..., xn] and X∗X = In
then {x1, ..., xn} is an o.n.b for Cn since

x∗ixj =

{
1 if i = j
0 if i 6= j.

Hence if J ⊆ {1, ..., n} and
A =

∑
i∈J

xix
∗
i

then A is the projection onto span{xi : i ∈ J}.
So we obtain that

inf
P:P is a projection

(µ∗Φ(X)µ+ v∗Φ(In −X)v)

inf
J⊆{1,...,n}

inf
X=[x1,...,xn]
X∗X=In

(
∑
i∈J

µ∗Φ(xix
∗
i )µ+

∑
i 6=J

v∗Φ(xix
∗
i )v)

for all µ, v ∈ Cn.
Combining all these facts, we get:

|||Φ̃H = ||Ψ̃||∗H = 1− inf
µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
X∈extr[0,In]

(µ∗Φ(X)µ+ v∗Φ(In −X)v)

= 1− inf
µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
P :P is a projection

(µ∗Φ(X)µ+ v∗Φ(In −X)v)

= 1− inf
µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
J∈{1,...,n}

inf
X=[x1,...,xn]
X∗X=In

(
∑
i∈J

µ∗Φ(xix
∗
i )µ+

∑
i/∈J

v∗Φ(xix
∗
i )v).

This completes the proof of corollary 9.3. Next corollary gives necessary and
sufficient condition for the operator norm induced by ||| · |||H to be 1.

Corollary 9.4 The following conditions are equivalent:
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1. |||Φ̃|||H = ||Ψ̃||∗H = 1.

2. There are nonzero vectors u, v ∈ Cn such that

< Viu, Vjv > = 0, ∀i, j ∈ {1, ...,m}.

3. There is a rank one matrix Y ⊂ Cn×nsuch that

trace(V ∗i VjY ) = 0, ∀i, j ∈ {1, ...,m}.

Proof: 1)⇒ 2) :
From corollary 7.1, it follows that |||Φ̃|||H = 1 if and only if there is an o.n.b.
{x1, ..., xn} and u, v ∈ Cn with µ∗v = 0, µ∗µ = v∗v = 1 s.t.

min
J⊂{1,...,n}

(
∑
i∈J

µ∗Φ(xix
∗
i )µ+

∑
i/∈J

v∗Φ(xix
∗
i )v) = 0.

If we let J̃ = {i| 1 ≤ i ≤ n, µ∗Φ(xix
∗
i )µ ≤ v∗Φ(xix

∗
i )v},

then ∑
i∈J̃

µ∗Φ(xix
∗
i )µ+

∑
i/∈J̃

v∗Φ(xix
∗
i )v

= min
J⊂{1,...,n}

(
∑
i∈J

µ∗Φ(xix
∗
i )µ+

∑
i/∈J

v∗Φ(xix
∗
i )v)

So, |||Φ̃|||H = 1, if and only if there exists an o.n.b. {x1, ..., xn} for Cn and
2 orthonormal vectors µ, v ∈ Cn s.t.∑

i∈J̃

µ∗Φ(xix
∗
i )µ+

∑
i/∈J̃

v∗Φ(xix
∗
i )v = 0

where J̃ is as defined above. (J̃ depends on {x,..., xn} and µ, v )
But, by definition of J̃ , we have

∑
i∈J̃

µ∗Φ(xix
∗
i )µ+

∑
i/∈J̃

v∗Φ(xix
∗
i )v =

n∑
i=1

min{µ∗Φ(xix
∗
i )µ, v

∗Φ(xix
∗
i )v}

=
n∑
i=1

min{
m∑
k=1

u∗V ∗k xix
∗
iVkµ,

m∑
j=1

v∗V ∗j xix
∗
iVjv}

Now, for all i, k and j, we have

µ∗V ∗k xix
∗
iVjµ = ||x∗iVkµ||2 ≥ 0,
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v∗V ∗j xix
∗
iVjv = ||x∗iVjv||2 ≥ 0,

so

min{
m∑
k=1

µ∗V ∗k xix
∗
iVkµ,

m∑
j=1

v∗V ∗j xix
∗
iVjv} ≥ 0

for all i.
Thus

n∑
i=1

min{
m∑
k=1

µ∗V ∗k xix
∗
iVkµ,

m∑
j=1

v∗V ∗j xix
∗
iVjv} = 0 for all i ⇔

⇔ min{
m∑
k=1

µ∗V ∗k xix
∗
iVkµ,

m∑
j=1

v∗V ∗j xix
∗
iVjv} = 0 for all i ⇔

⇔ min{
m∑
k=1

||x∗iVkµ||2,
m∑
j=1

||x∗iVjv||2} = 0

for all i which is true if and only if for each i, either
m∑
k=1

||x∗iVkµ||2 = 0 or
m∑
j=1

||x∗iVjv||2 = 0

This again holds if and only if for each i, either x∗iVkµ = 0 for all k ∈ {1, ...,m}
or x∗iVjv = 0 for all j ∈ {1, ...,m}.
So ∑

i∈J̃

µ∗Φ(xix
∗
i )µ+

∑
i 6=J̃

v∗Φ(xix
∗
i )v = 0

if and only if for each i, either x∗iVkµ = 0 for all k ∈ {1, ...,m} or x∗Vjv = 0
for all j ∈ {1, ...,m}.

Thus we have proved so far that |||Φ̃|||H < 1, if and only if there exist an
orthonormal basis {x1, ..., xn} for Cn and 2 orthonormal vectors u, v in C s.t.
for each i ∈ {1, ..., n} either x∗iVku = 0 for all k ∈ {1, ...,m} or xiV jv = 0
for all j ∈ {1, ...,m}.

Let now X = [x1, ..., xn]. Then, since {x1, ..., xn} is an o.n.b. for Cn, we
have that X is unitary, so XX∗ = In.
Hence, if k, j ∈ {1, ...,m}, we get that

< Vkµ, Vjv > = < Vkµ,XX
∗Vjv > = < X∗Vkµ,X

∗Vjv >

=
n∑
i=1

(X∗Vkµ)i(X∗Vjv)i =
n∑
i=1

(x∗iVkµ)(x∗iVjv).
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Then, if for each i we have that either x∗iVkµ = 0 for all k ∈ {1, ...m} or
x∗iVjv = 0 for all j ∈ {1, ...,m}, it follows that

< Vkµ, Vjv > =
n∑
i=1

(x∗iVkµ)(x∗iVjv) = 0 ∀k, j ∈ {1, ..., n}.

2)⇒ 1)
Assume that < Vkµ, Vjv > = 0 for all k, j ∈ {1, ...,m}.
Let

U = span{Vkµ| 1 ≤ k ≤ m}

V = span{Vjv| 1 ≤ j ≤ m}.

Then V ⊆ U⊥. Now, we first find an orthonormal basis for U:

βU = {x1, ..., xr}, r ≤ n.

Then we extend it further to an o.n.b. for whole Cn :

β = {x1, ..., xr, xr+1, ..., xn}.

So, if 1 ≤ i ≤ r, we have that xi ∈ U, hence x∗iVjv = 0 for all j ∈ {1, ...,m}
since V ⊆ U⊥. If r + 1 ≤ i ≤ n, then x∗iVkµ = 0 for all k ∈ {1, ...,m}
since xi ∈ U⊥ for r + 1 ≤ i ≤ n. Thus for each i, either x∗iVkµ = 0 for all
k ∈ {1, ...,m} or x∗iVjv = 0 for all j ∈ {1, ...,m}. As we have shown, this is
equivalent to

n∑
i=1

min(
m∑
j=1

µ∗V ∗j xix
∗
iVjµ,

m∑
i=1

v∗V ∗j xix
∗
iVjv} = 0

which again is equivalent to |||Φ̃|||H = 1.
2)⇔ 3)
We have

< Vkµ, Vjv > = tr((Vkµ)(Vjv)∗) = tr(Vkµv
∗V ∗j ) = tr(V ∗j Vkµv

∗)

for all k, j ∈ {1, ...,m}. Hence the equivalence follows if we let Y = µv∗ This
completes the proof of corollary 9.4.

We observe that if Φ is of the form given in example 9.1, then ||Φ̃|||H = 1 :
Let ui and uj be any 2 column vectors of U s.t. i 6= j ( where U is the
unitary matrix in example 9.1 ). Since U is unitary, then ui, uj are non zero
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and ui ⊥ uj. Since Vk = UDkU
∗ for all k ∈ {1, ...,m}, and Dk is a diag-

onal matrix, it follows that both ui and uj are eigenvectors for Vk for all
k ∈ {1, ...,m}. Hence < Vk1ui, Vk2uj > = 0 for all k1, k2 ∈ {1, ...,m}.

Also we observe, that if Φ is of the form given in example 9.2, then

|||Φ̃|||H = 1 :

Let u ∈
[

1
1

]
, v ∈

[−1
1

]
Then u and v satisfy the condition 2) in corollary 9.4.

Consider now a sequence of matrix subspaces of Cn×n defined as follows:
Ku = span{In},

Kk+1 = span{V ∗i XVj | X ∈ Kk, i, j = 1, ...,m k = 0, 1, ...}

where Vj s are s.t
m∑
j=1

V ∗j Vj = In.

Then we have the following lemma:
Lemma 9.5 There is k0 ≤ n2 − 1 s.t. Kk0+s = Kk0 , ∀s ∈ N

Proof We claim that Kk+1 ⊇ Kk ∀k ∈ N:
Since

K0 = span{In} = span{
m∑
j=1

V ∗j Vj}

it follows that K0 ⊆ span{V ∗i Vj|i, j = 1, ...,m}
If X ∈ K0, by definition of K0 , X = αIn for some α ∈ C, hence

K1 = {V ∗i XVj |X ∈ K0 i, j = 1, ...,m} = span{αV ∗i Vj : α ∈ C i, j = 1, ...,m}

= span{V ∗i Vj : i, j = 1, ...,m}. Thus K0 ⊆ K1.

Assume now that Kk+1 ⊇ Kk for all k ∈ {1, ..., r} and consider

Kr+1 = span{V ∗i XVj : X ∈ Kr i, j = 1, ...,m }.

If X ∈ Kr−1, then X ∈ Kr by hypothesis, so

Kr = span{V ∗i XVj : X ∈ Kr−1 i, j = 1, ...,m }

⊆ span{V ∗i XVj : X ∈ Kr i, j = 1, ...,m } = Kr+1.
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By induction, it follows that Kk ⊆ Kk+1 ∀k ∈ N.

Also, if for some k0 ∈ N we have that Kk0 = Kk0+1, then we claim that

Kk0+s = Kk0 ∀s ∈ N :

Assume that this is true for all s ∈ {1, ..., r}. Consider Kk0+r+1.
Since Kk0+r−1 = Kk0 = Kk0+r by hypothesis, we get that

Kk0 = Kk0+r = span{V ∗i XVj : X ∈ Kk0+r−1, i, j = 1, ...,m}

= span{V ∗i XVj : X ∈ Kk0+r, i, j = 1, ...,m} = Kk0+r+1.

By induction, it follows that

Kk0+s = Kk0 ∀s ∈ N.

Since the dimension of Cnxn is n2 and Kk ⊆ Kk+1 for all k, as we proved
we get that the inequality Kk0+1 6= Kk0 can not happen more than n2 times.
Hence, the exists k0 ≤ n2 − 1 s.t. Kk0+1 = Kk0 . By what we have proved, it
follows that

Kk0+s = Kk0 ∀s ∈ N.

This completes the proof of lemma 9.5.

For all k ∈ N let Gk be the orthogonal complement of Kk, Observe that
it follows from lemma 9.5 that there is k0 ≤ n2 − 1 s.t Gk0 = Gk0+s for all
s ∈ N.
Now we will use the results which we have obtained so far in this section to
prove main theorems in this section, theorem 9.6 and theorem 9.7.

Theorem 9.6 The following conditions are equivalent:

1. There exists k ∈ N s.t |||Φ̃k|||H < 1.

2. Every orbit of the system Xk+1 = Φ(Xk) converges to an equilibrium
co linear to In.

3. The subspace ∩kGk dos not contain a rank one matrix.

4. There exists k0 ≤ n2 − 1 st |||Φ̃k0|||H < 1.
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Proof: (2) ⇒ (1) Let W = Sn/RIn be equipped with the norm ||| · |||H . As
we have proved, since Φ(In) = In, we get the induced bounded linear map
Φ̃ : W → W given by

Φ̃(A+ RIn) = Φ(A) + RIn.

We observe now that |||Φ̃|||H ≤ 1 :
By corollary 9.3, we have

= 1− inf
µ,v:µ∗v=0
µ∗µ=v∗v=1

inf
J∈{1,...,n}

inf
X=[x1,...,xn]
X∗X=In

(
∑
i∈J

µ∗Φ(xix
∗
i )µ+

∑
i/∈J

v∗Φ(xix
∗
i )v).

Now, given any o.n.b. {x1, ..., xn} for Cn and any 2 orthonormal vectors
u, v in Cn, we have shown in the begining of the proof of corollary 9.4 part
"1)⇒ 2)" that

min
J∈{1,...,n}

(
∑
i∈J

µ∗Φ(xix
∗
i )µ+

∑
i/∈J

v∗Φ(xix
∗
i )v) =

n∑
i=1

min{µ∗Φ(xix
∗
i )µ, v

∗Φ(xix
∗
i )v)

Hence, we obtain:

|||Φ̃|||H = 1− min
u,v:u∗v=0
u∗u=v∗v=1

min
X=(x1,...,xn)
XX∗=In

n∑
i=1

min{u∗Φ(xix
∗
i )u, v

∗Φ(xix
∗
i )v} (∗)

Since Φ(K) ⊂ K, it follows that Φ(A) is positive semidefinite whenever A is
positive semidefinite. Hence, since xix∗i is positive semidefinite for all i ( being
the orthogonal projection onto Span {xi} ) we get that Φ(xix

∗
i ) is positive

semidefinite. Hence u∗Φ(xix
∗
i )u = < Φ(xix

∗
i )u, u > ≥ 0 for all u ∈ Cn, so

min{u∗Φ(xix
∗
i )u, v

∗Φ(xix
∗
i )v} ≥ 0 ∀u, v ∈ Cn.

Thus

min
u,v:u∗v=0
u∗u=v∗v=1

min
X=(x1,...,xn)
XX∗=In

n∑
i=1

min{u∗Φ(xix
∗
i )u, v

∗Φ(xix
∗
i )v} ≥ 0

Using this together with the formula (*), we get that |||Φ̃|||H ≤ 1. It follows
that |||Φ̃k|||H ≤ |||Φ̃|||kH ≤ 1 ∀k ≥ 1. Hence, if (1) is not true, then

|||Φ̃k|||H = 1

for all k, so
1 = lim

k→∞
|||Φ̃k|||

1
k
H
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Let now (V, || · ||v) be a real normed vector space and let VC = V + iV. To be
more precise, by VC we mean V ⊗ V equipped with usual addition and with
scalar multiplication given by

(a+ ib)(v1, v2) = (av1 − bv2, bv1 + av2).

Then we can write VC as

VC = (V ⊗ {0}) + i(V ⊗ {0})

Since VC can be identified with V, we see that we can write VC as VC = V +iV.
We claim that || · ||VC : VC → R+ given by

||x+ iy||VC = sup
0≤θ≤2π

||x cos θ − y sin θ||V

is a norm on VC: Clearly ||x + iy||VC ≥ 0 for all x, y ∈ V since || · ||V is a
norm on V. Assume now that ||x+ iy||VC = 0 for some x, y ∈ V.
Then

sup
0≤θ≤2π

||x cos θ − y sin θ||V = 0,

so
||x cos(0)− y sin(0)||V = ||x||V = 0

and
||x cos(

π

2
)− y sin(

π

2
)||V = || − y||V = 0.

Since || · ||V is a norm, we get that x = y = 0 Furthermore given

x1, x2, y1, y2 ∈ V

we have

||(x1 + iy1) + (x2 + iy2)||VC = ||(x1 + x2) + i(y1 + y2)||VC

= sup
0≤θ≤2π

||(x1 + x2) cos θ − (y1 + y2) sin θ||V

≤ sup
0≤θ≤2π

(||x1 cos θ − y1 sin θ||V + ||x2 cos θ − y2 sin θ||V

≤ sup
0≤θ≤2π

||x1 cos θ − y1 sin θ||V + sup
0≤θ≤2π

||x2 cos θ − y2 sin θ||V

= ||x1 + iy1||VC + ||x2 + iy2||VC .

Let α ∈ C. Then α = r(cosψ + i sinψ) where r ≥ 0, ψ ∈ [0, 2π].

Hence
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||r(cosψ + i sinψ)(x+ iy)||VC
= ||r[(x cosψ − y sinψ) + i(x sinψ + y cosψ)]||VC

= sup
0≤θ≤2π

||r[(x cosψ − y sinψ) cos θ − (x sinψ + y cosψ) sin θ||V

= sup
0≤θ≤2π

r||x(cosψ cos θ − sinψ sin θ)− y(sinψ cos θ + cosψ sin θ)||V

= sup
0≤θ≤2π

r||x(cos(θ + ψ)− y sin(θ + ψ)||V

sup
ψ≤u≤(2π+ψ)

r||x cos(u)− y sin(u)||V

= sup
0≤u≤2π

r||x cos(u)− y sin(u)||V = r||x+ iy||VC

Thus || · ||VC is a norm on the complex vector space VC. We can then define
the linear map TC on VC by TC(x + iy) = T (x) + iT (y) for all x, y ∈ V. We
claim that ||TC||VC = ||T ||V ( where || · ||VC and || · ||V are the operator norms
induced by || · ||VC and || · ||V respectively ):

We have

||TC(x+ iy)||VC = ||T (x) + iT (y)||VC
= sup

0≤θ≤2π
||T (x) cos θ − T (y) sin θ||V

= sup
0≤θ≤2π

||T (x cos θ − y sin θ)||V

≤ sup
0≤θ≤2π

||T ||V ||(x cos θ − y sin θ)||V

= ||T ||V sup
0≤θ≤2π

||(x cos θ − y sin θ)||V

= ||T ||V ||x+ iy||VC ∀x, y ∈ V.

Hence ||T ||VC ≤ ||T ||V .
On the other hand

||T (x)||V = sup
0≤θ≤2π

||T (x) cos θ||

= sup
0≤θ≤2π

||T (x) cos θ − 0 sin θ||

= ||T (x) + i0||VC = ||T (x) + iT (0)||VC
= ||TC(x+ i0)||VC ≤ ||TC||VC||(x+ i0)||VC

= ||TC||VC sup
0≤θ≤2π

||x cos θ||V
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= ||TC||VC||x||V ∀x ∈ V

Thus
||T ||V ≤ ||TC||VC .

Hence we deduce that ||T ||V = ||TC||VC . Now we consider (Sn)C and claim
that (Sn)C ' Cn×n :
By definition, (Sn)C = Sn + iSn. We define the map ι : (Sn + iSn) → Cn×n
simply by ι(A + iB) = A + iB Then ι is obviosly linear. Assume that
ι(A + iB) = 0 for some A,B ∈ Sn. Then A + iB = 0 so A = −iB. Since
A,B ∈ Sn, we have A = A∗, B = B∗. Hence

A∗ = (−iB)∗ = iB∗ = iB = −A = −A∗.

Thus A = A∗ = 0 and hence also B = 0, so ι is injective. (**)
It is also surjective: Let A ∈ Cn×n. Then clearly 1

2
(A + A∗) ∈ Sn and

1
2i

(A− A∗) ∈ Sn. (∗ ∗ ∗)
Furthermore

A =
1

2
(A+ A∗) + i[

1

2i
(A− A∗)] ∈ Sn + iSn

Hence ι is an isomorphism, so

(Sn)C = (Sn + iSn) ∼= Cn×n.

Next we claim that
(Sn/RIn)C ' Cn×n/CIn :

Let
ι̃ : (Sn/RIn)C → Cn×n/CIn

be given by

ι̃((A+ RIn)) + i(B + RIn)) = A+ iB + CIn

Then ι̃ is well defined: Assume that

(A1 + RIn) + i(B1 + RIn) = (A2 + RIn) + i(B2 + RIn)

Then we must have A1 + RIn = A2 + RIn and B1 + RIn = B2 + RIn Hence
there exists a,b ∈ R s.t. A1 = A2 + aIn, B1 = B2 + bIn. But then

ι̃((A1 + RIn) + i(B1 + RIn))

= A1 + iB1 + CIn
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= A2 + iB2 + (a+ ib)In + CIn
= A2 + iB2 + CIn

= ι̃((A2 + RIn) + i(B2 + RIn)).

Thus ι̃ is well defined. Also, ι̃ is linear since for instance

ι̃([(A+ RIn) + i(B + RIn)] + [(C + RIn) + i(D + RIn)]

= ι̃((A+ RIn) + (C + RIn) + i[(B + RIn) + (D + RIn)])

= ι̃(A+ C + RIn + i(B +D + RIn))

= (A+ C) + i(B +D) + CIn = (A+ iB) + (C + iD) + CIn
(A+ iB + CIn) + (C + id+ CIn)

ι̃((A+ RIn) + i(B + RIn) + ι̃(C + RIn + i(D + RIn)).

If A+iB+CIn = CIn for some A,B ∈ Sn, then A+iB = (a+ib)In = aI+ibIn
for some a, b ∈ R Hence (A−aIn) = −i(B−bIn). Since (A−aI) and (B−bI)
are in Sn, by (**) on previous page , it follows that A− aIn = B − bIn = 0.
Hence A = aIn and B = bIn, so A,B ∈ RIn which gives that

A+ RIn = B + RIn = RIn

Thus ι̃ is injective . Also ι̃ is surjective since each A ∈ Cn×n can be written
as A = H + iK where H,K ∈ Sn ( by (***) on previous page ). Thus ι̃ is
isomorphism, so

(Sn/RIn)C ' Cn×n/CIn

Recall now that W := Sn/RIn , so that

WC = (Sn/RIn)C ' Cn×n/CIn.

Then, we have
||Φ̃k

C||WC = ||Φ̃k||W = ||Φ̃k
W ||H .

Hence
lim
k→∞
||Φ̃C

k||
1
k
WC

= lim
k→∞
|||Φ̃k|||

1
k
W = 1.

Now, we have that Φ̃C ∈ B(WC, || · ||WC) and that B(WC, || · ||WC) is a Ba-
nach algebra, so by spectral radius theorem ( theorem 4.1.13 on page 131
in [P] ), we have that limk→∞ ||Φ̃C

k||
1
k
WC

is the spectral radius of Φ̃C. Thus
sup{|λ| | λIC− Φ̃C is not invertible } = 1. Since WC is finite dimensional, we
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have that the spectrum of Φ̃C consists of eigenvalues for Φ̃C. Thus there is s
λ ∈ Π and X, Y ∈ Sn s.t.

Φ̃C((X + RIn) + i(Y + RIn)

= λ((X + RIn) + i(Y + RIn))

( here Π is the unit circle in C ). Let now

Φ̃ι̃
C = ι̃ ◦ Φ̃C ◦ ι̃−1

where ι̃ : WC → Cn×n/CIn is the isomorphism we considered, that is

ι̃((A+ RIn) + i(B + RIn) = A+ iB + CIn ∀A,B ∈ Sn.

Then
Φ̃ι̃

C : Cn×n/CIn → Cn×n/CIn.

Since λ is an eigenvalue for Φ̃C with a coresponding eigenvector

(X + RIn) + i(Y + RIn)

it follows that λ is an eigenvalue for Φ̃ι̃
C with a corresponding eigenvector

ι̃((X + RIn) + i(Y + RIn)) = X + iY + CIn.

Thus we have

Φ̃ι̃
C(X + iY + CIn) = λ(X + iY ) + CIn.

Hence
(Φ̃ι̃

C)k(X + iY + CIn) = λk(X + iY ) + CIn.

We observe that

Φ̃ι̃
C(X + iY + CIn) = ι̃(Φ̃C(ι̃−1(X + iY + CIn)))

= ι(Φ̃C((X + RIn) + i(Y + RIn)))

= ι̃(Φ̃(X + RIn) + iΦ̃(Y + RIn)))

= ι̃((Φ(X) + RIn) + i(Φ(Y ) + RIn))

= Φ(X) + iΦ(Y ) + CIn
By induction, it is easy to see that

(Φ̃ι̃
C)k(X + iY + CIn) = Φk(X) + iΦk(Y ) + CIn.
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So we get that

Φk(X) + iΦk(Y )CIn = λk(X + iY ) + CIn ∀k ∈ N.

Now, since λ ∈ Π, there exist θ in [0, 2π] s.t. λ = eiθ.
Hence we have

Φk(X) + iΦk(Y ) + CIn = eikθ(X + iY )+) + CIn

for all k ∈ N, that is

Φk(X) + iΦk(Y )− eikθ(X + iY ) ∈ CIn

for all k ∈ N.We also observe that since X+iY +CIn is an eigenvector for Φ̃ι̃
C

it is then non - zero vector. Thus X+iY +CIn 6= CIn that is (X+iY ) /∈ CIn.
Since

Φk(X) + iΦk(Y )− eikθ(X + iY ) ∈ CIn ∀k ≥ 1

we have that for all k ≥ 1 there exist ak, bk ∈ R s.t.

Φk(X) + iΦk(Y )− eikθ(X + iY ) = (ak + ibk)In

Hence

Φk(X)−cos(kθ)X+sin(kθ)Y−akIn+i(Φk(Y )−sin(kθ)X−cos(kθ)Y−bkIn) = 0 ∀k ≥ 1.

Let
Ak = Φk(X)− cos(kθ)X + sin(kθ)Y − akIn,

Bk = Φk(Y )− sin(kθ)X − cos(kθ)Y − bkIn.

So we have that Ak + iBk = 0 for all k ≥ 1 which gives that Ak = −iBk for
all k ≥ 1. Since Ak, Bk ∈ Sn for all k ≥ 1, we have A∗k = Ak, B∗k = Bk, so

A∗k = (−iBk)
∗ = iB∗k = iBk = −Ak = −A∗k

where we have used twice that Ak = −iBk for all k ≥ 1.
Hence A∗k = Ak = 0 and also Bk = iAk = 0.
Thus

Φk(X) = cos(kθ)X − sin(kθ)Y + akIn

and
Φk(Y ) = sin(kθ)X + cos(kθ)Y + bkIn

since Ak, Bk = 0 for all k ≥ 1.
Since (X + iY ) ∈ CIn, it also follows that we can not have that both X and
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Y are in RIn.
If we have that Φk(X) → αIn and Φk(Y ) → βIn for some constants α, β ,
then we must have

(Φk(X))i,j → (αIn)i,j)

and
(Φk(Y ))i,j → (βIn)i,j)

ak k → ∞ for all i, j ∈ {1, ..., n}. If i 6= j then (αIn)i,j) = (βIn)i,j) = 0, so
(Φk(X))i,j and (Φk(Y ))i,j converges to 0 as k → ∞. Using the expressions
that we have for (Φk(X)) and (Φk(Y )) above we get that

cos(kθ)xi,j − sin(kθ)yi,j → 0

and
sin(kθ)xi,j + cos(kθ)yi,j → 0 as k →∞

( since (akIn)i,j = (bkIn)i,j = 0 when i 6= j ).
Thus [

cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

] [
xi,j
yi,j

]
→
[

0
0

]
as k →∞.

But [
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

]
= (Rθ)

k,

where Rθ is the rotation matrix given by

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
,

so

(Rθ)
k =

[
xi,j
yi,j

]
→
[

0
0

]
as k →∞.

Since (Rθ) is the rotation matrix, it preserves the length of the vector, so we
have the convergence towards the zero vector if and only if for all
xi,j ∈ {1, ..., n} with i 6= j, we have xi,j = yi,j = 0 Since Φk(X) → αIn and
Φk(Y ) → βIn we must also have that (Φk(X))i,i and (Φk(Y ))i,i converges
to α and β respectively as k → ∞ for all i ∈ {1, ..., n}. Using again the
expresions for Φk(X) and Φk(Y ), we obtain then that

(cos(kθ)xi,i − sin(kθ)yi,i + ak)→ α
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and
(sin(kθ)xi,i + cos(kθ)yi,i + bk)→ β as k →∞.

Since this should hold for all i ∈ {1, ..., n}, we get that

(cos(kθ)(xi,i − xj,j)− sin(kθ)(yi,i − yj,j))→ 0

and
sin(kθ)(xi,i − xj,j)−+ cos(kθ)(yi,i − yj,j)→ 0 as k →∞.

for all i, j ∈ {1, ..., n}. By the same arguments as before, we deduce that
xi,i − xj,j = yi,i − yj,j = 0 for all i, j ∈ {1, ..., n}.

Hence xi,i = xj,j, yi,i = yj,j = 0 whenever i 6= j. This means that X
and Y must be a ( real ) multiple of In which is a contradiction. Thus we
can not have that both Φk(X) and Φk(Y ) converges to real multiple of In.
Hence if 1) does not hold, then 2) does not hold.

1) =⇒ 2) : We observe first that if (X, || · ||) is a real Banach space, K ⊆ X is
a normal, closed cone and e ⊆ Int K is an order unit, then ||T (x)||T ≤ ||x||T
for all x ∈ X where || · ||T is Thompson norm w.r.t. e:
In section 1 we have proved that

||x||T = inf{t > 0 | x ∈ tIe}

for all x ∈ X.
Now, x ∈ tIe with t > 0 if and only if −e ≤ 1

t
x ≤ e, that is if and only if

(e− 1
t
x), (e+ 1

t
x) ∈ K. But, if (e− 1

t
x), (e+ 1

t
x) ∈ K, we get that

(e− 1

t
T (x)), (e+

1

t
T (x)) ∈ K,

since T (K) ⊆ K, T (e) = e and T is linear. Then T (x) ⊆ tIe.
This means that if x ∈ tIe, then T (x) ⊆ tIe whenever t > 0. Hence

||x||T = inf{t > 0 |x ∈ tIe} ≥ inf}t : 0 | T (x) ∈ tIe} = ||T (x)||T .

This proves the observation.
Now, if 1) in theorem 9.6 holds, then by applying theorem 6.1 to the

Markov operator Φk, we deduce that there exists Q ∈ P (In) s.t.

||Φkm(X)− tr(XQ)In||T ≤ |||Φ̃k|||mH ||X||H
for all X ∈ P (In) and all m ∈ N. This means that Φkm(X) → tr(XQ)In as
m→∞ for all X ∈ P (In) since |||Φ̃k|||H < 1 by assumption.
Let s ∈ N. Then there is j ∈ N and r ∈ {1, ..., k − 1} s.t. s = jk + r. Since

||Φr(A)||T ≤ ||A||T ,
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for all A ∈ Sn by the observation above, as Φr is a Markov operator w.r.t.
K and In we get that

||Φs(X)− tr(XQ)In||T = || Φs(X − tr(XQ)In)||T

= ||Φjk+r(X − tr(XQ)In)||T
= ||Φr(Φjk(X − tr(XQ)In))||T ≤ ||Φjk(X − tr(XQ)In)||T

= ||Φjk(X)− tr(XQ)In)||T ≤ |||Φ̃k|||jH ||X||H .
But

j =
s− r
k

>
s− k
k

=
s

k
− 1.

Since |||Φ̃k|||H < 1 by assumption in 1), we get,

|||Φ̃k|||jH < |||Φ̃k|||(
s
k
−1)

H ,

hence
||Φs(X)− tr(XQ)In||T ≤ |||Φ̃k|||(

s
k
−1)

H ||X||H .
Letting s→∞, we obtain that

Φs(X)→ tr(XQ)In

as
|||Φ̃k|||(

s
k
−1)

H → 0

This proves 1)→ 2)
The proof of "1)→ 2)" given here is omitted in the proof of theorem 7.7 in
[GQ]. In [GQ] it just stated that the theorem 6.1 is applied to the application
Φk without any further details.

3)⇔ 1)
First observe that

Φk(x) =
∑
i1,...,ik

V ∗ik ...V
∗
i1
XVi1 ...Vik

for all k ∈ N where i1, ..., ik ∈ {1, ...,m}. This follows easily from the defi-
nition of Φ and an obvious inductive argument. We have also that Φk is a
Kraus map for all k ∈ N , since for

Φk(In) = Φk−1(Φ(In)) = Φk−1(In) = ... = In

Then we can apply corollary 9.4 to Φk to deduce that |||Φ̃k|||H = 1 if and only
if there exists a rank one matrix Y ∈ Cn×n s.t. tr(V ∗ik ...V

∗
i1
Vji ...VjkY ) = 0 for
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all i1, ..., ik, j1, ..., jk ∈ {1, ...,m}. Next we observe that for each k, the matrix
subspace Hk defined in lemma 9.5, can be described as

Hk = span{V ∗ik ...V
∗
i1
Vji ...Vjk

∣∣∣∣ 1 ≤ i1, ..., ik ≤ m
1 ≤ i1, ..., ik ≤ m

}
]

This follows easily by an induction argument. Since the trace is linear it
follows that tr(XY)=0 for all X ∈ Hk, since

tr(V ∗ik ...V
∗
i1
Vji ...VjkY ) = 0

for all i1, ..., ik, j1, ..., jk ∈ {1, ...,m}. Then we have that Y ∈ H⊥k = Gk.
Conversely, if Y ∈ Gk, it follows that

tr(V ∗ik ...V
∗
i1
Vji...VjkY ) = 0

for all i1, ..., ik, j1, ..., jk ∈ {1, ...,m} as V ∗ik ...V
∗
i1
Vji ...Vjk ∈ Hk for all

i1, ..., ik, j1, ..., jk ∈ {1, ...,m}.

Combing all these equivalences, we get the following:

|||Φ̃k|||H = 1

if and only if there is a rank one matrix

Y ∈ Cn×ns.t.tr(V ∗ik ...V
∗
i1
Vji ...VjkY ) = 0

for all i1, ..., ik, j1, ..., jk ∈ {1, ...,m}, which again is true if and only if there
is a rank one matrix Y ∈ Gk.
Thus, if

|||Φ̃k|||H = 1 ∀k,
we have that for all k there is a rank one matrix

Yk ∈ Cn×n s.t. Yk ∈ Gk.

Now, by the consequence of lemma 9.5 there exists k0 ≤ n2 − 1 s.t. Gk0 =
Gk0+s for all s ∈ N. As Gk ⊇ Gk+1 for all k ∈ N, we obtain that⋂

k

Gk = Gk0 .

If |||Φ̃k|||H = 1 for all k, then in particular |||Φ̃k0 |||H = 1. Thus there is a
rank one matrix Yk0

s.t. Yk0 ∈ Gk0 =
⋂
k

Gk.
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On the other hand, if there is a rank one matrix Y ∈
⋂
k

Gk, then Y ∈ Gk

for all k and by what we proved, we get that |||Φ̃k|||H = 1 for all k.

3)→ 4) Here we refer to the proof of "3)→ 4)" in theorem 7.7 in [GQ].
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Recall now that Φ∗ = Ψ. The next theorem gives the necesary and
sufficient conditions for the convergence of the Markov chain given by

Πk+1 = Ψ(Πk) k = 1, 2, 3, ... ,Π1 ∈ P (In).

Theorem 9.7: The following conditions are equivalent:

1. There exists k ∈ N s.t. ||Ψ̃k||∗H < 1.

2. The Markov chain given by Πk+1 = Ψ(Πk) converges to a unique in-
variant measure regardless of initial distribution.

3. The subspace ∩kGk does not contain a rank one matrix.

4. There exists k0 ≤ n2 − 1 s.t. ||Ψ̃k0||∗H < 1.

(2) ⇒ (1) Assume that there is an A ∈ P (In) s.t. whenever u ∈ P (In),
then ||Ψk(u)− A||∗H → 0 when k →∞.

Let Ψ̃ = Ψ|M(In)
. Then Ψ̃ : M(In)→M(In). ( clearly Ψ̃(M(In)) ⊆M(In)

since Ψ̃ is trace preserving ).

We have |||Φ̃|||H = ||Ψ̃||∗H and since |||Φ̃|||H ≤ 1 ( as we have shown in
the proof of theorem 9.6), it follows that ||Ψ̃||∗H ≤ 1, so ||Ψ̃k||∗H ≤ 1 for all
k ≥ 1. Hence, if (1) is not true, then ||Ψ̃k||∗H = 1 for all k, so

lim
k→∞
||Ψ̃k|||∗

1
k
H = 1.

Consider now MC = M(In) + iM(In) equipped with || · ||∗MC
where

||R + iQ||∗MC
= sup

0≤θ≤2π
||R cos θ −Q sin θ||∗H

for all R,Q ∈M(In) and let Ψ̃C : MC →MC be given by

Ψ̃C(R + iQ) = Ψ̃(R) + iΨ̃(Q)

(as done before in the proof of theorem 9.6 ).
As we proved, then ||Ψ̃k

C||∗MC
= ||Ψ̃k||∗H for all k, so

lim
k→∞
||Ψ̃k

C||
∗ 1
k
MC

= lim
k=∞
||Ψ̃k||∗

1
k
H = 1.

By the spectral radius theorem and again since MC is finite dimensional, we
deduce as before that there exists a λ ∈ Π s.t. λ is an eigenvalue for Ψ̃C.
Thus there exists B ∈MC, B 6= 0 and θ ∈ [0, 2π) s.t

Ψ̃C(B) = eiθB.
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Hence
Ψ̃C

k
(B) = eikθB ∀k ≥ 1.

Write B as B = C + iD where C,D ∈M(In).
Then we get that Ψ̃C(B) = Ψ̃C(C + iD) = Ψ̃(C) + iΨ̃(D) = Ψ(C) + iΨ(D)
( since Ψ̃ = Ψ|M(In)

). It is easy to see then that

Ψ̃C
k
(B) = Ψk(C) + iΨk(D) ∀k ≥ 1.

Hence
Ψ̃C

k
(B) = Ψk(C) + iΨk(D) = eikθ(C + iD) ∀k.

Identifying the real and imaginary parts in the same way as in the proof of
theorem 9.6 ( observe that C,D,Ψk(C),Ψk(D) ∈ Sn ∀k ) we get that

Ψk(C) = cos(kθ)C − sin(kθ)D,

Ψk(D) = sin(kθ)C + cos(kθ)D.

Now we recall a result from section 4 which gives that the dual unit ball
satisfies

B∗H(In) = {R−Q : R,Q ∈ P (In)}.

Hence, if L ∈ M(In), L 6= 0, then there exist R,Q ∈ P (In) s.t. 1
||L||∗H

L =

R − Q. Thus L = ||L||∗H(R − Q). Also, if L = 0, then ||L||∗H = 0, so L =
||L||∗H(R−Q) for any R,Q ∈ P (In). Hence since Ψ̃ = Ψ|M(In)

, we get

||Ψ̃k(L)||∗H = ||Ψ̃k(||L||∗H(R−Q)||∗H = ||L||∗H ||Ψ̃k(R−Q)||∗H

= ||L||∗H ||Ψk(R)−Ψk(Q)||∗H
≤ ||L||∗H(||Ψk(R)− A||∗H + ||A−Ψk(Q)||∗H)→ k→∞0

since ||Ψk(Π)− A||∗H → 0 for all Π ∈ P (In) by assumption in 2).
So we get that

Ψk(C)→ 0 (as k →∞)

and
Ψk(D)→ 0 (as k →∞)

as C,D ∈M(In), and Ψ|M(In)
= Ψ̃k.

Thus
Ψk(C) = (cos(kθ)C − sin(kθ)D)→ 0 (as k →∞)

and
Ψk(D) = (sin(kθ)C + cos(kθ)D)→ 0 (as k →∞)
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Hence, for each i, j with 1 ≤ i, j ≤ n, we have

(cos(kθ)Ci,j − sin(kθ)Di,j)→ 0 (as k →∞)

and
(sin(kθ)Ci,j + cos(kθ)Di,j)→ 0 (as k →∞).

This gives that

Rkθ

[
Ci,j
Di,j

]
= (Rθ)

k

[
Ci,j
Di,j

]
→ −→0 (as k →∞)

where

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Since Rθ is a rotation matrix, it follows that Ci,j = Di,j = 0.
Thus C = D = 0, so B = C + iD = 0. But we had that B 6= 0., so we get a
contradiction.

1)⇒ 2)

Assume that 1) holds. Then there is a k ∈ N s.t. ||Ψ̃k||H < 1. Now we
recall the theorem 6.1, which says that if |||T̃ |||H = ||S∗||∗H is strictly less
than 1, then there is a π ∈ P (e) s.t. ||(T ∗)n(µ) − π||∗H ≤ |||T̃ |||nH for all n.
We apply the theorem 6.1 to the operator T = Φk. This is possible since
|||Φ̃k|||H = ||Ψ̃||∗H < 1. Then T ∗ = (Φk)∗ = Ψk in this case and

S∗ = T ∗|M(In)
= Ψk

|M(In)
= Ψ̃k,

so by theorem 6.1, there is a Q ∈ P (In) s.t. ||Ψkn(R)−Q||∗H ≤ |||Φ̃k|||nH for
all n and all R ∈ P (In). Since |||Φ̃k|||H < 1, we get that ||Ψkn(R)−Q||∗H → 0
as n→∞ for all R ∈ P (In). Furthermore, we have

||Ψk(R)−Ψk(R′)||∗H =
1

2
||Ψk(R)−Ψk(R′)||∗T

=
1

2
||Ψk(R−R′)||∗T =

1

2
||Ψ̃k(R−R′)||1

≤ ||Ψ̃k||∗H ||(R−R′)||∗H =
1

2
||Ψ̃k||∗H ||(R−R′)||1 ∀R,R′ ∈ P (In)

where we have used that (R−R′) ∈M(In) for all R,R′ ∈ P (In) and

Ψk
|M(In)

= Ψ̃k
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and that
|| · ||∗H =

1

2
|| · ||∗T =

1

2
|| · ||1

on M(In).
So,

||Ψ̃k(R−R′)||1 ≤ ||Ψ̃k||∗H ||(R−R′)||1
for all R,R′ ∈ P (In) and

||Ψ̃k||∗H < 1.

Also observe that ||Φ||T ≤ 1 since ||Φ(X)||T ≤ ||X||T for all X = Sn.
Then ||Ψ||∗T ≤ 1 as Ψ = Φ∗, so ||Ψ(X)||∗T ≤ ||X||∗T for all X ∈ Sn. Hence
||Ψ(X)||1 ≤ ||X||1 for all X ∈ Sn as || · ||∗T = || · ||1
Then we can apply similar arguments as in the proof theorem 7.2 in section
7 part "a)=⇒ b)" to deduce that Ψn(R)→ Q as n→∞ for all R ∈ P (In).

3)⇔ 1)

Since ||Ψ̃k||∗H = |||Φ̃k|||H for all k, this equivalence follows from the equiva-
lence 3⇔ 1) in theorem 9.6.

3)⇔ 4)

Again, since ||Ψ̃k0||∗H = |||Φ̃k0|||H , this equivalence follows from the equiva-
lence 3)⇔ 1) in theorem 9.6.
Theorem 9.7 is denoted by theorem 7.8 in [GQ], but the proof is omitted in
[GQ].

Example 9.8

Let

V1 = 1√
2

[
1 0
0 0

]
, V2 = 1√

2

[
0 0
0 1

]
,

V3 = 1
2
√

2

[
1 1
1 1

]
, V4 = 1

2
√

2

[
1 −1
−1 1

]
,

Then
4∑
j=1

V ∗j Vj = I2. Assume now that u, v ∈ C2 are s.t.

< Viu, Vjv > = 0

159



for all i, j ∈ {1, ..., 4}.
Then, in particular

< V1u, V3v > = 0

and
< V1u, V4v > = 0

This gives that
u1(v1 + v2) = 0

and
u1(v1 − v2) = 0

where

u =

[
u1

u2

]
, v =

[
v1

v2

]
.

If u 6= 0, we must then have

v1 + v2 = 0

and
v1 − v2 = 0

Thus we get v1 = v2 = 0, so v is a zero vector. Hence, if v is not a zero
vector, we must have u1 = 0.
By assumption in the beginning, we also have

< V2u, V3v > = 0

and
< V2u, V4v > = 0.

This gives
u2(v1 + v2) = 0

and
u2(v1 − v2) = 0.

Hence, again either v is a zero vector on u2 = 0. So, if < Viu, Vjv > = 0 for
all i, j ∈ {1, ..., 4}, then either v is a zero vector or u1 = u2 = 0, that is u is
a zero vector.
We conclude that there are no nonzero vectors
u, v ∈ C2 s.t. < Viu, Vjv > = 0 for all i, j ∈ {1, ..., 4}. If we let Φ : S2 → S2

be given by

Φ(X) =
4∑
j=1

V ∗j XVj,
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by corollary 9.4 it follows that |||Φ̃|||H 6= 1. Now, as we have shown in the
proof of theorem 9.6, we always have |||Φ̃|||H ≤ 1. Hence we conclude that
in this case |||Φ̃|||H < 1, so theorem 6.1 applies.
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11 Further research
So far in this thesis, we have applied the theorem 6.1 to stochastic matrices,
Markov operators on CR(Ω) and Kraus maps acting on Sn. There are many
other examples of Markov operators acting on different real Banach spaces, so
there are many other cases where we could investigate whether the condition
of theorem 6.1 is satisfied, that is whether |||T̃ |||H < 1, for the respective
Markov operator T. Theorem 6.1 gives a sufficient condition on T̃ that ensures
the convergence of the Markov system given by

µk+1 = T ∗µk k = 1, 2, ...

to some unique invariant measure. The interesting question is whether there
is some weaker condition on T or T̃ that still ensures the convergence of the
Markov system to unique invariant measure. In other words, the question
is whether it is possible to give a necessary and sufficient condition on T or
T̃ that guarantees ergodic property of the Markov system. In the particular
case when T : Rn → Rn given by T (x) = Ax for all x ∈ Rn and A is n × n
row stochastic matrix, we proved in section 7 that the corresponding Markov
system xk+1 = Atxk, is ergodic if and only if there exists k0 ∈ N s.t.

|||T̃ k0|||H = δ(Ak0) < 1.

Similarly, in section 9, whenΦ : Sn → Sn is a Kraus map, we proved that the
corresponding Markov system

Πk+1 = Ψ(Πk), k = 0, 1, ...

(where Ψ is the adjoint of Φ) is ergodic if and only if there exists k0 ∈ N s.t.
|||Φ̃k0|||H < 1. One might ask whether this is true in general that the Markov
system given by µk+1 = T ∗µk, k = 0, 1, ... , is ergodic if and only if there
exists k0 ∈ N s.t |||Φ̃k0|||H < 1.. The implication in one direction holds:

Recall that we observed in the proof of theorem 9.6 part ”1) → 2)” that
||T (x)||T ≤ ||x||T for all x ∈ X.
Hence

|||T̃ (x+Re)|||H = |||T (x)+Re|||H = 2 inf
λ∈R
||T (x)+λe||T = 2 inf

λ∈R
||T (x+λe)||T

≤ 2 inf
λ∈R
||(x+ λe)||T = |||x+ Re|||H

for all x ∈ X.
Thus |||Φ̃|||H ≤ 1 and consequently ||S∗||∗H ≤ 1 as |||Φ̃|||H = ||S∗||∗H .
Suppose now that there exists k0 ∈ N s.t. |||T̃ k0 |||H < 1. Then

||(S∗)k0||H∗ = |||T̃ k0|||H < 1.
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Hence

||(T ∗)k0(µ)− (T ∗)k0(v)||∗H = ||(S∗)k0(µ− v)||∗H ≤ ||(S∗)k0||∗H ||(µ− v)||∗H

for all µ, v ∈ P (e).
Furthermore, as |||T̃ k0|||H < 1, by theorem 6.1 there exist π ∈ P (e) s.t.

||(T ∗)nk0(µ)− π||∗H ≤ |||T̃ k0|||nH

for all µ ∈ P (e) and all n ∈ N. Now, using this, we can show that (T ∗)(π) = π
in the same way as we have shown that Qπ = π in the proof of theorem 7.2
part ”a) → b).
Next, given n ∈ N, write n as n = rk0 + m, as we have done in the proof of
theorem 7.2 ”a) → b)”.
For any µ ∈ P (e), we then have

||(T ∗)n(µ)− π||∗H = ||(T ∗)n(µ− π)||∗H = ||S∗(µ− π)||∗H .

= ||(S∗)rk0+m(µ− π)||∗H ≤ ||(S∗)m||∗H ||(S∗)rk0(µ− π)||∗H
||(S∗)∗||mH ||(S∗)rk0(µ− π)||∗H ≤ ||(S∗)rk0(µ− π)||∗H

where we have used that ||S∗||∗H ≤ 1, which we observed before.
Then we can proceed as in the proof of theorem 7.2 part ”a) → b)” to
deduce that (T ∗)n(µ)→ π as n→∞.
Hence, this is true in general for any Markov operator T that if there exists
k0 ∈ N s.t. |||T̃ k0 |||H < 1, then the Markov system given by µn+1 = (T ∗)nµn,
n = 0, 1, ... converges to some unique invariant measure regardless of the
initial distribution. This is a weaker condition than the condition in theorem
6.1, which is the requirement that |||T̃ |||H < 1. However, we are looking for
the weakest possible condition that ensures the convergence of the Markov
systems, so therefore we wish to find a necessary and sufficient condition.
We do not know whether the condition given above is necessary since we
didn’t prove in general that implication the other way, that is that if the
Markov system converges to some unique invariant measure regardless of
initial distribution then there exists some k0 ∈ N s.t. |||T̃ k0 |||H < 1. We
have proved this only in the particular cases in section 7 and section 9.
The interesting question that arises is whether it is possible to give an upper
bound for such k0 to occur. In section 9 we have proved that wen T = Φ
where Φ : Sn → Sn it suffices to consider all k’s satisfying k ≤ n2 − 1. This
fact has followed from the proof of lemma 9.6 where we have shown that
the inequality Km = Km+1 can not happen more than n2 times since the
dimension of Cn×n is equal to n2 and Km ⊆ Km+1 for all m. So we have
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used that Cn×n finite dimensional. In the case when T : X → X and X is
infinite dimensional it is not obvious that we can give an upper bound on
such k0 to occur.
As mentioned in the introduction of the thesis, we are dependent of being
able to calculate or give an estimate on |||T̃ |||H in order to apply theorem
6.1. In this thesis and in [GQ], the theorem 6.2 gives a general expression
of |||T̃ |||H , in terms of disjoint, extreme points of P (e). However, using
the expression for |||T̃ |||H from theorem 6.2 is not always the easisest way
of calculating |||T̃ |||H . We observe that in example 8.2 we have used the
definition of ||S∗||∗H instead of the alternative formula from theorem 6.2 to
give an estimate on ||S∗||∗H . In section 9, using the formula from theorem 6.2,
we have shown that |||Φ̃|||H < 1 if and only if there are no nonzero vectors
u, v ∈ Cn s.t. < Vi, u, Vjv > = 0 for all i, j.
In the examples 9.1, 9.2 and 9.8, it was straightforward to check whether
this criteria is satisfied, but on other more complicated examples with higher
dimensions, this could be difficult to check. So one may look for some other
formulas \ expressions for |||T̃ |||H that will be more efficient for calculating
in concrete examples.
Finally, we observe that most of the concepts and tools we have been used
so far in the thesis depends on the choice of K and e. It would be interesting
to investigate in concrete, different examples how the change of choice of K
and e would reflect on the results.
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