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1 Introduction

In this thesis we will consider Markov operators on cones. More precisely, we
let (X, ||-|]) be real Banach space, K C X be a closed and normal cone with
nonempty interior and e € IntK an order unit. (The notations and notions
used here will be detailed in section 1).

A bounded, linear operator T : X — X is a Markov operator w.r.t. K
and e if T(K) C K and T'(e) = e. We consider then the adjoint of T" and a
homogeneous discrete time Markov system given by

Te+1 = T*(ﬂ'k), k= 0, 1,2,

where mp € X*,iss.t. m(x) > 0forall z € K and my(e) = 1. The final goal of
the theoretical part of this thesis which includes the first 6 sections is to give
a proper conditions on 7" that will guarantee the convergence of the Markov
system given above to a unique invariant measure. These conditions are
given in the theorem 6.1 in section 6, but before that, we will need to develop
certain theory and introduce some new concepts, tools and definitions. For
instance, we consider the quotient space X /Re, define a norm ||| - ||| on this
space and let
T : X/Re — X/Re

be the induced linear map given by

T(x+Re)) =T(x) + Re

for all z € X. Furthermore, we consider the annihilator of Re in X* denoted
by M(e) and define a norm || - ||5; on M(e). We also show that the dual of
((X/Re), ||| - |lz), is isometrically isomorphic to (M(e),||-||5;). The theorem
6.1 states then that if |||T']||z < 1, then there exists 7 € P(e) s.t.

1T () =l < (TN
for all n and all u € P(e) where
Ple)={ue X" | ule)=1and u(x) >0Vr e K}.

As |||T)||lz < 1, this in particular means that ((7%)"(u) — 7) converges
to 0, as n — oo, since |||T|||%, converges to 0, as n — oco. This is a very
important result and in sections 7,8 and 9, we will apply this result to the
different concrete cases when X is equal to R", Cr(£2) and S, respectively.



Now, in order to apply theorem 6.1 to different examples, we need that
|IT]||z < 1, hence we must be able to somehow calculate an estimate on
|7]|| . The theorem 6.2 is section 6 gives an expression for |[|T']||g in terms
of disjoint, extreme points of P(e), and we are going to use this expression in
sections 7,8 and 9 to calculate\estimate |||T'|||g in concrete examples. ("dis-
jointness" of elements in P(e) will be defined in section 4).

It is well known that a Markov chain with n-states can be described by
an n X n column stochastic matrix P where p; ; denotes the probability to
move from the state j to the state ¢ in one step. Such matrix P is then
called the transition matrix for the Markov chain. The most standard ex-
ample of a Markov operator is therefore the operator 7' : R® — R" given by
T(x) = A(zx) for all x € R™ where A is an n X n row stochastic matrix. Its
adjoint is then 7™ : R" — R"™ given by T*(x) = A'z for all z € R and, as A is
n X n row stochastic matrix, A! is as an n x n column stochastic matrix.Thus
Al is a transition matrix for a Markov chain.We are interested in convergence
of a Markov system x, = A'z; to some unique stochastic vector 7 € R
where the initial vector xq is a stochastic vector in R and this is what we are
going to study in section 7. From Perron Frobenius theorem we know that
the Markov system given above will be convergent if A! is regular. The less
known fact is that the system will be convergent if and only if A* semiregular,
that is if there exists some k € N s.t. A¥(A¥)! has only positive coefficients.
This is for instance stated in [ABS] in the theorem 1.1. In section 7 we will
show that this theorem is a direct consequence of the theorem 6.1 given in
this thesis.

More precisely, in section 7 we let X = R", K =R’} and e = 1= (1,1,...,1).
Then, the operator T : R" — R" given by T'(z) = Az for all z € R" will be
a Markov operator w.r.t. K and e when A is an n x n row stochastic matrix.
In lemma 7.1 we will first show, using the theorem 6.2, that

n
1Tl = 1—min> min{a;x, a;;}.
1<) —1

in this case. The expression

i<j

n
1 — min Z min{@i,ka aj,k}
k=1

is, for instance knows as Dobrushin ergodicity coefficient. We will then use
this expression to show that |[|T[||z < 1 if and only if AA” has only positive
coefficients. Thus, for AT being semiregular is equivalent to that there exists
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k € Ns.t. |[|T%||z < 1. Relating this to the theorem 1.1. in [ABS], we
see that the Markov system given by T*(zy) = xx11, converges some unique
stochastic vector in R™ if and only if there exists k € N s.t |||T%|||z < 1 .
This is stated in theorem 7.2 in section 7 and the proof of this theorem is
just an application of theorem 6.1, as mentioned. At the end of section 7,
in proposition 7.3, we show that Doeblin contraction coefficient is equal to
Dobrushin ergodicity coefficient, that is

—max Z laix —aji| =1 —manmln{azk,ajk}
" k=

Another interesting application of the theory in this thesis is in the case
when X = Cg(2). Here Cg(€2) denotes the space of all continuous real valued
functions, on €2, where €) is a compact, Hausdorff topological space, and
Cr(92) is equipped with supremums norm, || - ||x. In remark 2.4, section
2, we show that the dual of (Cr(£2),]] - ||s) is the space of all signed Radon
measures on {2 equipped with the total variation norm, (M,.(2),||-|]). We let
in this case K be the cone in Cg(2) consisting of all nonnegative functions
on ) and the constant function 1 on {2 be the order unit. In section 8
we consider then Markov operators Cr(§2) w.r.t 1 and K.There are 2 such
examples in section 8, example 8.1 and example 8.2. In example 8.1, we let u
be a nonzero Radon measure on €2 and we choose a nonnegative continuous
functions & on Q x Q such that

/fo(x,y) du(y) =1
for all x € 2. Then we let
T; : Cr(2) — Cr(£2)
be s.t. for all f € Cr(€2), T3(f) is the function given by

Ty(f)(x) = / R, y) F(y) duly)

for all x € Q. The operator T} is hence a Markov operator on Cgr(£2) w.r.t.
1 and K. We show then that if

~ 2
klloo < —55
Ml < 5

then |||T:||lz < 1, so that we can apply theorem 6.1. In example 8.2 we
choose w : 2 — ) to be a continuons map and we let

Tw : CR(Q) — CR(Q)
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be given by T,,(f) = fow . Also in this case, T, is a Markov operator on
Cr(92) wr.t. 1 and K. However, we show that |||T,||| > 1, so we can not
apply theorem 6.1. in this example.

In section 9, which is the last section in this thesis, we let X = S, be
the space of all Hermitian n x n matrices equipped with the operator norm,
K = S be the cone in X consisting of all positive semidefinite n x n matrices
and I, be the order unit. We consider then the Kraus map ¢ : S, — S,
given by

B(4) = 3 VA,
=1

for all A € S, where ZVZ-*VZ- = I,. The operator ® is then the Markov

i=1
operator on 5,, w.r.t. I, and K and its adjoint ¥ : .S, — S, is given by
w(4) =Y viav;
i=1

for all A € S,. We will show that |||®|||z < 1, if and only if there are no
nonzero vectors p,v € C" with the property that < Viu, V;v > = 0 for all
i,7 € {1,...,m}. In that case, we can hence apply theorem 6.1. Furthermore,
in theorem 9.7 at the end of section 9, we show that the Markov system

M1 = U(I)x)

converges to a unique invariant measure if and only if there exists ky € N
s.t. [||®*|||z < 1 . This is actually quite similar to theorem 7.2 mentioned
before in the introduction, which states that the Markov system

Tr+1 = T*(xk)

converges to a unique stochastic vector in R™ if and only if there exists kg € N
s.t. ~
[ T*e[]] < 1.

The proof of theorem 9.7 also applies theorem 6.1, but is somewhat different
than the proof of theorem 7.2.
Another important topic of this thesis is to study the convergence of the
system

LTl = T(xk), k= 0, 1,



We will show in theorem 6.1 that if |||T']||z < 1, then there exist 7 € P(e)
s.t.
IT"(X)— <max>ella < [T ||l2|la

for all x € X, where || - || is a certain seminorm on X that depends on e.

( We will define this seminorm in section 1. )

Since |||T|||z < 1 in this case, it follows that 7" (z) converges to < ,z > e,
w.r.t. || - ||z as n — oo for all z € X.

In others words, the system

Lp4+1 = T(l’k% k= 0, 1,

converges w.r.t || - ||z to a scalar multiple of e, so called "consensus state".
This is also a very important result and we will apply this in theorem 9.6 to
show that every orbit of the system given by

X1 = ®(X), k=0,1,...

converges to on equibrilium co- linear to I, if and only if there exists kg € N
st. |[|®*]|| < 1, where @ : S, — S, is a Kraus map as described earlier in
this introduction.

This thesis builds on the 3. version of the article "Dobrushin ergodicity
coefficient for Markov operators on cones" writen by Stephane Guobert and
Zheng Qu. As it was written by my supervisor, prof. Erik C. Bedos , in the
project description for this thesis, the main aim of the thesis is to give on
improved and detailed presentation of the above mentioned article of Gaubert
and Qu.

The 3. version of the above mentioned article by Gaubert and Qu will be
denoted by [GQ] throughout this thesis.



2 Preliminaries - Cones on vector spaces, order
units, Thompson’s norm and Hilbert’s semi-
norm

In this section we will give some definitions and introduce concepts like
cones on vector spaces, order units, Thompson’s norm and Hilbert’s semi-
norm. These concepts will be fundamental for the theory which will be devel-
oped and discussed later in the thesis. After introducing these concepts, we
will give some examples where these concepts occur. The examples 1.4 and
1.5 in this section are the same as examples 2.2 and 2.3 in [GQ)] respectively.
However we give here detailed proofs and explanations for all the statements
used in those examples. In addition, we give an example that is not in [GQ).
It is example 1.6 it this section and deals with the applications of the above
mentioned concepts on the space Cg(£2), which is the space of all continuous
real valued functions on €2 where €2 is compact, Hausdorff topological space.

Let X be a real vector space, let K C X, K # (). We say that K is a
cone in X if K satisfies the following properties:

1. K+ KCK
2. AK C K forallA>0
3. KN (—K)={0}.

Let < denote the associated order on X, so ¢ < y < (y —x) € K. For
u € K, set
I={zeX| —u<z<u}

Recall that A C X is called absorbing if
{t>0|zetA} #0

for every € X. An element u € K is called an order unit for (X, K) if I,
is absorbing.



Furthermore, for x < y, we define the order interval
[z,y] ={ze X |z<z<y}
If ItK # 0 for x € X and y € Int(K) we define then
M(x/y) =inf{t e R : = <ty}
and m(z/y) :==sup{t e R : = > ty}.

For an order unit u € K, we define a Thompson’s norm w.r.t. u to be given
by ||z||r := max{M (z/u), —m(z/u)} for all x € X.

We also define a Hilbert’s seminorm w.r.t. u to be given by
|2l = M(2/u) —m(x/u).

We wish to prove that if (X, || -||) is a real Banach space and K satisfies
certain properties, then || - || and || - ||r are equivalent. To prove this, we
will first state and prove 2 observations, before we give and prove the main
proposition, the proposition 1.2, where for instance this result is stated.

Observation 1 Let u € K\{0}.

Then u is an order unit if and only if u is an "internal point" of K ( that is
Vee X 36 >0st. (u+ \x) € K Vo € [-4,0] )

Observation 2 For v € K \ {0}, set

X, =t , K,=KnX,.

>0

Then X, is a subspace of X, [, is an absorbing, absolutely convex subset of
X, K, is a cone of X, and u is an order unit for (X,, K,).

Let |- |, denote the Minkowski functional on X, associated with I,,, so |z|, =
inf{t >0 | x €tl,}. Then |-|, is a seminorm on X, s.t. |ul, =| —u| = 1.

Definition 1.1 Let (X, ||-||) be a real normed space, let K be a cone in X.
We say that K in normal if there is some constant M > 0 s.t ||z|| < M]||y||
for all x,y € K satisfying z < y.

Proposition 1.2 Assume that (X, ||-||) is a real normed space, K is closed
and normal cone in X.Let u € K \ {0}. Then we have the following
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1. ||y ts a norm on X, and || - || < «a| + |, on X, for some o >0
2. If (X,||-]|) is a Banach space, then (X, |- |.) is a Banach space.
3. If u is an order-unit in (X, K), then X = X,,.

4. If u € Int(K), where Int(K) is the interior of K in topological sense,
then u is order-unit in (X, K) and ||| , |- |. are equivalent norms on

X.
Moreover | - |, is the same as Thomson’s norm on X that we defined.

Proof of observation 1. We observe first that K is convex:
If z,y € K, and ¢ € [0, 1], then dx € K and (1 — )y € K since tK C K for
all t > 0. Then (0x + (1 —0)y) € K. since K + K C K.

Let now # € X and assume that [, is absorbing. Since I, is absorbing,
there exists ¢ > 0 s.t. x € t[,. This means that —tu < x < tu, so we have
that tu — z € K and x + tu € K. It gives that u — 1z € K and u+ 1z € K.

Let now A\ € [0, %] )

Since u + Ax lies in the segment between u and u + %x, we have
(u+ A\z) € K.

More precisely, as 0 < A\t < 1, we have (1 — M)u € K because 1 — A\t > 0
and u € K.

Hence
(1= X)u+ X(u+ 12) € K.
Thus (u+ Az) = (1 — M)u+ M(u+ 1z) € K.

Similarly if —% < A <0, then u + Az lies is the segment between u — %x
and u. Hence (u+ Az) € K since K is convex.

Since x was and arbitrary, this shows that u is an internal point of K.

Assume now that v is an internal point of K, that is,

Ve e X 46, > 0

st. (u+A\x) € K Vo € [—0,, 0]
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Then in particular v + d,x € K and u — d,x are in K.
Let t, = é Then —u < iw <u,sox€tl,.
This shows that for all x € X, we have {t >0 | z € t[,} # 0.

Hence I, is absorbing. This complets the proof of observation 1.

Proof of observation 2. X, is a subspace of X:

Let z,y € X,. Then there exist r,s >0 s.t. x € rl,,y € sl,.
Hence
—ugiazguand—ugiygu.

This means that

u—%xEK,

u+%x€K,
1

u—;yEK

andu+§y€K.

Since K is a cone, we must have

and 2~ (u — 1y) € K.
As K + K C K, we get that

r%g(u—%a:)ij?(u—%y) €K,

50 (u— —=(r+y) € K.

In the same way , we can show that
(u+ 5 +y) € K.

Hence
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—Uu S (rj—s) (I‘ + y) S u,

which gives that (z +y) € (r + s)1,.
Thus (z +y) € X,.
Let x € X, and consider cz for some ¢ € R.
a) If ¢ > 0:
Since z € X, then x € tI, for some t > 0.
Thus (u— 1z) € K
and (u+ 1z) € K.
Hence
(u—Zcx) e K
and
(u+ Zcx) € K.
This gives that

—u < Lex < u.
ct

So
cx € ctl,.
Hence
cx € X, since ct > 0.
b)If ¢ < 0:
Since (u+ 1x) € K, we have
(u+ ﬁ\dx) € K,
that is,

(u— ) € K because |c| = —c.
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Also, since
(u—1x) € K, we get that
(u— ﬁ|c|x) eK

so (u+ 1) € K ( because ¢ = —|c[ ).

Hence
—u < ﬁcm <u

which means that

cx € |c|tL,.
So

cx € X,.

Finally, since

—u<0<u

we have 0 € [, so 0 € X,,.

Thus X, is a subspace of X.

Consider K, = K N X,,.
We claim that K, is a cone in X,:

If v,y € K,, then (z +y) € K since x,y € K and K + K C K. Also
(x +y) € X, since z,y € X, and X, is a subspace of X.

Hence (z +y) € K N X, = K,. This gives that K, + K, C K, since
x,y € K, were arbitrary.

If r € K, and t > 0, then tx € K since x € K and tK C K. Also tx € X,
since x € X, and X, is a subspace.
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Thus tx € K, This gives that tK, C K, for all t > 0 since x € K, and ¢t > 0
were arbitrary.

Also K, N (—=K,) = (KN (—=K))NnX, = {0}, so K, is a cone in X,.
Next we claim that [, is an absorbing, absolutely convex subset of X,:
Clearly, I, is subset of X, by definition of X,. Let now = € X,,.

Then z € t1, for some t > 0,
so{t>0|zetl,} #0.

Hence I, is absorbing in X,,. Thus w is an order unit in (X,, K,). In order
to show that I, is absolutely convex, we have to show that I, is convex and
balanced.

a) I, is convex:
We have by definition
IL,={reX|-u<z<u}

Let z,y € I, and A € (0,1). Then u—(Az+(1—=X\)y) = AMu—2z)+(1=X)(u—y).
Now, u — x and u — y are in K since x,y € I, , hence
Mu—2)+ (1= N(u—-y) €K
because K is cone. Thus
(u— A+ (1—=Ny)) € K,

SO
Ar+ (1= Ny <u.

Similarly | since
u+ A+ (1=Ny)=Au+2z)+ (1 -\ (u+y)

and
(u+x),(uty) €K,

we have that
(u+ A+ (1=Ny)) € K.

Hence
—u < Ax+(1-Ny.
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Thus we get
—u<Ar+ (1 =Ny <u,

which means that
A+ (1= Ny € I,.

Since A € (0,1) was arbitrary, it follows that I, is convex.
b) I, is balanced:
Let z € I, and let A € R, |\| < 1.
IfA<0,then =1 <A <O0.
Furthermore A\x +u =u — |Az = |A(u—2) + (1 — |\)u € K,
since (u — ) and v are in K, [A| >0, 1—|A] >0 and K is a cone.
Hence —u < Azx.
We have also
u—Ar=u+|Nx=|M(u+2zx)+ (1—|\)u.

Again, since (u + x) and u are in K, we get that

u—Ae=[N(u+2z)+ (1 —|\)u € K, so Az < u.

Thus —u < Az < wu , so Az € I,,. This shows that I, is balanced. Since I, is
convex and balanced, it is absolutely convex.

We know from proposition 14.8 on page 525 in|[MW] that the Minkowski
functional | - |, is a seminorm.

Finally we show that |ul, =1 :
Clearly u € I, since u < u and u > —u because 2u € K .
Hence
inf{t > 0| uwetl,} <1.

Assume now that u € \I,, for some 0 < A < 1

Then

> =



In particular % < u, s0u— %u € K.
Thus (1 - 3)u € K.

Since we have that % >1,u€ K and tK C K for all t > 0, we get that
(+ —Du € K.

Hence (3 — 1)u € K N (—K) = {0}.
But + — 1> 0and u # 0, so (5 — 1)u # 0.

That is a contradiction,

Hence inf{t > Olu € tI,} =1, so |u|, = 1. This completes the proof of
observation 2.

Proof of proposition 1.2

1)

Assume that z € X,.

Then there exists t > 0 s.t. x € t1,.

As we have seen, this means that

—u < %x < u,
that is
(u—qz) € K
and (u+ 1z) € K.
Hence i (u— 1z) € K
and L (u+ 1z) € K.
Thus

u—3(u—tr)=3(u+tz) € K.
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Hence

Since u and 3(u — 1) are in K §(u — 72) < p and K is normal by

assumption, we get that
Ml > 4lu — tal.
Hence
M | u |z u—ge ==l = ul.
So
M +1) w1,
which means that (2M + 1) || u ||t > x| .
Since this is true for all t > 0 with x € tI,, taking inf over such #'s

we get that (2M + 1) || w || |x]. >|| z ||. So ||z|| < |z, with
a = (2M + 1)]|]ul|.

We have already proved that | - |, is a seminorm.

Assume now that |x|, =0

Then since (2M + 1) || w || |z|, >|| = || , it follows that || = ||= 0.

Hence x = 0 since || - || is a norm.

This shows that | - [, is a norm.

2)

Let {z,, }nen be Cauchy in (X, |- |.). We observe that since {z,}, is Cauchy

w.r.t. |- |. , then {x,}, is Cauchy w.r.t. ||, as ||-|| < |- |.. Since (X, ||-||)
is Banach space, there is an z € X s.t. z, » = w.r.t. || -|].

Given € > 0, choose N s.t. |z, — Tyl < € Vn,m > N.
Fix n > N and consider yr(ff) = |z, — Tim|u,m > n.
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Then {3/7(7711 )}m is bounded , hence there exists a convergent subsequence

{3 € W Y.

Assume first that lim y,(ﬁlz > 0.
k—oo

As yim) = |Zp — Ty, |u » per definition of | - |, we can find some té") > 0 s.t.

0 <t -yl < + and

—u < t;%n)(ztn — Ty, ) < u for all k.

That is

u— t%n)(xn — Ty, ) € K and
k
u+ t%n)(xn — T, ) € K for all k.
k

As K is closed w.r.t || - ||, and

u— <5 (v, — T,) € K
L3
and u + t%n)(xn — Ty, ) € K for all k,
k
we get that

1
lim (v — — (2, — Tm,) € K
k—o0 tl(cn)

and klggo (u— Qg_n)

since limits exist because

1= fim 67 = fim > O

( here we use that

() . (n 1
[t —yfn,ZI < %
for all £ so

it = i o)
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Then we get that

(u— ks (wn — ) € K and (u+ (2 — 2) € K,

1
t(n)

so —u < ==(x, —x) < u.
Hence

(zp — ) € tMI,.
Now, as

yfﬁi = |, — 2y, |u < e forall k,

it follows that
) — Jim ™ < e
Jim i) < e
As (z, — 2) € t™], we must have |z, — x|, <t <e.

This is true for all n > N.
( Furthermore since (x,, — ) € t™ 1, for all n > N, it follows that

(x, —x) € X,

for all n > N.
Hence
(x —x,) = — (1, — ) € X,

for all n > N, because X, is a subspace. Then z = (x — z,,) + 2, is in X, ,
since = — x,, and z, are in X, for all n > N and X, is a subspace).

Assume now that

lim y™ =0

k—o0 7Tk
This means that
Ji = =
As |- |I<€ al- |, , we get that lim || z,, — 2y, [[=0
k—ro0

But
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klgg} | ©p — Ty, ||=]] @0 — x || as klggoxmk =z wrt|-|.
Hence
| x, —x ||=0, so x = z,, which is in X,
Since | - |, is a norm, we get that
|z, — x| = 0 < € (this is again true for all n > N)
So we have proved that given € > 0, if we choose N
sit. |xn — zplu <eVn,m > N,
then |z, — x|, < e Vn > N.

Thus lim |z, — x|, = 0.
n—oo

This shows that (X, |- |.) is a Banach space since {x, },en was an arbitrary
Cauchy sequence in X, and z € X,,.

3)
If w is an order unit for (X, K), then I, is absorbing per definition.
That is, for all z € X , we have {t > 0lz € tI,} # 0

Thus, for all z € X, there exists t, > 0 s.t. x € t,1,.
Hence

xEUtIu‘v’xEX, so X = X,.

t>0
4)

If u €Int(K) then there exist § > 0 s.t. B(u,d) C Int(K).
(Here B(u,6) :={zx € X| ||z —u|| <d})

Hence, given x € X with x # u, we have u + A\x C B(u,d) C Int(K)

for all A € (—2, -20).

llll> {l]l
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This means that u is an internal point of K From observation 1 it follows
then that w is an order unit. From part 1) in proposition 1.2 it follows then
that there is an o > 0 s.t. || - || < af - |4 In order to prove that there is a
B>0st ||, <pBl|l-]], we first observe that part 3) of proposition 1.2 gives
that X = X, since u is an order unit. Hence |- |, is defined on the whole
X, so we may consider (X,|-|,). and the map ¢ : (X |- |.) = (X,||-|])
given by ¢(x) = x for all x € X. As we already know, there is an a > 0
sit. || ]| € |- |, so this gives that ¢ is bounded. Also, ¢ is bijective by
definition. Moreover, since (X, || - ||) is a Banach space, we have from part
2) of proposition 1.2 that (X,,| - |.) is a Banach space. Thus (X, |- [,) is a
Banach space as X = X,,. Hence, we can apply the open mapping theorem
and deduce that ¢! is bounded. But this means that there exists a 3 > 0
st | a < Bl -], s0 ||, and || - || are equivalent.

Now, even if (X, ||-||) is not a Banach space, we still have the equivalence
of the norms as long we assume that u is the interior point of K in the
topological sense:

Since u € Int(kK), there exists a § > 0 s.t. u% 22—z € K for all 2 € X \ {0}.

1]

Hence

—ugi'xgu,VmGX\{O}.

[l

This means that

2w € I, Yo € X \ {0},

lll

SO
ve iy, voe X\ {0}.
Hence
jz], = inf{t > ulz € t1,} < Bl vz e X\ {0}.
Thus we have that |- [, < 5 |- || .
From 1) we know that || - [|[< o - |4-
Hence | - |, and || - || are equivalent also in the case when (X, || -||) is not a
Banach space.
Now we wish to show that |- |, = || - ||z where || -||r is the Thomson’s norm
on X defined in the begining of this section, that is
||z||7 = max{Inf{t e R | x < tu}, —sup{t € R | z > tu}}.
We have
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—sup{t € R|x > tu}

= inf{—t € R|z > tu}

= inf{s € R|z > —su}.
( change of variables s = —t ).
If we consider t > 0, we see that

xﬁtu@tu—méK@u—%xeK.
Since u € Int(K), there exists a 0 > 0 s.t. B(u,0) C K.
Hence
(Bl o0) € {t > 0z < tu}

since

1
for all ¢ > Il

Assume now that

0<a<@and(u—%x)6}(

Since K is convex and u , (u — %x) € K we must have that v € K for all v
that lies in the segment between u — éx and wu.

This means that (u — %ZB) € K for any t > a.
Hence
la,00) C {t > 0|z < tu}.
Thus either
{t > 0|z < tu} = [a,00) for some a > 0 or
{t > 0]z < tu} = (0,00).

Similarly, if we consider
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{t > 0]z > —tu},

since we have ]
xZ—tu<:>x+tu€K<:>u+¥x€K

we deduce that either
{t > 0|z > —tu} = [b,00) for some b > 0 or

{t > 0|z > —tu} = (0, c0).
Hence we have 4 possible situations:
i) {t > 0]z < tu} = [a,00) and {t > 0|z > —tu} = [b,00) for some a b > 0.
Then

max{inf{[a, 00)},inf{[b, c0)}}
= max{a, b} = inf{[a, c0) N [b,00)}
= inf{{t > Oz < tu} N{t > 0|z > —tu}}
=inf{t > 0| — tu < x < tu}

= inf{t > 0|z € t1,} = |z],.

ii) {t > 0Jz < tu} = (0,00) and {t > 0|z > —tu} = [b, 00) for some b > 0.

Then
max{inf{(0, co0)}, inf{(b, c0)}

= b = inf{[b,00)} = inf{(0,00) N [b,00)}
= inf{{t > Oz < tu} N {t > 0|z > —tu}}
=inf{t > 0| — tu < x < tu}

= |7y

23



iii) {t > 0|z > —tu} = [a, 00) for some a > 0 and {t > 0|z > —tu} = (0, c0).
This case can be treated similarly as ii) .

iv) {t > 0|z < tu} = {t > 0]z > —tu} = (0, 0).
Then
= maz{inf{t > 0|z < tu},inf{t > 0|z > —tu}}

=0=1inf{(0,00)} = inf{{t > 0|z < tu} N {t > 0|z > —tu}}
=inf{t > 0| — tu < x < tu} = |z|,.

So, in all cases, we have
max{inf{¢t > Oz < tu},inf{t > Olz > —tu}} = |x|..
Now we have to show that
max{inf{t € R|z < tu}, inf{t € R|lx > —tu}}
= max{inf{t > 0|z < tu}, inf{t > O|x > —tu}}
The idea is to show that for all x, we have that
max{inf{t € R|z < tu}, inf{t € R|lz > —tu}}

is greater or equal to zero. Then it would follow that we can replace t € R
by t > 0.

Now, if we assume that we can replace t € R by t > 0, we observe further
that, if 0 € {t >0 | x < tu}, then (0 —2z) € K. so —x € K.

Hence tu — z € K for all t > 0 since K is a cone.
Then
0 = inf{t > Oz < tu} = inf{t > 0|t € R} = inf{t > 0|z < tu}
since {t > 0 | = < tu} contains all positive t’s.
A similar argument gives that
inf{t > 0|z > —tu} = inf{t > 0|z > —tu}.
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Hence if we can replace t € R by ¢t > 0, it follows that we can replace
further t > 0 by ¢ > 0.

Let us now show that we can replace t € R by ¢ > 0 that is
max{inf{t € R|z < tu},inf{t € Rlz > —tu}} >0, Vo € X, :

Assume first that there is an s < 0 s.t. x > —su and that there exist ¢t < 0
s.t. r < tu.

Then
—su <z <tu
Since s,t < 0, we get that |s|u <z < —|t|u.
This means that —|t|ju —z € K
and z — |s|lu € K.
Since K + K C K, we get that:
(=[t] = Ishu = (=|tlu — 2) + (x — [s|u) € K.
Since u € K and |t| + |s| > 0 because s,t < 0 we have
(It +lshu € K
Thus (t| + |s|)u € KN (—K).
That is a contradiction since (|t| + |s|)u # 0, as [t| + |s| > 0 and u # 0.
Hence, if there exists an s > 0 s.t. s € {t € R|z > —tu},

then the set {t € R|x < tu} contains only nonnegative elements and vice
versa.

This shows that
max{inf{t € R|z < tu},inf{t € Rlx > —tu}} >0, for all z € X,

and the proof of proposition 1.2 is completed.
Comment: In [GQ)] it is just stated without proof that || - || and || - ||z
are equivalent when K is closed and normal. For the proof they refer to the

article of Nussbaum. Here we have given our own proof of this result by
proving the proposition 1.2 .
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Let now (X, || - ||) be a normed space, u € K — {0}, u € Int(K) and K be a
normal, closed cone in X.

As we mentioned, one can also define the Hilbert seminorm at x € X
by ||z [[p= M(x/u) — m(z/u)
where

M(z/u) = inf{t € R|z < tu}

m(z/u) = sup{t € R|z > tu}.

Let L, = Ru and the quotient space X/L, be equiped with the quotient
norm ( ass. with the Thomson norm) i.e.

|2+ Ly [[p=nf{[| 2 =y |lr |y € Lu}
= inf{|| x + Au ||r |A € R}
We will show the following lemma:
Lemma 1.3 |z ||g=2||x+ L, ||z forall x€ X
Proof:
Claim 1) || z + Au ||7= max(M (z/u) + A\, —m(z/u) — \):
By definition
| 2 4+ A ||p= max(M ((x + Au)/u), —m((x + Au)/u))
We have that:
r+ I u<tustu—(r+ ) € K
St-Nu—zreK
s x < (t—Nu.
Hence ¢ € {t € R|(z + \u) < tu} if and only if
(t— ) € {t € Rz < tu}.
This gives that
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inf{t € R|(x + \u) < tu}
inf{t € Rlz < tu} + A
Thus M ((z 4+ \u)/u) = M(xz/u) + .
Similarly it can be shown that
m((z + M) = m(z/u) + A

Claim 2) Given a,b € R, the expression max{a + A,b — A} is minimal when
a+ A =0b— A, that is when A = (b — a):

Consider the functions f, g :R — R given by f(z) =x +a, g(z) = -z +
Let Z be s.t. f(Z) = g(&) , more precisely Z = (b — a).
As f(r)=1and ¢g'(z) = —1Vz € R,
we get that f(z) < f(2) = g(Z) < g(z) Vo < T and

f@) > 1(3) = 9(3) > glx) Vo > 3
(since f is strictly increasing and g is strictly decreasing )
Hence

max{f(z),g(z)} = g(x) > g(%) = f (%) = max{f (), (%) }Vz < Z and
max{f(z),g(z)} = f(z) > f(Z = g(Z) = max{[(Z), g(2)}Ve > &

This proves the claim 2).

Claim 1 and claim 2 give that

inf || . + Au ||7= /i\n]gmax{M(x/u) + A, —m(x/u—N)}
S

= M(z/u) + 3(=m(z/u) — M(z/u))
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which proves the lemma 1.3 .Here we have used that the minimum of the
max{M(z/p) + A, —m(zx/p) — A}

wil be attained at ]
A= S (-mla/n) — Mz/p)

by claim 2.

Now we will consider the examples that we mentioned in the introduction
of this section.

In examples 1.4 and 1.5 we will denote the respective order unit by e, as

done in [GQ)J. In example 1.6, we will denote the respective order unit by u
as we have done so far in this section.

Example 1.4 We consider the finite dimensional vector space X = R" with
its Euclidian norm, the standard positive cone K = R’} and the order unit

vector e = T = (1,...,1)T. We claim that Thompson’s norm with respect
- . .
to 1 is nothing but the sup norm

el = ma 2] = [fo]lc,

whereas Hilbert’s seminorm with respect to T is the so called diameter:
lalln = max (& — 2;) = Ala).
Proof: We have:
rz < te &
(te—x) e K &

t>x; Vi 1<i<n.

Clearly then
inf{t € R|z < te} = maxuz;.

Similarly we have:
te <z &
(x —te) e K &
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t<ax; Vil <i<n.

Hence
sup{t € R|te < 2} = minz;.
Thus
M (z/e) = max x;
and

m(z/e) = min ;.
Then we get that

| [lr= max(M(z/e), —m(z/e))

= max(maxz; , —minmz;).
Choose j and k s.t.

T = maxx;
i

and
T = min x;.
(2

Then

A A R
—xy if —xp > ;.

1) If x; > —xy, then || z ||r= z;.

Since
T; = Hl?X Ty,

we also have x; > xy . Hence x; > |zy].
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Since
xr; = maxz; and x; = min;
K3 K3

we must have
mae ] = max {[a . ]}

But since z; > |zy|, we get then that max {|z;|, |zx|} = z;.

Hence

m;‘%X|1’i| = Ty =[x |7 .

2) If —zy, > x;, then || x ||[7= —z.

Since
T = min z;,
1

we have z, < ;.

Hence —z; > —x;. Combining these 2 inequalities together, (—xj > ;)
and —x > —x;, we get that —z;, > |z,

Thus
|2k = —2p 2 |z,
SO
max |z;| = max{|z;|, [z} = |zs| = 2 =[| 2 |7 .
So in any case
max|a,| =|| = [

Furthermore

| z ||g= M(x/e) —m(z/e) = maxx; —minz; = x; — xp = max (r; — ;)
7 % 1<i,l<n
Example 1.5 Let X = S,, be the space of all Hermitian matrices of dimension
n equipped with the operator norm and K = S be the cone of positive semi-
definite matrices. Let the identity matrix I,, be the order unit: e = I,,. Then
we claim that ThompsonAts norm with respect to I, is nothing but the
spectral radius of X, i.e..
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X[ = mas (O] = Al e,

where A\(X) := (A1(X), ..., \u(X)), is the vector of ordered eigenvalues of X
counted with multiplicities, whereas HilbertAts seminorm with respect to I,
is the diameter of the spectrum:

X[ = max (A(X) = X;(X)) = AAX)).

1<i,j<n
Proof:  First we want to show that K = S indeed is a cone in X:

It is clear that a KK C K for all @ > 0 and K + K C K. Assume that
Ae KN(—K). As A € K, all eigenvalues of A are nonnegative and since
A € (—K), then —A € K, so all eigenvalues of A are less or equal to zero.
We must then have that all eigenvalues of A are 0. But since A is Hermitian
it is unitary diagonalisable.

Hence A = UDU* where U is a unitary matrix and D is a diagonal matrix
having the eigenvalues of A on its diagonal.

Since 0 is the only eigenvalue of A, we get that D is the zero matrix, hence

A=0.5 KN(—-K)=0.
To simplify notation, from now on we let I = [,,. If X < tI, then
tl - X € K,

so tI — X has only non-negative eigenvalues . Again, since X is Hermitian, it
is unitary diagonalisable, so there exists an orthonormal basis of eigenvectors
for X.

Let A = (A1, ..., A,) be the eigenvalues counting multiplicities and
{v1, ..., v, } corresponding eigenvectors. Then they are eigenvectors for
tI — X with corresponding eigenvalues {t — Ay, ....,t — A\, }.

So, {v1,...,v,} is an orthonormal basis of eigenvectors for (¢ — X)) also.
Hence all the eigenvalues for t/ — X are of the form ¢t — \;, i € {1,...,n}.

This gives that (t/ — X) € K if and only t — \; > 0, for all ¢ with
ie{l,...,n}.
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We clearly then have

inf{t € R|(t] — X) € K} = max \;.

That is

M(X/I) = max \;.
A similar argument gives that

(X —tl)e Ko )\, —t>0Vi.

since all the eigenvalues of X — ¢I are of the form \; —t where ¢ € {1, ...

Then
sup{t € R|(X —tI) € K} = min \,.
Thus
m(X/I) =min \;.
Hence

|| X ||7=max {max A;, —min \;} = max |\
by the same argument as in example 1.4.
Furthermore

| X ||lg= M(X/I) —m(X/I) = max \; —min \;

= max (A — ),

1<i,j5,<n

which proves the statement.

We should also show that I indeed is in Int(K), so that I actually is an

order unit:
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Let
Ae S, st [[I-A|<1.
If X\ is an eigenvalue for A, then 1 — A is an eigenvalue for I — A so
=A< T-A<1.

Hence

11—\ <L
But then we must clearly have

0<A<2.
In particular A > 0.

Since A was a general eigenvalue for A, we get that A is positive definite, so
AcK.

Hence
I € Int(K).
At the end, we show that K = S' is closed and normal.

K is closed:

Suppose for a contradiction that K is not closed in X. Then there exists a
sequence {A,} C K s.t. A, converges to some A in X \ K as n — oo. Since
Aisin X \ K, A is then Hermitian, but not a positive semidefinite, hence
there exists an x € C" s.t. < Az, x > < 0. Furthermore, since A,, is in K for
all n, we have < A,z,x > > 0 for all n.

Hence
[(Apz, z) — (Az, )|
= |(Apx,x) + (Az, )|
= (A,z,x) + [(Az, x)| > [(Az,x)| >0
for all n € N.
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On the other hand,
[{Apz, x) — (Az, x)|
= [((An = A)z, )| <|| (An — A [|[| ]
<I| (An = A) [l = |17, and ||(A, — A)|]?||2[|* goes to 0 as n — oo
since || A, — A ||=> 0asn — oo

by assumption.
Hence we get a contradiction, so we deduce that K is closed.
K is normal:
Assume that A, B € K and A < B, that is (B — A) € K.
Then
0<<(B—A)x,x>=<DBzr,xr>— < Azx,x > for all x € C".

Since A and B are positive semidefinite , we have

| All= sup < Az, x >

2l <1
and || B ||= sup < Bz,z >
[l <1

Combining this and the fact that < Bx,x > > < Ax,x > for all x € C" as
we proved, we get that || B ||>|| A || . Since A, B € K were arbitrary with
A < B, we deduce that K is normal.

The example 1.4 and 1.5 are also given in [GQ)], denoted by examples 2.1
and 2.2, but the proofs are omitted in [GQ|. The next example, example 1.6
is not given in [GQ).

Example 1.6 We now let €2 be a compact Hausdorff space and we let
X = Cr(9), that is X is the space of all continuous real valued functions on

Q.

X is then a Banach space with the norm || - ||o, where
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I'f lloe= sup [f(w)].
we
We let
K ={f e X|f(w) >0Vwe Q}
and we let the order unit u = 1, that is u is the constant function 1 in this
case.on (2. It is obvious that K closed and normal cone w.r.t || - || and

that 1 € Int(K).

Now we claim that

I llr=Il f llee Vf € X

We have

| f ll7=inf{t > 0| f €t}
since || - || is equal to the Minkowski functional w.r.t I, as we have proved.
So

I f lr=inf{t > 0| f € tl.}
=inf{t >0 —t < f(w) <tVwe Q}
=inf{t > 0| |f(w)| <t Vw € Q}.
Iftisst. t > |f(w)| Yw € Q,

then clearly

t > sup |f(w)] =] f ||l -
we
Hence
inf{t >0 t > |f(w)| Vw € Q} >|| f [0 -

On the other hand
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| f o= Sléglf(w)! > |f(@)] Vo € Q.

Hence
I f € {t >0 t > [f(w)] Yw € Q},
sO || f ||eo> inf{t > 0] t > |f(w)] Yw € Q}.
Thus
I'f lloo= inf{t > 0] £ = | f(w)| Vw € Q} =|| [ ||z -
which proves the claim.

Next we claim that

M(f fu) = max f(w) and m(f fw) = min f(w) :

we

(Comment: Since 2 is compact and f is continuous, real valued, we know
that f will attain a maximal and minimal value at some points w; and ws in
(), so it makes sense to write

max f(w) and min f(w).)

we we
By definition,

M(f/u) =inf{t € R| f(w) <t Vw € Q}, since the order unit u is the
constant function 1 in this case.

Clearly, if t € Ris s.t. t > f(w) Yw € €, then

>
s

Taking inf over such t’s, we get that
M(f u) > max f(w).
we

On the other hand,
max f(w) > f(w) Yw € Q

we
SO

max f(w) e {t e R | f(w) <t VweQ}

we
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Hence

max f(w) > inf{t e R | f(w) <t YVweQ}=M(f/u).

we)
We conclude that
M(f/u) = max f(w).

In the similar way, we can show that

min f(w) = m(f/u).

we

Hence we get that

I f = (max f(w)) — (min f(w))

weS)

= max (f(w) — f(w)) = A(f).

w,w'EQ
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3 Thompson’s dual norm, the dual cone and
the abstract simlex

From now on in this thesis, unless else is specified, we let (X, ||-||) be a real

Banach space, K C X be a normal, closed cone with Int(K) # ), e € IntK
be an order unit and || - ||z be a Thompson’ norm w.r.t. e.
In this section we consider the dual of (X, || - ||r) and define a norm || - ||%
on this space. We also define the dual cone K* and the abstract simplex
P(e) in (X, || - ||7)*. ( Those definitions can also be found in [GQ)], section
2.) After defining these new concepts, we introduce remarks 2.1, 2.2 and
2.3, where we give the concrete expressions and descriptions for || - |5, K*
and P(e) in the cases when X is equal to R", S,, and Cgr(£2). The remarks
2.1 and 2.2 are also given in [GQ)] section 2, denoted by remark 3.1 and 3.2
respectively. However, here we give a detailed proof of all the statements in
those remarks. In addition we introduce the remark 2.3 not given in [GQ),
that deals with the dual of Cgr(€2) which turns out to be the space of all
signed Radon measures on 2 equipped with the total variation norm.

We define
-7 = (X[ ]lr)* = R by

l2llp = sup | <z2>|Vze (X[ ][lr)
lellz<1

(here < z,x > means z(x))

(Comment; Since || - || and || - ||r are equivalent because K is closed and
normal, we have (X, ||-|))* = (X, || - ||7)*. This space will be denoted by X*
from now on.)

Furthermore, we define the dual cone K* in X* by
K'={zeX"| <za> >0Vre K}
and the abstract simplex by
Ple)={pe K*| <pe>=1}

Remark 2.1For the standard positive cone (Example 1.4 X =R", K =R
and e = T)) the dual space X* is X = R" itself and the dual norm || - ||% is

the Iy norm:
lelly = |zl = [l«]l1.

2

Furthermore the dual cone K* is R, in this case.
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T)

The abstract simplex P( 15 the standard stmplex in R™ :

P(T)) ={veR} : Zvi =1},

i.e., the set of probability measures on the discret space {1,...,n}.

Proof: For each ¢ € X* | if we let

N
Y2
y=1 .
Yn
where y, = ¢(ey) , we see that ¢p(x) =z -y for all x € R" = X. Indeed,
ey =uyr = ¢(er) forall k€ {1,...,n}, {ex}i1<k<n is a basis for R" and ¢
is linear, so it is completely determined by its values on e} s. Hence
¢(z) = x -y for all x € R", so we can identify X* with R™ .
If ||z]|r <1, then ||z||o < 1since || ||z =] - || by example 1.4, so we get
that

[o(z)| = |z y| = ‘kayk’ < Z |zxlyx| < HxHooZ lyi| < Z Y-
k=1 k=1 k=1 k=1

On the other hand, if x € R" is given by

[y

2y when yp #0
k= 0  wheny, =0

for all k € {1,...,n}, then ||z|| = 1 and

n

pa)=z-y=2 |yl

k=1

Hence

1117 = [lyllz = > luel = llylh
k=1
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Next we show that K* = R :

Assume that ¢ € K* and let y € R" be s.t. ¢(x) = xzy for all z € RY.

(Such y € R™ exists by what we have proved above.) Then, in particular

p(ej) =y; >0 forall j € {1,...,n} since e; € K for all j. Thus y € R.

On the other hand, if y € R} and z € K, then z -y = ijyj > 0 since
j=1

z;y; > 0 forall j € {1,...,n}. Hence ¢ given by ¢(x) =z -y for all x € X is

in K*, and this shows that K* = R"}.

Furthermore, for ¢ € X* given by ¢(z) = x -y for all z € R, we have
s(=leoy l=1a) p=1
k=1

Combining this and the the fact that K* = R}, we get

Pl)={pe K" | ¢(T)=1}={yeRLD y. =1}

This completes the proof of remark 2.1.

Remark 2.2 For the cone of semidefinite matrices (Example 1,5 X = S,,,
K=S"ande=1, ), X* =5, itself and the dual norm || -||% it is the trace
norm:

XI5 =Y WOl =[1X]h, X €5,

1<i<n

The dual cone K* is equal to S}, the set of all positive semidefinite matrices.
The simplex P(1,,) is the set of positive semidefinite matrices with trace 1:

P(L,)={pe S} :trace(p) =1}.

Proof: We want to show first that for each ¢ € X*, there is a unique B € X
s.t. p(A) =Tr(AB) forall A€ X:

As ¢ is linear, it is completely determined by its values on a basis.

Let Vi, be a matrix in X having 1 as its [,k — th component and its
k,l — th component and 0 otherwise.

F.ex. if n=2, then
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1
we{21)

Let V;;l be a matrix in X having i as its k, I-th component, -i as its 1, k-th
components and 0 otherwise.

F.ex. if n=2, then

- 0 —i
Vzvl_{i 0 }

In this notation,we always assume that k£ > [. Furthermore, let V;; be a
matrix having 1 as its i, i-th component and 0 otherwise.

Again if n=2 then

10
0 0

B ={{Viiti<i<n, {Viy hi<ichzn, {%7l}1§l<k§n} is a basis for X.

Clearly, we get that

Given (k,l) with 1 <1 < k < n, it is easy to see that
Tr(ViyB) = by + biy.
Tr(Viy B) = i(byy, — by;) where B = [b; ]
If B € X, we know that Re(b, ) = Re(bry) Im((bx) = —Im(by,)

Hence, for any pair (k,1) with 1 <1 < k < n, we get a unique solution of b
and by by considering the equations:

TT((V]@ZB) = (b(‘/kJ) = bl,k -+ ka = 2R6(bl,k),
Tr((ViuB) = ¢(Viy) = i(bug — bry) = 2Im(byy,).
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Furthermore, since 17((V;;B) = b;; we also get a unique solution for b;;;,
namely b;; = ¢(Vi;).

Hence there is a unique B € X s.t. ¢p(A) =Tr(AB) for all A € .

But since (3 is a basis and ¢ is linear, we have then ¢(A) = Tr(AB) for all
AeX.

This shows that ¢ : X — X* given by 1)(B) = ¢ where ¢p(A) = Tr(AB)
for all A € X,

is an isomorphism, so we can identify X with X*.
By definition,
P(L) = {6 € K*|é(I,) = 1}.
But, as we have shown, for each ¢ € X*, thereisa B € X s.t.
¢(A) =Tr(AB) for all A€ X.
Hence, if ¢(I,) =1, it follows that Tr((1,B) = Tr((B) = 1.
So we can rewrite the expression for P([,) as
P(l,)={B e SHTr(B) =1}

by identifying ¢p with B for all € X. ( It remains to show that S;© can be
identified with K* and it will be done later. )

Let B € X and consider ¢ € X* given by ¢p(M) = Tr(MB) for all
M € X. We want to show that ||¢g||* = || Bl

Let M € X and assume that ||M||r <1, that is |A\;(M)| < 1 for all
i€ {1,...,n}. (Recall the example 1.5 where it was shown that
[[M[|z = [[AM)]|s0)-

Since M and B are Hermitian, hence unitary diagonalisable, there are uni-
taries Uy, Uy and diagonal matrices Dy, Dy s.t.

M =U,D\U; , B =U,D>U;.

Then
TT(MB) = Tr(UlDlU{“ UQDQU;)
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= T?”(DlUl*UQ DQU;Ul)

= Tr(Dy (Ui Us Do(UtUs)*))

= Tr(D1(VD,V*)) = Tr(D; A)

where V = UjU, and A = VDyV*. We have

TT(DlA) = Z )\jam
j=1

where A = [a; ], and \; s are the eigenvalues of M so that

A - 0
D, = : o
0 --- \,
Let V = [v; ;] and write D, as
T 0
D, = : :
0 Mn
Since A =V D,V*
Vi1 Ulp m - 0 Vi1 - Upl
Unl N Unn O e nn 1_)177, N rl_}nn
V11 U1n Mmvir -+ MUni
Un1 Unn nnﬁln e nnl_)nn

we see that for each j € {1,

Now, since

...,n}, we have

n
aj; =Y melvisl®
k=1

Tr(MB) =Tr(D1A) =Y \aj;
j=1

and |A;| <1 for all j by assumption (||M||r < 1), we get that
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[p(M)| = |Tr(MB)| = | 35— Ajail

n n
<Y Illagsl <7 lay,l
P =1

—ZIZW;IUMI |<ZZ|nk||ng|2 ZZWH%H —Z|77k|
j=1 k=1

7j=1 k=1 k=1 j=1

( since Z |vjx|> =1 for all k € {1,...,n} because V is unitary).
j=1

m -+ 0
But since Dy = : .o
0 - m
and B = Uy D,U;, we have that 7;’s are the eigenvalues of B.
Since M was arbitrary with ||M ||z < 1, we obtain that
losllr <D lml = 11Blh
k=1
On the other hand, if we let M = U, DU; where
AN oo 0
D=|: =
0 - A\,
and the A\,’s are defined by
e
N = { 1 Whenm 70
0  otherwise |,

we get that

¢p(M) = Tr(MB) = Tr(U,DU;U,DU;) = Tr(UyDDyUy) = Tr(DD)
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As | A\ <1 forall k € {1,....,n},
we have ||M||r < 1.
Since .
Sp(M) = |n,
k=1
we get that
onllr > Inl.
k=1

All this together gives that

léallz = lml = [1Blh,
k=1

for all B € S,,.

Now we have to show that K* = S% :

Let
0 --- 0
E;; = 1,
0 --- 0
A -- 0
If B=U oo U* where U is unitary,
0 - \,

let then A;; = UE;;U*. Hence A;; € K, since the eigenvalues of A, ; are 0
and 1.

Then
A - 0
¢B(Aj;) =Tr(A;;B)=Tr(UE;;UU | = - | UY)
0 D
A - 0
=Tr(UE;; | + . + | U
0 - A



A - 0
=Tr(Ejp; | ¢ . )=\
0 - A,

If pp € K*, (where ¢p is given by ¢p(M) =Tr(MB) for all M € S,,) w
must then have A\; > 0, since A;; € K.

This is true for all j, hence B must be then a positive semidefinite. Thus
K* C S%. On the other hand, if B is positive semidefinite and M € K, let
again M = U;D,U{ and B = Uy D,U; where

A, - 0
Dy=| © .
0 A,
;- 0
Dy=| + -
0 - 1

As we saw, Tr(MB) = Tr(D,A) where A = U;UsDyUsUy

We calculated that

n n

A) = Naj; = ZA Zﬂk|%k| =) Nl
j=1 J=1

J=1 k=1
where V' = [v;x] = U Us.

But since B was assumed to be positive semidefinite and the 7;’s are the
eigenvalues of B, it follows that 7, > 0 for all k.

Hence

¢p(M) =Tr(MB) = Tr(D,A) Z jnk|vj,k]2 >0

( here we use that A\; > 0 for all j since M € K).
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This is true for any M € K, hence ¢p € K*. Thus ST C K*. We conclude
that K* = S and this completes the proof of the remark 2.2.

The remark 2.1 and 2.2 are also given in [GQ]| denoted by remark 3.2 and 3.2
respectively, but the proofs are omitted in [GQ|. The next remark, remark
2.3 is not given in [GQ).

Remark 2.3 Let Q be a compact Hausdorff space and let M,.(S)) denote
the space of all signed Radon measures on 2 with the norm || v ||= |v|(£2).

For v € M,(R2), let ¢, : Cr(2) = R be defined by

o) = /Q fav.

Then v — ¢, is an isometric isomorphism of (M,, (), || - ||) onto

((Ce(2))7 [ 11)-

Proof: Consider ¢ € (Cgr(Q2))*. Since ¢ is real, by theorem 13.13 in [MW], ¢
can be written as ¢ = ¢, — ¢_ where ¢, , ¢_ € (Cr(2))* and ¢, , ¢_ are

positive linear functionals .

Since () is compact, by Riesz - Markov theorem, there are p; and po
positive Radon measures

s.t.
6:(f) = / Jdus ¥ € Cr(9),
Q

o_(f) = /Q Jdus VS € Ca(2).

Let v = p1y — pto. Then v is a signed Radon measure. ( This will be proved
at the end of this section under " comment " )

Thus, if ¢ € (Cr(€2))*, then there is a signed Radon measure v s.t.

o(f) = /Q Fdv Vf € Ca(Q).
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On the other hand, if v € M,(Q2) and

bo(f) = /Q fdv Vi € Ca(),

then ¢, is clearly a real valued linear functional on Cg(£2) since v is a
signed measure.

Furthermore, ¢, is bounded:
60 (N)] = | Jo fdv] = | J fel(vs —v_]
= | Jo fdvs = Jo fdv_| < | [o fdvi| + | [, fv_]
< Jolfldve + Jo [fldv- = Jo |fld(vy +v-)
= Jolfldlvo] < [|fll|0]() VS € Ca().
Thus ¢, is bounded and ||¢,|| < [o[(€).
Hence ¢, € (Cr(Q))*

So we have an isomorphism between M,.(€2) and (Cg(Q2))* via the map
v — ¢, where v € M,(Q) and ¢,(f) = [, fdv Vf € Cr(Q).

Now we will prove that this isomorphism is an isometry. Then we have to
prove that for all ¢, € (Cr(£2))* we have that ||¢,|| > |v[(€2) when

bu(f) = [, fdv Vf € Ca(2),0 € M,(9).
(We have already proved the opposite inequality. )
Let {P, N} be the Hahn decomposition for v, so vy (N) =v_(P) =0
Let € > 0.

Choose K,L compact subsets of 2 s.t. K C P,L C N and v (P \ K) <
and v_(N \ L) <  (This is possible since v, v_ are regular Borel
measures. )

=
4

Since P(\N =0 and K C P,L C N, it follows that K (L = 0.

Furthermore, since K,L are compact and €2 is Hansdorff, it follows that K
and L are closed.
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Also, since (2 is compact Hausddorff, it is normal.
Hence, by Urisohn’s lemma
dfi € (Cr(Q)) st. fi, =1, fiy, =0and 0 < f; < 1.
Similarly there exists fo € Cr(€2) s.t. fo,, =0, fo, =1l and 0 < fo < 1.
Let f = fi1 — fa.
Then f € Cr(Q), ||f|lcc <1and fi,, =1, f, = -1
We claim that | [, fdv| > [v](Q) —e:
We have K € P,L € N and vy (P \ K),v_(N\ L) < 5 and
[ = [=11], f(K) =A{1, } f(L) ={-1}.
Then we get | [, fdv| = | [, fdvy — [, fdv_|
= | Jp fdvy = [y fdv-]
= | [y fdvi + fP\K fdvi — [ fdv- — fN\L fdv_|
= | [ ldvy + [, 1dv_ + fP\dev+ - fN\Lfdv_|
— s () + 0 (L) — (fy v = fp e feluy)

> 0 (1) 0_(L) = (o, o= — [y Flvs]
> 0p ()t (L)~ | | fdo_|~| [ fdu]
N\L P\K

> 0y (K) + (L) - /N Ml ~ /P i

Z U+(K) + 'U_(L) — / ldv_ — / 1dU+
N\L P\K

= v (K) +v_(L) = v_(N\ L) = 0, (P\ K)
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> (0 (P) = ) + (- (N) = §) = §— §
> 0y (P) + 0 (N) — e = 04(Q) +v_(Q) — € = [v|(Q) — e.

Since || f]]oo < 1, we get that

lonll 2 6,01 = | [ favl = lol(@) —
Since € > 0 was arbitrary, we get that
o]l > [0] (),
hence
o]l = [0](£2).
Thus v — ¢, is an isometric isomorphism.
Comment:

It was stated that if p; and s are Radon measures on €2, then v = iy — s
is signed Radon measure. We will prove this now:

Let A C Q, A Borel. Given € > 0, choose Uy, K1 and Us, K> s.t.
Kl Q A Q U1 K2 Q A Q UQ, Kl,KQ compact, Ul, UQ open and

pi(Un\ K1) < 5, pe(Us\ Ka) <

N

LetU:UlmUQ,K:KlLJKQ.
Then U is open, K is compact, K C A C U,
U\ K) < pa(Un\ K1) < 5

29

and pa(U \ K) < pa(Us \ K3) <

N

Hence
v+ (U\K) =v((U\ K)NP)
= m((U\NK)NP)—p((U\K)NP)
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< m((U\K)NP)+ p((U\ K)N P)
< (U NK) + U\ K) < 5+ 5 =
Similarly v_ (U \ K) < €, so v; and v_ are regular.
Furthermore , if K C € is compact, then
0y (K) = v(K 0 P) = ju (K 11 P) = pa(K 1 P))
< pa(K) + pe(K) < oo
Similarly v_(K) < co.
Hence v, and v_ are Radon measures.
Since () is compact and v, ,v_ are Radon measures, it follows that
v4(02),v-(Q) < 0.
Let now again A C €, A Borel.
Then we have:
[(A)] < [0](A) = vi(A) +v-(4) S v (Q) +0v-(Q2) < oo

This shows that v is finite signed Radon measure and complets the proof.

We have shown in example 1.6 that || - ||zw.r.t the constant function 1 in
the space Cg(2) is exactly || - || When

K={feCr()| f(x) >0VreQ}
Hence the dual of (Cr(2), || - ||7) is actually (Cr(2),]] - |[e0)*-

Since (Cr(€2), || - ||oo)* is isometrically isomorphic to M, (§2) equipped with
the total variation norm ( as we proved ), it follows that

el = [l (2) Vi € My ().

Also, it is clear that the dual cone and simplex in this case are K* = M, (),

P(1) ={p e M (Q) | p(2) =1} = P(Q),
so the simplex is the set of all probability Borel measures on 2. To see that

K* = M, (Q),, we refer to the exercise 13.75 in [MW] which states that a
linear functional ¢, on 2 given by
/ fdp

is nonnegative if and only if € M, ()
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4 The dual unit ball and its relation to the ab-
stract simplex

In this section we refer to the 2. version of the article by Gaubert and Qu
denoted by [GQ2|. We consider again the space (X*,||-||-) defined in section
2 and introduce lemma 3.2 where we give a description of the dual unit ball
Bi(e) of the space (X*,|| - ||%-) in terms of the abstract simplex P(e) and
we also give a complete proof of this lemma. In order to prove lemma 3.2
, we first need to introduce lemma 3.1 which we will use later in the proof
of lemma 3.2. Lemma 3.1 is denoted by (6) in [GQ2| and is given without
proof. We give here a detailed proof of this lemma. After proving lemma 3.1
we prove the observation 3 which states that P(e) is a w* - compact subset of
Bi.(e). This observation will also be used in the proof of lemma 3.2. Finally
we state and prove lemma 3.2 . Lemma 3.2 is denoted by " lemma 3.1 " in
[GQ2]. In our proof of this lemma, we will mainly follow the proof of lemma
3.1 given in [GQ2|, but we supply most of the statements that are used in
this proof with further, detailed explanations.

Lemma 3.1 Let K* be a dual cone in X* as defined in the begining of
the section 2. Then, for all z € K* with z # 0 , we have < z,e > > 0 .
Furthermore, for all x € X , we have

z€K*, z7#0 <ze>

Proof: We prove first that if z € K* and z # 0, then < z,e > > 0:
Since e € Int K, given x € X there exists t > 0 s.t. (e + %x) € K and
(e—i2) e K
IszK*,then<z,e>+%<z,x>ZOand<z,e>—%<z,x>20
Hence, if < z,e > = 0, we must then have that % < z,x > > 0 and
% < z,x > < 0. Thus we get that < z,2 > = 0. Since x was arbitrary, we
deduce that z = 0.
So, if z # 0 and z € K*, then < z,e > > 0. This proves the first statement
of the lemma.
Now we prove the second statement.

Let x € X, ©#0,let n € N bes.t. [|z|][r—L > 0andlet s, = ||z|[r — L.
It follows that x ¢ s, 1.,
since ||z||r = inf{t >0 | z € t1.}.

Hence, either

52



(e—yx) g Kor(et+ o) ¢ K.
Suppose (e + ) & K.

Since K is convex and closed, by corollay 14.7 in [MW], (X is LCS since it
is a normed space)

Jdze X*st. <z,e+ ix > < inf z(K).

It follows then that inf z(K) > —oc.
Assume now that there exists an y € K s.t. < z,y > < 0. Since K is a cone,
then Ay € K for all A > 0.
Hence < z,\y > = A < z,y > € z(K) for all A > 0. Since < z,y > < 0, it
follows that

lim A < z,y > = —o0.
A—00
Then we get that inf 2(K) = —oo and this is a contradiction. So there is

noy € K s.t. <z,y> <0, hence we have < z,y > > 0 for all y € K. Thus
z e K*.
Since z € K*, we get that inf z(K) > 0. As 0 € K, we deduce that
inf 2(K) = 0.
Thus 1

<z,e+—x > <infz(K)=0.
This gives that i <z,r><—<ze><0.
Hence i| < z,x>| ><ze>.Now, since z € K* and z # 0 , we have
< z,e > > 0, by the first statement of the lemma. So we can divide with
=% on the both sides of the inequality and obtain

| < z,2>| 1

——— > sn=|lllr ——

<ze> n

Since z € K*, we get that

<z > < > 1
sup | Z,T ‘>’ Z,x |>Sn:HxHT_E'

sek*340 < Z,e> T < z,e>

Since this is true for all n with ||z[|z — £ > 0, letting n — co,we obtain



Now, if (e — ix) ¢ K, in the same way

Jw e X*s.t. <w,e — ix > < infw(K).

<w,r>
<w,e>

Then, using, similar arguments we can deduce that > Sp = ||x||r — %

and that w € K*.

Hence R
“ |<w,m>|>s | 1
weK*,I;)IJ;éO <w,e> " T

Again, letting n — oo, we get that

| <w,x > |
sup ————— > ||z||7-
weK* w#0 <w,e >

Now we have to prove the opposite inequality, that is

su — < ||z
zeK*B#) <ze> =/l

We have
||z||r = inf{t > 0|z € tI.}.
Assume that © € t1, for some t > 0 and let z € K*, z # 0.

Thene—%xEKande%—%xeK.

Hence
1 1
<z,e>—¥<z,x>20and <z,e>+¥<z,x>20.
Thus
1 . .
—<Z,6>§¥<Z,$>§<Z,€>,WthhglVGSthat
H<ze>|<|<ze>|=<ze>
(since z € K* <z,e>>0, 50 <z,e>=|<ze>])
Hence .
< z,xT>
_‘ U |§1’
t <z,e>

o4



| < z,2 > |
so — < 1.
<ze>

Since this is true for any t s.t. x € t1,, taking inf over all such t’s, we get
that

z€EK* < 2,6 >
z#0

Combining these 2 inequalities together, we obtain that

z€K*,27#0 <ze>

This complets the proof of lemma 3.1
Next we have the following observation:

Observation 3 P(e) is a w*— compact subset of Bj(e) :
Proof: First we observe that P(e) C B (e) :

Let it € P(e). Then

| <fz>| < sup | <px>|

peP(e)
| < p,z > | | < z,2 > |
= sup ————— < sup ————— = |[z]|r
neP(e) < W, T > Z€¢Ko* <z,e>

(Here we have used that < py,e > =1 for all u € P(e), P(e) € K*\{0} and
for the last equality, we have used lemma 3.1 )
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This is true for all z € X, hence ||i||5- < 1. Since i € P(e) was arbitrary, we
get that P(e) C Bi(e) .

Next we show that P(e) is w*— closed:

Let {v,} be a net in P(e) and assume that v, — v in the w* topology. This
simply means that < v,,x >—< v,x > for all z € X. Since < vy, x > >0
for all x € K and for all o (as v, € P(e) C K* for all a ), we get that
<wv,x > >0 forall z € K. Thus v € K*.Also since < v,,e > =1 for all «
as v, € P(e) for all a, we get that < v,e > =1 Thus v € P(e). Hence P(e)
is w* - closed. Since Bj.(e) is w* - compact by Alaoglu’s theorem and P(e) is
a w* closed subset of By (e), it follows that P(e) is w* compact. This proves
observation 3.

Lemma 3.2 The unit ball Bi(e) of the space (X*,|| - ||%) satisfies
B (e) = conv(P(e) U (—P(e))).
Proof: To simplify notation, throughout this proof we let P = P(e).

We will prove this lemma by proving the following:

a)|’37||T:Sllp|<,U,fL'>|: sup < [, T >
neP nePU(—P)

b) Bi(e) = com" (P U (~P))
¢) conv? (P U (—P)) = conv(P U (—P))

Proof of a): Let z € K* | z# 0. Then < z,e > > 0 as we have proved in
lemma 3.1. Also, if we let 4 = —*—, then clearly p € P. From lemma 3.1
we have

< >
l|z||r = sup —| ik )
zeK*,27#0 <z e>

Using all this together, we get that

| < z,2 > z
l|[x]lp = sup —————= sup |<

—_—. T >
)
z€K* ,z#0 < z,€e> zeK* 270 <z, e>

<sup| < p,z>|
pneP
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On the other hand, if 4 € P then < u,e > =1 and p € K* by definition of
P, so

| <z > | | <z2>|
sup| < p,x > | =sup ———— < ——— =|z]|
neP peP < [, e > 2eK* 240 < 2,6 >
Hence
||zllr = sup | < p,z > |.
HeP
Now
|zll7 = sup| < p,z > | = sup{max{< p,z >, — < p, v >}}
neP neP
=sup{max{< g,z > < —p,x >}} = sup <p,x>.
ner pEPU(—P)
Thus
|z[lr =sup| <p,z>[= sup <pz>.
neP nePU(—P)

and this proves the part a).
Let now z € X™.
We then have
2|5 <1 & | <z,x>|<|lz||lr Vo€ X.

Since

z|lr = sup < p,x>,
HEPU(—P)
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we get that ||z][; <1< sup <pax>>|<zz>| VeeX. (1)
pnePU(—P)

We wish to use this to prove the part b), that is
Bi(e) = comv® (P U (—P).
Proof of b) First we prove that Bj.(e) C conv(P U (—P))*.
Suppose, this is not the case.
Then there exists a z € Bj.(e) \ conv(P U (—P))
( Here we always consider the closure w.r.t the w* - topology. )

Since z ¢ conv(P U (—P)), by prop. 14.9. part e) in [MW], there exists
¢ € (X7)

s.t. ¢(z) >sup ¢(P U (=P)).

( Here we use that X* with w* -topology is locally convex topological
space.)

Thus there exists scalar v € R
st. ¢(z) >y =sup ¢(PU(=P)) = ¢(u) Y € PU(=P).

Now, by theorem 1.3. in [C], we have (X*, w*)* = X. Thus there exists an
reX st p(u) =< p, x> forall pe X*

So<z,x>=¢(z) >7>d(n) = < p,x>forall pe PU(—P).
Hence

<z,g>>7v> sup < pu,r> as y>< p,x>Vue€ PU(—P).
HEPU(—P)

On the other hand since z € Bj.(e), we have ||z||5 < 1. By (1), it follows
then that

58



<zrz><|<zz>|< sup <pzx>
HEPU(—P)

Thus we get a contradiction.
We can conclude then that there is no

z € Bj(e) \ conv (P U (—P)),

hence we must have
Br(e) Cconv(P U (—P)).

Now, we prove that
conv(P U (—P)) C Br(e) :

By observation 3, P C Bj.(e) and then clearly also (—P) C B.(e), so
PU(~P)C Bj(c).

Since Bi(e) is w* - compact by Alaoglu’s theorem and the w* - topology is
Hausdorff, we get that Bj(e) is w* - closed. Also Bj(e) is obviously convex.
Hence, by prop 14.9. part d) in [MW]|, conv(P U (—P)) C By (e). Combining
these 2 inclusions, we deduce that Bj.(e) = conv(P U (—P)). This proves the
part b).

Proof of ¢):  We observe first that if y € conv(P U (—P)), then

y=> v+ Y buwy,
k=1 j=1
where a;, > 0, b; > 0 Vk,j

v, € P, w; € (—P) Vk, j

n m

and Zak—l—ij =1.

k=1 j=1

Since w; € (—P) for all j, it follows that for all j there is some 7; € P s.t.
U)j = —7Tj.

Hence
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where v, m; € P Vk, j.

Let . .
S 3
k=1 j=1
Then s,t > 0and s+t =1.
Furthermore, if we let
U:Z”:%U ﬂ:zm:ﬁwwhenst>0
s ks ' t 7 ) )
k=1 7j=1
then <wv,e > = — < Vg, e > = — =1 (since vy € P VEk).
2oy ST T e

Similarly < m,e > =1 since < 7j,e > =1 for all j. Since ay, b; > 0 for all
k,j and vy, m; € P C K*, we have that v and 7 are in K. Thus we get
that v,m € P.

This shows that if y € conv P U (—P), then y = sv — tm where
v,me€ P s,t>0and s+t =1. Since B} = conv(P U (—P)), if u € Bj(e),
then there exists a net {fiq}aca in conv(P U (=P)), s.t. pe — p in w* -
topology. But as we have shown, any such u, can be written as s,v, — toTq
where Vo, 7o € P, Sa,ta > 0 and s, + t, = 1. Since {vs}taca, {Tataca
are nets in P, {Sq}aca, {ta}aca are nets in [0,1] and P is w* - compact by
observation 3, by passing to a subnet if necessary, we may assume that v, 171;

Ta—y7 for some v, 7 € P and s, — s, t, — t for some s,t € [0, 1].
w
Then the net {s,vq — taTa}aca converges to (sv —tm) in the w* -topology.

Moreover, since s, + t, = 1 for all @ and (s, + to) — (s +t) we get that
s+t=1.

But we have (s,v4 — taTa)—3 [, SO We must have u = sv — tr.
w
Since v,m € P, s,t € [0,1] and s+t=1,

we have y = sv — tw € conv(P U (—P). Since p € conv(P U (—P)) was
arbitrary, we get that

conv(P U (—P)) = conv(P U (—P)).

Thus
B (e) = conv(P U (—P)) = conv(P U (—P))

and this complets the proof of lemma 3.2.
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5 Hilbert’s quotient norm and dual norm. Char-
acterisation of disjoint, extreme points of the
simplex.

In this section, we return back to the 3. version of the article of Gaubert
and Qu denoted by [GQ]. We will first consider the quotient space X /Re and
define a norm ||| - |||z on this space. In lemma 4.2 we will prove that the dual
of this space ((X/Re)*, ||| - |||5;) is isometrically isomorphic to (M (e), || - ||};)
where M (e) is the anihilator of Re in X* and || - |[5; = 3|| - |- ( Recall that
|| - ||5 was already defined in section 2). After that we will consider the sim-
plex P(e), define "disjointness" of elements in P(e) and then give a concrete
description of disjoint, extreme points of P(e) in different examples\ remarks.
Throughout section 4 we will mainly follow section 4 in [GQ|. However, the
lemma 4.2 in |GQ)] is slightly modified and reformulated here. In addition,
all remarks and examples in [GQ)] are given here with complete proofs.

Given (X, e, || - ||7), consider now the quotient space X/Re and define
Hilbert’s quotient norm ||| - |||z : X/Re — RT by

||z + Rel||z = 2 inf ||z + Xe||7.
AER

Then ||| - ||| is a norm on X/Re :
Let ||| - ||lr : X/Re — R be given by

||z + Rel||r = 2 inf ||z + Ael|r.
AER

Since (X, ||-||r) is a Banach space and Re is a closed subspace of X, by theo-
rem 4.2 in chapter 3 in |C], we have that |||-|||7 is a norm on X/Re. Now, since
111z = 3lI|- |||z by definition, it follows that [||-|||z is also a norm on X/Re.

Comment: In [GQ)| they consider ((X/Re,|| - ||x) instead of

(X/Re, [ [[lm),

where || - ||z is a Hilbert seminorm on X w.r.t. e that is defined is section 1
(||z||lg = M(x/e) — m(X/e)). It turns out that ||z||g = |||z + Re|||g for all
x € X : By our definition,

||z + Rel||z = 2 inf ||z + Xe||7.
AER
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Now, by lemma 1.4 is section 1 ( lemma 4.1 in [GQ)] )

el = 2 inf ||z + e||r.
AER

Hence ||z||g = |||z + Re]||g for all z € X | so in |GQ] they actually identify
|||z with ||| |||z - However, it is not quite precise to write "((X/Re, ||-||x)"
as they do in [GQ)] , since, by definition, || - ||g acts on X whereas ||| - |||x
acts on the quotient space X/Re.

Furthermore, let M(e) = {u € X*| < p,e > = 0} and define Hilbert’s
dual norm
I {17 = M(e) = R7by
* 1 *
Il = Sllullr Vi€ Me).

We have then the following lemma:
Lemma 4.2 (X/Re*, ||| -|||5) is isometrically isomorphic to

(M(e), [[ - [[7)-

To prove this, we will first prove the following lemma:

Lemma 4.1 Let Z be a normed space with the norm || - ||1. Let || - ||2 be
another norm on Z given by || z ||a= C'|| z |1 for all z € Z where C >0 is a
constant. Then

* 1 * *
lellz= 7l el forallpez
Proof: Assume that || z |[2< 1.

Then || z [1< &, hence || Cz ||;< 1 which gives that

Clo(2)| = |p(C2)| <[l o |IT Vo € Z".
So ,
o) < Z ol voe 2z
Thus '
sup [9(2)| =l o[l < Z I @llf Vo ez

[zll2<1

on 7, by the same argument we can deduce that

1 * *
I llo=C - fl5 -

- h< 1
c
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So

1 * *
o il -

This gives that
W= 1 13,

which proves the lemma 4.1. Now we prove the lemma 4.2:
By theorem 10.2 in chapter 3 in [C|, we have ((X/R.)*, ||| - [|%) is
isometrically isomorphic to (M (e), || - ||%).

Since ||| - ||| is the norm on X/Re given by
-1 =21 [l

the lemma 4.1 gives

- 11T = 31T 111
Since ((X/Re)*, ||| - ||I;-) is isometrically isomorphic to (M (e), || - ||5-) and
-5 = 311 1|5, it follows that ((X/Re)*, ||| -]|[3;) is isometrically isomor-
phic to (M(e), % || - |I5). This proves lemma 4.2. since || - [[5; = 3| - |[7 by

definition.

The lemma 4.2 implies that the unit ball of the space (M(e),|| - ||3),
denoted by Bj;(e), satisfies:

Bj(e) = 2Bj(e) N M(e).

Remark 4.3 In the case of the standard positive cone (example 1.4,
X =R" K =R"and e = f) we claim that implies that for any two
probability ju,v € P(1). the dual norm ||p—v||% is the total variation distance
between p and v:

. 1
=l = Slln = vlls = [l = vllrv

Proof We have already proved in remark 3.1 that in this case we have
-1z =11
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Hence

11l =5l B =50 I
Let now .
w € M(e), that is Zwi = 0.
k=1
Set

J={i]1<i<n, w; >0},

Jo={i|1<i<n, w; <0}

If L C{1,...,n}, then by definition of J and J¢, we have

> wil =1 > wit+ > wil

€L ieLnJ ieLnJe
SDIETRID SETED it
ieLNJ ieLnJe ieLnJ
-y wEYw
ieLNJ ieJ

Since L C {1,...,n} was arbitrary, we get that

sz’: Sup ‘Zwi’:HwHTV-

Lg{l 7777 n} €L

Now, since

Ozzwizzwi—i‘zwi:ZWJ _Z‘wi‘v
i—1

ieJ ieJe ieJ ieJe
we get that
Z |wi| = Z |w;| = Zwi (as w; >0 VielJ).
icJ ieJe icJ
Hence

n

Jwls = Z |wi| = Z |wil + Z |wi

i=1 icJ ieJe

=2 w; = 2||w||rv.

icJ
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Thus 3||w||; = |[w||zv, so in general 1||-||y = ||-||zv on M (L) asw € M(I)
was arbitrary. This proves the statement in remark 4.3. The remark 4.3 is
also given in [GQ)] , but without proof.

Definition 4.4 For all v, 7 € P(e), we say that v and 7 are disjoint, denoted
by v L 7, if
V4T

2
for all u € P(e) such that 4 > % and p > 7. (This definition is also given
in [GQJ).The notation > § and p > 7, means that y—3 and y—7 are in K*.

/"L:

Example 4.5 In the case of the standard positive cone ( X = R", K = R’}
and e = 1), we claim that two points v, 7 in P(1) are disjoint if and only if
foralli € {1,...,n}, v; =0 or m; = 0 holds, meaning that v and 7, thought
of as discrete probability measures, have disjoint supports:

Proof: We observe first that if v, 7 € P(1) then p > 5 and p > 7 if and
only if y; — 5 > 0 and p; — % > 0 for all 7, since K* = R’ by remark 2.1.

Hence -
;> = =} Vi
i > maxq 5 2} i
Let now
I'={ilie{l,...,n} and m > v;}.
Then

il
Since v;, m; > 0 for all 7, because v, T € P(T), we have:
j i i w1,
Z(%_%) < Z% < ' % =3 (since T € P(e)).
el el =1
This gives that:

el

1 T V; 1 1
== S I
2+Z(2 2)_2+2

icl

65



Assume now that v and 7 in P(T) do not have disjoint support. This
means that we have v; # 0 and 7; # 0 for some j € {1,...,n}.

Set .
v; T
M=1- B iy

Then M > 0, as we have shown .

Let p € R™ be given by

Then p; — % > 0and p; — 3 >0 foralli € {1,...,n}, sop> 7 and p > 3.

Furthermore

u v T M Uy T
o= (3 (max(G G ) s max( G

n—1
i#j,1<i<n

_ M+Zmax{%,%} _—
=1

v

so i1 € P(I). But p # ™= since p; = max{%,
and 7; >0 .

] ity ,
+} < 5 because v; > 0

Hence, if v, 7 € P(1) are s.t. whenever € P(1) and p > T >

that u = ”;”r, then v and m must have disjoint support.

o 1
5 , implies

Assume now that v, 7w € P(f) have disjoint support. Then for each i we

have that max {%, %} = 3 + % since either v; = 0 or m; = 0. Then, if y is
st. pu >3 and p > 7, that is p; > max{%, %} for all 4, we get that

;ue;max{%%}:;v 27r :;%4-1':1%:54_5:1.

-,

So, if we in addition want that p € P(1), that is

Zﬁbz‘ =1,
=1

then we must have
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p; = max{%, T} = LI,

But then p = . This complets the proof.

The example 4.5 is also given in [GQ] but without proof.

We have the following characterization of the disjointness property.

Lemma 4.6 Let v,m € P(e). The following assertions are equivalent:
a)v L

b) The only elements p,o € P(e) satisfyingv —m = p — o are p=v and
o=T.

Proof: a) = b) : Let any p,o € P(e) be such that v — 7 = p — 0. Then is
it immediate that v+ o =7 + p. Let pp = “12 = ZX2_ Then pu € P(e), pu > ¥

and 1 > %. Since v L 7, we obtain that p = 3%, Tt follows that p = v and
o=T.

b) = a): Let p € P(e) be such that ¢ > § and > 7. Then

v—m=2u—7m)— (2u—v).
From b) we know that 2u — 7 = v.

We denote by extr() the set of extreme points of a convex set.
Proposition 4.7 The set of extreme points of By (e), denoted by extr (Bj(e)),
15 characterized by:
extr (By(e)) ={v—n|v,7me€ extr(P(e)), v L x}.
Proof: Tt follows from lemma 3.2 that every p € Bj.(e) can be written as
w=sv—1tm
with s+t =1, s,t >0, v,7m € P(e). Moreover, if € M(e), then
O=<pe>=s<v,e>—-t<me>=s5—t.
Thus s =t = 3. Therefore every p € Bj.(e) N M(e) can be written as

v—T
2

= , v, € P(e).
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Therefore by (13), we have proved that
Bi(e)={v—7m : v,m € P(e)}.

Now let v, m € P(e) and v L . We are going to prove that v—m € extrB};(e).
Let vy, 7, v9, ™ € P(e) be such that

U1 — M Vg — T2
vV—T =
2 2

Then
_’U1+U2 T + o

2 2
By lemma 4.6, the only possibility is 2v = v; 4+ vy and 27 = 7 + m,. Since
v,m € extrP(e) we obtain that v; = vy = v and m = m = m. Therefore
v—T7 € extrBy(e)

Now let v, 7 € P(e) such that v — 7 € extr(Bj;(e)). Assume for contra-
diction that v is not extreme in P(e)( the case where 7 is not extreme can
be dealt with similarly). Then, we can find vy, vy € P(e), vy # vq, such that

v1+v2

v—T

v =

2
It follows that
B v — T Vo — T0

2 2

where v — m, vo — 7 are distinct elements of Bj;(e), which is a contradiction.
Next we show that v L 7. To this end let p,o € P(e) be such that

vV—T=p—o0.

Then

If 0 # m, then v — 0 # v — w and this contradicts the fact that v — 7 is
extremal. Therefore ¢ = 7 and p = v From Lemma 4.6, we deduce that
v L 7. This completes the proof of lemma 4.6.

The lemma 4.6 and proposition 4.7 with proofs are alreeady given in [GQ).
We will give now a remark on the proof of proposition 4.7 that is not given

in [GQ].
Remark on the proof of prop 4.7

In this proof it is used the general assumption that if C is a convex set,
v € C' and v is not an extreme point of C, then
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Jui,v0 € C, vy # Vg, st v = B2
We are going to prove this:
According to the definition 14.9. in [MW], if v is not an extreme point, then
dvi, ., v, € C, aq,y ., >0

st.ay+ ... +a, =1,
n
vV = Zakvk,
k=1

a;,a; > 0 for some i and j,¢ # j and either v # v; or v # v; .
Assume that v # v;.

Write v as

V= ouU; + E VL.
k#i,1<k<n

Since a; > 0, then

o =1-— Z ap <1—a; <1,
k#i,1<k<n

so we get that 1 — «a; # 0.

Then
v =a;v; + (1 — a)w

where

w = 1 _1 Z QLU

Ny i1<k<n
Assume now that a; <1 — «;.
This implies that 1 — 2a; > 0. Also 2a; > 0 as a; € (0,1).

Set
= 20;0; + (1 — 204)w.

Then p € [v;, w].
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Also we have

1 1 1
§(w +p) = S + av; + (5 —a)w = av; + (1 — a)w = v.

Now we wish to show that w # p. Assume first that w = pu.

Then
20w = w — (1 = 2a)w = p — (1 = 20)w = 2av;.

Since «; > 0, we must have w = v;.
But then v = a;v; + (1 — a)w = av; + (1 — a;)v; = v;.

This contradicts the assumption in the begining that v # v;. Hence we
must have w # pu,, as we wanted to show.

Next, we show that w € C' :

We have ]
w = 1 LUk
T Y k<

Clearly ;%= >0 for all k € {1,...,n}.
Furthermore

Zak =1 gives that 1 — a; = Z .

k=1 ki, 1<k<n
Thus

&.
Y k£i1<k<n

So w is a convex combination of elements in C, hence w € C since C' is
convex. But then p € C, as v;,w € C and [ € v;, w]. So we have shown that
v = %(w + ) where p,w € C and p # w as desired.

Now, if a; > 1 — o; then 1 — 23; > 0 where §; = 1 — «;.
Let o = 28w + (1 — 26;)v;. Then fi € [v;,w] C C.
Furthermore

1 .
v = §(U’ + ).

If = v;, it would follow that w = v; since 3; > 0. But then v; = v which is
a contradiction. Hence u # v;, fi,v; € C and v = %(u + v;). This completes
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the proof.

Remark 4.8 In the case of the standard positive cone ( X = R, K = R,
and e = 1) the set of extreme points is the set of standard basis vectors
{e;}i = 1,...,n. The extreme points are pairwise disjoint.

Proof: Let u € P(?) and write

= Z i€
i=1

If there is k,5 € {1,...,n}, s.t. pr > 0 and p; > 0, then

n

= pjie; + Z pie; = pye; + (1 — py) Z 1_”6]-.
i=1,i#] i=1,i#j J

Observe that since p € P(1), then 1 = > " p; and p; > 0 for all 4.
=1
Hence

L —py = Z i = e >0,

i=1,i#
so we can divide with 1 — ;. )
Furthermore
> =y =
Sl (=) A= 1—py
Hence, since obviously e; € P( 1) for all i € {1,...,n} and P( 1) is convex,

we get that

as v is a convex combination of elements in P(T)) Since p = pje;+(1—pj)v,
pi, (1 —p;) >0 and e;,v € P(?), we get that p & extrP( 1").

On the other hand, given e; € P(?), if e, = A+ (1 — Ao for some
p,v € P(T) and some A € (0,1), then A; + (1 — A, = 1.

Since u,v € P( 1), we have that u;,v; € [0,1]. Hence, since A € (0, 1),
pv; €[0,1] and A + (1 — A)v; = 1, we deduce that p; = v; = 1.

But, since u,v € P(?), then
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D= =1
j=1 j=1

and p;,v; > 0 forall j, 1 < j < n. As pu;, = v; = 1, we then get that
L = v, :£ whenever j € {1,...,n} with 7 # i. Thus p = v = e¢;, so
e; € extrP(1"). We conclude that

extr(P(T)) ={e; | 1 < j <nl}.

Let now k,je{l,...,n}stk#j.
If peP(1)and p> %, pu> %, that is p; > 1 and p; > 1, then we must
have p; = py, = %, and p = 0 whenever ¢ ¢ {j, k}. Because, if not, then since

pi >0 forallie{1,.n}, (asp € P(T)) C K =R?), we get that

u 1 1
ZM@>Mk+,ujZ§ =1
=1

[\]

That is a contradiction since p € P(?) Thus p; = pu, = %, i; = 0 whenever
i & {j,k}, which gives that y = 3 + %. This shows that e]s are pairwise
disjoint and completes the proof. The remark 4.8 is also given in [GQ| but
without proof.

Remark 4.9 The set of extreme points in P(1I,) is {xa* | x € C" jz*x = 1}

Furthermore, two extreme points xx* and yy* are disjoint if and only if
¥y = 0.

Proof: Let x € C™.

Assume that z*x = 1 and construct then an orthonormal basis for C"
that contains x . Denote this basis by § and write 5 = {z, v1,...,v,_1}. Then
(zz*)x = x and (zz*)v; =0 for all jwith 1 <j <n-—1
Assume now that there exist A, B € P([,) and a € (0,1) s.t.

aA+ (1 —a)B=xx".

Since A, B € P(I,,), then A, B € S/, so we must have < Ay,y > > 0 and
< By,y > >0 for all y € C".

Since
0= < (zz")vj,v; > =< A+ (1 —a)B)v;,v; >

=a < Avj,v; > +(1 —a) < Bvj,v; >, Vje{l,...,n—1},
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we must have < Av;,v; > = < Bvj,v; > =0forall j € {1,...,k — 1}, as «
and 1 — « are strictly positive. Hence both for A and for B, all vis are the
eigenvectors with the corresponding eigenvalue 0. Inded, since A > 0 and
B > 0, there exist A%, B3. Hence

|Azv;| = < Avj,v; > = 0,

SO A%vj =0forall j € {1,...,k—1}.
Thus L
AUj = A2 (AEUJ‘) =0

for all j € {1,...,k — 1}. The same argument applies for B.

Thus we have that {x,vy,...,v,_1} is an orthonormal basis consisting of
eigenvectors both for A and for B. Since both A and B are in P([,,), we must
have trace(A) = trace(B) = 1. So the sum of eigenvalues for A and the sum
of the eigenvalues for B must be equal to 1. Since 0 is the corresponding
eigenvalue for all v}s, both for A and for B, then the corresponding eigen-
value for x must be 1 ( both for A and for B ).

But this means that A = B = xx* and this shows that zz* is an extreme
point of P(l,). Thus {zz*|z € C", z*x = 1} C (P(I,)) since x was arbitrary.

Let now M € P(I,).

Tf
00 --- 0 .
M=[ ]l Lm o ]

where {p1, ..., ptn} is an orthonormal basis for C", then M = puyui. If not,
then using that M € S;' and that tr(M) = 1 we see that we can write M as
N - 0

M= - pa | 5 o [ ]
0 - A,

*

where at least A\; and Ay are strictly greater than 0 and Z A =1
k=1

(and A, > 0 for k& > 3).
Let
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10 0

0 0 0 «
A=] m ]| S [ o |

0 0 - 0

and

0 131 0 .
0 0 ligl

(this is well defined since

Alzl—ZAkgl—)\2<1

k=2
since A\p > 0, 80 1 — A\; # 0).
Then

n

Ak 1 < 1
I s DI ey LU R

k=2

so A,B € P(I,) and A # B as Ay =1=p11, Bpy =0 and p # 0.

Furthermore,
MA+(1—-XM\)B
10 -0 0 9 0 0
“[m - Mn](A1 O O 0 +H(1=Ay) 0 = ) 0 )[ i
0 0 0 0 0 - e
A 0O - 0
el S RTINS
0 - 0 A

Hence M is a convex combination of A and B which are the elements of
P(I,) and A # B, so M ¢ extrP(I,).

This shows that extrP(1,,) = {za* | v € C" a2z = 1}.
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Thus we have proved the first part of remark 4.9 . This proof is omitted
in [GQ] . Now we will prove the second part of remark 4.9 . Here we will
mainly follow the proof given in [GQJ, but we will supply most of the state-
ments used in this proof with further, detailed explanations.

Suppose first that z*y = 0, 2*x = y*y = 1 . Then we have the following
result: "If X > zz*, X > yy*, 2"z = y*y = 1 and tr(X) = 2, then neces-
sarily X = xzx* 4+ yy*." . The proof of this result and some comments about
it are given in "comments" at the end of the proof of remark 4.9. Now, if
X € P(I,), then tr(X) = 1. If, in addition, X > fzz* and X > syy*, then
the result given above implies that X = %(mx* +yy*). Hence zz* and yy* are
disjoint by definition .

Suppose now that zx* and yy* are disjoint extreme point of P(e). Observe
that this implies that x and y are linearly independent. Because, if not, then
there is some o € C s.t. * = ay. Since zz* and yy* are assumed to be
extreme points of P(e), then we must have z*x = 1 and y*y = 1 by the first
statement of the remark 4.9 which we already proved . But then

="z = |afy"y = |af,
so 1 =|al?.
Hence
va” = |alPyy" = yy".
As xx* = yy*, they can clearly not be disjoint, so we get a contradiction.
Thus we must have that x and y are linearly independent, so

dim(Span{z,y}) = 2.

Let W = dim(Span{z, y}).
Then C*" = W @& W+ and if v € W+, then v is an eigenvector of the matrix
xx* —yy* with corresponding eigenvalue 0. Hence we can find an orthonormal
basis consisting of eigenvectors of xa* —yy* = {u, v.wy, ..., w,_o} where w; €
W+ for all j € {1,...,n — 2} Since this basis is orthonormal, it follows then
that

u,v € (WH)* =W = Span{r,y}.
( here we use that dimW = 2. )

Then zz* — yy*

A0 0

0 A 0 X
— [0 v wie W ] S e e e T

0 0 O



Next since
Tr(xz® — yy*) = Tr(zz™) — Tr(yy*) =1-1=0,
it follows that A\; + Ay = 0, so Ay = —)\; Hence

zz” —yy* = M (pp” — vo’)
( Here we choose Ay < 0 so that Ay >0 ).
Now we want to show that A\ < 1.

Let
T =cCcii+ Ccov,

Yy = dl,u + dg?}.
Since ||z|| = ||y|| = 1 ( because zz* = yy* = 1,) by Pythagoras’,
e + Jeof* = 1,
|di|* + |do|* = 1.
We also have:
(z2" —yy")p = zx*p —yy*p
= [(crpp + o) (@ +Cv*) — (dapt + dov)(dapi™ + dov™) ]
= [(Jex|Ppp* +erCapv* +egtyvp + o *vv*) — (|dy [P pp* +dy dopv* +dodyvp* 4| do | oo™ )
= ‘61’2/,6 + cociv — |d1\2,u — dgd_l'l}
since p*pu =v*v =1 and v*u = 0.

As (zz* —yy*)u = A\ because za* — yy* = A (up* —vv*) and v p = 0, we
get that B
(lea* = [da|*) o + (21 — dady)v = Mp

Taking inner product on both sides with p and again using that p*u = 1 and
v =0, we get that |c;|? — |di|? = A;. Since |e1]?,|d[? € [0,1] , Ay > 0 and
A = | |? = |di)?, we get that A\; € [0,1] so Ay < 1 as we wanted to show.
Furthermore:

zx’ —yy* = M —ov") = ppt — (1= X)) pp” — Aov®

= pp” — (1= A)pp” + Aov™.
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Since pp*, vv* € P(1,), P(I,) is convex and A; € [0, 1], we have that
(1 — Ap)pp* + Aov* € P(1,). Lemma 4.6, gives then that

zat = ppt, gyt = (1= M)’ + Moo

since xz* and yy* are disjoint by assumption.

Then (zx*)p = pp*p = p, so p is the eigenvector of xz* with the correspond-
ing eigenvalue 1. Hence y = oz where || = 1 since E¥*" = Span{z} and
|z|| = ||p|| = 1. Since yy* = (1 — Ay)uu* + \jov*, we get that (yy*)v = Ao,
so v is the eigenvector of yy* with the eigenvalue A\;. Since A\; > 0, then \;
must be equal to 1 as 0 and 1 are the only eigenvalues of yy*, and v = ayy
where |ap| = 1.

Hence 1
'y = ——pv =0.
109

This complets the proof of the second statement in remark 4.9 .

Comments
We have the following observation:
Observation 4

If X > zx*, X > yy*, z,y are unitary vectors, z*y = 0, and trace(X) = 2
then necessarily
X =zx* + yy*.

Proof W.l.o.g let us assume that x = e; and y = ey. Let

A =X —eje] — ee;.

Then
trace(A) = 0,
and
A+ ee] >0,
A+ egel > 0.

The only difference between A and A + ejej is on the first diagonal element.
We then deduce from (1) that the second to the last diagonal elements of A
must be nonnegative. Similarly, it follows from (2) that the first to the penul-
timate diagonal elements are nonnegative. Hence, all the diagonal elements
are nonnegative, and since trace(A) = 0, all these diagonal elements are zero.
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Now, note that if B is a positive semidefinite matrice, all 2 x 2 princi-
pal submatrices of B are positive semidefinite, and so Bz?j < B;;B;;, for all
it # j. By applying this to the matrix B := A + ejef > 0, we deduce that
A?j = ij < B;Bjj =0 for all i # j, and so, A is the zero matrix.

This observation and proof were given by Stephane Gaubert and Zheng Qu.

The next remark is not given in [GQ|. Remark 4.10 We consider now
the Cr(2) where 2 is a compact, Hausdorff topological space Recall that
(Cr(2),]] - ||oo)* is isometrically isomorphic to M, (§2) where M, (1) is the
space of all signed Radon measures on §2. The simplex here is

PQ) ={pe M () : u(€) =1}

By exercise 14.86 on page 547 in [MW]|, we have that
P(Q)={0,: z€Q}.

It is clear that /s are pairwise disjoint, since K* = M, (£2) in this case.
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6 The operator norm induced by Hilbert’s quo-
tient norm

In this section we consider two real Banach spaces
(X1, (|- 1]) and (Xo, [[ - |]).

We let K; C X, and Ky C X5 be respectively two closed, normal cones with
nonempty interiors K7 and K3. Furthermore we let e; € K7 and ey € K3
be order units. From section 4 lemma 4.2 we know that the duals spaces of
the quotient spaces (X;/Rey, |||-]||z) and (Xs/Res, |||-|||#) are isometrically
isomorphic to (M(ey), || - ||7;) and (M(ea), || - ||5;) respectively.

We will state and prove here one of the 2 main theorems in this thesis,
the theorem 5.1 [GQ| However it was not written in the correct way in [GQ)|
so it had to be reformulated. In [GQ] they let T': X; — X, be a bounded,
linear map satisfying 7'(e;) € Rey and they consider ”||T||g”, where || - ||#,
is a seminorm on X; defined in section 1. It is not correct to defined an
operator norm w.r.t. seminorm, so this had to be reformulated. We define
instead the induced linear map

T : X/Re; — X5 /Rey

by

T(z + Rey) = T(x) + Re,.
Then we show that 7" is a well defined, bounded linear map w.r.t. ||| - [||u.

Hence we may consider |||T|||z, that is the operator norm of T w.r.t. |||-||| &
We also define S* : M(ey) — M(ey) by letting S* = T| and we show that

|M(eq)

1S*|1%; = |||T|||z. First after introducing all these concepts, definitions and
relations between them, we finally state and prove the reformulated version
of the theorem 5.1.

This theorem gives then an expression for |||T|||y in terms of disjoint, ex-
treme points of P(ey). In the proof of this theorem we will mainly follow the
proof given in [GQ), but we will supply most of the statements used in [GQ)|
with detailed proofs and explanations.

At the end this section, we will introduce the remark 5.2 which states that
[0, e1]is the closed, convex hull of the set of its extreme points, when X; of
finite dimension. This remark is also given in [GQ| but without proof. How-
ever, here we give a complete proof of this remark. The remark 5.2 will be
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used later in section 7 and 9 which deal with applications of the theory from
first 6 sections.

Let T : X; — X5 be a bounded, linear map satisfying T'(e1) € Re,.

We define the induced map

T: (X1 /Rer, ||| - [[lm) = (Xo/Rea, [[| - [[|m) by

T(LC + Rel) = T(SU) + Reg
Then T is well defined:

Assume that = + Re; = y + Req, for some x,y € X;.
Then = = y + key, for some k € R. Furthermore T'(e;) = ces for some ¢ € R.

Hence
T(x)=T(y) + kT (e1) = T(y) + kces.

Then
T(z) 4+ Regy = (T'(y) + kces + Rey) = T'(y) + Reo,

so T is well defined.
Furthermore T is bounded:

Assume that
|||z + Req||m = 1.

This means that /{Ielﬂfk ||z + Ne||r = %
Hence, there exists a sequence and {\,},, C R s.t.

% < ||z + Aerllr < %—i—% Vn € N.
We have

T(z + Rey) = T(x) + Re,.

But since T'(e;) € Rey, we get that
T(z+Rey) = T(z)+Rey = T(x)+\T(e1)+Rey = T(z+Ane1)+Rey ¥n € N.
Thus
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17 (2 +Rex)lllm = [[|T(z + Aner) + +Rea[|a

=2 12%{ HT(QS + )\nel) + 77€2HT < 2HT(37 + )‘nel)HT vn.
n

Hence, for all n, we have:
N7 (@ +Re)llnr < 2/|T(x + Meer)llr < 2l + Anerllr |||z
Since
nh_}rgo ||z + Anerl|lr = 3
we get that |||T(z + Rey)|||z < 23|T|r = ||T|r so T is bounded.
Also T is obviously linear, since T is linear.
We can then define the map
() (Xa/Rea)", 1| Ii) = (X1 /Rex)*, 1| - [I[7) given by
<T*(),z+Re; > = <, T(z+Rey) > VI (Xo/Rey)* Vz e X,
From [P] (2.3.20.),we have
1) (115 = T
From lemma 4.2, we have that the maps
b1+ (M(er), 31+ I5) = (X1 /Rer), [l - |[]5,) and
br: (M(e2), 311 113) = ((Xo/Rea)", || - [|I3) given by
< Pp1(v),z+Re; > =<v,x> Yve M(e;) z € Xy and
< Po(u),y+Rey > =< p,y> Yue M(ey) y€ Xo
are isometric isomorphisms.
We then define the map
§* 5 (M{ea), || - 1) = (M(e), ]| - i) by S* = 670 (1) 0 .

So we have the following diagram:
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<—
(Xa/Re)) [[|-1I1) - (1) (Xz/Rea), [[] - [l17)
T ¢ T ¢

(Me) |-l 5 (M(e), - 1)

Claim: We have
<S*(p),r>=<pTe>=<T"(u),r> forall p € M(ez) and x € X,
that is

S = ey

Proof:

< S (u),x > = < (61 (1) ) (), > = < (T)"¢2) (), = + R(er) >

= < o), T(x + Rey) > = < o(p), T + Rey)
=<pu,Te>=<T"(u),z>.

Moreover we have
1S (1% = |[|(T)*|||%; since ¢; and ¢, are isometric isomorphisms.
Since

1) W5 = T, we get that [1S*][5 = T ]l|z-

Now we are ready to state and prove the reformulated version of the theorem
5.1.
Theorem 5.1 Let T : X1 — X5 be a bounded, linear map s.t.

T(Gl) € Rey

Then |
|||T|||H:||S*||’;{:§ sup |[T™(v) = T*(m)||7

v,mEP(e2)

= sup sup <v-—m,T(z)>
v,mEP(e2) zE€o,e1]

Moreover, the supremum can be restricted to the set of mutually disjoint
extreme points of P(es) :
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T ®| | 1 * * *
T = 115" = 5 sup [T (v) = T"(m)|I7

v,m€extP(e2), vlm

= sup sup <v—m,T(z) >
v,m€extP(e2),vlmr xE€lo,e1]

Proof We have already proved that |||T)||z = ||S*||%-

Moreover

1S*17 = sup  [|S™(w)|[%-
HEBY (e2)

By the characterisation of B} (ez) obtained earlier, that is
Bj(ea) ={v—m:v,m € P(es)}, we get that

sup |[S* ([ = sup  |[S"(v— )]}
nEBT (e2) v,mEP(e2)

Using that S* = 1), . = and that 7" is linear, we obtain

M(eo

sup (| ()|l = sup (|5 (v —m)|[}
neBY; (e2) v,meP(e2)

= sup |[[T"(v—m)|[z= sup [|[T"(v) =T (m)|[y
v,mEP(e2) v,mEP(e2)

_ L s 1) - T )

v,TEP(e2)
since || - |5 = 3l - [ by definition.

Now we wish to show that

1 * * *
5 s (T - T@)]l;
i

= sup sup <v-—mT(x)>

v,mEP(e2) z€[0,e1]
vlw
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Thus we have to show that

|1 T"(v) =T"(m)||z =2 sup <v—mT(x)>

x€[0,e1]

for all v, m € P(es).
We will show this by proving that Br(e;) can be written as

BT<€1) = 2[0, 61] — €1.
Then it would follow that whenever v, m € P(es), we have

T (v) = T*(m)llz = sup [ <T*(v) =T"(m),z > |

llzl|r<1

= sup |<T"(v)—T"(n),2Z —e; > |.
ie[o,el}

When we have established this equality, we can proceed further by observing
that if v € P(ey), then

<T*(v),e1 >=<0v,T(e1) >=<v,keg >=k <v,es>=k

for some k € R, since T'(e;) € Reg and < v,e9 > =1 as v € P(ey). Similarly,
if m € P(ey), we get that < T*(w),e; > = k. Hence

<T*(v) —T*(m),e; > =0.
Thus

sup | < T*(v) —T"(n),2C —e; > |= sup | <T*(v) —T"(m),2% > |

€(0,e1] z€(0e1]
=2 sup | <T*(v)—=T"(m), &> |
z€(0,e1]

whenever v, m € P(es).
Hence, if we can show that

sup | < T*(v) —=T*(m), x> |

llz|lr<1

= sup | <T*(v)—=T"(n),2% — e > |,

26[0,61}

then we would get

T (v) = T*(m)llz = sup [ <T*(v) =T"(m), x> |

||z|lr<1
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= sup |<T*(v)—T*(n),2% —e; > |

z€(0,e1]

=2 sup | <T*(v)—T"(m), 7

CEE[O,€1]

whenever v, m € P(es).
Now, in order to prove that

sup | <T*(v) —T*(w),x>|= sup |<T*(v)—T"(7),2% — ey >

||z|lr<1 zef0,e1]
it suffices to show that Br(e;) = 2[0,e1] — e1, as mentioned before.
Claim: Br(es) = 2[0,e1] — e

Proof: Assume that x € Br(ey).
If ||z]|r =1,

then inf{t > Ojx € tI.,} =1, as
||z||lr = inf{t >0 | x € tI.,}.
Since
||z||7 = 1, for all n there exists a ¢, € [1,1 + =]
s.t. x € t,,1., which means that
(e1— 3-v) € K and
(e1 + iw) € K.

Since K is closed, we get that

1
lim (e; + t—x) = (ey+x) € K and

n—oo n

1
lim (e; — t—:v) = (e —x) € K.

n—o0 n

Hence
%(61 + ZL‘) e K
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and ey — 3(ey +2) = 3(e1 —2) € K
Thus (e + z) € [0, ).
If ||z||r < 1, then
inf{t > Olz € tI,} < 1.
Hence, by prop:14.8 part ¢) in [MW] we have that x € [,.
Thus (e; —z) € K and (e + ) € K that is 3(e; —z) and 3(e; +z) are in K.

Then we can use the similar arguments as above to deduce that
1
§<I +e1) €[0,eq].

Since = € Br(e1) was arbitrary, we get %BT(el) +e1 C [0, e1], or equivalently
BT<€1) Q 2[0,61] — €71.

Assume now that & € [0,e;]. Then ¥ € K and e; — 7 € K.
Hence
e — (2T —e)=2(e; —F) € Kand ey + (22 —e;) =27 € K
If we let © = 2% — ey, we see then that (e; + ), (e — ) € K.
Hence
1> inf{t > 0|(e; — y2) € K and (e; + tz) € K}=
= inf{t > 0|z € tlei } = ||z||r.

Thus
20 —e1 =z

is in Br(ey). Since
T e [0, 61]

was arbitrary, we conclude that
2[0, 61] — €1 g BT(el)-
Combining these 2 inclusions, we get that

BT(el) = 2[0, 61] — €1
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and this proves the claim. Hence we have proved the first part of the theorem
5.1.

Next, we will show that the supremum can be restricted to the set of
extreme points.
We show this by proving the following:
a) M(ez) is a locally convex topological space in its relative w* topology, and
B (e2) is a w* compact subset of M(es).
Furthermore

w*

B (e2) = conv(extr(Bj(e2)))

Hence every p € Bj;(ea) is a limit of a met

{Pataca C conv(extr(By(e2)))

in the w*—topology.
b) Let ¢ : M(eq) — [0,00) be given by

¢(1) = 115" ()|

Then

ou)= sup | <pT(x)>]
(x-‘rR(ﬁ)EBH(El)

c) ¢ is w* lower semicontinuous

d) If p € Bj(e2), {pataca is a net in conv(extrBj(e2)) and po, — p in
w*—topology , then ¢(p) < liminf, ¢(p,). ( Here liminf, ¢(p,) denotes the
limit of a net {Ba}taca in RT given by

Bo = inf {¢(pa)})

sup{é(p) : 1 € conv(extr(Bj(es)))}
— sup{@(p) : p € (extr(Bj(es))}

f)
sup  ¢(u) = sup o(1))
WEB (e2) p€extr(By (e2))
g)
sup (IS5
peextr(By (e2))
1
== sup sup <v—m,T(x) >

v,mE (extr(P(e2)) z€[0,e1]
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Proof of a) By prop. 14.5 in [MW], a vector space with the topology induced
by a separating family of seminorms is locally convex topological vector space.
Hence M (ey) with the relative w* - topology is a locally convex topological
space ( since the w* - topology on X3 is induced by the family of seminorms
{palz € Xo} where po(p) = |(z)] for all € X5 ).

We have also that Bj;(e2) is w* - compact:
Since the convergence of a net in X; in the w* - topology is the same as the
pointwise convergence of this net on X, and

M(ez) ={p € X3| <p,e2 > =0}

it is obvious that M (eq) is w* closed in X;.
Now, Banach - Alaoglu’s theorem gives that By (es) is w* - compact in X5
Hence 2B} (eq) is also w* -compact.

By definition, Bj;(es) = 2Bj(es) N M(eq). Since M(ey) is w* - closed, it
follows that Bj;(e2) is w*— closed subset of 2B7(es). Hence By (es) is
w*— compact in M (ey).
Since M (es) with the relative w* - topology is LCS and Bj(e2) is
w*— compact and convex subset of M (eg), the Krein - Milman theorem, gives

B (e2) = conv(extr B}i[(eg))u) :
Hence every p € By (e2)) is a limit in w* - topology of a net

{Pataca € conv(extr By (es)).

This proves the part a).

Proof of b) Consider now the function: ¢ : p — [|S*(p)|||5; from M (e2) into
[0, 00).

Since the map
w: (Mer), [ - [[7) = ((Xa/Red) " (] - 1)
given by
<p),r+Rey >=<v,2> YveE M(e),z € Xy
is an isometry, we get that
1S™ ()7 = Ml (5™ ()17
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= sup | < (S*(1)), x +Rey > |

(z+Re1)eBg(e1)
= sup | < S*(u),z>| = sup | < p, Tz >|.
(z+Re1)€Bu(e1) (z+Re1)€Bm(e1)
Hence
o(p)=  sup [ <pTe>|
(z+Re1)€Bg(e1)

This proves part b).

Proof of ¢) Since the w* - topology on X is the topology of pointwise con-
vergence, the map: ¢, : p — | < p,T(z) > | is w* - continuous for each
x € Xl.

If we let

¢:p— sup  [<pT(x)>|=  sup  ¢u(p),
(z+Re1)€Bp (e1) (z+Re1)€Bu(e1)
we see that ¢ is a supremum of a family of weak star continuous maps. We
claim that this implies that ¢ is w* lower semicontinuous.
By definition on page 410 in [MW] a function f : Q — (—o0, 00| is weak star
lower semi continuous if f~!((r,o0]) is open in € for all r € R. Since

P(p) = sup  @u(p) Vi€ M(es),
(z+Re1)eBg(e1)

we get that

¢~ ((r,00]) = U ¢, ((r,00))

(z+Re1)eBp(e1)
( Namely, if
(u) = sup  d(p) >
(z+Re1)eBg(e1)

for some r € R, then 3z € X s.t. (x + Rey) € By(ey) and (¢, (1)) > 7 .
Hence
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S U ¢z ((r,00])

(z+Re1)eBg(e1)
The other inclusion is trivial )

Since each ¢, is w*— continuous for each = € X, we get that ¢, '((r, o0]) is
w*— open for all x with = + Re; € By(ey), so

¢~ ((r,00]) = U ' ((rod])

(z+Re1)eBp(er1)
is w*— open.

Hence ¢ is w*— lower semicontinuous, since r was arbitrary. This complets
the proof of part c).

Proof of d)
Since ¢ lower semicontinuous and p, — p in the w* topology (where
Pa € conv(extr(Bj;(es))

for all o and

w*

p € By (e3) = conv(extr(Bj(e2))) ) )

we claim that
¢(p) < liminf ¢(pa)

where liminf, ¢(p,) the limit of the net {5,}, given by B, = inf &(pu) :

o, a<la!
Note first that {f,} is a nondecreasing net, hence the limit of this net is well
defined.

Let c € R,c < ¢(p). Then p € ¢~ ((c,00]) and ¢~ *((c, oc]) is weak star
open ( since ¢ is weak star lower semicontinoous ).
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Since p, — p in w* topology, there is an ay € A s.t. p, € ¢71((c, o0])
whenever oy < a, as ¢~ !((c, 00]) is w*-open.

This gives that ¢(p,) € (¢, 0o] which means that ¢(p,) > ¢, whenever
oy < a.

Hence
inf {¢(p.)} > .
apgla

Thus
liminf ¢(po) = inf {$(pa)} = c.
« ag<a

Since ¢ was arbitrary with ¢ < ¢(p), we get that
lim inf ¢(pa) > ¢(p)
and this proves the part d).
Proof of e): Since extr(Bj;(ez)) C conv(extr(Bj;(e2))) , then clearly
sup{é(n) : 1 € extr(By(e2))} < sup{6(u) : ju € conv(extr(B(e2)))}
so we have to prove the opposite inequality:
Let p € conv(extr(Bj;(es))). Then

vy, ..., v, € extrBj(e2) and

n
ay, ..., n, >0 s.t. Zak =1 and
k=1

We then get that:

o= sup  |<pT@)>|=  sup  [<) o, T(z) > |
(I+R61)EBH(€1) (I-HRel)GBH(el) k—1
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= sup {\Zak<vk, ) >}

(x+Re1)€BH 61

< Z sup {lag < v, T(x) > |}
k=1 (1‘+R61)€BH(81)

3

=> a  sup | <oe, T() > [ =) ard(vr)
1 (z+Re1)eBp(e1)

Furthermore, since vy, ..., v, € extrBy(ey), we get that

) <> ap(op) < arsup{e(v) : v € extrBj(ea)}
k=1 k=1

= (sup{o(v) : v € extrBj;(e2)} Zak = sup{¢(v) : v € extrBy;(e2)}

Since this is true for any p € conv(extrBj;(es)), we get that sup

sup{¢(p) : p € conv(extrBj(e2))}
< sup{¢(v) : v € extrBj(e2)} .

Combining these 2 inequalities together, we obtain the equality and this
proves the part e)
Proof of f) Given p € Bj(es) by part a) there exists a net {p,}aca in
conv(extr(Bj(e2)) s.t po — p in the w* - topology. By part d), we must then
have that ¢(p) < liminf, ¢(pa).
Now, since

Po € conv(extr(By(e2))

for all «, then

¢(pa) < sup{e(u) : p € conv(extr(By(e2)))}

for all «.
Hence

liminf ¢(po) < sup{§(p) : p € conv(extr(B(es)))}
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Thus
6(p) < liminf ¢(p,)

< sup{¢p(u) : p € conv(extr(By(e2)))}

By part e)
sup{6(s1) : o € conv(extr(Bj (c2)))}

— sup{o() : 4 € (extr(Bj(e2)},

so we deduce that

¢(p) < sup{p(p) : p € (extr(B(e2)))}-

Since p € Bj;(e2) was arbitrary, we get

sup  @(p) < sup  B(p).

nEBT; (e2) pu€extr(By (e2))

On the other hand, since extrBj;(e2) C By (e2), we have

sup  o(p) < sup B(p).

peextr(By (e2)) HE By (e2)
Thus

sup ||S™ ()|l = sup o(p) = sup  P(p) = sup
HEB7; (e2) HEB7; (e2) pu€extr(By(e2)) pu€extr(By (e2))

1S* ()

Proof of g) Since extr(Bj;(e2) = {v — 7| v, mextrP(ez),v L w} by prop. 4.7

in section 4, we have

sup |5 (w)l|w = sup 15 (v = 1)l
pu€Eextr(By (e2)) v,r€extr(P(e2)),vlm
Since S* = Tl’;{( ) and T is linear, we get that:
€2
sup 15" (v = m)[[m = sup 1T (v = )|
v,m€extr(P(e2)),vlm v,m€extr(P(e2)),vlm
* * * 1 * * *
= sup - |[T7(0) =T*(m)llp =5 sup  [[T7(0) = T"(m)lIz
v,m€extrP(ez),vlm v,m€extrP(e2),vlm
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Now, in the proof of the first part of theorem 5.1. we have shown that

1T (v) = T"(m)||z = sup 2<v—mT(x)>

z€(0,e1]
Hence 1
—  sup HT*(U> - T*(W)H;“
v,mEP(e2)
vlm
= sup sup <v-—mT(x)>
v,meP(e2) z€[0,e1]
vlm
Thus
1S*|[7; = sup  ||S™(w)|]3
MEB;{(EQ)
— sup ||S*(N)H;I
peextr(By; (e2))

1 * * *
=5 s |70 - T'@)];
Prszien

= sup sup <v-—mT(z)>

v,m€P(e2) r€extr[0,e1]
vlw

and this completes the proof of the part g). Hence we have proved theorem
5.1.

Remark 5.2 Assume that X is finite dimensional. Then [0, ¢] = conv(ex([0, 1])).
Furthermore

sup <v—m,T(z)>= sup <v—mT(x)>
z€[0,e1] z€ex([o,e1])

for all v, € P(ey).
Proof: Let

Br(e) = {x € Xy | |Jxflr < 1}
We claim that [0, e;] is a closed, convex subset of Br(e;):
If z € [0, €], by definition of [0, e;] we have z € K and e; — = € K.

Since x € K and e; € K we have also (z +e;) € K. Thus (x4 €;) € K and
(e1 —x) € K, so we have —e; <z < ey.

Hence
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|z||7 =inf{t > 0| —e; < 72 < e} <1, 80 x € Br(ey).
This gives that [0, e1] € Br(es)
Next we show that [0, e] is closed :

Let {z,}nen C [0, 1] and assume that ||z, — z||r — 0 as n — oo for some
S Xl.

Hence ||(e1 — 2,) — (e1 — 2)||7 = 0 as n — oo

Since z, and e; — z, are in K for all n and K is closed, we get that z and
e; — z are in K. Thus z € [0,¢e4] , so it follows that [0, e;] is closed.

Furthermore [0, €] is convex:

If 2,y € [0,e1] and A € (0,1), then Az + (1 — Ny € K since z,y € K and K
Is a convex.

Also

e — A+ (1=Ny)=Aer—z)+ (1= A)(e1 —y)) € K
again since (e; — x), (e; —y) € K and K is convex.
Hence

0<eg—(Az+(1—=Ny) <e;so(Az+(1—Ny)€[0,e]

so it follows that [0, e;] is convex since x,y € [0,e;] and A € (0,1) were
arbitrary.

Since dim X < oo, we have that Br(e1) is compact and since [0, e;] is closed
subset of Br(ey), it follows that [0, e;] is compact. Since [0, e1] also is convex,
the Krein - Milman theorem gives that

[0, e1] = conv(ex[0, e4]).

This proves the first statement of the remark 5.2. Now we will prove the
second statement:

Suppose that v, € P(es). Then v, m are continuous, hence v o T and wo T
are continuous linear functionals on Xj.

Therefore

sup <v—mT(z)>= sup <v—mT(x)>

zeconv(ex([0,e1])) z€conv(ex([0,e1]))
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Now, by the first statement of remark 5.2, [0, ;] = conv(ex([0, e1])).
Hence, we have

sup <v—m,T(z)>= sup <v-—mT(x)>
z€[0,e1] zeconv(ex([0,e1]))
= sup <v—mT(x)>.

z€conv(ex([0,e1]))

Next, let « € conv(ez|0, e1]).
Then

n
T = E AWk,
k=1

where o > 0 for all k € {1,...,n},

Zn:&k =1
k=1

and wy, € ex|0,e;] for all k € {1,...,n}.
Hence

<v-mT(z)>=< U—?T,T(Z&kwk) >=<uv —W,ZakT(wk) >
k=1 k=1

= Zak <v—m,T(wg) > < Zak sup <v—mT(w)>= sup <v—mT(w)>.
k=1 k=1 weex([0,e1]) weex([0,e1])

Since x € conv(ex([0,e1])) was arbitrary, we get that

sup <v—mT(z)>< sup <v-—mTr>.
z€conv(ex([0,e1])) z€ex([0,e1])

On the other hand, since ez ([0, e;]) C conv(ez([0, e1])), we have that

sup <v—mTr> < sup <v—mTr>.
z€ex([0,e1]) z€conv(ex([0,e1]))

Then we deduce that

sup <v-—mT(x)> = sup <v—mT(x)> Yv,m € P(eq)
z€ex([0,e1]) z€convez([0,e1])
Since
sup <v-—mT(x)>

xz€conv(ex([0,e1]))
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= sup <v—mT(z)>
z€[0,e1]

for all v, m € P(ey) as we have shown, we get that

sup <v-—mT(zr)>= sup <v—m,T(x)>.
z€ex|0,e1] z€[0,e1]

This proves the second statement of the remark 5.2.
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7 The convergence of homogeneous discrete time
Markov systems

In this section we let again (X, || - ||) be a real Banach space, K C X be
a closed, normal cone with nonempty interior, ¢ € Int K be an order unit.
All the norms and seminorms that depends on an order unit like || - |7,
|- lle, || |||z ete, are assumed to be given w.r.t. e in this section.

We will state and prove here the most important theorem in this thesis, the
theorem 6.1, which considers a Markov operator 7': X — X w.r.t. K and e.
Again, this theorem is also given in [GQ] but we have somewhat reformulated
it since we are considering |||T|||z and ||S*||%; instead of ||T|| and ||T*||%-
As we will see, this theorem gives a sufficient condition for the convergence
of homogeneous discrete time Markov system given by

Hn+1 = (T*)<,uk>7 k= 07 17

where g € P(e).
In fact, the theorem states for instance that if |||7]||z < 1, then there exists
am e P(e) s.t. .

T () = 7l < [T
for all © € P(e) and all n € N.
In other words, if |[|7|||z < 1, then there exists a unique invariant measure
s.t. the homogenous discrete time Markov system given above converges to
this measure regardless of the initial distribution.
The proof of the theorem given in this thesis mainly follows the proof given
in |GQ)J, however all the statements used in the proof in [GQ)] are given here
with detailed proofs and explanations. At the end of the section we state and
prove the theorem 6.2 which is also given in [GQ|.This theorem applies the
theorem 5.1 on the case when 7' : X — X is Markov operator w.r.t. K and
e and gives thus the expression of |||T|||x in terms of disjoint extreme point
of P(e) is this particular case. The theorem 6.2 will be frequently applied
later in sections 7,8 and 9.

Theorem 6.1 Let T : X — X be a Markov operator with respect K and e.
IfI|T|||x < 1 or equivalently || S* ||5;< 1 then there is m € P(e) s.t. for all
xr € X and n € N, we have

I T"(2)= < 72> e < (I1Tm)" | @ |la

and || (T*)" () =7 [ < (NT[]m)"
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for all u € P(e), and all n € N.

Proof We will prove this theorem by proving the following :
a) Set
In(x) = [m(T"(x)/e), M(T"(x)/e)]

Then I,1(x) C I,(x) for all z € X.
Furthermore )
()] < T|||% =l

for all n and there is a real number c(x) depending on x s.t.

{e(@)} = () In(2).

neN

b) Define w: X x (Int K) - R by w(z/y) = M(x/y) — m(z,y).
Then we have

—w(T"(x)/e)e < (T"(x) — c(x)e) < w(T"(x)/e)e

for allz € X and all n € N.
Hence

(T (2) = e()e)llr < w(T™(x)/e)) < | T1I% [l2]ln
forallz € X and all n € N.

¢) Definem: X — C by < m,x > = c(x) where
{e(@)} =[] In(@)
neN

as given in part a). Then m € P(e).
d) For all i € P(x), we have ||p||f: = 1.
Furthermore,

17" 1) = 3 < 11T
for alln € N and all u € P(e),

( Here 7 is the functional on X defined in c ), that is < m,x > = c(x) for
all z € X.)

Proof of a) We want to show that
[m(T" " (x)/e), M(T" () /e)]
C [m(T"(z)/e), M(T"(x)/e)] Vn :
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Assume that te — 7"z € K for some ¢t € R. Since T'(K) C K , then
T(te—T"(x)) € K,
so we have
T(te — T"(x)) = tT(e) — T"(z) = te — T""'(x) € K.
Hence
{t e R| T(x) < te} C{t € R| T""(x) < te},
so M(T™(x)/e) = inf{t € R|T"(x) < te} > inf{t € R|T" " (z) < te}
= M(T"(x)/e).
Similarly, if
T"(x) — te € K, then
T(Trx —te) =T e —tT(e) = T o — te € K,
so {t € R|T"(x) > te} C {t € RIT" "' (x) > te}.
Hence
m(T™(x)/e) = sup{t € R|T"z > te}
< sup{t € R|T" "} (z) > te} = m(T""(z)/e).
This shows that

Lni(z) = [T (2) fe), M(T™ () fe)] € [m(T" (x)/e), M(T"(x))/€)] = Ln(x)
for all n, that is I,,;1(x) C L,(z) for all n as desired.

Furthermore observe that each I,,(x) is included in [;(z) which is compact
in R, and each I,,(x) is closed.

Since the family of closed sets {I,,(x)}nen has finite intersection property,
(because given I, (x), ..., I, (z) with n; < ny < ... < ny then

Ly (@) 2 Ing(7) 2 .. 2 In, (@),
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SO

k
ﬂ I, (2) = L, (x) #0.)
j=1

theorem 11.5 in [MW] part b) gives that

() Ln(x) # 0.
n=1

We observed in section 4 that |||z + Rel||g = ||z||x for all z € X.

Furthermore, we have ( by definition ) that

T(x +Re) = T(x) + R e which gives that
T%(x 4+ Re) = T(T(x + Re) = T(Tx + Re) = T(T(x)) + Re = T?(z) + Re.
By induction, we get

T"(z 4+ Re) = T™(x) + Re for all n € N.

Hence,
I T"(2) L= [[IT"(z) + Relllz = [IT"(z + Re)l[lar < 1T |llzlll(x + Re)|ll

< NN +Re)llla = [T |« o -
But

(T (@)l = M(T"(x)/e) —m(T"(x)/e) = |[In()]

Hence

(@) = [T @)lle < NTE N2

which goes to 0 as n — 0o, because |||T|||z < 1 by assumption.

Since the length of I,,(x) - s gets arbitrary small when n — oo,and

ﬂ I(x) £ 0

nenN

we must have that the intersection is reduced to a real number ¢(z) € R
(which certainly depends on x since each I,,(x) depends on x).
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So

{c(2)} = (\Im(T™(x)/e), M(T"(x)/e)]

This proves the part a).
Proof of b): Since

c(x) € [m(T"(x)/e), M(T"(x)/e)] Vn,
it follows that

m(T"(x)/e) < c(x) < M(T"(x)/e) ¥n.
Hence

M(T™(z)/e) — c(x) > 0 and c(z) — m(T"(x)/e) > 0 Vn.
Furthermore
(M(T"(z)/e —m(T"(x)/e))e — (T"(x) — c(x)e)
= M(T"(z)/e)e = T"(x) + (c(x) —m(T"(x)/e))e)

Now,

M(T"(xz)/e) =inf{t e R | (te = T"(x)) € K}.
Thus there exists {t;};jen C R s.t.

lim ¢, = M(T"(x)/e)

j—o0
and (tje —T"(x)) € K

for all j € N. So, we get that

M(T"(x)/e)e — T"(x) = lim (t;e — T"(z)) € K,

Jj—00
which is in K since K is closed.

Since
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AK C K VYA >0, and ¢(z) —m(T"(x)/e) > 0
for all n € N, we have
(c(z) —m(T"(z)/e))e € K
for all n € N.
Finally, since K + K C K, we have
(M(T"(x)/e)e =T (x)) + (c(x) —m(T"(x)/e)e € K.

that is
(M(T"(z)/e) —m(I"(z)/e))e — (T"(z) — c(z)e) € K

for all n € N.
Thus
I(x) = c(x)e < (M(T"(x)/e) = m(T"(x)/e))e = w(T"(x)/e)e Vn.
Since
m(T"(x)/e) = sup{t € R | (T"(x) —te) € K'}

and using again that K is closed, by similar arguments as before we deduce
that
T"(x) —m(T"(x)/e)e € K

Furthermore M (T™(z)/e) > c(x) for all n, so (M(T"(x)/e) —c(x))e € K and
T"(x) — c(z)e + w(T"(x)/e)e

=T"(x) —c(x)e+ M(T"(x)/e)e — m(T"(z)/e)e

= (T"(x) = m(T"(x)[e)e) + (M(T™(x)/e) — c(x))e  (¥)

Since
(T () = m(T"(x)/e)e), (M(T"(x)/e) — c(x))e
are in K and K + K C K , we get by (*) that

(T"(x) — c(x))e + w(T"(x)/e)e) € K.

Hence

—w(T"(x)/e)e < T"(x) — c(x)e.
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So we have shown that
—w(T™(x)/e)e < (T"(x) — c(x))e) < w(T™(x)/e)e for all n.

But this means that for all n,

(T™(x) — c(x))e) € w(T™(x)/e)l.
Since

| T"(x) — c(x)e |p= inf{t > O|(T™(z) — c(x)e) € tl.},
we get immediately that
[T () = e(z)e ||[r< w(T™(x)/€) Yn.

But we have already shown that

w(T"(z)/e) < I TMI7 Il 2 [l ¥n.
Hence,

1T (x) = c(@)e [le< T[]l m

for all n and this proves the part b).

Proof of ¢) As |||T|||z < 1, we get that from part b) that

lim || T"(z) — ¢(x)e ||r= 0,

n—o0

for all z € X, that is

lim T"(z) = c(z)e wrt. || - ||r
n—oo

for all z € X.
Define L: X — X by

L(z) = lim T"(z) = c(x)e.

n—o0

Then L is well-defined since the limit exists ( as we have proved ) and it is
linear since 1™’s are linear.

Furthermore, L is bounded:
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Since lim T"(z) exist for all n and all x € X , we have that
n—oo

sup ||T"(x)||r < 00 Vz € X.

By the uniform boundedness principle,

sup ||T"(z)||r < o0

(Here we have used that (X, || - ||z) is a Banach space. This follows, since
(X, ]| -]|) is a Banach space and || - || and || - ||r are equivalent because K is
closed and normal.)

Now, for all x € X with ||z||r <1,
set

|1 L(@)[[r = lim [[T"(z)[[r < sup|[T"(z)[|r < sup[|T"[|z.

Hence,
sup ||L(z)[r < sup||T"[|r < oo.
n

||lz||lr<1

Thus L is bounded with

L)l < sup [ T[]z

From this we can deduce that 7 as defined in part c) is a continuous linear
functional:

First observe that L(z) = c¢(x)e = <,z > e for all z € X. Since L is linear
and e # 0 it follows that 7 is linear.
Since ||e||r = 1, we get

| <m x> [=le()] = |e(@)] [lellr = [le(@)ellr = [[L(@)||lr < ||Ll|z|le]lr
Hence 7 is bounded and ||7||5 < ||L]|7 so m € X*.
As T'(e) = e, we have T"(e) = e for all n € N.
Hence

<me>e=c(e)e= lim T"(e) = e,

n—oo

so it follows that < 7,e > = 1. Furthermore, if € K, then T"(x) € K for
all n since T(K) C K,
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so, we get
c(x)e= lim T"(z) € K

n—oo

when z € K.
Now, we have |c(x)]e € K, since e € K and |c(x)] > 0.

Since K N (—K) = {0}, and ¢(x)e, |c(z)]e € K it follows that c(z) = |c(x)]
as e # 0. So we have shown that < 7,2 > =c(z) >0 Vz € K.

Hence m € P(e). This proves part c).
Proof of part d) Since pu € P(e), by the consequence of lemma 3.1, we have

||x||T: sup |<Ua$>|2|</~%$>|
veP(e)

for all z € X.
So, if ||z||r < 1, then | < g,z > | < 1.
Hence
pllp = sup | <p,x>]<1
[|lz]|lr<1

On the other hand , < p,e > =1 and |le||7 = 1, so

sup | <px>|[>[<pe>|=1
lzllr<1

Thus
lully = sup | <pz>|=1
||| <1
which proves the first statement of part d).
Now we prove the second statement of the part d):
Since (T*)" = (T™)* for all n € N, then for all ;1 € P(e) we have:

< (T*)"(p) —myx>=< (T (p) —mx>=<(T")(pn),r>—<mz>

=<pu,Th(z)>—<mze>=<pTHz)>—<mae><pue>
(since < p,e > =1 when p € P(e).)

But <mzx><pe>=<pu<mz>e>=<pc(r)e>since u is linear.
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Hence
< (T (p) —myx>=<pu,THz) > —<mx><pe>
=< u,T(z) > — < p,c(x)e >
= <, T"(x) = c(x)e > < ||pl[p[[T"(2) — c(x)elr
= |lulls [1T"(2) = c(@)ellr < lully TN 2],
for all n € N, x € X since we proved that
1T (2) = e(x)ellr < T1|[% l|[a-

for all n € N, z € X. Since u € P(e), we have ||u|l5 = 1.
Hence

< (T () = x> < ully TG e = TN 2lla
Let now
¢: M(e) — (X/Re)*

be isometric isomorphism (which we considered in the begining of the
section 5) given by:

<o), r+Re>=<v,2> Yve M), z € X.
We observe that

<(T*)"(p),e>=<(T")*(n),e>=<p,T"(e) >= < pe>=1
for all n € N and all u € M(e).

Hence
<(T*)"(u) —me>=1-<me>=0
for all n € N and all p € M(e).
So
(1) () = m) € M(e).
for all n and all € M(e).

Furthermore, we have
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< O((T)"(u) = 7),x +Re > = < (T*)" () = m,@ > < [T} [|o]|a
for all z € X and all p € M(e).
Since ||z||g = |||z + Rel||y for all z € X
we get
<¢((T*)"(u) =), &+ Re > < |[ITII[7 lllz + Relllz
for all n € N and all u € M(e).
This shows that
11e((T*)" (1) = o)l < T

for all n € N and all p € M(e).

( Indeed,
if <o((T*)"(p) —7),x +Re > < 0, then
| < o((T*)" (1) —7), 2+ Re > |
= — < ¢((T*)"(p) — 7),x + Re >
= < o((T*)" (1) =), —2 +Re > < [||T||I% || - = +Rell|n
= [[I7111% |||z + Rel|| s

It

<o((T")"(n) — m),x +Re > >0,
then

| < o((T")" (1) = 7), x +Re > |
= < o((T)" (1) = ),z +Re > < |[|IT]|[3; [lle + Rel||x

Hence, in any case

| < o((T*)" (1) = m)sx +Re > | < [[IT1II7 Il + Relll)

Ie((T)" ) = =l < [T )

Since ¢ is an isometry, obtain
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1T (1) = wll3 = 16T (1) = )l < T
and this proves the second statement of the part d).

This completes the proof of theorem 6.1. As mentioned before, now we will
introduce theorem 6.2 which is an application of theorem 5.1 to the particular
case when T': X — X is a Markov operator w.e.t. K and e.

Theorem 6.2 (Abstract Dolrushin’s ergodicity coefficient )

Let T : X — X be a Markov operator w.r.t. K and e.

Then

T =151 =1— inf inf <m,T(x)>+<v,T(e—x)>

v,m€extrP(e),vlmr z€[0,e]
Proof: By theorem 5.1, we have that

TNl = 118"l = sup sup <o —7,T(z) >
v,m€extrP(e),vlm x€[0,e]

Now, since T'(e) = e, we get that
<v—mT(zx)>= 1-<m,T(z)>—(1—- <v,T(x) >)
=1l-<nmn,T(zx)>—-(<v,e>—<v,T(z) >
=1-<mT(z)>—(<v,T(e) >— <v,T(x)
=1l-<mT(x)>—(<v,T(e) —T(x) >)
=1-<mT(z)>—(<v,T(e — 1))

)
>)

whenever v, m € P(e)

Hence
1T/ = 115"l = sup sup <v—m, T(x)>
v,m€extrP(e),vlmw x€[0,e]
= sup sup (1— <7, T(z) > —<v,T(e—x) >
v,m€extrP(e),vlr x€[0,e]
=1- inf inf (1- <7, T(x)>—-<v,T(e—x)>

v,m€extrP(e),vlmr x€[0,e]
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8 Applications to stochastic matrices

In this section we let X = R" equipped with its usual Euclidian norm,
K = R? be the standard positive cone, e = 1. As mentioned in the intro-
duction of the thesis, throughout this section we will consider 7" : R* — R"
given by T'(z) = Ax for all z € R™ where A is an n x n row stochastic matrix.
The first part of lemma 7.1. in this section which states that

T[]z = 6(A) =1 I}gjrl;mm{az,k, i}

is also given in [GQ| in example 6.3 but without proof. However, we give
here the complete proof of lemma 7.1. Similarly, the proposition 7.3 which
states that

n

1 n
1 — min g min{a; j, a;x} = = max g aix — ajl
i<j 2 i<y

k=1 k=1
is given in the introduction in [GQ| without proof, whereas we give here a

detailed proof of this equality. The rest of the material in this section is not

given in [GQ).

Consider the case of the standard positive cone from example 1.4 that is
X=R" K=R"ande= 1.

Let T': R™ — R™ be given by T'(z) = Az for all x € R” where Aisann xn
row stochastic matrix.

Then T is a Markov operator w.r.t K and 1. Denote |||T|||z by 0(A), that is
we let |||T|||lg = 6(A).

We have then the following lemma:

Lemma 7.1 Let T : R®™ — R" be the Markov operator defined above. Then

we have
A) =1 —mi i , ,
5(A) min min [Z Gkt Y am]

kel kel

i<j

n
=1 — min Z min{ai,saj,s}
s=1

Furthermore, §(A) < 1 if and only if AA" has only positive coefficients.

110



Proof: We have

extr [0, 7] ={v;: J C{1,....n}}
where
(i) = 1 ifieJ
YT 0 ifi g

Let Jo:={1,...,n}\J

By theorem 6.2 and remark 4.8, we get that

~ . . -
| T|||z =0(A) = 1_v,7reext£r(l}>r(11)),uw r%}n?](< T, Ar > + < v, A(1 —x) >).

z€|

1 s . t t 4
=1 %?xe%n?](elflx +eA(T —x2))

By remark 5.2, since R” is finite dimensional, the minimum will be attained
: S
at an extreme point of [0, 1'], hence

1 . t t AT
0(A) =1 min [Lo)m%}(eiAx—i-ejA( ' —x))

1 s . t t AT
=1 min min (e;Az + e A(T — )
x€extr| 0,1 ]

=1- Iln<1jn Jg%,i,?,n}<€§AUJ + eﬁA(T> —vy))

=1—min min (etAv et Av e
i<1j Jg{l,l...,n}( i e J)>

— 1 mi . ' ‘
Hz%n Jg?lnnn}(z @i Z @k)

keJ ke.J
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where we have used that

AUJ: E Qjk

keJ

and Avyc = Z @j k-
k¢J

Fix now 7,7 € {1,...,n} and let J = {k|1<k<n a <aji}

Then

Z i p + Z Qjk = Jg{{fllmn}(z Qi+ Z ajr) (*)

ked k¢J keJ k¢J

( The explanation of (*) will be given at the end of this section. ) By
definition of J ,

n

E aip + E ajp = E min{a; x, a;},

ked k¢J k=1

SO

n
> min{ai, ajr} = Jcin n}(Z Qi+ D).
k=1 =t

keJ k¢J

Hence, using this in the formula for 6(A) obtained earlier in this proof, we
get

d(A)=1—min min (Z ai+ Z ajr) =1-— min(z min{a; x, a;;})-
R

1,5 JC{1,..n
=y kg J
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which proves the first part of the lemma.

Thus

i(A) <1 & min(z min{a; g, a;x}) >0
2y

k=1

& Zmin{ai,k, ajr}) >0 foralli,je{l, .. n}
k=1

This now holds if and only if for all 4, j € {1,...,n}, there exists
an k € {1,....,n} st a;; > 0 and a;; > 0, which again is true if and only if

n

Z(ai7k)(aj7k) >0 foralli,je{l,..n}

k=1

If we now let S = AA?, we observe that

n

sig =Y _(aix)(a).

k=1

Hence we get that Z(ai7k)(aj,k) >0 foralli,je{1,..,n}if and only if
k=0

AAT has only positive coefficients. Combining all these equivalences, we

conclude 6(A) < 1 if and only if AAT has only positive coefficients. This

complets the proof of lemma 7.1.

Now we have the following theorem:

Theorem 7.2 Let A be an n X n row stochastic matriz, let Q = A. Then
the following 3 conditions are equivalent:

a) There exists some k € N s.t. 6(A*) < 1.

b) Q has an attractor, that is there exists a stochastic vector u € R"™ s.t.
Q"v — 1 asn — oo for all stochastic vectors v € R™.

c¢) There erists some k € N s.t. AF has (at least ) one column with only
positive coefficients.

Proof: a)=b): Assume that a) holds.
First observe that A* is also a row stochastic matrix.
Consider T : R™ — R" given by T'(z) = Akz.
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Since A* is row stochastic, T is a Markov operator w.r.t. K and T
11S*(I5 = [IT]||a = 0(A¥) < 1, so S* is a contraction w.r.t. || - |[%.

Recall that S* =T _ .
(M 1)

Now we observe that
T*(z) = (A¥)'z = (A = Q*x Yz € R™ (**)
We also observe that if p,v € P(T}), then (un—v) € M(T})
Hence
T () = T ()|[r = 1T (e = )5 = 115" (1 = 0[5 < IS5 (e = o)
for all p,v € P(T))

Recall also that P(?) in this case is the set of all stochastic vectors in R”
by remark 3.1. and that || - |[5; = 3| - ||1 by remark 4.3.

Using all this together with (**), we get that
105 — Q¥olls = 2T () — T ()l < 1°132110 — o]l
= (18I ln—vlli ¥p.ve P(T).
Thus, there is ¢ < 1 (¢ =||5* |[};) s.t.
1Q = Q%[ly < clln — vl
for all stochastic vectors u,v € R™.
Now, by theorem 6.1, there exists a 7 € P(?) s.t.
1(T*)" () = wllz < T111%

for all pu € P(?) and all n € N. Then clearly ||(T%)"(y) — ||y — 0 as
n — 00, because |||T|||z < 1. Hence it follows that

1Q™ 1 — ally = 2I|(T")" (1) — [y = 0

as n — oo for all stochastic vectors pn € R™. This shows that 7 is an attractor
for QF.
Now we will prove that 7 is an attractor for Q).
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First we prove that Qm = 7 :

Since 7 is an attractor for Q¥, it follows that it Q*m = 7. But this gives that
Qm = Q(Q*r) = Q%(Qn), so Qr is also a stochastic vector that is fixed by
k

Q

Now, since
1Q"1 — @ [ls < el —vllx

for all stochastic vectors u,v € R™ and ¢ = ||S*||;; < 1, it follows that a
stochastic vector fixed by Q¥ must be unique. Hence we get m = Q.
Next we prove that 7 is an attractor for Q:

Let © € R™ be an arbitrary stochastic vector. For n € N, there is an r in
Nand m < k s.t. n=rk+m.

Since @) is an n X n column stochastic, matrix, it is not difficult to see
that ||Q°z||; < ||z||; for all s € N and all z € R™ .
Hence we have:

1Q" (1 — )l = Q™™ (1 — m)[[y = 1Q™(@Q™ (1 — m)[[» < [1Q"™" (1 — ™)1

We also have

Q™ (= m)ll < [[S* 5 11Q" V(1 — m) [l = €| QU (e — m)]I

where ¢ = ||S*|]3; < 1. It follows by induction that

1@ (1 = )l < M = )l = F7 R (= )1 < I = 7]

since 7+ <1 and 0 <c<1 s0 =4 <t
ck ¢

Hence

1Q" w — [y < ¢ Y|(1— m)|[x

which gives that for any stochastic vector p € R"*, Q" — m as n — oco. This
means that 7 is an attractor for Q.

b) = ¢)

Since ) has an attractor, there exists 7 € P(T)) s.t. for all u € P(T)), we
have Q" — m as n — oo. Let e; denote the j-th unit vector of R". Since
Q"e; — masn — oo for all j € {1,...,n}, we must have that qj — ™ as
n — oo for all j € {1,...,n} where ¢} denotes j-th column of Q".

Since 7 is stochastic, there exists an entry =g, of m s.t. w, > 0. Thus, for
each j with 1 < j < n, there is k; € N s.t. the s-th entry of Q™e; is strictly
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larger than 0 for all m > k;. Put k = max{k; |1 < j < n }. It follows then
that s-the entry of Q¥e; is strictly larger than 0 for all j € {1,...,n}. But
since Q%e; is exactly the j-th column of Q% it follows that the s-th row of
QF has only strictly positive coefficients. This gives that A* has r-th column
with only positive coefficients because A! = Q.

c) = a)

Assume that ¢) holds. As we just saw, there exists k € N s.t. for some
r € {1,..n}, the r-th row of Q* has only positive coefficients. This gives
that:

n n

(@'@%)i; = Y _(QML(Q")4) = D (@)4(Q")y)
= (Qk)rz(Qk)r] + Z (Qk)sl(Qk>S]
s=1,s#r

> (Q)ri(Q); > 0
for all 4,5 € {1,...,n}.
Hence (Q*)'Q* > 0, which means that A*(A*)" > 0. But by lemma 7.1, this
is equivalent to

5(AF) < 1.

Thus, there exists k € N s.t. J(A¥) < 1 and this complets the proof of
theorem 7.2. Comment: A similar version of theorem 7.2 is given in [ABS],
denoted by "theorem 1.1". It is given in the following way:

Theorem 1.1 Let P be an n x n stochastic matriz. Then the following
conditions are equivalent:

(1) P has an attractor.

(2) P is semireqular, i.e. there exists some s € N such that (P*)T P* has only
positive coefficients.

(3) There exist some s € N such that P* has (at least ) one row with only
positive coefficients.

Comparing to the theorem 7.2 in this thesis, we observe first that since A
is assumed to be an n X n row stochastic matrix in the theorem 7.2, then
Q = Al is an n X n column stochastic matrix. Furthermore , by lemma 7.1,
we have that 6(A*) < 1 if and only if A¥(AF)! has only positive coefficients.
Again, as Q = A! | it follows that §(A*) < 1 if and only if (Q*)TQ* has only
positive coefficients.So the condition a) in theorem 7.2 is equivalent to that @
is semiregular. Thus the theorem 7.2 in this thesis is actually a reformulated
version of the theorem 1.1 in [ABS|. However, we have proved this theorem
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by applying directly the theorem 6.1 from section 6, whereas in [ABS| they
first need to prove the completness of R w.r.t. ||z||; and a lemma which they
denote by lemma 4.1 before they can prove the main theorem.

The rest of the proof theorem 7.2 in this thesis uses the similar techniques
as in the proof of theorem 1.1 in [ABS].

At the end of this section, we introduce the proposition 7.3 which gives
an alternative expression for §(A) known as Doeblim contraction coefficient:
Proposition 7.3: Let A be n X n row stochastic matriz. Then we have

Proof: From lemma 7.1, we already know that

0(A) =1—min Z{als,%

1<j

Hence, it suffices to prove that

n
1 — min,<; g {aa;s,a;s} = nzq<ax g la; s — a;s|.
s=1 J 1<j<n

Given i,j € {1,...,n} with i <j let K ={se {1,...,n}ais > aj,}.

Then

. Qs if s € K¢
mln{ai,s’ aj,S} Y a., ifscK
8 '

where K¢ ={1,....n} \ K.
Also
lais — a4} = a;s —aj, ifse K
B Bt Aj s — Qs if s € K°.

Hence we get

Z |ai,s — ajs| = Z(ai,s — ajs) + Z (aj,s — ais)

1<s<n seK seKe¢
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= Z(ai,s + Ajs — 2aj,s) + Z (ai,s + Qjs — 2ai,8)

seK seKe¢

— Z (s +ajs)—2 [Z ajs+ Z aiys]

1<s<n seK seK¢

=2-2 [Z min{a; s, a;s} + Z min{a, s, aj,s}]

seK seKe

=2-2 Z min{a; s, a; s}

1<s<n
This gives that
1 .
5 > ais —ajl =1 > min{a., a;.}.
1<s<n 1<s<n

So we get that

1
Smax Y ai. — a;| = max(1— ) min{a;s, a;.})
2 i<y i<j
1<s<n 1<s<n
=1—min min{a; s, a; s}
(5]
1<s<n

and this proves the proposition 7.3.
Additional comments:

Explanation of (*)

Let JC{l,...,n}and 1 <i,j <n.
Then

Z a;k + Z Qi k

keJ k¢J
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n
> Z min{a; g, a;x} + Z min{a; , aj i} = Z min{a; i, a;x}
1

keJ k¢J k=
= E a;k + E a;
keJ k¢J

( Remark on notation: Here k ¢ J and k ¢ J means k € {1,....,n} \ J and
ke {1,...,n}\ J respectively.)

Since we have this inequality for all J C {1,...,n}, we get that

RO SURED SUVED BLY

keJ kgJ keJ k¢J

The inequality the other way is obvious since .J is a subset of {1,...,n}
Hence we must have the equality.
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9 Application to Markov operators on Cg({2)

As mentioned in the introduction of the thesis, in this section we let
X = Cg(Q) be equipped with the supremums norm, K C Cg(£2) be the cone
consisting of all nonnegative functions on €2, the order unit u € Int K be
equal to the constant function 1. The material in this section is not given in

[GQJ.

Ezample 8.1: Consider now the space Cr(2) with the sup norm, where €2 is
compact metric space.

Let £ : Q2 x 2 — R be a continuous non - negative function and let p be a
positive Radon measure on (2 s.t.

/Qk(a:,y)d,u(y) >0 Vr e

(Here we assume that we have such k and ). Let then & : Q% Q — R be
defined as

7. _ k‘(l’,y)
Hoy) = Jo k(z,y)dp(y)

Then k is continuous, nonnegative and Jo Kz, y)du(y) = 1.

Let now Fr(2) denote the space of all real valued functions on 2 and
consider the integral operator Ty : Cg(€2) — Fg(f2). given by

Ti(f)(@) = Jo ke, 9) f(y)duly) Y e Q.
Then T} is clearly linear.
We want to show that
T,(Cr(2)) € Cr(%):
Let f € Cr(Q)

Consider the function Ty (f) .
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If f =0 then T(f) = 0 so Tx(f) is continuous.

It f # 0, then [[f[[ # 0

Since k is uniformly continuous on €2 x €2, given € > 0, there exists § > 0
s.t. if 2,20 € Q and d(x, z9) < 6, then

Ik(@,y) = k(zo,9)] < i
for all y € Q.
Then, if d(x,20) < J, we get that
I T(£)(@) = Tu(F)(wo)| = | Jo(k(z,y) — k(zo, 9)f (y)du(y)|
< f oo Jo IR, y) = ko, 9)ldply) < || Flloo Jo mayipmdi(y) = €

Since xy € € was arbitrary, this shows that Tj(f) is continuous . Thus

T}, is then bounded, since
ITe()(@)] = | Jo K )| < Jo k(@)1 f(y)ldu(y)

< || flloo Jo k2, y)duy) = || £l

for all x € €2, hence
T (oo < M1 flloo

for all f € Cr(Q2)).

We observe that if f € K, then since k is non - negative and g is positive
Radon measure, we get that

fQ y)du(y) >0 Ve eQ, soTi(f) € K.

Thus Ty (K) C K.

Furthermore
fQ (x,y)du(y) =1 Ve QsoTy(l) =1.

Hence T} is a Markov operator, w.r.t. K and the constant function 1.
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Consider now the adjoint of T}, T}". We have shown before that
(Cr(Q2))* = M,(2), where M, (2) is the space of all signed Radon measures
on ).

Hence T} : M, (Q2) — M,(Q2), and for given f € Cr(Q2) and v € M,(§2) we
have

<Ti(w), f>=<vT(f) >
Let w = T} (v).
Then

Jo T Wdw(y) = <w, f>=<v Tk:(f) = Jo Tu(f)dv(z)
= fQ fQ du(y))dv(x)

Let v = v, —v_ be Jordan decomposition of v. Then we have:

/ /Vw y)f(y)ldu(y) dv+(x)

< [[Elloo /1100 ()04 (82) < 00,

since u, v, are Radon measures and €2 is compact.

Similarly
/ / k(z,y) f(y)|du(y) dv,(q:) < 00.

By Fubini’s theorem, we may change the order of the integration and get

[)(/fo(x,y)f(y)du(y))dq}(x)

Hence we get

fQ f() fQ fQ y)du(y))dv(x)



= fQ fQ (y)dv(z))du(y)

= Jo fW)p(y)dp(y) where p(y) = [y k(z,y)dv(z))

Thus [, f(y)dw(y) = [, f(y)p(y)duly) for all f € Cr(Q).

Now, given y, yo € 2 we have
) = plow)| < [ 1(Ge.) = o) dlol(0)

Again, since k is uniformly continuous, glven € > 0 we can find § > 0 s.t if
d(y,yo) < 0, then |(k(z,y) — k(z,y0)| < wiey for all z € Q.
Hence, given yo € Q and € > 0 if d(y,yo) < ¢, then

€
[p(y) — p(yo)| < /I k(x, yo)| dlvl(z) < [0](2) = e.
|v](€2)
This shows that p is continuous, hence Borel measurable. (Of course, we as-
sume here that |v](€2) # 0..If not, then v is a 0 measure, hence p is a constant
function equal to 0. But then, p is continuous hence Borel measurable.)
Since p is Borel measurable, the integral

/E p(y)du(y)

is well-defined for all E C B(f2).

Let 1 : B(Q2) — R be given by n(E) = [, p(y)du(y)

Then 7 is a signed Radon measure on ) since p is a Radon measure on {2
and p is continous, hence bounded on Q. By exercise 9.51 in [MW]| we have

/ gdn = / gpdp
Q Q

for all g € L*(|n|) that is dy = pdpu. Since 7 is signed Radon measure on
and ) is compact we have that ||(Q) is finite. Hence Cg(Q2) C L'(|n)|), as
all fin Cr(§2) are bounded on 2. So in particular, for all f € Cr(£2), we have

/Qfdnz/gfpdu
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by exercise 9.51 in [MW]
But

/Qfdn—/ﬂfpdu

for all f € Cr(£2) as we have shown, hence

/Qfdnz/ﬂfdw

for all f € Cr(Q2). So ¢, = ¢, where ¢,,, ¢, are in (Cr(£2))* given by

=/Qf dn Vf € Ca().

:/fdw Vf e Cr(Q).
Q

Since we have isometric isomorphism between the space of all signed Radon
measures on 2 and (Cg(2))* via the map v :— ¢, (as we proved in the
remark 2.3 ), it follows that n = w. . Hence pdu = dn = dw

So we have
dw = pd
where w = T} (v)
and p(y fQ x,y)dv(z))
Then we get
djw| = |p|dp
since p is a positive measure.
So
T ()I(2) = [wl(Q) = [o lpW)lduly) = fo | Jo *(z,y)dv()|dply)

Jo | o (z, y)dve(z) — [, k(z,y)dv_(z)|du(y)

From section 5 we have

1 Txl[ler = [|Sk||7 where Si = TI:|M(1)'
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Also we have
veM() e [1ldv=0sv(Q)=0.

Hence, using that
* 1 *
-1 =5l Mz
by definition and that ||v||; = |v|(Q2) for all v € M,.(€2) by remark 2.3, we
obtain:

152115 = 1Ty 1
T* *

wp @I
vEM(1), v£0 [[v]|%

T )| I5

vEM(1), v£0 %HUH?

T* *
wp Tl

veEM(1), v£0 [[o]l7

T Q
I {01
veM(1), v£0 [v[(€2)

Jo | o (z, y)dve(z) — [, k(z,y)dv_(z)|du(y)

= sup

vEM(1), v£0 (Q) +v-(Q)
Now, if v € M (1), then 0 = v(Q) = v (Q) —v_(Q).
Also
[0](Q) = v () + v_ (%),
Hence,

v (Q) = v_ () = 3|v[().
Since k > 0, we have

fQ (z,y)dv, (x fQ (x,y)dv_(x) >0 Yy e Q.
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So we get
I/ ,y)dvy (v /%(x,y)dv—(ﬂf)\
< max{fQ x,y)dvy (z fQ z,y)dv_(z)}
< max{ fo, |[k|locdvs, [ [[k][ocdv_}
= wnase{||Floet (), [[Flloc ()}
= k| |oo|v|(Q) for all y € Q.
Hence
T (v)[()

T = sup ———=
H klM(l)HH veM(1), v#£0 |U|<Q)

< Joo 311l sol 0| (2)dpa
 weM(1), v [v](Q)

= 1)
So, if k is s.t. [|k|]e < #(iﬂ? then |||Tk]|z < 1.

As a concrete example, let now 2 = [0, 27], p be the Lebesgue measure on
0,27] and k& : Q x Q — R be given as k(z,y) = 1sin((z +y)).

Then k is continuous.

If 2,y € [0,27], then 1(z +y) € [0, 7], hence k(z +y) = tsin(3(z+y)) >0
for all z,y € [0, 27].

Furthermore

[ adnts) = [ iy = [ fsinto+ i
= [—cosi(z + y)|i" = cos(3z) — cosi(x + 2m)
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1

= cos(32) — cos(32 + 5) = cos(32) + sin(5x).

Using elementary calculus, it can be easily checked that
1 1
cos (Zx) + sin (ZI) >1
for all z € [0, 27].
In particular,
cos (ix) + sin (}lx) >0

for all = € [0,27], so we can then define k : Q x Q — R as described in the
begining of the section by betting

7. _ k’(l‘, y)
Hoy) = Jo k(@ y)du(y)
k(z,y)

~ cos (32) + sin(3y)

Since cos(32) + sin(3z > 1 for all z € [0, 2n], it follows that

o= sup 250Gt y)
* syeen (cos(3z) + sin(iz))

<_7
4

>0 1 1 2 2
Ho<lol_o2_ 2
[1Flloe = 4 1 2r u(Q)

since (0 = [0, 27| and p is the Lebesgue measure.
Hence, it follows that |||7%|||z < 1. The theorem 6.1 gives then that there
exists a unique invariant measure v € P([0, 27]) s.t.

(1) (v) — 2| ([0,27]) = 0 as n — oo
for all v € [0, 27].

Example 8.2: Again let 2 be a compact Hausdorff topological space,
consider Cg(f2).

Let w : Q — €, be continuous and let T, : Cr(Q2) — Cgr(2) be given as
Tw(f) = f ow. We then have:

for all = € €2 whenever f > 0.
Thus T, (f) > 0 whenever f > 0, which means that T,,(K) C K. Furthermore
T(l)=1ow =1, s0 T, is a Markov operator w.r.t K and 1.
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By theorem 5.1

Tl = sup sup < v —m, Ty (f) >
v,meextrP(1),vlm 0<f<1

= sup sup < 0, — 0y, Ty (f) >
z,yeQr#y 0<f<1

= sup sup (/fowd(;x—/fowd(;y)
Q Q

z,yeQa#y 0<f<1

= sup  sup (f(w(z)) — f(w(y)))

zyeQay 0<f<1

Now, if there exist Z,9 € Q,Z # ¢ s.t. w(&) # w(y), by Urisohn’s lemma,

there exists f € Cr(Q) s.t. f(w(z)) =1 f(w(§))=0and 0< f<1.

Thus

1= f(w(@) — flw())

< sup  sup (f(w(x)) = fw(®) = [[|Tullln,
z,yez#y 0<f<1

s0 |||Ty|||zr > 1. This is a situation where we can not apply the theorem 6.1
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10 Application to Kraus maps

As mentioned in the introduction, of the thesis in this section we let X = 5,
be the space of all Hermitian matrices in C™*" equipped with the operator
norm, we let K = S;' be the cone in S,, consisting of all positive semidefinite
n X n matrices, and I,, be the order unit.We will mainly follow section 7 in
|GQ| but most of the statements used in [GQ| will be supplied with detailed
proofs and explanations. In addition, the examples 9.1, 9.2 and 9.8 and the
proof of theorem 9.7 in this section are not given in [GQ).

Corollary 9.3 in this section is denoted by corollary 7.1 in [GQ)], corollary
9.4 is denoted by corollary 7.3 in [GQ)], lemma 9.5 is denoted by lemma 7.6
in [GQ)], theorem 9.6 is denoted by theorem 7.7 in [GQ| and theorem 9.7 is
denoted by theorem 7.8 in [GQ).

Non commutative Markov operators - Kraus maps:
Let
d:5,— 5,

be defined by
BOX) = 3 VIXV,
i=1

for all X € S,, where vy, ...,v,, are in C"*" and

i ViV, = I,
=1

Such operator @ is called a Kraus map.
Then

=1

and if X € K, then for all z € C", we get
<OX)zx>=Y <ViXViaaz>=)Y <XV Vi>2>0
=1 =1

since X is a positive operator.
Thus

O(X) € K, s0 ®(K) C K since X € K was arbitrary
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Hence ® is a Markov operator w.r.t I, and K.

Example 9.1 Let U € C™*" be unitary. For k € {1,...,m}, let

.a(k
e“’g ) 0

where Hj(-k) € [0,27] for all j € {1,...,n}.
Then

m

ViV =Y (UDU*)(UDUY))

k=1 k=1

_ i UD:DU* = i U(%In)U*
k=1 k=1

1 m
=—) UU" =1,

NE

so the operator ® given by
O(X)=> VWXV
k=1
for all X € 5, is a Kraus map.

Example 9.2 Let

Then



so @ given by ®(X) = V"XV + VS XV, for all X € S, is a Kraus map.

By remark 3.2. we can identify the dual of S,, with S, itself via the map
B —»< B> where < X,B>=1tr(XB) VX € 5,.

The map B —< -, B > is an isometric bijection as it was proved in remark
2.2.

If we define ¥ : S,, — S,, by

DG
i=1
for all X € S, we see that

< X, U(B) > = tr(XU(B)) = tr(i XV;BV;?) = itr(Vi*XV;B)

- m«((i V*XV)B) = t2(®(X)B) = < ®(X), B > .

for all X € S,. Hence V¥ is the dual operator of ®.
Observe that W is trace preserving, since given X € S,,, we have

m

(> (ViXV) = itr(ViXV* Ztr (XVV;) = tx( ZXV*
=1

i=1

Zv* r(X1,) = tr(X).

As we have shown in section 5, since ®(1,,) = I,,, we get the induced map
®:S,/RI, = S,/RI, glvenbyQ(X—l—R]): ( )—I—RlnforallXESn
Then ~

: (X + RL)|[|a
o = su
X +RIp#0

Now, as we have shown in section 4, the lemma 4.1. gives us

N(X) + R[5 = [|D(X)]|u

and
[1X + RL |||z = [|X]|#,

for all X € S, hence

. |®(X)||a
@ = su —_—.
|||z S,
[1X || g #0
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By example 1.5, || X ||z = Aax(X) — Amin(X) for all X € S, hence

L e o o

1 X[ g #0

As we have proved before, the adjoint map of ® is the dual operator of ®
restricted to M(I,), that is ¥, =~ =V

and [|U[|; = sup |[W(u)][}
we By (1)

- \T/,u I
— sup [l = sup Ul
pEBY (In) pEB% (In) ||:“||H
sl =1 [l 30

By an earlier result in section 4, B};(I,) = {p1 — p2: p1,p2 € P(I,)},

hence ~
B emnam Nl
[l 0

I — *
—  sup V(o1 — p2)llit

p1:p2€EP(In) le _p2H7‘I
P1LFP2

\Ij _ *
—  sup 1% (1 — p2)l|

p1:p2€P(In) le _p2||*H
P1FP2

( here we use that U = i )
By definition, ||p|l;; = 3llull7 Vi€ M(I,) and [|X][7 = [|X][y VX € S, by

remark 2.2 . Now, M(1,) € 53 = S, so [l = bl = 3l

Henee 19 (o) — W)
Z p1) — Y(p2)ll;
1B][5 = sup : S

p1,p2€P(In) le - pQHH
P17#P2
1) — W(pa)ly
sup T
P1:p2€P(In) 5”;01 — p2llh
P1#P2
U -0
Ly 1) )l
p1:p2€P(In) le - p2H1
P1FP2

In the next corollary, we will apply theorem 6.2 to derive a concrete expresion
for [[|®f]|a-
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Corollary 9.3 ( Noncommutative Dobrushin’s ergodicity coefficient ). Let
® be a Kraus map defined in the begining of this section. Then,

P = || T = 1— 1nf inf mf WO (] )u + VO (xx]
191l = 101l =1, ot e (O 2o

Proof First we prove the following claim.

Claim 1: extr[0,[,|] ={P € S, : P* = P}.

If A €]0,1,], then A is a positive semidefinite and all its eigenvalues are
between 0 and 1. By lemma 3.3.7 in [P], a compact normal operator T has
an eigenvalue A s.t |A| = ||T||. Since A is a finite rank operator, it is compact
and it is normal since it is self adjoint, so there is an eigenvalue A for A s.t.
|A| = ||A]|. Since A is an eigenvalue for A then A € [0, 1]as we observed above
so it follows that 0 < [|A]| < 1.

By prop 3.2.27 in [P], if T is normal then

Tl = sup {| < T,z > [},
llzf|<1

Since A = A*, we get that

1A]l = sup {| < Az, z > [}.

llzf|<1

Consider now some P € S,,, P is a projection.
Then there is an orthonormal basis of eigenvectors for P {x1, ..., g, Tp i1, ..., T }
s.t.

P(zj) =z, Vj 1<j<k

P(xzj)=0, Vj k+1<j<n.
Soif A,B€0,1,],0 <A< 1and A+ (1 —\)B = P, we get that
1= ||JZJ||2 =< PZL‘j,l’j > =)< AZEj,ZL‘j > —I—(l —)\> < Bl’j,[Ej >
< Al[Az; || 5| + (L= N)[|Ba] ]|
< A P+ (1= MBI ]
= MNIA||+ (@ =N|Bl| <A+ (1 =X =1forall je{l,.. k}

( A, B € 0,1, implies that 0 < ||A]||,||B|| <1 as we proved above .) Thus
we must have equality all the way.
In particular, we must have the equality between 1. and 2. line, that is:

A< Azrjx; > +(1 = N) < Bry,zy > = M[Axg]| |[25]] + (1 = N)[|Bay] ||25]]
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Since
< Axj,x; > < ||Az|| |75l

< Buj,x; > < ||Bajl| [[a;l],
and A\, 1 — X\ > 0, we get that
< Awj x; > = [|Az;|| [|z;]| and < Baj,x; > = [[Ba;|| [|z]]
Hence there exists 7}9) and néj) in Rs.t. Az; = n%j)xj and Bx; = néj)xj. But
we also have the equality between 2. and 3. line, that is

Al Az [ ;1] + (1= A Ba] []a;]]

= A a5 ][* + (1 = MBI 5]

Again, since

A ]| = |[Az;]]
BI| [];]| = || Ba;|
and A\, 1 — A\ > 0 we must have that

[ Azs|[ = [[A[] [J5]] = [|Al

and ||Baj|| = [|B]| ||z;]] = ||BI|.
But we have that

1Az || = |InPa;]| = 0] (1251 = 0]
and ||Baj|| = |05 2| = n$] [la]| = [n5”)]

hence ' "
| = [|A]| and S| = ||B]].

Now, by the last equality, that is
MAI[+ @ =N[[Bll =A+(1-A) =1,

it follows that ||A|| = ||B|| = 1, since ||A]|, || B|| € [0, 1] as we proved before.

Hence |n§j)| =1 and |77§j)| =1
Since A, B € [0, 1,], in particular 0 < A and 0 < B, so A,B € K = S;.

Then A and B have nonnegative eigenvalues. Since 779 ), néj ) are eigenvalues
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of A and B respectively ( because Az; = n%j)xj Bz; = néj)xj ), they are

nonnegative, so we have that 779 ) = 'r]éj) = 1, because ]n%j )| = ]néj)| =1

Thus Az; = nV2; = x; and Bx; = nz; = x;.

If k+1<j<n,then Pz; =0.

Hence 0 = A < Azj,z; > +(1 — \) < Bz, x; > .

Since < Az;,x; > > 0 and < Bzj;,z; > > 0 we get that

< Azxj,x; > = < Bzxj,x; > = 0.
Since 0 < A and 0 < B, there exist Az and B so
< Awj ;> =||Aza,])? =0
and
< Bzj,x; > = ||B2x,||* = 0.

Thus A%xj = B%xj = 0.
Hence

We conclude that A and B have same eigenvectors with same eigenvalues as
P, so A= B = P. Hence P € extr|0, I,,].

If A€l0,1,] and A is not a projection , then there exists A € (0,1) s.t. \is
an eigenvalue of A.

Write A as

A0 0
0 ng -~ 0
A=U A : vr
0 O Np—1
where U is unitary. Then
1 0 0 0 0 0
0 ng - 0 0 ng -~ 0
A=XU| . . . us+1-NU | . . . . U~
0 0 - n,, 0 0 - n,,
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Since A € [0, I,,], we have that all eigenvalues of are in [0, 1] as we have
shown before.

We wrote A as

A0 0
0 e 0
A=v| . ™ S| v
0 0 - My

hence 7, s are eigenvalues of A for 1 < k <n — 1. Thus 7, € [0, 1] for all
ked{l,..,n—1}.

Let
10 0
p=u|' ™Y
0 0 v s
0 0 0
and C' = U .7? | 9 U
0 0 - n,

Then we have A = AB+(1—\)C. The set of eigenvalues of Bis {1,71, ..., -1}
and the set of eigenvalues for C is {0,791, ..., 7,1}

Since 7, € [0,1] for all k € {1,...,n — 1}, we have that all eigenvalues of B
and C are in [0, 1].

Then it is easz to see that 0 < B < [, and 0 < C < I,,,s0 B,C € [0, ,].
Since A# B, A#C, A=AB+ (1 -\, and B,C € [0, 1,,] it follows that
A ¢ extr[0, 1,,].

Thus extr|0, I,] = {P € S,, : P> = P} and this proves the claim.

By theorem 6.2, H@H‘H = H@H}}

=1— inf inf (<7, ®(X)>+<0v,®(,—X)>)
v,weeUXJt_irP(ln) X€(0,In]
=1- inf inf O(X o1, — X
v,wE%{tler(In) Xelf(l),fn](tr( ( )Tr) + tr( ( )U))
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By remark 4.9, extrP(I,,) = {zz* | x € C" zz* = 1} and xz* Lyy* if and
only if xz*y = 0.

Hence
1-—- v,ﬁec}rilrfp(ln) Xel[r(l),fjn](tr(q)(X)W) + tr(¢’(ln . X)U))
=lo i, (@0 4 (@ — X)),
Now, if
A =aig] = (X)up” = (S(X)p)p”,
we see that
ai; = (P(X)p)if;
Hence )
trd = r(@(X)pue') = 3 (@(X)u)
j=1
Thus )
trAd = tr(CI)(X),uu*) — Z((I)(X)u)jﬂj _ U*CI)(X)M,
j=1
Similarly,

tr (I, — X)vv*) = v*®(1, — X)v.

Also, by remark 5.2 , since S, is of finite dimension, we have
0, I,,] = cov(extr|0, 1,,]),

so by linearity and continuity of ® it suffices to consider the infimum over

extr [0, I,,].
So we get: i ]
@[] = |[|[;
o, st (r(@(X)un’) + tr(@( Jou*))
o, xeerhn 1y PF(BEp") - tr(®( Jov'))
=1— inf inf *P(X (L, — X
Mvvg}‘v:O XEe:}:g"[O,In](M (X + 07 Jv)

p*pu=v*v=1

In the previous claim, we have proved that
Xeclo,l,)={PeS,: P>=P}.

137



If P is a projection, there exists an orthonormal basis {x, ..., z,} for C* and
aJC{l,2,...,n}st. Play)=xp YkeJ, Plxy)=0 Yk ¢ J
Thus {xy|k € J} is an orthonormal basis for P(C").

Then, we have
P = Z T

Furthermore, since {zy,...,2,} is an o.n.b for C", we get that X*X = [,
where X* = [z1, ..., ,,]. On the other hand, if X = [z1,...,2,] and X*X = I,
then {z1,...,2,} is an o.n.b for C" since

o1 iti=j
YT 0 ifi .

Hence if J C {1,...,n} and

A= szxf

then A is the projection onto span{z; : i € J}.
So we obtain that

inf (W S(X)pu+v*®(L, — X)v)

P:P is a projection

inf inf Oz )+ Y vO(xa])v
JC{L,...n} X;[f}(;}z”] (lezjﬂ ( ):u ; ( ) )

for all u,v € C™.
Combining all these facts, we get:

1@y = ||¥||;; =1— “,;”:l?g:il Xeei%f[wn](u (X)) +v* (I, — X)v)
=1- mf X)L, — X))

w* p=v*v=1

=1— inf inf inf O (xx) *Q(xxl)v).
H,v:lpr}‘v:O JE{lll,l..,,n} XZ[Q}F,M,wn] (Z 'u (xle >/IL + Z v (Q:le )U)
p*u=v*v=1 X*X=In ieJ 1¢J

This completes the proof of corollary 9.3. Next corollary gives necessary and
sufficient condition for the operator norm induced by ||| - |||z to be 1.

Corollary 9.4 The following conditions are equivalent:
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LAl[@g = |1V = 1.
2. There are nonzero vectors u,v € C" such that

<Viu,Vijv > =0, Vi,je{l,..,m}

3. There is a rank one matriz Y C C"*"such that

trace(V;*'V;Y) =0, Vi,je {1,..,m}.

Proof: 1) = 2) : .
From corollary 7.1, it follows that |||®|||z = 1 if and only if there is an o.n.b.
{z1,...,z,} and u,v € C" with p*v =0, u*pu = v*v = 1 s.t.

*O( O = 0.

If welet J={i| 1<i< n,u*@(mix;‘)u <O (zzf)v},
then
Z O (xxl p + Z V(a2 v
icJ i¢J

min O (xxl )+ VP (zx]

So, |||®|||z = 1, if and only if there exists an o.n.b. {z1,...,2,} for C* and
2 orthonormal vectors p,v € C" s.t.

Z,u*@(a:ix;‘)u—l— Zv*@(wixf)v =0

icJ i¢J

where J is as defined above. (J depends on {z..,z,} and p,v)
But, by definition of J , we have

ZILL(I)ZUZE /L+ZU(I)371 ’U_Zmln{,uq)xz )/L,U*CI)(.CEZ.CE:)U}

icJ i¢J

= Z min{z wVixiw; Vi, Z v Vi Vivy
i=1 k=1
Now, for all 7, k and j, we have
WVt Vi = |l Vil 2 0,
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v Vi Vv = || Vivl]* > 0,

SO
min{z W Vil Vi, Z v Viwai Vvl >0
k=1 j=1
for all <.
Thus
Z min{z wViexl Vi, Z v ViwaiVivy =0 foralli «
i=1 k=1 j=1

& min{z WVEzx Vi, Zv*‘/]*xzxjvjv} =0foralli <

k=1 j=1
m m

& min{ ||z Viul?, D [l2 Vvl =0
k=1 j=1

for all ¢+ which is true if and only if for each i, either
> _laiVeull? = 0 or Y [la; Vol [P =0
k=1 j=1

This again holds if and only if for each 4, either z;Viu = 0 forall k € {1, ..., m}
or z;V;u =0 for all j € {1,...,m}.

So

Z,u*q)(:vixf)u + Z v (v = 0

icJ i#J
if and only if for each i, either zVju =0 for all k € {1,...,m} or z*V;u =0
for all j € {1,...,m}.

Thus we have proved so far that |||®|||z < 1, if and only if there exist an
orthonormal basis {z1, ..., x,} for C" and 2 orthonormal vectors u, v in C s.t.
for each i € {1,...,n} either xjVu = 0 for all k € {1,....,m} or z;Vjv =0
for all j € {1,...,m}.

Let now X = [z1,...,2,]. Then, since {xy,...,2,} is an o.n.b. for C", we
have that X is unitary, so X X* = I,,.
Hence, if k,j € {1,...,m}, we get that

< Vi, Viv > = < Vi, XX Vo > = < X*Vp, X*Vju >

n n

= Z(X*Vku)i(X*Vjv)i = Z(:UZ‘VW)(%*—W)-

i=1 i=1
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Then, if for each ¢ we have that either xfVyu = 0 for all £k € {1,...m} or
Vo =0 for all j € {1,...,m}, it follows that

< Vi, Viu > = Z(vaku)(ijjv) =0 Vk,je{l,...,n}.
i=1
2)=1)
Assume that < Vypu, Vo > =0 for all k,j € {1,...,m}.
Let
U =span{Vipu| 1 <k <m}
V =span{V;v| 1 < j <m}.

Then V C U+. Now, we first find an orthonormal basis for U:

Bu ={x1, ...z}, r < n.

Then we extend it further to an o.n.b. for whole C" :

B = {xh ooy Uy Ty 1, 7,]7”}

So, if 1 <14 < r, we have that z; € U, hence z;V;uo =0 for all j € {1,...,m}
since V.C Ut Ifr+1 < i < n, then 2;Vpu = 0 for all k € {1,...,m}
since z; € U+ for r +1 < ¢ < n. Thus for each i, either 2 Vip = 0 for all
ke{l,...m} or z;V;u =0 for all j € {1,...,m}. As we have shown, this is
equivalent to

Z min(z wVixw Vi, Z v Viza Vvl =0
i=1 j=1 i=1
which again is equivalent to |||®]||g = 1.

2) < 3)
We have

< Vi, Vo > = te((Vign) (Vo)) = te(Vigao™ V7)) = t(V; Viguo®)

for all k, 7 € {1,...,m}. Hence the equivalence follows if we let Y = po* This
completes the proof of corollary 9.4.

We observe that if ® is of the form given in example 9.1, then ||®|||z = 1 :

Let u; and w; be any 2 column vectors of U s.t. ¢ # j ( where U is the
unitary matrix in example 9.1 ). Since U is unitary, then u;,u; are non zero
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and u; L wu;. Since Vi, = UD,U* for all k € {1,...,m}, and Dy is a diag-
onal matrix, it follows that both u; and w; are eigenvectors for Vj for all

ke {1,..,m}. Hence < Vi, u;, Vi,u; > =0 for all ky, ko € {1,...,m}.
Also we observe, that if ® is of the form given in example 9.2, then

12l =1

Let u € [ﬂ, v E [_ﬂ Then u and v satisfy the condition 2) in corollary 9.4.

Consider now a sequence of matrix subspaces of C"*" defined as follows:

K, = span{l,},
Ky =span{V;’XV, | X € Ky, i,5=1,...m k=0,1,...}

where V; s are s.t
2 ViVy =1
j=1

Then we have the following lemma:
Lemma 9.5 There is kg <n? —1 s.t. Ky,1s = Kg,, Vs €N

Proof We claim that K, 2 K Vk € N:
Since

Ky = span{l,} = span{z ViVi}
=1

it follows that K, C span{V;*V}|i,j =1, ...,m}
If X € Ky, by definition of Ky , X = al, for some a € C, hence

K, ={V;XV;| X € Kyi,j=1,..,m}=span{aV]V;: acCij=1,..

=span{V*V;: 4,7=1,...,m}. Thus K, C K;.

Assume now that Ky 2 Ky for all k£ € {1,...,r} and consider
Ky =span{V XV, : XeK,ij=1,...m}.
It X € K,_1, then X € K, by hypothesis, so
K, =span{V'XV;: Xe K, 1i,j=1,...m}

Cspan{V;XV;: X e K, i,j=1,..,m } = K,4;.
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By induction, it follows that K, C Ky, Vk € N.

Also, if for some ky € N we have that Ky, = Kj,+1, then we claim that
Kk0+s = Kko Vs € N:

Assume that this is true for all s € {1,...,r}. Consider Ky, 1.
Since Kjyyr—1 = Ki, = Kiy+r by hypothesis, we get that

Ky = Kypir = span{V;'XV; : X € Ky1r1, 4,j=1,....m}
=span{V;*XV; : X € Kyytr, 0,7 =1,....m} = Kyyiri1.
By induction, it follows that
Kk0+8 = Kko Vs € N.

Since the dimension of C™*" is n? and Kj C Ky, for all k, as we proved
we get that the inequality Ky, 1 # K, can not happen more than n? times.
Hence, the exists kg < n? — 1 s.t. Ky,41 = K,. By what we have proved, it
follows that

Kk0+3 = Kko Vs € N.

This completes the proof of lemma 9.5.

For all £ € N let G be the orthogonal complement of K}, Observe that
it follows from lemma 9.5 that there is kg < n? — 1 s.t Gy, = G, for all
s e N.

Now we will use the results which we have obtained so far in this section to
prove main theorems in this section, theorem 9.6 and theorem 9.7.

Theorem 9.6 The following conditions are equivalent:
1. There exists k € N s.t |||®*]||z < 1.

2. Every orbit of the system X1 = ®(X) converges to an equilibrium
co linear to I,.

3. The subspace NG} dos not contain a rank one matrix.

4. There exists kg <n? — 1 st |||]®%|||y < 1.
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Proof: (2) = (1) Let W = S,,/RI, be equipped with the norm ||| - |||5. As
we have proved, since ®(I,,) = I,,, we get the induced bounded linear map
®: W — W given by

O(A+RI,) = ®(A) + RI,.

We observe now that |||®|||z <1 :
By corollary 9.3, we have

=1— inf f f “O(
,up'u*v —In ’LEJ 1,¢J

Now, given any o.n.b. {zy,...,x,} for C* and any 2 orthonormal vectors
u,v in C", we have shown in the begining of the proof of corollary 9.4 part
"1) = 2)" that

min O(xxl)p+ Yy v'O(xal)v) = min{ g @ (x;x] ), v*@(x;2] v
el ,n}Z“ Ju ; v) 2; {1 @ (z;x]) p, v*P(252] )v)

Hence, we obtain:

|®[|z =1 — min E min{u*®(x;z] )u, v* O (x;x])v} (%)
w,viu*v=0 X= (11 ,,,,, a:n)
u*u=v*v=1 XX*=1Ip =1

Since ®(K) C K, it follows that ®(A) is positive semidefinite whenever A is
positive semidefinite. Hence, since x;z} is positive semidefinite for all 7 ( being
the orthogonal projection onto Span {z;} ) we get that ®(z;z}) is positive
semidefinite. Hence u*®(z;xf)u = < ®(z;2])u,u > > 0 for all u € C, so

min{u*®(z;z} )u, v*®(zx})v} >0 Yu,v € C".

Thus

i P(x;x P(x;x >0
min_ X(Il In)me{u (xix] )u, v* @ (z;x] v}

,,,,,

uFu=v¥v=1 XX*=1Ip =1

Using this together with the formula (*), we get that |®]]|z < 1. Tt follows
that [||®*|||z < |||®]||5; <1 Vk > 1. Hence, if (1) is not true, then

119*]]]z =1
for all k, so

~ 1
1= lim [||®"][}
k—o0
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Let now (V|| -||») be a real normed vector space and let Vo =V +iV. To be
more precise, by Ve we mean V' ® V' equipped with usual addition and with
scalar multiplication given by

(a +ib)(v1,v2) = (avy — bvg, buy + ave).
Then we can write V¢ as
Ve =V &{0})+i(V®{0})

Since V¢ can be identified with V, we see that we can write Vi as Ve = V+iV.
We claim that || - ||v. : Vo — Ry given by

2+ iyllve = sup [lacosd — ysinlly
0<6

<6<2m

is a norm on Vg: Clearly ||z + dy||v. > 0 for all z,y € V since || - ||v is a
norm on V. Assume now that ||z + iy||y. = 0 for some x,y € V.
Then

sup ||z cosf — ysinb||y =0,

0<6<2r
SO
||z cos(0) — ysin(0)||y = ||z||y =0
and - T
||xcos(§) — ysin(§)|\v =|l-y|lv=0.
Since || - ||y is a norm, we get that x = y = 0 Furthermore given
T1,T2,Y1,Y2 €V
we have

[(z1 +iy1) + (z2 4+ iy2)[lve = |[(21 + 22) +i(y1 + v2)[|ve

= sup |[(z1+ z2)cosO — (y1 + y2)sinb||v
0<6<27

< sup (||z1cos —yisinf||y + [|zo cos O — yasin by
0<0<27

< sup ||zicos® —yysinf|ly + sup ||zgcosd — yosinf|y
0<f<2r 0<f<2r

= [lz1 + innlhe + w2 + iy2llve-
Let @ € C. Then o = r(cos® + isiny) where r > 0, ¢ € [0, 27].

Hence
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[|r(cos ¢ + isiny)(z + iy)||v.
= [|r[(z cosy —ysintp) + i(zsing +ycos)]||vz

= sup ||r[(xcosty —ysiny)cosh — (zsiny + ycos))sinb||y
0<f<2r

= sup r|lz(costcosf — sinyhsinf) — y(sin ) cosh + cos P sin 0)||y

0<6<2n
= sup r|lz(cos(f +¢) —ysin(f + ¢)||v
0<6<2r
sup 7|z cos(u) — ysin(u)||y
P<u<(27+9)
= sup r||xcos(u) — ysin(u)||v = r||z + y||v

0<u<L27
Thus || - ||y, is a norm on the complex vector space Vg. We can then define
the linear map T¢ on Vi by Te(z +iy) = T(z) +iT(y) for all z,y € V. We
claim that ||T¢||v. = ||T'||v ( where || - ||y, and || - ||y are the operator norms
induced by || - ||y, and || - ||y respectively ):
We have

1Te(z +iy)llve = [IT(2) + 4T (Y)|lve
= sup ||T(z)cos® — T(y)sinb||y

0<0<27

= sup ||T(xcos — ysinb)||y
0<6<2r

< sup |[|T|[v[[(xcost —ysinb)||y
0<0<2n
=||T|ly sup |[(xcosf —ysinb)||y
0<6<27
= |T|v|lx +iyllv. Yo,y €V.
Hence ||T'|[v. < |[T[|v-
On the other hand

IT(2)llv = sup ||T(x)cos ]
0<6<2r

= sup ||7(z)cos® — 0sind||

0<0<27
= IT(z) +i0llve = [T (z) +iT(0)[lve
= |[Te(z +i0)[lve < [Tellvell(z + i0)lv

= [[Tellve  sup ||z cosfly
0<6

<6<2m
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= [ITellvellzlly Ve eV

Thus
Tl < |[Te|lve-

Hence we deduce that ||T||y = ||Tc||v.. Now we consider (S,)c and claim
that (S,)c ~ C™™:
By definition, (S,)c = S, + ¢S,. We define the map ¢ : (S, + i5,,) — C**"
simply by ¢«(A +iB) = A+ iB Then ¢ is obviosly linear. Assume that
t(A+iB) = 0 for some A,B € S,. Then A+ iB = 0so A = —iB. Since
A Be€S,, we have A= A*, B = B*. Hence

A" = (—iB) =iB* =iB = —A=—A".

Thus A = A* = 0 and hence also B = 0, so ¢ is injective. (*¥)

It is also surjective: Let A € C™". Then clearly (4 + A*) € S, and
5 (A—A*) €S, (xxx)
Furthermore

1 1
A= §(A + A*) + Z[Z(A — A" €8S, +1iS,
Hence ¢ is an isomorphism, so

(Sw)c = (S, +iS,) = C™*",

Next we claim that

(S,/RI,)¢ ~ C™"/CI, :

Let
i:(Sy/RI,)c — C*"/CI,

be given by
((A+RI,))+iB+RI,))=A+iB+ClI,
Then ¢ is well defined: Assume that
(A1 + RI,) +i(By + RI,) = (A2 + RI,) + i(By + RI,)

Then we must have A; + RI, = As + R, and B; + RI,, = By + RI, Hence
there exists a,b € R s.t. Ay = Ay +al,,, By = By + bl,,. But then

(A1 + RI,) 4+ i(By + RI,))
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= Ay + 1By + (a+ib) 1, + CI,
= Ay +1By, +CI,
=1((Ay+ RI,) +i(Bs + RI,)).

Thus 7 is well defined. Also, 7 is linear since for instance
([(A+RI,) +i(B+RIL)| + [(C+RI,) +i(D+RI,)]

= i((A+RIL,) + (C +RI,) +i[(B+RIL,) + (D +RIL,))
=i(A+C+RI,+i(B+D+RI,))
=(A+C)+i(B+D)+CIl,=(A+iB)+ (C+1iD)+ClI,
(A+iB+CI,)+ (C+id+ClL,)
((A+RIL,) +i(B+RIL)+(C+RIL +i(D+RI,)).

If A+iB+CI, = CI, for some A, B € S,,, then A+iB = (a+ib)I,, = al+ibl,
for some a,b € R Hence (A—al,) = —i(B—>bl,). Since (A—al) and (B—0bI)
are in S,, by (**) on previous page , it follows that A — al,, = B — bl,, = 0.
Hence A = al,, and B = bl,, so A, B € RI, which gives that

A+RI, = B+RI, =RI,

Thus 7 is injective . Also 7 is surjective since each A € C"*™ can be written
as A = H + 1K where H, K € S, ( by (***) on previous page ). Thus 7 is
isomorphism, so

(Sp/RI,)c ~ C™"/CI,

Recall now that W := S,,/RI, , so that

We = (Sn/RI,)c ~ C™" /CI,.
Then, we have

19E]lwe = [1@"lw = 1|25y |-
Hence

. ~ kL et
i J16c" [, = lim [[|94]]1, = 1.

Now, we have that ®¢ € B(Wg, || - ||w,.) and that B(Wg,|| - |lw.) is a Ba-
nach algebra, so by spectral radius theorem ( theorem 4.1.13 on page 131

~ 1 ~
in [P| ), we have that limy_, ||<I>(ck||{}/(C is the spectral radius of ®¢. Thus
sup{|A| | M¢ — ®¢ is not invertible } = 1. Since We is finite dimensional, we
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have that the spectrum of ®¢ consists of eigenvalues for ®¢. Thus there is s
A€elland X,Y € 5, s.t.

Pc((X +RI,) +i(Y + RI,)

= M(X +RI,) +i(Y +RI,))

( here IT is the unit circle in C ). Let now

where 7 : We — C™*™/CI,, is the isomorphism we considered, that is
I((A+RI,)+i{(B+RIl,)=A+iB+CI, VA,B€S,.

Then -
o . C* " /CI, — C™"/Cl,.

Since \ is an eigenvalue for ®¢ with a coresponding eigenvector
(X +RI,) +i(Y +RI,)
it follows that A is an eigenvalue for @fc with a corresponding eigenvector
(X +RI)+i(Y +RI,)) =X +1Y +CI,.
Thus we have
PL(X +14Y 4+ CI,) = (X +iY) 4+ CI,.

Hence o
(L) (X +iY +CI,) = \*(X +iY) + CI,,.

We observe that
OL(X +iY +CI,) = i(Dc(i (X +1iY +CL,)))
= u(Be((X +RI,) +i(Y +RI,)))
= {(®(X +RIL,) +i®(Y +RI,)))
= I((®(X) +RL,) +i(®(Y) + RIL,))
=P¢(X)+:19(Y)+CI,
By induction, it is easy to see that

(BL)*(X +iY + CIL,) = B*(X) +i®*(Y) + CI,.
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So we get that
dF(X) 4+ i®"(Y)CI, = \*(X +iY) + CI, Vk € N.

Now, since A € II, there exist @ in [0,27] s.t. A\ = €%,
Hence we have

PF(X) +i®*(Y) + CI, = (X +iY)+) + CI,
for all k£ € N, that is
PF(X) +id*(Y) — eM(X +4Y) € CI,

for all £ € N. We also observe that since X +:Y +CI,, is an eigenvector for @C
it is then non - zero vector. Thus X +iY +CI,, # CI, that is (X +:Y") ¢ CI,,.
Since

PF(X) +i®"(Y) — M (X +iY) e CI, Vk>1

we have that for all £k > 1 there exist ay, by € R s.t.
PF(X) +id*(Y) — e™M(X +4Y) = (ay +iby) 1,
Hence
OF(X)—cos(kf) X +sin(k0)Y —ay I, +i(P* (V) —sin(k) X —cos(kO)Y —biI,) = 0 Vk > 1.

Let

Ay, = ®F(X) — cos(kO) X + sin(k0)Y — ail,,

By, = ®"(Y) — sin(kf) X — cos(kO)Y — byI,,.
So we have that Ay 4+ iBy = 0 for all £ > 1 which gives that Ay = —i B, for
all k > 1. Since Ay, By, € S,, for all k£ > 1, we have A} = Ay, B} = DBy, so

Al = (—iBy)" = iB} = iBy = —Aj, = — A}

where we have used twice that A, = —iB;, for all £ > 1.
Hence A; = A =0 and also By, =14, = 0.
Thus

PF(X) = cos(k0)X — sin(k0)Y + a1,

and

(V) = sin(k0) X + cos(kO)Y + by,

since Ay, B, = 0 for all & > 1.
Since (X +1iY) € ClI,, it also follows that we can not have that both X and
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Y are in RI,.
If we have that ®*(X) — al, and ®*(Y) — BI, for some constants «, 3 ,
then we must have

(P*(X))iy — (aly)i;)
and
(@ (Y))ij = (Bln)ij)

ak k — oo for all ¢,j € {1,...,n}. If i # j then (al,);;) = (81,):;) = 0, so
(P*(X));; and (®*(Y));,; converges to 0 as k — oo. Using the expressions
that we have for (®*(X)) and (®*(Y)) above we get that

cos(k@)x; ; — sin(kf)y; ; — 0
and
sin(k6)x; j + cos(kf)y;; = 0 as k — o0
( since (agly)i; = (bely)i; =0 when i # j ).

Thus
[ty | [32]=[0] e

But
cos(kf) —sin(k0) %
[ sin(kf)  cos(k0) } = (B)",

where Ry is the rotation matrix given by

Ry = {COSQ —sinf } ’

sinf cosf

SO

(Ry)F = [x” } — [O] as k — oo.
i 0
Since (Ry) is the rotation matrix, it preserves the length of the vector, so we
have the convergence towards the zero vector if and only if for all

z;; € {1,..,n} with i # j, we have z;; = y;; = 0 Since ®*(X) — al,, and
O*(Y) — BI, we must also have that (®%(X));; and (®*(Y));; converges
to a and 3 respectively as k — oo for all i € {1,...,n}. Using again the
expresions for ®*(X) and ®*(Y), we obtain then that

(cos(kO)x;; — sin(kO)y;; + ar) = «
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and
(sin(k0)z;; + cos(kf)y;; + by) = B as k — oo.

Since this should hold for all i € {1,...,n}, we get that
(cos(kO)(zii — x;;5) — sin(kO)(yii — ;) — 0
and
sin(k0)(x;; — x;;) — +cos(kf)(yi; —y;;) = 0 as k — oo.

for all 4,5 € {1,...,n}. By the same arguments as before, we deduce that
Tig — Tjj =Yis — Yjj = 0 for all 1,] € {1, ,n}

Hence z;; = z;;, vis = yj; = 0 whenever ¢ # j. This means that X
and Y must be a ( real ) multiple of /,, which is a contradiction. Thus we
can not have that both ®*(X) and ®*(Y) converges to real multiple of I,,.
Hence if 1) does not hold, then 2) does not hold.

1) = 2) : We observe first that if (X, ||-]|) is a real Banach space, K C X is
a normal, closed cone and e C Int K is an order unit, then ||T(x)||r < ||z||r
for all z € X where || - ||z is Thompson norm w.r.t. e:

In section 1 we have proved that

2|z = inf{t > 0 | = € t1.}

for all z € X.
Now, x € tI, with ¢t > 0 if and only if —e < %x < e, that is if and only if
(e — 1), (e + tz) € K. But, if (e — x), (e + 12) € K, we get that

1 1
(e = 2T(@)) (e+1T(2)) € K,
since T(K) C K, T(e) = e and T is linear. Then T'(x) C tI..
This means that if x € t1,, then T'(z) C tI, whenever ¢t > 0. Hence
l|z||lr = inf{t > 0 |z € tl.} > inf}t : 0 | T'(z) € tl.} = ||T(x)]||r

This proves the observation.
Now, if 1) in theorem 9.6 holds, then by applying theorem 6.1 to the

Markov operator ®* we deduce that there exists Q € P(I,,) s.t.
195(X) = te(XQ) Lalle < (@17 [1X]|a

for all X € P(I,) and all m € N. This means that ®*™(X) — tr(XQ)I, as
m — oo for all X € P(I,) since |||®*|||z < 1 by assumption.
Let s € N. Then there is j € Nand r € {1,...,k — 1} s.t. s = jk + r. Since

12" (A)llr < [IAllr,
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for all A € S,, by the observation above, as " is a Markov operator w.r.t.
K and I,, we get that

12°(X) — tr(XQ) ul|r = || ©*(X — tr(XQ) 1oz
= ||o7(X — te(XQ) L)l
= ||o"(@*(X — t1(XQ) L))z < [[@7(X — tr(XQ)1n)|r
= [|9"(X) = tr(XQ) L)l < [[[D*II7 [1X ]
But s—r s—k s

_ 5 9
v T k&

Since |||®*|||z < 1 by assumption in 1), we get,

j =

S 1 £y (D)
112511 < el

hence el
19°(X) — te(XQ) Lullr < 1115 11X

Letting s — 0o, we obtain that
(X)) — tr(XQ)I,
as ey
19*]1z " =0

This proves 1) — 2)

The proof of "1) — 2)" given here is omitted in the proof of theorem 7.7 in
|GQJ. In [GQ] it just stated that the theorem 6.1 is applied to the application
®* without any further details.

3) < 1)
First observe that

M) = Y Vi VIXVLL,

for all £ € N where iy, ...,i; € {1,...,m}. This follows easily from the defi-
nition of ® and an obvious inductive argument. We have also that ®* is a,
Kraus map for all £ € N | since for

dF(1,) = & (D(1,)) =" (L) = ... = I,

Then we can apply corollary 9.4 to ®* to deduce that |||®*|||; = 1 if and only
if there exists a rank one matrix Y € C™" s.t. tr(V;7...V3V;,..V, Y) = 0 for

11 7 Jit
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all i1, ..., 1, j1, -, Jk € {1, ..., m}. Next we observe that for each k, the matrix
subspace Hj, defined in lemma 9.5, can be described as

Hy = span{V; .. V;]V;,..Vj, 1 Sh,---:ik <m }]
This follows easily by an induction argument. Since the trace is linear it

follows that tr(XY)=0 for all X € Hy, since

11 " Jit

(Vi ViV VY ) = 0

for all 4y, ..., 4k, j1, ., jk € {1,...,m}. Then we have that Y € Hj* = Gj.
Conversely, if Y € G, it follows that

for all 4y, ..., 0k, j1, ..., jx € {1, ..., m} as V7. V3V, ..V, € Hy for all

1 7 Jit
il, ...,ik,jl, ,]k S {1, ,m}
Combing all these equivalences, we get the following:
Tk
@[ =1
if and only if there is a rank one matrix

Y € C¥"s.ttr(Vy ViV, VY ) = 0

21 Ji"

for all i1, ..., 7k, J1, .-, J& € {1,...,m}, which again is true if and only if there
is a rank one matrix Y € G}.
Thus, if B

[[@F[||m =1 V&,

we have that for all k there is a rank one matrix
Y, € C™ "™ s.t. Y, € G;.

Now, by the consequence of lemma 9.5 there exists ko < n? — 1 s.t. Gy, =
Giyts for all s € N. As Gy, O G4 for all k € N, we obtain that

(G = G,
k

If |||®*|||z = 1 for all k, then in particular |||®*]||z = 1. Thus there is a
rank one matrix Yy,

s.t. Ykg € Gko = mGk
k
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On the other hand, if there is a rank one matrix Y € ﬂ G, then Y € G,
k
for all £ and by what we proved, we get that |||®*|||y = 1 for all k.

3) — 4) Here we refer to the proof of "3) — 4)" in theorem 7.7 in [GQ).
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Recall now that ®* = W. The next theorem gives the necesary and
sufficient conditions for the convergence of the Markov chain given by

e = V() k£=1,2,3,...,1I; € P(l,).
Theorem 9.7: The following conditions are equivalent:

1. There exists k € N s.t. ||TF||5, < 1.

2. The Markov chain given by Iy, = W(Il;) converges to a unique in-
variant measure reqardless of initial distribution.

3. The subspace N, Gy, does not contain a rank one matriz.
4. There exists kg <n?—1 s.t. ||| < 1.

(2) = (1) Assume that there is an A € P(I,) s.t. whenever M € P(I,),
then |[W*(1) — Al|7; = 0 when k — oo. )
Let =W, . Then W : M(I,) — M(I,). ( clearly W(M(I,)) € M(I,)

since VU is trace preserving ).

We have |||®|||z = ||¥||%; and since H|Cf3|||H <1 ( as we have shown in
the proof of theorem 9.6), it follows that [|¥|};; <1, so [[¥¥|[;; <1 for all
k > 1. Hence, if (1) is not true, then ||[¥*|[%; =1 for all k, so

lim ||| = 1.
k—o0
Consider now Mc = M(I,,) + iM(I,) equipped with || - [[3,. where

[|1R+1iQ|[3. = sup [[Rcos — Qsind|[}
0<o<2r

for all R,Q € M(I,) and let e : Mc — Mc be given by
Ue(R4+iQ) = U(R) +1¥(Q)

(as done before in the proof of theorem 9.6 ).
As we proved, then [[Wg|[3,. = [|¥¥|[3; for all &, so

< sl ek
lim |[WE|[,5 = lim [|U¥|[} = 1.
T (B4, = Jim |81

By the spectral radius theorem and again since M is finite dimensional, we

deduce as before that there exists a A € Il s.t. A is an eigenvalue for Uc.
Thus there exists B € Mg, B # 0 and 6 € [0,27) s.t

Ue(B) = €“B.
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Hence . '
Ve (B) =e*B VE > 1.
Write B as B = C +iD where C, D € M(I,). )
Then we get that We(B) = Ve (C +iD) = U(C) +i¥(D) = ¥(C) +1¥(D)
(since W =W, . ). It is easy to see then that

U (B) = UH(C) +iT*(D) Vk > 1.

Hence

U (B) = UF(C) + iT*(D) = ¢*(C + iD) V.

Identifying the real and imaginary parts in the same way as in the proof of
theorem 9.6 ( observe that C, D, U*(C), ¥*(D) € S, Vk ) we get that

UH(C) = cos(k#)C — sin(k6) D,

U*(D) = sin(kf)C + cos(kd)D.

Now we recall a result from section 4 which gives that the dual unit ball
satisfies

By(I,) ={R-Q: R,Q € P(I;)}.
Hence, if L € M(I,), L # 0, then there exist R,Q € P(I,) s.t. — =

L1

R— Q. Thus L = [|L||(R — Q). Also, if L = 0, then [[L||}; =0, so L =
|L|[5 (R — Q) for any R,Q € P(I,). Hence since ¥ = ¥ . we get

10515 = 1L (R = Q) = I (R — QI
=1Ll [[9*(R) = ¥*(@Q)II4
< LI (R) = Al + 1A = PH(Q)I1) = ko0

since ||W*(IT) — A||5; — 0 for all II € P(1,,) by assumption in 2).
So we get that
UH(C) =0 (as k — 00)

and
U*(D) =0 (as k — o)

as C,D € M(I,), and ¥, = = U*.
Thus
U*(0) = (cos(kO)C — sin(kO)D) — 0 (as k — o0)

and
U*(D) = (sin(k0)C + cos(kO)D) — 0 (as k — oo)
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Hence, for each 7, with 1 <1i,57 <n, we have
(cos(k0)C; ; — sin(kf)D; ;) — 0 (as k — 00)
and
(sin(k0)C; ; + cos(kO)D; ;) = 0 (as k — o0).
This gives that
C’L,j
Ry [ D

17.7

- [

}—>6> (as k — o0)
/L’j

where

sin 8 cos 6

Ry = {cos@ —sin } ‘

Since Ry is a rotation matrix, it follows that C; ; = D, ; = 0.
Thus C' =D =0,s0 B=C+1D = 0. But we had that B # 0., so we get a
contradiction.

1)=2)

Assume that 1) holds. Then there is a k € N s.t. ||[U*||z < 1. Now we
recall the theorem 6.1, which says that if |||T|||z = ||S*||5 is strictly less
than 1, then there is a 7 € P(e) s.t. [|[(T*)"(n) — =[5 < |||T|||% for all n.
We apply the theorem 6.1 to the operator T = ®*. This is possible since
19|z = ||¥||%; < 1. Then T* = (®*)* = U* in this case and

S =T =V =Tk

I VY70 % S [V 75 A

so by theorem 6.1, there is a Q € P(I,) s.t. |[[U*(R) — Q|[}; < |[|®F]|[% for
all n and all R € P(1,,). Since |||®*|||g < 1, we get that |[¥*(R)—Q||3;; — 0
as n — oo for all R € P([,). Furthermore, we have

1P*(R) — W (R)|[}; = %H‘I”“(R) — UHR)|I7

1 .1 -
= SR = R[5 = Sl (R = )]l

T * * 1 = *
< NHII5 IR = BN = I (1(R = ROl VR, R € P(I,)
where we have used that (R — R') € M(I,) for all R, R’ € P(I,) and

vk =0k

|a1 (1)
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and that

1l = gl =5
on M(I,).
So, . 5

1W*(R = Rl < [ LI(R = R)|]x
for all R, R' € P(I,) and )

10 < 1.

Also observe that ||®||r < 1 since ||2(X)||r < || X]||r for all X = S,.
Then ||U]]; <1lasW¥ = ®* so ||[U(X)|[5 < || X||} for all X € S,,. Hence
W[ < [[X]] for all X € Sy as [[ -7 =[] - [h
Then we can apply similar arguments as in the proof theorem 7.2 in section
7 part "a)== b)" to deduce that V"(R) — @ as n — oo for all R € P(I,).

3) < 1)

Since |[U*||%, = [||®*|||x for all k, this equivalence follows from the equiva-
lence 3 < 1) in theorem 9.6.

3) < 4)

Again, since |[U%|[5, = [||®*|||,, this equivalence follows from the equiva-
lence 3) < 1) in theorem 9.6.
Theorem 9.7 is denoted by theorem 7.8 in [GQ), but the proof is omitted in

[GQJ.
Example 9.8
Let

=~

10 00
[oo] mealon]
11

1 -1
_ 1 1
‘@—mlll},w—m{_l 1]’

-
-

4
Then Z V'V, = I,. Assume now that u,v € C* are s.t.

Jj=1

< Viu,V;o > = 0
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for all 4,5 € {1,...,4}.
Then, in particular
<Viu,Vsv > = 0

and
<Viu,Vyjo>= 0

This gives that
(75} (51 + 62) =0

and
Ul(ﬁl — @2) = 0

where

If u # 0, we must then have

and
61 - 62 - 0

Thus we get v; = v = 0, so v is a zero vector. Hence, if v is not a zero
vector, we must have u; = 0.
By assumption in the beginning, we also have

< Vou,Vav > =10

and
< Vou, Vv > = 0.
This gives
U,g(@l + @2) = 0
and

Uz(@l — @2) =0.

Hence, again either v is a zero vector on up = 0. So, if < Viu, Vv > = 0 for
all i,j € {1,...,4}, then either v is a zero vector or u; = us = 0, that is u is
a zero vector.

We conclude that there are no nonzero vectors

u,v € C? st. < Viu,Viu>= 0foralli,je{l,.. 4} If welet ®: Sy — Sy
be given by

4
O(X) = VXV,
j=1
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by corollary 9.4 it follows that |||®|||x # 1. Now, as we have shown in the
proof of theorem 9.6, we always have [||®|[|z < 1. Hence we conclude that
in this case |||®|||z < 1, so theorem 6.1 applies.
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11 Further research

So far in this thesis, we have applied the theorem 6.1 to stochastic matrices,
Markov operators on Cg(2) and Kraus maps acting on S,,. There are many
other examples of Markov operators acting on different real Banach spaces, so
there are many other cases where we could investigate whether the condition
of theorem 6.1 is satisfied, that is whether |||T|||z < 1, for the respective
Markov operator T. Theorem 6.1 gives a sufficient condition on 7" that ensures
the convergence of the Markov system given by

Me+1 = T*,uk k= 1,2,

to some unique invariant measure. The interesting question is whether there
is some weaker condition on T or T that still ensures the convergence of the
Markov system to unique invariant measure. In other words, the question
is whether it is possible to give a necessary and sufficient condition on 1" or
T that guarantees ergodic property of the Markov system. In the particular
case when T': R" — R™ given by T'(x) = Ax for all z € R” and Aisn xn
row stochastic matrix, we proved in section 7 that the corresponding Markov
system z;,; = Alxy, is ergodic if and only if there exists ky € N s.t.

7%l = 8(A%) < 1.

Similarly, in section 9, when® : S,, — S, is a Kraus map, we proved that the
corresponding Markov system

My = U(IL,), k=0,1,...

(where W is the adjoint of @) is ergodic if and only if there exists kg € N s.t.

|| ||| < 1. One might ask whether this is true in general that the Markov

system given by pupi1 = T*u,, k = 0,1,... , is ergodic if and only if there

exists ko € N s.t [||®%|||z < 1.. The implication in one direction holds:
Recall that we observed in the proof of theorem 9.6 part "1) — 2)” that

T (z)||7 < ||z||7 for all z € X.

Hence

11T (z+Re)|[|lg = |[|T(z)+Re||lz = 2inf [|T(x)+Ae|lr = 2 inf ||T(a+Ae)||r
AER AER

< 2inf[|(z +A)llr = [llz +Rel|[x
AER

for all z € X. }
Thus |||®]||z < 1 and consequently ||S*|[%; <las @z = |1S*|3-
Suppose now that there exists kg € N s.t. |||T*|||H < 1. Then

IsellE = [[IT|lz <1.
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Hence

1) () = (T W)l = NS =)l < NSl (=)l

for all p,v € P(e).
Furthermore, as |||T*|||y < 1, by theorem 6.1 there exist 7 € P(e) s.t.

1T () =l < T

for all u € P(e) and all n € N. Now, using this, we can show that (T*)(7) = =
in the same way as we have shown that )7 = 7 in the proof of theorem 7.2
part "a) — b).

Next, given n € N, write n as n = rky + m, as we have done in the proof of
theorem 7.2 7a) — b)”.

For any u € P(e), we then have

)" () ==l = [[(T)" (0= m)llm = 115w =)l

= [I(S)™ ™ (=)l < 1S 110870 (= )l
HCS M 1055 (=)l < 1S)™ (=)l

where we have used that ||S*||5; < 1, which we observed before.

Then we can proceed as in the proof of theorem 7.2 part "a) — b)” to
deduce that (T*)"(u) — 7 as n — 0.

Hence, this is true in general for any Markov operator T' that if there exists
ko € Ns.t. |||T%|||z < 1, then the Markov system given by fin1 = (T%)" fin,
n = 0,1,... converges to some unique invariant measure regardless of the
initial distribution. This is a weaker condition than the condition in theorem
6.1, which is the requirement that [||T]||z < 1. However, we are looking for
the weakest possible condition that ensures the convergence of the Markov
systems, so therefore we wish to find a necessary and sufficient condition.
We do not know whether the condition given above is necessary since we
didn’t prove in general that implication the other way, that is that if the
Markov system converges to some unique invariant measure regardless of
initial distribution then there exists some ky € N s.t. [||[T%|||lz < 1. We
have proved this only in the particular cases in section 7 and section 9.

The interesting question that arises is whether it is possible to give an upper
bound for such kg to occur. In section 9 we have proved that wen 7' = ¢
where ® : S,, — S, it suffices to consider all k’s satisfying k¥ < n? — 1. This
fact has followed from the proof of lemma 9.6 where we have shown that
the inequality K,, = K,,41 can not happen more than n? times since the
dimension of C™ " is equal to n? and K,, C K,,4; for all m. So we have
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used that C"*" finite dimensional. In the case when T": X — X and X is
infinite dimensional it is not obvious that we can give an upper bound on
such kg to occur.

As mentioned in the introduction of the thesis, we are dependent of being
able to calculate or give an estimate on |||T|||z in order to apply theorem
6.1. In this thesis and in [GQ), the theorem 6.2 gives a general expression
of |||T|||z, in terms of disjoint, extreme points of P(e). However, using
the expression for |||T|||z from theorem 6.2 is not always the easisest way
of calculating |||T|||z. We observe that in example 8.2 we have used the
definition of ||S*||}; instead of the alternative formula from theorem 6.2 to
give an estimate on ||S*||};. In section 9, using the formula from theorem 6.2,
we have shown that |||®|||z < 1 if and only if there are no nonzero vectors
u,v € C" s.t. <V,u, Vo> = 0 forall 4,7.

In the examples 9.1, 9.2 and 9.8, it was straightforward to check whether
this criteria is satisfied, but on other more complicated examples with higher
dimensions, this could be difficult to check. So one may look for some other
formulas \ expressions for |||T|||x that will be more efficient for calculating
in concrete examples.

Finally, we observe that most of the concepts and tools we have been used
so far in the thesis depends on the choice of K and e. It would be interesting
to investigate in concrete, different examples how the change of choice of K
and e would reflect on the results.
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