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Abstract

Estimators with cube root asymptotics are typically the result of M-estimation
with non-smooth objective functions. Aside from being inefficient, they are hard
to calculate, have intractable limiting distributions, and are unamenable to the
bootstrap. Manski’s maximum score estimator and irregular histograms receive
special attention. We investigate the geometry, algorithmics and robustness
properties of Manski’s maximum score estimator, a semiparametric estimator of
the coefficients in the binary response model. We provide a new exact algorithm
for its computation in covariate dimension one and two. This is faster than
other algorithms described in the statistical literature. The breakdown point
in covariate dimension one is derived, and we make progress towards finding it
in higher dimensions. The breakdown points are highly dependent on the un-
derlying data generating mechanism. Irregular histograms on the unit interval
are also a major theme of this thesis. These are obtained through the minim-
isation of the Kullback-Leibler divergence and integrated squared distance. For
smooth densities, we derive the limit distributions of the split points estimates
for four classes of irregular histograms. Different conditions on the underlying
density leads to different rates of convergence, with cube root being the norm.
The computational challenges involved in finding these histograms are discussed,
and some anomalies associated with them are investigated. Also, it is indicated
how one can proceed in order to show consistency of these density estimators.
Finally we derive the CIC (cube root information criterion), a cousin of the
AIC.
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Preface

The subject of this thesis was decided upon after Nils and I talked about a
specific regression problem. Assume we have a regression Yi = m(xi)+ εi, where
xi ∈ [0, 1] for simplicity. Questions in the social sciences sometimes take the
form “is m an increasing function?”. Let’s take an example from the paper is
“The Too-Much-Talent Effect: Team Interdependence Determines When More
Talent Is Too Much or Not Enough” of Swaab et al. (2014). In team sports like
football, baseball and basketball, it seems very plausible that teams get better
as they get more talented players. If xi is a measurement of the talentedness
of team i, and Yi is its objective outcome (e.g. number of games won), then
Yi = m(xi)+ εi is the model, and “m is monotonely increasing” is the (sensible!)
null hypothesis. Swab et al. claim that the function m isn’t increasing on [0, 1]

in the case of football, but reaches its maximum before 1. There is, to me, no
obvious way to attack this problem, which is why I brought it up.

This discussion of monotone regression functions quickly led to isotonic re-
gression, on to Grenander’s estimator. Since these estimators are well-known
for having cube root asymptotics, it suddenly became the theme of my thesis!
This theme couldn’t have been chosen if it weren’t for the work Nils did in 2007
on the limiting distribution of the split points in so-called quantile histograms,
which sparked the fires of this thesis.

General thanks to my adviser Nils Lid Hjort for giving me much to work
on and for deluging me with wisdom. General thanks to my wife Kjersti Moss
for proofreading, the verification of some equations and for taking care of the
kids. I also thank Scott Bunting and Robert Bunting for proofreading parts
of the thesis. Special thanks to Gudmund Hermansen for helping me out with
the exact histogram algorithm. Special thanks to Jonas Lindstrøm for listening
to me go on and on about histograms: Histograms is, frankly speaking, a dry
subject. General thanks to Nadia Larsen and Dag Normann for being excellent
advisers on a master project in C∗-algebras I never finished. General thanks
to the people who authored of all those papers and books, cited or not. Many
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of them are amazing! Unrelated thanks to Charles Darwin for being the most
important scientist, and Yuki Kajiura for creating wonderful music. Very spe-
cial bureaucratic thanks to the administration at Kvadraturen Skolesenter high
school (in 2010) for giving me my high school diploma even though I never went
to school there.
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Chapter 1

Setting the scene

1.1 Introduction

No one has yet discovered any warlike purpose to be served by the
theory of [cube root asymptotics], and it seems unlikely that

anyone will do so for many years.

- G. H. Hardy in A Mathematician’s Apology (slightly paraphrased)

Among all warlike estimators in statistics, far most have square root asymptotics:
An estimator θ̂n of θ has square root asymptotics if

√
n(θ̂n−θ)

d→ Y , where Y is a
non-degenerate random variable. Typically, Y is normally distributed with some
µ and Σ dependent on the features of the underlying distribution F . This kind
of limiting distribution appears e.g. when we use maximum likelihood, Bayes
estimators, Z-estimators and the generalised method of moments. Estimators
with cube root asymptotics, on the other hand, satisfy n

1
3 (θ̂n−θ)

d→ Y for some
non-degenerate random Y . Instead of being normal, Y is typically distributed
as the maximiser of a non-degenerate zero-mean Gaussian process with drift.
Frequentely, Y is a scaled variant of argmaxt [W (t)− t2], where W is a two-sided
Browian motion originating from 0. Such variables are distributed according to
Chernoff’s distribution. There is also at least one elementary case where we have
n-asymptotics, namely θ̂n = maxXi when Xi

i.i.d.∼ U(0, θ). Normalizing, we get
the convergence n( θ̂n−θ

θ
) → exp(1). More generally, this phenomenon obtains

whenever the underlying F is smooth all the way to a break point. There are
no similarly simple examples of cube root asymptotics, however.

Cube root asymptotics fall into roughly three cases:

1



2 CHAPTER 1. SETTING THE SCENE

1. Maximum likelihood for distributions having specific features. Two ex-
amples are Grenander’s estimator and isotonic regression. Under the as-
sumption that f is a decreasing density, Grenander’s estimator is the left
derivative of the concave majorant of the empirical distribution function.
If smoothness assumptions on f are satisfied, the estimator has cube root
asymptotics. (Groeneboom et al., 2014)

2. Robustness. The shorth estimator (Andrews and Hampel, 2015) is a robust
estimator for the mean. Manski’s maximum score estimator is a model
robust estimator for the binary choice model. This estimator is discussed
at length in Chapter 3. The least median squares (Rousseeuw, 1984), which
is discussed in Section 2.3 robustly estimates the βs in a linear regression
model.

3. Approximation by step functions: The largest chapter (4) of this thesis is
on the subject of irregular histograms, wherein the split points are shown to
converge at the n

1
3 rate provided the underlying f possesses a derivative. A

similar concept is that of decision trees, or regression histograms, discussed
in Section 2.4.

A feature these estimators have in common is their attempt to measure some-
thing smooth by using something discrete. For instance, both Grenander’s es-
timator and histograms approximate a smooth density with a step function.
Manski’s score estimator estimates the βs in a binary choice regression model by
maximising a step function; binary decision trees estimate a smooth regression
model with a step function. We can make this more precise. These estimators
are typically M -estimators, with objective mθ. The underlying mechanism is
that Pmθ =

´
mθdP is smooth in θ, but Pnmθ = n−1

∑n
i=1mθ(Xi) is not. Most

M -estimators are constructed in a manner which makes this impossible. The
culprit in cube root asymptotics is the introduction of indicator functions in mθ.
For instance, mθ = 1[x− 1

2
θ,x+ 1

2
θ] for Chernoff’s mode estimator of Section 2.2.2 on

page 12, a section contains more about the heuristics of cube root asymptotics.
Sometimes, when we replace the smoothness assumptions on Pmθ with dis-

creteness assumptions, we gain n-convergence instead. This happens for decision
trees and is likely to happen for irregular histograms as well.

Other common features of cube root asymptotics are:

1. In higher dimensions, the limit distributions are intractable both analyt-
ically and numerically. In one dimension, the limiting distribution can
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frequently be described as a rescaled Chernoff’s distribution, typically in-
volving several nuisance parameters.

2. Inconsistency of the bootstrap. Fortunately, the subsample and m-out-of-n
bootstrap is still consistent. We will have more to say on this in Section
2.5.

3. The estimates are computationally expensive to find, at least in higher
dimensions. Finding them typically requires combinatorial optimisation,
with methods like Newton-Raphson being next to useless.

4. Even for big n, the distance between the sampling distribution and the
limiting distribution is large.

Add to all these the fact that cube roots give a tremendous loss in efficiency com-
pared to other reasonable procedures, like local polynomial regression instead
of decision trees, ordinary linear regression instead of least median of squares
regression, and kernel smoothers instead of irregular histograms, and we have
the reason why these estimators are not very popular. An attractive feature
of these estimators is often that they have fewer assumptions, and sometimes
other nice properties: Manski’s maximum score estimator is consistent under
very broad assumptions, it is robust, and it has been shown that there exist no
√
n-consistent estimator of the Betas in the binary response model under these

assumptions (Chamberlain, 1986). Also, Rousseeuw’s least median of squares
estimator is the most outlier robust linear regression estimator there is, and ir-
regular histograms are likely to be L1-consistent for any underlying density on
[0, 1], are easy to interpret, and require little space to store (when compared to
KDEs, which essentially require the entire set of observations). Still, the study
of cube root asymptotics has mostly been theoretical, with some papers on the
bootstrap appearing in later years.

The combination of the points 1.) and 2.) above is especially pernicious,
as it leaves no obvious method for calculating confidence intervals and doing
hypothesis tests. This can sometimes, as in the case of Manski’s estimator and
(probably) irregular histograms, be rectified by smoothing. Also, the m-out-of-n
bootstrap and m-subsampling are consistent in general, but they require a choice
of m. The choice of m is usually done by a kind of cross validation approach,
which requires the calculation of countless estimates. In addition, these methods
often require a large n in order to work well. This combined with 3.) makes it
infeasible to use these two resampling approaches.
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1.2 An outline

Roughly speaking, we will devote Chapter 2 to cube root asymptotics in general,
while the the succeeding chapters are devoted to two more worked-out examples:
Manski’s maximum score estimator Manski (1975) and irregular histograms on
the unit interval Rozenholc et al. (2010). These investigations are meant as
theoretical exercises, and the estimators are not applied on any non-trivial data
sets.

In Chapter 2 we briefly discuss some of the general theory required for prov-
ing cube root convergence. This is the theory of M-estimation and empirical
processes, where most is taken from van der Vaart and Wellner’s excellent book
“Weak Convergence and Empirical Processes” (1996). The key result from this
book is the rate theorem, which can be used to establish the limit distribu-
tion and prove the rate of convergence for any known estimator with cube root
asymptotics. We will not be able to do this theory justice, but we will try to
indicate where the results come from and what the difficulties are. We will also
discuss the cube root heuristics of Kim & Pollard (1990) and Chernoff (1964), by
means of a heuristic proof of the limiting distribution of Chernoff’s mode estim-
ator (ibid.), which is the most simple estimator in this category. This particular
estimator illuminates the question of why cube root asymptotics occurs. Then
we briefly describe the least median of squares estimator and binary decision
trees (Banerjee and McKeague, 2007). Finally, we will discuss resampling.

The next chapter is about Manski’s maximum score estimator (which we
will often call “Manski’s estimator”), a semiparametric estimator of the βs in a
binary response model. We will not focus on the asymptotics in this Chapter,
as the algorithmics will be at the centre of our attention. An algorithm for its
computation in one and two dimensions is discussed in detail, and we supply
and implementation of it in C++ (Stroustrup, 1986), with a link to R (2014). In
addition, we discuss its robustness properties and carry out some simulations.

In the Chapter 4, irregular histograms on the unit interval is the subject. This
chapter forms the bulk of this thesis. First we discuss kernel density estimation
on the unit interval, with a special focus on the Gaussian copula KDE of Jones
and Henderson (2007a). Secondly, we define a class of histograms and discuss
some of their properties. Then our attention goes the question of L1-consistency
for these histograms. In the succeeding section we find the limiting distribution
of the split points of these histograms, which is our main application of theory of
M -estimation from Chapter 2. Also, we will discuss three different algorithms for
the computation of the split points, and demonstrate the considerable advantage
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of pre-smoothing. We implement some of this in C++/R. Finally we discuss the
cube root information criterion (CIC), an extension of the AIC to these classes
of histograms.



6 CHAPTER 1. SETTING THE SCENE



Chapter 2

Stochastic convergence

For many, abstract thinking is toil; for me, on good days, it is feast
and frenzy.

- Martin Heidegger in Nietzsche (tr: D. F. Krell)

In the first section we briefly discuss the basic theory of weak convergence, in-
cluding some of the technical difficulties that arises when working with stochastic
variables on non-separable Banach spaces. The second section is devoted to
M -estimation, a class which contains every known estimator with cube root
asymptotics. A particularly important result is the monumental rate theorem.
In the third section we discuss some estimators with cube root asymptotics. We
will derive the limit distribution of Chernoff’s mode estimator heuristically, and
will discuss the heuristics of cube root asymptotics from Kim and Pollard (1990).
We end the chapter with a discussion on resampling schemes in the context of
cube root asymptotics.

2.1 Weak convergence

2.1.1 Theoretical basis

Given a probability space (Ω,F , P ), a stochastic variable is a map X : Ω → Rn

which is (Σ,Bn)-measurable, where Bn is the Borel σ-algebra on Rn. The
majority of classical results on convergence of stochastic variables depends on
this measurability condition being satisfied. For instance, a sequence Xn : Ω →
R converges weakly to X, denoted Xn

d→ X, if P (Xn ≤ x) → P (X ≤ x)

7
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Figure 2.1.1: Example of an l∞([0, 1])-function inside aδ, with δ = 0.5 and a = 0.3.

pointwise for every continuity point of F (x) = P (X ≤ x). This definition
requires something like (Σ,B)-measurability, as we need to assign probabilities
to every set of the form X−1

n (−∞, x]. Likewise, measurability is required for the
concepts of convergence almost surely and convergence in probability.

In this thesis, we will encounter maps of the form Xn : Ω → D, where
D is some metric space, typically a non-separable Banach space. This lack of
separability creates plenty of measurability issues. In the next example, it is
illuminating to known that l∞(T ) is separable iff T is finite (Megginson, 2012,
exercise 1.143).

Example 2.1.1. (Kosorok). Let Ω = [0, 1] and P = λ the Lebesgue measure on
[0, 1]. Let U : Ω → [0, 1] be the identity function on this interval, the uniform
distribution on the unit interval. Now we define the function X : [0, 1] → [0, 1]

by X (x) = 1[U≤x]. This is gives us a map

Ω → l∞ ([0, 1]) .

ω 7→ X.

Consider the sets aδ =
{
f ∈ l∞ ([0, 1]) |

∥∥f − 1[a≤x]

∥∥ < δ
}

and take δ = 1
2
.

it is clear that X−1 (aδ) = a, so if Aδ = ∪a∈Aaδ, then X−1(Aδ) = A. Now
Let A ⊂ [0, 1] be a non-Borel subset, such as a complete analytic set (see e.g.
Kechris (2012, p. 85)). As Aδ is open in l∞ ([0, 1]), X isn’t (Σ,Bn)-measurable.

An easy modification of this example shows that the process

√
n(

1

n

n∑
i=1

1[Xn≤x] − x)
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isn’t measurable when Xn are i.i.d. uniform on the unit interval. Hence we
need a different framework to deal with such processes. The classic approach,
used in Billingsley (2013), uses convergence in the Skorokhod topology. The
modern approach, described in van der Vaart and Wellner (1996) and started
by Hoffmann-Jørgensen, is quite different, and we will briefly describe it here.

It is a well known result that convergence in distribution can equivalently be
formulated as weak*-convergence: A sequence Xn ∈ R converges in distribution
to X ∈ R iff Ef(Xn) → Ef(X) for every bounded, continuous function f :

R → R, see e.g. Rosenthal (2006, p. 117, theorem 10.1.1). This definition
extends nicely to the case when Xn are elements of separable Banach spaces, but
the measurability issues mentioned above makes it impossible to use this same
definition of convergence when Xn are elements of non-separable Banach spaces,
like l∞(R). An appropriate extension is to define X? as the least measurable
majorant of X, E?(X) = E(X?): Let D be a (non-separable) Banach space, and
let Xn ∈ D be random variables (not necessarily measurable). In addition, let
X ∈ D be a measurable limit variable. Then Xn

d→ X iff E?f(Xn) → Ef(X)

for each bounded and continuous f : D → D.
We will not make any direct use of this theory in this thesis, and we will

mostly ignore measurability issues.

2.1.2 Glivenko-Cantelli classes

Throughout this thesis we use a functional notation for measures: When P is a
measure on a measure space (X,Σ) and f : X → R is a measurable function,
we denote

´
f(x)dP (x) = Pf . This notation reflects the fact that

´
·dP is a

functional mapping f →
´
f(x)dP (x) for each f , and fits well into our approach.

When Pn is the empirical measure obtained from n i.i.d. observations from P ,
Pnf = n−1

∑n
i=1 f(Xi). It follows from the law of large numbers that Pnf

a.s.→ Pf

for any measurable f . We will need uniform variants of this result for different
classes of functions. When F is a class of functions, the norm || · ||F is defined
by ||X||F = supf∈F ||f(X)||.

Definition 2.1.2. Let F be a class of functions and P a probability measure.
If ||Pn − P ||F

p→ 0, the class F is P -Glivenko-Cantelli.

The name “Glivenko-Cantelli class” comes from the famous Glivenko-Cantelli
theorem Billingsley (2008, p. 269), which states that the class

F = {(−∞, x] | x ∈ R}
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is Glivenko-Cantelli for any probability P on R. Stated in a different way, it
shows that Fn(x)

p→ F (x) uniformly in x, where Fn is the empirical distribution
function. The definition also makes sense when convergence in probability is
replaced with convergence almost surely.

In order to show that a family is Glivenko-Cantelli, we will use the concept of
bracketing numbers (van der Vaart and Wellner, 1996, p. 83), a stronger variant
of the concept of compactness.

Definition 2.1.3. Given two functions l and u, define the bracket [l, u] =

{f | l ≤ f ≤ u}. For a given norm || · ||, we define an ε-bracket as a bracket
[l, u] with ||l − u|| < ε. Let F be a class of measurable functions. The bracket-
ing number of F , denoted N[](ε,F , || · ||), is the minimal number of ε-brackets
required to cover F .

The following theorem is useful in proving that classes are Glivenko-Cantelli
(van der Vaart and Wellner, 1996, p. 122, theorem 2.4.1):

Theorem 2.1.4. Let F be a class of measurable functions that satisfy the brack-
eting number condition N[](ε,F , L1(P )) < ∞. Then F is P -Glivenko-Cantelli.

Now the original Glivenko-Cantelli result follows easily.

Corollary 2.1.5. The class F = {(−∞, x] | x ∈ R} is Glivenko-Cantelli.

Proof. Apply the previous theorem with brackets of the form (−∞, xi], where
−∞ = x0 < x1, ... < xm = ∞ is chosen such that P ([xi, xi+1]) < ε. Then we
need at most 2 + 1

ε
brackets, yielding the desired result.

Glivenko-Cantelli results are not of independent interest in this thesis, but
will be used in order to establish consistency results through the Consistency
Theorem ( on page 21).

2.1.3 Donsker classes

While Glivenko-Cantelli results are uniform variants of the law of large numbers,
Donsker results are uniform variants of the central limit theorem. These classes
are named in honour of Monroe Donsker, who proved the uniform central limit
theorem for the empirical distribution function. We are not interested in Donsker
results in themselves, but they are needed in order to establish the limiting
distributions of M -estimators by means of the rate theorem 2.2.4. A family of
functions F is P -Donsker if
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√
n(Pn − P )

d→ Z

in l∞(F), where Z is a non-degenerate and measurable random process.
The concept of bracketing entropy has its place here as well: The bracketing

integral is

J[](δ, F, L2(P )) =

ˆ δ

0

√
logN[](ε,F , L2(P ))dε,

which we want to be bounded as δ → ∞. This is a condition on the growth of
the entropy as ε → 0, for since N[](ε,F , L2(P ) = 1 when δ is large enough, it is
only the values close to 0 that are of interest. This integral is important due to
the following theorem, which is proved in Kosorok (2007, p. 148).

Theorem. Let F be a class of measurable functions with a finite bracketing
integral at infinity, J[](∞, F, L2(P )) < ∞. Then F is P-Donsker.

2.2 M-estimation

2.2.1 Basics

Let θ0 be some statistical quantity and θ̂ be an estimator of θ0. Then θ̂ is
an M-estimator if it is the point of maximum of a criterion function Pnmθ,

where mθ : ⊗ × Θ → R. The function mθ is typically chosen in order to
ascertain that argmaxθ∈Θ Pmθ = θ0, which indicates θ̂

p→ θ0 as n → ∞. The
most famous case of M -estimation is that of maximum likelihood estimation,
where mθ = lθ, the log likelihood of a parametric model. M -estimation is often
associated with robust statistics, where one can use criterion functions other than
the log likelihood in order to obtain estimators with bounded influence functions
(see Section 3.5) and easily understandable asymptotics. This approach was
developed by Huber (1981), and is often constrasted with L-estimators and
R-estimators in classical robust statistics. In the context of robust statistics,
M -estimators has a more restricted meaning than ours, as only smooth choices
of mθ are used. In this setting, both the asymptotics of θ̂ and its value can be
obtained by differentiating Pnmθ, yielding estimators which can be understood
as the solution of the equation Pn

d
dθ
mθ = 0 for some mθ. These estimators are

often called Z-estimators in the empirical process literature van der Vaart and
Wellner (1996), van der Vaart (2000, chapter 3.3; chapter 5), emphasising this
property (Z is for zero). The following result is a classic. For a rigorous proof
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can be found van der Vaart and Wellner (1996, theorem 3.3.1)

Theorem 2.2.1. Assume Pmθ is differentiable at θ0 with a non-singular Hes-
sian J , and K = Pmθm

T
θ exists. Also assume some regularity conditions, most

importantly that mθ is differentiable at θ0. Then
√
n(θ̂ − θ)

d→ N(0, J−1KJ−1).

Proof. Let h = θ − θ0. Under some regularity and smoothness conditions we
have

nPnmθ =
n∑

i=1

mθ(Xi)

≈
∑

mθ0(Xi) + U(Xi; θ0)h+
1

2
hTJh+ o(h2),

where U = d
dθ
mθ |θ=θ0 . This yields the local centred likelihood process

Mn(θ) = n(Pn − P )(m
θ0+sn− 1

2
−mθ0)

=
√
ns

[
1

n

n∑
i=1

U(Xi; θ0)

]
− 1

2
sTJs+ o(|s|2).

This process converges to tTZ− 1
2
tTJt, with Z ∼ N(0, K) and K = VarU(X, θ0).

Taking the derivative, we get KZ = Jt, hence t = J−1Z maximises it, and
√
n(θ̂ − θ0)

d→ N(0, J−1KJ−1).

The matrix J−1KJ−1 is often called the sandwich matrix, and be put to
use as a model robust covariance matrix in maximum likelihood estimation.
In the special case when mθ = log g(θ), for some density g, we obtain the
classical limit result on maximum likelihood estimators as a corollary. If g = f ,
where f is the true model density, J = K and we obtain the well-known limit
√
n(θ̂ − θ0)

d→ N(0, J−1).
Our investigations will deal with M -estimators where the smoothness as-

sumption on mθ does not hold. The estimators will have associated criterion
functions mθ such that Pnmθ = n−1

∑n
i=1 mθ(Xi) is very jagged and far from

being differentiable. Still, importantly, we will require that the “true” objective
Pmθ =

´
mθdP is differentiable. In order for this to be the case, P will have to

be sufficiently smooth.

2.2.2 Heuristics and examples

Now we will turn to a discussion of the heuristics of cube root asymptotics, as
discussed in Kim and Pollard (1990, p. 193). In the process we derive the limit
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distribution of the sample median and Chernoff’s mode estimator. The median
is natural to spend some time on: First of all, it appears non-smooth, it has
a small solution space, is very robust, and forms the basis of the least median
of squares regression estimator (which has cube root asymptotics). Chernoff’s
mode estimator is the simplest cube root estimator, and the basis of Kim and
Pollard’s (ibid.) cube root intuition.

We begin by characterising the sample median as an argmin. The mean is
the argmin of θ 7→ E(X − θ)2: Use the decomposition E(X − θ)2 = E(X −
µ)2 + 2(µ − θ)E(X − µ) + (µ − θ)2 and take the derivative with respect to θ.
Perhaps less intuitively, the median is the argmin of θ 7→ E|X − θ|, due to this
well known fact.

Proposition 2.2.2. Let X ∼ F , where F is a distribution with a density in a
neighbourhood of f(θ0), θ0 being the median of F . Then θ0 = argminE(|X−θ|).

Proof. Observe that

E(|X − θ|) =

ˆ ∞

θ

(x− θ)dF (x) +

ˆ θ

−∞
(θ − x)dF (x),

=

ˆ ∞

θ

xdF (x)−
ˆ θ

−∞
xdF (x) + θ(2F (θ)− 1).

Since d
dθ

´∞
θ

xdF (x) = − d
dθ

´ θ
−∞ xdF (x) = θf(θ), this function is differentiable

at θ0 with derivative

−2θf(θ) + (2F (θ)− 1) + 2θf(θ) = (2F (θ)− 1),

consequently F (θ0) =
1
2

as claimed.

Define mθ = | ·−θ|. As above, θ0 is the true median in the following theorem.
The content of this theorem is well known, but this proof is the work of the
author.

Theorem 2.2.3. Let θ̂ be the sample median obtained from X1, ..., Xn i.i.d.
copies from a distribution F with a non-zero density in the neighbourhood of the
median. In this case,

n
1
2 (θ̂ − θ0)

d→ N(0, (2f(θ0)
−2).

Proof. For simplicity we assume, throughout this proof, that θ > θ0. By decom-
posing the sum of Pnmθ as in Proposition 2.2.2, we obtain
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1

n

n∑
i=1

|Xi − θ| = 1

n

[∑
Xi>θ

Xi −
∑
Xi<θ

Xi + θ(2# {θ > Xi} − n)

]
.

Define lower, middle and upper random variables as follows:

L = # {θ0 > Xi} ,

M = # {θ > Xi > θ0} ,

U = # {Xi > θ} .

We can understand (L,M,U) as an n-multinomial vector with cell probabilities
F (θ0), F (θ) − F (θ0), and 1 − F (θ). Take note of the following, Taylor-derived
observation: When θ ≈ θ0, the cell probability of M is approximately f(θ0)(θ−
θ0). By simple reasoning, Yn = Pnmθ − Pnmθ0 can be identified as

Yn = 2
∑

θ>Xi>θ0

(θ −Xki) + (θ − θ0)(2L− n),

where ki are the indices of those Xj satisfying θ > Xj > θ0. Then Xkj is
distributed according to the density f(x)1[θ0,θ](F (θ) − F (θ0))

−1, which equals
(θ − θ0)

−11[θ0,θ] when θ0 ≈ θ by Taylor expansion. Thus θ − Xj ∼ U(θ0, θ).
Denote these variables (θ − θ0)Vj, and use this to rewrite 1

n
Yn as

1

n
Yn =

1

n
2(θ − θ0)

M∑
i=1

Vj +
1

n
2(θ − θ0)(L− 0.5n).

Since EM = nf(θ0)(θ − θ0) and EVi =
1
2
, we get

E[
1

n
2(θ − θ0)

M∑
i=1

Vi] = f(θ0)(θ − θ0)
2.

An application of the law of total variance gives us

Var(
M∑
i=1

Vi) = E(Var(
M∑
i=1

Vi)|M) + Var(E(
M∑
i=1

Vi)|M)

= nf(θ0)(θ − θ0)12
−1 + 4−1nf(θ0)(θ − θ0)(1− f(θ0)(θ − θ0))

= 3−1nf(θ0)(θ − θ0).
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Where the higher order terms are discarded. Hence

Var[
1

n
2(θ − θ0)

M∑
i=1

Vi] =
4

3n
f(θ0)(θ − θ0)

3.

The term 1
n
2(θ − θ0)(L − 0.5n) is easily seen to be normally distributed in the

limit:
1

n
2(θ − θ0)(L− 0.5n) ∼ N(0, n−1(θ − θ0)

2).

Now we find the covariance between X = 1
n
2(θ − θ0)

∑M
i=1 Vj and Y = 1

n
2(θ −

θ0)(L− 0.5n) by using the law of total covariance,

Cov(X,Y ) = E(Cov(X,Y | M)) + Cov(E(X | M),Cov(E(Y | M)).

Here E(Cov(X,Y | M)) = 0, as X and Y are conditionally independent given
M . Clearly, E(X | M) = 1

n
(θ − θ0)M . Since

E(Y | M) =
1

n
2(θ − θ0)(

F (θ0)

1− (F (θ)− F (θ0))
)(n−M)− 0.5n)

=
1

n
2(θ − θ0)(

F (θ0)

1− f(θ0)(θ − θ0)
)(n−M)− 0.5n),

and

VarM ≈ nf(θ0)(θ − θ0)(1− f(θ0)(θ − θ0)),

we obtain

Cov(X,Y ) = − 2

n2
(θ − θ0)

2F (θ0)VarM,

≈ − 2

n
(θ − θ0)

3F (θ0)f(θ0).

Notice that the variance of X is of higher order than the variance of Y . Since
the covariance is equally negligible, we obtain

1

n
Yn(θ) ≈ f(θ0)(θ − θ0)

2 + n− 1
2 (θ − θ0)Z,

where Z ∼ N(0, 1) is the same across all θs sufficiently close to θ0. The case
when θ < θ0 is similar and is omitted.

Now make the substitution t = |θ − θ0| and differentiate 1
n
Yn with respect

to t. This yields 2f(θ0)t+
1
2
n− 1

2Z, which has its root at n
1
2 t = − 1

2f(θ0)
Z. Hence
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Figure 2.2.1: Simulated example of the true median process Pn(mθ − mθ0) along
with the approximation in Theorem 2.2.3. We simulate n = 100, 500, 1000, 10000
observations from N(0, 1) and calculate the approximation and the true process:

n
1
2 (θ̂ − θ) ∼ N(0, (2f(θ))−2), as claimed.

Importantly, the Z in the previous proposition is constant across all θ —
there is one dominating source of randomness, and it doesn’t change with θ.
This happens because we manage to decompose the process into two parts, one
of which has higher order variance than the other, where the dominating part
depends linearly on θ. The kind of decomposition we arrived at in this theorem
is impossible for cube root asymptotics: The Brownian motions that typically
appear are witnesses to this fact, the “dominating randomness” does not depend
linearly on θ in this case.

A slight modification of the process above turns it into an “argmax”-process:
−f(θ0)(θ−θ0)

2+n− 1
2 (θ−θ0)Z. This is a special case of the more general type of

expression Un(θ) = −c1(θ−θ0)
2+c2n

− 1
2 (θ−θ0)Zθ, where c1 > 0, c2 are constants

and Zθ is an asymptotically normally distributed variable which might depend
on θ. For t = (θ − θ0) to maximise Un, it has to strike a balance between the
negative contribution of c1t2 and the positive contribution of c2n− 1

2 (θ − θ0)Zθ.
When is this likely to happen? If |θ−θ0| gets too large, c1 will make the value too
small; if |θ−θ0| is too small, there will not be enough positive contribution from
c2n

− 1
2 |Zθ|. When (θ − θ0) = tn− 1

2 is of the order n− 1
2 , the contribution of each

side equalises: Un(tn
− 1

2 ) = n−1
(
c1t

2 − c2tZtn− 1
2+θ0

)
, but any other choice of α

in n−α will put too much weight on either side. We will see this rate intuition
at work for cube root asymptotics soon.
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Figure 2.2.2: The N(0, .522)-density and Chernoff’s density obtained through simu-
lations.

In Chernoff (1964), an estimator of the mode was introduced. Let F be
a unimodal, smooth density on R, and let α > 0 be given. Let Pn be the
empirical distribution of X1, X2, ..., Xn

i.i.d.∼ F , as usual. Chernoff’s estimator
is then defined as θ̂ = argmaxx∈R Pn[x − 1

2
α, x + 1

2
α]. The interpretation is

simple: For each x ∈ R, the interval [x − 1
2
α, x + 1

2
α] contains a fixed number

of observations from Pn, and θ̂ is the centre of the interval of this form which
contains the highest number of observations. If α is small enough and F is
symmetric around its mode, x0 = argmaxx∈R P [x− 1

2
α, x+ 1

2
α] is the mode F .

In this case, f(x − 1
2
α) = f(x + 1

2
α). We assume that f ′ exists. Notice that

P [x− 1
2
α, x+ 1

2
α] is smooth in α, but Pn[x− 1

2
α, x+ 1

2
α] is not.

Now we present an heuristic proof of the limiting distribution of Chernoff’s
mode estimator, which is copied from Chernoff (1964). For a formal derivation,
see van der Vaart and Wellner (1996, example 3.2.13). We will make use of the
distribution of

argmax
x∈R

[
W (x)− x2

]
, (2.2.1)

where W is a two-sided Brownian motion originating from 0. This will be
denoted Z and is called Chernoff’s distribution in the literature (Groeneboom
and Wellner, 2001), the name deriving from its first appearance in Chernoff
(1964). We will see this distribution several times throughout the course of
this thesis. It is symmetric around 0 and is bell-curved. It is reasonably well
approximated by N(0, 0.522), see Figure on this page.
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We will typically encounter distributions of the form argmaxx∈R [aW (x)− bx2].
An argument based on the concept of Brownian scaling Billingsley (2008, p.
504): For any c > 0, c−1W (c2x) = W (x). The following trick was first observed
by Chernoff (1964).

Proposition 2.2.4. Let Z be Chernoff’s distribution, and Y = argmaxx∈R [aW (x)− bx2].
In that case, Y and ( b

a
)
2
3Z have the same distribution.

Proof. We will find a c such that z maximises W (x)− x2 if and only if cz max-
imises aW (x)− bx2. We can do this by making aW (xc)− c2x2 ∝ W (x)−x2. By
Brownian scaling aW (xc) = ac

1
2W (x)− bx2c2. The proportionality requirement

is fulfilled when ac
1
2 = bc2, which has solution c = ( b

a
)
2
3 .

we will also make use of one the heuristic interpretations of a Brownian
motion (see Ross (2014, chapter 10)). Let Xi be distributed according to

P (Xi = −1) =
1

2
,

P (Xi = 1) =
1

2
.

This distribution is called the Rademacher distribution. Define a process,

X(t) = ∆x

bt/∆tc∑
i=1

Xi,

where ∆t is the time increment and ∆x is the space increment. Let ∆x = σ
√
∆t

for some σ, and let ∆t → 0. The resulting processes exists and is a Brownian
motion with standard deviation σ.

Theorem 2.2.5. Assume the above conditions, and let θ̂ be Chernoff’s estim-
ator, and θ0 be the mode. Its limiting distribution is given by

n
1
3 (θ̂ − θ0)

d→ τ
1
3Z,

where τ =
8f
(
x0+

1
2
α
)[

f ′(x0− 1
2
α)−f ′(x0+

1
2
α)
]2 .

Proof. Denote

Zn = Pn

[
x− 1

2
α, x+

1

2
α

]
− Pn

[
x0 −

1

2
α, x0 +

1

2
α

]
.

We decompose this into
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Zn = n− 1
2Yn + u,

where

n− 1
2Yn = (Pn − P )

[
x− 1

2
α, x+

1

2
α

]
− (Pn − P )

[
x0 −

1

2
α, x0 +

1

2
α

]
and

u = P

[
x− 1

2
α, x+

1

2
α

]
− P

[
x0 −

1

2
α, x0 +

1

2
α

]
.

Here u is the actual deviation, as seen from the true P , while n− 1
2Yn repres-

ents the random deviation. We can approximate u by a second order Taylor
expansion:

P

[
x− 1

2
α, x+

1

2
α

]
− P

[
x0 −

1

2
α, x0 +

1

2
α

]
= [F (x+

1

2
α)− F (x0 +

1

2
α)]− [F (x− 1

2
α)− F (x0 −

1

2
α)]

≈ −1

2
(f ′(x0 −

1

2
α)− f ′(x0 +

1

2
α))(x− x0)

2,

where we use that f(x0 + a)− f(x0 − a) = 0, which makes the first order terms
cancel. Now we consider

n
1
2Yn = n (Pn − P )

[
x− 1

2
α, x+

1

2
α

]
− n (Pn − P )

[
x0 −

1

2
α, x0 +

1

2
α

]
.

This process can be rewritten in two ways, depending on whether x ≤ x0 or
x > x0. If x ≤ x0,

n
1
2Yn (x) = n (Pn − P )

[
x+

1

2
α, x0 +

1

2
α

]
− n (Pn − P )

[
x− 1

2
α, x0 −

1

2
α

]
,

and if x > x0,

n
1
2Yn (x) = n (Pn − P )

[
x0 +

1

2
α, x+

1

2
α

]
− n (Pn − P )

[
x0 −

1

2
α, x− 1

2
α

]
.

We assume x > x0 and x ≈ x0 from now on, and put t = (x− x0). This process
counts the deviation from expectation in

[
x0 +

1
2
α, x+ 1

2
α
]

and subtracts the
deviation from expectation in the disjoint interval

[
x0 − 1

2
α, x0 − 1

2
α
]
. These
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counts are approximately independent, and if we increase x a little bit, there is
an equal probability of adding one as subtracting one, provided the distribution
is approximately symmetric close to the mode. The expected value of each
interval is 0 while each of their variances are approximately n(x−x0)f(x0+a) =

n(x− x0)f(x0 − a) by a first order Taylor expansion:

Varn
1
2Yn (t+ x0) = Var

[
n∑

i=1

(
1[x0+

1
2
α,x+ 1

2
α
](Xi)− 1[x0− 1

2
α,x− 1

2
α
](Xi)

)]

= P

[
x0 +

1

2
α, x+

1

2
α

]
+ P

[
x0 −

1

2
α, x− 1

2
α

]
≈ 2ntf(x0 −

1

2
α), (2.2.2)

Thus the process Yn looks like it tends to a two-sided Brownian motion with
variance 2f(x0 +

1
2
α) = 2f(x0 − 1

2
α) per unit t. From this we find that Zn ≈

n− 1
2

√
2f (x0 + a)W (t)− 1

2
V t2, where V = f ′(x0− a)− f ′(x0+ a). Furthermore,

x̂ ≈ argmaxt Zn, where W (t) is a standard two-sided Brownian motion starting
in 0. Using the trick in the previous proposition we obtain

c = n− 1
3

(
8f (x0 + a)

V 2

) 1
3

.

It follows that n
1
3 (x̂− x0)

d→ τ
1
3Z, where τ = 8f(x0+a)

V 2 .

Comparing this work to that of the median, there are two important dif-
ferences. First, there is no unique source of randomness across all θs, in-
stead we must take the maximum over a Brownian motion with parabolic drift.
Second, the argument for n− 1

2 rate doesn’t fall through. This is because the
standard deviation of the random part n− 1

2

√
2f (x0 + a)W (y) is of too small

order, only
√
θ − θ0. More generally, assume the limit process has the form

c1(θ − θ0)
2 + n− 1

2 c2
√
θ − θ0Zθ for some constants c1 < 0, c2. In order to carry

through the equalisation mentioned below Theorem on page 13 on the median,
θ−θ0 = tn− 1

3 must be chosen. From this we get Zn(tn
− 1

3 ) ≈ n− 2
3 (c1t

2+c2
√
tZθ).

This is the intuition behind cube root asymptotics offered by Kim & Pollard
(1990). It happens when the first order terms of the variance in the random
deviation part of Pn(mθ −mθ0) will not cancel, as in equation 2.2.2.
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2.2.3 Consistency

In the Donsker and Glivenko-Cantelli results, we were concerned with uniform
convergence over the whole space: E.g., n− 1

2 (Fn−F )
d→ G concerns the uniform

convergence over R. In our case, we’re not interested in uniform convergence
per se, only the continuity of the argmax functional: When Mn → M uniformly,
it seems intuitively clear that argmaxMn

d→ argmaxM , but we only require
that Mn → M uniformly on compacta. In our applications, Mn(θ) = Pnmθ and
M(θ) = Pmθ for some criterion function mθ.

The following result, a slightly modified version of van der Vaart and Wellner
(1996, corollary 3.2.3, p. 287), is a general theorem for proving consistency of
M -estimators. The only difficult condition is the Glivenko-Cantelli condition
||Pnmθ−Pmθ||

P→ 0, which we use the bracketing entropy machinery to establish.

Theorem 2.2.6 (Consistency theorem). Let Mn be a stochastic process index
by a metric space Θ, and let M : θ → R be a deterministic function. If ||Mn −
M || P→ 0 and θ0 is well-separated, then any sequence θ̂n which nearly maximises
θ 7→ Mn(θ) for any n will be consistent for θ0.

The condition that θ̂n nearly maximises the map θ → Mn(θ) is understood
to mean that θ̂n ≥ argmaxθ Mn(θ)−op(1), where θ0 = argmaxθ M(θ), which we
assume is identified. That is, we assume θ0 is a unique, global maximiser of M(θ).
Also, θ0 is well-separated (van der Vaart, 2000, p. 60) if it is the unique global
maximum and it can’t be approximated outside its neighbourhoods: For all
ε > 0, supd(θ,θ0)≥ε M(θ) < M(θ0). In one dimension, this condition can be broken
if there are horizontal asymptotes in M(θ). Notice that the condition is satisfied
on compact neighbourhoods of θ0 whenever M is continuous. This is because
M attains its supremum on any compact set K, hence supK∩d(θ,θ0)≥ε M(θ) =

maxK∩d(θ,θ0)≥ε M(θ) < M(θ0), since θ0 is the unique maximum.

2.2.4 The rate theorem

The following theorem is the most important technical tool of this thesis, and
is almost exactly the same as Theorem 3.2.10 from van der Vaart and Wellner
(1996, p. 293). A similar result which only covers n

1
3 -convergence can be found

in Kim and Pollard (1990). We will have need of the additional generality of
this result in Chapter 4 on histograms.

In order to make all the uniform Lindeberg central limit theorems involved in
this theorem work, we require the local bracketing entropy integral to be finite,
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ˆ ∞

0

sup
δ<δ0

√
logN[](ε||Mδ||2,Mδ, L2(P )dε < ∞, (2.2.3)

where Mδ is an envelope for Fδ, and Mδ = {mθ −mθ0 | d(θ, θ0) ≤ δ}. We will
not deal with this condition in any detail, as it is not very enlightening and quite
tedious. This condition can be replaced with a uniform entropy integral condi-
tion, which can be verified by establishing bounds on the Vapnik-Chervonenkis
dimension of Mδ (see e.g. van der Vaart and Wellner (1996, chapter 2.6) for
definitions and results about VC dimension). we will not make use of that ap-
proach here, but will use concepts from Vapnik-Chervonenkis theory in Section
4.4.

The following is theorem 3.2.10 from van der Vaart and Wellner (1996, p.
297), and is the main technical tool for rigorously proving convergence of M-
estimators. We will use it to derive the limit distributions of irregular histograms
in Chapter 4.

rate theorem. For each θ in an open subset U ⊆ Rn, let mθ be a measurable
function such that θ 7→ Pmθ is twice continuously differentiable at its maximum
θ0, with non-singular Hessian (or information matrix) V . Let the bracketing
entropy integral condition (2.2.3) hold. Assume there is a continuous function φ

such that φ2(δ) ≥ P ?M2
δ with δ 7→ φ(δ)/δα decreasing for some α < 2. Assume

the following Lindeberg condition is met: For every η > 0,

lim
δ↘0

P ?M2
δ {Mδ > ηδ−2φ2(δ)}

φ2(δ)
= 0. (2.2.4)

We also require the uniformity condition

lim
ε↘0

lim sup
δ↘0

sup

||h− g|| < ε

P (mθ0+δg −mθ0+δh)
2

φ2(δ)
= 0, (2.2.5)

when min(||h||, ||g||) ≤ K for all K ∈ N. Furthermore,

lim
δ↘0

P (mθ0+δg −mθ0+δh)
2

φ2(δ)
= E(G(g)−G(h))2 (2.2.6)

for a zero-mean non-degenerate Gaussian process G such that G(g) = G(h)

almost surely if and only if h = g. Then there exists a version of G with bounded,
uniformly continuous sample paths on compacta. Define rn as the solution to
r2nφ(r

−1
n ) =

√
n. Then the rescaled process h 7→ r2n(Pnmθ0+rnh−Pnmθ0) converges

weakly to G(h) + 1
2
hTV h. If θ̂n nearly maximises the map θ → Pnmθ for every

n and converges in outer probability to θ0, the sequence rn(θ̂n − θ0) converges in
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distribution to the unique maximiser ĥ of the process h 7→ G(h) + 1
2
hTV h.

In our applications, the uniformity and Gaussian conditions are easy to verify.
The condition that “ θ̂n nearly maximises the map θ → Pnmθ for every n and con-
verges in outer probability to θ0”, is understood to mean to that θ̂n is consistent
for θ0 and θ̂n ≥ argmaxθ Pnmθ − op(1).

2.3 Least median squares regression

Consider the ordinary linear regression model

Y = XTβ + ε, ε ∼ N(0, σ2),

where the samples are independent. The maximum likelihood estimate of this
model is given by the ordinary least squares (OLS) solution, namely

argmin
β

1

n

n∑
i=1

(XT
i β − Yi)

2.

While this estimator is efficient under model conditions with no contaminated
data, it is very sensitive even to single outliers. Notice the sum involved in the
least squares solution: We minimise the mean of the squared residuals r2i =

(XT
i β−Yi)

2. It is well known that the median is far more robust than the mean
as an estimator of the centre in a symmetric distribution, for instance it has a
breakdown point of 50%. This knowledge gave rise to the least median squares
estimator (LMS) (Rousseeuw, 1984):

β̂ = argmin
β

med((XTβ − Y )2)

= argmin
β

med|XTβ − Y |.

The equality between the first and second line follows from the monotonicity
of x 7→ x2 when x ≥ 0. This estimator is extremely robust to outliers in
both the x and y direction. Similarly to the median, it has a breakdown point
of 50%, which means that a data set (Yi, Xi) can contain up to 50% percent
contamination without the regressor being affected by it (see Section 3.5). This
is clearly the upper bound for any reasonable estimator. Nonetheless, it pays for
this robustness by being very inefficient. Its cube root asymptotics were derived
both in Rousseeuw and Leroy (2005) and in Kim and Pollard (1990). The
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estimator is available in R through the function lmsreg in the built-in package
MASS.

We have not succeeded in isolating the conditions under which the LMS is
consistent, but it appears likely that it is consistent whenever the covariates are
sufficiently nicely distributed and the error terms are symmetric, independent
of each other and Xi, and satisfying med(εi) = 0.

Another idea for robustifying the OLS is to use argminβ
1
n

∑n
i=1 |XT

i β − Yi|,
which is known as L1-regression or least absolute deviations (LAD) regression.
In one sense, this is the generalisation of the median to the regression setting,
recall Proposition 2.2.2 on page 13. It is the maximum likelihood estimator
under the assumption that the εs are Laplace distributed. While this estimator
is more robust than OLS in the sense that it doesn’t put larger weight on large
residuals and smaller weight on small residuals, its breakdown point is equally
bad. Modulo regularity conditions on the covariates, LAD is consistent under
the assumption that med(εi) = 0 and the εs being i.i.d. with a positive density
in the neighbourhood of 0 (Pollard, 1991).

Properties

The LMS estimator has some nice properties, described in depth in the aforemen-
tioned monograph (Rousseeuw and Leroy, 2005, p. 116-117), including several
desirable equivariance properties.

Definition 2.3.1. Let
{
(xi, yi) ∈ Rd × R | i = 1, ..., n

}
be observed data and

Tn : (Rd × R)n → Rd+1 be a regression estimator. We define the following
properties:

1.) Regression equivariance: Tn satisfies this property if

Tn({(xi, yi + vTxi)}) = Tn({(xi, yi)}) + v,

whenever v ∈ Rd.
2.) Affine equivariance: This is satisfied when

Tn({(Axi, yi)}) = (AT )−1Tn({(xi, yi)}),

for any non-singular transformation A of the covariates.
3.) Scale equivariance: The estimator is said to be scale equivariant if

Tn({xi, cyi}) = cTn{(xi, yi)}.
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Affine equivariance implies that the estimator is independent of the choice
of coordinate system, which is clearly desirable. Scale invariance also appears
important to have. The regression equivariance doesn’t look as intuitively de-
sirable. To explain what’s going on, take a look at the LS estimator, β̂ =

argminβ(β
Txi−yi)

2. When v ∈ Rd, argminβ(β
Txi−(yi+vTxi)

2 = argminβ((β
T−

vT )xi − yi)
2, which equals β̂ + v. Regression equivariant estimators have the

property that one can assume, without loss of generality, that β̂ = 0.

There are reasonable, highly robust estimators without some of these prop-
erties. An example is the repeated median estimator of Siegel (1982), an-
other estimator with 50% breakdown point. Let d be the covariate dimen-
sion and

{
(xi, yi) ∈ Rd × R | i = 1, ..., n

}
be observed data. For any selection of

d+ 1 numbers i1, i2..., id+1 between 1 and n, the system (1, xi1 , xi2 , ..., xid)
Tβ =

(yi1 , yi2 , ..., yid)
T has a unique solution. This follows from the ubiquitous full

rank condition on the covariates. Denote this solution β(i1, i2, ..., id), and let
βj(i1, i2, ..., id) be its jth coordinate. Define the repeated median as follows:

β̂j = medi1(medi2(....medid({βj(i1, i2, ..., id)}))...)

When d = 1, a pair of tuples (xj, yj) and (xi, yi) yield the parameter estimates

β
(ij)
0 =

xjyi − xiyj
xj − xi

,

β
(ij)
1 =

yj − yi
xj − xi

.

The desired estimates is

β̂0 = med{med{β(ij)
0 | j = 1, ..., n} | j 6= i},

β̂1 = med{med{β(ij)
1 | j = 1, ..., n} | j 6= i}.

This estimator is not affine equivariant. It is not a very efficient estimator
at standard normal error conditions, with efficiency at 4/π2 ≈ 40.5% (Hössjer
et al., 1994). (Though it compares nicely to the LMS, with an efficiency of
0!) A related estimator is the Theil-Sen estimator, where the median isn’t
repeated. In dimension two, the slope estimate is med

{
yj−yi
xj−xi

| i < j
}

and the

intercept estimate is med
{

xjyi−xiyj
xj−xi

| i < j
}

. It is more efficient (90.5%) than
the repeated median estimator, but has a lower breakdown point at 29%, (ibid.).
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The Theil-Sen estimator isn’t affine equivariant either. The gist of the matter,
for both estimators, is that the estimator runs independently on each coordinate,
but the runs must be “coordinated” in order to make the AT commute with the
median.

The LMS estimator also has the exact fit property: Whenever dn
2
e observa-

tions lie on a straight line θTx, the LMS estimate is β̂ = θ. This property is
not shared by e.g. OLS regression, but it is not clear whether its desirable in
the first place. This property is a straight forward consequence of the geomet-
rical interpretation of the LMS: It attempts to find the mid-line of the tube of
smallest radius which contains at least half of the observations Rousseeuw and
Leroy (2005, p. 24). The geometry is arguably easier to understand than OLS
geometry. Nevertheless, it makes the estimator sensitive to small perturbations
in data values, as described in Hettmansperger and Sheather (1992).

Calculation

If there are no covariates, the regression model reduces to a location model
Yi = θ + εi. In this special case, it is easy to describe its LMS estimator. Now
the objective function reduces to f(θ) = med(|yi − θ|). The next proposition
was first observed Steele and Steiger (1986) in a more general. This particular
proof is a simplification of theirs to d = 2. In it we use the “high median”
convention: When faced with an even number of observations, n = 2k, we
define med{xi} = x(k).

Proposition 2.3.2. The LMS estimate of θ in Y = θ+ ε, where med(ε) = 0, is
given by

θ̂ = min
A∈A

1

2
(maxA+minA),

where A =
{
S ⊂ {y1, ..., y2} | #S = bn

2
c+ 1

}
. In addition,

f(θ̂) = min
A∈A

(maxA−minA) .

Proof. We first show that the local minima of f(θ) is on the form

(maxA−minA)A∈A .

Let θ be arbitrary, and assume that f(θ) is on the form above. The value of f(θ)
is obtained by taking the (bn

2
c+ 1)st element of the list {|yi − θ| : i = 1, ..., n},

hence a slight tilt of θ to the left will make the distance to the rightmost element
slightly larger, increasing the value of f(θ); the same argument works for a
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tilt to the right, hence f(θ) is a local minimum. Conversely, let A be the
(bn

2
c + 1)-element head of {|yi − θ| : i = 1, ..., n} associated with θ and assume

|maxA− θ| > |minA− θ|. If we slide θ towards the right, we will reach a point
θ′ where |maxA− θ′| = |minA− θ′|. Here |maxA− θ′| < |maxA− θ|, showing
that f(θ) is not a local minimum.

This is reminiscent of the shorth estimator of the centre in a symmetric distri-
bution (Andrews and Hampel, 2015), whose cube root asymptotics is rigorously
derived in Kim and Pollard (1990). This estimator is defined as 1

bn
2
c+1

∑
y∈A y,

the mean of the shortest interval containing half of the observations. The com-
putation of these estimators is simple: We order the observations, then check
the distances xi+bn

2
c+1 − xi for i = 1, ..., bn

2
c, and finally compute the midrange

(mean) in order to get the LMS estimate (shorth estimate). Together this takes
O(n log n) time. The “weirdness” of this explicit solution form casts doubt on
whether the LMS is such a good idea after all. Consider the following example,
inspired by Hettmansperger and Sheather (1992), which shows that the LMS
behaves unpredictably when presented with slightly manipulated data. They
called this phenomenon “local instability”, and observed it in real data sets.

Example 2.3.3. Let y = (1, 3, 4, 6.0001, 10) be the set observations. The 3-ary
set attaining the smallest midrange is (1, 3, 4), with midrange 2.5. Assume that
y′ = (1, 3, 4, 5.999, 10) is observed instead. The 3-ary set attaining the smallest
midrange has changed into (3, 4, 5.999), with a midrange approximately equal
to 4.5. Clearly, the same criticism applies to the shorth estimator.

Anomalies like this, which stem from discontinuity, is a burden we have to
bear when dealing with cube root asymptotics. This kind of jump in estimates
only happens in OLS when the covariates are multicollinear. We will discuss a
phenomenon like this in Section 4.7 as well.

To compute β̂ in a regression setting one would have to use some more
advanced combinatorial optimisation. The problem is computationally hard,
but has received the attention of the computational geometers Edelsbrunner and
Souvaine 1990, where a O(n2)-algorithm is given for the case of one covariate. In
practice, approximation algorithms are used, see Rousseeuw and Leroy (2005).

Rousseeuw and Leroy (2005, chapter 6) proposes to use this method to
identify outliers, remove them, and perform an ordinary LS regression in or-
der to get confidence intervals and perform hypothesis tests afterwards. As the
authors say on p. 229,
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Many diagnostics are based on the residuals resulting from LS. How-
ever, this starting point may lead to useless results because of the
following reason. By definition, LS tries to avoid large residuals.
Consequently, one outlying case may cause a poor fit for the major-
ity of the data because the LS estimator tries to accommodate this
case at the expense of the remaining observations. Therefore, an
outlier may have a small LS residual, especially when it is a leverage
point [...]. As a consequence, diagnostics based on LS residuals often
fail to reveal such points.

Finally, we mention that the LMS is not the method of choice for performing
robust regression analysis. There are a myriad of different procedures for robust
regression, most of which are both easier to compute and far more efficient, see
e.g. Maronna et al. (2006, chapter 4,5).

2.4 Binary decision trees

A binary decision tree is a step function of the form g(x; βl, βu, d) = βl1[x≤d] +

βu1[x>d], x ∈ R. Let (yi, xi) ∈ R2 be observations from some regression model
yi = f(xi) + εi, where f = E(Y | x) is a given function. Now we wish to
approximate f by means of a binary decision tree. We consider the situation
when the covariates X come from a density pX , hence we can talk about the
joint distribution of (Y,X). As indicated, we wish to approximate a regression
function E(Y ‖X = x) = f(x) by a step function

g(x; βl, βu, d) = βl {x ≤ d}+ βu {x > d} .

In machine learning, this procedure is typically iterated (Hastie et al., 2005,
chapter 9), an application which will not be discussed here. Given the true
distribution P of (Y,X), we can talk about the “least false values” in the mean
square error sense:

(β0
l , β

0
u, d

0) = argmin
(βl,βu,d)

P
[
(Y − [βl {X ≤ d}+ βu {X > d}])2

]
,

which gives rise to the least sum of squares estimator,
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(β̂l, β̂u, d̂) = argmin
βl,βu,d

Pn

[
(Y − [βl {X ≤ d}+ βu {X > d}])2

]
,

argmin
βl,βu,d

n∑
i=1

[
(Yi − [βl {Xi ≤ d}+ βu {Xi > d}])2

]
.

Now we must make the distinction between two very different problems, only
one of which is covered here. It concerns the shape of the true f .

(C1) f is on the form g, or reasonably close in the sense that it actually has
a jump discontinuity at d0,

(C2) f is not on the form g, specifically, it is differentiable at d0.
Modelling with (C2) satisfied is like using histograms in a regression setting, and
is called split-point analysis by Banerjee and McKeague (2007). They proved
the following:

Theorem 2.4.1. Under conditions (A1)-(A5) of Banerjee & McKeague, includ-
ing (C2) above,

n
1
3 (β̂l − β0

l , β̂u − β0
u, d̂n − d0)

d→ (c1, c2, 1) argmax
h

[
V h2 + aW (h)

]
,

where W is a standard two-sided Brownian motion and V and a are real con-
stants depending on pX(d

0), f ′(d0) (β0
l , β

0
u, d

0) and P (d0).

While the authors only found the limiting distribution for one split point,
it is probably straightforward to extend it to any number of split points. This
would give us the asymptotic theory for a particular form of histogram regres-
sion with data driven partitioning rules (see Nobel et al. (1996)). Peculiarly, the
value of (β̂l − β0

l , β̂u − β0
u, d̂n − d0) depends only one random variable, namely

Z = argmaxh V h2 + aW (t). We will obtain an analogy of Theorem 2.4.1 for
irregular histograms on page 107, where the same curious “single random” Z

appears. There aren’t many obvious applications for these binary decision trees,
but Banerjee and McKeague (2007) applied it on an environmental problem
concerning the Everglades National Park in Florida. The convergence rate of
the split points was first observed by Büchlmann and Yu (2002), in a paper ana-
lysing the effect of bootstrap aggregation on decision trees, a variance reduction
technique. Interestingly, they erred on the convergence rate of the levels (β̂l and
β̂u), believing they converged at the ordinary n

1
2 -rate instead. This can serve as

a warning on how hard it can be to get these things right.
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On the other hand, if (C1) is satisfied, we obtain n asymptotics for d and
n

1
2 -asymptotics for βl and βu, see e.g. Kosorok (2007, section 14.5.1). This

happens as we attempt to isolate real change-points in the underlying regression
model. Note that the rate theorem can’t be used in this case, as the smoothness
condition on Pmθ isn’t satisfied.

This phenomenon of n
1
3 -convergence for smooth underlying distributions and

n
1
2/n-convergence for appropriately discontinuous underlying distributions is ex-

tremely likely to happen for irregular histograms (see Chapter 4) as well. Indeed,
our discussion of histograms in that chapter will only concern underlying F s sat-
isfying the analogue of (C2).

2.5 Resampling

2.5.1 Bootstrap

Let X1, . . . , Xn
i.i.d.∼ P and Rn(X1, . . . , Xn;P ) be a functional of both the data

and the probability. Such a functional is called a root, after Beran (1983). The
most prominent example of Rn is

√
n(θ̂n − θ0(P )), where θ̂n is an estimator of

θ0(P ) depending only on X1, . . . , Xn, for instance an M -estimator or a more
general statistical functional. Whenever P is unknown, it is of interest to ap-
proximate Rns distribution in order to construct confidence intervals, perform
hypothesis tests, etc. A sensible approach is to approximate P with a known
distribution Qn, usually (if not always) data dependent, and calculate the dis-
tribution of Rn(X̂1, . . . , X̂n;Qn), where X̂1, . . . , X̂n

i.i.d.∼ Qn This can sometimes
be done analytically, but is typically done numerically through Monte Carlo
methods. Some possible choices for Qn are

1. Pn, the empirical measure. This leads to the ordinary non-parametric
bootstrap (Efron, 1979).

2. Qn = P̃n, a smoothed version of Pn, which yields the smoothed bootstrap.

3. Use a parametric distribution with plug-in parameters. From this we get
the parametric bootstrap.

The non-parametric bootstrap is the most commonly used of these procedures,
and has been thoroughly researched. For a reference, see Shao and Tu (2012).
Still, the smoothed bootstrap hasn’t received that much attention. In recent



2.5. RESAMPLING 31

years, there has been done some work on the smoothed bootstrap in the con-
text of cube root asymptotics. This research is motivated by the fact that the
ordinary bootstrap isn’t consistent in general in cube root asymptotics.

Let Hn(P ) be the distribution function of Rn(X1, . . . , Xn;P ), and assume
it converges in distribution to some distribution function H(P ). Likewise, let
Hn(Qn) be the distribution function of Rn(X̂1, . . . , X̂n;Qn). Our goal is to es-
timate Hn(P ) by Hn(Qn), and a necessary condition for this to be reasonable
is that Hn(Qn) is “consistent”. Since the bootstrap attempts to approximate
a unique distribution conditionally, we say that the bootstrap is consistent if
Hn(Qn)

d→ H(P ) conditionally on X1, X2, ...
i.i.d.∼ P for almost every such se-

quence of observations. Hence, if H(P ) is assumed to continuous, which is
usually the case, the bootstrap is consistent if

sup
x

|Hn(Qn)(x)−H(P )(x)| → 0

almost surely (van der Vaart, 2000, lemma 2.11).
The following basic result on the bootstrap is perhaps the most important

one. Here µ(P ) is the mean of P , while σ2(P ) is its variance.

Theorem 2.5.1. Assume P has finite variance. Let Pn be a sequence of distribu-
tions such that Pn

d→ P . In addition, assume both µ(Pn) → µ(P ) and σ2(Pn) →
σ2(P ). Then the bootstrap is consistent for the root Hn(X1, ..., Xn;P ) =

√
n(X−

µ(P )), where H(P ) ∼ N(0, σ2(P )).

For a proof, see e.g. Politis et al. (1999, proposition 1.3). The finite variance
condition is not only needed to assure asymptotic normality. In fact, for some
cases of Xis with infinite variance, the bootstrap isn’t only not consistent, but
has no deterministic limit in probability (Athreya, 1987). This theorem gener-
alises to the case of smooth functionals as well (Shao and Tu, 2012, theorem
3.6).

The known cases of estimators with cube root asymptotics are in a sense
non-smooth, and also the most famous case of n-asymptotics, the maximum of
the uniform distribution. The nonparametric bootstrap is inconsistent for the
maximum in a uniform distribution, which we now show.

Example 2.5.2. (From Knight (1989)) Let X1, ..., Xn
i.i.d.∼ U(0, θ), and denote

the order statistics X(1) < X(2) < ... < X(n). We wish to estimate the θ by its
MLE, θ̂n = X(n). It is well known that Hn(P ) = n

θ−X(n)

θ

d→ exp(1), and we take
this as our root, with bootstrap variant Hn(Pn) = n

X(n)−X∗
(n)

X(n)
. First we find the
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unconditional distribution. Recall the distribution for the maximum of a sample
Z1, ...Zn: P (Z(n) ≤ x) = P (Z1 ≤ x, Z2 ≤ x, ..., Zn ≤ x) = P (Z1 ≤ x)n, which we
can use to find

P (X∗
(n) = X(n−i)) = P (X∗

(n) ≤ X(n−i))− P (X∗
(n) < X(n−i))

= (1− i

n
)n − (1− i+ 1

n
)n

≈ e−i − e−(i+1).

Also, it is assumed known that

(0, n(X(n) −X(n−1))/X(n), n(X(n) −X(n−2))/X(n), ...)
d→ (U1, U2, U3, ...)

where U1 = 0, Ui =
∑i

j=2 Vj, with V1, V2, ... i.i.d. standard exponentials. Thus
H∗

n converges unconditionally to the mixture
∑∞

i=1 ξiUi, where ξ is an infinite
multinomial vector with cell probabilities pi = e−i − e−(i+1).

Conditioning on X1, ..., Xn, we get Rn(Pn) =
∑n

i=0 πin
X(n)−X(n−i)

X(n)
, where

πi is a multinomial vector with cell probabilities (1 − i
n
)n − (1 − i+1

n
)n. Note

that (1 − i−1
n
)n − (1 − i

n
)n ↗ 1 − e−1 ≈ 0.632 when i = 0. Since X(n) −

X(n−0) = 0, the bootstrap distribution will always have a point mass at 0,
sharply discordant with our wish for consistency. In fact, it has no limit dis-
tribution with probability 1, as both P (lim supn→∞ n

X(n)−X(n−i)

X(n)
= ∞) = 1 and

P (lim infn→∞ n
X(n)−X(n−i)

X(n)
= 0) = 1, see Bickel and Freedman (1981).

On the other hand, the parametric bootstrap is easily seen to be consistent.
Conditioned on X1, X2, ...,

P (n
X(n) −X∗

(n)

X(n)

≤ x) = P (X∗
(n)/X(n) ≥ 1− x

n
),

= 1− (1− x

n
)n,

→ 1− e−x.

As we can see, not only is the parametric bootstrap consistent, but we have the
identity Hn(Qn) = Hn(P ) for every n.

An important task is to identify necessary and / or sufficient conditions for
the non-parametric bootstrap to be consistent. This is a difficult task which
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goes far beyond the scope of this thesis, but we will supply some heuristics
which indicates when we would expect the bootstrap to be consistent.

[...] The bootstrap is not foolproof, even for statistics whose asymp-
totic distribution is normal. Asymptotic optimality, or even consist-
ency, of the bootstrap estimate Hn(P̂n) is not to be expected unless
Hn(P ) depends smoothly upon P .

- Rudolph Beran in Beran (1982)

In accordance with this quote, Bickel and Freedman (1981) propose the following
heuristics for when we can expect consistency of the bootstrap,

1. Uniform convergence of Hn(Qn) to H(P ) over all Qns in a shrinking neigh-
bourhood around P ;

2. Hn(P ) depends smoothly on P .

In the previous example Hn(P ) does not depend smoothly on P whenever the
P s are discrete. In cube root asymptotics, the smoothness condition is usually
not satisfied, This is clearly seen in Section 4.5.2 on the histograms, where a
slight tilt in P , even if P is constrained to be smooth, can give a different rate
of convergence (from n

1
3 to n

1
2 ). If P isn’t constrained to be smooth, the rate

of convergence can even change from n
1
3 to n! The basic problem appears to be

that Hn(Qn) does not emulate Hn(P ) well whenever Qn is non-smooth, which
is clearly the case when Qn = Pn. This has lead to some work on the smoothed
bootstrap in the context of cube root asymptotics. Kosorok (2008) proved that
the non-parametric bootstrap is inconsistent for Grenander’s estimator, but de-
veloped a consistent variant of the smoothed bootstrap. Abrevaya and Huang
(2005) attempted to show that the ordinary bootstrap fails for Manski’s estim-
ator. However, as discussed in the paper of Sen et al. (2010) on bootstrapping
Grenander’s estimator, their result is likely erroneous: Their result strongly in-
dicate that the bootstrap distributions of cube root estimators have no weak
limit almost surely, contradicting the main result of the aforementioned paper.
Léger and MacGibbon (2006) made an attempt at a general theorem for proving
consistency and inconsistency of bootstrap variants for cube root asymptotics.
Seijo and Sen (2011) developed a variant of the smoothed bootstrap for Manski’s
estimator, which appears to work very well.
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2.5.2 Subsampling and m-out-of-n bootstrap

Subsampling is an alternative to the bootstrap procedure which is consistent
in great generality, but usually requires larger sample sizes in order to work
properly. it is also more computationally expensive, as we have to establish a
certain nuisance parameter, the block size m. Let X1, X2, X3, ...

i.i.d.∼ F as usual,
and let θ̂n be a statistic of interest. Let Rn be nα(θ̂n − θ0), for some α > 0, and
Hn be its distribution function. We assume that Hn

d→ H as n → ∞ for some
continuous limit distribution H.

Choose a block size b < n. Define Nn =
(
n
b

)
and let θ̂n,b,i be the version of θ̂

based on the ith sample from the
(
n
b

)
subsets of X1, X2, ..., Xn with cardinality

b. Define the distribution function Ln(x) by

Ln(x) = N−1
n

Nn∑
i=1

{bα(θ̂n,b,i − θ̂n) ≤ x},

where {·} is the characteristic function. Then Ln,b is the subsample distribution
based on X1, X2, ..., Xn. Unlike the bootstrap, the subsample doesn’t attempt
to find the distribution nα(θ̂n − θ0), but rather bα(θ̂b − θ0), which gives it an
additional source of variance. It depends on the fact that sampling b elements
from X1, X2, ..., Xn behaves like sampling from the real underlying distribution
F , regardless of the features of F , provided only that bn−1 → 0 as b → ∞.

The following is a variant of Politis and Romano (1994, theorem 2.1). The
proof is simple and illuminating, so we provide it in full.

Theorem 2.5.3. Let bn be a sequence of block sizes satisfying n−1bn → 0 as
n → ∞, and assume that Hn(P )

d→ H(P ), with H(P ) continuous. Then

sup
x

|Ln(x)−H(x)| p→ 0.

Proof. Our first observation is

{bα(θ̂n,b,i − θ̂n) ≤ x} = {bα(θ̂n,b,i − θ0)− bα(θ̂n − θ0) ≤ x}.

Since the rate of convergence is nα, we have bα(θ̂n−θ0)
p→ 0. Define the random

function

Un(x) = N−1
n

Nn∑
i=1

{bα(θ̂n,b,i − θ0) ≤ x}.
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Let ε > 0 and En be the event that |bα(θ̂n − θ0)| < ε. Then we obtain the
following,

Un(x− ε)1En ≤ Ln(x)1En ≤ Un(x+ ε).

If Un(x)
p→ H(x), we can pass ε to 0 and obtain Ln(x)

p→ H(x) as well, hence
it suffices to show that Un(x)

p→ H(x). Clearly E(Un(x)) = Hn(x), and we
only need to show that VarUn(x) → 0. We can do this by an application of the
Rao-Blackwell theorem (Shao, 2007, 2.5): When T is a sufficient statistic for P
and W is an unbiased estimator of a statistic τ(P ), then W ′ = E(W |T ) has less
variance than W for every P ∈ P . Now define

U
′

n = m−1

m−1∑
i=0

{bα(θ̂m,i − θ0) ≤ x},

where m = bn/bc and θ̂m,i is θ̂ calculated from sequence Xmb+1, Xmb+2, ..., X(m+1)b.
This is a mean of m identically distributed random variables with variance
bounded by 1, hence VarL

′
n → 0. Also, EL

′
n = H(x). Since the order of the

observations X1, X2, ... contains no information about Hn(x), the Rao-Blackwell
theorem gives us

VarE(L
′

n | X(1), X(2), ...) ≤ VarL
′

n.

Seeing as E(L
′
n | X(1), X(2), ...) = Un, the subsample converges pointwise in

probability. By Lemma 2.11 in van der Vaart (2000), the convergence is uniform.

The subsample has been applied on Manski’s estimator (Chapter 3) by Del-
gado et al. (2001), who obtained good results. In ordinary, smooth statistics, the
subsample typically behaves worse than the non-parametric bootstrap: While
the bootstrap has an error of order o(n− 1

2 ), the subsample bootstrap has an
error of order O(n− 1

3 ), which is substantially worse (Politis and Romano, 1994).
Here the error refers to |Ln(t)−Hn(t)|.

A similar method is the m-out-of-n bootstrap (Lee and Pun, 2006), a variant
of the subsample with block size m where the sampling is done with replace-
ment. Under extremely general conditions both the m-out-of-n bootstrap and
m-subsampling are consistent provided m

n
→ 0 as n → ∞. Yet this doesn’t give

us much guidance in how to select the m in practice. In applications, this choice
is made by doing even more resampling.

Say we’re interested in obtaining a confidence interval with level α for an
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estimator θ̂. For each choice of m, we can approximate this interval by [
α
2 m

n
1
3
+

θ̂,
(1−α

2
)m

n
1
3

+ θ̂], where αm is the α-quantile of m
1
3 (θ̂∗m− θ̂). All confidence intervals

will not have level α, but rather level hα(m) for some unknown function hα

dependent on the data generating mechanism. Now we wish to find the m such
that |hα(m)− α| is minimised. Since hα is unknown in general, we will have to
estimate it with ĥ. Delgado et al. (2001) propose the calibration method, where
they use the ordinary, non-parametric bootstrap for this purpose. It is described
in Algorithm 2.1.

Algorithm 2.1 The calibration method of Delgado et al. (2001).

1. Select lower and upper bounds for m, called l and u respectively, and
minimum step s. We intend to check subsamples of sizes l, l+s, . . . , u−s, u.

2. For k = 1, ...K, generate n bootstrap samples X∗
1k, X

∗
2l, . . . , X

∗
nk. For each

applicable subsample size m, put H(m, k) = 1 if θ̂ is in the m-subsampling
confidence interval based on these observations, and 0 otherwise.

3. Put ĥ(m) = 1
K

∑K
k=1H(m, k)

4. Minimise |ĥ(m)− α|.



Chapter 3

Manski’s maximum score estimator

Sometimes in football you have to score goals.

- Thierry Henry, former Arsenal and France striker

Manski’s maximum score estimator is a discontinuous M -estimator with cube
root asymptotics. In Section 1 we supply the definition of the estimator along
with some discussion about what it does. In Section 2 we provide some char-
acterisations of the associated optimisation problem, prove that it is NP -hard,
and discuss some related estimators. Section 3 is devoted to its asymptotics,
with special emphasis on the conditions leading to consistency. There are no
proofs in this Section. Section 4 is devoted to algorithms for its computation.
We supply a reformulation of the only workable exact algorithm in the statistical
literature, and provide a new exact algorithm (a complete enumeration) for the
computation of the entire solution sets when the covariate dimension is d ≤ 2.
Robustness is the theme of Section 5, where we find the breakdown point of the
estimator in d = 1, and make progress towards finding it in d > 1. Finally,
we do some simulations to asses the estimator’s model robustness and outlier
robustness under some different settings, replicating a result of Horowitz (1992).

3.1 Overview

A linear binary response model is a regression model Yi = 1XT
i β+εi≥0, where

the Xis are covariates and εis are random variables not necessarily independent
of the Xis, but independent of each other. Several parametric binary choice

37
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models exists, of which the most famous are the logit and probit models. The
logit model arises from taking εi i.i.d. standard logistic (F (x) = exp(x)

1+exp(x)
), while

the probit model arises from taking εi i.i.d. standard normal.

Fact 3.1.1. The logit and probit models are the binary choice models where
εi

i.i.d.∼ Logistic(0, 1) and εi
i.i.d.∼ N(0, 1) respectively.

Proof. Assume εi
i.i.d.∼ Logistic(0, 1), and let F be its cdf. Then Yi = 1 if and

only if XT
i β ≥ −εi, which since F is symmetric has probability F (XT

i β). The
same argument works for the probit model.

While these two methods are very popular (389,000 results on Google Scholar
for “logit” in august 2015, 266,000 for “probit”), they have rather strict distri-
butional assumptions. Most importantly, they exclude heteroskedasticity and
react poorly to non-symmetric error distributions.

We will consider a conditional median variant of the binary response model.
This problem can be viewed as an instance of quantile regression with missing
data. Let the underlying model be Zi = XT

i β + εi, where the conditional me-
dian is required to be 0: med(εi|Xi) = 0. We don’t assume independence of
the εis, but we observe only the tuple (1[Wi≥0], Xi). Hence there is a tremend-
ous information loss involved in this model, an information loss so severe that
√
n-consistent estimation under general conditions is impossible, as shown in

Chamberlain (1986).
Manski (1975, 1985) proposed a semiparametric estimator of the binary

choice model which is consistent provided only med(εi|Xi) = 0 (in addition
to several regularity conditions discussed in Section 3.3).

β̂ = argmax

[
n∑

i=1

(Yi −
1

2
)1XT

i β≥0

]
, (3.1.1)

= argmax

[
n∑

i=1

(
Yi1XT

i β≥0 + (1− Yi)1XT
i β<0

)]
.

Notice that the estimator maximises the number of correct predictions, which
makes it unusually easy to interpret. The function

m(β) =
n∑

i=1

(Yi −
1

2
)1XT

i β≥0 (3.1.2)

will sometimes be called Manski’s objective.
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Figure 3.1.1: (left) Generated data according to the probit model, with β1 = −1,
β2 = −1

2 , n = 40. (Also, β0
def
= 1.) Here the green line is the true discriminating line,

the orange line is the logistic line (from maximum likelihood), and the pink and purple
lines are lines arising from Manski’s estimator. Both Manski lines misclassify three
points, while the logistic line misclassifies four points. (right) Another simulated data
set (n = 30, from the same model) with Manski lines in purple and pink. Notice that
both pink lines pass through a single blue point and form a “double wedge”. Every
line in between the bounding lines misclassify two observations, and likewise for the
purple lines.

The set {x | xTβ ≥ 0} is a half-plane in Rd. Colour the points where
Yi = 1 red, and the other points blue, and classify every point in the hyperplane
{x | xTβ ≥ 0} as red, the others as blue. Then Manski’s estimator finds the
half-planes which classifies correctly the largest number of observed points. In
Figure 3.1.1 we illustrate this by plotting “discriminating lines” of the form
xTβ = 0. If our objective is to obtain good discriminating lines, as compared to
obtaining parameter estimates for β, the setting changes from that of Manski’s
estimator to that of linear discrimination. A discriminator based on (3.1.1) is
discussed in e.g. Devroye et al. (2013, Section 4.5).

For identifiability, we can postulate ||β|| = 1, where || · || is the Euclidean
distance. Such a move is required as we have not imposed any scale on the
residuals εi. Another variant is to impose β0 = −1, β0 = 0 or β0 = 1. Most
of our discussion will concern the case when β0 = 1, which is easier to analyse
than ||β|| = 1. If we know all the solutions for β0 = −1, 0, 1, it is easy to find
the solutions corresponding to ||β|| = 1.

If the assumptions of the probit model or logit model are close to being true,
to use this estimator would be a very bad idea. Not only is it very inefficient, its
limiting distribution is intractable, and requires resampling. But this resampling
creates a huge computational burden, and behaves poorly when it comes to
coverage and size of confidence intervals, etc. Additionally, the theory for the
logit and probit is very well worked out, and its standard asymptotics under
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maximum likelihood makes it possible to use a wealth of different procedures
for model selection. For instance the likelihood ratio test, AIC, BIC and FIC
(Claeskens and Hjort, 2008). Also, Manski’s estimator gives information about
the βs only. If we want to calculate functionals involving the error term ε in some
way, like estimating the probability on whether a subject with covariates X ′ will
have Y ′ ≥ 0, we will require a probability model F for the error terms. Since
we allow for arbitrary heteroskedasticity and general “wildness” in the errors, it
is impossible to consistently estimate the probability distributions of the errors.

A slight generalisation of the estimator allows non-zero weights wi on the
observations,

β̂ = argmax

[
n∑

i=1

wi(Yi −
1

2
)1βTXi≥0

]
, (3.1.3)

a variant we will devise an algorithm to solve. It is useful to have an algorithm
for the weighted variant for practical reasons, in particular when performing the
bootstrap, as our algorithm will not handle observations that aren’t in general
position: It is easier to treat two identical observations as one observation with
twice the weight. Also, the algorithm is just as fast for the weighted variant as
for the non-weighted, and not much more difficult to implement.

In this entire chapter we assume that the covariates are in general position:
There are no parallel lines among the covariates, and there is no index i with
xi = 0.

Recall the equivariance properties from Section 2.3. There we defined re-
gression, affine and scale equivariance for regression estimators. The regression
and scale equivariance concepts don’t make sense in the context of the binary
response model, as they involve continuous transformations of the responses yi.
Still, Manski’s estimator does satisfy the affine equivariance property.

Proposition 3.1.2. Manski’s estimator is affine equivariant.

Proof. Let β̂ = argmax
[∑n

i=1(Yi − 1
2
)1βTXi≥0

]
be the set of solutions to Manski’s

objective function. The only place Xi is involved in
∑n

i=1(Yi − 1
2
)1βTXi≥0 is in

1βTXi≥0. Clearly, each of these characteristic functions stay the same when sub-
stituting AXi for Xi and (A−1)Tβ for β, showing that

∑n
i=1(Yi−1

2
)1((A−1)T b̂)TAXi≥0 =∑n

i=1(Yi − 1
2
)1b̂TXi≥0 whenever b̂ ∈ β̂. Since A is invertible, this can be done the

other way around as well. This proves that (A−1)T β̂ is the solution set of the
transformed

∑n
i=1(Yi − 1

2
)1βTAXi≥0.
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3.2 Characterisations

It is easier to understand the estimator through two equivalent characterisations,
one algebraic and one geometric. Also of interest is its relation to Tukey’s
concept of location depth, a generalisation of the concept of ranks to higher
dimensions.

3.2.1 Algebraic formulation

Let A be an n × d-matrix, and b ∈ Rn. We say that the system of linear
inequalities Ax ≤ b is feasible if there exists a solution to it; if there is no
solution, it is called infeasible. These terms have the same meaning whenever
C is a collection of linear inequalities. Given an infeasible linear system, it is
often of interest to find a maximal subsystem which is feasible, that is, a feasible
collection C of inequalities from Ax ≤ b of cardinality k such that there exists no
feasible collection of cardinality greater than k. This problem is of importance
in linear programming, as the constraints in such problems easily can turn out
to be inconsistent.

Definition 3.2.1. Given a system Ax ≤ b of linear inequalities, MAX-FLS
(maximal feasible linear subsystem) is the problem of described above. Its cor-
responding decision problem, FLS(k), decides whether there is a feasible linear
subsystem of cardinality k.

Now we will show that solution sets for Manski’s estimator 3.1.1 are exactly
the solution sets to a certain MAX-FLS problem. For this, define Xi0 = 1 for
every i.

Proposition 3.2.2. Let X1, . . . , Xn ∈ Rd and Y1, . . . , Yn ∈ {0, 1}. Let X∗ be
the (n, d+ 1)−matrix with elements

x∗
ij =

Xi(j−1) when Yi = 1,

−Xi(j−1) when Yi = 0.
(3.2.1)

Then β∗ is an inner solution to 3.1.1 if and only if β∗ is a solution to the
MAX-FLS of X∗β < 0.

Proof. In 3.1.1 we wish to maximise the amount of inequalities of the form
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−β0 − β1Xi1...− βdXid ≤ 0 when Yi = 1, (3.2.2)

β0 + β1Xi1 + ...+ βdXid < 0 when Yi = 0,

that are simultaneously satisfied. Intuitively, one satisfied inequality corres-
ponds to one correct prediction, and we wish to maximise the amount of correct
predictions. When β∗ is an inner solution to such a set of inequalities, we can
substitute any instance of ≤ for <. Since X∗ is the representation of this col-
lection of inequalities in matrix form, we are done.

In the sequel we will use the representation X∗β ≤ 0 instead of X∗β <

0. This adds more solutions at the boundaries, but doing the bookkeeping on
whether a certain inequality is strict or not is messy. Doing this will not cause
any problems in practice. If we want to use the spherical scaling ||β|| = 1, we
would intersect the solution set with Sd. If we want to use the more restrictive
scaling β = −1, 0, 1, we will instead use a different matrix (with dimensions
d× n): Namely X∗ such that

x∗
ij =

Xij, when Yi = 1,

−Xij when Yi = 0.

Notice that we have dropped the intercept. Now β = −1 corresponds to X∗β ≤
1, β = 0 corresponds to X∗β ≤ 0 and β = 1 corresponds to X∗β ≤ −1.

Perhaps the most striking about this characterisation is the fact that solu-
tions are never unique, provided the observations are in general position. This
is problematic for several reasons. First, it makes resampling difficult. It is not
clear which point we will choose as a centre in the bootstrap or which points to
choose from the resampled solutions. This problem is even larger than it looks,
because small resampling sizes will often give unbounded solution regions, and
we will have to use small samples in order to make the m-out-of-n bootstrap
work. Second, it is possible for qualitatively very different points to be maximal.

3.2.2 Geometry

Building on results in the previous section, we present the basic geometry of the
problem. Recall the equations (3.2.2),
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−β0 − β1Xi1 − ...− βdXid ≤ 0 when Yi = 1,

−β0 + β1Xi1 + ...+ βdXid < −0 when Yi = 0.

These describe a collection of affine hyperplanes. Define Hi as the halfspace
corresponding to i-th observation. Then we have a geometric analogue to Pro-
position 3.2.2, namely:

Proposition 3.2.3. A point β is a solution to Manski’s objective (3.1.3) if and
only if there is a k and distinct indices i1, ..., ik such that β ∈

⋂k
i=1Hik and k is

maximal in the following sense: Whenever j1, ..., jk, jk+1is are distinct indices,⋂k+1
i=1 Hik is empty.

The kind of set described in Proposition (3.2.3) will variably be called a max-
imal non-empty intersection or a solution polytope. When we include weights
w = (w1, ..., wn), the analogue is w-maximal non-empty intersection. A set like
this is a convex polytope, potentially unbounded. Note that we are not look-
ing for a convex polytope with a maximal number of bounding cells. For it
is straight forward to construct a convex polytope with more bounding cells
than any other convex polytope which isn’t a maximal non-empty intersection
in our sense. The entire solution set is a disjoint union of such sets (that is,
disjoint modulo the boundaries of the planes), which might be many: There is
no guarantee of having a unique, connected solution set even when n is large.
We provide an example of a solution set consisting of three polygons in Figure
3.2.1. Frequently we will talk about coloured halplanes, where a blue half-plane
points downwards while a red half-plane points upwards. The intuition behind
this colouring should be clear from Figure 3.2.1.

Notice that the estimator is very dependent on the values of the covariates.
Certainly far more than, for instance, logistic regression, which only demands
the ordinary Lindeberg conditions on the covariates distribution G. In our case,
it will often be very difficult to get precise estimates when the covariates aren’t
distributed “nicely” enough relatively to the actual parameter values, an issue
we will discuss further in Section (3.6).

Number of faces in an arrangement

The world of Manski’s estimator in dimension d contains n coloured hyperplanes
in Rd, and a matter of interest is the d-polytopes bounded by these coloured hy-
perplanes. Modulo the colours, this is a fundamental object of study in discrete



44 CHAPTER 3. MANSKI’S MAXIMUM SCORE ESTIMATOR

Figure 3.2.1: Random lines in the plane. The black lines delineate the solution sets.
The red lines represents half-planes pointing upwards, while the blue lines represent
half-planes pointing downwards. All points in the solution set lies in the intersection
of exactly 5 half-planes.

and computational geometry (Matoušek, 2002, chapter 6). Proposition 6.1.1
from that book is illuminating. The faces of an arrangement are the minimal
d-polytopes, polytopes that can’t be made smaller by cutting it with yet another
hyperplane from the arrangement.

Theorem 3.2.4. The number of faces in a simple arrangement of n hyperplanes
Rd (an arrangement where all hyperplanes are in general position) equals

Φd(n) =
d∑

i=1

(
n

i

)
.

The kind of polytopes we are interested in result from the intersection of
half-planes, and there will necessarily be fewer of them. It would be interesting
to find an analogue of this theorem for coloured hyperplanes, though we would
most likely have to be content with upper and lower bounds. An interesting
corollary concerns resampling,

Corollary 3.2.5. For any resampling procedure, the maximal amount of distinct
possible solution sets is bounded above by

∑d
i=1

(
n
i

)
.

This is in acute contrast with smooth estimators. As an example, take the
mean of Xi

i.i.d.∼ F , i = 1, ..., n, where F has a density. Then the non-parametric
bootstrap has

(
2n−1
n

)
distinct solutions, the subsampler has

(
n
m

)
and m-out-of-n

has
(
n+m−1

m

)
. This alone could give an indication of why the bootstrap tends to

fail for estimators with cube root asymptotics.
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For coloured hyperplanes and d = 1, the upper bound in Theorem 3.2.4 can
be improved todn

2
e, which is sharp: Let the first element be red, the second

blue, third red, etc. The lower bound on the number of solution sets is 1, which
happens whenever the points are perfectly separated by a line (all red points
to the left, all blue points to the right). This arrangement appears when the
variance of εi is too small to push elements over to the wrong side.

Selecting a solution

It has been shown that the solution sets are unions of convex polytopes. Clearly,
we need a reasonable procedure to select a single solution from these. One
possibility is to select the centroid of the polytope with the smallest area. This
is not possible when all the solution polytopes are unbounded, however. Another
option is to select the vertex with smallest Euclidean norm, which is what we
will do.

Another option is to use the optimal separating hyperplanes from support
vector machines (Hastie et al., 2005, p. 132).

3.2.3 Location depth

Given unidimensional data x1, . . . , xn, we define the n-th order statistic as the
n-th element in the sorted list (xi1 , xi2 , . . . , xin). The rank R(xj) of a point xj is
its index in the preceding list. In 1975, Tukey considered a slight modification of
this concept. He defined what is now called the location depth, in one dimension,
as the minimum of R(xj) and n − R(xj) + 1. Hence values far to the left and
far to the right have small location depths, while those in the middle — deep in
the data — have large location depths. Furthermore, it is clear that the median
has depth ≈ n

2
, the quartiles have depth ≈ n

4
, etc.

Going further, this concept was generalised to dimensions bigger than one.
Here the concept of ranks usually doesn’t make sense, as the available orders,
like the lexicographic ordering, don’t correspond to anything of interest.

Definition 3.2.6. Let A = {x1, . . . , xn} ⊂ Rd for some d > 0, and let y ∈ Rd.
The location depth of y relative to A is the minimal k ∈ N such that there exists
closed half-plane Hp, with y at its boundary, satisfying Hp ∩ A = k.

it is easy to see that this is a generalisation of the unidimensional depth
described in the first paragraph. An equivalent definition of the location depth,
used in e.g. Donoho and Gasko (1992), is
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D(y;A) = min
||u||=1

#{uTxi ≥ uTy}.

Here uTx is the projection on the direction u. These definitions are equivalent, as
{x | uTx ≥ uTy} defines a half-plane with y on the boundary. While Tukey was
motivated by picturing bidimensional data through drawing of location depth
contour lines, Donoho and Gasko (ibid.) were interested in the robustness prop-
erties of the Tukey median. It is defined as the point in A which has the highest
depth, hence it is a natural generalisation of the median to higher dimensions.
They showed that its breakdown point is bounded below by 1

1+d
, where d is the

dimension of the underlying space. The concept of location depth has other
applications as well, such as in the construction of bootstrap regions (Yeh and
Singh, 1997). It can be used to generalise the empirical cumulative distribution
function, and also in to generalise L-statistics: For instance, the analogue of the
midhinge (mean of the quartiles) is the mean of all points with depth n

4
; the

α-trimmed mean is the mean of all points with the (1− α)% largest depths.

Now we show that computing the location depth can be reduced to MAX-
FLS. Let xi ∈ A ⊂ Rd be data points and consider finding D(xj;A), where
xj ∈ A. Take note of that min||u||=1#{uTxi ≥ uTy} = max||u||=1#{uT (xi−y) <

0}. For any sequence of i = i1, ..., ik, uT (xi − y) < 0 for every such i if and
only if the linear inequality system Zu < 0 is feasible, where Zij = xij − yj

and 0 is a k-ary vector of zeros. Hence it is an instance of MAX-FLS with
strict inequalities. One difference between this problem and Manski’s estimator
is the focus: In the Manski setting, we are interested primarily in the solution
set {u | #{uTxi < uTy} = max||u||=1 #{uTxi < uTy}}, while this is not of in-
terest in the location depth setting. This has some consequences when it comes
to algorithms. Since we are interested in knowing about qualitatively differ-
ent solutions u for Manski’s estimator, but not for the location depth, we need
not be as considerate in finding every possible solution in the latter case. This
will potentially save time and space. Still, this could be part of an explanation
why statistics and methods based on the location depth aren’t more popular,
as the NP-completeness of the underlying problem guarantees that everything
runs slowly.

3.2.4 Deepest regression

In this section we discuss the deepest regression estimator of Rousseeuw and
Hubert (1999b), which is strongly related to the location depth. This particular
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estimator deserves to be included here, as it is very similar to Manski’s estim-
ator in several regards. In covariate dimension one, it has similar geometry and
interpretation as Manski’s estimator, and part of the algorithm for its compu-
tation, discussed in Section 4.4, is almost exactly the same. Furthermore, it
works under similar conditions, most importantly med(ε | x) = 0 with arbitrary
heteroskedasticity. Luckily, this estimator is

√
n-consistent.

Let the data generating mechanism be Y = βTX + ε, where med(ε | x) = 0,
and let (yi, xi) ∈ A be the data. For a regression line α, define the ith residual
as ri = yi − (αTxi). Now we define unfitness. A regression line β is unfit to
the data whenever there is a z such that every residual has the same sign on
each side of z: ri < 0 when αTxi < z and ri > 0 when αTxi > z, or, ri > 0

when αTxi < z and ri < 0 when αTxi > z. Now define depth(α;A) as the
minimal amount of points to be removed in order to make α unfit. This is
the minimum number of points one would have to cross in order to make the
hyperplane vertical, which “liberates” the line. Figure (3.2.2) shows two OLS
lines with quite different depths compared to |A|. A regression line with large
depth could be considered balanced, in the sense that it is not easy to tilt it far
in any direction without crossing many observations. This concept gives rise
to the method of deepest regression. A line α is a deepest regression estimator
if it solves argmaxα depth(α;A). The resulting estimator is robust, with an
asymptotic breakdown point of 1

3
. Its downsides are computational difficulties,

in particular for dimensions greater than 2, and an intractable limit distribution.
Compared to LAD (least absolute deviations) regression, this method is less
efficient, reaching 87% efficiency for the slope and 82% for the intercept whenever
the data is binormally distributed, see van Aelst and Rousseeuw (2000). It has
to my knowledge not been made any attempt at generalizing L-statistics with
respect to this depth.

3.3 Asymptotics

Consistency

In 1985, Manski proved the strong consistency of his estimator under three
assumptions. Since Manski’s estimator isn’t uniquely defined, it requires a more
general form of strong consistency than usual. Let B̂n be the solution set. By
strong consistency we mean the following,
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Figure 3.2.2: Examples of regression lines obtained by OLS regression with low and
high depth, respectively. On the plot to the left, we would only have to remove five out
of fifty points in order to “liberate” the regression line and make it unfit to the data.
On the other hand, the line on right is almost perfectly fit: There are seven points
both below and above that are well inter spaced, and there is no way to liberate the
line without removing at least five (of fourteen) of them. Notice that, if the line had
been placed above the left-most green point, and below the rightmost blue point, we
would have had to remove seven points instead.

P ( lim
n→∞

sup
β̂n∈B̂n

||β̂n − β|| = 0) = 1,

where the supremum is needed since B̂n is a set. Manski’s (ibid.) assumptions
are:

1. The support of Fx is not contained in any proper subspace of Rd.

2. Both Y = 1 and Y = 0 is possible for any X: 0 < P (Y > 0 | X) < 1 with
probability 1.

3. There is a k ∈ {1, ..., d} with βk 6= 0 such that for almost any value
of (x1, x2, ..., xk−1, xk+1, ..., xd), the distribution of Xk conditioned on x−k

has a positive density on R.

In Section (3.6) it will be made clear that some form of assumption 3) is required.
Assumption 1) is a full rank condition, necessary for identification. Assumption
2) is probably not required, and we will perform simulations where 2) is false in
Section (3.6).
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The limit distribution

The following limit distribution is of no practical interest. It is very time con-
suming to calculate it, and it is analytically intractable. The exception is with
one covariate in the β0 = 1 setting, where we yet again get a rescaled Chernoff’s
distribution.

It was Kim and Pollard (1990) who were the first to find the limit distribu-
tion of Manski’s estimator. They found the distribution under the “spherical”
identifiability condition ||β|| = 1. Instead, we will supply the limiting distribu-
tion when β0 = 1, ignoring the 10 conditions for it to work. This theorem is
taken from Abrevaya and Huang (2005, theorem 4).

Theorem 3.3.1. Let assumptions MS1-MS10 (in Abrevaya et al.) hold. Then

n
1
3 (βn − β0)

d→ argmax
h

[
1

2
hTV h+W (h)

]
,

where W is a mean zero Gaussian process with covariance kernel

H(u, v) = E[min(|XTu|, |XTv|)1[signXTu=signXTu]g(−XTβ|X)],

where g is the density of X.

3.4 Algorithms and complexity

Following Florios and Skouras (2008), we wish to find exact solutions to max-
imisation problems of the form

argmax
β∈B

n∑
i=1

wi(Yi −
1

2
)1[XT

i β≥0], (3.4.1)

where wi are positive weights. It has already been said that this problem isn’t
identified — if a > 0 and β̂ is a solution, aβ̂ is also a solution. In order to
fix the scales, two approaches are used: 1.) If the intercept is believed to be
positive, put β0 = 1. Likewise, if the intercept is believed to be negative, put
β0 = −1. On the other hand, if we believe than β0 = 0, the scale will not be
fixed, and we will have to use a method like the next. 2.) Add the constraint
||β|| = 1, where || · || is the Euclidean norm in Rd. Clearly, these approaches are
not equivalent. For the constraint ||β|| = 1 allows for more solutions that β0 = 1

does, while a solution set with the ||β|| = 1 constraint (where β0 > 0) easily
can be transformed into a solution set for the β0 = 1 condition by dividing the
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solution by β0. Also, if we solve the argmax for β0 = 0, 1,−1, we can combine
the solution sets separately into a solution set consistent with ||β|| = 1.

3.4.1 Computational complexity

The computational complexity of Manski’s estimator has not been considered in
the statistical literature before, but it is known when formulated as MAX-FLS.
The general problem is NP -complete, which is quite easy to prove.

Definition 3.4.1 (Complexity classes). A decision problem is a function with
boolean output. P is the class of all decision problems computable in polynomial
time. NP is the class of all decision problems that are polynomially verifiable.
That is, given a solution certificate which is polynomial in the size of the input,
it takes polynomial time to verify it. A polynomial time reduction between
decision problems A and B is a polynomial time program p which translates an
instance of A into an instance of B. A problem A is NP-hard if any B ∈ NP

can be polynomial time reduced to A. A problem is NP-complete if it is in NP
and is NP-hard.

These definitions are not completely spelled out. For more information about
computational complexity theory, see e.g. Papadimitriou (2003). The main
point of discussing NP-completeness is roughly that NP-complete problems can’t
be solved fast unless P = NP . It is generally assumed that P 6= NP , but
proving it is considered among the greatest unsolved problems of mathematics.
As can be seen from the definition, the theory doesn’t apply to optimisation
problems, but only to decision problems. When given an maximisation problem
with objective function M , its decision problem variant is “is there an x such
that M(x) ≥ y?”.

Now we will prove that the decision problem variant of MAX-FLS is NP -complete.
This has been proved in Amaldi and Kann (1995) by reducing the NP-complete
problem EXACT 3-COVER. We use a different approach, namely a reduction of
MAX-2-SAT to MAX-FLS. We need some definitions. Let φ be a propositional
formula with variables x1, ..., xm. We say that φ is in conjunctive normal form
(CFN), if it has the form φ1∧φ2∧. . .∧φn for some clauses φi = ai1∨ai2∨...∨aim,
where aij are literals. A propositional formula a is a literal if it has the form
a = ¬x or a = x for a variable x. It is known that every propositional formula
can be written in conjunctive normal form Mendelson (2009, p. 22). We say
that a propositional formula is satisfiable if there exists an assignment of the
variables x1, . . . , xk that makes it true, e.g. (x1∨¬x2)∧ (¬x1∨x2) is satisfiable:
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It is true when both x1and x2 are true. An unsatisfiable formula is a contradic-
tion — it is always false. A formula φ is in 2-CNF if every clause contains at
most two literals.

Definition 3.4.2. (MAX 2-SAT). Let φ be a formula in 2-conjunctive normal
form (2-CNF). MAX 2-SAT is the problem of determining the maximal number
of clauses which can be simultaneously satisfied. The corresponding decision
problem is: Given a k ∈ N, is there a collection of k clauses that are simultan-
eously satisfiable?

It is known that MAX 2-SAT(k) is NP -complete Garey et al. (1976). This
can be proved through a reduction of 3-SAT, the problem of establishing whether
a 3-CNF formula is satisfiable, which is one of the core NP -complete problems
Papadimitriou (2003, chap. 9).

Proposition 3.4.3. The decision problem MAX-FLS is NP-complete.

Proof. We show that MAX 2-SAT can be polynomial-time reduced to MAX-
FLS. Let m be the number of variables in φ and n be its number of clauses.
Also, define aij as the “sign” of the j-th variable in the i-th clause: For example,
if the i-th clause is (x5 ∧ ¬x9), then ai5 = 1, ai9 = −1 and aij = 0 for all
j 6= 5, 9. Let A be the matrix with aij as its (i, j)-th element and let x be
an m-dimensional vector having only 0 and 1 as elements. Then there are k

satisfiable clauses if and only if there is a subsystem A′ with k rows such that
A′x ≥ 1, where 1 is the appropriately sized vector with only ones. Now add the
constraints xi = 0 and xi = 1, each n+ 1 times. (These can be implemented as
two inequalities of the form ≤ and ≥). Then we effectively force the x-vector to
be integral by adding an additional 4m(n+1) constraints. The resulting system
is ready to be solved by a MAX-FLS(k) solver, and its solution is clearly the
same as for MAX-SAT(k). Since the input size is polynomial in the input size of
MAX 2-SAT, the problem is NP -hard. MAX-FLS(k) is in NP: Given a solution,
it can be verified in polynomial time simply by checking each inequality.

Notice that, while MAX-FLS is NP-hard, it is only so when the number
of inequality constraints and variables are considered at the same time. Soon
we will describe an algorithm which runs in O(nd log(n)) time, where n is the
number of constraints and d is the number of variables. This translates into n

observations and covariate dimension d in our setting, and since we think of the
dimension d as something constant (or a parameter), the algorithm could well
be understood as polynomial in d — which is considered “fast” in this context.
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But outside this specific problem, the amount of variables (that is d) is not
necessarily constant.

Due to its connection with linear programming, there has been devoted some
resources to finding algorithms for this problem. Many of those are described
in Chinneck (2007, chap. 7), and the most prominent is described in the next
section.

3.4.2 Earlier work

Pinkse (1993) described the first exact algorithm for Manski’s estimator. He
proposed to iteratively check the function value on every corner of the candid-
ate solution polytopes. There are

(
n
d

)
≈ (d!)−1nd possible corners to check, and

it takes around O(d3) time to invert a matrix. (This is done in order to obtain
the coordinates of the corners.) In addition, finding the value of the objective
function is O(nd), giving an algorithm with time complexity O(nd+1). Pinkse
also discussed a variety of approximation algorithms. Manski and Thompson
(1986) introduced the approximate “great circle search” algorithm, but this al-
gorithm does not perform very well, see the computational results of Florios and
Skouras (2008). Florios and Skouras (ibid.) were the first to propose a work-
able exact algorithm for the weighted Manski’s objective 3.4.1 in the statistical
literature, an algorithm based on mixed integer programming (see eg Conforti
et al., 2014). A mixed integer program is a linear program where some of the
variables can be constrained to be integers, and most natural combinatorial op-
timisation problems can be represented as an integer program. We present a
slightly modified variant of their program, taken from Chinneck (2007, section
7.1.1):

min
n∑

i=1

wizi such that

−xiβ ≤ 1 +Mzi, when Yi = 1,

xiβ < −1 +Mzi, when Yi = 0,

zi ∈ {0, 1},

β ∈ Rd.

The constraints run over every i = 1, ..., n, and M is a large constant. In
order to see that this is the right formulation, take a subset zi1 , zi2 , ..., zik and
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β1, β2, ... which satisfies it. An equation of the form −xiβ ≤ 1 +Mzi will have
zi = 1 iff −xiβ ≤ 1 is unsatisfied; the same goes for xiβ ≤ −1 + Mzi. The
objective min

∑n
i=1wizi assures that we include the minimal weighted number

of unsatisfied constraints, yielding a solution to the maximal problem. The role
of M is to loosen the constraint so much that they are always satisfied. This
can be chosen to be Bdmaxi,j xij, where B is a reasonable upper bound on the
absolute value of the βis, while maxi,j xij is the maximal recorded covariate value
in any index.

We implement this program R through the use of Rglpk (Theussl et al., 2015),
an R interface to the GNU linear programming kit. The computation speed
is slow, which is not surprising, as mixed integer programming in general is
NP-hard. Smart algorithms for solving them have been well studied: The main
algorithm is called “Branch-and-cut”, which operates by sequentially relaxing
the integer program into ordinary linear programs, which can be solved quickly
through the simplex method. For a thorough introduction, see Conforti et al.
(2014). In this thesis, our attention is restricted to d = 1 and d = 2, and it
might be that the integer programming formulation is faster than the complete
enumeration algorithm when d is sufficiently large.

An important fact is the following inapproximability result of Amaldi and
Kann (1994, 1995), which warns us that it may be futile to search for a general
purpose approximation algorithm for Manski’s estimator. Let M be the real
maximum and M ′ be an approximate maximum. We say that a maximisation
problem is d-approximable if M

M ′ ≤ d for every instance of the problem.

Theorem 3.4.4. MAX-FLS is 2-approximable, but not approximable within any
factor unless P = NP . (That is, MAX-FLS is APX-complete with approxima-
tion factor bounded by 2 (Wegener, 2005, chapter 8)).

In the next section we describe an O(nd log n) enumeration algorithm for
finding the entire solution set.

3.4.3 An enumeration algorithm

The algorithms of this section were invented and analysed by me. After the
work on them was finished, it was discovered that an algorithm with runtime
O(nd log n) was already described in Johnson and Preparata (1977). Still, this
section describes the first reasonably fast algorithm for the computation of
Manski’s algorithm in the statistical literature. First we will explore the case
d = 1, which corresponds to an intercept and one covariate. The focus is on the
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Figure 3.4.1: (left) Geometry of the problem in covariate dimension one. The blue
lines signify half-planes pointing downwards, while the red lines point upward. In
this example, all half-planes have weights equal to one, and the unique solution set is
the pink area, which is the intersection of nine half-planes. The only half-plane not
included in the intersection is the red half-plane with the steepest slope. (right) Points
on the line corresponding to the rays left of β0 = 0. The purple segment is the solution
set intersected with the line β0 = 1.

identification of the whole solution set, unscaled. This is done by identifying
solutions corresponding to β = −1, 0, 1, rescale them to the unit circle, and ex-
pand them along rays. This effectively reduces the problem to a one-dimensional
one.

As already mentioned, we want to find the w-maximal non-empty intersec-
tions between half-planes Hi. Such a set is always the area between two rays on
the same side of x = 0.

Figure (3.4.1) illustrates the setting, and points to an important fact: When
we have found a solution set for β = 1, it can be expanded to the whole solution
set, by simply identifying the lines that give rise to the solutions. Hence we can
reduce the problem to finding w-maximal non-empty intersections of intervals,
first to the left of β0 = 0, then to the right of β0 = 0. In the following we impose
the constraint β0 = 1.

Definition 3.4.5. Let (yi, xi), i = 1, ..., n be observations from a binary response
model with d = 1. The colour of a point − 1

xi
is defined by

col(− 1

xi

) =

red when (xi > 0 and yi = 1) or (xi < 0 and yi = 0),

blue when (xi < 0 and yi = 1) or (xi > 0 and yi = 0).

We make use of the function col any more, but simple call points red or blue
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depending on which of the two conditions is satisfied. As for the motivation
for this colouring, recall the algebraic characterisation of Manski’s objective in
Proposition 3.2.2. When formulated for d = 1, we get

−β1xi ≤ 1 when Yi = 1, (3.4.2)

β1xi < −1 when Yi = 0.

If xi > 0, the these inequalities are equivalent to

β1 ≥ − 1

xi

when Yi = 1,

β1 < − 1

xi

when Yi = 0,

while xi < 0 gives

β1 ≤ − 1

xi

when Yi = 1,

β1 > − 1

xi

when Yi = 0.

Accordingly a point is − 1
xi

is blue when its corresponding equation is satisfied
for every β1 < − 1

xi
, and similarly for red points. In the following proposition,

we denote Manski’s objective (3.1.2)

m(z) =
n∑

i=1

(Yi −
1

2
)11+zxi≥0.

Proposition 3.4.6. Denote zi = − 1
xi

, let z ∈ R and define

rl(z) = number of red points to the left of z,

br(z) = number of blue points to the right of z,

both quantities being inclusive. Then m(z) equals rl(z) + br(z).

Proof. The objective function m(z) counts the number of satisfied inequalities
in (3.4.2). By the reasoning above, the inequality belonging to a blue point zi

is satisfied by z iff zi is to the right of z. Similarly, an inequality belonging to a
red point zj is satisfied iff zj is to the left z. The result follows.

We can use this proposition to identify the solution sets. Recall from the
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geometric characterisation (Lemma 3.2.3) that the solution sets are maximal
disjoint convex polytopes, which in R means disjoint intervals. If [zi, zj] is a
maximal bounded solution interval, zi must be red and zj blue. For if zi is
blue, either there is red point zl to its left with m(zl) = m(zi), or there is no
point at all, which implies m(z) = m(zi) for every z < zi. This contradicts the
maximality of [zi, zj].

Proposition 3.4.7. Assume the list zi = − 1
xi

is sorted, and also add two non-
coloured points z0 = −∞ and zn+1 = ∞. A solution interval is of the form
[zi, zi+1], where zi is either red or −∞ and zi+1 is either blue or ∞.

Proof. it is impossible to have three adjacent zi, zi+1, zi+2 with m(zi) = m(zi+1) =

m(zi+2): For if zi+1 is blue, m(zi) > m(zi+2), and if zi+1 is red, m(zi) <

m(zi+2).

What happens if β0 = −1 instead? Then all the points swap colours and
signs, and the same argument applies. Now we’re ready to describe an algorithm
for computing the estimator. Essentially we sort the elements zi = − 1

xi
, find

their colour, and sequentially calculate rl(zi) + br(zi), starting from the left.
Using this algorithm, we only have to visit each point twice, because

rl(zi+1) = rl(zi) + 1col(zi+1)=red,

br(zi+1) = br(zi)− 1col(zi)=blue,

and both rl(z1) and bl(z1) can be calculated in by visiting every point one time.
The output is the list of values rl(zi) and bl(zi) for every zi, and the solution
sets can then be identified by Proposition 3.4.7.

Algorithm 3.1 RedBlue
Input: a list of colored zis
Output: rl(zi) and br(zi) for each zis
1: procedure RedBlue(points)
2: sort the points by value
3: Calculate rl(z1)
4: for i = 1; i ≤ n; i++ do
5: rl(zi+1) = rl(zi) + 1col(zi+1)=red

6: br(zi+1) = br(zi)− 1col(zi)=blue

7: end for
8: end procedure
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Proposition 3.4.8. The procedure RedBlue in Algorithm 1 is correct. Its asymp-
totic runtime is Θ(n log n).1.

Proof. As the algorithm is correct by the preceding discussion, we will calculate
the runtime. As for the runtime, it is well known that sorting is O(n log n) . The
amount of arithmetic operations done is O(n) for the first element and 4 for each
of the other elements. Therefore the algorithm is O(n log n)+O(n) = O(n log n).
As for the lower bound, it is also known that comparison-based sort has the
asymptotic lower bound Ω(n log n) (Dasgupta et al., 2006, p. 58). Knowing
the solution to this problem one can clearly find the sorted list in O(n log n)

operations, by sorting on the rl(zi), and then the br(zi). From this we arrive at
the lower bound.

Clearly, the algorithm can easily be extended to work for the weighted m

as well. If we maximise for both β0 = 1 and β0 = −1 simultaneously, this
algorithm is the same as the algorithm rdepth for the calculation of the regression
depth in Rousseeuw and Hubert (1999b), except they are minimising instead of
maximising. To maximise for β0 = −1, we’d substitute rl(z) for rr(z) and br(z)

for bl(z), where rr and bl have the obvious meanings. Note that if the elements
are pre-sorted, this is an O(n)-algorithm.

This algorithm has been implemented in C++, with a link to R through
Rcpp (Eddelbuettel and François, 2011) and runs very fast, comparable to sort

in R. A comparison is provided in Figure (3.4.2).
If we are only interested in finding one solution, not the entire solution set, it

might be possible to improve the runtime of this algorithm by using an approach
similar to that of the Quickselect algorithm: The reason why our algorithm isn’t
linear time is because we presort the entire list, something which is not neces-
sary when we only need one maximum. By using the concept of colour depth
from Section (3.5), one can attempt to create a sophisticated branch-and-bound
algorithm in order to prune the computation tree of QuickSort. It is unknown
whether such an idea would work out or not.

Two dimensions

An approach to solving this problem is to iteratively apply the RedBlue al-
gorithm: For each half-plane Hi with boundary Li, we can calculate the value
of m(β1, β2) (Manski’s objective, (3.1.2)) for every β1, β2 ∈ Li by using the Red-
Blue algorithm. This is done by calculating the intersection point zj = Li ∩ Lj

1This means that the algorithm is both O(n log n) and Ω(n log n). That is, it is asymptot-
ically bounded both above and below by n log n.
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Figure 3.4.2: The speed of some R procedures, in microseconds. The speeds are
measured by microbenchmark Mersmann (2014), on a Windows 10, Intel Core i7-4790
3.60 GHz, R version “Pumpkin Helmet”. Curiously, RedBlue is faster than sorting for
small ns, something which can only be explained by a bad implementation of sort
in R. The performance of mean is plotted for comparisons sake. The timings were
obtained through the package microbenchmark and the smoothing is done by the
package locfit.

for every j 6= i, and decide on whether zi is blue or red. We walk along Li

from right to left. When we encounter another line Lj, we observe whether the
half-plane Hi covers the ground we’ve already passed or not, if it is covered, zi
is coloured red; if it doesn’t, it is coloured blue. Be aware that “Hi covers the
ground we’ve already passed” is not the same as “Hi is red”, where the colour of
hyperplanes are defined as in Section (3.2.2). It depends on the relation between
the slopes of Li and Lj in addition to the colour, as illustrated in the figure. Let
si be the slope of Li and sj be the slope of Lj. If sj < si, let zj be coloured
oppositely of Hi, and if si < sj, keep its colour. How this works is illustrated in
Figure (3.4.3).

If we do this for every line Li, we get a table of m(zij) for j 6= i. The
maxima of all these will come in pairs corresponding to intervals on some Li,
hence they will form line segments. These line segments will, by the geometric
characterisation, form convex polygons in the plane, and the solution set is the
union of these polygons. Running through the procedure, we visit n lines and
check n − 1 intersections for each of them. Since RedBlue runs in O(n log n)

time, the runtime of this two dimensional algorithm is O(n2 log n). It has been
implemented in C++, with a link to R through Rcpp, just like the RedBlue
algorithm. The code is in Appendix (B).
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Figure 3.4.3: Different angles between Li(black) and Lj (coloured). The colour of
the point is used in the RedBlue algorithm.

Higher dimensions

We can recursively apply the same idea in covariate dimensions d > 2. Assuming
we can solve MAX-FLS in d − 1 dimensions in nd−1 log n time, we can iterate
through all hyperplanes 1+XT

i β in order to find the optimal (d−1)-dimensional
facets there. As an example, consider d = 3. In this case, the solution sets are
polyhedra. In order to find the w-maximal polyhedra, we identify the w-maximal
faces. For a single plane 1 +XT

i β, we cam find its optimal faces by running the
2-dimensional algorithm on the arrangement arising from 1 + XT

i β intersected
with

{
1 +XT

j β
}
j 6=i

. If we do this for each i, we will uncover the maximal
faces, from which we can construct the maximal polytopes. This procedure is
O(n3 log n), as it runs through n different 2-dimensional algorithms with run-
time O(n2 log n). This can clearly be generalised to arbitrary dimensions, yield-
ing the general run time O(nd log n). Alas, we have not found time to implement
the algorithm for d > 2.
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3.5 Robustness

The robustness of Manski’s estimator has not been studied before. As has been
alluded to in Section 3.2.4, the geometry of Manski’s estimator is quite similar to
that of the deepest regression estimator (Rousseeuw and Hubert, 1999b). We will
borrow, and change slightly, concepts from the literature on that estimator. A
particularly important concept is the generalisation of the concept of undirected
depth to our “coloured” domain.

Why study robustness? The reason why robust estimators are important
is that basic, convenient assumptions might not hold. Typically, robustness
is studied in the parametric context, with the archetypical example being the
estimation of the expectation µ when we think that X1, ..., Xn

i.i.d.∼ N(µ, 1). It is
well known that the sample mean is the maximum likelihood estimator, which
is efficient, easy to compute, easy to interpret, and incidentally very easy to find
the distribution of. Despite these qualities, it is very sensitive to single outliers
in the following sense: Given n “good” observations X1, ..., Xn from N(µ, 1),
we can add another Xn+1 and set its value to x. Denote X = 1

n

∑n
i=1 Xi and

X
′
= 1

n+1

∑n
i=1Xi+

1
n+1

Xn+1. Clearly, 1
n+1

∑n
i=1Xi ≈ 1

n

∑n
i=1 Xi, but by sending

x off to infinity, we can make the “bad” mean arbitrarily large by adding just
one outlier. Generally, if T is a statistical functional, this kind of analysis can
be formalized, asymptotically, by the concept of influence curves. Also, in the
finite sample domain, we have the far less popular concept of sensitivity curve.

Definition 3.5.1. (Maronna et al., 2006, section 3.1)Let T be a statistical
functional, F be a distribution and δx be the unit mass on x. The influence
curve of T at x is IF (x;F ) = limε↘0

T ((1−ε)F+εδx)−T (F )
ε

. If Fn is the empirical
cdf obtained from n observations, the sensitivity curve is SFn(x;Fn) = (n +

1)T ( n
n+1

Fn +
1

n+1
δx)− T (Fn).

The influence curve tells us about the behaviour of T when F is infinitesim-
ally contaminated by δx. The definition looks strikingly much like that of the
ordinary derivative, and it can often be used as such in Taylor expansions of
statistical functionals, see e.g. van der Vaart (2000, chapter 20). We say that
an estimator is robust against single outliers if it has a bounded influence curve.
Examples of estimators with bounded influence curve for µ is the α-trimmed
mean and the median. We will not discuss the influence curve more. For more
information about the influence curve and related concepts, see any book on
robust statistics, for instance Huber (1981) and Maronna et al. (2006).

The influence curve does not quantify resistance to multiple outliers. There
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are several measures that do this, but we will focus on the breakdown point,
introduced in Donoho and Huber (1983).

Definition 3.5.2 (Breakdown point). Let T be a statistical functional and F

be a distribution. The (asymptotic) breakdown point is defined by ε∗(T, F ) =

inf {ε | supG ||T ((1− ε)F + εG)− T (F )|| = ∞} .

The breakdown point also has a finite sample analogue, the finite sample
breakdown point ε∗f (T, Fn). This can be defined in two almost equal ways:
Either the minimal number of observations which has to be replaced in order to
make the estimator diverge, or the number of observation which has to be added
in order to make the estimator diverge. Following Rousseeuw and Leroy (2005),
we use the first definition. Their justification is that this is how most outliers
actually arise — originally good observations are contaminated by some source,
for instance clerical errors in the entry of data. Another, more practical reason
is that this definition is easier to work with in this particular problem.

This concept of finite sample breakdown point is, non-shockingly, often
sample dependent, though this is not always the case. For instance the least
median of squares estimator has a finite sample breakdown point of dn/2e+d−1

n

independent of the sample (Rousseeuw and Leroy, 2005). The breakdown point
of Manski’s estimator is extremely sample dependent, as we will see soon.
Everything in the two next section is our original work.

3.5.1 Breakdown in one dimension

Recall that the setting of Manski’s estimator in one dimension is a line with
several blue and red points. If our observations are x1, ...xn and y1, ..., yn, the
red points are the points − 1

xi
where either both yi = 1 and xi > 0 or both yi = 0

and xi < 0. The rest of the points are blue. Given such a set of coloured points
on the line, we can find the colour depth of a point.

Definition 3.5.3 (Colour depth). Let z ∈ R. Define rl(z), rr(z), bl(z), br(z)

as the amount of red points to the left of z, red points to the right of z,
blue points to the left of z and blue points to the right of z, respectively.
All of this is inclusive. We define the colour depth of z, denoted C(z) =

min {rl(z)− bl(z), br(z)− rr(z)}. Also let M = maxz∈R C(z) be the maximal
colour depth. If C(z) = M, z is a witness to the maximal colour depth.

The following lemma indicates why this is an important concept: To max-
imise the colour depth is equivalent to the maximisation of Manski’s objective
function (3.1.2), which we denote m.
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Lemma 3.5.4. A point z ∈ R is a solution to Manski’s objective if and only if
it is of maximal colour depth.

Proof. Assume z is of non-maximal colour depth, and assume wlog there is a
point z′ of greater colour depth to its right. Now count of blue (b) and red
(r) points between z and z′. We have three cases: If r > b, then m(z) =

br(z) + rl(z) = b + br(z
′) + rl(z) < r + br(z

′) + rl(z) = m(z′). If r = b,
both rl(z

′) − bl(z
′) = rl(z) − bl(z) and br(z

′) − rr(z
′) = br(z) − rr(z) and z′

hasn’t greater colour depth than z. Lastly, if r < b, then rl(z
′) − bl(z

′) <

rl(z) − bl(z) and br(z
′) − rr(z

′) < br(z) − rr(z), again contradicting that z′ has
greater colour depth. From this both claims follows: The first implication (⇒)

is proved contrapositively, while the second (⇐) by assuming another point is
maximal and reaching a contradiction.

In order to make the estimator break down, we will have to add and remove
strategically chosen lines such that 1.) every point z of maximal colour depth
loses that status and 2.) there is a new set of points with maximal colour depth
placed arbitrarily far out.

Theorem 3.5.5. The finite sample breakdown point of Manski’s estimator with
d = 1 is dM

2
e/n.

Proof. We begin with ε∗ ≤ dM
2
e/n. Let z have maximal colour depth, and

assume wlog the minimal weight is on its right. In that case, there are M

surplus blues on its right. Now change the colour of these dM
2
e points, starting

from the rightmost one. Let z′ be the rightmost of the red points, with m(z′) =

rl(z) + rr(z) + dM
2
e. Also, m(z) = rl(z) + br(z)− dM

2
e. But since rr(z) +

M
2
=

br(z)− M
2

by definition, the rightmost point is a solution and we have attained
a breakdown.

Now assume ε∗ < dM
2
e/n, and let the points be reconfigured such that a

breakdown has been attained in less than dM
2
e steps. Without loss of generality,

assume that the rightmost element of the new configuration is red. Since this
point is a solution, it has maximal colour depth. Furthermore, the maximal
colour depth is equal to zero, as there are 0 points to the right of it. Let z be
any other point, which automatically satisfies C(z) ≤ 0. If z is a witness to
the the maximal colour depth of the original configuration, we must be able to
recover this number by replacing dM

2
e points. Since an element can increase its

maximal colour depth with at most two for each rearrangement of a single point,
we have C(z) < 2dM

2
e. If M is even, this is contrary to hypothesis. If M is odd,
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notice that since bM
2
c = dM

2
e + 1, we would have to be able to recover C(z) in

at least 2bM
2
c. But this gives C(z) ≤ 2bM

2
c < M.

A special case occurs when M = 0, which gives a breakdown point of 0. This
is not an error. When the M is 0, the solution set is unbounded either to the
right or to the left, hence it has already broke down. To see why, assume we
have a configuration which has M =0. Choice a maximal point z and assume
its minimal colour depth occurs to its right. Clearly, there are equally many,
say k, blues and reds on that side. If the rightmost point is red, the solution set
is unbounded, so assume it is not. If the rightmost point is blue, choose the red
point closest to it, named z′. Then m(z′) ≥ rl(z) + k + 1, as it covers all the
red points z covers, all the red points to its right and at least one blue point.
But this contradicts the maximality of z, as m(z) = rl(z) + k. This happens
with non-zero probability in familiar settings when n = 100, as we can see in
Figure 3.5.2 on page 66.

Remark 3.5.6. Since solutions aren’t unique, it is not entirely clear how to define
the breakdown point. Two different choices can be made. We can think of the
estimator as broken down whenever there is a solution with unbounded absolute
value, which is our choice here. On the other hand, we could also think of the
estimator as broken when there are no “small” solutions at all: If for all n ∈ N
there are some points such that the absolute value of the new configuration’s
minimal solution is greater than n. In order to make the second definition
work, the breakdown point would be (bM

2
c+ 1)/n instead. We will use the first

definition as it makes proofs slightly easier: When replacing points, we will only
have to think about switching colours, not changing coordinates.

From Lemma 3.5.5 we get the following rough upper bound on the asymptotic
breakdown point.

Corollary 3.5.7. The breakdown point of Manski’s estimator with d = 1 is
bounded above by 1/4.

Proof. The best possible value of M is n/2, which is attained iff the points are
perfectly separated into a set of red elements only on the left and a set blue
elements on the right. Pass n to the limit in order to get the result.

Given covariates Xi ∼ G and an error distribution F , we can calculate
the asymptotic analogues of rl(β̂), br(β̂) etc. through substituting β for β̂ and
then calculating their exact distributions. If we denote the exact distributions
r∞l (β), b∞r (β) etc., we see that
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r∞l (β) = P (Y = 0, X < 0,− 1

X
< β) + P (Y = 1, X ≥ 0,− 1

X
< β),

b∞l (β) = P (Y = 1, X < 0,− 1

X
< β) + P (Y = 0, X ≥ 0,− 1

X
< β),

b∞r (β) = P (Y = 1, X < 0,− 1

X
> β) + P (Y = 0, X ≥ 0,− 1

X
> β),

r∞r (β) = P (Y = 0, X < 0,− 1

X
> β) + P (Y = 1, X ≥ 0,− 1

X
> β).

These equations follow directly from the definitions of blue and red points. As
corollary of this observation and the preceding proposition, we get

Corollary 3.5.8. The breakdown point of Manski’s estimator (d = 1) is

B =
1

2
min (r∞l (β)− b∞l (β), b∞r (β)− r∞r (β))

Now we provide some illustrations of these results. Using numerical integ-
ration, it is not hard to calculate the asymptotic breakdown points, which we
do for a handful of covariate and error distributions in Figure 3.5.1 on the next
page. In Figure 3.5.2 on page 66 we show simulated maximal colour depths
for the case of standard logistic errors and normal covariates, a case close to
ordinary logistic regression.

Contrary to most estimators for linear regression, this estimator has the
bad properties of being both sample dependent (in the finite sample case) and
dependent on the data generating mechanism.

3.5.2 Breakdown in several dimensions

We extend to concept of colour depth to d > 1. The challenge is to find the
right generalisation, as there is no suitable total order in higher dimensions. We
rectify this by using projections. In the following definition, H is the set of
half-planes induced by the data set (y1, x1), (y2, x2), ..., (yn, xn).

Definition 3.5.9. Let l be a line, and define the colour depth of a line l as
the maximal colour depth of the configuration induced by {H ∩ l | H ∈ H}. Let
p ∈ Rd, and define Lp to be the set of all directed lines passing through p.
Then C(p) is minl∈Lp {C(l)}; the minimal colour depth (at p) of all lines passing
through p. The maximal directed colour depth is M = maxp∈Rd C(p).

This is the “coloured” variant of the notion of undirected depth, used in the
analysis of the deepest regression estimator Rousseeuw and Hubert (1999a).
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Figure 3.5.1: Breakdown point plot for several different error distributions. The
exponential and log normal errors have been normalized to have median equal to 0.
(Subtract log(2) and 1 respectively). The corresponding covariate distribution are
logistic, normal, normal, Cauchy and normal, respectively. When the errors are expo-
nential, the breakdown point is nearly 1/4 when β is small, which indicates near-perfect
separation. This comes as no surprise; the exponential distribution has a median of
log(2), hence the error-term accounts is 1 − log(2) at minimum, a value it is difficult
to overcome for βX when β is small; this reasoning makes it clear that the break-
down point converges to 0.25 when β → 0 for both the log normal and exponential
errors. Similar considerations explain the other features of the plot, for instance that
Cauchy/Cauchy has a smaller breakdown points than Normal/Normal.

The concept is deeper and more difficult to analyse. The following is a natural
generalisation of Lemma 3.5.4.

Conjecture 3.5.10. A point has p is of maximal colour depth iff it is a solution
to Manski’s objective.

Given n points, which configuration of coloured planes would give the highest
breakdown point? It appears likely that this is a d-simplex where each face has
n

d+1
planes of the same colour stacked on the top of one another. A d−simplex is

d-polytope with the smallest possible number of faces, namely d+1. Assume n =

(d+1)k for a k, and observe that the maximal colour depth of this configuration
is k. Furthermore, its breakdown is easily seen to be k

2
; one would need to

replace half of the planes adjacent to one of the faces with planes of the opposite
colour. This gives rise to the following conjecture, which generalises Corollary
3.5.7.

Conjecture 3.5.11. The breakdown point of Manski’s estimator in covariate
dimension d is bounded above by 1

2(1+d)
.
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Figure 3.5.2: Simulated breakdown points together with asymptotic breakdown
points for standard normally distributed covariates and logistic error distribution.

The generalisation of Theorem 3.5.5 is likely false. The reason is that a
point of maximal colour depth can have “independent” witnessing lines, in the
sense that swapping the colours of M/2 points on one witnessing line doesn’t
necessarily make every other witnessing line get its colour depth pushed down to
0. However, that the finite sample breakdown point is bounded below by M/2

is probably easy to show.

Conjecture 3.5.12. The finite sample breakdown point of Manski’s estimator
in covariate dimension d is bounded below by M/2.

The breakdown point will probably be very close to this in any case. It seems
difficult to analyse how and when the phenomenon above occurs, and how bad it
could be. We leave attempted proofs or disproofs of these conjectures to another
time, but we’re not entirely done with the topic of robustness, as empirical
robustness studies are included in the next section.

3.6 Illustrations and simulations

3.6.1 The role of the covariates’ distribution

Manski’s estimator (in d = 1) has large problems estimating values of β1 that
are close to 0. Essentially, this is because the candidate intervals < − 1

xi
,− 1

xj
>

require some very large xis in order to get close to 0. Assume Xi
i.i.d.∼ N(0, 1),

Y = 1[1+0·Xi+εi≥0], and for simplicity that the optimal set is < − 1
xi
,− 1

xj
>,
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Figure 3.6.1: Line plot for the model Yi = 1[1+0.05X1i+0.05X2i+εi], where εi ∼ N(0, 1).
The true betas are grey dots. (left) Standard normal covariates, which need very large
n in order to make the gap small, (right) Cauchy distribution covariates, which have
no problem closing the gap.

with xi = maxXi. Say we want an n such that the lower bound 0 > − 1
xi

>

−0.20 holds with probability at least 0.5. This requires at least one observation
greater than 5, and this happens with probability greater than 0.5 for n ≈
2418000. If the Xis are Cauchy, the lower bound is n = 11, an enormous
difference.2 Note that the estimator will, correctly, find an optimal set covering
0, but it will take an absurdly large n to get this interval small. This also shows
that a form of assumption 2c (at the beginning of Section 3.3) is required for
consistency: If the covariates were uniformly distributed on [−a, a], for instance,
the infimal modulus of a candidate solution is 1

a
, which will not be enough to

assure consistency whenever β1 <
1
a
.

As seen in Figure 3.6.1, there are similar problems in covariate dimensions
greater than 1. For a line in the dual plane to come close to a β ∼ (0, 0), it will
require an intercept close to 0, which can happen only if x2 is very large. This
reasoning clearly extends to arbitrary dimensions.

2For both these observations we use that the distribution of the maximum is F (x)n, hence
P (maxXi > a) = 1− F (a)n = 0.5. The values can then be found using logarithms and R.
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3.6.2 Horowitz’ distributions

Since Manski’s estimator has cube root asymptotics, we expect it to perform
very badly in the MSE-sense versus probit or logit whenever the assumptions
on probit and logit are almost true. We simulate the MSE for several choices
of covariate and error distributions when d = 2. Also, we study the relative
robustness properties under the ε-contamination model. For all simulations in
this section we select the first computed vertex of the solution set as an estimate.
We compute the ML estimator for the logistic regression model (logit), so that
we have something to compare the results to. Due to the very high variance of
Manski’s estimator, its only fair shot at overpowering the logit is for its bias to
be much smaller. When n is very small, the variance will dominate the bias.
Still, we report the MSE, variance and bias for completeness.

First we consider the the setups L,U, T3 and H from Horowitz (1992), which
were also used Delgado et al. Delgado et al. (2001) in their study of subsampling.
Here d = 2, X1i

i.i.d.∼ N(0, 1), X2i
i.i.d.∼ N(1, 1), and the errors are distributed as

follows:

• L: logistic with mean µ = 0 and variance 1; scale s =
√

3
π2 (i.e. rescaled

logistic regression)

• U : Uniform on [−
√
3,
√
3]; mean 0 and variance 1.

• T3: t-distributed with ν = 3, normalized to have variance 1,

• H: 1
4
(1 + 2z2 + z4)v, where z = X1i +X2i and v is logistic with µ = 0 and

s = s =
√

3
π2 .

Horowitz (1992, p. 517) works in the rather peculiar setting of Y = 1[X1i+βX2i≥0],
β = 1, a choice made to please the slow computers at that time. It only requires
a small modification of the one-dimensional algorithm to accommodate to this
change. While Horowitz compared Manski’s estimator, logistic regression and
his own smoothed maximum score estimator, we compare Manski’s estimator
and logistic regression. Initially we calculated the values for probit regression as
well, but as they are very similar to logit they are omitted.

The results in Figure 3.1 on the facing page are similar to those of Horowitz,
with the exception of logit is MSE for H. Horowitz obtained much higher values
here, which might be explained by the fact that he used N = 1, 000 replications
and we used N = 10, 000. As it turns out, Horowitz’ choice of distributions,
covariates and βs does not paint of an unbiased picture of the situation. Some
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Table 3.1: Mean square errors, variances and biases for Horowitz’ choice of error
distributions.

Logit Manski

MSE Variance Bias MSE Variance Bias MSEl
MSEm

250 L 0.01630 0.01627 0.00621 0.06972 0.06872 -0.03162 0.23379

500 0.00792 0.00791 0.00238 0.04193 0.04121 -0.02679 0.18889

1000 0.00397 0.00397 0.00209 0.02552 0.02524 -0.01676 0.15556

250 U 0.01916 0.01897 0.01381 0.12154 0.12083 -0.02674 0.15764

500 0.00935 0.00926 0.00933 0.07138 0.07093 -0.02123 0.13099

1000 0.00461 0.00455 0.00815 0.04490 0.04479 -0.01058 0.10267

250 T3 0.01736 0.01058 0.08235 0.05404 0.05096 0.05553 0.32124

500 0.00615 0.00615 -0.00076 0.02689 0.02614 -0.02753 0.22871

1000 0.00311 0.00310 -0.00202 0.01711 0.01685 -0.01612 0.18177

250 H 1.25814 0.38534 0.93424 0.14850 0.14684 0.04071 8.47232

500 0.91018 0.14515 0.87466 0.05876 0.05850 0.01593 15.48979

1000 0.78567 0.06512 0.84885 0.03044 0.03032 0.01093 25.81045

cases of interest are not covered, most notably non-symmetric distributions,
extremely heavy-tailed distributions and combinations of heteroskedasticity with
these features. we will study these wild distributions in the next section.

3.6.3 Wild distributions

We extend the Monte Carlo study to cover a non-symmetric distribution with
support bounded to the left (adjusted standard log normal), an extremely heavy-
tailed distribution (the Cauchy distribution), a skewed distribution with support
on (−∞,∞), the skewed t-distribution (ν = 3,γ = 3, adjusted to have median
equal to 0), and a bimodal equal weight mixture of N(−1, 1) and N(1, 1). In
addition, we will consider homoskedastic and heteroskedastic variants of the log-
normal, Cauchy and the bimodal mixture. The heteroskedasticity will be of the
form

√
X2

1i +X2
2i and exp (−X1). The results are found in Table 3.2 on the next

page. The reduced bias of Manski’s estimator is large enough to compensate for
its increased variance in some cases, most notably for the heteroskedastic log-
normals.

3.6.4 Contaminated data

We perform a small Monte Carlo study on contaminated data. The basic setup
is Yi = 1[1+β1X1i+β2X2i+εi], where the covariates are standard normal and the εis
are standard logistic. We consider three different forms of contamination:
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Table 3.2: Mean square errors, variances and biases for our set of wild distributions,
n = 800.

Logit Manski

MSE Var Bias MSE Var Bias MSEl
MSEm

Cauchy 0.02319 0.02105 -0.04624 0.06289 0.06202 0.02962 0.36875

Log-normal 0.052 0.00511 -0.21654 0.03951 0.03943 0.0089 1.31611

Skew t 0.02917 0.01613 -0.11418 0.18617 0.17794 0.09076 0.15666

Bimodal 0.01457 0.01403 -0.02305 0.094 0.09032 0.06068 0.15496√
X2

1i +X2
2i Cauchy 0.10741 0.01509 -0.30383 0.07596 0.07591 0.00661 1.41404

exp−X1 Cauchy 0.03224 0.01426 -0.13406 0.06229 0.06227 0.00429 0.5175√
X2

1i +X2
2i Log-normal 0.11836 0.00461 -0.33727 0.04408 0.04308 -0.0316 2.68543

exp−X1 Log-normal 0.1194 0.00571 -0.33718 0.03803 0.03749 -0.02333 3.13947√
X2

1i +X2
2i Bimodal 0.03102 0.01626 -0.12147 0.19252 0.18382 0.09329 0.16112

exp−X1 Bimodal 0.03079 0.01232 -0.13587 0.13821 0.13372 0.06701 0.22274

1. (Y -contamination). The contaminated data comes from the same model,
but with the Yis swapped. The contamination rate is denoted ε.

2. (X-contamination). The contaminated data is from the same model, but
a random covariate is multiplied by 10. The contamination rate is denoted
δ.

3. A combination of these two: A< fraction ε of the the data is Y -contaminated
and a fraction δ of the data is X-contaminated.

Both kinds of contaminations can be though of as clerical errors; in the second
case, a decimal is misplaced, while the first corresponds to pressing the one
wrong button out of two. Also, these different forms of contamination can be
seen as logistic regression analogues of outliers in the y-direction and outliers
in the x-direction from regression analysis, discussed in Rousseeuw and Leroy
(2005, introduction).

We will let (β1, β2) = (1, 1), and will only report β̂1 due to readability and
the symmetry involved here: There is no systematic difference between β̂1 and
β̂2. we will consider ε = 0, 0.05, 0.1.0.2 and δ = 0, 0.1, 0.5. The contamination
rate of 0 is taken into the analysis in order to have a baseline we can compare
with, while the other choices of ε and δ are sort of arbitrary. It should be clear
that too large values of ε, for instance ε ≈ 0.5, aren’t worth studying, especially
with the breakdown point of Manski’s estimator in mind. We settle on ε = 0.4

and expect things to go wrong. We let n = 800, typical of mid-large scale
logistic setup. Also, the replication count is N = 10, 000, which might be too
small to catch all that is happening. Nonetheless, the results, reported in Table
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Table 3.3: Mean square errors, variances and biases for contaminated data.

Logit Manski

ε δ MSE Var Bias MSE Var Bias MSEl
MSEm

0 0 0.00897 0.00846 -0.02259 0.04385 0.04274 0.03338 0.20450

0.1 0.24801 0.01529 -0.48242 0.04568 0.04523 0.02114 5.42964

0.5 0.7396 0.00031 -0.85982 0.1101 0.09839 -0.10823 6.71742

0.1 0 0.02095 0.01681 -0.06438 0.06347 0.06165 0.04271 0.33009

0.1 1.02071 0.00132 -1.00964 0.05438 0.05267 0.04135 18.7709

0.5 0.82658 0.00032 -0.90899 0.07552 0.0748 -0.02681 10.9453

0.2 0 0.04433 0.03462 -0.09857 0.11281 0.10869 0.06418 0.393

0.1 1.09034 0.00191 -1.04328 0.08905 0.08604 0.05483 12.2446

0.5 0.90703 0.00045 -0.95214 0.09005 0.08983 0.01485 10.0723

0.4 0 456.735 456.731 0.07046 443725 443629 9.81226 0.00103

0.1 290.959 288.945 -1.41915 1068.18 1068.15 0.16433 0.27239

0.5 18.2414 16.6176 -1.27425 1.62646 0.01987 -1.26751 11.2154

3.3, are illustrating. Not surprisingly, things go out of control with ε = 0.4. As
can be seen, Y -contamination alone has little effect on the bias of the logistic
regression estimator, though the variance increases. Hence it is still able to see
the signal under these circumstances. Since the variance of logit is very much
smaller than the base variance of Manski’s estimator, Manski’s estimator has
to perform very well on the bias side of things in order to out-perform logit
MSE-wise. Luckily for Manski’s estimator, it does better than logit for any
combination where ε 6= 0, 0.4, which suggests usefulness as a robust estimator
in practice.
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Chapter 4

Density estimation on the unit
interval

The continuous differentiable function is losing its preeminence as a
paradigm of knowledge and prediction.

- Jean-François Lyotard in The Postmodern Condition

As per Lyotard’s dictum, we study density estimation on the unit interval by
means of step functions. The object of our attention is the irregular histogram,
the main worked-out example of cube root asymptotics in this thesis. The study
of this histogram is easiest when restricted to the unit interval, whence the
name of this chapter. We start out by discussing the important class of density
estimators known as kernel density estimators (KDEs), with special focus on
the Gaussian copula KDE Jones and Henderson (2007a). In Section 2 we define
a rather large class of histogram estimators defined through the minimisation
of statistical divergences. Our focus will be on the Kullback-Leibler divergence,
and the L2-divergence will also have a role to play. Section 3 is a tiny one,
being entirely about regular histograms. Section 4 is devoted to the question of
L1-consistency of the histograms. In Section 5, the longest section of this thesis,
we will prove consistency of the irregular histograms introduced in Section 2,
under certain conditions, using the theory developed in Chapter 2. In particular
we will make use of a δ > 0 in order to uniformly bound the maximised objective
function. We will also use the rate theorem in order to establish the cube root
rate of convergence for the split points and weights of these histograms. In

73
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Section 6 we discuss algorithms for the computation of irregular histograms
given some data x1, x2, ..., xn. As was the case with Manski’s estimator, the
usual tools of gradient descent will not be available, and we will be forced to
find other ways to deal with the problem. In the process, we show that the
histograms are computable in O(n2k) time. In Section 7 we describe a frequent
anomaly encountered when using these histograms, and a potential remedy.
The penultimate section is devoted to an illustration of the histogram on some
examples of real data, including an application of the subsampling bootstrap in
order to get confidence intervals for the split points. Finally, the last section is
devoted to the description and investigation of the CIC (Hjort in (Hjort, 2007, p.
33)), a generalisation of AIC to the setting of irregular histograms. It turns out
that the bias term is difficult to estimate, but a subsampling approach appears
to work fine.

4.1 Kernel density estimators

4.1.1 Introduction

An important class of non-parametric density estimators are the kernel density
estimators (KDEs), which we now describe. Let X1, . . . , Xn ∼ F , where F has a
strictly positive smooth density f on R. Let K be a function which is symmetric
around 0 and positive. The kernel density estimate of f is

f̂(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
,

where h is the (data dependent) bandwidth. Choices for K include any density
function symmetric around 0, e.g the standard normal distribution, the Epan-
echnikov kernel and the tricube kernel (Hastie et al., 2005, chapter 6.1). As it
turns out, in the present setting of strictly positive smooth densities on R, the
choice of kernel is unimportant Wand and Jones (1994, p. 28). Note that f̂

is a density of an actual random variable, namely
∑n

i=1 ξi
1
h
K(x−Xi

h
), where ξ is

a multinomial vector with equal cell probabilities. This makes it very easy to
do Monte Carlo simulations, which can be of interest in pre-smoothing and the
smoothed bootstrap.

Under no conditions on f , the kernel density estimator is L1-consistent
whenever nh → ∞ as h → 0, provided the kernel K has integral 1 and is every-
where positive Devroye and Györfi (1985, chapter 3, theorem 1). We will discuss
this concept in the context of histograms in Section 4.4. A widely used criterion
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for selecting the bandwidth is to minimise the integrated mean squared error, that
is
´
E(f(x)− f̂(x))2dx. As usual, the mean squared error is used mainly due its

mathematical tractability, and the interpretation is simple enough. By Fubini’s
theorem it equals E

´
(f(x) − f̂(x))dx, which gives rise to its acronym, MISE

(mean integrated squared error). Note that f̂ is a random function, hence f̂(x)

is the random variable we’re taking expectations with regards to. From a given
criterion, like the MISE or pointwise MSE, the optimal bandwidth is the band-
width hn which minimises the criterion. For these criteria (which are the ones we
will consider), the optimal bandwidth can be understood as making a balanced
trade-off between variance and bias. Through asymptotics and straightforward
calculations we find that the optimal bandwidth has order n− 1

5 (Wand and Jones,
1994, p. 28):

hn = n− 1
5

[ ´
K(x)2dx

(
´
x2K(x)dx)2

´
(f ′′(x))2dx

] 1
5

. (4.1.1)

Let K be the standard normal density. If we approximate f by a normal dens-
ity and let σ̂ be a consistent estimator of σ, we get the ready to use formula
Silverman (1986, p. 47)

hn = 1.059σ̂n− 1
5 ,

this is the normal reference rule for bandwidth selection.

Several methods are used to compare different density estimation procedures,
where by procedure we understand a method which does everything automat-
ically, including the selection of a bandwidth. An example of such a procedure
is the normal reference rule for KDEs with Gaussian kernels. Perhaps the most
prominent method of comparison is the use of L2-distances and Hellinger dis-
tances, obtained through simulations on a suitable selection of prototype dens-
ities.

As it turns out, this sort of density estimator is not appropriate when study-
ing densities on the unit interval. Assume our density looks like the one in the
plot: It has high density close to the boundary at 0. Since there is no data
to the left of 0, f̂(x) will tend to underestimate f(x) whenever x is close to 0,
while assigning positive mass to the “forbidden region” to the left of 0. This
phenomenon is called boundary bias and is explained further in Hastie et al.
(2005, chap. 6).

There are many methods designed to deal with the boundary bias issue, for a
brief review see e.g. Chen (1999). we will describe a few, with speciel emphasis
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Figure 4.1.1: Illustration of boundary bias. 100 observations were drawn from
β(2, 7). The blue curve is the true density, while the red curve is a kernel density
estimate using the normal reference rule. The green curve is the Gaussian copula
kernel estimate described below.

on the Gaussian copula density estimator.

Beta kernels Seemingly, the source of boundary bias is that symmetric ker-
nels can’t take into account that there exists regions with no data whatsoever.
A reasonable solution is to use a semi-flexible non-symmetric kernel which con-
tinuously manipulates the support. Chen’s Chen (1999) proposal is to use,

f̂(x) =
1

n

n∑
i=1

Kx/b+1,(1−x)/b+1(Xi),

where Ka,b is the Beta density with shape parameters a, b. This is not a bona
fide density, however, for x appears as a parameter in the Beta-density, not as an
argument. This makes the estimator difficult to interpret and to sample from.
Jones and Henderson (2007b) explored the possibility of switching these roles.
Also, Chen (1999) proposes a superior bias-corrected version, which has proven
to be quite popular and exhibits good performance.

Probit-transformed local likelihood Through any quantile function for a
strictly positive density on R, we can transform data from [0, 1] to R, apply
an ordinary kernel density estimator there, and back-transform the results. A
downside is that this method can induce serious bias unless care is taken. Geen-
ens (2014) proposal is to use the probit transform in this manner, but instead of
using an ordinary kernel density estimator, he uses a local likelihood approach,
which is known to reduce bias (Hjort and Jones, 1996). This estimate is neither
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a bona fide density or easy to sample from, but has superior performance.

4.1.2 Gaussian copula kernels

Jones and Henderson (2007a) proposed an elegant modification of the beta kernel
approach. The idea is to use the conditionals of a bivariate Gaussian copula as
kernels. The bivariate Gaussian copula is a random variable of one parameter ρ,

defined in the following manner: Let (Z1, Z2) ∼ N2(0,Σ), with Σ =

[
1 ρ

ρ 1

]
,

and put (X1, X2) = (Φ(Z1),Φ(Z2)). Its density is given by

c(x1, x2; ρ) =
1√

1− ρ2
exp

(
− [ρ2(Φ−1(x1)

2 − 2ρΦ−1(x1)Φ
−1(x2) + ρ2(Φ−1(x2))

2]

2(1− ρ2)

)
.

The basic feature of a copula is that the marginals are uniform, but the condi-
tionals can be very rich.

Definition 4.1.1 (Gaussian copula kernel density estimator). Let {Xi}ni=1

i.i.d.∼ f

for some density f : [0, 1] → R, {Yi}ni=1 be independent Gaussian copulas, and
h =

√
1− ρ be a (data driven) bandwidth. The Gaussian copula kernel estimator

is the mixture
∑n

i=1 ξi [Yi|y2 = Xi], where ξ = (ξ1, ξ2, ..., ξn) is a multinomial
vector with equal cell probabilities. This variable has density

f̂(x) =
1

n

n∑
i=1

c(x,Xi; 1− h2).

For use in pre-smoothing of histograms (Section 4.7), we will need to sample
from this estimator. As a first step, we must sample from the conditional distri-
bution c(x1 | X2; ρ). Recall the formulas for the conditional mean and variance
in a bivariate normal (Z1, Z2),

µ1|Z2 = µ1 +
ρ

σ2
2

(Z2 − µ2),

σ2
1|Z2 = σ2

1 −
ρ2

σ2
2

,

which in our setting translates to µ|Z2 = ρZ2 and σ2|Z2 = 1 − ρ2. Using these
formulas together with the fact that the conditional distributions are normal, we
sample from ZX2 ∼ N(ρΦ−1(X2), 1−ρ2) and apply Φ, so that X1|X2 ∼ Φ(ZX2).
It is now straight forward to sample from the Gaussian copula density estimator.
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The Gaussian copula KDE has several nice features,

1. It results in a bona fide density,

2. it is easy to interpret and fast to calculate,

3. easy to sample from,

4. has good Hellinger and MISE performance in many different settings.

In this thesis we will use this density estimator whenever nothing else in men-
tioned, together with a normal reference rule, giving the bandwidth

h = σ̂(2µ̂2σ̂2 + 3(1− σ̂2))−
1
5n− 1

5 ,

where σ̂, µ̂ are the maximum likelihood estimates of the probit-transformed data
(see Jones and Henderson (2007b)). A natural extension of the Gaussian copula
KDE to the realm of derivatives is

f̂ ′(x;h) =
1

n

n∑
i=1

d

dx
c(x,Xi; 1− h2).

Here the optimal rate for the bandwidth has been reduced from n− 1
5 to n− 1

7 .
This is not surprising, as there is seemingly a larger inherent difficulty involved
in the estimating derivatives vis-à-vis estimating the density. This manifests
itself through a much larger pointwise variance as a function of h. The rate n− 1

7

is conjectured from a result on ordinary kernel density estimators, see Wand and
Jones 1994, section 2.12.

4.2 General histograms

A general histogram on [0, 1] is a density of the form

h(x) =
k∑

i=1

wi

ai − ai−1

1[ai−1,ai)(x), (4.2.1)

where a0 = 0, ak = 1, ai < ai+1 for each i, and wi < 0 are weights summing
to one; that is,

∑k
i=1wi = 1. Let F be a suitable class of densities on the unit

interval. The exact nature of F will vary from problem to problem, and isn’t
very important right now. Later on, when we derive our limiting distributions,
the exact nature of F is important — it contains only smooth densities and
no densities with the shape of a histogram. Whenever we have a P ∈ F , with
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associated density f , we can define its best approximating histogram through
the minimisation of statistical divergences, which we will also call statistical
distances. A statistical divergence is defined as follows: Let P be space of
probability measures with common support. If d : P2 → R is a function such
that d(f, g) ≥ 0 for any f, g ∈ P and d(f, g) = 0 iff f = g.

We will consider two divergences:

1.) Kullback-Leibler divergence. The quantity is defined as dKL(f, h) =´
f(x) log f(x)

h(x)
dx. In ordinary parametric statistics, minimising this distance is

equivalent to finding the maximum likelihood estimate. It is an information
theoretic distance, and is difficult to understand visually. Accordingly, it can be
argued that it is inappropriate for histograms. As we will see, it is equivalent
to L2-minimisation in regular histograms, and it is asymptotically equivalent to
the minimisation of the Hellinger distance, which is more easily interpretable
visually, and is arguably more adequate than the L2-distance. The minimisa-
tion of the Kullback-Leibler divergence is equivalent to the maximisation of´
f(x) log h(x)dx = P log h. Since h(x) =

∑k
i=1

wi

ai−1−a
1[ai−1,ai)(x), we get the

criterion function

mKL
(a,w) =

k∑
i=1

log
wi

ai − ai−1

1[ai−1,ai)(x), (4.2.2)

and the desired argmax objective

PmKL
(a,w) =

k∑
i=1

log
wi

ai − ai−1

P [ai−1, ai).

2.) L2-distance. This is the ordinary L2-norm, defined by
´
(f(x)−h(x))2dx =´

f(x)2dx−2
´
f(x)h(x)+

´
h(x)2dx. This is a classical distance measure which

is easy to interpret, but it weights small distances too little. For histograms, to
minimise the expression above is equivalent to the maximisation of

PmL2

(a,w) =
k∑

i=1

wi
(2P [ai−1, ai)− wi)

ai − ai−1

,

with underlying criterion function

mL2

(a,w) =
k∑

i=1

[
2wi

ai − ai−1

1[ai−1,ai)(x)−
w2

i

ai − ai−1

]
, (4.2.3)
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as can be seen by straight forward calculations. We require the assumption
f ∈ L2 for this to work.

Special mention: The Hellinger distance. The Hellinger distance is defined
by d(f, h) = 1

2

´
(
√

f(x)−
√

h(x))2dx, which behaves asymptotically like Kullback-
Leibler. Compared to the Kullback-Leibler divergence, it has the nice property
of being an actual metric, and it is easier to understand visually. When taking
roots, values below one are pushed upwards, and values above one are pushed
downwards. This makes the distance perhaps more appropriate for histograms
than L2, which weight differences when densities are high more than differences
when densities are small. To minimise the Hellinger distance is equivalent to
maximising

k∑
i=1

√
wi

ai − ai−1

ˆ ai

ai−1

√
f(x)dx,

which requires an estimate f̂(x) of f(x), for instance a Gaussian copula kernel
density estimate. However, this is hardly an argument against the use of the
Hellinger distance, as it is convenient to use kernel density estimates for all sorts
of histograms.

Kinds of histograms. Given a statistical distance, we can define three forms
of histograms. Their forms are decided by which quantities we allow to vary and
which we force to be constant. Regular histogram are histograms with a fixed
bin width and variable weight, which in this case equals height times the bin
width. These are the objects we usually associate with histograms. Irregular his-
tograms are usually understood as histograms with variable bin width and vari-
able weight, but we will also consider irregular histograms with fixed weight and
variable bin width. We will sometimes call these irregular histograms quantile
histograms. Figure 4.2.1 illustrates the main graphical differences between these
three kinds of histograms, and Table 4.1 compares gives a summary of their pros
and cons. In Section 4.7 we do a small simulation study comparing their MISEs
and Hellinger distances.

Proposition 4.2.1. For regular histograms, minimisation of L2 and Kullback-
Leibler divergences are equivalent.
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Figure 4.2.1: Three different best approximating histograms and one k-spacing estim-
ator with k = 10 and underlying distribution β(9, 5) (upper left) Irregular histogram
obtained from KL, (upper right) quantile histogram (KL), (lower left) regular histo-
gram, (lower right) the k-spacing estimator described in the next section. Notice the
following about the quantile histogram: Since it cannot flexibly manipulate the height
of the left-most bar, it has been forced to become too tall. The same goes for the the
middle section, since it cannot manipulate the weights, it is forced to underestimate
the density, even tough it approximates its shape quite well. The same mechanism
forces the bin widths to be small around the high regions, explaining the difference
between its looks and that of the irregular histograms to its left.
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Table 4.1: Pros and cons of the different kinds of histograms.

Pros Cons

Regular Well known and easy to
interpret. L2 and KL
histograms are equivalent, and
so is the usual histogram
construction. It has smaller
variance than the other
histogram procedures. The
limiting distribution of the
weights is multivariate normal,
and converges with the rate n

1
2 .

They fail to capture the
structure of the data well when
there are few bins and
relatively large sections of
small density, which leads to
bias. If a bin contains 0
observations, dKL(f, h) = ∞
under the assumption that f is
everywhere non-zero.

Irregu-
lar

Is a classical histogram in the
sense that each bin has weight
corresponding to the amount of
observations in it. Can match
any histogram-shaped density
exactly. Has smaller bias than
the other forms.

It is costly to construct, yields
unstable estimates and
converges at a n

1
3 -rate. Every

bin will contain at least one
observation.

Quantile Each ai corresponds to the i
k
th

quantile of distribution h(x)
defined by the histogram.

It is costly to construct, yields
unstable estimates and
converges at a n

1
3 -rate. It is

difficult to interpret. Also, it
can be seriously biased upwards
in sections of small density,
often giving a wrong impression
of the data. The same kind
bias also occurs in sections of
high density. (See figure 4.2.1).
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Proof. (L2) Recall that the objective function for minimisation is

f(w) = −2
k∑

i=1

P (ai−1, ai)wi +
k∑

i=1

w2
i ,

where a0 = 0, ak = 1, together with the constraint
∑k

i=1wi = 1 and wi ≥ 0 for
all i. Using Lagrange multipliers, with constraint g =

∑k
i=1 wi = 1, we find that

∂(f+g)(w)
∂wi

= −2P (ai−1, ai) + 2wi + λ. Leave λ alone on the right hand side and
sum over i to get λ = 0, which yields the unique solution wi = P (ai−1, ai). Note
that the constraint wi ≥ 0 is automatically fulfilled. As for Kullback-Leibler,
we use the same method on f(w) =

∑k
i=1 P (ai−1, ai) logwi to get ∂(f+g)(w)

∂wi
=

P (ai−1, ai)
1
wi

+ λ, which gives λ = −1 and the maximum wi = P (ai−1, ai).

By using the finite sample analogue Pn(ai−1, ai) for P (ai−1, ai), we see that
both the L2 and KL regular histograms correspond to the ordinary regular
histograms we know from elementary school. The following corollary tells us
that KL and L2 irregular histograms (with variable weights) are histograms as
we know them.

Corollary 4.2.2. Let P be a probability measure on [0, 1]. The optimal weights
for both the L2 and KL irregular histograms are P ([ai−1, ai)), where ai are the
optimal split points.

Proof. Given the split points, the problem reduces to that of the previous pro-
position.

We call this, colloquially, the “good histogram property”. In addition to
making the resulting histograms correspond to ordinary histograms as we know
them, the property effectively reduces the dimension of the objective function.

Now that we have defined the best approximating histogram for the under-
lying distribution F , we will discuss their estimation. This estimation is carried
out by using the “plug in estimator” Pn in place of P . Thus

(â, ŵ) = argmax
(a,w)

Pnm(a,w),

where m(a,w) = mL2

(a,w) if we want to minimise the L2 distance, and m(a,w) =

mKL
(a,w) for Kullback-Leibler. For ease of exposition, we always include both a

and w in the arguments of m, even tough we are allowed to pre-specify their
values, a choice that hopefully will not cause confusion. Note that this is the
setting of M -estimation, discussed Section 2.2.
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Other divergences that might be considered are the BHHJ divergences Basu
et al. (1998), a parametrized family of divergences defined by

dα(f, g) =

ˆ [
f 1+α(z)− (1 +

1

α
)g(z)fα(z) +

1

α
g1+α(z)

]
dz

for α > 0 and d0(f, g) = dKL(f, g). These divergences were developed for out-
lier robust statistics, and don’t seem very relevant for the case at hand. Non-
etheless, they will allow us make a finer trade-off between the features of the
Kullback-Leibler histograms and L2-histograms, and would connect the limit-
ing distributions of these two in a unifying manner. Still, the rather similar
behaviour of the Kullback-Leibler and L2-histograms, illustrated in Section 4.7,
makes it seem like this isn’t worth the effort. Finally, there are other import-
ant distances we have not investigated at all, for instance the Kolmogorov dis-
tance defined by dK(F,G) = supx |F (x) − G(x)|, and the L1-distance, dL1 =´
|f(x) − g(x)|dx. The Kolmogorov is a global distance measure, and isn’t ap-

propriate for density estimation. While the L1-distance is arguably the most
appropriate distance measure between densities, it is difficult to work with.
By Scheffé’s identity (see Section 4.4 on L1-consistency), minimising the L1

criterion is equivalent to the minimisation of the total variational distance,
dTV (f, g) = supB∈B |

´
B
f(x)dx −

´
B
g(x)dx|, where B is the Borel σ-algebra

on [0, 1]. This is particularly attractive, as it minimises the maximal error of
|P̂ (A)−P (A)| across every measurable set A. Furthermore, Devroye and Lugosi,
2012, chapter 6 argue that both the KL- and L2-distances are fundamentally
inappropriate as criteria for density estimation, but their examples of bad prop-
erties for these two distances only hold for unbounded intervals. Nevertheless,
minimising dTV (f, g) = supB∈B |

´
B
f(x)dx −

´
B
g(x)dx| is likely not amenable

to the techniques described in Section 2.2 on M-estimation.

4.3 Regular histograms

Regular histograms are considerably easier to analyse and understand than ir-
regular histograms, so they are a convenient starting point for our discussion.
We will also discuss the so-called k-spacing estimator (Lugosi and Nobel, 1996),
a kind of histogram reminiscent of the KL/L2-histograms with constant weights.

Let k+1 be the bin count and ai − ai−1 be the predefined bin widths and F
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be an arbitrary distribution supported on [0, 1]. The estimates of interest are

θ̂n = (Pn[0, a1), Pn[a1, a2), ..., Pn[ak, 1]).

The vector nθ̂n is multinomially distributed with n trials and cell probabil-
ities P (ai−1, ai). Let n → ∞, and

√
nθ̂n can be approximated by the mul-

tivariate normal distribution with mean µ = (P [a0, a1), P [a1, a2), ..., P [ak, 1])

and covariance matrix Σij = P (ai−1, ai)P (aj−1, aj) when i 6= j and Σii =

P (ai−1, ai)(1− P (ai−1, ai)) otherwise. Hence
√
n(θ̂n − µ)

d→ Nk(0,Σ).

k-spacing estimator

A variant of histograms not yet discussed is the density

h(x) =
k∑

i=1

k−1

qi − qi−1

1[qi−1,qi)(x),

=
k∑

i=1

P [qi−1, qi)

qi − qi−1

1[qi−1,qi)(x).

where qi is the i
k
th quantile of P . This histogram is sometimes called the

k-spacing estimator (Lugosi and Nobel, 1996), and was first investigated by
Van Ryzin (1973). While it looks similar to our quantile histograms, it is not the
result of KL or L2minimisation of the histogram objective function in equation
4.2.1. Interestingly, it has constant weights but also satisfies the good histogram
property, for k−1 = Pn[qi−1, qi) by construction. Let q̂i be the i

k
-th quantile of

the empirical distribution Pn, and define ĥ(x) =
∑k

i=1
k−1

q̂i−q̂i−1
1[q̂i−1,q̂i)(x). Now

we’re interested in the limiting distribution of (q̂1, ..., q̂k).

Proposition 4.3.1. Let F be a distribution with density f , X1, ..., Xn
i.i.d.∼ F and

let q = (q1, ..., qk−1), q̂ = (q̂1, ..., q̂k−1) be the i
k
th quantiles and sample quantiles,

respectively. Then

√
n(q̂ − q)

d→ N(0,Σ),

where Σij =
i(k−j)

k2f(q(j))f(q(i))
for j ≥ i.

A proof is found in e.g. Babu and Rao (1988, theorem 2.1). We could also use
the ideas of Section 2.2, or more specifically the rate theorem 2.2.4 on page 22
to find the limiting covariance structure and the Hessian V . In order to put
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quantile estimation into this, we could use the loss function

dp(x, q) =

(1− p)|x− q| when x < q,

p|x− q| when x ≥ q.

This function has the property that argminq Edp(X, q) = F−1(p) (see e.g. Hao
and Naiman (2007, p. 21)). Thus mp =

∑k
i=1 dpi(·, qi) is a suitable objective

function, where p is constrained to be an increasing vector in (0, 1). Notice that
when k = 2 and p = 1

2
, q is the median. The objective function is d 1

2
(x; q) ∝

|x − q|, which was used when we established the limiting distribution of the
median, recall Theorem 2.2.3 on page 13. It would be interesting to find out
whether there is a statistical divergence d such that argmaxq d(h(x; q, k

−1), f(x))

equals the k-spacing estimate.

This method can clearly be extended to choices of non-equally spaced quantiles.
This variant of the quantile histogram is probably better than what we obtain
through L2 and KL minimisation. It retains the positive property of quantile
histograms, namely that qi corresponds to the ith quantile of h(x), but disposes
of several negative properties: It doesn’t have the unstable estimates we soon
will describe (in Section 4.7), the split points have

√
n-asymptotics, its limiting

distribution is normal. It is computationally very inexpensive to construct, as
finding the k quantiles is done in O(n log n) time. Also, they look roughly the
same whenever the L2/KL histograms have been estimated properly. As the
main purpose of histograms is visualisation, this is yet another point in favour
of this variant. If the goal of constructing a histogram is compression instead,
this approach should also be preferable, as the quantiles themselves are very
well understood. Another point in its favour is the fact that L2/KL quantile
histograms can fool us in a subtle way: In figure 4.2.1, notice that the quantile
histograms seem to “focus” on the region around the mode. This makes it seem
intuitive that the estimator is more accurate in exactly this region. But as
we can see from the plot, this is not the case. The regular quantile histogram
doesn’t suffer from this defect.

4.4 L1-consistency

In this section we obtain a result on L1-consistency for the irregular histo-
grams we have discussed. A density estimate f̂n is said to be L1-consistent
for f if

´
|f̂n(x) − f(x)|dx → 0 almost surely. This is sometimes called strong
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L1-consistency, where in weak L1-consistency almost sure convergence is replaced
with convergence in probability. We only consider L1-consistency as it is, ar-
guably, the most reasonable criterion of consistency for density estimates, see
Devroye and Györfi (1985). Note that L1 and Lp consistency is not the same:
Since λ([0, 1]) = 1,

´
fndx → 0 if

´
fp
ndx → 0 for any positive f and p > 2

by Hölder’s inequality (Folland, 1984, p. 178). The converse if false, just take
fn = x− 1

p .

We show that the irregular KL/L2-histograms with variable weights are
L1-consistent provided the condition

P[ max
i=1,...,k−1

P [âi−1, âi) > γ]
a.s→ 0 for every γ > 0, (4.4.1)

is satisfied. This is a relatively simple corollary of Theorem 1 of the delightful
paper “Consistency of data-driven histogram methods for density estimation
and classification” of Lugosi and Nobel (1996). Their paper builds on previous
work by Zhao et al. (1991). In this section, we present simplified variants of
their results: The results Lugosi and Nobel are far more general, “living on” Rd

instead of the unit interval. Their proofs of Lemma 1 and Theorem 1 and are
simplified for our more restricted setting. We supply some definitions from their
paper. Let π be a random partition of Rd, λ be the Lebesgue measure, Pn be
the empirical measure of n i.i.d. observations X1, ..., Xn from P with density f ,
and define

f̂(x) =


Pn(π[x])
λ(π[x])

, if λ(π[x]) < ∞,

0 otherwise.

where π[x] is the element A ∈ π which contains x. In Lugosi and Nobel, the par-
titions π are any random (data driven) partitioning rules, for instance tree-based
rules.

In our setting, Rd is replaced by [0, 1] and π is always a collection of disjoint
intervals, which makes things simpler. We briefly describe what π and π[x] look
like for our collection of histogram variants, where k is fixed: For the irregular
KL/L2-histograms of variable weight, π[x] is the set [âi−1, âi) which x belongs to,
where âis are the corresponding split point estimates, and π is the collection of all
of these intervals. For the k-spacing histograms, π[x] = [q̂i−1, q̂i), where q̂is are
the sample quantiles, and π = {[q̂i−1, q̂i) | i = 1, .., k − 1}. The regular histogram
can have any non-random partition π of k disjoint intervals, and π[x] picks which
one it belongs to. Finally, the constant weight KL/L2-histograms don’t fit into
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this framework, but we will speculate on how to show L1-consistency for these
later on.

We require two technical definitions.

Definition 4.4.1. Let G be a family of sets in Rd. We define the shatter
coefficient by

Sn(G ) = max
B⊂Rd, |B|=n

(| {B ∩ C | C ∈ G } |) .

Let A be a family of partitions of Rd. We define the growth function of A by

∆∗
n(A ) = max

B⊂Rd, |B|=n
| {{A1 ∩B,A2 ∩B, ...Ar ∩B} | (A1, A2, ..., Ar) ∈ A } |.

While the shatter coefficient is a classic of VC-theory, the growth function
is specific to this particular paper (Lugosi and Nobel, 1996). Take note of
the difference between these two concepts: The shatter coefficients finds the
cardinality of a set of sets: It finds the maximal number of distinct subsets
of an n-ary set of numbers which G can isolate. The growth function finds
the cardinality of a set of sets of sets, namely the maximal number of distinct
partitions of any n-ary set in Rd that A can isolate. The concept ∆∗

n(A ) is
strictly speaking not needed in the sequel. Still we feel it is worth including,
just to be true to the paper. Also, as it gives a better feeling for the situation.
The following theorem is called the Vapnik-Chervonenkis inequality (Vapnik
and Chervonenkis, 1971), and a proof can be found in e.g. Devroye et al. (2013,
section 12.4).

Theorem 4.4.2. Let G be a family of sets, P a probability measure, and Pn the
empirical measure of P . For every n ≥ 1 and ε > 0,

P(sup
A∈G

|Pn(A)− P (A)| > ε) = 4S2n(G ) exp(−nε2/8), (4.4.2)

where S2n(G ) is the shatter coefficient of G .

The following beautiful lemma is due to Scheffé (1947), with the proof from
Devroye and Györfi (1985, theorem 1). Here B is the Borel σ-algebra on Rd.

Lemma 4.4.3. For every pair of densities f, g on Rd,
ˆ

|f(x)− g(x)|dx = 2 sup
B∈B

|
ˆ
B

(f(x)− g(x)) dx| (4.4.3)
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where B is the Borel σ-algebra on Rd. Furthermore, B = {x ∈ Rd | f(x) > g(x)}
is a witness to the supremum.

Proof. Let B be as above, and observe that

ˆ
|f(x)− g(x)|dx =

ˆ
B

(f(x)− g(x)) dx+

ˆ
Bc

(g(x)− f(x)) dx.

Since
´
(f(x)− g(x))dx = 0,

ˆ
Bc

(g(x)− f(x)) dx =

ˆ
(g(x)− f(x))dx−

ˆ
B

(g(x)− f(x)dx

=

ˆ
B

(f(x)− g(x))dx,

and
´
|f(x)−g(x)|dx = 2

´
B
(f(x)− g(x)) dx. Thus 4.4.3 holds with the equality

replaced with ” ≤ ”.
Let A ∈ B be arbitrary. Then

|
ˆ
A

(f(x)− g(x))dx| = |
ˆ
A∩B

(f(x)− g(x))dx+

ˆ
A∩Bc

(f(x)− g(x))dx|

≤ max

(ˆ
A∩B

(f(x)− g(x))dx,

ˆ
A∩Bc

(g(x)− f(x))dx

)
≤ max

(ˆ
B

(f(x)− g(x))dx,

ˆ
Bc

(g(x)− f(x))dx

)
=

1

2

ˆ
|f(x)− g(x)|dx.

And the result is proved.

Lugosi and Nobel arrive at the next result (Lemma 1) through a combination
of the Vapnik-Chervonenkis inequality and the previous result.

Lemma 4.4.4. Let A be a collection of partitions of Rd. For each n ≥ 1 and
ε > 0,

P

[
sup
π∈An

∑
A∈π

|Pn(A)− P (A)| > ε

]
≤ 4∆∗

2n(An)2
m(An) exp(−nε2/32), (4.4.4)

where m(An) = max(|π| | π ∈ An).
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Proof. We define f(x; π) = P (π[x]) and fn(x; π) = Pn(π[x]), and let Uπ be the
set of all sets which can be written as a union of elements from π.∑

A∈π

|Pn(A)− P (A)| =

ˆ
|fn(x; π)− f(x; π)|dx

= 2 sup
A∈U

|
ˆ
A

(fn(x; π)− f(x; π)) dx|,

by Scheffé’s theorem. Now define UAn = ∪π∈AUπ, and obtain

sup
π∈An

∑
A∈π

|Pn(A)− P (A)| = 2 sup
A∈UAn

|
ˆ
U

(fn(x; π)− f(x; π)) dx|

= 2 sup
A∈UAn

|Pn(A)− P (A)|.

By the Vapnik-Chervonenkis inequality,

P( sup
A∈UAn

|Pn(A)− P (A)| > ε) = 4S2n(UAn) exp(−nε2/32).

Now we need to show that S2n(UAn) ≤ ∆∗
2n(An)2

m(A). Let B ⊂ Rd have car-
dinality n, and suppose that max |{B ∩ U | U ∈ UAn}| = r, with U1, U2, ..., Ur

being witnesses to this partitioning. We can then assume that each Ui is from
a single partition. The number of such Uis is clearly bounded by the maximal
number of partitions for n sets multiplied by the maximal cardinality of these
partitions.

The following corollary (Corollary 1 of Lugosi and Nobel (1996)) is a key
result, where it is stated without proof.

Corollary 4.4.5. Let Xi
i.i.d.∼ P be random vectors in Rd, and let Ai, i = 1, ..., n

be a sequence of partition families. Assume the conditions
(a) n−1m(An) → 0, and,
(b) n−1 log(∆∗

n(An)) → 0,

hold as n → ∞. Then

sup
π∈A

∑
A∈π

|Pn(A)− P (A)| a.s→ 0.

Proof. We will use the following consequence of Borel-Cantelli lemma: If for
any ε > 0,

∑∞
i=1 P (|Xi −X| > ε) < ∞, then Xi

a.s.→ X (Rosenthal, 2006, p. 59,
corollary 5.2.2). By Lemma 4.4.4,
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∞∑
n=1

En =
∞∑
n=1

4∆∗
2n(A)2m(A) exp(−nε2/32),

where En is the event
{
supπ∈A

∑
A∈π |Pn(A)− P (A)| > ε

}
. By the root test

Rudin (1987, p. 200), the radius of convergence R (here ε is the variable!) is
given by

R−1 = lim sup
n→∞

(4∆∗
2n(A)2m(A))

1
n .

Observe that

lim sup
n→∞

(4e2n2n)
1
n = 8e2,

which gives R = ∞ in conjunction with a) and b). Hence the power series
converges for every ε > 0, and the result is proved.

Now we’re ready for the histogram consistency theorem! Lugosi and Nobel
proved a more general theorem for Rd (see their Theorem 1), which we modify
for the case of our restricted setting on [0, 1]. The following result also uses ideas
from their Theorem 4 on the consistency of k-spacing histograms. In the next
theorem, âi are the random split points corresponding to one of the histogram
types discussed in the preceding sections.

Theorem 4.4.6. Let X1, ..., Xn
i.i.d.∼ P , where P is supported on [0, 1] and has

a density f . If, as n → ∞ and kn → ∞ the following conditions hold:

(a) n−1kn → 0, and,

(b) P[maxi=1,...,k−1 P [âi−1, âi) > γ]
a.s→ 0 for every γ > 0,

then

ˆ
|f(x)− f̂n(x)|dx

a.s→ 0.

Proof. Define fn = P (π[x])/λ(π[x]), which is the limit histogram for the parti-
tion πn. Here the partition πn is defined by

πn = {[0, â1), [â1, â2), ..., [âk−1, 1]} ,

where the âis are obtained by some minimum divergence method. By the triangle
inequality, it suffices to show that both

´
|f̂n(x)− fn(x)|dx → 0 and

´
|fn(x)−

f(x)|dx → 0 almost surely. For the first integral,
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ˆ
|f̂n(x)− fn(x)|dx =

ˆ k∑
i=1

|P (π[x])− Pn(π[x])

λ(π[x])
|dx

=
∑
A∈π

|P (A)− Pn(A)|

≤ sup
π∈An

∑
A∈π

|P (A)− Pn(A)|.

In order to use Corollary 4.4.5 to conclude
´
|f̂n(x) − fn(x)|dx → 0, we have

to verify condition a) and b) of that corollary. a) Is true since m(A) = kn and
knn

−1 → 0 by assumption. To verify b) is slightly more involved. For each n,
the quantity ∆∗

n(An) equals the number of ways n points can be partitioned into
kn intervals. It can be shown that n−1 log(∆∗

n(An)) ≤ 2h( k
n+k

) → 0, where h is
the binary entropy function h(x) = −x log x− (1−x) log(1−x) (see Lugosi and
Nobel (1996, proof of theorem 4)).

As for the other integral,

ˆ
|fn(x)− f(x)|dx =

∑
A∈π

ˆ
A

|f(x)− P (A)

λ(A)
|dx

=
∑
A∈π

(λ(A))−1

ˆ
A

|f(x)λ(A)− P (A)|dx

=
∑
A∈π

(λ(A))−1

ˆ
A

|f(x)
ˆ
A

dy −
ˆ
A

f(y)dy|dx

=
∑
A∈π

(λ(A))−1

ˆ
A

|
ˆ
A

(f(x)− f(y))dy|dx.

Now we apply Fubini’s theorem together with the fact that |
´
fdµ| ≤

´
|f |dµ

to get

ˆ
|fn(x)− f(x)|dx ≤

∑
A∈π

(λ(A))−1

ˆ
A×A

|f(x)− f(y)|dxdy.

Fix an ε > 0 and find a γ > 0 such that supx,y∈A |f(x)− f(y)| < ε for any set A
with diameter bounded by δ. For an A in π, either A has diameter bounded by
γ, whereupon

(λ(A))−1

ˆ
A×A

|f(x)− f(y)|dxdy ≤ ελ(A),

or A has diameter greater than γ, which implies
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(λ(A))−1

ˆ
A×A

|f(x)− f(y)|dxdy ≤ (λ(A))−12

ˆ
A

f(x)dxdy

≤ 2P (A).

it is time to make use of assumption (b). Let A?
π be the union of all A ∈ π with

diameter greater than γ. Then there are maximally γ−1 such intervals, as more
would require an interval of length greater than 1. Then P (A?

π) ≤ 1
γ
maxP (A),

which is almost surely less than ε in the limit (simply chose εγ in assumption
(b)). Since λ[0, 1] = 1 and π is a partition, the event

ˆ
|fn(x)− f(x)|dx ≤ 3ε

happens almost always for any fixed ε, and the result follows.

The content of our modification is, besides the simplification to [0, 1], modi-
fied conditions for the theorem to hold. These conditions are more in line with
the rest of our discussion. The original theorem replaced our conditions (a) and
(b) by condition (c):

P[x | diam(π[x]) > γ]
a.s→ 0, for every γ > 0,

where π is allowed to be an arbitrary partitioning, not only intervals. Also,
condition (a) and (b) from Corollary 4.4.5 were included.

It follows immediately that regular histograms with bin widths going to zero
are L1-consistent. The k-spacing density estimates are also consistent, which fol-
lows from the fact that Pn[âi−1, âi) = k−1 by construction and supi |Pn[âi−1, âi)−
P [âi−1, âi)|

a.s.→ 0 by the Glivenko-Cantelli theorem; hence (b) is satisfied.
Let’s consider the KL/L2-histograms with variable weights. It appears dif-

ficult to find simple conditions which makes condition (b) true. In the next
section we will prove consistency of the split points for these histograms, and
in the process we introduce a δ > 0 which provides bounds on how small the
windows can be. It is natural to let δk → 0 when k increases, and analogously,
we can provide a sequence γk → 0 which forces (b) to be true by the same
Glivenko-Cantelli argument as above. We arrive at the following proposition:

Proposition 4.4.7. Let ĥ(x) be the KL/L2-histogram with variable weights

constructed from f . Then ĥ
L1

→ f almost surely, provided the bin widths are kept
smaller than γk for some γk → 0.
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Notice that condition (b) is false for several histograms that probably are
consistent. For instance, let f be the density given by

f(x) = α

(1− x)2, when x ≤ 1/2,

1/4, otherwise.

Here α = 5
12

is the norming constant. The true split points of the KL/L2-histograms
will be have âk−1 ≈ 0.5, when k is large enough, but should be consistent
provided f(x) = 3(1− x)2 is.

While the irregular histograms are as much about the placing of the split
points as the fact that they are good histograms (recall the definition following
Proposition 4.2.2), Proposition 4.4.7 only makes use of the fact that they are
good histograms, and do not say anything about the limit properties of the split
points. It appears plausible that condition

P[ max
i=1,...,k−1

P [âi−1, âi) > γ]
a.s→ 0 for every γ > 0,

(4.4.1) holds when we restrict our attention to densities f which are nowhere
locally constant (i.e. there is no x,δ and c such that f((x− δ, x+ δ)) = c). Any-
how, since the histograms are consistent for any such choice of γk, the question
of consistency without γks is not tremendously important. A possible approach
to verifying the condition is to 1.) Prove that maxi=1,...,k−1 P [ai−1, ai) < γ, where
ai−1, ai are the true split points of P when k is sufficiently large, and 2.) Find
a probabilistic bound on the difference P(|P [âi−1, âi) − P [ai−1, ai)| > ε). An
example of such a bound, albeit in a situation more akin to that of Manski’s
estimator, can be found in Devroye et al. (2013, Theorem 4.5).

For the KL/L2-histograms with constant weights, the same reasoning can’t
be used, since Theorem 4.4.6 only applies to good histograms. One idea to
explore is whether the constant weight histograms behave asymptotically like
good histograms in some sense. For instance, one could explore the L1-distance
between the variable weight KL histogram evaluated at â, and the constant
weight KL histogram evaluated at â, where â is the split point estimate of KL

with constant weights.
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|
k∑

i=1

k−1 − Pn[âi−1, âi)

âi − âi−1

log(Pn[âi−1, âi))|1[âi−1,âi)(x)dx ≤

k∑
i=1

|
[
k−1 − Pn[âi−1, âi)

]
log(Pn[âi−1, âi))|

Does this converge to 0 when n−1k → 0 and k → ∞? (Or at some slower rate,
like n−1ek → 0?) Another possibility is that â gets asymptotically close to the
vector of k−1-quantiles qk as k → ∞. Finally, these options might fail, and we
would need an entirely different consistency proof, or the estimators fail to be
consistent.

Finally, recall the regression histograms mentioned in Section 2.4 on page 28
on binary decision trees. Nobel et al. (1996) studied, in a sister paper of Lugosi
and Nobel (1996), sufficient conditions for data-driven regression histograms to
be L2-consistent, meaning that

´
(f̂(x)− f(x))2dP (x)

a.s.→ 0, where f is the real
regression function, f̂ is the data-dependent histogram regressor, and P is the
distribution of the covariates X.

4.5 Limit distributions

In this section we prove consistency of the split points of our irregular histograms
and derive their limit distributions. Everything in this section is new work.
(Hjort, 2007, p. 33) provided the explicit formula for the limiting distribution of
the irregular KL-histogram with constant weights, which provided the starting
point for this thesis.

4.5.1 Asymptotics for the Kullback-Leibler histogram

We focus on the irregular histogram with KL-minimisation. The objective func-
tion has the form

m(a,w) =
k∑

i=1

log
wi

ai − ai−1

1[ai−1,ai)(x),

where (a, w) = (a1, ...ak−1, w1, ...wk−1). When appropriate, we will consider
a0 = 0 and ak = 1 to be fixed parameters. We already know that the actual
minimiser for the histogram with variable weights is of the form
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k∑
i=1

log(
P ([ai−1, ai))

ai − ai−1

)P ([ai−1, ai)).

We define the set of feasible solutions and denote it

S =
{
(a, w) | a0 = 0 < a1 < ... < ak−1 < ak = 1;

∑
wi = 1, wi < 1

}
.

We impose the following conditions on the underlying distribution F .
(A1) It has an everywhere positive density f(x) on (0, 1),
(A2) it is differentiable at each x ∈ (0, 1);
(A3) the Hessian V of Pm(a,w) is negative definite;
(A4) there is a unique, well-separated maximiser of the objective function;
(A5) it satisfies the condition wi+1

ai+1−ai
6= wi

ai−ai−1
for each i.

Condition A1 and A2 can be weakened, as we strictly speaking only require
them to be non-zero and differentiable in neighbourhoods around the points ai,
i = 1, ..., k− 1. But this relaxed condition is elusive and difficult to verify. Con-
ditions A1 and A2 tell us which setting we’re in: Most importantly, we are in
a smooth world. A3 is needed in order to make the limiting distribution make
sense and handy for making sure the estimates are consistent. A4 is an iden-
tifiability condition: Without it there is no unique histogram which minimises
the distance between the underlying F and itself, so it is a natural condition.
A5 is necessary to ascertain n

1
3 -convergence, in particular for condition 2.2.5 on

page 22 to hold. We will also establish a result for an alternative condition to
A5, namely

(A5’) F satisfies the condition wi+1

ai+1−ai
= wi

ai−ai−1
for each i,

which curiously makes everything converge at
√
n-rate to a normal distribution!

First we will prove consistency of the estimates â, ŵ. Recall the Consistency
Theorem on page 21, which states that we only need to show that F is Glivenko-
Cantelli for consistency to hold whenever the maximum is well-separated. We
have already assumed that the maximum is well-separated in A3, which seems
reasonable, although we will not attempt to prove or find any necessary or suf-
ficient conditions for this condition to hold in this thesis. In order to cope with
unboundedness we slightly modify the set of allowed values S with the additional
constraint ai − ai−1 ≥ δ, where δ > 0 is arbitrary. We denote an S modified
in such a way by Sδ and go on to prove that the KL histogram with constant
weights is Glivenko-Cantelli for every fixed k.

Proposition 4.5.1. The class F =
{
ma =

∑k
i=1 log

k−1

ai−ai−1
1[ai−1,ai) | a ∈ Sδ

}
is



4.5. LIMIT DISTRIBUTIONS 97

Glivenko-Cantelli for any choice of δ.

Proof. By theorem 2.1.4 it suffices to show that N[](ε,F , L1(P )) < ∞ for any
ε > 0 sufficiently small. We show this in detail for k = 2. We define the following
functions la,η and ua,η by

la,η(x) = − log(a+ η)1[0,a−η)(x)− log(1− a+ η)1[a−η,1](x),

ua,η(x) = − log(a− η)1[0,a+η)(x)− log(1− a+ η)1[a+η,1](x),

when a < 0.5, where the signs in the indicator functions are flipped whenever
a ≥ 0.5. We have la,η ≤ ma+ξ ≤ ua,η whenever ξ < η, which can be verified by
inspecting the definition of ma.

The L1(λ)-distance between these brackets is

[log(a+ η)− log(a− η)] (a− η)

+ [log(1− a+ η)− log(a− η)] 2η

+ [log(1− a+ η)− log(a+ η)] (1− a+ η).

This simplifies to 2η| log(1− a)− log(a)| whenever η is close to 0 (higher order
terms are discarded). Since a ≥ δ and 1 − a ≥ δ by our previously imposed
constraint, the L1(λ)-distances are bounded by ε = 4η log(δ−1). Now assume
P � λ, and notice that the L1(P )-distance is bounded by 12η log(δ−1) whenever
δ is sufficiently small. The increased bound is due to the fact that P might have
all its mass inbetween a−η and a+η. In conclusion, we need η−1

2
= 6ε−1 log(δ−1)

such brackets, hence the covering number N[](ε,F , L1(P )) ≤ 6ε−1 log(δ−1) < ∞
for every ε > 0.

We extended this technique, not entirely rigorously, to the case of an arbit-
rary k. We define k-variate generalisations of la,η and ua,η in a similar manner
as above: We let la,η(x) =

∑k
i=1 log

k−1

ai−ai−1+η
1Aη

i
, where Aη

1 = [0, a1 + η) when
a1 > a2 − a1 and Aη

1 = [0, a1 − η) otherwise. In general, Aη
i = [bi−1, bi) where

bi−1 = ai−1+η if ai−ai−1 > ai−1−ai−2 and bi−1 = ai−1−η otherwise. The point
is that la,η lies below ma+η for any vector of deviations η pointwise bounded by
η.

The L1(P )-distance between la,η and ua,η is bounded by 4η(k + 1) log(δ−1)

by the same argument as above. We need O(η−k+1) such brackets. We can
partition [0, 1] into 1

2η
sets of length η, {[0, 2η), [2η, 4η), ...} where each tuple of
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midpoints α1, ...αk covers every ma with a = α1 + ξ1, ...αk + ξk with ξi < η. It
follows that N[](ε,F , L1(P )) ≤ Kε−k+1, for some K independent of ε, and the
result follows.

The preceding bound also works on the L2 bracketing entropy N[](ε,F , L2(P )).
For when η is small, the L2-distance between la,η and ua,η is bounded above by
Kη2 for some K, hence they are clearly bounded by K ′η for some K ′ as well.
We claim without proof that this construction can be extended to the other two
types of histograms. The choice of a δ > 0 may be unnecessary, as we could
conceivable have used features of the distribution P instead. A good choice of
δ is of paramount importance in practice, as it avoids the “Dirac catastrophe”
described in Section 4.7 on page 122.

Since logN[](ε,F , L2(P )) = 0 when ε is sufficiently large, we can bound the
bracketing integral by

J[](δ, F, L2(P )) =

ˆ ∞

0

√
logN[](ε,F , L2(P ))dε

=

ˆ 1

0

√
K1 log εdε+K2

=
1

2

√
πK1 +K2.

Where K1, K2 are constants and the value of
´ 1
0

√
K1 log εdε was found by the

computer algebra system Maxima (2014). From this we can conclude that the
histograms are P -Donsker for fixed k.

Recall that Mδ =
{
m(a,w) −m(a0,w0) | d((a, w), (a0, w0)) ≤ δ

}
, a local variant

F . Here d is the pointwise maximum among |ai − a0i |. We define an envelope
Mδ for this class,

Mδ =
k∑

i=1

log
wi + δ

ai − ai−1 − 2δ
1Bi

− log
wi

ai − ai−1

1[ai−1,ai),

where Bi = [ai±δ, ai−1±δ) and the sign of δ is chosen so that Mδ(x) is maximised
for each x. By reasoning similar to that used above, it is clear that the local
bracketing integral is bounded,

ˆ ∞

0

sup
δ<δ0

√
logN[](ε,Mδ, L2(P )dε < ∞,

which is one of the conditions for the rate theorem (Theorem 2.2.4 on page 22).
Now we’re ready for a result that does several things: It describes the shape of
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the limiting Gaussian process in the rate theorem, and establishes the uniformity
condition (2.2.5) and Gaussian condition (2.2.6) involved in said theorem.

Theorem 4.5.2. Let m(a,w) =
∑k

i=1 log
wi

ai−ai−1
1Ii(x) be the objective associated

with the KL histogram with either variable or constant weights wj. Denote the
least false vectors by a and w, and let f be the density of P . Provided the
conditions (A1-A5) are satisfied, the following is true

lim
δ↘0

P
(
m(a,w)+δ(g,g′) −m(a,w)+δ(h,h′)

)2
δ

=
k−1∑
i=1

f(q0i )|gi − hi|β2
i ,

where

βi = log
wi+1

ai+1 − ai
− log

wi

ai − ai−1

.

Thus condition (2.2.5) is satisfied for φ(δ) =
√
δ. Furthermore, condition

(2.2.6)is satisfied with

G(h) =
k−1∑
i=1

f(ai)
1
2

∣∣∣∣log wi+1

ai+1 − ai
− log

wi

ai − ai−1

∣∣∣∣Wi(hi) (4.5.1)

where Wi are independent standard Brownian motions.

Proof. First we extend, for convenience’s sake, h, g with h0, hk, g0, hk = 0. To
calculate limδ↘0

1
δ
P
(
m(a0,w0)+δ(h,h′) −m(a0,w0)+δ(g,g′)

)2 we will find

1

δ
P
[
m(a0,w0)+δ(h,h′)m(a0,w0)+δ(g,g′)

]
first, making use of the fact that δ is arbitrarily small. We define two handy
elements, namely

Sf
i (δ) = [ai−1 + δfi−1, ai + δfi),

which is the δf -extended version of [ai−1, ai), and

Cf
i (δ) = log(wi + δf ′

i)− log((ai + δfi)− (ai−1 − δfi−1))

≈ log
wi

ai − ai−1

+
δf ′

i

wi

− δ(fi − fi−1)

ai − ai−1

, (4.5.2)

The δ(f, f ′)-extended variant of (logwi− log ai−ai−1). Here the approximation
follows from a first order Taylor expansion and the fact that δ is small. Then



100 CHAPTER 4. DENSITY ESTIMATION ON THE UNIT INTERVAL

we have

P
[
m(a0,w0)+δ(h,h′)m(a0,w0)+δ(g,g′)

]
=

k∑
i=1

k∑
j=1

Ch
i (δ)C

g
j (δ)P (Sh

i (δ) ∩ Sg
j (δ)),

by the definitions of theCs and Ss, for any choice of g, h.
We first consider the case g 6= h. Note that when δ is small enough Sg

i (δ) ∩
Sh
j (δ) = ∅ for all i, j except i = j, and i = j + 1, j = i + 1. Also, Sh

i (δ) ∩
Sh
j (δ) = Sg

i (δ) ∩ Sg
j (δ) = ∅ for all i 6= j. Using this fact, we calculate the term

P
[
m(a,w)+δ(h,h′)m(a,w)+δ(g,g′)

]
= A1 + A2 + A3, where

A1 =
1

δ

k∑
i=1

Cg
i+1(δ)C

h
i (δ)P (Sg

i+1(δ) ∩ Sh
i (δ)),

A2 =
1

δ

k∑
i=1

Cg
i (δ)C

h
i+1(δ)P (Sg

i (δ) ∩ Sh
i+1(δ)),

A3 =
1

δ

k∑
i=1

Cg
i (δ)C

h
i (δ)P (Sg

i (δ) ∩ Sh
i (δ)).

The probabilities in the first sum are easily found to be P [ai + δgi, ai + δhi) =

f(ai)δ(hi − gi) if hi ≥ gi, or 0 if hi < gi, while for the second sum we get
f(ai)δ(gi − hi) if hi ≤ gi or 0 if gi < hi. Since these conditions can’t be true at
the same time, we combine the sums, use (4.5.2), and pass δ → 0 to get

lim
δ↘0

1

δ
(A1 + A2) =

k∑
i=1

f(ai) log
wi

ai − ai−1

log
wi+1

ai+1 − ai
|hi − gi|. (4.5.3)

Similarly, the third sum is found to be

A3 =
k∑

i=1

[Cf
i (δ)C

g
i (δ)(P ([ai−1, ai))

+ δ [f(ai)min(gi, hi)− f(ai−1)max(gi−1, hi−1)])].

Now we consider the case when h = g. In this case the cross terms corresponding
to A1 and A2 equals 0 and we’re left with the natural analogues of A3,
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A4 =
∑

Cg
i (δ)C

g
i (δ)(P ([ai−1, ai)) + δ [f(ai)gi − f(ai−1)gi−1]),

A5 =
∑

Ch
i (δ)C

h
i (δ)(P ([ai−1, ai)) + δ [f(ai)hi − f(ai−1)hi−1]).

Notice that Cg
i (δ)C

h
i (δ) =

(
log wi

ai−ai−1

)2
+ O(δ), for any h, g. Also, x + y −

2min(x, y) = 2max(x, y)− x− y = |x− y|, which can be applied on the sum

[f(ai)gi − f(ai−1)gi−1] + [f(ai)hi − f(ai−1)hi−1]

−2 [f(ai)min(gi, hi)− f(ai−1)max(gi−1, hi−1)]

for each i to get |hi−gi|f(ai)+|hi−1−gi−1|f(ai−1), which we denote Ki. The other
term to the left in A3, A4, A5 is P ([ai−1, ai)); when these terms are multiplied

with the
(
log wi

ai−ai−1

)2
, they cancel each other out. Furthermore, the terms

O(δ) terms in Cg
i (δ)C

h
i (δ) + Ch

i (δ)C
h
i (δ) + Cg

i (δ)C
g
i (δ) also cancel each other,

and we’re left with only O(δ2) terms, which will get sent off to zero. Hence we
get

lim
δ↘0

1

δ
[A4 + A5 − 2A3)]

= lim
δ↘0

(
1

δ

k∑
i=1

[

(
log

wi

ai − ai−1

)2

+O(δ)]δKi

)
(4.5.4)

=
k∑

i=1

Ki

(
log

wi

ai − ai−1

)2

=
k−1∑
i=1

|hi − gi|f(ai)

((
log

wi+1

ai+1 − ai

)2

+

(
wi

ai − ai−1

)2
)
.

Now we take the difference limδ↘0
1
δ
[A4 + A5 − 2A3)]−limδ↘0

1
δ
2(A1+A2), which

equals

k−1∑
i=1

f(ai)|gi − hi|
(
log

wi+1

ai+1 − ai
− log

wi

ai − ai−1

)2

.

It remains to show that this corresponds to E(G(h) − G(g))2 for the Gaussian
process described above. Its covariance kernel is given by

k−1∑
i=1

min(gi, hi)f(ai)

(
log

wi+1

ai+1 − ai
− log

wi

ai − ai−1

)2

,
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by the property of Brownian motions that Cov(B(t), B(s)) = σ2min(t, s) whenever
B is a Brownian motion such that B(t) has variance σ2. From this it follows
that

E(G(h)−G(g))2 = VarG(h) + VarG(g)− 2Cov(G(g), G(h))

=
k∑

i=1

f(ai) |β| (hi + gi − 2min(hi, gi))

=
k−1∑
i=1

f(ai)β
2|hi − gi|.

Notice that h′ and g′, the free variables corresponding the weights wi, play no
active role in the proof. Their role in the limit distribution is solely confined to
the Hessian or information matrix V , considered in the next theorem.

Remark 4.5.3. Notice the role of A5: It makes sure that

k−1∑
i=1

f(q0i )|gi − hi|
(
log

wi+1

ai+1 − ai
− log

wi

ai − ai−1

)2

is non-zero for every choice of h and g. Assumption A4 is clearly necessary, as
we can see in this example.

Example 4.5.4. (On assumption A4). Consider the case of Beta(α, α), con-
stant weights and k = 2. These distributions are symmetric, are unimodal
whenever α ≥ 1 and have two “arms” on each side when α < 1. Not surpris-
ingly, there are two best approximating histograms when α < 1 is sufficiently
close to 0. For instance, when α = 1

10
, there is one maximum in a ≈ 0.99995

and one in 1− a. As can be seen in the Figure 4.5.1, not every Beta(α, α) with
α < 1 has this feature.
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Figure 4.5.1: (left) Densities for Beta(α, α) for several choices of α. (right) The
corresponding objective functions.
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We proceed to find the information matrix V : Recall from the rate theorem
on page 22 that the limiting distribution of n

1
3 ((̂a, w) − (a, w)) us on the form

argmaxh(
1
1
hTV g+G(h)), where G(h) is found in the previous theorem and V is

the Hessian matrix of Pm(a,w) with respect to the parameter vector (a, w). The
next proposition provides the elements of V for both the case of constant and
variable weights.

Proposition 4.5.5. The information matrix V has elements

Vi,i+1 =
f(ai) + f(ai+1)

ai+1 − ai
− [F (ai+1)− F (ai)]

(ai+1 − ai)
2 ,

Vi,i = f ′(ai)(log
wi

ai − ai−1

− log
wi+1

ai+1 − ai
)

−2f(ai)

(
1

ai+1 − ai
+

1

ai − ai−1

)
+
[F (ai+1)− F (ai)]

(ai+1 − ai)
2 +

[F (ai)− F (ai−1)]

(ai − ai−1)
2 ,

whenever i is less than k (these correspond to the split points). For i 6= k − 1,

we have

Vi,i+k−1 =
f(ai)

wi

,

Vi−1,i+k−1 =
f(ai−1)

wi

,

Vk−1,i+k−1 =
f(ak−1)

1− wk

,

while i = k − 1 gives us

Vk−1,2k−2 =
f(ai)

wi

+
f(ak−1)

wk

,

Vk−2,2k−2 =
f(ai−1)

wi

.

Here the conventions a0 = 0 and ak = 1 are used. All the other elements are 0.

Proof. For the elements only involving the split points, observe that the only
part of the sum involving ai is
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v = [F (ai)− F (ai−1)] (logwi − log (ai − ai−1))

+ [F (ai+1)− F (ai)] (logwi+1 − log (ai+1 − ai)).

Differentiation gives us

dv

dai
= f(ai) (logwi − log (ai − ai−1))−

[F (ai)− F (ai−1)]

ai − ai−1

−f(ai) (logwi+1 − log (ai+1 − ai)) +
[F (ai+1)− F (ai)]

ai+1 − ai
.

Hence

dv

daiai+1

=
f(ai) + f(ai+1)

ai+1 − ai
− [F (ai+1)− F (ai)]

(ai+1 − ai)
2

while

dv

daidai
= f ′(ai)(logwi − logwi+1 − log(ai − ai−1) + log (ai+1 − ai))

−2f(ai)

(
1

ai+1 − ai
+

1

ai − ai−1

)
,

+
[F (ai+1)− F (ai)]

(ai+1 − ai)
2 +

[F (ai)− F (ai−1)]

(ai − ai−1)
2 .

Concerning i′, recall that wk =
∑k

i=1wi, and that wk only appears in

[1− F (ak−1)] (logwk − log (1− ak−1)).

This means that wi also cares about the contribution it gives to the last box, an
issue not faced by the ais. it is clear that all elements involving i’ are 0 except

d

dwidwi

= −
(

1

F (ai)− F (ai−1)
+

1

1− F (ak−1)

)
,

where 1
1−F (ak−1)

appears due to the additional contribution from wk. Also, when
i 6= k − 1, we have
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d

dwidai
=

f(ai)

wi

,

d

dwidai−1

=
f(ai−1)

wi

,

d

dwidak−1

=
f(ak−1)

wk

.

For i 6= k − 1, and

d

dwidai
=

f(ai)

wi

+
f(ai)

1− wi

,

when i = k − 1.

Combining these two results with the rate theorem, we get this thesis’ main
result: The limiting distribution of the irregular Kullback-Leibler histogram with
variable and constant weights. Looking at the rate theorem, the only conditions
left are those concerning a “suitable envelope Mδ”, namely the Lindeberg condi-
tion limδ↘0

P ?M2
δ {Mδ>ηδ−2φ2(δ)}

φ2(δ)
= 0 together with the condition φ2(δ) ≥ P ?M2

δ ,
which we ignore. Both of these can probably be shown by using similar calcula-
tions as in Theorem 4.5.2, but this would be laborious and not very enlightening.
We assume these two conditions are satisfied in the following.

Theorem 4.5.6. Assume A1-A5. The rescaled process n
2
3 (Pnm(a,w)+n− 1

3 (̂a,w)
−

Pnm(a,w)) converges in distribution to 1
2
hTV h+G(h), where G(h) is the Gaussian

process

G(h) =
k−1∑
i=1

f(ai)
1
2

∣∣∣∣log wi+1

ai+1 − ai
− log

wi

ai − ai−1

∣∣∣∣Wi(hi),

with wi = P ([ai−1, ai)) in the case of variable weights, and the predefined wi

otherwise, and V is the Hessian of Pm(a,w) at (a, w) The maximum likelihood
estimate converges with rate n

1
3 and its limiting distribution is given by

n
1
3 ((̂a, w)− (a, w))

d→ argmax
h

[
1

2
hTV h+G(h)

]
,

where the elements of V are given in Proposition 4.5.5.

Example 4.5.7. We begin by studying the simplest case of k = 2 and constant
weights; in this case there is only a single true a0. From Proposition 4.5.5 we
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Table 4.2: Convergence of the sample distributions for the split point. The approx-
imate coordinate search (see Section 4.6) has been used, but the exact algorithm gives
similar results for the small ns.

50 100 500 1000 10000 100000
Beta(1, 1

2
) 0.255 0.074 0.079 0.068 0.031 0.010

Beta(2, 7) 0.124 0.103 0.066 0.057 0.040 0.043
lN(0, 1) 0.049 0.036 0.018 0.011 0.006 0.003

find that

V = f ′(a)(log(1− a)− log a)− 2f(a)

(
1

1− a
+

1

a

)
+

1− F (a)

(1− a)2
+

F (a)

a2
,

while G(h) = f(a)
1
2 |log a− log(1− a)|W (h) = dW (h), and the limiting distri-

bution is argmaxh
1
2
V h2 + G(h). Using Proposition 2.2.4 from the section on

Chernoff’s mode estimator, we find the equivalent formulation |2d
V
|− 2

3Z, where
Z = argmaxh [W (h)− h2] is Chernoff’s distribution.

Next we will use this result in some simulations. Using the results in Groene-
boom and Wellner (2001, p.9 - 13, table 1 and 3), we can obtain almost exact
quantiles for this distribution, allowing us to construct approximate confidence
intervals and check how well the limit distribution approximates the actual distri-
butions for different n. However, this will not work for any choice of distribution
F, as the table in Groeneboom and Wellner doesn’t contain enough values for
the calculation of arbitrary rescalings. Due to this we do one large simulation
of the Chernoff distribution with step size δ = 0.001 with 600 000 replications.
Our goal is to understand how fast the finite sample distribution of n

1
3 (q̂0 − q0)

converges to the stated limiting distribution.

Example 4.5.8. The Kolmogorov distance between two distributions F and
G is defined by dK(F,G) = supx |F (x) − G(x)|, which corresponds to the
greatest vertical distance between the two distributions when they are plot-
ted in the same window. We will use this function to measure the distance
between simulated finite sample distributions and the real distribution. Our
choices of test distributions are Beta(1, 1

2
) and Beta(2, 7), which have slightly

different shapes. For comparison’s sake, we perform the same experiment with
the mean of X1, ..., Xn standard log normal variables, which is understood as a
case when the CLT is relatively slow working. We perform the experiment for
n = 50, 100, 500, 1000, 10000, 100000.

Even the fastest converging distributions are very slow compared to the mean
of log-normals. We supply some plots of what’s going on in Figure 4.5.2.
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Figure 4.5.2: Plot of simulated split points with KDE from the locfit package
(Loader, 2013) in orange, the limiting distributions are purple. it is clear that the
limit distribution will not work well as an approximation.

Next we study the simplest example of irregular histograms.

Example 4.5.9. We study the special case of k = 2 for KL weights. The
Hessian V is

V =

[
c1 c2

c2 c3

]
where

c1 = f ′(a)(log
F (a)

1− F (a)
− log

a

1− a
)− 2f(a)

(
1

1− a
+

1

a

)
+

1− F (a)

(1− a)2
+

F (a)

a2
,

c2 = f(a)(
1

F (a)
+

1

1− F (a)
),

c3 = −(
1

F (a)
+

1

1− F (a)
).

The zero-mean Gaussian process is

G(h1) = dW (h1),

where d = f(a)
1
2

∣∣∣log F (a)
1−F (a)

− log a
1−a

∣∣∣. The estimator is argmaxh
1
2
hTV h +

dW (h1). As in the previous example, this can can be simplified. Use 1
2
hTV h =
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1
2
(c1h

2
1 + 2c2h1h2 + c3h

2
2) and assume h1 is known. Then the maximum of h2

can be found by differentiating the preceding quadratic function, which yields
h2 = − eh1

2c3
. At this point, 1

2
hTV h = 1

2
(ch2

1 −
c22h

2
1

c3
+

c22h
2
1

4c3
) = h2

1 · 1
2
(c1 − c22

c3
+

c22
4c3

).
It follows that whenever h1 maximises G(h1) + h2

1 · 1
2
(c1 − c22

c3
+

c22
4c3

), the maxim-
iser of 1

2
hTV h + G(h1) is (h1,− c2h1

2c3
). Use the Proposition 2.2.4 to simplify

the maximiser of G(h1) + h2
1 · 1

2
(c − c22

c3
+

c22
4c3

) further, into ( 2d

(c1−
c22
c3

+
c22
4c3

)
)
2
3Z,

where Z is Chernoff’s distribution. We conclude with n
1
3 ((̂a, w) − (a, w))

d→
(1,− c2

2c3
)
(

dc22
c1−3c22

)
2
3Z. This representation can be used together with the tables

from Groeneboom and Wellner (2001, p.9 - 13, table 1 and 3) or home made sim-
ulations to calculate the limit distribution, as in the previous example. Moreover,
it allows us to compute quantities like the asymptotic covariance between the
weight and the split point.

Remark 4.5.10. This is analogous to 2.4.1 on decision trees, where n
1
3 ((β̂l, β̂u, d̂)−

(β0
l , β

0
u, d

0))
d→ argmaxt(c1, c2, 1)G(t), for some c1, c2 and a function G(t) =

a′t2 + b′W (t), where W (t) is a standard Brownian motion starting at 0. The
main difference between this regression case and our histograms is that our
analogue to a1, namely w, completely determines our analogue to a2, namely
1− w.

4.5.2 A special case with
√
n-consistency

Recall assumption A5’: wi+1

ai+1−ai
= wi

ai−ai−1
for each i. We will translate this

condition into something more understandable. First we notice that wj

aj−aj−1
=

wi

ai−ai−1
for each j by induction. Now we claim that all of these are equal to 1.

Proposition 4.5.11. If wi+1

ai+1−ai
= wi

ai−ai−1
for every i, then wi

ai−ai−1
= 1 for every

i as well.

Proof. First assume k = 2 and recall that w2 = 1 − w1. Again we use the
convention a0 = 0 and ak = 1. Since log wi+1

ai+1−ai
= log wi

ai−ai−1
for each i, we

have that w1

a1
= 1−w1

1−a1
. Solving this equation yields w1 = a1, and wi

ai−ai−1
= 1

as claimed. For k ≥ 2, we use induction. If it is true for k, we consider the
distribution F ′ = a−1

k F (a−1
k x). The rescaled histogram associated with this

distribution has weights wi

ak
and splits ai

ak
, hence every wi/ak

(ai−ai−1)/ak
= wi

(ai−ai−1)
= 1

for i = 1, ..., (k − 1) by the induction hypothesis. We can do this the other way
around, starting from a1, in order to get wk

ak−ak−1
= 1 as well.

It follows that Theorem 4.5.6 can’t be used in the case when each block in
the histogram has equal probability as length. This can happen for instance
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when the underlying distribution is symmetric and unimodal with k = 2 and
when the underlying distribution is uniform for any k.

We go on to find the shape of the limiting Gaussian process when wi+1

ai+1−ai
=

wi

ai−ai−1
for every i. In this case, we will have to use the function φ(δ) =

√
δ in

order to find a non-degenerate Gaussian process in the rate theorem (page 22).

Theorem 4.5.12. Assume conditions (A1-A3,A4,A5’). In that case, we have

lim
δ↘0

P (mθ0+δg −mθ0+δh)
2

δ2
=

k∑
i=1

P ([ai−1, ai))γ
2
i ,

where

γi =
h′

i − g′i
wi

− (gi − hi)− (gi−1 − hi−1)

ai − ai−1

.

Thus condition 2.2.5 on page 22 is satisfied for φ(δ) = δ. Condition 2.2.6 is
satisfied with G(h) = hTZ for Z ∼ N(0,Σ), where Σ is a symmetric matrix
with upper elements σi,i = P (Ii)

(ai−ai−1)
2 + P (Ii+1)

(ai+1−ai)
2 , σi,i+1 = − P (Ii+1)

(ai+1−ai)
2 , σi,i′ =

P (Ii)
wi(ai−ai−1)

σi,(i+1)′ = − P (Ii+1)
wi+1(ai+1−ai)

σi′,i′ =
1
w2

i
. Here the primed elements corres-

pond to variable weights; they can be disregarded when using constant weights.
Then

√
n((̂a, w)− (a, w))

d→ N(0, V −1ΣV −1),

where V is given in Proposition 4.5.5.

Proof. This is a slight modification of the proof in Theorem 4.5.2 on page 99:
Instead of finding the terms involving δ, we will search out the terms involving
δ2. In A1 and A2, the only terms involving δ2 also involved log

wj

aj−aj−1
for some

j, but these are equal to 0 by the previous proposition. Similarly, all terms of
A3, A4 and A5 containing log

wj

aj−aj−1
can be disregarded. This leaves the terms

containing δ2 in
∑k

i=1 P ([ai−1, ai))
[
Cg

i (δ)C
h
i (δ) + Ch

i (δ)C
h
i (δ)− 2Cg

i (δ)C
g
i (δ)

]
:

k∑
i=1

P ([ai−1, ai))

(
δh′

i

wi

− δ(hi − hi−1)

ai − ai−1

)2

+
k∑

i=1

P ([ai−1, ai))

(
δg′i
wi

− δ(gi − gi−1)

ai − ai−1

)2

− 2
k∑

i=1

P ([ai−1, ai))

(
δh′

i

wi

− δ(hi − hi−1)

ai − ai−1

)(
δg′i
wi

− δ(gi − gi−1)

ai − ai−1

)
.

which clearly simplifies to
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δ2
k∑

i=1

P ([ai−1, ai))

(
h′

i − g′i
wi

− (gi − hi)− (gi−1 − hi−1)

ai − ai−1

)2

.

The covariance kernel of the limiting Gaussian process is

E(G(h)G(g)) =
k∑

i=1

P ([ai−1, ai))

(
δh′

i

wi

− δ(hi − hi−1)

ai − ai−1

)(
δg′i
wi

− δ(gi − gi−1)

ai − ai−1

)
.

Let G(h) = hTZ, where Z ∼ N(0,Σ) with Σ as in the statement of the the-
orem. Then it can be verified that this is the right process by calculating
E(hTZ(gTZ)) = hTΣg. We write Σg in the form of linear combinations of
column vectors:

hTΣg = (h1, ...hk−1, h
′
1, ...h

′
k−1)(Σ1g1, ...Σk−1gk−1,Σkg

′
1, ...Σ2k−2g

′
k−1)

=
k∑

i=1

P (Ii)

(
h′

i

wi

− (hi − hi−1)

ai − ai−1

)(
g′i
wi

− (gi − gi−1)

ai − ai−1

)
.

To find this Σ we rewrite the sum slightly:

k−1∑
i=1

gi(−hi−1
P (Ii)

(ai − ai−1)
2 + hi

(
P (Ii)

(ai − ai−1)
2 +

P (Ii+1)

(ai+1 − ai)
2

)
−hi+1

P (Ii+1)

(ai+1 − ai)
2 +

P (Ii)h
′
i

wi (ai − ai−1)
−

P (Ii+1)h
′
i+1

wi+1 (ai+1 − ai)
)

+
k−1∑
i=1

g′i

[
h′
i

w2
i

+
P (Ii)hi−1

wi (ai−1 − ai)
− P (Ii)hi

wi (ai − ai−1)

]
,

where h0 = g0 = hk = gk = 0. This gives us the covariance matrix with
elements described above. The limiting distribution of

√
n((̂a, w)− (a, w)) is the

maximiser of 1
2
hTV h+hTZ. Differentiation with respect to h gives V h+Z = 0,

hence ĥ = V −1Z ∼ N(0, V −1ΣV −1) as claimed.

Example 4.5.13. Let F = U(0, 1) and k ≥ 2. If constant weights are used, each
ai − ai−1 =

1
k

and P (Ii) =
1
k
, hence σi,i−1 = σi,i+1 = −k and σi,i = 2k. As for V ,

vii = −2k and Vi,i+1 = Vi,i−1 = k. Hence the maximiser is Nk(0, V
−1ΣV −1) =

Nk(0, V
−1)-distributed. It can be shown by recursion that V −1

ij = (k−j)i
k2

when
j ≥ i. Recall Proposition 4.3.1 on the asymptotic distribution of quantiles,
where it is stated that

√
n(q̂ − q)

d→ N(0,Σ) where Σij =
(k−j)i

k2f(q(i))f(q(j))
= (k−j)i

k2
.

It follows that these two approaches are asymptotically equivalent in the context
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Figure 4.5.3: Example of n
1
3 -convergence to a degenerate distribution, F =

Beta(3, 3). However, it is non-degenerate for the
√
n-rate.

of the uniform distribution. Histograms with variable weights will not be unique
in this setting.

Clearly, it would be silly to use the KL-histogram with constant weights in
order to estimate the quantiles of a uniform distribution. This is a bad idea for
several reasons (of descending importance): 1.) If we know that the underlying
distribution is in fact uniform, it would be far wiser and more efficient to use
k−1, 2k−1, ..., (k − 1)k−1 as the quantiles. 2.) This only works if the underlying
distribution is, in fact, uniform on [0, 1]. If it isn’t, the split points will not
converge to the quantiles. 3.) Following the theme of slow convergence, the
covariance matrix of the split points takes a very long time to come appreciably
close to the covariance matrix of the quantiles. we will investigate this in the
next example.

Another example is the case of a symmetric distributions for k = 2. We
tacitly assume the existence of a unique, well-separated maximum, hence a = 0.5

by symmetry. The maximum is typically not unique when we use variable weight
histograms, hence we use constant weight histograms in the next example.

Example 4.5.14. Since k = 2, the matrix Σ simplifies to 1/2
(1/2)2

+ 1/2
(1/2)2

= 4,
hence the asymptotic variance is 4V −2 = 1

4
(2f(0.5) − 1)−2. An illustration of

the rate of convergence for Beta(3, 3) can be seen in Figure 4.5.3. As seen in
Figure 4.5.4 on the next page, the convergence (to 0.5) is remarkably slow, with
the practical consequence that the variance is larger than this for finite sample
sizes. The decay of the ratio between the empirical and limiting variance appears
to be of the form n− 1

3 .

Example 4.5.15.

Theorem 4.5.12 on page 109 illustrates the power of the rate theorem. It
is relatively easy to notice how the special case behaves, as all the information
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Figure 4.5.4: Plot of the empirical variances divided by the limit variance for the√
n-rescaled split points for the k = 2 quantile histogram with F = Beta(2, 2), n =

100, 200, ..., 4900, 5000. The blue line is fitted by ordinary linear regression, R =
β0 + β1n

− 1
3 .

about the convergence rate lies in which function φ2(δ) we can use to divide
the function P (mθ0+δg − mθ0+δh)

2 with and still have it “under control”. It is
also interesting that the symmetry condition on the wi

ai+1−ai
s has such a profound

effect on the convergence rate. Still, the convergence to the limiting distribution
is very slow.

4.5.3 L2-histograms

The methods and results for L2 histograms are very similar to those of KL-histograms,
and we are content with simply stating the analogues of the two main theorems
(4.5.2, 4.5.6) on Kullback-Leibler histograms.

Theorem 4.5.16. Let m(a,w) =
∑k

i=1

[
2wi

ai−ai−1
1[ai−1,ai)(x)−

w2
i

ai−ai−1

]
be the ob-

jective associated with the L2 histogram with either variable or constant weights
wj. Denote the least false vectors by a and w, and let f be the density of P .
Provided the conditions (A1-A5) are satisfied and f ∈ L2, the following is true:

lim
δ↘0

P
(
m(a,w)+δ(g,g′) −m(a,w)+δ(h,h′)

)2
δ

= 4
k−1∑
i=1

f(ai)

(
wi+1

ai+1 − ai
− wi

ai − ai−1

)2

,

thus condition 2.2.5 on page 22 is satisfied for φ(δ) =
√
δ. Furthermore, condi-

tion (2.2.6) is satisfied with
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G(h) = 2
k−1∑
i=1

f(ai)
1
2

∣∣∣∣ wi+1

ai+1 − ai
− wi

ai − ai−1

∣∣∣∣Wi(hi) (4.5.5)

where Wi are independent standard Brownian motions.

The factor 2 in G(h) is a side-effect of the definition of mL2

(a,w); it wouldn’t
have been there if the we had opted to divide the criterion function by 2. Evid-
ently, this only has an effect on the size of the limit process, not on the actual
argmax, but might be considered if one wants the limiting processes of the
Kullback-Leibler histogram and the L2-histogram to look more alike.

Theorem 4.5.17. Assume conditions A1-A5 are satisfied. The rescaled process
n

2
3 (Pnm(a,w)+n− 1

3 (̂a,w)
− Pnm(a,w)) converges in distribution to 1

2
hTV h + G(h),

where G(h) is the Gaussian process

G(h) = 2
k−1∑
i=1

f(ai)
1
2

∣∣∣∣ wi+1

ai+1 − ai
− wi

ai − ai−1

∣∣∣∣Wi(hi),

with wi = P ([ai−1, ai)) in the case of variable weights, and the predefined wi

otherwise, and V is the Hessian of Pm(a,w) at (a, w). The minimum L2 estimate
converges with rate n

1
3 and its limiting distribution is given by

n
1
3 ((̂a, w)− (a, w))

d→ argmax
h

1

2
hTV h+G(h),

where V is the Hessian of Pm(a,w).

Example 4.5.18. This is the L2-analogue of Example 4.5.7, where we study the
constant weight histogram with k = 2. The limit objective isPma = 1

a
(F (a) −

1
4
) + 1

1−a
(3
4
− F (a)), whose first derivative with respect to a is

f(a)

[
1

a
− 1

1− a

]
− F (a)

[
1

(1− a)2
+

1

a2

]
− 4

[
3

(1− a)2
+

1

a2

]
,

and the second derivative is

V = f ′(a)

[
1

a
− 1

1− a

]
− 2f(a)

[
1

(1− a)2
+

1

a2

]
+

2(F (a)− 1
4
)

a3
+

2(3
4
− F (a)

(1− a)3
.

Put G(h) = f(a)
1
2

∣∣ 1
a
− 1

1−a

∣∣W (h) = dW (h), and the limiting distribution is

argmaxh
1
2
V h2+dW (h). Again using Proposition 2.2.4, we find that n

1
3 (â−a)

d→
2d
V

− 2
3Z, where Z = argmaxhW (h)− h2 is Chernoff’s distribution.



114 CHAPTER 4. DENSITY ESTIMATION ON THE UNIT INTERVAL

4.6 Algorithms

Many, if not most, optimisation problems in statistics can be solved by numerical
packages tailored toward solving problems with smooth objective functions. The
prototypical example is using Newton-Raphson to solve the maximum likelihood
problem for a gamma distributed random variable. Using such procedures works
very well, provided the objective function is sufficiently smooth and concave. In
the case of irregular histograms, we have neither — our objective function has
many local maxima and has jump discontinuities all over the place. Instead, we
need combinatorial optimisation.

We describe three algorithms:

1. An exact algorithm based on dynamic programming (see e.g. Weiss (1998,
chap. 10)). This is essentially the same as the algorithm described in
Rozenholc et al. (2010) (first in Kanazawa (1988)). Our new contribution
is to solve the problem for all combinations of Kullback-Leibler, L2, and
variable or equal weights, while Rozenholc et al. only considered Kullback-
Leibler irregular histograms with variable weights. Unfortunately, this
algorithm runs in approximately quadratic time, namely O(n2k).

2. A coordinate search algorithm. This usually runs linearly in n, and has
worst case complexity bounded by O(n log n) in our implementation. This
is an approximation algorithm, but simulation studies indicate that its
performance is satisfactory, which leads us to recommend it above the dy-
namic programming algorithm. When pre-smoothing, bootstrapping or
running simulation studies, the gain in processing time is significant. Un-
fortunately, it doesn’t perform well for the CIC of Section 4.9 on page 128.

3. As was the case for Manski’s estimator, we can recast the problem as
a mixed integer programming problem. We will not make use of this
formulation.

The first two algorithms are implemented in C++, with code in Appendix A,
and made available in R through the Rcpp-package (Eddelbuettel and François,
2011). Let {x1, x2, ..., xn} be the set of observations. We take note of this
important fact,

Proposition 4.6.1. For any irregular histogram, the solution set is a subset
of {x1, x2, ..., xn}, provided the probabilities Pn[xj, xi) involved in the sum are
substituted with Pn[xj.xi].
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Table 4.3: Definitions of R for different choices of histogram methods. Recall that
the objective function for the L2-histogram is

∑k
i=1wi

(2P (ai−1,ai)−wi)
ai−1−ai

. We remove a
redundant k−1 for the constant weights and contract 2P (ai−1, ai) − wi = P (ai−1, ai)
for the variable weights.

Equal weights KL/L2 weights
KL log k−1

xi−xj
Pn[xj, xi) log

Pn[xj ,xi)

xi−xj
Pn[xj, xi)

L2
2Pn[xj ,xi)−k−1

xi−xj

Pn[xj ,xi)

xi−xj
Pn[xj, xi)

Proof. Assume a1, ..., ak−1 are the solutions, and put a0 = 0, ak = 1 . Choose a
j, and notice that the only part of the objective function that depends on aj is

R(aj−1, aj) +R(aj, aj+1),

where R is chosen from table 4.3 of histogram weights. Hence it suffices to
show that this is maximised for an x ∈ {x1, x2, ..., xn}. Let xl and xu be the
greatest lower bound and least upper bound of aj in {x1, x2, ..., xn}, respectively,
so we know that aj ∈ [xl, xu]. Assume R(xj, xi) = log

Pn[xj ,xi)

xi−xj
Pn[xj, xi)] for

concreteness, and notice that

R(aj−1, aj) +R(aj, aj+1)

= Pn[aj−1, xl] log
Pn[aj−1, xl]

aj − aj−1

+ Pn[xu, aj+1] log
Pn[xu, aj+1]

aj+1 − aj
,

hence we reduce the problem to the maximisation of

g(aj) = −p1 log(aj − aj−1)− p2 log(aj+1 − aj), (4.6.1)

where p1 = Pn[aj−1, xl] and p2 = Pn[xu, aj+1]. For simplicity, extend the can-
didate solution set to [xl, xu]. By differentiating g twice we obtain g′′(aj) =

p1
(aj−aj−1)2

+ p2
(aj+1−aj)2

> 0, hence g is strictly convex, and it attains its maximum
on either xl or xu. For the other choices of R, the argument is similar: Differ-
entiate twice in order to find that the R-analogue of the modified function in
(4.6.1) is strictly convex.

The proposition would not be true if we were to use Pn[xj, xi) or Pn(xj, xi]

in our table, as that would make it possible for the objective function to jump
down at the boundary. In this case, the maximum would either fail to exist (get
bigger and bigger the closer it gets to xu or xl) or be the x ∈ {xu, xl} which we
thought of as sub maximal in the previous proposition. Either way, it makes
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sense to search the observations for a maximiser in these cases as well. Since all
these options are asymptotically equivalent and don’t make much of a difference
in practice, we will restrict our search of optima to the data points.

4.6.1 Dynamic programming

[There are] two sledgehammers of the algorithms craft, dynamic pro-
gramming and linear programming, techniques of very broad applic-
ability that can be invoked when more specialized methods fail. Pre-
dictably, this generality often comes with a cost in efficiency.

Dasgupta et al. (2006)

We will transform the optimisation problem into the graph theoretic problem
of finding the longest path of a weighted acyclic digraph, which is an archetyp-
ical problem in dynamic programming (Dasgupta et al., 2006, chap. 6); one
which every other problem solvable by dynamic programming can be reduced
to. Define, for any set x1, ..., xn of points in [0, 1], choice of k ∈ N+and histogram
type from Table 4.3 on the previous page the associated weighted digraph Γ as
follows: Make k sets Ai — which we call levels — of vertices which contains
independent copies of the n − k + 1 points xi, xi+1, xk−i+1. Let x0 = 0 and
xn+1 = 1 be source and sink vertices, and put V =

⋃k
i=1 Ai ∪ x0 ∪ xn+1. We

define the set E of edges as follows: (x0, y) ∈ E for all y ∈ A1, and (y, xn+1) ∈ E

for all y ∈ Ak. In addition, a tuple (u, v) is in E if the following conditions are
satisfied: (1) There is an i such that u ∈ Ai and v ∈ Ai+1, (2) If u is a copy of
xi and v a copy of xj, then i > j. Figure 4.6.1 contains an example.

The weights will depend on which histogram we want to construct, with
values in Table 4.3, where the weight assigned to the edge between xi and xj is
R(xi, xj). The following observations is the key to make everything work: A path
through the graph, visiting nodes 0, xi1 , xi2 , ..., xik , 1, will have value R(0, xi1) +

R(xik , 1) +
∑k

j=1R(xij , xij+1
), which is the objective function corresponding to

the choice of type/weights of the histogram. This form of decomposition shows
that the problems has an optimal substructure , which allows us to do a sequential
enumeration of all solutions. In order to compute the objective functions, we
use double recursion: For each node we wish to calculate the value V (xi

j) =

R(0, xi1)+
∑i

l=1 R(xil , xil+1
), where i designates the level of xj. This can be done

by applying the recursive formula V (xi
j) = maxl<j V (xi−1

l ) + R(xil , xij), where
we store the value V (xi

j) at the (i, j)th node. When the algorithm terminates at
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Figure 4.6.1: An example of an associated graph Γ with 10 observations and k = 5.
The red path is a hypothetical solution path.

x = 1, we output the path 0 → xi1 → xi2 → ... → 1 which lead to the maximised
value.

Proposition 4.6.2. The DP algorithm runs in O(kn2) time.

Proof. The weighted digraph Γ will have 2+ k(n− k+1) = O(kn) vertices and
2(n − k + 1) + (k − 1) (n−k+1)(n−k+2)

2
= O(kn2) edges. Since the algorithm just

described will visit each edge exactly once, the algorithm will run in O(kn2)

time provided the graph has been constructed. Constructing the graph can be
done in O(kn2) time, as it takes constant time to add a vertex or an edge with
all our edge weights W .

Even though this algorithm is described using graph theoretic language and
intuition, the implementation of this algorithm does not rely on graph theoretic
data structures of any kind. The graph theoretic description of this algorithm
was chosen as it clearly illustrates how the algorithm works and points toward
some ideas for making it run faster. It could be possible to remove sections of
non-trivial size from the graph before checking them, and there are at least two
possible ways to go about this.
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1. Use upper and lower bounds on the objective in certain sections of the
graph. One could implement this by assigning to each vertex xi

j a lower
l(xi

j) and upper bound u(xi
j), and disregard any edge emanating from

that vertex whenever its upper bound is lower than the current global
lower bound l. A naïve choice of lower and upper bounds would be to
make l(xi

j) a random path in the diagram containing xi
j and u(xi

j) =

V (xi
j) + h(xi

j), where h(xi
j) =

∑
i∈C R(xi, xi+1) with C = {j, j + 1, ..., n}.

This upper bound will typically be far too large, however. An issue
with the upper bound is that there is no theoretical upper bound on
h′(xi

j) =
∑k

i=j+1 R(yi−1, yi) which holds for any underlying distribution
F : By creating an arbitrarily sharp spike in the density, this value can
become arbitrarily large. A workaround is to impose upper bounds that
aren’t theoretically sound, but might still works well in practice: For in-
stance, we could use bounds obtained from distributions which we have
reason to think that behaves worse than the true F .

2. Prune the graph by throwing away xi
js we consider unlikely to be in the

solution path. For instance, it seems very unlikely that x1
n−k is the first

element of the solution path. One could implement this idea by removing
quantiles from each level of the graph, e.g. the lower quartile for the first
level and upper quartile on the last level.

These lines of thinking will not be pursued further, but might be worth it if we’re
serious about using the CIC in Section 4.9 on page 128. Here massive resampling
has to be carried out, and the coordinate search soon to be described will not
do the job properly.

The complexity O(n2k) means that the algorithm runs in exponential time,
at least on the face of it. This is because k is not the input length of k. In fact,
the input length of k is log2 k. This is not the case with the data points x1, ..., xn,
which have input size cn for some c. Obviously, whenever k is considered as a
fixed parameter, the algorithm runs in quadratic time and should be considered
fast. However, if k is not considered fixed, it runs in pseudo-polynomial time, the
class of algorithms which runs in polynomial time as function of input value, not
input length (Papadimitriou, 2003, p. 203). In our case, since 2 ≤ k < n, with
k typically much less than n, the algorithm has complexity bounded by O(n3),
cubic time. This phenomenon is not dissimilar to the dynamic programming
algorithm for the knapsack problem, a problem that is known to be NP -complete
in its decision problem formulation (Papadimitriou, 2003, p. 202). Whenever a
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certain k is polynomially bounded in the input n, it is solvable in polynomial
time; if not, it runs in exponential time.

While this algorithm yields exact estimates in a reasonable time, the resulting
estimates will not be robust in the sense that they can be very sensitive to slight
changes in input values. We will discuss this issue further in Section 4.7.

Finally, in our C++ program (of Appendix (A)) the difference in run times
between the KL and L2 histograms is very large. The choice of constant or
variable weights doesn’t seem to matter. This came as a big surprise, and the
culprit has to be the logs involved in the KL-maximisation. Now we use the R

package microbenchmark (Mersmann, 2014) to time how much faster L2 is. We
replicate N = 500 histograms of both types for k = 2, 3, ..., 80 and n = 500. In
addition, we use a modification of the algorithm into a “skeleton”, such that only
the constructions that both histograms have in common are computed. Denote
the L2 times by T (L2), KL runtimes by T (KL) and the skeleton runtimes by
T (S). Now we look at T (KL)−T (S)

T (L2)−T (S)
, which is seen to be about 16 for any k.

This gives a reasonable estimate on how much faster L2 is. This difference in
execution time is a large point in favour of L2, especially if one wishes to do
the subsampling approach to the CIC in Section 4.9 on page 128 on information
criteria.

4.6.2 Coordinate search

We describe a coordinate search approximation algorithm, a type of local search
algorithm (Hromkovič, 2013, section 3.6). Let k be fixed and define an initial
vector a0 = (a01, . . . , a

0
k). Put a0 = 0 and ak+1 = 1, and define recursively

aji = argmax
aji−1<p<aj−1

i+1

R(aji−1, p) +R(p, aj−1
i+1 ).

On ties, choose the smallest possible p. We say that the algorithm terminates
in iteration j whenever aji = aj+1

i for all i.

Proposition 4.6.3. The coordinate search algorithm terminates.

Proof. Notice that the objective function can only increase in value when aji is
swapped for aj+1

i . Now suppose the algorithm doesn’t terminate. Since there
are finitely many states, it has to by cyclic. But this is impossible, as it would
either lead to decreasing values of the objective function for at least one aji to
aj+1
i , or make the objective function constant. However, an aji can’t change more
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than once when the objective function doesn’t increase, due to the tie-breaking
rule.

This algorithm yields consistent estimates. Heuristically, this can be seen as
follows: For each i it finds the maximum in the i-th dimension. It converges to
a “local” maximum in the sense that it can’t move along any i-direction without
diminishing in value. Now, whenever the underlying function is concave, this can
only happen when it is at an actual maximum. Since the likelihood converges
in distribution towards a concave function, it is consistent. Hence we expect the
results of this algorithm to have the same asymptotic properties as the exact
algorithm, as the rate theorem (2.2.4) only requires Pnmθ̂n

≥ argmaxθ Pnmθ −
op(1), a condition which is probably satisfied.

In our implementation, we will add an upper bound to the number of full
iterations. We will let this be a used defined c. With this modification, at worst
this algorithm will terminate after c full iterations. Since each full iteration will
check at most n points, it is complexity is bounded, very roughly, by O(n log n).
This is an order of magnitude faster than the exact algorithm, and doesn’t
depend on k. (It is O(n log n) instead of O(n) since we need to sort the list of
observations first.)

This algorithm requires an initial input to run on. We have not studied the
effects of initial input thoroughly, but it certainly matters. In all our uses of the
coordinate search algorithm we use an “evenly spaced” initial input, namely the
vector of i

k
th quantiles, with i ranging from 1 to k − 1. This choice is clearly

justifiable in the context of irregular quantile histograms.

4.6.3 Integer programming

As was the case for Manski’s estimator (Section 3.4), we can formulate the
histogram problem as a mixed integer program. We wish to maximise the linear
objective

∑
i,j

zijw(i, j), (4.6.2)

where w(i, j) = W (xi, xj) and W is chosen from table 4.3. This objective should
satisfy the constraints
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n−k+1∑
j=1

z1i = 1,

n∑
j=n−k+1

zi(n+1) = 1,

n∑
j=1

zij ≤ 1, ∀i = 1, ..., n,

∑
zij = k + 2,∑

i<j<k

zijzjk = k + 2,

zij ∈ {0, 1}.

While the last constraint is not linear, it can be reformulated as a linear con-
straint, basically because zijzjk can be understood as zij ∧zjk. The method is as
follows: Define a set of new variables wijk, add the constraint

∑
i<j<k wijk = k+2

and add, for every suitable i, j, k,

wijk ≤ zij,

wijk ≤ zjk,

wijk ≥ zij + zjk − 1.

Why these constraints? The first forces there to be exactly one edge connecting
the source to the body of the graph, while the second assures us that there is
exactly one edge connecting the sink to the body of the graph. The following
constraint force every i to appear at most once, while the constraint

∑
zij = k+2

says how many edges we want to include. In order to ascertain that the zij

describe a connected path of k vertices in the graph, we require the multiplicative
constraint.

Finally we mention the approximation algorithm of choice for Mildenberger
et al. (2009), used in the R package histogram. This is a greedy algorithm. Let
k > 2 be a given bin count. The algorithm starts by performing an inexpensive
k = 2 histogram calculation. When k = i bins are calculated, it finds the (i+1)th
split point by minimizing the divergence in each bin separately, choosing the split
point which maximises the global reduction of divergence.
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4.7 Pre-smoothing and instability

When estimating our histograms, we minimise the θ 7→ Pnmθ, where Pn is the
empirical measure. However, since we assume some smoothness in the true
distribution P , it should also work to use a smoothed variant P̃n of P , such as
the Gaussian copula estimator. Here we demonstrate that this is the case, and
also discuss some advantages of this approach. First we discuss a very important
anomaly of the irregular histograms.

4.7.1 Instability

Recall the general histogram formula (4.2.1),

h(x) =
k∑

i=1

wi

ai − ai−1

1[ai−1,ai](x),

and the minimiser of the empirical L2-distance with variable weights, given by

argmax
a

k∑
i=1

log
Pn(ai−1, ai)

ai − ai−1

Pn[ai−1, ai],

where the ais are constrained to be inside the set of observations x1, ..., xn.
Let x(i) denote the ith order statistic. Then Pn[x(i), x(i+j))

2 = 4+(j−1)2

n2 . When
j is small, this quantity is also small, Pn[x(i), x(i+j)]

2 ≈ n−2. But it might also
happen that x(i+j)−x(i) is very small: In this case x(i+1)−x(i), x(i+2)−x(i+1) etc.
will be even smaller. For x(i+1) − x(i) ≪ 1

n2 , the term Pn[x(i),x(i+1))

x(i+1)−x(i)
Pn[xj, xi) =

4
n2
(
x(i+1)−x(i)

) will become very large, forcing the histogram to include the pair
x(i), x(i+1) as split points even tough their closeness is just noise. This instability1

is especially prevalent in real data sets, where numbers are rounded to fewer
digits than in simulations. It manifests itself in the histograms as tall spikes
with very high density, as in Figure 4.7.1. The phenomenon affects both the
exact algorithm and the coordinate search algorithm, but the exact algorithm to
a much higher degree, essentially because it actively ferrets these anomalies out.
The coordinate search will have to be unlucky in order to stumble across such
spikes. We can remedy this fault by imposing a minimum distance between pairs
(xi, xj) considered in the dynamic programming algorithm and the coordinate
search, for instance by enforcing |xi − xj| ≥ δ for some δ > 0 as in the proof

1Typically one would say that the solution non-robust or sensitive to changes in the data.
We will not use these terms here, as the word “robustness” is reserved by the usual statistical
concept of an estimator being robust to changes in the underlying model. This is not the issue
here, the instability phenomenon occurs when the model assumptions hold perfectly.
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Figure 4.7.1: Example of a spike when X1, ...Xn ∼ Beta(2, 7). The culprits are the
points (0.2252, 0.2258). More spikes can be found in the illustrations section.

of consistency (Theorem 4.4.6). A choice of such a δ > 0 is unavoidable, at
least for the variable weight histograms. In most cases, this choice is easy to
make: What’s important is that δ is so large that the really small differences
x(i+1) − x(i) are avoided,

4.7.2 Pre-smoothing

The pre-smoothing procedure is simple to describe and set up. Given data
x1, ..., xn, we find the Gaussian copula KDE estimate f̂ of the true density f , as
described in Section 4.1. If we wish to calculate the pre-smoothed KL-histogram
for a given k, we need to find argmaxa

∑k
i=1 P̂ [ai−1, ai) log

P̂ [ai−1,ai)
ai−ai−1

, where P̂ is

the measure associated with f̂ . As calculating this requires intensive numerical
integration, we approximate it by resampling a large amount of observations
from f̂ , which will be 50kn in our studies. Recall from Section 4.1 that the
Gaussian copula KDE is easy to sample from, and this is the main reason why
we use it. The R code for this procedure is included in Appendix A.

In addition to fixing the instability issue, the pre-smoother has superior
performance in terms of Hellinger distance from the true distribution and mean
integrated squared error (MISE), as we will demonstrate in a special case shortly.
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Table 4.4: Mean integrated squared error for F = Beta(2, 7) with different choices of
n, k.

KL/var L2/var
n k Coord Exact Smooth Coord Exact Smooth

100 2 0.362 0.363 0.397 0.7 0.712 1.065
8 0.181 16.072 0.087 0.179 12.17 0.084
50 2.182 19.386 0.053 2.218 29.71 0.055

500 10 0.084 10.835 0.036 0.092 38.19 0.037
60 0.298 74.025 0.016 0.315 18.037 0.016

KL/const L2/const
100 2 0.634 0.629 0.62 0.641 0.64 0.616

8 1.885 1.54 0.142 1.459 0.684 0.136
50 2.136 62.748 0.068 1.941 3.519 0.071

500 10 2.474 0.164 0.088 2.218 0.189 0.08
60 0.337 441.356 0.024 0.364 1.156 0.023

4.7.3 Simulations

We compare the MISE and Hellinger distances for the exact solution, coordinate
search solution and the smoothed solution for some choices of n,k with under-
lying F = Beta(2, 7). The results are in Table 4.5 (Hellinger) and Table 4.4
(MISE). Several tentative conclusions can be made from these simulations.

1. The exact solutions perform very poorly, with enormous MISE in all cases
except those where k ≪ n, a miserable result which probably can be
attributed to the instability discussed in the preceding section.

2. The smoothed histogram outperforms the others on both measures for al-
most every choice of k and n, the exception is when k = 2, where smoothing
seems to worsen things.

3. The quality of the smoothed histogram increases with k, contrary to the
coordinate search histogram. This is not surprising, as it approximates
the underlying Gaussian copula KDE better and better.

4. L2 and KL histograms have very similar performance, with a small victory
to KL. The difference is large for k = 2 and n = 100, however.

5. Constant weights don’t fare well at all compared to variable weights. This
serves to further discourage the use of this kind of histogram.

Also of interest is the performance of estimating the split points. The results
of a small simulation study is found in Figure 4.7.2. It seems likely that the
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Table 4.5: Hellinger distance between the histogram and the true distribution for
F = Beta(2, 7) with different choices of n, k.

KL/var L2/var
n k Coord Exact Smooth Coord Exact Smooth

100 2 0.216 0.218 0.221 0.278 0.281 0.391
8 0.137 0.195 0.103 0.147 0.215 0.123
50 0.257 0.331 0.079 0.252 0.318 0.081

500 10 0.098 0.116 0.072 0.114 0.185 0.095
60 0.127 0.218 0.048 0.127 0.201 0.053

KL/const L2/const
100 2 0.386 0.385 0.385 0.385 0.385 0.384

8 0.306 0.251 0.211 0.306 0.262 0.208
50 0.263 0.358 0.11 0.26 0.29 0.115

500 10 0.276 0.195 0.186 0.274 0.198 0.183
60 0.156 0.234 0.087 0.156 0.216 0.088
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Figure 4.7.2: Plots of n
2
3 -rescaled MSE for two different split points for Beta(1, 3)

with k = 11 and n = 50, 100..., 1000 (left) MSE for the split point i = 2, (right) for
i = 5. Curiously, the exact algorithm performs much worse than the coordiante search
for i = 5, but better for i = 2.

smoothed estimator will perform at least as well as the exact estimator and the
coordinate search.

4.8 Illustrations

4.8.1 Police percentage data

We apply the pre-smoothed and exact Kullback-Leibler histograms (k = 6) on
the racial police data set from New York Times Ashkenas and Park (2014).
Each observations xi is the percentage of police officers in a big city in the
United States that is white (n = 543). The resulting histograms are in Figure
4.8.1. Notice the dotted spike in the in the exact histogram at the right side:
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Figure 4.8.1: (left) Kullback-Leibler irregular histogram with variable weights, dot-
ted is the exact histogram, while solid is pre-smoothed one. (right) Same histogram
with constant weights.

This sort of thing happens even when n is large compared to k. Also notice
that the exact histogram on the left hand side gives almost zero weight to the
rightmost part of the picture, an “error” rectified by smoothing.

4.8.2 Church services

On the website of Statistics Norway (SSB) one can find the data of church
services from the Church of Norway per 1000 residents for each Norwegian com-
mune SSB (2014). Theoretically speaking, this data may not be contained in a
bounded interval — it is conceivable for a commune of 1000 residents to have e.g.
10, 000, 000 church services per year (if all residents are priests and do 24 services
each day, we’re getting close). Nevertheless, the histogram works nicely when
we assume, innocently enough, that the distribution is supported on [0, 1000].
This data can be found for 1999 − 2014, and our focus is on 2014. Out of the
428 communes, 5 where removed due to NAs in the data set. We used the
smoothed and exact L2-histogram. The result is displayed in Figure 4.8.2. This
and other examples illustrates the huge impact of pre-smoothing. Also, in this
case, the approximate coordinate algorithm gives much better results than the
exact algorithm. The observations on 64, 66, 70 and 82 are Loppa (residents: 1
027), Modalen (372) Vevelstad (495) and Solund (815) respectively. Oslo, with
a population of 634 463, have 7.3 services per resident, placing it into the second
to last bin.
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Figure 4.8.2: L2-histogram of church services per 1000 residents for Norwegian com-
munes. The dashed line is the Gaussian copula kernel density estimator, while the
dotted line is fitted through the locfit package, (Loader, 2013). As for the exact
histogram, we get a similarly horrible result for the KL-histograms.

Table 4.6: 95% confidence intervals, with coverage and length for different methods.
The numbers (2, 7, 10, 20) are the block sizes in the subsample. The αs are the nominal
levels for the smoothed bootstrap. We supplied results for α = 0.90 since α = 0.95
only yielded coverages of 1.

n = 50 n = 100 n = 500 n = 1000

Cov Len Cov Len Cov Len Cov len
5 0.958 0.1456 0.959 0.1195 0.962 0.0715 0.974 0.0569
7 0.958 0.1436 0.97 0.119 0.96 0.0717 0.971 0.0571
10 0.946 0.1422 0.981 0.1194 0.979 0.0727 0.976 0.058
20 0.901 0.1246 0.968 0.1127 0.98 0.0724 0.984 0.0579

α′ = 0.90 0.98 0.1359 0.98 0.1053 0.99 0.0594 1 0.0461
α′ = 0.95 1 0.1571 1 0.1223 1 0.0686 1 0.0529

4.8.3 Confidence intervals

We perform a small Monte Carlo study of confidence intervals (CIs) for the
split points when k = 2 for L2-histograms with equal weights. We will compare
subsample CIs and smoothed bootstrap CIs. Both the ordinary non-parametric
bootstrap and m-out-of-n bootstrap are inappropriate for irregular histograms,
as they resample with replacement, something the histogram can’t handle well.
This is not a big problem, as the nonparametric bootstrap is inconsistent for
cube root estimators, and the m-out-of-n bootstrap and the subsample tend to
have similar performance.

This combination of L2 and equal weights is chosen because L2 is faster to
calculate than KL and equal weights allows us to estimate only one parameter.

The results are displayed in Table 4.6. The smoothed bootstrap appears
inconsistent. A likely explanation for this is that the bandwidth choice, obtained
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by the normal reference rule, isn’t tailored to this situation. Still, the smoothed
bootstrap intervals tend to have both smaller length and higher coverage than
the subsample intervals. A similar kind of problem appears for the limiting
distribution, as we require a consistent estimate of

V = f ′(a)

[
1

a
− 1

1− a

]
− 2f(a)

[
1

(1− a)2
+

1

a2

]
+

2(F (a)− 1
4
)

a3
+

2(3
4
− F (a))

(1− a)3
,

(see Example 4.5.18), but we have no guarantee that f ′(a) is well estimated by
the Gaussian copula KDE.

4.9 Information criteria

4.9.1 Akaike’s information criterion

The most famous model selection criterion is the AIC, Akaike’s information cri-
terion. Let X1, X2, ..., Xn

i.i.d.∼ f , for some density f , and M = (M1,M2, ...,Mk)

be a list of parametric models with likelihoods f 1, f 2, ..., fk. Let dj be the size of
the free parameter vector θj in f j, and θ̂j be its maximum likelihood estimate.
Then the AIC is defined as2,

AICj = 2
n∑

i=1

log f j(Xi; θ̂)− 2dj,

and the index of the chosen model will be argmaxj={1,2,...,k}AICj. A better
justified cousin of the AIC is the TIC, Takeuchi’s information criterion, defined
as TICj = 2

∑n
i=1 log f

j(Xi; θ̂) − 2TrJK−1. Here θ0 is the least false value of
θ, defined as the argmin of the Kullback-Leibler divergence between f(·, θ) and
f . Here J = E

[
∂2

∂θ2
log f(X, θ) |θ=θ0

]
, and K = Var

[
∂
∂θ
f(X, θ) |θ=θ0

]
. When

the underlying density f has the likelihood f(·, θ0) for some θ0, TrJK−1 = dj,
and the TIC and AIC are equal. These model selection procedures can and will
lead to different choices of the best model. While the TIC is better theoretically
justified, the AIC performs well in practice and avoids the noise induced through
the estimation of the J and K matrices.

We will describe the theoretical justification for the TIC. The quantity we
wish to minimise is the expected discrepancy of a statistical divergence. As in

2There are in fact two different definitions of the AIC. In addition to the one mention, the
variant AIC ′ = −AIC is also commonly used. In this case, the “best model” will minimise
the AIC instead of maximising it.
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the foregoing sections, the divergences of interest to us are the L2-divergence and
the Kullback-Leibler divergence. To these divergences, we can associate a dis-
crepancy which does not involve the unknown density. The discrepancy has the
same shape as the divergence written as a function of θ. For Kullback-Leibler,

dKL(p, fθ) =

ˆ
log

p(x)

fθ(x)
p(x)dx

=

ˆ
p(x) log p(x)dx−

ˆ
p(x) log fθ(x)dx.

Here
´
p(x) log p(x)dx is a constant, and we will only need to maximise

ˆ
p(x) log fθ(x)dx = P log fθ.

Substituting Pn for P , we obtain the discrepancy Pn log fθ. Similarly for the
L2-divergence, we obtain the discrepancy −2Pnfθ + Fθfθ.

The rationale behind the AIC/TIC is to chose the model that has the
smallest expected Kullback-Leibler discrepancy, P [maxθ Pn log fθ]. Define θ̂ =

argmaxθ Pnfθ, and observe that P [maxθ Pn log fθ] = P
[
log fθ̂

]
. Since P is un-

available, we use the plug-in Pn instead. But this move introduces bias. In order
to make fair comparisons between models, we estimate this bias and subtract
it from the estimate. This is a crude method of estimating the discrepancy,
and there are other alternatives, like the bootstrap (yielding the EIC ) (Shibata,
1997, Konishi and Kitagawa, 2008, chapter 8) and leave-one-out cross validation
of the likelihood (Stone, 1977, Claeskens and Hjort, 2008, section 2.9). In the
following proposition, l(θ) = log fθ denotes the log-likelihood of f .

Proposition 4.9.1. The bias of Pn [maxθ Pnfθ] as an estimator of P [maxθ Pnfθ]

equals 1
n
TrJ−1K. Under model conditions, this bias simplifies to 1

n
d, where d is

the number of free parameters.

Proof. We wish to estimate the true value Pl(θ̂), and the purpose of this exercise
is to estimate the bias of the naïve estimator Pnl(θ̂). In Theorem 2.2.1, we
derived the limit process of

n(Pn − P )(l(θ0 + tn− 1
2 )− l(θ0),

namely tTZ − 1
2
tTJt, with Z ∼ N(0, K) and K = VarU(X, θ0). Also, its max-

imiser is s = J−1Z. we will deduce this bias by using this rescaled process. For
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this purpose, put sn =
√
n(θ̂ − θ) → s. We calculate

n(Pnl(θ̂)− Pl(θ̂)) = n(Pnl(θ0 + n− 1
2 tn)− Pnl(θ0))

−n(Pl(θ0 + n− 1
2 tn)− Pl(θ0))

+n(Pnl(θ0)− Pl(θ0)).

The third summand has expectation 0, the second summand converges to 1
2
sTJs,

while first term converges to sTZ − 1
2
sTJs, with Z = N(0, K) as above. Com-

bining these, we get the random variable ZTJ−1Z. Observe that ZTJ−1Z =∑
ZiZjj

ik, where jik is the (i, k)th element of J−1 and Zi is the i-th element of
Z. Since EZiZj = Kij, we obtain EUTJ−1U =

∑
kijj

jk = TrKJ−1 = TrJ−1K.
When J = K, this trace is equal to d.

The AIC formula can be used for bin selection in regular histograms, but
is not recommended (Birgé and Rozenholc, 2006). The log likelihood at the
argmax is

l(x) =
k∑

i=1

log

(
Pn[ai, ai−1)

ai − ai−1

)
1[ai−1,ai)(x),

hence the empirical log likelihood at the data x1, x2, ..., xn is

n
k∑

i=1

log

(
Pn[ai, ai−1)

ai − ai−1

)
Pn[ai, ai−1). (4.9.1)

Assume the split points are equally spaced, i.e. ai − ai−1 = k−1 for every i, and
define ni = nPn[ai, ai−1) as the number of observations in the i-th bin. Then
(4.9.1) becomes

∑
ni log

(ni

n

)
− n log(h) =

∑
ni log ni + n log(

k

n
),

and a variant of the AIC for regular histograms on the unit interval is

2

[∑
ni log ni + n log(

k

n
)− (k − 1)

]
.

It can be argued that this isn’t the “correct variant” of the AIC for histograms,
as the condition for the approximation k − 1 isn’t satisfied. Indeed, in 1990,
Atilgan demonstrates that the proper variant of the AIC for regular histograms
for positive densities on the unit interval is
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[∑
ni log ni + n log(

k

n
)− k

]
.

4.9.2 The cube root information criterion

We will now copy the reasoning behind the AIC into the setting of irregular
Kullback-Leibler histograms, in the hope of arriving at a reasonable bin selection
procedure.

Proposition 4.9.2. The bias of Pnm(q̂) equals

d∗KL = n− 2
3

k−1∑
i=1

f(ai)
1
2

∣∣∣∣log( wi+1

ai+1 − ai

)
− log

(
wi

ai − ai−1

)∣∣∣∣EWi(si).

Proof. Define sn = n
1
3 (q̂ − q0) → s = argmaxG(t), and observe

(Pnm(q̂)− Pm(q̂)) = (Pnm(a+ n− 1
3 sn)− Pnm(a))

−(Pm(a+ n− 1
3 sn)− Pm(a))

+(Pnm(a)− Pm(a)).

The third line has expected value 0, while the first converges to n− 2
3G(s) and

the second line has limit −n− 2
3
1
2
sTV s. Since

G(s) =
1

2
sTV s+

k−1∑
i=1

f(ai)
1
2

∣∣∣∣log( wi+1

ai+1 − ai

)
− log

(
wi

ai − ai−1

)∣∣∣∣Wi(si),

the bias is n− 2
3

∑k−1
i=1 f(ai)

1
2

∣∣∣log ( wi+1

ai+1−ai

)
− log

(
wi

ai−ai−1

)∣∣∣EWi(si).

Similarly, the bias corresponding to the the L2-histogram is

d∗L2
= n− 2

32
k−1∑
i=1

f(ai)
1
2

∣∣∣∣ wi+1

ai+1 − ai
− wi

ai − ai−1

∣∣∣∣EWi(si).

Now we can define four new bin selection criteria for irregular histograms, one
for each combination of constant / variable weights and KL / L2:
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CICKLv = n
k∑

i=1

Pn(âi−1, âi) log
Pn(âi−1, âi)

âi − âi−1

− nd̂∗KL,

CICKLc = n

k∑
i=1

Pn(âi−1, âi) log
wi

âi − âi−1

− nd̂∗KL,

CICL2v = n
k∑

i=1

P (âi−1, âi)
2

âi−1 − âi
− nd̂∗L2

,

CICL2c = n

k∑
i=1

wi
(2P (âi−1, âi)− wi)

âi−1 − âi
− nd̂∗L2

.

Here CIC is an abbreviation for “cube root information criterion”, a term first
used by Hjort in a workshop report (2007, p. 33). His CIC is equivalent to our
CICKLc, the cube root information criterion of KL-histograms with constant
weights.

As noted in the introduction, the value d̂∗ is hard to estimate, as the limiting
distribution is difficult to work with analytically and intractable numerically.
This last claim demands justification. we will work with KL-histograms with
variable weights for simplicity, in which case a natural estimator for d∗KLv is

d̂∗KLv = n− 2
3

k−1∑
i=1

f̂(âi)
1
2

∣∣∣∣log(Pn(âi+1, âi)

âi+1 − âi

)
− log

(
Pn(âi, âi−1)

âi − âi

)∣∣∣∣EWi(si),

where f̂ is the Gaussian copula KDE estimate of f . The difficulty lies in finding
EWi(si). This would be done by simulation from the limiting distribution,
which also requires consistent estimation of f ′(ai) as part of the Hessian V (see
Proposition 4.5.5). This is not the biggest problem though, since simulating the
argmax with k > 2 will require the computation of a (k − 1)-dimensional grid
of values in which we simulate k − 1 Brownian motions, which has cardinality
Nk−1 for some N . To compute the argmax, we would have to find the value over
each combinations of (t1, t2, ..., tk−1), and in order to calculate the expectation,
this has to be done several times, say 100. This is clearly infeasible for relatively
large k, even for k = 3 when implemented in R.

Fortuitously, it turns out that a subsampling approach works reasonably well.
In order to calculate this term we will use a subsampling procedure on the scaled
asymptotic bias n2/3E (Pnmŝ − Pmŝ). Let Gb be the subsample distribution with
block size b. A reasonable estimator for the bias is
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EGb
[Pbmq∗ − Pnmq∗ ] ,

obtained by substituting q̂ with q∗, Pn with Pb and P with Pn. We give an
indication why this should work when b = 1

2
n. The block size b = 1

2
n can be

justified, very handwavingly, by considering the alternatives

1. b < 1
2
n. The estimate mq∗ is skewed away from the mq̂,

2. b > 1
2
n. The estimate mq∗ is skewed towards mq̂.

This procedure estimates the expected bias reasonably well up to k ≈ 2n
1
3 ,

according to our experiments.
Unfortunately, we will have to use the exact algorithm when performing this

subsampling, together with a smart choice δ > 0 to bound the bin widths,
ai − ai−1 ≤ δ. We will not use the coordinate search algorithm as it doesn’t ap-
proximate the objective function well enough, and can’t drop the δ, as delta-free
maximisation has a very erratic behaviour.

In the following subsections, we will demonstrate that the subsampling ap-
proach works reasonably well. We could, as much simpler approach, create an
empirical reference rule for the bias based on e.g. the Beta(2, 7)-distribution.
This could be obtained through extensive simulations and stored as an R-function.
we will demonstrate empirically that the asymptotic bias term d̂∗KL doesn’t ap-
proximate the finite sample bias well even for n ≈ 1000, an observation which
fits nicely into the picture given in example (4.5.8). Finally, we will apply the
information criterion on two real data sets and do a small Monte Carlo study on
their performance as compared to the approach of Rozenholc et al. (2010) and
the AIC.

4.9.3 Bias and subsampling

First we demonstrate that subsampling the bias works, then we look at the
theoretical behaviour of the procedure, where we use the simulated true biases
instead of the subsample estimates. The point of the CIC is to attempt to chose
the histogram with the minimal discrepancy. In order for this to work well, the
expected bias must be reasonably close to the actual bias. Recall the discussion
at the end of Section 4.7, where it was noted that the L2-histogram is much
faster to compute that the KL-histogram, by factor around 16. Since all these
simulations are time consuming, we restrict our attention to L2-histograms.
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Figure 4.9.1: The green points are the true bias, while the red points are subsampled,
underlying distribution is Beta(2, 7).
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Figure 4.9.2: Large study of biases for (blue) KL/c and (red) L2/c.

Subsampling the bias

We illustrate the performance of subsampling n
2
3 ×bias, for both Beta(2, 7) with

n = 100, 500, 1000 in Figure 4.9.1. The green points are the true bias, while the
red points are subsampled. The dashed lines are 2n

1
3 , which appears to be a

reasonable break point for where the subsampled bias approximate the true bias
well.

Behaviour of the bias

We investigate how fast the finite sample converges in Figure 4.9.2. This is done
for KL/c (Kullback-Leibler histogram with constant weights) and L2/c, (L2 with
constant weights) both with δ = 0.0001 and underlying F = Beta(2, 7). The ns
under consideration are 60, 120, 180, ..., , 7140, 7200. For each n, we simulated n

observations from F and calculated the bias n
2
3 (Pnmâ−Pmâ), replicated k = 100

times. The resulting values are the means of these samples. Strikingly, the
L2-bias stabilises only around n = 4000 or so, while the KL biases stabilise far
earlier. From this small study, it seems likely that the asymptotic approximation
to the real bias works earlier for KL than L2.

Since subsampling is computationally expensive, it would be nice if we could
get a reference rule up and running. Some experiments suggests this might be
the case. In the following plot we have simulated the biases using n = 1000
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Figure 4.9.3: Comparison of simulated biases for a selection of
Beta(a, b)-distributions, n = 1000.

and N = 100 replications for several choices of Beta-distributions. The shape
parameters were (2, 7),(1, 3),(9, 10) and (10, 5). The results are in Figure 4.9.3.
Notice that all reasonably regular distributions have pretty similar biases. This
suggests that it might be workable to do a single, big simulation in order to get
a reference rule for the bias.

4.9.4 A small Monte Carlo Study

Rozenholc et al. (2010) propose several information criteria for the irregular
histogram obtained by penalising the likelihood

n

k∑
i=1

Pn(âi−1, âi) log
Pn(âi−1, âi)

âi − âi−1

.

Their penalties are

penB
n = log

(
n− 1

k − 1

)
+ (k − 1) + log

5
2 k,

penR
n = log

(
n− 1

k − 1

)
+

1

2

D∑
j=1

Pn(âi−1, âi)

âi − âi−1

+ log
5
2 k,

For each choice of penalty, the histogram with the largest penalised likelihood is
chosen. Since it requires a slightly different computation procedure, we ignore
penR

n . In addition to penB
n , CICL2v and CICKLv, we will use the “classical”
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Figure 4.9.4: A comparison of the different penalties when the underlying distribu-
tion is Beta(2, 7).

penalty

penAIC
n = d− 1.

In Figure (4.9.4) we supply a plot of the penalties for comparisons sake. It
appears that the AIC penalty is far too small, butpenB

n lies interestingly close
to the subsampled bias. This is likely due to the regular shape of Beta(2, 7).

For each n, we calculate the penalised likelihood for k = 3, 4, ...2
⌈
n

1
3

⌉
, which

should be more than enough. The case when k = 2 is dropped, as it is deemed
unlikely that it would ever be used in practice. For the CICs, we subsample K =

50 times in order to keep the execution time down. For n = 50, 100, 200, 500 we
obtain the Hellinger risks and mean k chosen for all the different approaches, each
replicated N = 100 times. The distributions under consideration are Beta(2, 7),
Beta(5

6
, 7
8
) (in Table (4.7)), andBeta(3, 3) and a bimodal (0.5, 0.5)-mixture of

Beta(10, 40) and Beta(40, 10) in Table (4.8).
This study suggests a couple of tentative conclusions:

1. The Kullback-Leibler CICs are superior to the L2 CICs; the L2 CICs select
too few bins.

2. Constant weights increase the Hellinger risk, unless the underlying distri-
bution is “difficult”, like Beta(5

6
, 7
8
).

3. penB
n performs very well, but CICKLv appears to be best.
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Table 4.7: Hellinger distances for Beta(2, 7) and Beta(56 ,
7
8). The best results are in

bold.

Beta(2, 7) Beta( 5
6
, 7
8
)

50 100 200 500 50 100 200 500

k CICL2v 5.04 3.69 3.5 3.23 3.79 3.14 3.09 3.03

CICKLv 5.16 5.56 6.82 7.86 4.15 4.02 3.47 3.32

CICL2e 4.96 3.9 3.3 3.28 3.89 3.15 3.07 3.03

CICKLe 5.23 5.77 6.36 7.77 4.28 4.25 3.48 3.38

penB
n 3.22 3.51 4.28 5.35 3.01 3.01 3.01 3

penAIC
n 3.11 3.02 3 3 3 3 3 3

Hell CICL2v 0.2199 0.1826 0.1682 0.1675 0.1251 0.085 0.0642 0.0475

CICKLv 0.2103 0.1718 0.1424 0.1061 0.1648 0.1327 0.0927 0.0639

CICL2e 0.3132 0.3141 0.3203 0.3138 0.1322 0.0844 0.0671 0.0532

CICKLe 0.3004 0.2756 0.2513 0.2205 0.148 0.107 0.0732 0.0532

penB
n 0.2005 0.1751 0.1405 0.1102 0.1436 0.1166 0.0874 0.0599

penAIC
n 0.1979 0.1795 0.1661 0.1595 0.1431 0.1163 0.0871 0.0599

Table 4.8: Hellinger distances for Beta(3, 3) and the bimodal distribution. The best
results are in bold.

Beta(3, 3) Bimodal

50 100 200 500 50 100 200 500

k CICL2v 4.47 3.28 3.06 3.41 4.96 3.52 4.8 5.74

CICKLv 5.01 5.3 6.11 6.51 6.94 7.96 9.81 12.6

CICL2e 4.48 3.19 3.06 3.32 4.8 3.64 4.72 5.52

CICKLe 5.14 5.23 6.23 6.24 6.88 8.22 9.57 12.41

penB
n 3.04 3.12 3.69 4.97 5.11 5.53 6.72 9.65

penAIC
n 3.01 3 3 3 4.96 4.94 4.99 5

Hell CICL2v 0.2066 0.1742 0.1711 0.1689 0.3874 0.4089 0.3328 0.2466

CICKLv 0.2 0.1671 0.1373 0.1045 0.2672 0.2199 0.183 0.1344

CICL2e 0.2809 0.2646 0.2606 0.2489 0.4583 0.4891 0.4484 0.3928

CICKLe 0.2603 0.2376 0.2163 0.1965 0.386 0.3464 0.3173 0.2727

penB
n 0.179 0.1648 0.1437 0.1077 0.271 0.2315 0.1994 0.146

penAIC
n 0.1794 0.1639 0.1542 0.1484 0.2726 0.2437 0.2264 0.2158
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In applications, penB
n would be preferred since it is much faster to compute,

while AIC is too greedy with the bins when n is large.
All the distributions we have used are smooth, but there is no a priori reason

why the CIC wouldn’t work in more general settings when we use the subsample
to estimate the bias. It would be of interest to run a larger scale comparison
study with other bin selection procedures, using e.g. the distributions described
in figure 1 of Rozenholc et al. (2010).



Chapter 5

Summing it up

From this it will follow, when arithmetical addition has been
defined, that 1 + 1 = 2.

- Alfred North Whitehead and Bertrand Russell in p. 379 of the
Principia Mathematica

5.1 On the R programs

5.1.1 Manski’s maximum score estimator

In Appendix B on page 167 we supply the code for a small program which can be
used for Manski’s estimator in one and two dimensions. This uses the formula
convention from R, and can be called by using mms(resp ∼ cov1+ cov2), where
resp, cov1, cov2 are the responses and covariate vectors. In addition to this
functionality, we have supplied plotting generics. The program is ready to use.

5.1.2 Histograms

A program for computing irregular L2/KL-histograms is supplied in Appendix A
on page 151. We support the calculation of exact histograms through the
dynamic programming algorithm (with the important modulating δ > 0 dis-
cussed in Section 4.7), approximate histograms through the coordinate search
algorithm, and pre-smoothed histograms by means of the coordinate search al-
gorithm combined with the Gaussian copula kernel density estimator if Sec-
tion 4.1. Histograms are only supported for data on [0, 1]. Additionally, we
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provide functions to compute the subsampling based CIC. Furthermore, we have
provided plotting and printing generics for the new histogram class of objects.
A function for the computation of the Gaussian copula kernel density estimator
with the normal reference is supplied.

5.2 Things one might do

In the authors opinion, two unfinished problems stand out as worth completing
in this thesis: Finding the breakdown point of Manski’s estimator for higher
dimensions, and the L1-consistency of the irregular histograms. We describe
some other things it could be worth checking out.

5.2.1 Manski’s maximum score estimator

As already said, it remains to find the breakdown point in dimensions higher than
one. An important part of this work is to analyse the multidimensional colour
depth properly. Other robustness properties should also be investigated, for
instance the maximal asymptotic bias (Maronna et al., 2006, chapter 3.3). One
can attempt to mimic the algorithm in van Kreveld et al. (1999), which solves
the deepest regression problem in covariate dimension d = 1 in O(n log2 n) time,
in order to compute Manski’s estimator when d = 2 faster than we have with
our algorithm. Can one constructively prove constructively that the bootstrap
fails, by doing something similar as in the of the proof of the bootstrap failure
for the uniform distribution? It might be possible to do this by getting bounds
on how far away the bootstrapped solution sets can be from the real solution
sets as n → ∞, maybe by using some clever combinatorial argument.

Problems with d > 2 hasn’t been touched in this thesis, and should be stud-
ied. For instance, Florios and Skouras (2008) (F&L) show that the estimates
of Horowitz (1993) for his work-trip data (d = 4) are probably wrong. How-
ever, F&Ls estimates conflict sharply with the “safe” estimates of Horowitz’
smoothed maximum score estimator (1992), and they fail to mention the geo-
metry of Manski’s estimator which makes it possible for the solution sets to be
very large. This could have practical consequences: The interpretation of F&L
differ dramatically from Horowitz’. A proper empirical (or theoretical) study
of Manski’s estimator in d > 2 would give us a greater understanding of how
the solution sets behaves, and whether it is important to calculate the whole
solution set or not. Also, an implemented algorithm would answer the question
of whether both Horowitz and F&L are “right” at the same time. (As F&L
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aptly demonstrated, Horowitz’ estimates, originated from an approximation al-
gorithm, were far off the mark. This is consistent with our warning against
approximating algorithms for this problem, recall Theorem 3.4.4 on page 53.)

An R-package for Manski’s estimator could be developed. Such a package
should include a function for the calculation of entire solution sets for d > 2,
and some kind of error reporting. Currently, only subsampling and the smoothed
bootstrap can do the job. Finally, we need a model selection procedure. This
could work by counting the number of correct classifications compared to the
expected number of correct classification given covariates with no information.

5.2.2 Histograms

One could mimic the approach in Banerjee and McKeague (2007) in order to
obtain analogues of their RSS confidence intervals. It still remains to be proved
rigorously that the bootstrap is inconsistent, and it should be shown that the
smoothed bootstrap is consistent for some rate and additional constraints on the
fs. Also, the properties of the pre-smoothed histograms should be investigated,
and it could be worthwhile to develop bin selection procedures for such kinds
of histograms, especially with specific goals (like compressing the data for a
specific application) in mind. It might also be worth it to investigate the BHHJ
histograms, especially since a master theorem for the BHHJ histograms would
include everything about both KL and L2 histograms, including a generalised
CIC for the entire family of divergences. Also the Kolmogorov distance can be
investigated, despite its apparent drawbacks: For instance, it might converge
at a different rate than the BHHJ histograms, which almost certainly would
converge with the cube root rate for any choice of α. More importantly, the
L1-histograms should be investigated.

There is much that could be done on the algorithmic side. Like investigating
the idea mentioned in Section 4.6 on “ensmarting” the dynamic programming
algorithm. Also completely different algorithms might be viable. If we could
get the run time down to for instance O(nk log n), subsampling would be far
more viable. It would also be nice to find efficient approximation algorithms
with proven worst case performance both with regards to the objective function
and the estimates. These algorithms should be incorporated with an associated
δ bounding the minimum distance between split points.

There is a package for irregular histograms on CRAN, namely histogram of
Mildenberger et al. (2009), a package which can do all the different forms of bin
selection procedures considered in Rozenholc et al. (2010). In this thesis, we
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have developed the CIC, quantile histograms and L2-histograms, which is not
included in this package. Also, the package doesn’t handle the instability issue
in clear-cut way, and hasn’t implemented the dynamic programming algorithm
in C++, making it too slow for practical use. Finally, as pre-smoothing dra-
matically reduces the Hellinger risk and the MISE for k large enough, it should
be made publicly available.
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Appendix A

Histogram code

We present all the code involved in the calculation of histograms.

1. The C++ code for the computation of exact histograms via the DP al-
gorithm,

2. the C++ code for the coordinate search,

3. the R code for the Gaussian copula KDE,

4. the R wrapper with generics,

A.1 C + + code for the DP algorithm

1 #include <cmath>
2 #include <vector>
3 #include <Rcpp . h>
4 #include <iostream>
5
6 using namespace std ;
7
8 /∗ Functions f o r combos o f r e a l and l 2 ∗/
9

10 double (∗ r e s i d u a l ) ( int , int , double∗ , int , double , double ) ;
11 double (∗ r e s i d u a l_ f i n a l ) ( int , double∗ , int , double , double ) ;
12
13 /∗ These correspond to Kul lback−Le i b l e r and equa l we igh t s . ∗/
14 double r k f ( int i , int j , double∗ data , int len , double k , double l im ) {
15 double a = −( j−i ) ;
16 double b = data [ j ]−data [ i ] ;
17 i f (b < lim ) return −0 .1/0 .0 ;
18 else return ( a∗ l og (b) ) ;
19 }
20
21 double r k f_ f i n a l ( int i , double∗ data , int len , double k , double l im ) {
22 double a = −( len−i ) ;
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23 double b = 1−data [ i ] ;
24 i f (b < lim ) return −0 .1/0 .0 ;
25 else return ( a∗ l og (b) ) ;
26 }
27
28 /∗ These correspond to L2 and equa l we igh t s . ∗/
29 double r l f ( int i , int j , double∗ data , int len , double k , double l im ) {
30 double a = 2∗( j−i ) / ( (double ) l en )−1/k ;
31 double b = data [ j ]−data [ i ] ;
32 i f (b < lim ) return −0 .1/0 .0 ;
33 else return ( a/b) ;
34 }
35
36 double r l f _ f i n a l ( int i , double∗ data , int len , double k , double l im ) {
37 double a = 2∗( len−i ) / ( (double ) l en )−1/k ;
38 double b = 1−data [ i ] ;
39 i f (b < lim ) return −0 .1/0 .0 ;
40 else return ( a/b) ;
41 }
42
43 /∗ . . . and the se correspond to KL weigh t s and s p l i t s ! ∗/
44 double rkt ( int i , int j , double∗ data , int len , double k , double l im ) {
45 double b = data [ j ]−data [ i ] ;
46
47 i f (b < lim ) return −0 .1/0 .0 ;
48
49 /∗ A sp e c i a l case occurs whener i = 0. Then l o g ( j−i ) shou ld equa l
50 l o g ( j −1) in s t ead ∗/
51 i f ( i == 0) i = 1 ;
52
53 /∗ This i s r equ i red in order to avoid l o g (0)−c , which i s indeterminate . ∗/
54 i f ( i == 1 && j == 1) return −0 .1/0 .0 ;
55 return ( ( j−i ) ∗( l og ( j−i )−l og ( l en )−l og (b) ) ) ;
56 }
57
58 double r k t_ f i na l ( int i , double∗ data , int len , double k , double l im ) {
59 double b = 1−data [ i ] ;
60
61 i f (b < lim ) return −0 .1/0 .0 ;
62
63 i f ( i == 0) i = 1 ;
64 return ( ( len−i ) ∗( l og ( len−i )−l og ( l en )−l og (b) ) ) ;
65 }
66
67 /∗ Fina l l y , L2 we igh t s and s p l i t s . ∗/
68 double r l t ( int i , int j , double∗ data , int len , double k , double l im ) {
69 double b = data [ j ]−data [ i ] ;
70
71 i f (b < lim ) return −0 .1/0 .0 ;
72
73 i f ( i == 0) i = 1 ;
74 i f ( i == 1 && j == 1) return −0 .1/0 .0 ;
75 double a = pow( j−i , 2 ) ;
76 return ( a/b) ;
77 }
78
79 double r l t_ f i n a l ( int i , double∗ data , int len , double k , double l im ) {
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80 double b = 1−data [ i ] ;
81
82 i f (b < lim ) return −0 .1/0 .0 ;
83
84 i f ( i == 0) i = 1 ;
85 double a = pow(1− i , 2 ) ;
86 return ( a/b) ;
87 }
88
89 // [ [ Rcpp : : expor t ] ]
90 Rcpp : : NumericMatrix cpp_exact_alg (bool r ea l_h i s t , bool l2 , Rcpp : : NumericVector

data , int len , double k , double l im ) {
91
92 /∗ r e s i d ua l and r e s i dua l_ f i na l po in t to the func t i ons needed in

maximisation .
93 ∗ The d e f i n i t i o n o f t he se func t i ons vary as L2 and r ea l var ie s , every

other aspec t
94 ∗ o f the a lgor i thm s tay s constant .
95 ∗/
96
97 i f ( r e a l_h i s t ) {
98 i f ( l 2 ) {
99 r e s i d u a l = &r l t ;

100 r e s i d u a l_ f i n a l = &r l t_ f i n a l ;
101 }
102 else {
103 r e s i d u a l = &rkt ;
104 r e s i d u a l_ f i n a l = &rk t_ f i na l ;
105 }
106 }
107
108 else {
109 i f ( l 2 ) {
110 r e s i d u a l = &r l f ;
111 r e s i d u a l_ f i n a l = &r l f _ f i n a l ;
112
113 }
114 else {
115 r e s i d u a l = &rk f ;
116 r e s i d u a l_ f i n a l = &rk f_ f i n a l ;
117 }
118 }
119
120 /∗ We de f ine the p r e t t y "matrix " o f e s t imate s ind ices , wi th the co r r ec t

dimensions .
121 ∗ This matrix conta ins the ML / L2 es t imate ind ices , as j−ary ve c t o r s . The

( i , j )−th
122 ∗ element corresponds to ML−es t imate with k=j and data [ 0 : j ] . ∗/
123
124 vec to r < vecto r < vecto r < int > > > est imate s ;
125 e s t imate s . r e s i z e ( l en+2) ;
126 for ( int i = 0 ; i <= len+1; i++){
127 e s t imate s [ i ] . r e s i z e ( k ) ;
128 for ( int j = 0 ; j <(k−1) ; j++){
129 e s t imate s [ i ] [ j ] . r e s i z e ( j +1) ;
130 }
131 }



154 APPENDIX A. HISTOGRAM CODE

132
133 /∗ This matrix conta ins the opt imal o b j e c t i v e va lue s at ( i , j ) in s t ead o f

the e s t imate s .
134 ∗ I t doesn ’ t need crazy dimensions . ∗/
135
136 vec to r < vecto r < double > > ob j e c t i v e ;
137 ob j e c t i v e . r e s i z e ( l en+2) ;
138 for ( int i = 0 ; i <= len+1; i++){
139 ob j e c t i v e [ i ] . r e s i z e (k−1) ;
140 }
141
142 /∗ We beg in on the ac tua l a lgor i thm . ∗/
143
144
145 /∗ The s p e c i a l case when j = 0. Needed in order to ge t i n i t i a l va lue s . Also

, the case when i = len+1 i s
146 ∗ ex t ra s p e c i a l . However , i t i s only needed when k = 2. ∗/
147
148 vec to r <int> es t ;
149 e s t . r e s i z e (1 ) ;
150
151 for ( int i =2; i<=len ; i++){
152 double maxer = r e s i d u a l (0 , 1 , data . begin ( ) , len , k , l im )+r e s i d u a l (1 , i , data .

begin ( ) , len , k , l im ) ;
153 double temp_max ;
154 int ind = 1 ;
155 for ( int p=2; p<i ; p++){
156 temp_max = r e s i d u a l (0 , p , data . begin ( ) , len , k , l im )+r e s i d u a l (p , i , data .

begin ( ) , len , k , l im ) ;
157 i f (temp_max > maxer ) {
158 maxer = temp_max ;
159 ind = p ;
160 }
161 }
162
163 e s t [ 0 ] = ind ;
164 e s t imate s [ i ] [ 0 ] = e s t ;
165 ob j e c t i v e [ i ] [ 0 ] = maxer ;
166 }
167
168 /∗ Now we can handle the case when j=0 and i = len + 1! ∗/
169
170 int i = l en + 1 ;
171 double maxer = r e s i d u a l (0 , 1 , data . begin ( ) , len , k , l im )+r e s i d u a l_ f i n a l (1 , data .

begin ( ) , len , k , l im ) ;
172 double temp_max ;
173 int ind = 1 ;
174 for ( int l =2; l<i ; l++){
175 temp_max = r e s i d u a l (0 , l , data . begin ( ) , len , k , l im )+r e s i d u a l_ f i n a l ( l , data .

begin ( ) , len , k , l im ) ;
176 i f (temp_max > maxer ) {
177 maxer = temp_max ;
178 ind = l ;
179 }
180 }
181
182 e s t [ 0 ] = ind ;
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183 e s t imate s [ i ] [ 0 ] = e s t ;
184 ob j e c t i v e [ i ] [ 0 ] = maxer ;
185
186
187
188 /∗ The main program fo l l ows , the genera t ion o f the two matr ices o b j e c t i v e

and es t imate s .
189 ∗ We beg in with i t e r a t i o n through j , as the c a l c u l a t i o n o f e s t imate s [ i , j ]

depends on knowing ( almost ) every
190 ∗ va lue e s t imate s [ i ’ , j ] , wi th i ’ < i . ∗/
191
192 for ( int j =1; j <(k−1) ; j++){
193 // I n i t i a l i s a t i o n o f v a r i a b l e s used in loop .
194 vec to r <int> es t ;
195 e s t . r e s i z e ( j +1) ;
196 double maxer , temp_max ;
197 int ind ;
198
199
200 /∗ Ca l cu l a t e s the matrix f o r every term excep t i=len+1, which i s a

s p e c i a l case . ∗/
201 for ( int i=j +2; i<l en +1; i++){
202
203 /∗ Given an i , we wish to f i nd the b e s t e s t imate s f o r data [0 , i ]
204 ∗ g iven tha t k=j . We use i = j+2 in order to have enough po in t s to

f i t the data :
205 ∗ The " be s t " case i s t ha t ( i −1) i s the opt imal index , and t h i s one

needs j po in t s
206 ∗ o f data below i t . We s t a r t wi th i −1, and cont inue through the

loop . ∗/
207
208 maxer = ob j e c t i v e [ i −1] [ j−1]+ r e s i d u a l ( i −1, i , data . begin ( ) , len , k , l im ) ;
209 ind = i −1;
210
211 /∗ We have the cond i t i on p>=j+1 fo r the same reason as above . I f p

= j or l e s s ,
212 ∗ t he re w i l l not be the needed j po in t s below i t . ∗/
213
214 for ( int p = ( i −2) ; p>=(j +1) ; p−−){
215 temp_max = ob j e c t i v e [ p ] [ j−1]+ r e s i d u a l (p , i , data . begin ( ) , len , k ,

l im ) ;
216 i f (temp_max > maxer ) {
217 maxer = temp_max ;
218 ind = p ;
219 }
220 }
221
222 /∗ Our r e s u l t i n g o b j e c t i v e i s maxer , wh i l e our i nd i c e s are , the

winning es t imate s ’
223 ∗ i n d i c e s concatenated with with the index which makes them win .

∗/
224
225 ob j e c t i v e [ i ] [ j ] = maxer ;
226 e s t = es t imate s [ ind ] [ j −1] ;
227 e s t . push_back ( ind ) ;
228 e s t imate s [ i ] [ j ] = e s t ;
229 }
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230
231 /∗ We proceed with the s p e c i a l case i = len+1. The reason why t h i s i s a

s p e c i a l case i s
232 ∗ t ha t Pn(1) = Pn(x_n) , the f i n a l ob se rva t i on in the data s e t . This

makes the r e s i d ua l func t i on
233 ∗ re turn inco r r e c t va lue s .
234 ∗/
235
236 int i = l en +1;
237 maxer = ob j e c t i v e [ i −1] [ j −1] ;
238 ind = i −1;
239
240 for ( int p = ( i −2) ; p>=(j+1) ; p−−){
241 temp_max = ob j e c t i v e [ p ] [ j−1]+ r e s i d u a l_ f i n a l (p , data . begin ( ) , len , k ,

l im ) ;
242 i f (temp_max > maxer ) {
243 maxer = temp_max ;
244 ind = p ;
245 }
246 }
247
248 ob j e c t i v e [ i ] [ j ] = maxer ;
249 e s t = es t imate s [ ind ] [ j −1] ;
250 e s t . push_back ( ind ) ;
251 e s t imate s [ i ] [ j ] = e s t ;
252
253 /∗ We pr in t out the content o f the vec to r . ∗/
254
255 }
256
257
258 Rcpp : : NumericMatrix xx = Rcpp : : NumericMatrix (Rcpp : : Dimension (k−1, k−1) ) ;
259
260 for ( int i =0; i<k−1; i++){
261 for ( int j =0; j<=i ; j++) {
262 xx ( i , j ) = es t imate s [ l en +1] [ i ] [ j ] ;
263 }
264 }
265
266 return ( xx ) ;
267
268 }

A.2 C + + code for the coordinate search

1 #include <cmath>
2 #include <vector>
3 #include <Rcpp . h>
4
5 using namespace std ;
6
7 /∗ Functions f o r combos o f r e a l and l 2 ∗ . These po in t e r s are needed in order to
8 ∗ avoid many repeated i f c a l l s and make the code more readab l e . ∗/
9

10 double (∗ r e s i d u a l ) ( int , int , double∗ , int , double , double ) ;
11 double (∗ r e s i d u a l_ f i n a l ) ( int , double∗ , int , double , double ) ;
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12
13 /∗ These correspond to Kul lback−Le i b l e r and equa l we igh t s . ∗/
14 double r k f ( int i , int j , double∗ data , int len , double k , double l im ) {
15 double a = −( j−i ) ;
16 double b = data [ j ]−data [ i ] ;
17 i f (b < lim ) return −0 .1/0 .0 ;
18 else return ( a∗ l og (b) ) ;
19 }
20
21 double r k f_ f i n a l ( int i , double∗ data , int len , double k , double l im ) {
22 double a = −( len−i ) ;
23 double b = 1−data [ i ] ;
24 i f (b < lim ) return −0 .1/0 .0 ;
25 else return ( a∗ l og (b) ) ;
26 }
27
28 /∗ These correspond to L2 and equa l we igh t s . ∗/
29 double r l f ( int i , int j , double∗ data , int len , double k , double l im ) {
30 double a = 2∗( j−i ) / ( (double ) l en )−1/k ;
31 double b = data [ j ]−data [ i ] ;
32 i f (b < lim ) return −0 .1/0 .0 ;
33 else return ( a/b) ;
34 }
35
36 double r l f _ f i n a l ( int i , double∗ data , int len , double k , double l im ) {
37 double a = 2∗( len−i ) / ( (double ) l en )−1/k ;
38 double b = 1−data [ i ] ;
39 i f (b < lim ) return −0 .1/0 .0 ;
40 else return ( a/b) ;
41 }
42
43 /∗ . . . and the se correspond to KL weigh t s and s p l i t s ! ∗/
44 double rkt ( int i , int j , double∗ data , int len , double k , double l im ) {
45 double b = data [ j ]−data [ i ] ;
46 i f (b < lim ) return −0 .1/0 .0 ;
47 else return ( ( j−i ) ∗( l og ( j−i )−l og ( l en )−l og (b) ) ) ;
48 }
49
50 double r k t_ f i na l ( int i , double∗ data , int len , double k , double l im ) {
51 double b = 1−data [ i ] ;
52 i f (b < lim ) return −0 .1/0 .0 ;
53 else return ( ( len−i ) ∗( l og ( len−i )−l og ( l en )−l og (b) ) ) ;
54 }
55
56 /∗ Fina l l y , L2 we igh t s and s p l i t s . ∗/
57 double r l t ( int i , int j , double∗ data , int len , double k , double l im ) {
58 double a = pow( j−i , 2 ) ;
59 double b = data [ j ]−data [ i ] ;
60 i f (b < lim ) return −0 .1/0 .0 ;
61 else return ( a/b) ;
62 }
63
64 double r l t_ f i n a l ( int i , double∗ data , int len , double k , double l im ) {
65 double a = pow(1− i , 2 ) ;
66 double b = 1−data [ i ] ;
67 i f (b < lim ) return −0 .1/0 .0 ;
68 else return ( a/b) ;
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69 }
70
71
72 // [ [ Rcpp : : expor t ] ]
73 Rcpp : : NumericVector cpp_greedy_alg (bool r ea l_h i s t , bool l2 , Rcpp : : NumericVector

data ,
74 int len , double k , int modulator , Rcpp : :

NumericVector i n i t ,
75 double l im ) {
76
77 /∗ r e s i d ua l and r e s i dua l_ f i na l po in t to the func t i ons needed in

maximisation .
78 ∗ The d e f i n i t i o n o f t he se func t i ons vary as L2 and r ea l var ie s , every

other aspec t
79 ∗ o f the a lgor i thm s tay s constant .
80 ∗/
81
82 i f ( r e a l_h i s t ) {
83 i f ( l 2 ) {
84 r e s i d u a l = &r l t ;
85 r e s i d u a l_ f i n a l = &r l t_ f i n a l ;
86 }
87 else {
88 r e s i d u a l = &rkt ;
89 r e s i d u a l_ f i n a l = &rk t_ f i na l ;
90 }
91 }
92
93 else {
94 i f ( l 2 ) {
95 r e s i d u a l = &r l f ;
96 r e s i d u a l_ f i n a l = &r l f _ f i n a l ;
97
98 }
99 else {

100 r e s i d u a l = &rk f ;
101 r e s i d u a l_ f i n a l = &rk f_ f i n a l ;
102 }
103 }
104
105 /∗ We de f ine the p r e t t y "matrix " e s t imat se ind ices , wi th the co r r ec t

dimensions .
106 ∗ This matrix conta ins the ML / L2 es t imate ind ices , as j−ary vec t o r s . The

( i , j )−th
107 ∗ element corresponds to ML−es t imate with k=j and data [ 0 : j ] . ∗/
108
109 vec to r <int> est imate s ;
110 vec to r <int> tes t_es t imate s ;
111
112 e s t imate s . r e s i z e ( ( int ) k+1) ;
113 te s t_es t imate s . r e s i z e ( ( int ) k+1) ;
114 e s t imate s [ 0 ] = 0 ;
115 e s t imate s [ k ] = 1 ;
116
117 for ( int i = 1 ; i<k ; i++){
118 e s t imate s [ i ] = i n i t [ i −1] ;
119 }
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120
121 int ended = 0 ;
122 int over ;
123 int under ;
124 double max ;
125 double temp ;
126 for ( int j = 0 ; j<modulator∗k ; j++){
127
128 te s t_es t imate s = es t imate s ;
129
130 /∗ The loop take s care o f a l l the va lue s excep t the f i n a l . ∗/
131
132 for ( int i =1; i <(k−1) ; i++){
133 over = es t imate s [ i +1] ;
134 under = es t imate s [ i −1] ;
135 max = −0 .1/0 .0 ;
136 for ( int p = under ; p<over ; p++){
137 i f ( data [ p]−data [ under ]> lim && data [ over ]−data [ p]> lim ) {
138 temp = r e s i d u a l ( under , p , data . begin ( ) , len , k , l im )+r e s i d u a l (p , over ,

data . begin ( ) , len , k , l im ) ;
139 }
140 else temp = −0 .1/0 .0 ;
141 i f (max < temp) {
142 max = temp ;
143 e s t imate s [ i ] = p ;
144 }
145 }
146
147 }
148
149 /∗ And now i s the time fo r the l a s t va lue . ∗/
150 int i = (k−1) ;
151 under = es t imate s [ i −1] ;
152 max = −0 .1/0 .0 ;
153 for ( int p = under ; p<( l en+1) ; p++){
154 i f ( data [ p]−data [ under ]> lim && 1−data [ p]> lim ) {
155 temp = r e s i d u a l ( under , p , data . begin ( ) , len , k , l im )+r e s i d u a l_ f i n a l (p ,

data . begin ( ) , len , k , l im ) ;
156 }
157 else temp = −0 .1/0 .0 ;
158 i f (max < temp) {
159 max = temp ;
160 e s t imate s [ i ] = p ;
161 }
162 }
163
164 /∗ We t e s t the break cond i t i on . ∗/
165
166 i f ( t e s t_es t imate s == es t imate s ) {
167 ended = j ;
168 break ;
169 }
170
171 }
172
173 Rcpp : : NumericVector xx ( ( int ) k ) ;
174
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175 for ( int i =0; i<k−1; i++){
176 xx [ i ] = e s t imate s [ i +1] ;
177 }
178
179 xx [ k−1] = ended ;
180
181 return ( xx ) ;
182
183 }

A.3 R code for the Gaussian copula KDE

1
2 # Functions f o r the Gaussian copula −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 rgc = function (n ,X, rho ) {
4 N = length (X)
5 X = qnorm(X)
6 xs = rnorm(n , rho∗X, rep ( sqrt(1−rho^2) , t imes=N) ,1882)
7 pnorm( xs )
8 }
9

10 dgc = Vecto r i z e ( function (x ,X, rho ) {
11 i n s i d e = rho^2∗(qnorm( x )^2+qnorm(X) ^2)−2∗rho∗qnorm( x )∗qnorm(X)
12 1/sqrt(1−rho^2)∗exp(− i n s i d e/(2∗(1−rho^2) ) )
13 })
14
15 dgcd = Vecto r i z e ( function (x ,X, rho ) {
16 dgc (x ,X, rho )∗rho/(1−rho^2)∗(−rho∗qnorm( x )+qnorm(X) )/dnorm(qnorm( x ) )
17 })
18
19
20 # Gaussian copula KDE func t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 hgcde = function (data , l ims=NULL) {
22 i f ( ! i s . null ( l ims ) ) data = (data−l ims [ 1 ] ) / l ims [ 2 ]
23 t rans = qnorm(data )
24 t rans = trans [ t rans != I n f & t rans != −I n f ]
25 s = sd ( t rans )
26 m = mean( t rans )
27 n = length (data )
28 min( s∗(2∗m^2∗s^2+3∗(1− s ^2)^2)^(−1/5)∗n^(−1/5) , 0 . 5 )
29 }
30
31 gcde = function (data , h=NULL, l ims=NULL) {
32 i f ( i s . null (h) ) h = hgcde (data )
33 i f ( ! i s . null ( l ims ) ) data = (data−l ims [ 1 ] ) / l ims [ 2 ]
34 else l ims = c ( 0 , 1 )
35 t rans = qnorm(data )
36 data = data [ t rans != I n f & t rans != −I n f ]
37 rho = 1−h^2
38 function ( x ) {
39 mean( dgc ( ( x−l ims [ 1 ] ) / l ims [ 2 ] , data , rho ) )/ l ims [ 2 ]
40 }
41 }
42
43 gcded = function (data , h=NULL, l ims=NULL) {
44 i f ( i s . null (h) ) h = hgcde (data )
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45 i f ( ! i s . null ( l ims ) ) data = (data−l ims [ 1 ] ) / l ims [ 2 ]
46 else l ims = c ( 0 , 1 )
47 t rans = qnorm(data )
48 data = data [ t rans != I n f & t rans != −I n f ]
49 rho = 1−h^2
50 function ( x ) {
51 mean( dgcd ( ( x−l ims [ 1 ] ) / l ims [ 2 ] , data , rho ) )/ l ims [ 2 ]
52 }
53 }
54
55 hgcde = function (data , l ims=NULL) {
56 i f ( ! i s . null ( l ims ) ) data = (data−l ims [ 1 ] ) / l ims [ 2 ]
57 t rans = qnorm(data )
58 t rans = trans [ t rans != I n f & t rans != −I n f ]
59 s = sd ( t rans )
60 m = mean( t rans )
61 n = length (data )
62 min( s∗(2∗m^2∗s^2+3∗(1− s ^2)^2)^(−1/5)∗n^(−1/5) , 0 . 5 )
63 }
64
65 rgcde = function (n , data , h=NULL, l ims=NULL) {
66 i f ( ! i s . null ( l ims ) ) data = (data−l ims [ 1 ] ) / l ims [ 2 ]
67 else l ims = c ( 0 , 1 )
68 i f ( i s . null (h) ) h = hgcde (data )
69 samples = sample (data , n , replace=TRUE)
70 rho = 1−h^2
71 ( rgc (n , samples , rho ) )∗ l ims [2 ]+ l ims [ 1 ]
72 }

A.4 R wrapper and generics

1
2 l ibrary ( "Rcpp" )
3 source ( " copula_base .R" )
4 sourceCpp ( " coord inate . cpp" )
5 sourceCpp ( " exact . cpp" )
6
7 # Support f unc t i on s and v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘%||% ‘ <− function ( a , b ) i f ( ! i s . null ( a ) ) a else b

10
11 # Algorithms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 coordHistogram = function (data , k , type="KL" ,weights=" equal " , l im=0.0001 ,
13 modulator=10, i n i t=NULL) {
14 r e t_ob j e c t = l i s t ( )
15 r e t_ob j e c t$ s p e c i f i c a t i o n = c ( type=type ,weights=weights )
16 r e t_ob j e c t$k = k
17 n = length (data )
18 type = ( type == "L2" )
19 weights = (weights !=" equal " )
20 i n i t = ( i n i t %||% quantile ( 1 : n , ( 1 : ( k−1) )/k ) )
21 va l s = cpp_greedy_a lg (weights , type , c (0 ,data , 1 ) ,n , k ,
22 modulator=modulator , i n i t=i n i t , l im=lim )
23 as = data [ v a l s [−k ] ]
24 r e t_ob j e c t$ s p l i t s = as
25 i f ( !weights ) {
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26 r e t_ob j e c t$weights = rep (1/k , k )
27 } else {
28 r e t_ob j e c t$weights = c ( sapply ( 1 : k ,
29 function ( i ) c (0 , va l s [−k ] /n , 1 ) [ i +1]−c (0 , va l s [−

k ] /n , 1 ) [ i ] ) )
30 r e t_ob j e c t$weights [ 1 ] = r e t_ob j e c t$weights [ 1 ] − 1/n
31 r e t_ob j e c t$weights [ k ] = r e t_ob j e c t$weights [ k ] + 1/n
32 }
33 r e t_ob j e c t$ i t e r a t i o n s = va l s [ k ]
34 r e t_ob j e c t$method = "greedy "
35 r e t_ob j e c t$ l im = lim
36 class ( r e t_ob j e c t ) = c ( " h i s t " )
37 r e t_ob j e c t
38 }
39
40 dpHistogram = function (data , k , type="KL" ,weights=" equal " , l im=0.0001) {
41 r e t_ob j e c t = l i s t ( )
42 r e t_ob j e c t$ s p e c i f i c a t i o n = c ( type=type ,weights=weights )
43 r e t_ob j e c t$k = k
44 n = length (data )
45 type = ( type=="L2" )
46 weights = (weights !=" equal " )
47 va l s = cpp_exact_a lg (weights , type , c (0 ,data , 1 ) ,n , k , l im=lim )
48 va l s = va l s [ k−1 ,]
49 as = data [ v a l s ]
50 r e t_ob j e c t$ s p l i t s = as
51 i f ( !weights ) {
52 r e t_ob j e c t$weights = rep (1/k , k )
53 } else {
54 r e t_ob j e c t$weights = c ( sapply ( 1 : k ,
55 function ( i ) c (0 , va l s [−k ] /n , 1 ) [ i +1]−c (0 , va l s [−k ] /n , 1 ) [ i ] ) )
56 r e t_ob j e c t$weights [ 1 ] = r e t_ob j e c t$weights [ 1 ] − 1/n
57 r e t_ob j e c t$weights [ k ] = r e t_ob j e c t$weights [ k ] + 1/n
58 }
59 r e t_ob j e c t$method = " exact "
60 r e t_ob j e c t$ l im = lim
61 class ( r e t_ob j e c t ) = c ( " h i s t " )
62 r e t_ob j e c t
63 }
64
65 # " log l i k e l i h o o d"− f unc t i on

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66
67 Pnm = function ( obj , useData=data ) {
68 q = obj$ s p l i t s
69 w = obj$weights
70 k = obj$k
71 n = length ( useData )
72 Pn = c (0 , sapply (q , function ( j ) sum( useData<=j )/n) ,1 )
73 qAug = c (0 ,q , 1 )
74 i f ( obj$ s p e c i f i c a t i o n [ 1 ] == "KL" ) {
75 d i s = sapply ( 1 : k , function ( i ) − log (qAug [ i +1]−qAug [ i ] ) + log (w[ i ] ) )
76 probs = sapply ( 1 : k , function ( i ) Pn [ i +1]−Pn [ i ] )
77 probs [ 1 ] = probs [ 1 ] − 1/n
78 probs [ k ] = probs [ k ] + 1/n
79 return (sum( probs∗d i s ) )
80 } else {
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81 d i s = sapply ( 1 : k , function ( i ) 1/ (qAug [ i +1]−qAug [ i ] ) )
82 probs = sapply ( 1 : k , function ( i ) Pn [ i +1]−Pn [ i ] )
83 probs [ 1 ] = probs [ 1 ] − 1/n
84 probs [ k ] = probs [ k ] + 1/n
85 return (sum(w∗(2∗probs−w)∗d i s ) )
86 }
87 }
88
89 # Histogram c l a s s cons t ruc tor −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90
91 histogram = function (data , k , method=" exact " , seed=1882 , l im=0.0001 , . . . ) {
92 data = sort (data )
93
94 i f (method == " exact " ) {
95 obj = dpHistogram (data , k , l im=lim , . . . )
96 obj$ l o g l i k = Pnm( obj , data )
97 } else i f (method == "smoothed" ) {
98 n = length (data )
99 new_data = sort ( rgcde (50∗k∗n , data ) )

100 obj = coordHistogram (new_data , k , l im=lim , . . . )
101 obj$method = "smoothed"
102 obj$ l o g l i k = Pnm( obj ,new_data )
103 return ( obj )
104 } else {
105 obj = coordHistogram (data , k , l im=lim , . . . )
106 obj$method = " coord inateSearch "
107 obj$ l o g l i k = Pnm( obj , data )
108 }
109
110 return ( obj )
111
112 }
113
114 # Shor tcu t s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115
116 L2histogram = function (data , k , l im=0.0001 ,method=" exact " ) {
117 histogram (data , k , method=method , l im=lim , type="L2" ,weights="L2" )
118 }
119
120 KLhistogram = function (data , k , l im=0.0001 ,method=" exact " ) {
121 histogram (data , k , method=method , l im=lim , type="KL" ,weights="KL" )
122 }
123
124 # Bin s e l e c t i o n procedures −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
125
126 CIC = function (data , k , b=.5 ,K=50, type="L2" ,weights="L2" , l im=0.001) {
127 n = length (data )
128 obj = histogram (data , k=k , type=type ,weights=type , l im=lim , method=" exact " )
129 d i s c = obj$ l o g l i k
130 b ia s = biasSubs (data , b=b , k=k , K=K, type=type , weights=type , l im=lim )
131 n∗d i s c − n∗b ia s
132 }
133
134 CICse lect = function (data , b=.5 ,K=50, type="L2" ,weights="L2" , l im=0.0001 , ks = seq

(3 ,2∗cei l ing ( nobs^(1/3) ) ) ) {
135 nobs = length (data )
136 CICs = sapply ( ks , function ( k ) CIC(data , k , b ,K, type ,weights , l im=lim ) )
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137 which .max(CICs ) + 2
138 }
139
140 penB = function (data , k ) {
141 n = length (data )
142 obj = histogram (data , k=k , type=type ,weights=type , l im=lim , method=" exact " )
143 l i k = n∗obj$ l o g l i k
144 pen = log (choose (n−1,k−1) ) + (k−1) + ( log ( k ) ) ^(2 . 5 )
145 l i k − pen
146 }
147
148 penBse lect = function (data , ks = seq (3 ,2∗cei l ing ( nobs^(1/3) ) ) ) {
149 nobs = length (data )
150 penBs = sapply ( ks , function ( k ) penB(data , k ) )
151 which .max( penBs ) + 2
152 }
153
154 penR = function (data , k , l im=.0001) {
155 n = length (data )
156 obj = histogram (data , k=k , type=type ,weights=type , l im=lim , method=" exact " )
157 l i k = n∗obj$ l o g l i k
158 pen = log (choose (n−1,k−1) ) + 0 .5∗sum( obj$weights/d i f f (c (0 , obj$ s p l i t s , 1 ) ) ) + (

log ( k ) ) ^(2 . 5 )
159 l i k − pen
160 }
161
162 penRse lect = function (data , ks = seq (3 ,2∗cei l ing ( nobs^(1/3) ) ) ) {
163 nobs = length (data )
164 penRs = sapply ( ks , function ( k ) penR(data , k ) )
165 which .max( penRs ) + 2
166 }
167
168 AICse lect = function (data , ks = seq (3 ,2∗cei l ing ( nobs^(1/3) ) ) ) {
169 nobs = length (data )
170 AICs = sapply ( ks , function ( k ) −AIC( histogram (data , k=k , type=type ,weights=type ,

l im=lim , method=" exact " ) ) )
171 which .max(AICs ) + 2
172 }
173
174 # Generics −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175
176 plot . hist = function ( hist_obj , main=NULL, sub=NULL, xlab=NULL, ylab=NULL, r e s c a l e =

1 , grid=TRUE, . . . ) {
177 s p l i t s <− c (0 , hist_obj$ s p l i t s , 1 )
178 xlab = i f e l s e ( i s . null ( xlab ) , "x" , xlab )
179 ylab = i f e l s e ( i s . null ( ylab ) , "Density " , ylab )
180 ys <− c (0 , hist_obj$weights∗sapply ( 1 : hist_obj$k , function ( i ) 1/ ( s p l i t s [ i +1]−

s p l i t s [ i ] ) ) )
181 i f ( i s . null (main ) ) main = "Histogram"
182 i f ( i s . null (sub ) ) sub = paste0 ( " I r r e g u l a r ␣" , ( hist_obj$ s p e c i f i c a t i o n ) [ 1 ] , "−

histogram␣with␣" , ( hist_obj$ s p e c i f i c a t i o n ) [ 2 ] , "␣weights . ␣Method : ␣" , hist_
obj$method , " ; ␣k␣=␣" , hist_obj$k )

183 plot ( r e s c a l e∗ s p l i t s , ys/ r e s c a l e , type="S" , bty=" l " ,
184 xlab=xlab , ylab=ylab , main=main , sub=sub , . . . )
185 i f ( grid ) {
186 grid ( )
187 l ines ( r e s c a l e∗ s p l i t s , ys/ r e s c a l e , type="S" , bty=" l " ,
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188 xlab=xlab , ylab=ylab , main=main , sub=sub , . . . )
189 }
190 l ines ( r e s c a l e∗ s p l i t s , ys/ r e s c a l e , type="h" , . . . )
191 }
192
193 l ines . hist = function ( hist_obj , . . . ) {
194 s p l i t s <− c (0 , hist_obj$ s p l i t s , 1 )
195 ys <− c (0 , hist_obj$weights∗sapply ( 1 : hist_obj$k , function ( i ) 1/ ( s p l i t s [ i +1]−

s p l i t s [ i ] ) ) )
196 l ines ( s p l i t s , ys , type="S" , . . . )
197 l ines ( s p l i t s , ys , type="h" , . . . )
198 }
199
200 print . hist = function ( hist_obj ) {
201 cat ( "∗∗∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗∗∗␣\n" )
202 cat ( "∗∗∗␣ I r r e g u l a r ␣ histogram␣ ob j e c t . ␣∗∗∗␣\n" )
203 cat ( "∗∗∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗∗∗" )
204 cat ( "\n␣Type : " , ( hist_obj$ s p e c i f i c a t i o n ) [ 1 ] )
205 cat ( "\n␣Weights : " , ( hist_obj$ s p e c i f i c a t i o n ) [ 2 ] )
206 cat ( "\n␣Method : " , hist_obj$method )
207 cat ( "\n␣ S p l i t s : " , hist_obj$ s p l i t s )
208 cat ( "\n␣Weights : " , hist_obj$weights )
209 }
210
211 logL ik . hist = function ( hist_obj ) obj$ l o g l i k
212
213 AIC . hist = function ( hist_obj ) {
214 −2∗n∗hist_obj$ l o g l i k + 2∗( hist_obj$k−1)
215 }
216
217 # Error measurements −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218
219 imse = function ( obj , d i s t ) {
220 k = obj$k
221 q = obj$ s p l i t s
222 w = obj$weights
223 qAug = c (0 ,q , 1 )
224 e r r o r = 0
225 for ( i in 2 : ( k+1) ) {
226 e r r o r = e r r o r + i n t e g r a t e ( function ( x ) ( d i s t ( x ) − w[ i −1]/ (qAug [ i ]−qAug [ i −1])

) ^2 ,
227 lower = qAug [ i −1] ,upper=qAug [ i ] ) $value
228 }
229
230 e r r o r
231 }
232
233 h e l l i n g e r = function ( obj , d i s t ) {
234 k = obj$k
235 q = obj$ s p l i t s
236 w = obj$weights
237 qAug = c (0 ,q , 1 )
238 e r r o r = 0
239 for ( i in 2 : ( k+1) ) {
240 e r r o r = e r r o r + i n t e g r a t e ( function ( x ) ( sqrt ( d i s t ( x ) ) − sqrt (w[ i −1]/ (qAug [ i

]−qAug [ i −1]) ) ) ^2 ,
241 lower = qAug [ i −1] ,upper=qAug [ i ] ) $value
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242 }
243
244 sqrt ( 0 . 5∗ e r r o r )
245 }



Appendix B

Manski’s estimator code

We provide C++code for the algorithm in one and two dimensions, together
with an R wrapper.

B.1 One dimension

1 #include <cmath>
2 #include <vector>
3 #include <Rcpp . h>
4
5 class Point {
6 public :
7 /∗ These va lue s shou ld be there from the beginning , when the s t r u c t i s
8 ∗ i n s t a n t i a t e d . ∗/
9 double value ;

10 double weight ;
11 bool isRed ;
12
13 double r edLe f t ;
14 double blueRight ;
15
16 double posWeight ;
17
18 Point (double _value , double _weight , bool _isRed ) ;
19 Point ( ) ;
20
21 } ;
22
23 typedef std : : vec to r <Point> Points ;
24
25 inl ine bool operator < ( const Point pointOne , const Point pointTwo ) {
26 return pointOne . va lue < pointTwo . va lue ;
27 }
28
29 inl ine bool operator > ( const Point pointOne , const Point pointTwo ) {
30 return pointOne . va lue > pointTwo . va lue ;
31 }
32

167
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33 Point : : Point ( ) {
34 }
35
36 Point : : Point (double _value , double _weight , bool _isRed ) {
37 /∗ The bas i c va lue s o f the o b j e c t i s de f ined . ∗/
38 value = _value ;
39 weight = _weight ;
40 isRed = _isRed ;
41 posWeight = 0 ;
42
43 /∗ The qu i c k r edb l u e procedure w i l l never update a po in t
44 ∗ with i t s own co l o r s . This i s done here . ∗/
45 i f ( isRed ) {
46 redLe f t = weight ;
47 blueRight = 0 ;
48 } else {
49 redLe f t = 0 ;
50 blueRight = weight ;
51 }
52 }
53
54 void updateColors ( Points &_points ) {
55 long n = _points . s i z e ( ) − 1 ;
56
57 /∗ We i t e r a t e through a l l po in t s . At each point , we update i t s r edLe f t
58 ∗ e t c va lue s by adding what was known at the prev ious s t ep o f the i t e r a t i o n
59 ∗/
60
61 for ( long i = (n−1) ; i >= 0 ; i−−){
62 _points [ n ] . r edLe f t += _points [ i ] . r edLe f t ;
63 }
64
65 for ( long i = (n−1) ; i >= 0 ; i−−){
66 _points [ i ] . b lueRight += _points [ i +1] . b lueRight ;
67 i f ( _points [ i +1] . isRed ) {
68 _points [ i ] . r edLe f t = _points [ i +1] . r edLe f t − _points [ i +1] . weight ;
69 } else {
70 _points [ i ] . r edLe f t = _points [ i +1] . r edLe f t ;
71 }
72 }
73 }
74
75 void updateWeights ( Points &_points ) {
76 long n = _points . s i z e ( ) ;
77 for ( long i = 0 ; i < n ; i++){
78 _points [ i ] . posWeight = _points [ i ] . b lueRight + _points [ i ] . r edLe f t ;
79 }
80 }
81
82
83 // [ [ Rcpp : : expor t ] ]
84 Rcpp : : NumericMatrix redBlue (Rcpp : : NumericVector values , Rcpp : : NumericVector

weights ,
85 Rcpp : : In tege rVecto r isReds , bool i s S o r t ed ) {
86
87 long n = va lue s . s i z e ( ) ;
88 Points po in t s (n+2) ;
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89 for ( int i = 1 ; i < (n+1) ; i++){
90 po in t s [ i ] = Point ( va lue s [ i −1] , we ights [ i −1] , i sReds [ i −1]) ;
91 }
92
93 po in t s [ n+1] = Point ( 1 . 0 / 0 . 0 , 0 , fa l se ) ;
94 po in t s [ 0 ] = Point (−1.0/0 .0 , 0 , true ) ;
95
96 i f ( ! i s S o r t ed ) std : : s o r t ( po in t s . begin ( ) , po in t s . end ( ) ) ;
97
98 updateColors ( po in t s ) ;
99 updateWeights ( po in t s ) ;

100
101 Rcpp : : NumericMatrix valuesAndWeights (3 , n+2) ;
102 for ( int i = 0 ; i < n+2; i++){
103 valuesAndWeights (0 , i ) = po in t s [ i ] . va lue ;
104 valuesAndWeights (1 , i ) = po in t s [ i ] . isRed ;
105 valuesAndWeights (2 , i ) = po in t s [ i ] . posWeight ;
106 }
107
108 return ( valuesAndWeights ) ;
109 }
110 /∗
111 Points updatePoints ( Points &points , const Point newPoint ){
112 l ong n = po in t s . s i z e ( ) ;
113 i n t index ;
114
115 i f ( newPoint . isRed ){
116 index =
117 } e l s e {
118
119 }
120 }
121 ∗/

B.2 Two dimensions

1 #include <cmath>
2 #include <vector>
3 #include <algorithm>
4 #include <l i s t >
5 #include <Rcpp . h>
6
7
8 class Point {
9 public :

10 double value ;
11 long weight ;
12 long posWeight ;
13 double r edLe f t ;
14 double blueRight ;
15 bool isRed ;
16 Point (double _value , long _weight , bool _isRed ) ;
17 Point ( ) ;
18 } ;
19
20 typedef std : : vec to r <Point> Points ;
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21
22 inl ine bool operator < ( const Point pointOne , const Point pointTwo ) {
23 return pointOne . va lue < pointTwo . va lue ;
24 }
25
26 inl ine bool operator > ( const Point pointOne , const Point pointTwo ) {
27 return pointOne . va lue > pointTwo . va lue ;
28 }
29
30 Point : : Point ( ) {
31 }
32
33 Point : : Point (double _value , long _weight , bool _isRed ) {
34 /∗ The bas i c va lue s o f the o b j e c t i s de f ined . ∗/
35 value = _value ;
36 weight = _weight ;
37 isRed = _isRed ;
38 posWeight = 0 ;
39
40 /∗ The qu i c k r edb l u e procedure w i l l never update a po in t
41 ∗ with i t s own co l o r s . This i s done here . ∗/
42 i f ( isRed ) {
43 redLe f t = weight ;
44 blueRight = 0 ;
45 } else {
46 redLe f t = 0 ;
47 blueRight = weight ;
48 }
49 }
50
51 void updateColors ( Points &_points ) {
52 long n = _points . s i z e ( ) − 1 ;
53
54 /∗ We i t e r a t e through a l l po in t s . At each point , we update i t s r edLe f t
55 ∗ e t c va lue s by adding what was known at the prev ious s t ep o f the i t e r a t i o n
56 ∗/
57
58 for ( long i = (n−1) ; i >= 0 ; i−−){
59 _points [ n ] . r edLe f t += _points [ i ] . r edLe f t ;
60 }
61
62 for ( long i = (n−1) ; i >= 0 ; i−−){
63 _points [ i ] . b lueRight += _points [ i +1] . b lueRight ;
64 i f ( _points [ i +1] . isRed ) {
65 _points [ i ] . r edLe f t = _points [ i +1] . r edLe f t − _points [ i +1] . weight ;
66 } else {
67 _points [ i ] . r edLe f t = _points [ i +1] . r edLe f t ;
68 }
69 }
70 }
71
72 template <typename T> int signum (T va l ) {
73 return (T(0) < va l ) − ( va l < T(0) ) ;
74 }
75
76 void updateWeights ( Points &_points ) {
77 long n = _points . s i z e ( ) ;
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78 for ( long i = 0 ; i < n ; i++){
79 _points [ i ] . posWeight = _points [ i ] . b lueRight + _points [ i ] . r edLe f t ;
80 }
81 }
82
83 long getWeightMax ( Points po in t s ) {
84 long tempweight = 0 ;
85 long n = po in t s . s i z e ( ) ;
86 for ( int i = 0 ; i < n ; i++){
87 tempweight = std : : max( tempweight , po in t s [ i ] . posWeight ) ;
88 }
89 return ( tempweight ) ;
90 }
91
92 inl ine bool getColor (double const s lopeCurrent , double const s lope ,
93 bool const isRed ) {
94 bool whichColor ;
95
96 i f ( s lopeCurrent > s l ope ) whichColor = isRed ;
97 else whichColor = ! isRed ;
98
99 return ( whichColor ) ;

100 }
101
102
103
104 Points redBlue ( std : : vec to r < double > values ,
105 std : : vec to r < long > weights ,
106 std : : vec to r < bool > isReds ) {
107
108 long n = va lue s . s i z e ( ) ;
109 Points po in t s (n+2) ;
110
111 for ( int i = 1 ; i < (n+1) ; i++){
112 po in t s [ i ] = Point ( va lue s [ i −1] , we ights [ i −1] , i sReds [ i −1]) ;
113 }
114
115 po in t s [ n+1] = Point ( 1 . 0 / 0 . 0 , 0 , fa l se ) ;
116 po in t s [ 0 ] = Point (−1.0/0 .0 , 0 , true ) ;
117
118 std : : s o r t ( po in t s . begin ( ) , po in t s . end ( ) ) ;
119 updateColors ( po in t s ) ;
120 updateWeights ( po in t s ) ;
121
122 return ( po in t s ) ;
123 }
124
125
126 // [ [ Rcpp : : expor t ] ]
127 Rcpp : : L i s t redBlue2 ( std : : vec to r < double > xx1 ,
128 std : : vec to r < double > xx2 ,
129 std : : vec to r < bool > isReds ,
130 std : : vec to r < long > weights ) {
131
132 long nobs = xx1 . s i z e ( ) ;
133 long currentWeight ;
134 long maxWeight = −10000;
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135
136 std : : vec to r < double > po in t s ( nobs−1) ;
137 std : : vec to r < bool > co l o r s ( nobs−1) ;
138 std : : vec to r < Points > s to rage ( nobs−1) ;
139 std : : l i s t < double > xCoord ;
140 std : : l i s t < double > yCoord ;
141 Points redBlues ;
142
143 /∗ The main part o f the a lgor i thm con s i s t s o f computing redBlue f o r each l i n e

in
144 ∗ in the arrangement . In order to t h i s , we w i l l have to c a l c u l a t e a l l po in t s

o f
145 ∗ i n t e r s e c t i o n and a l l the corresponding co l o r s . The f o l l ow i n g loop w i l l run

through
146 ∗ t h i s a lgor i thm for us . ∗/
147
148 for ( int l ineCount = 0 ; l ineCount < nobs ; l ineCount++){
149 double s lopeCurrent = −xx2 [ l ineCount ] / xx1 [ l ineCount ] ;
150 double x11 = xx1 [ l ineCount ] ;
151 double x12 = xx2 [ l ineCount ] ;
152
153 for ( int i n t e r s e c t i onCount = 0 ; in t e r s e c t i onCount < l ineCount ;

i n t e r s e c t i onCount++){
154 bool isRed = isReds [ i n t e r s e c t i onCount ] ;
155 double s l ope = −xx2 [ i n t e r s e c t i onCount ] / xx1 [ i n t e r s e c t i onCount ] ;
156 double x21 = xx1 [ i n t e r s e c t i onCount ] ;
157 double x22 = xx2 [ i n t e r s e c t i onCount ] ;
158
159 c o l o r s [ i n t e r s e c t i onCount ] = getColor ( s lopeCurrent , s lope , isRed ) ;
160 po in t s [ i n t e r s e c t i onCount ] = ( x21−x11 ) /( x22∗x11−x21∗x12 ) ;
161
162 }
163
164 for ( int i n t e r s e c t i onCount = l ineCount +1; in t e r s e c t i onCount < nobs ;

i n t e r s e c t i onCount++){
165 bool isRed = isReds [ i n t e r s e c t i onCount ] ;
166 double s l ope = −xx2 [ i n t e r s e c t i onCount ] / xx1 [ i n t e r s e c t i onCount ] ;
167 double x21 = xx1 [ i n t e r s e c t i onCount ] ;
168 double x22 = xx2 [ i n t e r s e c t i onCount ] ;
169
170 c o l o r s [ in te r s ec t i onCount −1] = getColor ( s lopeCurrent , s lope , isRed ) ;
171 po in t s [ in te r s ec t i onCount −1] = ( x21−x11 ) /( x22∗x11−x21∗x12 ) ;
172 }
173
174 /∗ In order to c a l l redBlue we w i l l erase the va lue s . When we ’ re done i t i s

s a f e
175 ∗ to add them once again . ∗/
176 currentWeight = weights [ l ineCount ] ;
177 weights . e r a s e ( weights . begin ( )+l ineCount ) ;
178 redBlues = redBlue ( points , weights , c o l o r s ) ;
179
180
181 /∗ We beg in the updat ing opera t ion . ∗/
182 long tempWeight = maxWeight ;
183 maxWeight = std : : max( getWeightMax ( redBlues ) ,maxWeight ) ;
184 i f ( tempWeight < maxWeight ) {
185



B.2. TWO DIMENSIONS 173

186 /∗ In t h i s case , we w i l l remove a l l e n t r i e s from our
187 ∗ xCoord and yCoord l i s t s , and rep l ace them with the new
188 ∗ and super io r en t r i e s from redBlues ! ∗/
189
190 xCoord . c l e a r ( ) ;
191 yCoord . c l e a r ( ) ;
192
193 double s l ope = −xx2 [ l ineCount ] / xx1 [ l ineCount ] ;
194 double i n t e r c e p t = −1/xx1 [ l ineCount ] ;
195
196 for ( int i = 0 ; i < ( nobs + 1) ; i++){
197 i f ( redBlues [ i ] . posWeight >= maxWeight ) {
198 i f ( redBlues [ i ] . va lue >= pow(10 ,10) ) {
199 xCoord . push_front (pow(10 ,10) ) ;
200 yCoord . push_front ( s l ope ∗pow(10 ,10)+i n t e r c e p t ) ;
201 } else i f ( redBlues [ i ] . va lue <= − pow(10 ,10) ) {
202 xCoord . push_front(−pow(10 ,10) ) ;
203 yCoord . push_front ( s l ope ∗(−pow(10 ,10)+i n t e r c e p t ) ) ;
204 } else {
205 xCoord . push_front ( redBlues [ i ] . va lue ) ;
206 yCoord . push_front ( s l ope ∗ redBlues [ i ] . va lue+i n t e r c e p t ) ;
207 }
208 }
209 }
210 }
211
212 else i f ( tempWeight == maxWeight ) {
213
214 double s l ope = −xx2 [ l ineCount ] / xx1 [ l ineCount ] ;
215 double i n t e r c e p t = −1/xx1 [ l ineCount ] ;
216
217 for ( int i = 0 ; i < ( nobs + 1) ; i++){
218 i f ( redBlues [ i ] . posWeight >= maxWeight ) {
219 i f ( redBlues [ i ] . va lue >= pow(10 ,10) ) {
220 xCoord . push_front (pow(10 ,10) ) ;
221 yCoord . push_front ( s l ope ∗pow(10 ,10)+i n t e r c e p t ) ;
222 } else i f ( redBlues [ i ] . va lue <= − pow(10 ,10) ) {
223 xCoord . push_front(−pow(10 ,10) ) ;
224 yCoord . push_front ( s l ope ∗(−pow(10 ,10)+i n t e r c e p t ) ) ;
225 } else {
226 xCoord . push_front ( redBlues [ i ] . va lue ) ;
227 yCoord . push_front ( s l ope ∗ redBlues [ i ] . va lue+i n t e r c e p t ) ;
228 }
229 }
230 }
231
232 }
233
234 weights . i n s e r t ( weights . begin ( )+lineCount , currentWeight ) ;
235 }
236
237
238 return Rcpp : : L i s t : : c r e a t e (Rcpp : : Named( "xCoord" ) = xCoord ,
239 Rcpp : : Named( "yCoord" ) = yCoord ,
240 Rcpp : : Named( "maxWeight" ) = maxWeight + 1) ;
241 }
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B.3 R wrapper

Here we provide generics and wrappers for the C++-code. The mms-function can
be used as the lm-function, by using formulas. An examples is mms(yy ∼ xx1+ xx2).

1 l ibrary ( "Rcpp" )
2 sourceCpp ( "manskiAlgorithm [1 d ] . cpp" )
3 sourceCpp ( "manskiAlgorithm [2 d ] . cpp" )
4
5 #
6 # Begin the one dimensional a l gor i thm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 #
8
9 # The o b j e c t i v e func t i on . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 manskiObject ive = function (beta , yy , xx ,weights=rep (1 , length ( yy ) ) , p o s i t i v e = TRUE

){
12 i f ( p o s i t i v e ) {
13 sum(weights∗yy∗(1+beta∗xx>=0)) + sum(weights∗(1−yy )∗(1+beta∗xx<0) )
14 }
15 else {
16 sum(weights∗yy∗(−1+beta∗xx>=0)) + sum(weights∗(1−yy )∗(−1+beta∗xx<0) )
17 }
18 }
19
20 # Wrapper . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 manski1d = function ( yy , xx , xxConst = 1 , weights=rep (1 , length ( yy ) ) ,
23 i s So r t ed = FALSE) {
24
25 # xxConst i s used to modulate the va lue s o f the constant be ta . By
26 # put t i n g i t unequal to 1 , one can l e t y = x1 + bx2 , f o r ins tance .
27 #
28 # isSor t ed = TRUE i f the va lue s yy , xx are a l ready sor t ed .
29
30
31 # Fi r s t we f i nd the co l o r s and transform the input .
32 # isRed = c (( yy & xx >=0 ) | ( ! yy & xx < 0) )
33
34 va lue s = −xxConst/xx
35 isRed = c ( ( yy & xx >=0 ) | ( ! yy & xx < 0) )
36
37 redBlues = redBlue ( values ,weights , isRed , i s So r t ed=i sSo r t ed )
38
39 maxWeight = max( redBlues [ 3 , ] )
40 points = matrix ( redBlues [ 1 , ] [ redBlues [ 3 , ] == maxWeight ] ,
41 ncol=2,byrow=TRUE)
42 colnames (points ) = c ( " beta1 " , " beta2 " )
43 so l1d = l i s t ( )
44 class ( so l1d ) = c ( "manski1d" , "manski" )
45 so l1d$maxWeight = maxWeight
46 so l1d$ t o t a l = sum(weights )
47 so l1d$points = points
48 so l1d$yy = yy
49 so l1d$xx = xx
50 so l1d$weights = weights
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51
52 return ( so l1d )
53 }
54
55 # Generics . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56
57 plot . manski1d = function (manski_obj , main=NULL, sub=NULL, l im=NULL, . . . ) {
58
59 redBlues = manski_obj$ d e t a i l s
60 nobs = length ( redBlues [ 1 , ] ) − 2
61 maxWeight = manski_obj$maxWeight
62 t o t a l = manski_obj$ t o t a l
63 weights = manski_obj$weights
64 p o s i t i v e s = manski_obj$points
65 xx = manski_obj$xx
66 yy = manski_obj$yy
67
68 i f (max( p o s i t i v e s )==In f ) {
69 p o s i t i v e s [ p o s i t i v e s==In f ] = max( p o s i t i v e s [ p o s i t i v e s !=I n f ] )+4
70 upper = max( p o s i t i v e s [ p o s i t i v e s !=I n f ] )
71 } else {
72 upper = max( p o s i t i v e s ,na .rm=TRUE) + abs (min( p o s i t i v e s ,na .rm=TRUE) )
73 }
74
75 xs = seq (min( p o s i t i v e s ,na .rm=TRUE)−abs (min( p o s i t i v e s ,na .rm=TRUE) ) ,
76 upper ,by=0.001)
77
78 plot ( xs , sapply ( xs , function (beta ) manskiObject ive (beta , yy , xx ,weights )/ t o t a l ) ,

type=" s " ,
79 col=ad ju s t c o l o r ( " purple " , alpha . f =0.6) , x lab=expression (beta [ 1 ] ) , y lab="

Percent ␣ h i t s " ,
80 main = main , bty=" l " ,
81 xlim=c (min( p o s i t i v e s ) −0.01 ,max( p o s i t i v e s ) +0.01) )
82 for ( i in 1 :dim( p o s i t i v e s ) [ 1 ] ) {
83 l ines ( p o s i t i v e s [ i , ] , c (maxWeight , maxWeight )/ t o t a l )
84 }
85
86 }
87
88 breakdown = function ( obj ) {
89 nobs = length ( obj$yy )
90 isReds = obj$ d e t a i l s [ 2 , ] [ − c (1 , nobs+2) ]
91 va l s = obj$ d e t a i l s [ 1 , ] [ − c (1 , nobs+2) ]
92 l e f t = ( va l s <= obj$ p o s i t i v e s [ 1 , 1 ] )
93 l e f t = sum( i f e l s e ( isReds ,1 ,−1)∗ l e f t )
94 r i g h t = ( va l s >= obj$ p o s i t i v e s [ 1 , 2 ] )
95 r i g h t = sum( i f e l s e ( isReds ,−1 ,1)∗ r i g h t )
96 cei l ing (min( l e f t , r i g h t ) )/2
97 }
98
99 coef . manski1d = function ( obj , rand=FALSE) {

100 xs = obj$ p o s i t i v e s
101 x sF i l t e r e d = xs [ xs<=10^9 & xs >= −10^9]
102 i f ( rand ) {
103 return (sample ( x sF i l t e r ed , 1 ) )
104 } else {
105 xsAbs = abs ( x sF i l t e r e d )
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106 index = which .min( xsAbs )
107 return ( x sF i l t e r e d [ index ] )
108 }
109 }
110
111 #
112 # Begin the code f o r 2D a lgor i thms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 #
114
115 # Wrapper f o r the a lgor i thm . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116
117 manski2d = function ( yy , xx1 , xx2 ,weights=rep (1 , length ( yy ) ) ) {
118 isReds = ( xx1 >= 0 & yy ) | ( xx1 < 0 & ! yy )
119 r e s = redBlue2 ( xx1 , xx2 , isReds ,weights )
120 points = cbind ( beta1 = re s$yCoord , beta2 = re s$xCoord )
121 so l2d = l i s t ( )
122 class ( so l2d ) = c ( "manski2d" , "manski" )
123 so l2d$maxWeight = r e s$maxWeight
124 so l2d$ t o t a l = sum(weights )
125 so l2d$points = points
126 so l2d$yy = yy
127 so l2d$xx1 = xx1
128 so l2d$xx2 = xx2
129 so l2d$weights = weights
130 return ( so l2d )
131 }
132
133 # Generics . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
134
135 plot . manski2d = function (manski_obj , main=NULL, sub=NULL,
136 f u l l=FALSE, l im=NULL, . . . ) {
137
138 l en = length (manski_obj$points [ , 1 ] ) /2
139 xCoord = matrix (manski_obj$points [ , 1 ] , len , 2 , byrow=TRUE)
140 yCoord = matrix (manski_obj$points [ , 2 ] , len , 2 , byrow=TRUE)
141 xx1 = manski_obj$xx1
142 xx2 = manski_obj$xx2
143 yy = manski_obj$yy
144 par ( pty="m" )
145
146 plot (NULL, xlim=c (min( xCoord ) ,max( xCoord ) ) ,
147 col=ad ju s t c o l o r ( " black " , alpha . f =0.6) ,
148 ylim=c (min( yCoord ) ,max( yCoord ) ) , type=" l " ,
149 xlab=expression (beta [ 2 ] ) , y lab=expression (beta [ 1 ] ) ,
150 bty=" l " )
151 grid ( )
152
153 i f ( f u l l ) {
154 nobs = length ( xx1 )
155 xs = seq (−1000 ,1000 ,by=2)
156 isReds = ( xx1 >= 0 & yy ) | ( xx1 < 0 & ! yy )
157 co l Index = i f e l s e ( isReds , 2 , 4 )
158 for ( i in 1 : nobs ) {
159 l ines ( xs ,−1/xx2 [ i ]−xs/xx2 [ i ]∗xx1 [ i ] , col=ad ju s t c o l o r ( co l Index [ i ] , a lpha . f

=0.7) , l t y =3)
160 }
161
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162 }
163
164 i f ( i s . null ( l im ) ) {
165
166 for ( i in 1 : l en ) {
167 l ines ( xCoord [ i , ] , yCoord [ i , ] , lwd=1,col=ad ju s t c o l o r ( " black " , alpha . f =0.6) )
168 }
169 } else {
170 plot ( xCoord [ 1 , ] , yCoord [ 1 , ] , xl im=c (min( xCoord ) , l im ) , col=ad ju s t c o l o r ( " black " ,

alpha . f =0.6) ,
171 ylim=c (min( yCoord ) , l im ) , type=" l " , xlab=expression (beta [ 2 ] ) , y lab=

expression (beta [ 1 ] ) )
172
173 for ( i in 2 : l en ) {
174 l ines ( xCoord [ i , ] , yCoord [ i , ] , lwd=1,col=ad ju s t c o l o r ( " black " , alpha . f =0.6) )
175 }
176 }
177
178 }
179
180 coef . manski2d = function ( obj , type="min" ) {
181 # The po in t i s to au tomat i ca l l y s e l e c t c o e f f i c i e n t s in a smart way .
182 # Most important ly , we _don ’ t_ want beta1 or beta2 to be In f ( t ha t
183 # i s 10^10 in t h i s case . )
184
185 i f ( type == "min" ) {
186 points = obj$points
187 index = which .min(apply (points , 1 , function ( z ) ( z [1]^2+ z [ 2 ] ^ 2 ) ) )
188 return (c (points [ index , 1 ] , points [ index , 2 ] ) )
189 } else {
190 xs = obj$points [ , 1 ]
191 ys = obj$points [ , 2 ]
192 for ( i in 1 : length ( xs ) ) {
193 i f ( xs [ i ] <= 10^9 & xs [ i ] >= −10^9 & ys [ i ] <= 10^9 & ys [ i ] >= −10^9){
194 return (c ( beta1=xs [ i ] , beta2=ys [ i ] ) )
195 }
196 }
197 }
198 }
199
200
201 #
202 # Define the mms func t ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
203 #
204
205 mms = function ( formula ,weights=NULL) {
206 vars = a l l . vars ( formula )
207 resp = eval (parse ( text=vars [ 1 ] ) )
208
209 i f ( i s . null (weights ) ) weights = rep (1 , length ( re sp ) )
210
211 i f ( length ( vars ) == 2 ) {
212 xx = eval (parse ( text=vars [ 2 ] ) )
213 return (manski1d ( resp , xx ,weights=weights ) )
214 } else {
215 xx1 = eval (parse ( text=vars [ 2 ] ) )
216 xx2 = eval (parse ( text=vars [ 3 ] ) )
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217 return (manski2d ( resp , xx1 , xx2 ,weights=weights ) )
218 }
219 }
220
221 print . manski = function ( obj ) {
222 cat ( "∗∗∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗∗∗␣\n" )
223 cat ( "∗∗∗␣Manski ’ s ␣maximum␣ sco r e ␣␣␣␣␣␣∗∗∗␣\n" )
224 cat ( "∗∗∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗∗∗" )
225 i f ( "manski1d" %in% class ( obj ) ) {
226 cat ( "\n␣␣␣Covar iates : ␣1" )
227 } else {
228 cat ( "\n␣␣␣Covar iates : ␣2" )
229 }
230 cat ( "\n␣␣␣Object ive : " , obj$maxWeight )
231 cat ( "\n␣␣␣Sum␣ o f ␣weights : " , obj$ t o t a l )
232 cat ( "\n␣␣␣ So lu t i on ␣ edges : ␣\n" )
233 print (as . data . frame ( obj$points ) )
234 }
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