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Abstract

The aim of this work has been to implement a range of Large Eddy Simulation
(LES) turbulence models into Oasis, a Computational Fluid Dynamic (CFD)
solver for incompressible flows based on the Finite Element method (FEM), de-
veloped in-house at the University of Oslo. The focus has been on subgrid-scale
models that apply the eddy viscosity hypothesis to close the equation set, where
both static and dynamic types have been investigated. Verification and assess-
ment of the implementation is performed applying the Method of Manufactured
Solutions (MMS), and the classic case of fully developed turbulent channel flow
in an x−z periodic channel. The work is further validated through the U.S. Food
and Drug Administration (USFDA/FDA)’s computational round robin #1.

MMS does in general return good results, where the convergence rate in time
is correctly computed to r = 2 for some constructed eddy viscosity expressions,
the Smagorinsky model, and the WALE model. As for the channel flow case,
the Smagorinsky model returns mean velocity profiles that are closer to those
of resolved Direct Numerical Simulations (DNS), compared to what is obtained
with under-resolved DNS. The WALE model, the Sigma model, and the Dynamic
Smagorinsky model, which all have the correct wall behaviour, return results
where little or no improvements are seen compared to the under-resolved profiles.
It turns out that a net contribution of eddy viscosity close to the wall is extremely
important for this specific case, as this in some sense controls the whole quality
of the simulation. The Sigma model and the Dynamic Smagorinsky model do,
in despite of small improvements to the mean velocities, return good profiles for
some selected Reynolds stresses.

For the FDA case good results are obtained for both uniform and non-uniform
meshes for all LES models, where the mean velocity profiles in general are between
50 to 80 percent closer to experimental data, compared to what is obtained with
under-resolved DNS. The only model that, as expected, erroneously predicts the
breaking position of the jet is the Smagorinsky model. The best validation metric
is obtained with the WALE model on the non-uniform mesh of three million cells;
on the other hand, the best percentage improvement over under-resolved DNS is
obtained for the Dynamic Smagorinsky model with Lagrangian averaging on the
non-uniform mesh of two million cells.
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Chapter 1

Introduction

Understanding turbulent flows, how they behave, and why they behave the way
they do, what they actually are, and when they transpire, are questions that
have fascinated, amazed, dazzled, and riddled scientists for many centuries. Is
turbulence totally random and stochastic, or is it possible to describe using only
deterministic equations? Perhaps is it just an utter chaos of extreme complexity,
so intricate and involved that we may not simply understand or predict the
phenomenon, nor any of its processes? Though many of the aspects regarding
turbulence have been solved, refined, and developed over the last century, there
are still many ingredients that remain unsolved, greatly troubling the minds of
today’s scientists.

The famous Italian polymath Leonardo da Vinci did, in between painting
sessions, also have an interest in observing, understanding, and sketching turbu-
lence (see Figs. 1.1 and 1.2); or “la turbolenza”, as he named it. In his search of
understanding the phenomenon, he wrote in his diaries [1]:

Figure 1.1: A rigid obstacle in flowing water, as sketched by Leonardo da Vinci
in 1508-1509 (Nature).
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“Observe the motion of the surface of the water, which resembles that of hair,
which has two motions, of which one is caused by the weight of the hair, the

other by the direction of the curls; thus the water has eddying motions, one part
of which is due to the principal current, the other to random and reverse

motion.”

In other words, da Vinci noticed that the turbulent flow could be described by
two parts. It was not until the year of 1895, nearly 400 years after da Vinci,
that the British scientist Osborne Reynolds would develop this idea further by
introducing the field of turbulence modelling.

In the early 19th century the British scientist George Gabriel Stokes and the
French scientist Claude-Louis Navier did, independently of each other, develop
the so-called Navier-Stokes equations; four partial differential equations com-
pletely describing the flow of a viscous fluid in terms of velocity and pressure.
Later, in 1895, Reynolds [2] postulated that the same velocity and pressure fields
could be split into two parts: one describing the mean parameters of the flow,
the other describing the flows random, or fluctuating, behaviour. When these de-
compositions are coupled with the Navier-Stokes equations, one eventually arrives
at a new equation set that describes the flow in terms of a mean velocity and
a mean pressure. These Reynolds-Averaged Navier-Stokes (RANS) equations,
in addition to being recast into equations for the mean fields, contain six new,
unknown terms, represented by the fluctuating velocity components. To close
the equation set models, which correctly computes these unknown components,

Figure 1.2: A free water jet flowing through a square hole into a pool, as
sketched by Leonardo da Vinci in 1508-1509 (Wikimedia Commons).
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must be invoked, such that the RANS equations may be solvable for their mean
quantities.

Leaving the 19th century, instead turning towards the computer age and
the present time, the field of Computational Fluid Dynamics (CFD), where the
Navier-Stokes equations are numerically solved, has, as a result of the massive
leap in computational power and resources seen the last decades, become an ex-
tremely important tool for analysing flow phenomena of all types and settings.
Though CFD has become more and more popular, the traditional method of
Experimental Fluid Dynamics (EFD) is, and will continue to be, an even more
important branch of fluid mechanics. Installations such as e.g. wind tunnels, wave
tanks or pipe systems are coupled with lasers, high-speed cameras or similar, such
that complex flows may be experimentally studied. However, in despite of exper-
imental work being the traditional and more reliable approach, it is being more
and more combined with CFD and numerical experiments such that the pros and
cons from each field may be combined into one good package.

In despite of the huge leap seen in the computational department the last
decades, so-called Direct Numerical Simulations (DNS), where one fully resolves
and simulates all the scales in the flow, is still, and will continue to be, practically
impossible. Even for those who have extremely powerful super computers at
hand, DNS is limited to flows of moderate Reynolds numbers only (see section
2.1), as the total amount of required computational time simply becomes so
vast, that one may start to measure it in decades, centuries, or perhaps even
millennia. This DNS problem has eventually resulted in turbulence modelling
becoming a crucial tool for analysing complex and chaotic flows, where RANS
methods, because of their efficiency and maturity, are very much the industry
standard today.

As an alternative to RANS a slightly different approach was developed in the
1960s, then for use with simulations of atmospheric air currents [3]. The basic
idea in so-called Large Eddy Simulation (LES) is to abandon Reynolds’ mean
variables, and instead work with filtered velocity and pressure fields. Decomposi-
tion of the velocity and pressure fields is still done similarly to what was done by
Reynolds, the difference being that the fields are split into a filtered and a resid-
ual part. The original Navier-Stokes equations are then transformed into a set
of equations for the filtered velocity and pressure, where again, as with RANS,
a new term containing six unknowns is introduced into the equation set. For
the equations to be uniquely solvable for the filtered velocity and pressure, LES
turbulence models, which model all the effects caused by the unknown residual
velocities, must be introduced.

In terms of computational requirements, LES positions itself somewhere be-
tween RANS and DNS. It is more feasible than DNS since the smallest fluctuating
scales are modelled, and not directly computed; on the other hand, it is more de-
manding than RANS, since the largest fluctuating scales are directly computed,
and not modelled. Because of this, LES has not been as thoroughly investigated
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and developed the last decades as RANS; nonetheless, as a result of the mentioned
increase in computational power, combined with it having become more available
overall, the field of LES has grown substantially the last years, becoming a good
competitor to the well-established RANS methods.

1.1 Thesis Outline

As the main purpose of this work has been on implementing a general Large
Eddy Simulation framework and a range of turbulence models, this thesis has
been divided into three parts:

1. Theory.

2. Implementation.

3. Verification and validation of the implementations, again divided into a
formal and an applied part.

It should be heavily stressed that all the ingredients in the first section are well
known work and theory, whereas sections two and three are mainly based on my
own research. References to the original article and authors will be given at all
times. Where no references are given (for more general theory) books like those
of Pope [4] and Sagaut [5] have been applied.

The first section, found in Ch. 2 and Ch. 3, is for constructing the base theory,
both in terms of general mathematical and numerical methods, and for turbulence
modelling and LES. In Ch. 2 the governing fluid equations are presented, CFD
and the numerical method of choice for this thesis is discussed, discretisation of
the Navier-Stokes equations is done, followed by a short introduction to both
the Finite Element method (FEM) framework FEniCS, and the Oasis solver.
As for the third chapter a short introduction to DNS and turbulence modelling
methods is given, justifying why turbulence models are needed, and presenting a
small selection of modelling methods. The rest of the chapter is devoted mainly to
LES, where first the governing theory is introduced, followed by the presentation
of a range of subgrid-scale models based on the eddy viscosity hypothesis. To
end the chapter some problems with LES are discussed, and a very brief state-
of-the-art presentation of the field is given.

The second section, mainly found in Ch. 4, covers all the implementational
aspects of both the general eddy viscosity terms, and the LES models. First the
general residual stress tensor, and subsequently the eddy viscosity formulation,
is discretised with FEM, followed by a discussion of its implementation into the
Oasis solver. This is succeeded by implementational details for all the LES models
presented in Ch. 3. Thorough discussions are done, especially for the parts of
the work that have been the most challenging. In addition, some very short code
snippets illustrating essential parts of the different implementations are included.
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The third section, found in Ch. 5 and Ch. 6, contains all the work done in
terms of verification and validation of the implementations. It may be split into
two parts: a formal one, and an applied one. The formal part is constructed of
traditional convergence tests for the general implementation applying three types
of fabricated eddy viscosities, and convergence tests for both the Smagorinsky,
and the WALE models. In addition, a set of simple test cases are included to
assess and further verify the implementation of the LES models. As for the ap-
plied part, it is based on two simulations of choice: the standard benchmark
case of fully developed turbulent channel flow, and a more untraditional case
consisting of blood flow in a pipe followed by a nozzle, a narrow pipe, and a sud-
den expansion. The former is a case that is much used in the CFD community
when solvers are to be verified, that being either DNS solvers (both resolved and
under-resolved ones), or turbulence solvers based on either RANS, LES, or other
methods. Obtained mean data for velocities and some Reynolds stresses will be
compared to data obtained for simulations of fully resolved DNS. As for the lat-
ter case it is based on the U.S. Food and Drug Administration (USFDA/FDA)’s
computational round robin #1, where also here obtained mean data will be com-
pared to what is measured by Particle Image Velocimetry (PIV) methods in the
laboratory.

The whole thesis will be wrapped up in a concluding chapter Ch. 7, where, in
addition to concluding remarks, some general limitations, the significance of this
work, and future research topics of interest are discussed.

1.2 Motivation

Fluid mechanics, and more specifically turbulence modelling, in combination with
computer programming and numerical methods, did not become a topic of inter-
est for myself until two and a half, maybe three years ago. I have always had a
great interest in computers and how they work, and I still remember well the first
Hewlett-Packard my family acquired back in ’95 or ’96. In despite of a hard drive
of 1.5 gigabytes, a 300 MHz processor, and about 8 megabytes of memory (which
eventually was upgraded to 16 megabytes), it allowed us to do a lot of exciting
things. Compared to my current privately built desktop computer, which boasts
a 4.5 GHz processor, 16 gigabytes of memory, and a total hard drive capacity of
around three terabytes, it becomes quite clear that a massive technological leap
has found place during the last 20 to 30 years.

I have certainly not always had a great interest in physics and mathematics
(compared to computers), as it was not until I started high school that I got
substantially more interested in the two fields, then thanks to my great maths
and physics teacher Olav. Out of the two physics has always been my favourite;
though exceptionally cliché, it is in fact so that the quest for understanding
and describing the world around us is a very exciting one (at least speaking for
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myself). In addition, mathematics was interesting, especially when combined
with physics, or applying it for other practical purposes. When leaving high
school for the university, it became quite clear that the so-called MIT program
at the University of Oslo (UiO), which mixes informatics, applied mathematics,
science and more into one exciting package, was the right way to go.

When I started at the MIT program, and during the succeeding semesters, it
is without a doubt clear that the UiO professors Hans Petter Langtangen, Knut
Mørken, and Anders Malthe-Sørenssen, all did a tremendously good job in pro-
moting computational science and computational physics. I remember especially
well the first semester course I had with Langtangen, where he during one of the
introductory classes presented a slide containing the picture of an airplane with
some nicely coloured streamlines, a set of highly advanced (partial differential)
equations, and some computer code of some type. “This is what we do!” he
said. “And this is something you can do too!”. This was one of the reasons for
why I choose the mechanics direction of the MIT program, where I followingly
developed a greater interest for flowing fluids, compared to what I did for solid
mechanics.

One last question remains unanswered: why turbulence modelling, and more
specifically: why Large Eddy Simulation? This is the hardest question to an-
swer, because of there being no clear or good answers. I am, as so many others,
simply fascinated by turbulence; it is just so intricate, chaotic, captivating, over-
whelming, enchanting and extremely beautiful, all at the same time. Coupling
turbulence with numerical methods and CFD seemed like an exciting way to go,
where again Large Eddy Simulation seemed like the more exciting way, com-
pared to other paths. Maybe it is because of the name of the method, or because
of the fascinating names to some of the contributors to the field (I remember
reading some related literature where names as Smagorinsky, Deardorff and Ger-
mano fascinated me). Large Eddy Simulation also seemed like a more modern
an interesting method, not as old and “simple” as RANS, in addition to it being
up-and-coming, i.e. still in its earlier stages in terms of maturity and develop-
ment. Nevertheless, in despite of there being no clear reasons, this is where I am
today, this is the way I have chosen, and it feels like the correct way. This will
hopefully be reflected through this thesis.

Originally the implementations of the LES equations and the models, had
been done for a homemade solver that applied the same numerical methods as
Oasis, roughly speaking. In January ’15, after a meeting which included my
supervisor, the co-developer of Oasis Kristian V.-Sendstad, his master student
Aslak Bergersen, and myself, it was planned that we were going to contribute
with two articles to the MekIT’15 conference in Trondheim in May. This did
eventually result in the transition from my homemade solver to Oasis, the article
“Implementation, Verification and Validation of Large Eddy Simulation Models
in Oasis“ [6], and a presentation at the conference.



Chapter 2

General Theory and Governing
Equations

2.1 The Incompressible Navier-Stokes Equations

Named after their fathers Claude-Louis Navier and George Gabriel Stokes, the so-
called Navier-Stokes equations are a set of completely general partial differential
equations (PDEs) that describe any type of viscous fluid flow in a continuum.
The velocity vector

ui (xi (t) , t) = [u, v, w] , (2.1)

where u, v and w represents fluid velocities in the x, y, and z-directions, respec-
tively, does, together with the pressure p, represent the four unknown terms in
the equations. In addition, one for incompressible flows has two flow parameters:
the dynamic viscosity µ representing the “thickness” of the fluid, and the con-
stant ρ representing the density of the fluid. If one are working with fluid flow
in gases at high velocities, e.g. for supersonic aircraft or jet engines, one has to
take into account that the air is compressible, leading to ρ becoming a function of
time and space. However, when working with flows of water, blood, oil or similar,
one then assumes that the fluid is incompressible, and ρ followingly becomes a
constant parameter.

The Navier-Stokes equations are derived through conservation of mass and
momentum for a fixed control volume V , where one may apply e.g. Newton’s
second law to arrive at the final equations. Leaving out the details, the full Navier-
Stokes equation set for an incompressible fluid can be written on summation
notation as

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fb,i, (2.2)

∂ui
∂xi

= 0, (2.3)

7
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where we now have four momentum equations (one for each velocity component),
and the incompressible constraint requiring that ui is divergence free at all times.
Here ρ and p have been combined, such that one directly solves the equation set
for a modified pressure as p∗ = p/ρ, where p∗ is written as p for simplicity. In
addition, the kinematic viscosity ν = µ/ρ has been defined, and the equations
include a force vector fb,i for body forces like gravity or similar.

If the Navier-Stokes equations (2.2) and (2.3) are non-dimensionalised, a di-
mensionless parameter known as the Reynolds number, named after Osborne
Reynolds, presents itself. The Reynolds number, denoted Re, is constructed of
a problem specific length scale d, a problem specific mean or typical velocity U ,
and the kinematic viscosity ν, as

Re =
Ud

ν
. (2.4)

Said in another way, the Reynolds number describes the ratio of momentum
forces to viscous forces, where large Re means that the momentum forces are
dominating, whereas low Re means that the viscous forces are dominating. Its
value is somewhat problem specific: it will vary, then depending on the geometry,
the typical velocity, and ν, though one may in general say that for large Re one
has turbulent flows, whereas one for lower Re has weakly turbulent, or even
laminar, flows. It is a parameter that effectively may give us an indication on the
flowing state of the fluid we are analysing.

2.1.1 Boundary and Initial Conditions

Inlet

Very often one operates with a type of inlet in fluid flow; that may be e.g. a
pipe inlet, air entering into an airplane engine, a river inlet, or similar. For
incompressible flows the velocity may be set to a given function as

ui = ui,in(x, y, z, t) on ∂Ωin (2.5)

describing the inlet flow according to the problem. The notation ∂Ωin is here
used to state that the condition is applied to the inlet boundary only. This type
of boundary condition is known as a Dirichlet condition.

Outlet

Where one may set a fixed velocity profile at the inlet, one at the outlet do not
know the velocity profile or anything similar. It is normal to do two things at an
outlet: first, require that the normal derivative of the velocity vector is equal to
zero

∂ui
∂xj

nj,out = 0 on ∂Ωout, (2.6)
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also known as a Neumann boundary condition. Secondly, it is common to fix the
pressure at the outlet as e.g.

p = 0 on ∂Ωout. (2.7)

Solid Boundaries

At a solid boundary, one often assumes that no fluid passes through it, i.e.

uini,Solid Boundary = 0 on ∂ΩSolid Boundary, (2.8)

and that the velocity parallel to the wall is equal to the speed of the wall itself as

uiti,Solid Boundary = uSolid Boundary on ∂ΩSolid Boundary. (2.9)

If it is a non-moving solid boundary one applies the traditional no-slip condition
as

ui = 0 on ∂Ωwall, (2.10)

simply stating that all the velocity components are equal to zero at the wall.

Periodic

Periodic boundary conditions are applied in simulations where the flow field are of
a periodically repeating nature. For the case of fully developed turbulent channel
flow, where one assumes that the flow is between to plates infinitely long in both
the x- and the z-directions, periodic conditions are applied as

ui(x = 0, y, z) = ui(x = Lx, y, z), (2.11)

and

ui(x, y, z = −Lz/2) = ui(x, y, z = Lz/2). (2.12)

Simplified by words: what flows out on one side, flows in on the other side.

Initial Conditions

Several possibilities exist, where the simplest one just initiates the fluid to be
fully at rest at start-up, and the flow is then subsequently activated by some
inlet condition or moving wall. Another possibility is to apply perturbed steady
state solutions to trigger turbulent behaviour, e.g. in a pipe or similar. The
turbulent behaviour would most likely have been triggered naturally after some
time; however, perturbing an initial flow may eventually result in such turbulent
behaviour at start-up, reducing computational time.



10 2.2. NUMERICAL METHODS

2.2 Numerical Methods

For analysing chaotic flow phenomena in three-dimensional complex domains, an-
alytical work on the Navier-Stokes equations is severely limited because of their
advanced nature and general complexity. This, together with the great need of
analysing such flow situations, has led to the numerical tool of Computational
Fluid Dynamics (CFD) becoming an important companion to experimental lab-
oratory work. Often nicknamed Colourful Fluid Dynamics (see Fig. 2.1), the
method is often, but not necessarily, developed applying the Navier-Stokes equa-
tions. All three velocity components and the pressure are solved for, where sub-
sequent analysis can be done regarding flow speed, velocities, drag, lift or impact
forces on objects or walls, particle tracking in the flow field, and much more.

When it comes to discretisation of the Navier-Stokes equations, there exist
many techniques, each method having their own pros and cons. In general, for
a type of discretisation to be applicable, it must be able to handle complex
geometries (unstructured meshes), the solution it returns must be correct to
some expected order of the discretisation parameters ∆t,∆x,∆y and ∆z (higher
order is preferable), it needs to be optimized and quick, and must include good
numerical properties as e.g. little or no numerical diffusion and conservation of
quantities.

The most well-known discretisational technique when it comes to CFD is the
Finite Volume method (FVM), it being the fundamental approach in well-known
software packages as ANSYS Fluent [7], Star-CD [8], and OpenFOAM [9], among
others. The Finite Volume method is distinct in that one operates with control
volumes as computational cells, where surface integrals over these volumes are

Figure 2.1: Streamlines for flow around a F1 race car (Wikimedia Commons).
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discretised, resulting in discretised equations with good properties in terms of
conservation. In addition, the method is easily extended to three-dimensional
unstructured meshes, thereby becoming generally applicable for complex prob-
lems.

For this thesis, the discretisational method the Finite Element method (FEM)
has been chosen. Instead of control volumes FEM operates with a finite number
of elements, or cells, in the domain, where again the solution to some PDE is con-
structed by a linear combination of locally supported basis functions. The Finite
Element method, though rather heavy in terms of mathematics, is a completely
general and a very elegant method, capable of handling unstructured meshes and
complex domains, where again the accuracy of the solution can easily be con-
trolled through the chosen basis functions. In addition, the Galerkin projection
method applied when minimising the residuals in FEM is very conservative when
it comes to numerical diffusion, compared to FVM where this phenomenon is
more problematic.

In addition to FVM and FEM, one has the Spectral methods (SMs, see
e.g. [10, 11]), which in many ways are similar to FEM because of their decom-
position applying basis functions. Nevertheless, where FEM applies piecewise
locally supported basis functions, SMs apply globally supported basis functions
through Fourier series, together with Fast Fourier Transform (FFT) algorithms.
SMs are known for their excellent error properties, but they are problematic when
being applied with complex meshes or for cases where shock waves or similar dis-
continuities are present. Other methods includes mesh-free approaches such as
Smoothed-Particle Hydrodynamics (SPH) [12], or the Lattice-Boltzmann method
(LBM) [13, 14], both of them being particle based approaches.

2.2.1 The Incremental Pressure Correction Scheme

Instead of solving the Navier-Stokes equations by a computationally demanding,
though robust, coupled solver, a much better, faster, and still robust method may
be introduced by uncoupling the equations by a fractional step method. A classic
uncoupling is the method known as Chorin’s scheme, put forward by A. Chorin
in 1967 [15]. Oasis applies the Incremental Pressure Correction Scheme (IPCS)
put forward by Simo et al. [16], a slightly improved version of Chorin’s method,
where also the pressure, or a guessed pressure, is included in the equation for the
tentative velocity.

We now assume that we have an equation for a divergence free velocity un+1

as a function of the correct pressure p, and one for a non-divergence free tentative
velocity u? as a function of a guessed pressure p?. This leads to the equations

∂un+1
i

∂t
+ uj

∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fb,i, (2.13)
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∂u?i
∂t

+ uj
∂ui
∂xj

= −∂p
?

∂xi
+ ν

∂2ui
∂xj∂xj

+ fb,i, (2.14)

∂un+1
i

∂xi
= 0, (2.15)

∂u?i
∂xi
6= 0. (2.16)

Discretisation in time is done by applying the Crank-Nicolson method, where one
generally assumes that the discrete derivative between time points n and n + 1
is valid for time point n+ 1/2. This results in

un+1
i − uni

∆t
+ u

n+1/2
j

∂u
n+1/2
i

∂xj
=

(
− ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τ rij
∂xj

+ fb,i

)n+1/2

, (2.17)

and

u?i − uni
∆t

+ u
n+1/2
j

∂u
n+1/2
i

∂xj
=

(
−∂p

?

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τ rij
∂xj

+ fb,i

)n+1/2

. (2.18)

The pressure term p?,n+1/2 is now approximated to be equal to the previous
midpoint pressure as pn−1/2. Notice now how equation Eq. (2.18) is solvable for
the tentative velocity u? if we apply the midpoint average as

u
n+1/2
i ' 1

2
(u?i + uni ) . (2.19)

To avoid the nonlinearity and coupling problem for the convective term the
Adams-Bashforth projection of u

n+1/2
j is applied as

u
n+1/2
j,AB '

3

2
unj −

1

2
un−1
j . (2.20)

When Eqs. (2.19) and (2.20) have been inserted into Eq. (2.18), we may solve for
u?i .

To proceed we subtract Eq. (2.18) from Eq. (2.17), which after some rear-
rangement yields

un+1
i = u?i −∆t

∂

∂xi

(
pn+1/2 − pn−1/2

)
. (2.21)

The divergence operator is now applied together with Eqs. (2.15) and (2.16)
resulting in

∂2pn+1/2

∂xi∂xi
=
∂2pn−1/2

∂xi∂xi
− 1

∆t

∂u?i
∂xi

. (2.22)

This equation is solvable for pn+1/2, where pn+1/2 then may be applied in Eq. (2.21)
such that un+1

i may be computed.
The IPCS method can now be summarized as a three-step procedure:
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1. Solve Eq. (2.18) for the tentative velocity u?i .

2. Solve the pressure equation Eq. (2.22) for the pressure pn+1/2.

3. Correct the velocity applying Eq. (2.21) to obtain un+1
i .

2.2.2 The Finite Element Method

In the Finite Element Method the domain Ω is split into a finite number of
smaller subdomains, or elements, in addition to defining local basis functions for
each element. The methods main ansatz is that any function may be written as
a linear combination of a finite set of basis functions, e.g. for a general function
f dependent on both time and space one in the finite dimensional case has

f (tn, x) ' f̂ =
N∑
j=0

F n
j φj (x) , (2.23)

where F n
j are coefficients at computational node j for time step tn, and φj are

the locally defined basis-, or trial functions, at node j. Subsequently, a set of test
functions ψi are defined as

{ψi : i = 0, . . . , N} . (2.24)

Minimization of the arising error e = f − f̂ is then done by Galerkin’s projection
method, where one requires that the error is orthogonal to all test functions ψi
as

〈e, ψi〉 =

∫
Ω

eψidx = 0. (2.25)

The ansatz in Eq. (2.23) may now be inserted into Eq. (2.25), eventually resulting
in a global matrix system that may be solved for the coefficients F n

j by some
appropriate method.

As for the trial- and test functions φj and ψi they are often, but not necessarily,
equal to locally defined polynomial functions of some order. The most famous
of these, it being known as “the” finite element, is the so-called P1 Lagrange
element. Computational nodes are located at the vertices of each element, where
again first order linear polynomials are the basis functions of choice. In general
for a PN element the local basis functions are polynomials of order N , and the
total number of nodes per element depends on both the element type and the
polynomial order. It will in the rest of this thesis be referred to PN elements and
PN basis functions/function space, where we then are talking about the element
type or the basis functions, respectively, for a PN Lagrange element.

For more details regarding FEM, it is referred to the FEniCS book [17].
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2.2.3 Spatial Discretisation of the Tentative Velocity Equa-
tion

Spatial discretisations of all the equations presented for the IPCS scheme have
already been done in the original Oasis paper [18]; nevertheless, since some im-
portant ingredients of the discretised tentative velocity equation will be used
when the Large Eddy Simulation (LES) contribution is to be implemented into
the Oasis solver, it has been included here for completeness.

We now apply the standard FEM recipe on Eq. (2.18), that is multiply the
equations by a test function v, and integrate them over the domain Ω (the force
term has been left out for simplicity), This yields〈

u?i − uni
∆t

, v

〉
+

〈
uj
∂ui
∂xj

, v

〉n+1/2

= −
〈
∂pn−1/2

∂xi
, v

〉
+

〈
ν
∂2ui
∂xj∂xj

, v

〉n+1/2

. (2.26)

Integration by parts on the Laplacian term is now done by applying Green’s first
identity as 〈

∂2ui
∂xj∂xj

, v

〉
=

∫
∂Ω

∂ui
∂xj

njvds−
〈
∂ui
∂xj

,
∂v

∂xj

〉
. (2.27)

Neumann boundary conditions may now be incorporated through the surface
integral term; therefore, by applying Eq. (2.6) the term can be removed from the
equation.

We now apply the results from Eq. (2.27) and Eq. (2.6), together with sub-
stituting the velocities at time step n + 1/2 from Eqs. (2.19) and (2.20) into
Eq. (2.26). After some rearrangement of unknown and known terms to the left
and right hand sides, respectively, one arrives at the equation

1

∆t
〈u?i , v〉+

1

2

〈
u
n+1/2
j,AB

∂u?i
∂xj

, v

〉
+

1

2
ν

〈
∂u?i
∂xj

,
∂v

∂xj

〉
=

1

∆t
〈uni , v〉 −

1

2

〈
u
n+1/2
j,AB

∂uni
∂xj

, v

〉
− 1

2
ν

〈
∂uni
∂xj

,
∂v

∂xj

〉
−
〈
∂pn−1/2

∂xi
, v

〉
. (2.28)

As a next step the velocity vector notation is abandoned in favour of the
standard FEM ansatz, resulting in

uni = [un, vn, wn] =

[
N∑
j=0

Un
j φj,

N∑
j=0

V n
j φj,

N∑
j=0

W n
j φj

]
, (2.29)

pn =
N∑
j=0

P n
j ψj, (2.30)
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where φj and ψj are the trial functions for the velocity and the pressure spaces,
respectively. Inserting the decompositions, applying v = φi for the test functions,
and rewriting on matrix notation results in an equation for U?

j as(
1

∆t
Mij +

1

2
νKij +

1

2
Xij

)
U?
j =

(
1

∆t
Mij −

1

2
νKij −

1

2
Xij

)
Un
j (2.31)

−Qij,1P
n−1/2
j .

Five new matrices have been defined as

Mij = 〈φi, φj〉 , (2.32)

Kij =

〈
∂φi
∂xk

,
∂φj
∂xk

〉
, (2.33)

Xij(t) =

〈
u
n+1/2
k,AB

∂φj
∂xk

, φi

〉
, (2.34)

Qij,l =

〈
∂ψj
∂xl

, φi

〉
, (2.35)

where index k in Kij and Xij defines summation from 1 to 3, and the index
l in Qij,l is equal to either 1, 2 or 3, dependent on which velocity component
we are solving for. The equations for the two other velocity components are
identical to Eq. (2.31), the only difference is for the pressure term where Qij,l

depends on which velocity component one solves for. Now all the matrices in
Eq. (2.31) may together with the velocity specific right hand sides be computed,
where the subsequent linear systems can be solved for the three tentative velocity
components.

2.2.4 FEniCS

The framework FEniCS, developed as a joint work between several research in-
stitutions including the Fornebu situated Simula Research Laboratory, is a com-
pletely general FEM framework for numerically solving PDEs of all types in both
time and space. The framework comes as a package named dolfin, which includes
all the functionality needed to solve a problem applying FEM. The whole discreti-
sation process is done by the framework, making it fast and easy to solve simple
problems, in addition to the user having the ability to control many aspects of
the ongoing procedure if wanted. The user may (but is not restricted to) apply
the library through high level Python scripting.

FEniCS is heavily dependent on the so-called Unified Form Language (UFL),
which renders the user able to write Python code that translates nearly one-to-
one to mathematical notation. To specify and solve a problem with FEniCS the
user has to follow some simple steps:
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1. Import the dolfin package.

2. Provide a mesh.

3. Choose function spaces for the trial- and test functions.

4. Input the weak form of the PDE to the solver applying the UFL.

5. Provide boundary conditions.

6. Start the solver.

As a simple example we apply the Poisson equation in three dimensions, given
on its weak form as ∫

Ω

∇u · ∇vdx =

∫
Ω

fvdx in Ω,

f = x2 + y2 + z2, (2.36)

u = 0 on ∂Ω.

First we import the packages and provide a mesh for the solver as

from dolfin import *

# Mesh -> 3D Unit Cube , 32 nodes in each direction

mesh = UnitCubeMesh(32 , 32 , 32)

Then we pick the wanted function space, and obtain the test and trial functions
as

# Function space of P1 Lagrange elements

V = FunctionSpace(mesh , "Lagrange", 1)

u,v = TrialFunction(V), TestFunction(V)

The function space V now applies the P1 Lagrange elements described in section
2.2.2. We now input the right hand side function f by applying the dolfin function
Expression, and define the UFL of the weak form as

# Define f = x**2 + y**2 + z**2

f = Expression("pow(x[0],2)+pow(x[1],2)+pow(x[2],2)")

# Define UFL of a and b

a = inner(grad(u),grad(v))*dx

b = f*v*dx

Notice the UFL code applied here: inner(a,b) denotes the inner product of a and
b; grad(u) denotes the gradient of u; dx tells the framework that this expression
must be integrated over the whole domain. We also apply the mathematical
operators +, -, * and / as usual. Assembly (computation of the integrals, and
subsequently the matrix and right hand side vector) is now done as
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Aij = assemble(a) #LHS matrix

bi = assemble(b) #RHS vector

In the end the boundary conditions are defined and applied to A and b, followed
by initiation of the solver as

# Create DirichletBC u0(x,y,z) = 0 on the whole boundary

u0 = Constant(0)

bc = DirichletBC(V, u0 , "on_boundary")

# Apply boundary condition to A and b

bc.apply(Aij ,bi)

# Solve the problem and add solution to uj

uj = Function(V)

solve(Aij , uj.vector (), bi)

The solution to this problem is now stored in the function uj, where e.g. it may
be stored to file and plotted by an appropriate visualization tool.

As previously mentioned one may with FEniCS solve all types of problems
easy and fast (as the one above). However, for more complicated problems like
e.g. the Navier-Stokes equations, one has to be smart when developing the code
such that CPU usage, total simulation time, and memory usage is kept to a
minimum. One such optimization, which in general is applicable for certain time
dependent problems, is to, instead of just defining the UFL of the weak forms and
then assemble the matrices each time step, exploit the fact that these matrices
do not change in time. Thus, for the tentative velocity equation presented in
the previous section, both Mij and Kij can be assembled prior to the time loop,
resulting in a great speed up compared to if they had been computed each time
step. On the other hand, the convective matrix Xij is a function of time since the
Adams-Bashforth projected velocity is changing with time, eventually resulting
in assembly of this matrix being required each time step.

For more details regarding FEniCS it is referred the FEniCS book [17]. The
FEniCS Project can be accessed online at [19].

2.2.5 Oasis

Oasis, developed in-house at the University of Oslo by Mikael Mortensen and
Kristian Valen-Sendstad, is a freely available open source package for solving the
incompressible Navier-Stokes equations by FEM through the FEniCS framework.
The highly optimized solver applies energy conserving numerical schemes, com-
bined with it being able to tackle fully unstructured meshes, such that complex
flow problems and phenomena may be analysed. The solver and all its compo-
nents are scripted in Python, where the user scripts the subsequent problem to
be solved through the same programming language. Both FEniCS and Oasis
support parallel computing through the Message Passing Interface (MPI) and
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the Python package “MPI for Python” (MPI4Py).
As the discretisational and implementational details regarding Oasis have

been thoroughly covered in Mortensen et al. [18], more details will not be given
here. Source code for the Oasis project is available online at [20], where the
LES development branch, and followingly all the code developed as a part of this
thesis, can be accessed through [21].

2.3 Conclusions

In this chapter the general analytical and numerical foundations for use in this
thesis have been constructed. The Navier-Stokes equations describing fluid flow
in a continuum were presented, together with some elaboration regarding initial
and boundary conditions for the equations.

A short introduction to Computational Fluid Dynamics (CFD) was given,
where the general idea was put forward, together with a brief discussion regarding
some well-known discretisational techniques. The IPCS approach, where the
Navier-Stokes equations are split into a three-equation procedure, was introduced,
followed by a short introduction to FEM, and discretisation of IPCS’ tentative
velocity equation by the same method. In addition, a short introduction to the
FEniCS project was given, followed by a simple implementational example that
hopefully will work as a base of the somewhat more advanced code snippets being
presented in Ch. 4. The chapter was wrapped up with a short introduction to
the Oasis CFD solver.



Chapter 3

Turbulence Modelling and Large
Eddy Simulation

3.1 Introduction

Discretising the Navier-Stokes equations by some nice methods in time and space,
programming them into the computer, then solving them numerically, may at first
sight seem like a simple task, possibly giving us the ability to tackle all types of
flows, including those that consist of chaotic and turbulent phenomena. In gen-
eral it is believed, but not confirmed, that the Navier-Stokes equations do indeed
describe all types of flows, both laminar and turbulent, where the continuous
representation contains all fluctuations, perturbations, nonlinearities, eddies of
all sizes, and so on. From a continuous point of view, this is amazing; however,
because of the transformation to the discrete description and general computa-
tional limitations, the obtained numerical results may be wrong compared to the
exact description one possibly could have obtained in the continuous case.

So what is the problem? Well, the fact that the equations are so complex to
handle that obtaining continuous solutions are at most times impossible, com-
bined with the fact that there are huge computational limitations when solving
the discretised equations, eventually leads to no continuous solutions, and no
good numerical solutions. For the more complex cases that is. To cope with this
problem something has to be done, such that we indeed may be able to tackle
these cases, and followingly obtain solutions that are good, realistic, and actually
reflect real life situations in some way.

3.1.1 Direct Numerical Simulation

In theory (and sometimes practically) it is indeed possible to do so-called Direct
Numerical Simulation (DNS): just refine the mesh and the time step as much as
possible, until one is assured that all scales, from the smallest Kolmogorov length

19
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scales to the largest scales, are resolved. The Kolmogorov length scale is defined
as

η =
(
ν3/ε

)1/4
, (3.1)

where ν is the kinematic viscosity and ε is the rate of dissipation of turbulent
kinetic energy. Since ε is a function of ui, the Kolmogorov scale is implicitly
dependent on the Reynolds number Re, where higher Re eventually results in
smaller length scales η. This means that the computational requirements of DNS
to some extent is directly dependent on Re, where it can be shown that the
total computational cost in terms of floating point operations (FLO) increases
as approximately 160Re3

L (Pope, [4]), where ReL = k2/ (εν) is the turbulent
Reynolds number, and k is the turbulent kinetic energy. Similar requirements for
the number of time steps and the number of grid points can be deduced, clearly
illustrating that DNS is limited to moderate, or even low, Re.

In despite of the methods extreme requirements it has become more and more
available for use, as a result of the huge leap seen in computational power the
last decades. Most likely it will become even more feasible as the development
of the transistors will continue, in addition to the possible introduction of new
technologies as optical computing (electrons abandoned in favour of photons), or
quantum computing. Both of these technologies are still in development, were
the optical computing method is said to be available to the regular consumer in
ten to twenty years. Quantum computing may arrive farther into the future; it
is, nonetheless, still on the theoretical stage.

DNS computations for low enough Re is absolutely possible, and it has be-
come an important tool for validating solvers, helping with understanding general
turbulent behaviour and the Navier-Stokes equations, and for both a priori and a
posteriori validation of turbulence models. Good DNS results have been achieved
by applying Spectral Methods (section 2.2), where both Moser, Kim and Mansour
[22] and Jimenez et al. [23] applied spectral solvers to obtain their DNS data for
fully developed turbulent channel flow. The spectral methods have advantages
in terms of efficiency and good error properties; hence, they work well for some
specific DNS simulations. Nonetheless, if we are to simulate flows of increased
Re, DNS must be abandoned in favour of more efficient methods. These meth-
ods aim towards computing some mean part of the flow only, instead accounting
for the effects caused by the fluctuating scales by some appropriate turbulence
models.

3.1.2 Reynolds-Averaged Navier-Stokes

The first method to be developed, and still the most popular turbulence modelling
approach today, is the Reynolds-Averaged Navier-Stokes (RANS) method. RANS
was first presented by Osborne Reynolds [2] in the 1890s, where his idea was to
decompose the velocity and pressure fields into one mean and one fluctuating
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part as

ui = ui + u′i, (3.2)

p = p+ p′, (3.3)

where the mean here is equal to an ensemble average operation. If we insert these
decompositions into the Navier-Stokes equations followed by applying the mean
operation, one arrives at the unclosed RANS equations as

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂

∂xj

(
u′iu
′
j

)
. (3.4)

Notice the new term Rij = u′iu
′
j, denoted the Reynolds stress, in general contain-

ing 6 unknown terms that need to be modelled by turbulence models, eventually
rendering the equation set closed and solvable for the mean quantities ui and p.

As for modelling Rij the bottom line is that it is difficult, especially in a
completely general way that works for turbulent flows of all types and in all
geometries. The most known methods of modelling are the ones based on the
linear eddy viscosity assumption of Boussinesq [24], given as

u′iu
′
j = −2νTSij +

1

3
δiju′ku

′
k. (3.5)

For modelling the eddy viscosity νT several approaches exist:

1. Algebraic models, which tends to model the eddy viscosity by simple,
algebraic expressions.

2. One equation models, which introduce one extra PDE to be solved for
some required quantity. Examples here are e.g. Prandtl’s model, which
solves an extra PDE for the turbulent kinetic energy k, and then models
the eddy viscosity as νT = k1/2l for some length scale l; or the Spalart-
Allmaras model, which solves an extra PDE for a viscosity-like term ν̃.

3. Two equation models, which model the eddy viscosity by introducing
two extra PDEs. Here we find the well known k − ε model, where PDEs
for k and the turbulent dissipation ε are solved, then νT is computed as
νT = Cν

k2

ε
for some constant Cν . A different model is the k − ω model,

where instead PDEs for k and the specific dissipation ω are solved, and
νT = k/ω. Both these models are very common and substantially used
in industry, many variants of them exist, and research is still being done
today.

A second way of modelling the unknown terms in Rij is by so-called Reynolds
Stress Models (RSM). Then one abandons the eddy viscosity assumption and
instead solve PDEs for all the terms inRij directly. In addition to the introduction
of six extra PDEs, these equations are also constructed of new, unknown terms,
which require further modelling and specification.
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3.1.3 Large Eddy Simulation

Developed in the 1960s and 70s, mainly by Smagorinsky [3] (for simulating at-
mospheric flows), Lilly [25], Leonard [26] and Deardorff [27, 28], the turbulence
modelling method of Large Eddy Simulation (LES) has become a good alterna-
tive to RANS methods the last decades. The main idea when doing LES is to
filter out the smallest scales in the flow, resolve (simulate) the largest scales and
eddies, and followingly model the effects caused by the smallest scales. Compared
to RANS where the turbulence models must account the effects caused by all the
fluctuations in the flow, the LES models need to take a substantially smaller
amount of left out effects into account.

As a result of LES resolving a larger part of the flow field, it is also more
demanding in terms of computational requirements compared to RANS. In ad-
dition, where RANS presents us with mean data directly, the LES equations are
fully unsteady in time; thus, for good mean data to be obtained with LES the
total simulation time needs to be increased. On the other hand LES presents us
with much more detailed data in terms of velocity and pressure, together with
the LES simulations, most likely, being much more “general” compared to RANS,
since a much larger part of the flow field is resolved.

Since LES is the turbulence modelling method applied in this thesis it is
thoroughly covered in sections 3.2 to 3.4.

3.1.4 Detached Eddy Simulation

As discussed in section 3.4.1 there are some problems with turbulent boundary
layers when it comes to LES, where the velocity field in these regions actually
may be better represented by RANS solutions. Hence, the method of Detached
Eddy Simulation (DES), introduced by Spalart [29], which aim is to combine
the best of two worlds: LES is applied in the regions that are “detached” from
the wall, combined with the shift to RANS near walls. These hybrid methods
require less computational resources compared to pure LES, but are still more
demanding than RANS as the grid needs to be sufficiently fine for LES in certain
regions.

For more details regarding DES it is referred to the original paper [29]. A wide
selection of papers regarding other hybrid RANS-LES methods can be found in
[30].

3.2 The Methodology of Large Eddy Simulation

3.2.1 Formal Definition of the Filtering Operation

As a first measure when doing LES one splits the velocity and pressure fields into
a filtered and a residual quantity, equivalent to what is done in Eqs. (3.2) and
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(3.3). The filtering operation is a type of spatial low-pass filter, defined as

ui(x) =

∫ ∞
−∞

ui(r)G(x− r)dr, (3.6)

where G now denotes some type of filtering kernel. This filtering kernel is con-
structed in such a way that scales, or frequencies, smaller than a cutoff scale ∆
are removed from the filtered quantity. Some examples are the box filter kernel

G =

{
1
∆
, if |x− r| ≤ ∆

2

0, else
, (3.7)

the Gaussian filter kernel

G =

(
6

π∆2

)1/2

exp

(
−6 (x− r)2

∆2

)
, (3.8)

and the sharp spectral filter kernel

G =
sin (π (x− r) /∆)

π (x− r)
. (3.9)

The filter operation in Eq. (3.6) satisfies linearity,

f + g = f + g, (3.10)

given two general fields f and g, and commutation with derivatives (only for
homogeneous filters) as

∂f

∂xi
=
∂f

∂xi
, (3.11)

Compared to RANS and its mean operation, the filtering operation of LES
includes some differences. First, where we for RANS apply that ui = ui, we for
LES have that ui 6= ui, since the filtered fields still are fluctuating in some manner.
In addition, one for RANS applies that u′i = 0, something which neither is correct
when applying the LES filtering operation. For a simple illustration see Fig. 3.1.
There a random noised sine function has been filtered by applying the Gaussian
kernel given in Eq. (3.8), together with a cutoff width ∆ = 0.05. Notice how
the filtering operation removes the fluctuations and produces a much smoother
profile in u. The residual u′ has been plotted at the bottom, where also the
(nonzero) filtered residual u′ is computed and plotted. The RANS counterpart
of u illustrates the difference: RANS gives an overall mean value, LES filters
perturbations below ∆ only.

It should be noted that this filtering operation is not explicitly used in the type
of Large Eddy Simulation implemented in this thesis. One instead assumes that
the numerical solutions represent the filtered velocity and the filtered pressure
directly; hence, the mesh together with the numerical scheme act together as the
filter. There will, however, be some discussion regarding a second filtering kernel
Ĝ, which is explicitly needed in the Dynamic Smagorinsky model (section 3.3.4).
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Figure 3.1: Gaussian filter on 1D function; ∆ = 0.05.

3.2.2 The Filtered Continuity Equation

Starting with the continuity equation Eq. (2.3) one applies the filter followed by
commutation as

∂ui
∂xi

=
∂ui
∂xi

= 0. (3.12)

Thus, as for the original equation set, also the filtered velocity field ui needs to
be divergence free. This can again be used to show that the fluctuating velocity
has the same constraint as

∂

∂xi
(ui − ui − u′i) =

∂u′i
∂xi

= 0. (3.13)

3.2.3 The Filtered Momentum Equations

Now we apply the filter to the momentum equations in Eq. (2.2) as

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fb,i, (3.14)
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which by linearity and commutation results in

∂ui
∂t

+
∂

∂xj
uiuj = − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ f b,i. (3.15)

Notice how the convective term has been rewritten by applying the continuity
equation as

∂

∂xj
(uiuj) = ui

∂uj
∂xj

+ uj
∂ui
∂xj

= uj
∂ui
∂xj

. (3.16)

Further manipulation is done by adding the term uj
∂ui
∂xj

to both sides of the

equation, and moving the convective term in Eq. (3.15) to the right hand side.
This results in a slightly modified equation as

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τ rij
∂xj

+ f b,i, (3.17)

where the new residual stress tensor, defined as

τ rij = (uiuj − uiuj) , (3.18)

has been introduced.
Notice now how the equation set is unclosed since the residual stress tensor τ rij

is unknown. To close the system models for τ rij need to be introduced, eventually
rendering the equation set closed and solvable for both the filtered velocity vector
ui and the filtered pressure p.

3.2.4 Decomposing the Residual Stress Tensor

Following [4] the residual stress tensor can be decomposed by inserting the ve-
locity decomposition into the definition of the tensor, resulting in

τ rij = uiuj − uiuj = (ui + u′i)
(
uj + u′j

)
−
(
ui + u′i

) (
uj + u′j

)
= uiuj − uiuj + uiu′j + u′iuj − uiu′j − u′iuj + u′iu

′
j − u′iu′j.

Notice now how we in the last equality have regrouped the terms containing
only the filtered velocity, a combination of the filtered and the residual velocity,
and factors containing the residual velocity only. Now the Leonard, Clark and
Reynolds tensors are defined as

Lij = uiuj − uiuj, (3.19)

Cij = uiu′j + u′iuj − uiu′j − u′iuj, (3.20)

Rij = u′iu
′
j − u′iu′j, (3.21)
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where the expression for the residual stress tensor followingly is written as

τ rij = Lij + Cij +Rij. (3.22)

It is now clear that the residual stress tensor needs to model interactions
between the larger scales, as seen through the Leonard tensor, interactions among
large and small scales as seen through the Clark tensor, and interactions among
the subgrid-scales, as seen through the Reynolds tensor. Notice also how the
Leonard tensor actually is directly computable if the velocity vector ui is known
and an explicit filtering procedure together with a filtering kernel G is specified.
In so-called scale-similar, or mixed, subgrid-scale models, one takes into account
that the Leonard tensor is directly computable; hence, the LES model needs to
account for the cross- and subgrid-scale interactions only. Some mixed models are
presented in section 3.3.7, but neither implementational details, computational
analysis, nor any validation will be done here, as the emphasis will be on models
that model τ rij in total.

3.3 Models for the Residual Stress Tensor

The most popular approach for modelling the residual stress tensor is to apply
the eddy viscosity hypothesis of Boussinesq [24], and then assume that all the
subgrid-scale effects in τ rij may be modelled by a fictional eddy viscosity term.
More precisely this hypothesis assumes that

τ rij = −2νTSij +
1

3
τ rkkδij, (3.23)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.24)

is the filtered rate of strain tensor, and νT is a general expression for the eddy vis-
cosity. The trace term on the right hand side of Eq. (3.23) is combined with the
pressure, such that one instead solves for a modified pressure as p∗ = p+ 1

3
τ rkkδij

(for simplicity defined as p). As for the eddy viscosity one can by dimensional
reasoning show that it must have the dimensions of νT = m2

s
; therefore, some ap-

propriate length and time scale need to be defined such that νT can be computed,
subsequently closing the equation set.

All the models, which are presented here (excluding the mixed models in sec-
tion 3.3.7), have been implemented into the Oasis framework. Details regarding
the implementation can be found in Ch. 4, the following sections will present the
models and some theory surrounding them.
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3.3.1 The Smagorinsky Model

The first LES model to be introduced, developed by Smagorinsky [3], and first
used by Deardorff [27] in numerical LES simulations, is the so-called Smagorinsky
model. It is constructed of a length scale term, a time scale term, and a general,
dimensionless constant Cs named the Smagorinsky constant. Starting with the
length scale it is assumed that it may be connected to the filter cutoff scale ∆;
thus, since the mesh acts as the general filter, the idea is to apply some function
of the mesh spacing ∆ as the general length scale term. A simple and widely
applied solution is to apply the local cell volume as

∆ = V
1/d
cell , (3.25)

where Vcell is the area/volume of a computational cell or element, and d equals the
geometrical dimension of the problem. As for the time-scale term (or differential
operator), it is set to be the magnitude of the filtered rate of strain tensor (3.24)
as

|S| =
√

2SijSij, (3.26)

This results in the eddy viscosity being modelled as

νT =
(
Cs∆

)2 |S|, (3.27)

where now the term ∆ has been squared since the required length scale is m2.
The Smagorinsky model is the simplest LES model available, and it is, in

despite of its well-known flaws, still being used for a range of problems today.
The constant Cs has been found to be in the range [0.1, 0.2] (Pope [4]), where
Deardorff [27] applied a constant value of Cs = 0.1 for turbulent channel flow.
Modelling νT by this constant Cs, together with the use of the differential op-
erator |S|, is known to overpredict turbulent viscosity in near-wall regions and
regions of simple shear flow. This behaviour may lead to excessive damping, and
subsequent elimination of transitional effects, eventually rendering the model un-
suitable for certain transitional flows. Improvements have been made by imple-
menting damping functions near walls (e.g. Van Driest’s damping function [31]),
but these solutions do not fix the models problems in other regions, thus other
routes for eliminating these problems have been found.

3.3.2 The Wall-Adapting Local Eddy-Viscosity Model

The Wall-Adapting Local Eddy-Viscosity model (WALE), developed by Nicoud
et al. [32], attempts to fix the shortcomings with the Smagorinsky model by
directly incorporating the correct behaviour into the eddy viscosity expression.
Instead of defining appropriate functions near the wall or introducing dynamic
procedures (see section 3.3.4), the idea is to create an expression for νT where
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the correct behaviour is baked into a suitable differential operator. The WALE
model is very similar to Smagorinsky, where the eddy viscosity now is defined as

νT =
(
Cw∆

)2
DW , (3.28)

for ∆ in Eq. (3.25), and the WALE constant Cw shown by [32] to take the value

Cw ≈ 3.26Cs. (3.29)

The differential operator DW is still a function of the filtered rate of strain ten-
sor in some form; it, however, has some major modifications compared to the
Smagorinsky model. More precisely it is defined as

DW =

(
SdijS

d
ij

)3/2(
SijSij

)5/2
+
(
SdijS

d
ij

)5/4
, (3.30)

where

Sdij =
1

2

(
g2
ij + g2

ji

)
− 1

3
δijg

2
kk. (3.31)

Here

gij =
∂ui
∂xj

and g2
ij = gikgkj. (3.32)

The eddy viscosity for the WALE model can now be written as

νT = (Cw∆)2

(
SdijS

d
ij

)3/2(
SijSij

)5/2
+
(
SdijS

d
ij

)5/4
. (3.33)

The development of this new term DW is quite extensive, it is referred to the
original article [32] for a full justification.

3.3.3 The σ Model

The third differential operator model applied and implemented here is the so-
called σ model, developed by Baya Toda et al. [33] as an improvement to the
WALE model. Its form is similar to the Smagorinsky and the WALE models, it
consisting of a free constant, found by [33] to have the value

Cσ '
3

2
, (3.34)

in addition to the filter width ∆ defined in Eq. (3.25). The eddy viscosity is then
modelled as

νT =
(
Cσ∆

)2
Dσ, (3.35)

for its differential operator Dσ.
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This model attempts to incorporate all the wanted behaviour directly into
Dσ, such that both the appropriate wall behaviour, and some other effects, are
tackled correctly (see section 5.2). In the original paper [33] the authors propose
to apply the gradient tensor of the filtered velocity in some way, similar to what
the WALE model does. However, where WALE further applied the square of the
gradient velocity tensor, the Dσ operator is instead based on the singular values
σ1 ≥ σ2 ≥ σ3 ≥ 0 of the gradient tensor. The wanted behaviour for the model is
actually found in these singular values, as they include properties that directly
represents some special flow phenomena where the eddy viscosity should be equal
to zero. The differential operator for the σ model is given by [33] as

Dσ =
σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

. (3.36)

For further justification and derivation of this Dσ term it is referred to the original
article [33].

3.3.4 The Dynamic Smagorinsky Model

The Dynamic Smagorinsky model, developed by Germano [34] and further refined
by Lilly [35], attempts to tackle the problems experienced with the Smagorinsky
model in a slightly different manner, compared to the previously presented differ-
ential operator models. Instead of incorporating the wanted effects through some
differential operator, the general idea is to compute Cs dynamically as a function
of the flow field. Germano applied the general expression for τ rij in Eq. (3.18),
together with a similar expression for a coarser filter level as

T rij = ûiuj − ûiûj, (3.37)

where (̂) equals a double filtering operation with a corresponding cutoff scale ∆̂.
Combining Eq. (3.18) and Eq. (3.37), one may apply the Germano identity as

Lij = T rij − τ̂ rij = ûiuj − ûiûj − ûiuj + ûiuj = ûiuj − ûiûj. (3.38)

Notice that if a second filtering procedure (̂) is defined, the tensor Lij is com-
putable as a function of the resolved velocity field ui only.

Applying the Smagorinsky model in Eq. (3.27) for both τ rij and T rij together
with the general eddy viscosity model in Eq. (3.23), results in the deviatoric
residual tensor at the mesh filter level being modelled as

τ rij = −2(Cs∆)2|S|Sij +
1

3
τ rkkδij, (3.39)

and the similar deviatoric residual tensor at the coarser filter level being modelled
as

T rij = −2(Cs∆̂)2|Ŝ|Ŝij +
1

3
T rkkδij, (3.40)
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where ∆̂ is defined as the filter width at the test filter level, and

Ŝij =
1

2

(
∂ûi
∂xj

+
∂ûj
∂xi

)
; |Ŝ| =

√
2ŜijŜij. (3.41)

We now combine Eq. (3.38) with Eq. (3.39) and (3.40), which equates to

Lij −
1

3
Lkkδij ≡ Ldij =

(
2(Cs∆)2|S|Sij
∧

− 2(Cs∆̂)2|Ŝ|Ŝij
)
, (3.42)

where now the deviatoric tensor Ldij must be applied as a result of the trace-terms
in Eqs. (3.39) and (3.40). It is now assumed that Cs is independent of scale, and
can thus, together with ∆, be moved outside the test filtering operation, resulting
in the equation

Ldij = C2
sMij, (3.43)

for

Mij = 2∆
2
(
|̂S|Sij − α2|Ŝ|Ŝij

)
, (3.44)

and

Lij = ûiuj − ûiûj. (3.45)

Notice the new constant α = ∆̂/∆ in Mij, which equals the mesh-filter to test-
filter ratio, a value often taken as α = 2. Additionally, the main assumption of
the Dynamic Smagorinsky model has been done, in that one assumes that Cs
varies sufficiently small, and can hence be extracted from the filtering operation.
This is not always true, as the Scale-Dependent model takes into account scale-
dependency of Cs (see section 3.3.5).

A problem with Eq. (3.43) is that it is a tensor equation, resulting in six
equations that need to be solved for one unknown Cs. To manipulate Eq. (3.43)
into one equation for one unknown, Germano [34] originally proposed to multiply
it by Sij, resulting in

C2
s =

LijSij

MklSkl
. (3.46)

This was further refined by Lilly [35] who did a least squares analysis of Eq. (3.43),
obtaining a slightly modified expression as

C2
s =

LijMij

MklMkl

. (3.47)

Notice that we apply Lij and not Ldij in Eqs. (3.46) and (3.47), that as a result of

Mij and Sij both being deviatoric tensors for incompressible flows. It was discov-
ered that large fluctuations and both extreme and negative values were present
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for Cs if computed from Eq. (3.47), hence further averaging was introduced for
both the numerator and the denominator as

C2
s =

|LijMij|
|MklMkl|

, (3.48)

for some averaging procedure |·|. In addition to the averaging procedure some
clipping of C2

s may need to be included if unwanted values still are present. A

common tweak that is applied a lot in literature, is to simply extract ∆
2

from

Mij, subsequently resulting in one being able to solve for
(
Cs∆

)2
directly. This

is a positive result as one then avoids explicit specification of the length scale,
instead being able to retrieve it implicitly through the dynamic procedure.

When it comes to the averaging procedure there are different solutions which
have been proposed and tested. Originally Germano [34] averaged in planes of
homogeneous directions, but as this phenomenon is only present in some types of
flows it is not generally applicable for more complex situations. Other solutions
include planar averaging, local averaging over a few grid cells, or global averaging
(not applicable with the differential operator |S|).

As for this thesis a more general averaging approach has been chosen and
implemented, such that the solver may be as generally applicable as possible. The
method, proposed by Meneveau et al. [36], is based on an approach of averaging
along fluid particle trajectories, thereby its name: Lagrangian averaging. Leaving
out the details one eventually arrives at the following expression for Cs:

C2
s =

JLM
JMM

, (3.49)

where JLM and JMM are obtained by solving two transport equations as

∂JLM
∂t

+ u · ∇JLM =
1

T
(LijMij − JLM) , (3.50)

∂JMM

∂t
+ u · ∇JMM =

1

T
(MijMij − JMM) , (3.51)

T = θ∆ (JLMJMM)−1/8 , (3.52)

for θ = 3/2. The discretisation of these equations will be discussed in the next
chapter, but the implementation has been done similarly to what is done in the
original paper, then by applying some implicit scheme, such that the amount of
extra resources required is decreased to a minimum. All the details will be given
in section 4.3.4.

A General Dynamic Procedure

Assume that we now have a general eddy viscosity expression on the form

νT = ΘΛΓ, (3.53)
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where Θ equals the fixed constant, Λ equals the length scale term, and Γ equals
the differential operator of the model. For Smagorinsky we have that Θ = C2

s

and Γ = |S|, where we for WALE similarly have Θ = C2
w and Γ = DW , and for

σ model we have Θ = C2
σ and Γ = Dσ. For all these models Λ = ∆

2
.

Now the dynamic procedure is applied together with Eq. (3.53), leading to a
set of completely general equations as

Lij = ûiuj − ûiûj, (3.54)

Mij = 2
(

Γ̂Sij − βΓ̂Ŝij

)
, (3.55)

β = Λ̂/Λ, (3.56)

ΘΛ =
|LijMij|
|MklMkl|

. (3.57)

The dynamic procedure may now easily be coupled with whichever eddy viscosity
model that fits the form shown in Eq. (3.53); thus, it becomes evident that, if
the dynamic procedure has been implemented once, extending it to other models
is a simple task. The only ingredient that require some extra attention is the
differential operator, or time scale term Γ, since, for Mij to be computable, Γ
must be explicitly computed at both the mesh level and the test level. How
challenging this is depends on the complexity of Γ, where one e.g. sees that the
Smagorinsky model comes packed with a simpler term |S| compared to the DW

operator of WALE.

As for the averaging | · |, the same methods as previously discussed may be ap-
plied. However, it is by Baya Toda et al. [37] discussed if this dynamic procedure
is indeed applicable with models that already satisfy the wall decaying behaviour
as y3 for νT (this is a required property for the eddy viscosity, see Chapman
[38]), like WALE and the σ model. This problem is the main motivation of the
global dynamic model, where one simply averages the tensor contractions over the
whole domain, thus eliminating the need for clipping procedures, subsequently
arriving at a constant for Θ or ΘΛ. This means that this global approach is not
suitable for the Smagorinsky model, since that again would lead to problems in
wall-regions; however, for WALE and the σ model, this approach is applicable as
they have the correct behaviour directly baked into their differential operators.

The bottom line here is: extensions of the dynamic procedure to other eddy
viscosity models that may be written as in Eq. (3.53) is a simple task, where
followingly some other solutions have to be applied in terms of the averaging
procedure. For some more details regarding the mentioned global procedure see
section 3.4.2.
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3.3.5 The Scale-Dependent Dynamic Smagorinsky Model

The Dynamic Smagorinsky model has been refined by Bou-Zeid et al. [39], where
they take into account that Cs indeed is scale-dependent, and followingly the fact
that the computed Smagorinsky constant Cs obtained from Eq. (3.48) actually
is valid at the filter level ûi, and not at level ui, as assumed above in the original
dynamic procedure. Leaving out details in terms of derivation (it is referred to
the original article [39]), they subsequently introduce a second test filtering level

denoted (̃) where ∆̃/∆ = α2, and apply the same recipe as done in the previous
section. This results in two new tensors

Qij = ũiuj − ũiũj, (3.58)

Nij = 2∆
2
(
|̃S|Sij − α4|S̃|S̃ij

)
, (3.59)

and the equation for Cs,∆̃ as

Qd
ij = Cs,∆̃Nij. (3.60)

The averaging is again done along fluid trajectories, thus one arrives at a similar
set of transport equations to be solved as

∂JQN
∂t

+ u · ∇JQN =
1

T∆̃

(QijNij − JQN) , (3.61)

∂JNN
∂t

+ u · ∇JNN =
1

T∆̃

(NijNij − JNN) , (3.62)

for T∆̃ = 1.5∆ (JQNJNN)−1/8. One is now able to obtain the Smagorinsky con-
stant at the second test filtering level as

C2
s,∆̃

=
JQN
JNN

. (3.63)

To obtain the Smagorinsky constant Cs at the mesh level one assumes a constant
ratio between scales such that

β =
C2
s,∆̂

C2
s

=
C2
s,∆̃

C2
s,∆̂

, (3.64)

where, when C2
s,∆̂

and C2
s,∆̃

have been computed from Eq. (3.48) and Eq. (3.63),

β and followingly C2
s may be computed.
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3.3.6 A Model Based on the Subgrid-scale Kinetic Energy

A model, which is slightly different from the previous ones, originally proposed
by Yoshizawa and Horiuti [40], aims to apply the subgrid-scale kinetic energy
kSGS in the expression for the eddy viscosity, instead of some differential operator
function. This subgrid-scale kinetic energy is defined as

kSGS =
1

2
(uiui − uiui) , (3.65)

which, when this term is included in the expression for νT , results in

νT = Ck∆k
1/2
SGS, (3.66)

for some constant Ck. The kinetic subgrid-scale energy can then be computed
from the transport equation

∂kSGS

∂t
+ uj

∂kSGS

∂xj
= −τ rij

∂ui
∂xj
− Cε

k
3/2
SGS

∆
+

∂

∂xj

(
νT
σ

∂kSGS

∂xj

)
, (3.67)

for some constant Cε, and σ = 1.
Ck and Cε must now be determined, either by some analysis resulting in

two constants, or by further developing this method by introducing dynamic
computation of them (see e.g. [41, 42]). In this work the implementation has
been done applying constant values for Ck and Cε only. This model will be
referred to as the Kinetic-Energy SGS model in the succeeding sections.

3.3.7 Scale Similarity / Mixed Models

Another interesting way of modelling the stress tensor was proposed by Bardina
et al. [43], where they by applying so-called scale similarity assumes that

τ rij = uiuj − uiuj ∼ uiuj − uiuj, (3.68)

which evidently is equal to the Leonard tensor in Eq. (3.19). Hence, this Leonard
term can be explicitly be computed, whereas the Clark and Reynolds terms Cij
and Rij must be modelled.

Applying this scale similarity model as it stands in Eq. (3.68) is rarely done;
instead, one combines it with other eddy viscosity models, such as e.g. the
Smagorinsky model, producing the so-called Mixed Smagorinsky model as

τ rij =
(
uiuj − uiuj

)d − 2
(
Cs∆

)2 |S|Sij, (3.69)

where the d denotes the deviatoric part of the scale similarity term. Notice
how a second filtering operation needs to be introduced: it is somewhat similar
to the test filter in the dynamic model, the main difference being that the it
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needs to be equivalent to the implicitly defined mesh filter, and hence apply
the cutoff width ∆. This mixed model has several positive properties compared
to the pure Smagorinsky model (and other eddy viscosity models that are able
to produce positive values only), one of them being the allowance of negative
values, i.e. backscatter (energy transferred backwards from the smaller to the
larger scales, opposite of forward scatter) directly through the scale similarity
term.

Further work on this Mixed Smagorinsky model was done by Zang et al. [44],
where they applied the same method as Germano did for the Dynamic Smagorin-
sky model to arrive at a Dynamic Mixed Smagorinsky model. This derivation
leads to an equation very similar to Eq. (3.43), now modified to include a second
tensor Hij as

Ldij = C2
sMij +Hd

ij, (3.70)

where

Hij = uiu
∧

j − ûiûj. (3.71)

Again some least squares analysis can be done, either the classic one as done by
Lilly [35], or the Lagrangian Averaging approach, to arrive at an equation for
Cs. This dynamic mixed model was further refined by Vreman et al. [45], who
presented the idea of expressing the residual tensor at the test filter level in terms
of ûi velocities only, and not ui velocities as done by [44]. This leads to the same
expression as in Eq. (3.70), where the tensor Hij now is modified to

Hij = ûiû

∧

j −
̂̂
ui
̂̂
uj −

(
uiu
∧

j − uiu
∧

j

)
. (3.72)

Compared to the Dynamic Smagorinsky model the mixed variant requires
specification of the “mesh filter” operation, here denoted with an overline. Ap-
plying the Smagorinsky model combined with the scale similarity term is just one
possible solution, one could in theory apply whichever eddy viscosity model one
wants to e.g. arrive at a mixed dynamic σ model, or a mixed dynamic WALE
model.

3.4 Closing Notes Regarding LES

3.4.1 Boundary Conditions and Near Wall Challenges

When doing LES the applied boundary conditions are mostly equal to those pre-
sented in section 2.1.1. In general, as a method of triggering turbulent behaviour
in the flow, one can perturb the initial and mean inlet boundary conditions to
some extent and of some correct order, something that may help initiate turbu-
lent flow phenomena in the simulation. This may sound like an easy thing do,
but it is actually a rather challenging problem, as determining these perturbed
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components, their magnitudes, how they vary, and so on, is hard to do, especially
in a completely general and simple way. For a good review on this subject, it is
referred to [46].

As for the boundary conditions for walls, the traditional no-slip condition
is often applied, then in combination with mesh grading towards the walls, or
refinement of the mesh in the same regions. For flows containing boundary layers
that are turbulent and followingly includes eddies, back-flow, extreme gradients
and other chaotic phenomena on the macroscopic scale, LES has actually been
proven quite problematic, and difficult. It is important that boundary layers
of this type are sufficiently resolved as many of the effects occurring here are
important for the outer flow itself, this eventually leading to a computational
requirement close to DNS. As a result of this, to avoid this huge increase in
computational requirement, some type of modelling of the flow in these regions is
required when turbulent boundary layers are present. To cope with this problem
there exists a couple of strategies, e.g. DES or other hybrid RANS-LES methods,
briefly discussed in section 3.1.4. Another solution is to model the wall shear
stress τw directly by some appropriate wall model, where again this shear stress
is set as a boundary condition for the equations. This problem has not been
emphasised in this work, it is instead referred to e.g. Piomelli [47] for an overview.

For a more thorough discussion regarding both boundary conditions and near-
wall modelling, it is referred to Ch. 10 in Sagaut [5] and Ch. 13 in Pope [4].

3.4.2 State-of-the-Art

In despite of the massive research and improvements done the last decades, Large
Eddy Simulation may still be said to be in its younger ages. However, as a
consequence of the massive leap in speed, memory, and overall computational
availability seen the last twenty years, LES has eventually become a tool not only
available for those who possess, or have access to, super computer resources. As
for industrial purposes, RANS is, without a doubt, still the most widely applied
method of modelling turbulent, complex behaviour, as it comes packed with good
efficiency, robust and well-researched models, and may handle simulations of high
Re. Nevertheless, as LES has become more and more feasible the last years, the
interest from the industry has also grown substantially.

Global problems with the LES procedure still exist; one of them being the
near-wall challenge mentioned in the previous section, where wall modelling still
is a topic of great interest and research. Other topics of debate includes the de-
velopment of new and better subgrid-scale models, LES for compressible flows,
turbulent combustion that includes chaotic phenomena at the subgrid-scale, re-
search in terms of inlet boundary conditions, and more.

One of the most successful procedures when it comes to subgrid-scale mod-
elling is still the dynamic procedure of Germano, it then being applied together
with either the Smagorinsky model or some of the other differential operator
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models presented in this work. As discussed in section 3.3.4 a major drawback
of this procedure is that the computed Cs may vary strongly in space and time,
in addition to possible occurring negative values. Hence, refinement strategies as
local averaging, clipping procedures and the Lagrangian averaging method has
been introduced.

In 2006, as an improvement to the classic dynamic procedure, a new global
dynamic equilibrium procedure, which was based on the global equilibrium hy-
pothesis (da Silva et al. [48]), was introduced by Park et al. [49], then coupled
with the differential operator subgrid-scale model of Vreman [50]. There a global
instead of a local modelling constant is computed, resulting in the stability prob-
lems occurring in the classic dynamic approach being eliminated. Correct eddy
viscosity behaviour, such as no contributions in wall-regions, is then accounted
for through the differential operator of the coupled model. Refining of this model
was further performed by You and Moin [51] in 2007, and by Singh and You [52]
in 2013, with the addition of a scale-similarity term, leading to improved results
for a selection of cases.

A slightly modified version of the Dynamic Smagorinsky model was also in-
troduced by Park et al. [49] in the same paper. There the classic approach of
Germano was applied together with the subgrid-scale model of Vreman, where av-
eraging of the tensor contractions was done globally over the entire computational
domain, instead of locally or in planes. Applying that method yielded better re-
sults for transitional flows (Lee et al. [53]), compared to those obtained with the
global dynamic equilibrium model. This global method is actually coupled with
the σ model in the original paper [33], where excellent results were obtained for
a turbulent plane jet. As pointed out by [33], the subgrid-scale model that is
coupled with such a global procedure is required to have the correct behaviour
near walls, for two-dimensional flows and so on; hence, the Smagorinsky, WALE,
and Vreman differential models are in fact unsuitable for this purpose, as none
of them include all the required properties, whereas the σ model does.

LES is currently available through most commercial CFD packages as Ansys
Fluent [7], Star-CD [8], OpenFOAM [9], and many more, making it available for
a wider audience. One of the flagships in terms of Large Eddy Simulation is
the Finite Volume method-based CDP project [54], developed by the LES group
at the Center for Turbulence Research at Stanford University. The code has
been, and still is applied for large LES simulations, where a milestone in terms
of parallel computing was achieved in 2013 when their CharLES solver was run
on over 1 million cores on IBM Sequoia, the third most powerful supercomputer
available today [55].

The short overview given here is extremely brief, and do in no way justify
LES and all its details. Especially when it comes to the subgrid-scale models, the
focus has here been on eddy viscosity types only, though there exist a range of
other approaches, as e.g. models which involves transport equations for the SGS
stresses, filtered density function methods, deconvolution methods, implicit LES
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methods (where the numerical dissipation from the applied numerical scheme acts
as an implicit subgrid-scale model), to mention a few. For different perspectives
and further thoughts and discussion regarding LES and its current state it is
referred to e.g. [56, 57, 58, 59, 60].

3.5 Conclusions

In this chapter the turbulence modelling method of Large Eddy Simulation, in-
cluding a range of eddy viscosity models, both static and dynamic ones, have been
thoroughly presented and discussed. Initially an introduction to DNS was given,
together with a short discussion and justification on why turbulence modelling is
severely needed, such that computations of turbulent flows may be feasible. The
first proposed method, and still the most popular one today, is the so-called RANS
approach, where the Navier-Stokes equations are recast into PDEs for ensemble
averaged values ui and p. Large Eddy Simulation was presented as a midpoint
between RANS and DNS, the method being motivated by RANS’ problems in
that its turbulence models must model a large range of effects, whereas the LES
models only need to model a smaller portion of the flow. The hybrid RANS-LES
method Detached Eddy Simulation was briefly discussed, it combining the best
of the LES and RANS worlds into one good approach.

The formal parts of Large Eddy Simulation has been thoroughly discussed
through the definition of the filtering operator, the derivation of the filtered
Navier-Stokes equations, and decomposition of the subgrid-scale tensor τ rij. This
was followed by the presentation of the general assumption in that all the subgrid-
scale effects may be lumped into a turbulent eddy viscosity term, which again
needs to be modelled by appropriate terms. Models for this eddy viscosity was in-
troduced, starting with the classic Smagorinsky model, followed by refined differ-
ential operator models in WALE and the σ model, continuing with the Dynamic
Smagorinsky model and its refined Lagrangian averaged and scale-dependent
companions, and wrapping it up with a model based on the subgrid-scale ki-
netic energy, and some details regarding scale-similarity / mixed models.

As a last part of this chapter, some details regarding boundary and initial
conditions together with wall problems were discussed, including an extremely
brief presentation of state-of-the-art in LES. It is referred to a range of papers
for a more thorough discussion regarding state-of-the-art and current challenges
in the LES field.



Chapter 4

Discretisation and
Implementation

4.1 Spatial Discretisation of the Eddy Viscosity

Contribution

Our first task is to discretise the new residual stress tensor term in Eq. (3.17) by
FEM, then segregate it such that it can be combined with the approach presented
in section 2.2.3. When Eqs. (2.17) and (2.18) are recast into equations for the
filtered variable ui and p, the residual stress tensor will lead to a new right hand
side contribution to both of them, but it is eventually only the equation for the
tentative velocity Eq. (2.18) that is altered. Both the pressure Poisson equation
and the velocity update step in the Incremental Pressure Correction Scheme
(IPCS) are unchanged.

To proceed we now apply the standard FEM recipe on the residual stress
tensor; that is, multiply it by a test function v, and integrate it over the whole
domain. It is also required that the term should be valid for time step n + 1/2
such that it is consistent with the Crank-Nicolson approach applied with IPCS.
This leads to

τ rij,weak = −
〈
∂τ rij
∂xj

, v

〉n+1/2

, (4.1)

which is added to the right hand side of Eq. (2.26) (where Eq. (2.26) now are
partial differential equations (PDEs) for the filtered variables). We now insert
the eddy viscosity expression from Eq. (3.23) to obtain

τ rij,weak = −
〈
∂τ rij
∂xj

, v

〉n+1/2

=

〈
∂

∂xj

(
νT

(
∂ui
∂xj

+
∂uj
∂xi

))
, v

〉n+1/2

=

〈
∂

∂xj

(
νT
∂ui
∂xj

)
, v

〉n+1/2

+

〈
∂

∂xj

(
νT
∂uj
∂xi

)
, v

〉n+1/2

. (4.2)
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4.1. SPATIAL DISCRETISATION OF THE EDDY VISCOSITY

CONTRIBUTION

As mentioned when the eddy viscosity assumption was presented, the trace term
of τ rij is combined with the pressure. This has not been strictly written here, but
it is done “behind scenes” when we insert for τ rij. Again, as seen from Eq. (4.2),
we encounter the problem of coupled velocity components, where it is evident

that the term
∂u?j
∂xi

enters the equation for component u?i . When the convective
term in the IPCS scheme was discretised, two problems were solved as a result
of the appliance of the Adams-Bashforth scheme: the term was linearised, and
it was decoupled in that the equation for u?i became independent of the coupled
velocity terms u?j . For this case there are no nonlinearities, we, however, need to
avoid the coupled approach, thus the Adams-Bashforth projected velocity will be
applied for the last term that contains u?j .

Starting with the first term on the right hand side of Eq. (4.2) we insert the
Crank-Nicolson midpoint approximation, then integrate it by parts (and remove
the surface integral term), insert the discrete representation of the velocities from
Eq. (2.29), segregate it, and write it on matrix notation. This eventually results
in new left and right hand side contributions to all the tentative velocity equations
as

〈
∂

∂xj

(
νT
∂ui
∂xj

)
, v

〉n+1/2

=


−1

2
Kij,νT

(
U
?

j + U
n

j

)
for U

?

j

−1
2
Kij,νT

(
V
?

j + V
n

j

)
for V

?

j

−1
2
Kij,νT

(
W

?

j +W
n

j

)
for W

?

j

(4.3)

where

Kij,νT =

〈
ν̃T
∂φi
∂xk

,
∂φj
∂xk

〉
, (4.4)

for ν̃T = ν
n+1/2
T . The matrix Kij,νT is quite similar to the stiffness matrix Kij

in Eq. (2.33), the difference is that νT = νT (x, y, z, t) 6= const. This means that
since νT is changing with time it must be a part of the integration and the matrix
assembly; hence, the matrix Kij,νT is changing with time, and therefore needs to
be assembled each time step. This leads to an extra computational requirement,
which, unfortunately, cannot be avoided. It, however, only needs to be assembled
once each time step, similar to the convective matrix Xij, as a result of both of

these matrices being common for the three equations for U
?

j , V
?

j and W
?

j . From
Eq. (4.3) it is clear that one gets a general contribution to the common left and
right hand sides of the linear systems to be solved, this contribution being nearly
identical to the one of the viscous part in Eq. (2.31).

As for the second part on the right hand side of Eq. (4.2), we apply the
Adams-Bashforth projection to avoid the coupling problem. Before we proceed,
it should be noted that this term caused some stability problems when discre-
tised by the same procedure as the one applied for the previous term. This may
have something to do with the fact that discretisation of these viscous terms nor-
mally should be done fully implicit, or semi-implicit, e.g. by applying the Crank-
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Nicolson method, and not fully explicit as with the Adams-Bashforth projection.
If they are discretised explicitly as a contribution to the linear systems right hand
sides only, stability issues are often encountered, and one gets a stricter criterion
on the time step ∆t. In the start-up phase of the work with this thesis, a simpler
Navier-Stokes solver applying a vector coupled approach was used, where the
solver then handled the velocities as vectors directly, and not separately, as Oasis
does through the segregated approach. When such a coupled solver is applied,
one does not need to introduce tricks to handle coupled velocity components,
resulting in the Crank-Nicolson approach also being applicable for the coupled
eddy viscosity term. For that solver no stability problems were encountered, most
likely because of the term having beeng discretised in a semi-implicit way.

To cope with this stability problem a couple of solutions was tested. First
a type of mixed Crank-Nicolson/Adams-Bashforth approach was implemented,
where a Crank-Nicolson discretisation was applied for the velocity component
where i = j (i and j are now vector indexes), and the Adams-Bashforth projection
was applied for the two other coupled components where i 6= j. This could be
done as a result of one of the components in u

n+1/2
j always being equal to the

velocity component that is solved for, when i = j that is. This approach resulted
in better stability, but it was too demanding in terms of required computational
time, then as a result of the Crank-Nicolson method being a semi-implicit method,
followingly leading to both right and left hand side contributions when i = j. The
left hand side contribution required assembly of an additional matrix; hence,
since this is an extremely expensive operation, it was too demanding in terms
of extra required computational time, subsequently leading to this semi Crank-
Nicolson/Adams-Bashforth being abandoned.

As a second alternative an approach just as simple, and with the same com-
putational requirements, as the unstable approach, was tested. This method did
eventually result in better stability compared to the “original” approach (inte-
gration by parts), in addition to it leading to right hand side contributions only,
requiring no extra assembly of an additional left hand side matrix. The idea is
to rewrite the corresponding term as

∂

∂xj

(
νT
∂uj
∂xi

)
=
∂νT
∂xj

∂uj
∂xi

+ νT
∂2uj
∂xj∂xi

=
∂νT
∂xj

∂uj
∂xj

, (4.5)

where the last equality follows as a result of interchangeable differentiation and
the continuity equation

∂uj
∂xj

= 0. For the last term in Eq. (4.2) this yields

〈
∂

∂xj

(
νT
∂uj
∂xi

)
, v

〉n+1/2

=

〈
∂νT
∂xj

∂uj
∂xi

, v

〉n+1/2

=

〈
∂ν̃T
∂xj

∂u
n+1/2
j,AB

∂xi
, v

〉
. (4.6)

Segregating the last term in Eq. (4.6) and writing out the summations now yield
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the following right hand side contributions to the tentative velocity equations:

bU?,νT =

〈
∂ν̃T
∂x

∂u
n+1/2
AB

∂x
+
∂ν̃T
∂y

∂v
n+1/2
AB

∂x
+
∂ν̃T
∂z

∂w
n+1/2
AB

∂x
, v

〉
, (4.7)

bV ?,νT =

〈
∂ν̃T
∂x

∂u
n+1/2
AB

∂y
+
∂ν̃T
∂y

∂v
n+1/2
AB

∂y
+
∂ν̃T
∂z

∂w
n+1/2
AB

∂y
, v

〉
, (4.8)

bW ?
,νT

=

〈
∂ν̃T
∂x

∂u
n+1/2
AB

∂z
+
∂ν̃T
∂y

∂v
n+1/2
AB

∂z
+
∂ν̃T
∂z

∂w
n+1/2
AB

∂z
, v

〉
. (4.9)

Since these terms are fully explicit they do not need to be computed by a
matrix-vector product, but can be assembled as right hand side contributions
directly; hence, we will not insert the decomposed velocities here. This method
results in better overall stability (though not as good as for the mixed Crank-
Nicolson/Adams-Bashforth approach), in addition to it having no extra require-
ments in terms of additional assembly procedures or similar, hence it has been
chosen for this implementation.

When it comes to ν̃T , it needs to be computed each time step such that it is
valid at time location n+ 1/2. Since

νT = νT (ui (t)) , (4.10)

for all the LES models to be applied in this thesis (except the one based on the
subgrid-scale kinetic energy), we have that

ν̃T = νT

(
u
n+1/2
i

)
. (4.11)

Since the Crank-Nicolson scheme is not applicable here (u?i is unknown) we in-

stead apply the Adams-Bashforth projection u
n+1/2
i,AB when computing ν̃T , such

that it is computed for the correct time location.

4.2 Implementation of the Eddy Viscosity Con-

tribution

As seen through Eq. (2.31) the matrices in front of U
?

j and U
n

j (and the two other
velocity components) are nearly identical. This fact is exploited by Oasis which
computes a general matrix Aij that is first applied for the right hand side of the
linear system, then it is multiplied by −1 and 2

∆t
Mij is added to it, such that the

general left hand side matrix is obtained. As for the addition of the LES terms
two things need to be done:
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1. Add the common Crank-Nicolson term from Eq. (4.3) to the general system
matrix Aij.

2. Add the Adams-Bashforth terms from Eqs. (4.7) to (4.9) to the correspond-
ing right hand sides.

We first start with assembling the required matrix Kij,νT from Eq. (4.3), and
then add it to the general system matrix Aij. Now assume that we in Oasis enter
a new step in the time loop, then some functionality is executed which eventually
results in the matrix Aij being computed as

Aij =

(
1

∆t
Mij −

1

2
νKij −

1

2
Xij

)
, (4.12)

which is equivalent to the right hand matrix seen in front of U
n

in Eq. (2.31).
The only work left to do is to add the required LES term such that Aij becomes
equal to

Aij =

(
1

∆t
Mij −

1

2
νKij −

1

2
Xij −

1

2
Kij,νT

)
, (4.13)

This is done each time step as

# Assemble K_nut

K_nut = assemble(nut*inner(grad(u),grad(v))*dx)

# Add to Aij

Aij.axpy(-0.5, K_nut)

First K nut is assembled by applying the assemble function on its UFL form;
notice how the notation is very similar to the mathematical of description of this
matrix in Eq. (4.4). u and v are here the trial and test functions for the velocity
function space, and nut is a general FEniCS function which depends on what
type of LES model the user has chosen. The operation axpy (works both for
vectors and matrices) can be translated to

Aij.axpy(−0.5, K nut)⇔ Aij → Aij − 0.5Kij,νT . (4.14)

Next we compute the contributions to the right hand sides applying this general
matrix Aij as

# Loop over right hand sides

for i,comp in enumerate ([’u’, ’v’, ’w’]):

# Compute general contribution and add to corresponding rhs

b[comp].axpy(1.0, Aij*u_[i]. vector ())

where b is a Python dictionary containing the right hand sides, and u is a list
containing the velocities at the previous time step. Now Aij is multiplied by −1,
then 2

∆t
Mij is added to it, such that the common left hand side matrix is obtained

as

Aij =

(
1

∆t
Mij +

1

2
νKij +

1

2
Xij +

1

2
Kij,νT

)
. (4.15)
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The Crank-Nicolson terms in Eq. (4.3) have now been added both to the matrix
Aij, and to the three right hand side vectors in b, hence our first task is done.

The next step is now to add the Adams-Bashforth contributions from Eqs. (4.7)
to (4.9) to the components in b, followingly finalising the assembly of the right
hand sides. As a result of nut being time dependent, these terms need to be
computed each time step; however, instead of assembling large matrices and then
do matrix-vector products, we assemble the right hand side vector contributions
directly as it is a much more efficient solution. Direct assembly of the right hand
side contribution-vectors is done as

# Loop over velocity components and to right hand sides

for i,comp in enumerate ([’u’, ’v’, ’w’]):

# Assemble rhs contribution for given velocity component

LES_AB = assemble(inner(inner(grad(nut), u_ab.dx(i)), v)*dx)

# Add to corresponding right hand side vector

b[comp].axpy(1.0, LES_AB)

The vector u ab, containing all the Adams-Bashforth projected velocities, is pro-
vided by the solver framework. To compute the different right hand side con-
tributions, here named LES AB, we start by taking the inner product between
the gradient of nut and u ab.dx(i), where u ab.dx(i) here means differentiation
of each component in the vector u ab with respect to spatial component i. This
expression is then multiplied by the test function v, LES AB is assembled, and
followingly added to the corresponding right hand side. To elaborate some more
on the u ab.dx(i) expression; for example for the first iteration we have i = 0 and
comp = ’u’, thus the LES AB contribution is a function of the inner product

between the two vectors ∂νT
∂xj

and

[
∂u

n+1/2
AB

∂x
,
∂v
n+1/2
AB

∂x
,
∂w

n+1/2
AB

∂x

]
, which is consistent

with what is presented in Eq. (4.7). Further LES AB is assembled, and then
added to the corresponding right hand side vector b[′u′] for the component U

?

j .
For the two following iterations i = 1 and i = 2 we get similar contributions to
the right hand sides for components V

?

j and W
?

j , where u ab then is differentiated
with respect to y and z, respectively.

Now, as a result of both the general system matrix Aij and the specific right
hand sides in b having been modified to include the LES contributions, we may
pick a wanted LES model, compute the corresponding nut, and followingly start
to solve for the filtered velocity vector. If no LES model is specified to the solver
the eddy viscosity is simply set to be equal to zero, eventually resulting in no
turbulence modelling and Direct Numerical Simulations (DNS) instead.

4.3 Implementation of the LES Models

The next step in the process is now to implement the different LES models
presented in Ch. 3 into the solver framework. Implementational details for the
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Smagorinsky model, the WALE model, the σ model, the Dynamic Smagorin-
sky model, the Scale-Dependent Dynamic Smagorinsky model, and the Kinetic-
Energy SGS model will in the following sections be presented. Simple code snip-
pets will be shown for crucial parts of the implementations, whereas the more
general parts of the implementations will be left out. All the details can be found
in the source code, available online at [21], where the implementations of the LES
models are located in the folder /solvers/NSfracStep/LES/.

When it comes to user activation of the models a simple argument is passed
through Oasis ’ NS parameters dictionary, where the argument specifies which
LES model one wants to apply. Currently on may select the following models

les_models = [None , "Smagorinsky", "Wale", "Sigma",

"DynamicLagrangian", "ScaleDepDynamicLagrangian",

"KineticEnergySGS"]

where one activates a LES model as

# Activate LES model , les_model = None by default

NS_parameters.update(les_model = "Smagorinsky")

In addition to this the constants applied in some of the models, e.g. Cw for WALE,
may be controlled by the user as

NS_parameters["Wale"]. update(Cw = 0.6)

or for the Dynamic Smagorinsky model one has the choice of updating Cs f.ex. each
10th time step as

NS_parameters["DynamicSmagorinsky"]. update(Cs_comp_step = 10)

The implementation has been designed such that it may be simple to activate a
LES model, in addition to the user having the ability to easily tune some of the
parameters of the selected model.

4.3.1 The Smagorinsky Model

Starting with the Smagorinsky model, the length scale term ∆ can be obtained
in FEniCS through its UFL function CellV olume as

dim = mesh.geometry ().dim()

delta = CellVolume(mesh)**(1./dim)

where CellV olume now returns the symbolic volume for each cell in the mesh,
and dim equals the geometrical dimension of the problem. Further the term |S|
needs to be specified. For computation of the rate of strain tensor we apply the
two UFL functions grad and sym defined as

grad (ui) =
∂ui
∂xj

, (4.16)
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for a vector ui, and

sym (A) =
1

2

(
A+ AT

)
, (4.17)

for some matrix A. When these two functions are combined Sij may be defined
as

Sij = sym (grad(u)) = sym(
ui
xj

) =
1

2

(
ui
xj

+
uj
xi

)
, (4.18)

translated to UFL code in Python as

Sij = sym(grad(u_ab))

where u ab (as mentioned earlier) is a vector function of rank 1 containing the
Adams-Bashforth projected velocity components, and Sij a UFL form of rank 2
(second rank tensor). The magnitude of Sij can be obtained applying the UFL
inner product function inner and the square root function sqrt as

magS = sqrt(2*inner(Sij ,Sij))

where, due to contraction of both indices in Sij, magS now represents a UFL
form of rank 0. The final UFL form of rank 0 for nut can now be specified by
the Python variables Cs, delta and magS as

nut = Smagorinsky["Cs"]**2 * delta**2 * magS

where Cs is accessed through the Smagorinsky dictionary stored in the solver. All
these steps are performed in the preprocessing, before the time stepping starts.

The last step in the procedure is now to actually compute nut; as it stands
now it is a UFL form only containing no explicit values. Computation of it is
done by some fast projection method where a linear system is solved for nut
each time step, followed by nut being sent to the solver framework. In addition
to the projection of nut a type of bounding procedure is introduced, such that
negative values (artefacts) occurring as a result of the linear system procedure
are removed.

4.3.2 The WALE Model

The WALE model in Eq. (3.33) is implemented similarly to the Smagorinsky
model, where some extra ingredients now are required for the UFL specification
of the term DW . The LES length scale ∆ is computed the same way as for
the Smagorinsky model, and the constant Cw is by default defined as 0.325 in a
Wale dictionary stored in the solver. If desired by the user, the constant may be
changed to whatever value is wanted.

When defining DW we first set up the UFL forms for Gij =
ui,AB
xj

and Sij as

Gij = grad(u_ab)

Sij = sym(Gij)
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To specify the tensor Sdij some extra UFL ingredients are required: the function

tr which returns the trace of a tensor, e.g. as tr(Sij); and the function Identity
which returns the identity matrix. Sdij and its UFL form can now be specified as

Sd = sym(Gij*Gij) - (1./dim)*Identity(dim)*tr(Gij*Gij)

which clearly is consistent with the definition of DW given in Eq. (3.31). The
final UFL form for DW can now be defined applying the function pow(a, b), which
mathematically translates to ab, and the function inner(a, b). This results in

Dw = pow(inner(Sd,Sd), 1.5) / (pow(inner(Sij ,Sij), 2.5) \

+ pow(inner(Sd,Sd), 1.25)

Now the UFL form for nut can be defined as

nut = Wale["Cw"]**2 * delta**2 * Dw

where, as with Smagorinsky, the constant Cw also here is accessed through the
Wale dictionary.

As with the Smagorinsky model nut is now computed each time step, and
followingly passed to the solver.

4.3.3 The σ Model

Compared to the implementations of the Smagorinsky and WALE models, where
both of them easily could be coded by just defining the appropriate UFL forms,
the σ model requires some more advanced ingredients in its implementation.
Since the singular values of the velocity gradient tensor is required, the discrete
velocity tensor must be explicitly computed, then one needs some type of loop,
which iterates over each node in the mesh, and computes the local gradient matrix
and its singular values there. The singular values are then put into the expression
for νT , where νT subsequently is projected and applied by the solver.

First, we start by computing all the components of the velocity-gradient ten-
sor. This involves solving either one large linear system of equations applying
FEniCS’ TensorFunctionSpace where one may operate with tensors directly, or
by solving nine smaller and simpler systems of equations applying some scalar
function space. This may be done extremely fast if we apply the Discontinuous
Galerkin (DG) function space of order zero, where each cell in the mesh contains
one computational node in its midpoint, and the basis function for each node is
equal to one for that node, and zero else. Applying this type of function space
eventually leads to the FEM mass-matrix Mij = 〈φi, φj〉 becoming diagonal,
which again results in its inverse being trivially computed as 1

Aij
. Applying this

space is, however, quite inaccurate, as the number of nodes in the mesh becomes
drastically reduced, and the overall accuracy (e.g. in wall regions) becomes bad.
To attain the desired accuracy in an efficient way, the usual linear P1 Lagrange
elements will instead be applied.
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First the left hand side mass matrix and the right hand side “derivative”-
matrices required to solve for the velocity gradients are pre-assembled before the
time stepping as

# Extract Trial and Test functions for P1 Lagrange space CG1

p,q = TrialFunction(CG1), TestFunction(CG1)

# Assemble left hand side mass matrix

A = assemble(inner(p,q)*dx)

# Assemble right hand side derivative matrices

b_mats = [assemble(inner(u.dx(i),q)*dx for i in range(dim)]

The three “derivative”-matrices in b mats are defined as

Aij,x =

∫
Ω

∂ψj
∂x

φidx, (4.19)

Aij,y =

∫
Ω

∂ψj
∂y

φidx, (4.20)

Aij,z =

∫
Ω

∂ψj
∂z

φidx, (4.21)

where ψj are the basis functions for the velocity space, and φi are the basis
functions for the linear P1 space. Now, to obtain e.g. the x-derivative of w we
compute the right hand side as bi,wx = Aij,xwj, pass it to the solver together with
the left hand side matrix A, eventually obtaining the discrete horizontal derivative
of w. Similarly, if we want to compute e.g. ∂u

∂y
, we compute the right hand side

as bi,uy = Aij,yuj. Similar for all the other seven components of the velocity
gradient tensor. By doing this we avoid any type of matrix or vector assembly
during time stepping, thus saving valuable computational time. A specific linear
algebra solver named grad solver is also defined during the pre-processing, such
that maximum performance when solving the linear systems is obtained. During
the time stepping the velocity gradients are then obtained as

# Loop over each tensor component

for k in range(tensdim):

# Extract i,j for given tensor component

i,j = ij_pairs[k]

# Solve for component at location i,j

grad_solver.solve(A, g[k], b_mats[j]*u_ab[i]. vector ())

where the list g[k] now contains the velocity gradients as scalar fields. The vari-
ables i and j extracted from ij pairs[k] tell us which tensor component we are
solving for, e.g. (0,0) or (0,1), and so on. tensdim equals the number of compo-
nents in the gradient tensor, equal to 9 in three dimensions.

The next step is now to construct local gradient matrices at each node in
the mesh, followed by the Singular Value Decompositions (SVDs) of all these
matrices. As a first solution this was done by getting the local number of nodes
for each process, then a loop over each node was initiated, where a local gradient
matrix G of size 3 × 3 was computed at each location. Singular values for G
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were then computed with the linear algebra package of NumPy [61]. Though this
approach worked as intended, a much faster solution was obtained by applying
the functions concatenate, reshape and transpose of NumPy, together with the
available vectorized functionality of NumPy’s SVD function. First, by applying
the concatenate function all the gradient arrays in g are combined into one huge
array, where the first Q entries are those found in g[0], followed by all the R
entries found in g[1], and so on. This array is then reshaped and transposed such
that we obtain a large array of size M (M is here equal to the local number of
nodes for the corresponding process), where we for each entry in this array now
find a local gradient matrix of size 3×3, containing all the nine gradients at each
specific node in the mesh. The SVD function of NumPy is then called, where
this array of gradient matrices is sent directly into NumPy, which then computes
the SVD of each matrix in this array, followingly returning an array of size M
containing three σs at each index. This can be coded as

# Create array of local gradient matrices by fast NumPy

vectorization

G = NumPy.concatenate(tuple ([gij[k].array () for k in

xrange(tensdim)])).reshape(dim ,dim ,-1).transpose(2,0,1)

# Solve for Singular values of all matrices in G simultaneously

sigmas = NumPy.linalg.svd(G,compute_uv=False)

Notice the flag compute uv = False telling the SVD-function of NumPy to only
compute the singular values, and not the matrices U and V in the decomposi-
tion, followingly saving some computational time. The singular values in sigmas
are then extracted and added to the corresponding FEniCS functions sigma1,
sigma2 and sigma3, where each of these functions will be a scalar field contain-
ing the corresponding singular value at each computational node. This solution
is extremely fast, avoiding the slow python loop over each node in the mesh, and
vectorizing the singular value decomposition of each local gradient matrix.

As a last step the UFL forms for the differential operator and the eddy vis-
cosity is coded as

D_sigma = sigma3 * (sigma1 - sigma2) * (sigma2 - sigma3) /

sigma1 **2

nut = Sigma["Cs"]**2 * delta**2 * D_sigma

where Cσ (here named Cs) is accessed through the Sigma dictionary. In addition
to this a variable comp step is available in the Sigma-dictionary, where the user
have the ability to specify how often the singular values are to be updated; e.g. if
comp step = 10 they are updated each 10th time step. This choice does not
affect computation of nut since it is explicitly computed each time step, then
by reusing the previously computed singular values. If wanted one may update
Dσ each time step, but this would, nevertheless, lead to a substantial increase in
computational time, especially for larger meshes. Thus, some selected value for
comp step should be presented by the user.



50 4.3. IMPLEMENTATION OF THE LES MODELS

4.3.4 The Dynamic Smagorinsky Model

Compared to the three previous models, implementation of the Dynamic Smagorin-
sky model requires some additional ingredients. Where the Smagorinsky and
WALE models required a specification of nut through some UFL forms only, the
dynamic model needs a test filtering operation, explicit computation of Lij and
Mij, and Lagrange averaging of LijMij and MijMij, before the UFL form for nut
finally can be projected and sent to the solver. As this algorithm requires some
additional amount of computational time, a lot of effort and time has been spent
on optimization, avoiding FEniCS’ automated functionality in favour of faster,
better and more “manual” solutions.

First we need to specify a filtering operation (̂), which takes the once implicitly
filtered velocity vector ui to the test filtered level ûi. In general specifying such a
filter on unstructured meshes is difficult: where one on structured meshes more
easily may specify a region of integration for each cell, it is not as easily defined
on unstructured meshes where neighbouring cells usually have different size. One
natural solution suggested by Volker [62], is to solve an additional set of the
Navier-Stokes equations on a coarser grid. While the idea may be good, it is not
feasible in terms of computational cost and power compared to simpler solutions
as e.g. approximations to the filtering integrals or similar weighting procedures.
One idea initially tested for this thesis was to apply a double mesh solution,
where two meshes were provided by the user, then some procedure was applied
to interpolate ui to the coarser mesh and hence obtain ûi. This method was also
problematic, as the interpolation methods used to transfer the functions between
the meshes led to severe numerical effects and artefacts. In addition, it was
impractical, as the user had to create and provide two meshes to the solver.

Two different solutions have been found and tested here, one of them sug-
gested by Jansen [63], the other mentioned by [64] as a product of the work of
Germano [65]. A derivative based filter applying the Laplace operator defined
by [63] was also investigated and implemented, but the obtained results were
unsatisfactory.

The Generalized Top Hat Filter

The first method is the so-called generalized top hat filter (GTHF) applied by
Jansen [63], defined as

û =

∫
Ω
Gudx∫

Ω
Gdx

, (4.22)

where G further is defined as a piecewise function constant equal to 1 for a
vertex n and for all vertices in elements that contain vertex n, and 0 for all other
vertices in the domain. See Fig. 4.1. When one averages or filters the value for the
middle node, all the marked nodes are taken into account. For the specific figure
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G becomes equal to 1 for all the marked nodes, 0 else, somewhat representing a
type of filter kernel that is similar to that of the box filter in Eq. (3.7).

This type of function space is currently unavailable through FEniCS, thus G
is in this implementation set to be equal to the piecewise linear basis functions for
the P1 element. These basis functions differs from the definition of G, but they
are similar in that the exact same node groups as in Fig. 4.1 are covered, hence,
the resulting filtered fields applying these functions would most likely be in the
vicinity of those one would have obtained if the original formulation of G had been
applied. One problem that arises when applying the P1 basis functions, is the
fact that the overall weighting procedure puts too much emphasis on the middle
node compared to the outer nodes, possibly representing the filtering kernel G
better than it represents Ĝ. If the piecewise constant function for G had been
used, the outer nodes would have been weighted much more, something which
would have resulted in heavier filtering overall.

If we as mentioned apply the P1 basis functions as G = φi, filtering of a
generic scalar field c =

∑N
j=0Cjφj is then done as

ĉ =
GijCj
G?
i

, (4.23)

where

Gij = 〈φi, φj〉 , (4.24)

and

G?
i =

∫
Ω

φidx. (4.25)

Now bothGij andG?
i can be computed during the pre-processing, and the filtering

operation can be carried out as a simple matrix-vector product during the time

Figure 4.1: Nodes included in the weighting of the middle node with GTHF.
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stepping iteration. It is important that the filtering operation is fast since it
is to be applied several times in the algorithm for Cs (∼ 20 times in total per
algorithm call); this is clearly achieved with this method since pre-processing of
the two terms Gij and G?

i is possible, where again the filtered values are obtained
by fast matrix-vector products only.

The Inverse Helmholtz Filter

The inverse Helmholtz filter (IHF) presented by Germano [65] and applied by
Bull et al. [64], is a differentiable type of filter that may be derived as a result of
a special exponential Gaussian filter kernel being applied. Germano [65] shows
that a PDE given as

f = f̂ −∇ ·
(
a∇f̂

)
, (4.26)

may be solved for the test filtered field f̂ . a is defined as a =
(α∆)

2

24
, where α here

is the same α as was seen in Mij for the Dynamic Smagorinsky model.

One drawback of this method is that a PDE, and some subsequent linear
system, needs to be solved in order to obtain the filtered field. As the PDE is
linear, in addition to it having no coefficients that are time-dependent, the linear
system may be assembled during pre-processing, such that the only required op-
erations when filtering are to compute the right hand side matrix-vector product
and solve the linear system. Compared to the GTHF the operation there is much
cheaper as it consists of a matrix-vector product only. In addition, comparing
results shows that the differences between the obtained filtered fields for these
two methods are small; hence, the GTHF has been further applied here. See
Figs. 4.2 to 4.4 for some results.

(a) Unfiltered. (b) GTHF. (c) IHF.

Figure 4.2: Unfiltered vs. filtered random field on a structured mesh.
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(a) Unfiltered. (b) GTHF. (c) IHF.

Figure 4.3: Unfiltered vs. filtered random field on an unstructured mesh.

(a) Unfiltered (b) GTHF. (c) IHF.

Figure 4.4: Unfiltered vs. filtered random perturbed standing waves on an
unstructured mesh.

Computation of Lij

The next step would now be to compute the two symmetric tensors Lij and Mij.
Starting with Lij, it consists of velocity outer products only, a mathematical
operation accessible through FEniCS’ UFL function outer. However, since any
UFL form needs to be projected (solving a linear system) before its values can
be used, this method has been abandoned in favour of the more efficient, and
simpler, route where all the terms in Lij are computed manually by simple vector
multiplication operations.

Assume now that we have two velocity vector functions u = uAB and uf =
ûAB containing the unfiltered and filtered Adams-Bashforth velocities, respec-
tively, together with a Python list Lij, which contains scalar functions for each
tensor component. Also assume that we have a Python function named filter,
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which filters the function given as argument, and then returns the filtered field.
This results in Lij being computed as

# Loop over each component in Lij

for component in range(tensdim):

# Extract i, j indexes

i, j = velocity_pair[component]

# Add Filter(uiuj) to Lij

Lij[component ].axpy(1.0, filter(u[i]*u[j]))

# Subtract Filter(ui)Filter(uj) from Lij

Lij[component ].axpy(-1.0, uf[i]*uf[j])

The variable velocity pair is pre-defined in the constructor for 2D and 3D cases,
so e.g. in 3D the third component of Lij is for indexes i = 0, j = 2, hence
velocity pair[2] = (0,2). Ordering of the tensor components is done from the
top left then right and downwards, such that a general symmetric tensor Aij has
component numbering

Aij,3D =

0 1 2
1 3 4
2 4 5

 , Aij,2D =

(
0 1
1 2

)
. (4.27)

The variable tensdim equals the number of tensor components, 6 in 3D and 3 in
2D as seen from (4.27). Notice also the operation axpy (applied in section 4.2)
that for vectors a,b and a constant c mathematically translates to

a.axpy(c,b) ≡ a + c · b. (4.28)

Lij is now computed and ready for use.

Computation of Mij

Moving on to the tensor Mij, there are as we can see from Eq. (3.44) some more
advanced ingredients required here compared to the computation of Lij. Where
we avoided the solution of linear systems for Lij, this cannot be avoided for Mij,
since the derivatives of uAB are explicitly required in the computation of the
tensor. FEniCS again includes functionality for working with tensors and solving
huge linear systems for tensors directly; however, it has been tested that solving
for each component of Sij by smaller linear systems, is a much better and faster
solution. For Mij most of the computations are done manually through either
vector or array operations, only solving linear systems for the components of Sij.

Followingly, in order for us to obtain Ŝij, all the components of Sij are filtered
by the GTHF operation. It is possible to solve linear systems for the components

in Ŝij by applying the filtered velocity ûi; nevertheless, is has been tested, and it
seems to be a better solution to simply filter all the components in the original
rate of strain tensor. It is a faster solution as a result of the filtering operation
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being much quicker than solving a linear system, but it is in general not correct
as a result of commutation with derivatives being lost for inhomogeneous filters
(which the GTHF filter on an unstructured mesh absolutely is). Testing have,

however, shown that it is a better solution to filter Sij to obtain Ŝij, hence this
method has been chosen.

Computing Sij and Ŝij is now done as

for component in range(tensdim):

# Solve for components of Sij

Sij_sol.solve(A, Sij[component], b[component ])

# Filter components of Sij to obtain F(Sij)

Sijf[component] = filter(Sij[component ])

FEniCS’ solve function takes three arguments: the left hand side matrix A,
a coefficient vector, which in this case is located in Sij[component], and the
right hand side vectors contained in the list b. The right hand sides in b are
created by matrix-vector products between pre-assembled “derivative” matrices
and the velocity vector, similar to what was done for the σ model in section 4.3.3.
The same “derivative”-matrices as applied there may also be used to obtain
the components of the rate of strain tensor, since these components are simple
linear combinations of the different velocity gradients. Notice that we apply
Sij sol.solve(..), where Sij sol here is a pre-defined linear algebra solver, similar
to what was done for the σ model, where some tweaks has been done to maximize
speed. We could have applied FEniCS’ solve function directly, but making a pre-
defined solver results in a speed up.

When the two rate of strain tensors have been computed their magnitudes
are computed through the homemade Python function mag as

magS = mag(Sij)

magSf = mag(Sijf)

Leaving out the details the function mag takes a Python list tensor as input, then
it by FEniCS vector operations first computes the tensor contraction S = SijSij,

followed by its magnitude as |S| = 2
√
S by vectorized NumPy array operations.

It should be noted here that one cannot simply filter |S| to obtain |Ŝ|, since
all the components in these tensors are constructed of nonlinear combinations
of the rate of strain tensor components. Therefore, we compute the magnitudes
from the both the filtered and the test filtered rate of strain tensors directly.
Subsequently, a loop is now made over all the components of the Python list
Mij, where the final computations are done as

# Loop over all components of Mij

for component in range(tensdim):

# Add Filter(magS*Sij[component ]) to Mij

Mij[component ].axpy(1.0, filter(magS*Sij[component ]))

# Subtract alpha **2*Filter(magS)*Filter(Sij[component ])

from Mij
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Mij[component ].axpy(-1.0, alpha**2*magSf*Sijf[component ])

# Multiply Mij by 2*delta **2

Mij[component] *= 2*delta**2

When this loop is done Mij has been computed and is ready for further use.

Averaging the Tensor Contractions

The contractions LijMij and MijMij are now computed by a Python function
applying vector multiplication operations. As for the Lagrange averaging of these
fields the same implicit approach as applied by Meneveau [36] has been chosen,
such that one just updates the new values for Jn+1

LM and Jn+1
MM from the old values

JnLM and JnMM . More precisely the scheme is defined as

Jn+1
LM = H

{
εLn+1

ij Mn+1
ij + (1− ε)JnLM(xi −∆tui)

}
, (4.29)

Jn+1
MM = εMn+1

ij Mn+1
ij + (1− ε)JnMM(xi −∆tui), (4.30)

for ε = ∆t/T
1+∆t/T

, and the ramp function H{x} defined as

H{x} =

{
x, x > 0

10−32, x ≤ 0
, (4.31)

which has been introduced to remove negative values from JLM (JMM is always
positive). The Lagrangian PDEs are then updated by vector and vectorized
array operations, where subsequently the Smagorinsky constant is computed from
Eq. (3.49) applying NumPy array division. As a last step the UFL form for nut
is defined as

nut = C_s * delta**2 * magS

The Lagrangian averaging approach has been very problematic (mildly speak-
ing), and initial tests where the Lagrangian PDEs were solved by a Crank-
Nicolson scheme in time and the standard linear system procedure, resulted in
extremely unstable and erroneous results. As a result of this an implicit method,
quite similar to the one used by Meneveau et al. [36], has been chosen. This is
also a very efficient solution as one may simply update the PDEs by vector or
array operations.

As seen from Eqs. (4.29) and (4.30) the implicit procedure requires upstream
values of JLM and JMM at location xi − ∆tui. These values were by [36] and
others obtained by linear interpolation; nonetheless, it has here not been found
a good way of interpolating these terms to the upstream locations. A solution
that was tested was to apply the Taylor approximation, e.g. for JLM as

JnLM (xi −∆tui) ' JnLM (xi)−∆tui
∂JnLM
∂xi

+O
(
∆t2
)
, (4.32)
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and then keep terms up to order ∆t. This unfortunately did increase time usage,
and introduced new stability problems into the implicit equations. The imple-
mentation as it is done now approximates this term to JnLM (xi) only, eventually
reducing computational accuracy. This can, however, be defended by the fact
that there already are many factors regarding this dynamic procedure that are
approximations; hence, high accuracy when solving these transport PDEs are not
a requirement (e.g. the matrices Lij and Mij are not computed for time location
n + 1, but rather for location n + 1/2). It may though be so that this type of
approximation is a little too rough.

Investigation also shows that the initial conditions for JLM and JMM are
critical, as they must be of the same order as the tensor contractions, such that
the source contributions actually are accounted for when the PDEs are moved to
the next time step. On the other hand, the initial condition for JMM must not
be too small as that may result in near zero-division for Eq. (3.49). The original
authors [36] propose that the initial conditions should be taken as

JLM(xi, t = 0) = C2
sMijMij, (4.33)

JMM(xi, t = 0) = MijMij, (4.34)

which results in JLM and JMM having the correct magnitude at start up. In
addition, one could specify Cs at t = 0 depending on the initial flow type; e.g. for
turbulent start up C2

s = 0.15 could be a good guess, whereas it for a laminar start
up could be initialized to some smaller value. This has been tested and is used
in the current implementation, as it provides the best results, combined with the
fact that the user does not have to specify initial values for JLM and JMM .

A Note on Updating Cs

Running through this algorithm to update Cs does, in despite of a lot of op-
timizations and shortcuts, require a small amount of extra computational time
compared to either Smagorinsky, WALE, or the σ model. To reduce the extra
requirement it is possible to update Cs e.g. either each 10th, 20th, or even 50th
time step, depending on how rapidly the flow changes per time step ∆t.

Cs is then updated at time step n to obtain Cn
s , then the same Cn

s is applied
when updating νT the next k time steps, until Cs again is updated to Cn+k

s at
time step n+ k. This would eventually reduce the overall computational time by
some preferable amount; it should, however, be investigated how often Cs needs
to be updated in order for the results to be good.

4.3.5 The Scale-Dependent Dynamic Smagorinsky Model

Both from a mathematical and a numerical perspective, the Scale-Dependent
Dynamic Smagorinsky model is a simple extension of the Dynamic Smagorinsky
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model, as a result of all of its required ingredients being very similar to those of
the traditional dynamic approach. The only extras needed are the computations
of Qij and Nij, Lagrange averaging of these two tensor contractions, followed by
computation of β and Cs. In addition, a second test filtering operation denoted

(̃) is required, defined at the level ∆̃ = α∆̂ = α2∆, with the optimal value α = 2

leading to the second test filter ∆̃ representing a cutoff width of 4∆.

Details regarding the implementation of this method will not be presented
here, the main reason being that the code and algorithm is much similar to that
of the traditional dynamic model. There has neither been found a successful, or
good, filtering operation for the second test filter at the α2-level. As for now this
has been approximated by applying the GTHF twice: a solution that works, and
which returns some interesting results similar to those obtained by the original
authors [39]. However, applying the GTHF twice is wrong in several ways, the
most severe problem being the erroneous cutoff scale, which not represents that of
4∆. An idea could be to use an extended version of the GTHF where the number
of averaging nodes is increased, such that the weighting becomes a function of
a higher number of values. The function G̃ would then be similar to G of the
GTHF, where e.g. the function G̃ for the marked black (middle) node in Fig. 4.5
then would be equal to one for all the marked nodes, and zero else. This is,
nevertheless, problematic as this function space no longer comes packed with
some important similarities to that of a P1 function space, compared to what the

Figure 4.5: Area of averaging for the black (surrounded) node. All nodes must
be taken into account in the extended GTHF.



CHAPTER 4. DISCRETISATION AND IMPLEMENTATION 59

GTHF space did.
A different solution would be to apply the IHF with the value α2 = 4 to obtain

the filtered values at the G̃-level. However, as briefly discussed when presenting
the Helmholtz filter, the time requirement of the filtering operation is too high for
this method. In addition, some simple testing showed that applying the IHF with
α2 = 4 or the GTHF twice, actually yielded solutions that were quite similar.

As a result of these problems, the method has been implemented for testing
purposes only. The general behaviour of the model is (in despite of the wrong
filtering operation) good, most likely as a result of it being nearly identical to
the dynamic model. This model will not be emphasised in any of the succeeding
sections, nor be validated or tested with any of the simulations in Ch. 6.

4.3.6 The Kinetic-Energy SGS Model

The Kinetic-Energy SGS model involves one extra PDE for the subgrid-scale
kinetic energy kSGS, which must be solved. The equation given in Eq. (3.67)
is nonlinear in kn+1

SGS if e.g. a Crank-Nicolson implementation is applied; hence,

to avoid the requirement of iteration, we rewrite the nonlinear terms as k
3/2
SGS =

kSGSk
1/2
SGS. The Crank-Nicolson scheme in time is then used for terms that are

linear in kSGS, combined with explicit evaluation of the terms that are nonlinear
in kSGS. This yields for Eq. (3.67)

kn+1
SGS − knSGS

∆t
+

1

2
u
n+1/2
j

∂kn+1
SGS + knSGS
∂xj

= 2Ck (knSGS)1/2 ∆S
n+1/2
ij

∂u
n+1/2
i

∂xj

− 1

2∆
Cε
(
kn+1
SGS + knSGS

)
(knSGS)1/2 +

∂

∂xj

(
Ck (knSGS)1/2

2σ

∂k
n+1

SGS + knSGS
∂xj

)
. (4.35)

Now both u
n+1/2
j and S

n+1/2

ij can be computed applying the Adams-Bashforth

projection ui,AB. Additionally, we now see that the equation is linear in kn+1
SGS;

thus, we can invoke the same type of discretisation as done for the tentative
velocity equation in section 2.2.3. Since some kSGS terms are evaluated at time
step n the convergence rate of ∆t2 originally obtained with the Crank-Nicolson
scheme is lost; however, as a result of us applying the semi-implicit scheme as the
general time discretisation the equation becomes much more stable when being
solved. We also avoid the need for iteration since the equation becomes linear in
kn+1
SGS. Notice also how most terms involve nonlinear kSGS terms, or the products

between velocities and kSGS. This results in most parts of the equation requiring
assembly each time step, increasing the amount of computational time by some
amount when this model is used. Avoiding these assemblies is unfortunately not
possible.

The full implementation of this equation is quite heavy, thus we will include
some portions of it only. We will also skip the FEM discretisation of the PDE,
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as this procedure is similar to what was done for the tentative velocity equation
in section 2.2.3. Moving on to the implementation we start by assembling the
term that only contains (knSGS)1/2, as this will contribute to the right hand side
bi only. This is done as

# Extract Ck and Ce from the KineticEnergySGS dict.

Ck, Ce = KineticEnergySGS["Ck"], KineticEnergySGS["Ce"]

# Assemble rhs contribution

bi = assemble(dt*2*Ck*delta*sqrt(ksgs)\

*inner(Sij ,grad(u_ab))*q*dx)

We also here have a dictionary named KineticEnergySGS containing the values
Ck and Ce, where the user then may specify these values if wanted. Now all the
Crank-Nicolson terms are assembled into one large system matrix Aij as

# Assemble general system matrix

Aij = assemble(0.5*dt*inner(dot(u_ab , grad(p)), q)*dx

+ inner ((0.5*dt*Ce*sqrt(ksgs)/delta)*p, q)*dx

+ inner(0.5*dt*Ck*sqrt(ksgs)*delta*grad(p),

grad(q))*dx)

where p and q here are the trial and test functions for the P1 function space for
kSGS, respectively. We then add all the contributions in Aij to the right hand
side as

# Add right hand side contribution from Aij

bi.axpy(-1.0, Aij*ksgs.vector ())

in addition to adding the mass contribution (the only portion of this equation
that one may pre-assemble) from the first term on the left hand side to both Aij
and bi as

# Add mass contribution to Aij and bi

Aij.axpy(1.0, M)

bi.axpy(1.0, M*ksgs.vector ())

The boundary conditions are then applied to Aij and bi, followed by solving the
linear system by a pre-defined linear algebra solver. Then the UFL form for νT
is defined as

nut = Ck * delta * sqrt(ksgs)

where it followingly is projected and sent to the solver after kSGS has been com-
puted.

This model will not be tested for any of the simulations in Ch. 6; nonetheless,
it has been implemented and tested for some simple cases where some good
results have been obtained. In terms of computational time the requirements
of this model is quite high, mainly as a result of the required matrix assembly
procedures. As done with the Dynamic Smagorinsky model and the σ model,
one could also here evaluate how often kSGS needs to be updated to save valuable
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computational time.

4.4 Conclusions

In this chapter discretisaitonal and implementational details for the eddy viscos-
ity formulation have been thoroughly discussed, in addition to implementational
details for the Smagorinsky, WALE, σ, Dynamic Smagorinsky, Scale-Dependent
Dynamic Smagorinsky, and the Kinetic-Energy SGS models having been pre-
sented and justified. In general the LES models that require no explicit compu-
tation of any quantities, are of a much simpler nature as they may be expressed
through some UFL expressions only, compared to models that either require ad-
ditional filtering operations, extra PDEs to be solved, or explicit quantities as
e.g. the discrete velocity gradients.

Some ideas and solutions for the test filtering operation required in the Dy-
namic Smagorinsky model was discussed in detail, as this has been one of the
more challenging parts of this work. What became clear when research was done
for this test filter is that there exists several solutions to this problem, where
none is perfect or well defined, or necessarily easy to implement. The simplest
and most efficient solution is clearly the GTHF as presented by Jansen [63]. It
combines FEM functionality in several ways to produce a fast and good solution,
which is both easy to implement and to apply. Currently such a function space
G as originally defined by [63] is unavailable in FEniCS; hence, the choice has
been made of applying the P1 basis functions instead. Much likely this choice
results in less filtering than if the original formulation for G had been applied,
but in general the results should be good, and of the same type as if the originally
proposed G had been used.

The implementations of the LES models have been done such that new models,
or refined versions of existing models, may be implemented with ease. E.g., most
of the functionality used by the Dynamic Smagorinsky model is implemented in a
private module-file. This module file contains the filtering operation, a completely
general implementation of the Lagrangian averaging approach, general functions
for the computation of Mij and Lij, and more. This means that extending models
is simple, as general functionality can be imported from a common module. The
global dynamic σ model, discussed in section 3.4.2, has actually been implemented
as a part of this work. Extending the σ model was done by applying tweaked
versions of the already implemented functionality required for the σ and the
Dynamic Smagorinsky models, which eventually, after a mere one and a half
hours of coding, resulted in the global dynamic σ model. Extending the σ model
to the dynamic procedure was particularly easy, then as a result of the differential
operator Dσ already having been explicitly computed. Implementational details
will not be shown here, but the model has been tested for the FDA case in section
6.2.
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The implementations have been refined many times, and in many ways, and
a lot of time have been spent on optimizations and so on. That does not mean
they are perfect, or maximized in terms of optimization, but they are hopefully
good and robust. Nonetheless, continuing to improve upon the work done here
should, and will hopefully, be done in the future. It should also be noted that
the code snippets presented here are small fractures of the full implementations;
e.g., for the Smagorinsky and WALE models, which requires specification of UFL
forms only, a mere 30 to 40 lines of code was required. On the other hand, the
Dynamic Smagorinsky model is constructed of between 500 and 600 lines of code
(where only 20 lines have been included here).



Chapter 5

Verification and Assessment

Naturally, the overall implementation has to be tested and verified such that we
are assured that everything has been done correctly. One of the more power-
ful tools available for verifying implementations of partial differential equations
(PDEs) and ordinary differential equations (ODEs), is the so-called Method of
Manufactured solutions (MMS). In the case of the Navier-Stokes equations, some
analytical fields are initiated for both the pressure and the velocity components,
where neither of these in general satisfy the equation set. These expressions are
then inserted into the Navier-Stokes equations, where followingly a right hand
side residual, or source term, f is computed. The approach of MMS is now to
include this residual as a source term in the original equations, such that when
the velocity and pressure is inserted into the equation set, the arising residual
and the source term will cancel each other, resulting in both the manufactured
velocity and pressure being solutions of the Navier-Stokes equations.

For this case, we will employ a combined method, where an analytical solution,
which satisfies the Navier-Stokes equation set, is applied. This solution does not
satisfy the filtered equation set; hence, the contributions emerging from the eddy
viscosity terms will produce residuals. These will then be added as a source term
into the equations, resulting in the same analytical solution also being a solution
to the filtered equations. The MMS will be done in 2D only, something that
can be justified by the fact that the implementations of both the eddy viscosity
formulation and the Large Eddy Simulation (LES) models have been done in a
completely general way; thus, if they work in 2D, they work in 3D as well.

In addition to convergence tests through MMS, the LES models will be tested
for a handful of simple test cases to see how they behave for some selected flow
situations. These types of phenomena are present in nearly all types of flows;
hence, they are good for illustrational and testing purposes, showing both pros
and cons for the different models. Doing this will both present us with some
of their advantages and shortcomings, in addition to giving us indications on
whether the implementations have been done correctly or not.

63
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5.1 The Method of Manufactured Solutions

Assume that we have an analytical velocity vector as

ui,A = [uA, vA, wA], (5.1)

which satisfies continuity but is not a solution to the Navier-Stokes equations.
We also have the analytical pressure denoted pA. Applying MMS these analytical
expressions are now inserted into the equations, where then residuals (source
terms) for each velocity component are computed. These source terms may be
inserted back into the equations, such that when they are included and one
then inserts the corresponding analytical pressure and velocity, a solution to
the equations will be obtained.

MMS is easy to do applying the SymPy package [66], where these residual
terms then may be obtained by exact symbolic expressions computed by this
framework in Python. These expressions may then be converted into code appli-
cable with FEniCS and dolfin, and then be sent directly to Oasis. Convergence
rates in time will be computed for different cases of νT , and the computed eddy
viscosities for Smagorinsky and WALE will also be compared to their analytical
counterparts to assess the accuracy of the computation.

Applying MMS in a semi-explicit way, we for the analytical solution choose the
two-dimensional Taylor-Green vortex, which is an exact solution to the Navier-
Stokes equations, with velocities and pressure given as

uTG(x, y, t) = − sin(πy) cos(πx) exp
(
−2π2νt

)
,

vTG(x, y, t) = sin(πx) cos(πy) exp(−2π2νt),

pTG(x, y, t) = −(cos(2πx) + cos(2πy)) exp(−4π2νt)/4,

for a quadratic domain (x, y) = [0, 2] × [0, 2]. Boundary conditions are set to
periodic in each direction. To start the solver the analytical correct solution for
both the velocities and pressure are initiated at the correct time steps.

For computing convergence rates it is assumed that the error is on the form

Ei = C∆tri , (5.2)

for some constant C and convergence rate r. Since the Incremental Pressure
Correction scheme (IPCS) is discretised by the Crank-Nicolson scheme in time
we expect second order rates r = 2. To obtain r we define the error for two
different ∆t as

Ek−1 = C∆trk−1, (5.3)

Ek = C∆trk. (5.4)

Each equation is solved for C, then we equate them and solve for r to obtain

r =
ln (Ek−1/Ek)

ln (∆tk−1/∆tk)
. (5.5)

The relative errors Ek are computed by the L2 norm, i.e. ||ui − ui,TG||L2 .
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5.1.1 No Eddy Viscosity

The first test case is for zero eddy viscosity νT = 0. Convergence tests for the
solver itself has been done by Mortensen [18], however, for the sake of formality,
such a test is included here too. The case has been run from t = 0 to t = 10, and
then the final error has been computed.

Table 5.1: Convergence rates for νT = 0

∆t ||ui − ui,TG||L2 r

5.00E-01 6.77E-01 -
1.25E-01 3.73E-02 2.08
1.00E-01 2.39E-02 2.00
6.25E-02 9.34E-03 1.99
3.125E-02 2.34E-03 1.99

As we see from Table 5.1 the convergence rates are as expected around r = 2
for the velocity, showing that the general IPCS implementation is good, and the
expected ∆t2 error for the Crank-Nicolson scheme is correct.

5.1.2 Constant Eddy Viscosity

First we test for νT = C, for some constant C of any size. It should be so that the
source term added through f , and the eddy viscosity contribution added through
the discretisation, will cancel each other out. Thus, to maximize the effect of the
test, we choose some high value as e.g. νT = 2.2E6.

Table 5.2: Convergence rates for νT = 2.2E6.

∆t ||ui − ui,TG||L2 r

5.00E-01 7.53E-03 -
1.25E-01 4.70E-04 2.00
1.00E-01 3.01E-04 2.00
6.25E-02 1.17E-04 2.00
3.125E-02 3.08E-05 1.93

It is evident from Table 5.2 that the implementation works good for νT equal to
a constant, returning the correct convergence rate r ' 2. This case is, nonetheless,
drastically simplified, as the constant eddy viscosity will lead to terms like ∂νT

∂xj

being equal to zero, eventually removing the Adams-Bashforth contribution to
the right hand sides (Eqs. (4.7) to (4.9)).
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5.1.3 A Fabricated Eddy Viscosity

As a second test case we fabricate a solution for νT that is dependent on both
time and space, but not on any of the velocity components. We choose a simple
analytical expression as

νT,e = ν

(
1 + sin

(
1

2
πx

))
(1 + sin (t)) . (5.6)

Some things that should be noted here: first, a sine function in space has here been
chosen, such that the periodic boundary conditions needed for the Taylor-Green
solutions also are fulfilled for νT . Secondly, as seen in Eq. (5.6), νT is multiplied
by ν to keep the eddy viscosity term in the vicinity of ν. It has been tested, and
severe stability problems emerged if νT was much larger than ν. Therefore, the
eddy viscosity is here kept in the same range as the kinematic viscosity itself.
Most likely, when large values for νT are present, one gets larger differences
between the source and the eddy viscosity term as a result of discretisational
differences that eventually lead to stability problems. In addition, as discussed
thoroughly in section 4.1, stability problems are in general a problem as a result
of the Adams-Bashforth LES contribution having being discretised fully explicit.
Subsequently, if large differences between these factors are present, or if the
explicit Adams-Bashforth term is dominating over the Crank-Nicolson viscosity
contributions, stability problems may arise.

Moving on to the computations we first check how the analytical eddy viscosity
compares to the one computed applying FEniCS. For ν = 0.01 and t = 10 we
obtain the exact same solution for both expressions, where again the difference
computes to be equal to zero. The eddy viscosity is here interpolated to a function
space consisting of polynomials of high order (P4 or P5), such that spatial errors
will become small, followingly eliminating most of the differences between the
analytical and the discrete solution. In addition, since the eddy viscosity here is
a function of x and t only, there are no errors present, which possibly could have

(a) νT as computed by FEniCS. (b) νT,e as computed by SymPy.

Figure 5.1: Discrete νT vs. exact νT,e at t = 10.
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Table 5.3: Convergence rates for νT = ν
(
1 + sin

(
1
2
πx
))

(1 + sin (t)).

∆t ||ui − ui,TG||L2 r

5.00E-01 8.35E-02 -
1.25E-01 3.33E-03 2.32
1.00E-01 2.10E-03 2.05
6.25E-02 8.11E-04 2.03
3.125E-02 2.01E-04 2.01
1.00E-02 2.07E-05 1.99

emerged as a result of it also being a function of the discretely computed Adams-
Bashforth projected velocity field. For the Smagorinsky and WALE models, or
for a fabricated νT dependent on ui, differences would naturally have become
larger.

Table 5.3 shows us that the obtained results are as expected, yielding second
order convergence also for this case, something which again certifies the general
implementation of the eddy viscosity formulation into the solver framework. The
convergence rate r is varying slightly more compared to the results obtained for
constant νT , something that most likely is a result of small errors or differences
between the discrete and the exact solution.

5.1.4 The Smagorinsky Model

The next step is now to test the implementation for a selection of eddy viscosity
models. As applying SymPy for models that require additional test filtering or
extra PDEs to be solved is difficult, MMS will here be done for the implementa-
tions of the Smagorinsky and WALE models only.

Starting with the Smagorinsky model νT is modelled as in Eq. (3.27). For this
case we choose the Smagorinsky constant to have the value Cs = 0.25, combined
with a uniform mesh constructed of cells with the same size, such that ∆ becomes
equal to a constant in the whole domain. SymPy is again used for computing the
magnitude of the rate of strain tensor from Eq. (3.26).

Compared to the previous fabricated solutions, some additional errors are
introduced as a result of νT being computed by applying the Adams-Bashforth
projected velocity. This approximated velocity is good, and of good order (∆t2),
but it is still a source of errors, which may result in differences between the exact
and the discrete eddy viscosities that possibly will perturb in time. In addition, νT
is by implementational reasons projected to a space of P1 elements by default, as
P1P1 and P2P1 element pairs most likely are applied for the velocity and pressure,
hence, applying a P1 space for νT is accurate enough in those cases.
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Table 5.4: Convergence rates for Smagorinsky; νT in P1 space.

∆t ||ui − ui,TG||L2 r

5.00E-01 5.56E-01 -
1.25E-01 3.00E-02 2.10
1.00E-01 1.92E-02 1.99
6.25E-02 7,66E-03 1.96
3.125E-02 2.16E-03 1.82
1.00E-02 7.46E-04 1.27

It is clear from the results in Table 5.4 that the convergence rate has a hard
time staying around r = 2, wandering off as ∆t is decreased. This may be a
result of u

n+1/2
j,AB being applied in the computation of νT , together with νT now

being projected to a function space of low order linear P1 elements. Since both
the velocity and the pressure are in the P4 and P3 function spaces, respectively,
for this specific case, the mesh has been kept coarse such that calculations are
fast. This again results in bad approximations for νT , which further results in
large errors that are allowed to grow even more when the time step is decreased.

As a remedy we modify the solver such that νT is projected to the same space
as the velocity components, eliminating most of the discretisational errors arising
as a result of the coarse mesh applied. As we see from Table 5.5 the results are
better and more consistent compared to those obtained for the previous solution,
especially for the finer time steps where r stays around 2. In addition to this test,
it was tried to apply the analytical velocity components when computing νT in
the P5 space. This, however, did lead to little or no improvements compared to
applying the Adams-Bashforth approximation.

Comparing νT at t = 10 when a time step of ∆t = 0.125 has been applied,
shows us that the analytically computed νT , and the one computed by FEniCS

Table 5.5: Convergence rates for Smagorinsky; νT in P5 space.

∆t ||ui − ui,TG||L2 r

5.00E-01 5.44E-01 -
1.25E-01 2.78E-02 2.14
1.00E-01 1.75E-02 2.08
6.25E-02 6.53E-03 2.09
3.125E-02 1.51E-03 2.11
2.50E-02 9.68E-04 1.98
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(a) Analytical νT,e. (b) Discrete νT .

Figure 5.2: The Smagorinsky model; analytical νT,e vs. discrete νT at t = 10.

applying the Adams-Bashforth velocity, are nearly identical. There are some
differences, e.g. notice from Fig. 5.2 how the one computed by FEniCS actually
obtains negative values some places, that in despite of the expression for νT being
strictly positive. This is a result of the projection method applied to compute
νT at each time step, where, as a part of the procedure, a linear system has to
be solved for all the coefficients of νT , something which possibly may lead to
small artificial negative values at some locations. A convergence test was done
where νT was bounded such that minimum values were cut to zero, leading to no
difference in the convergence rates compared to those in Table 5.5. The negative
values should, however, be removed, as they for other cases may lead to stability
problems and errors in the computations. Hence, in the implementation of all
the eddy viscosity models a bounding procedure is included such that negative
values are removed.

5.1.5 The WALE Model

To see how the WALE model performs the same recipe as used for the Smagorin-
sky model is applied. Cw is now fixed at Cw = 0.5, together with us applying a
mesh with constant cell size, i.e. ∆ is equal to a constant in the whole domain.
The Adams-Bashforth projected velocity is again applied to compute νT at time
location n + 1/2. In addition, based on the results obtained in the last section,
we also here apply high order P5 elements for the eddy viscosity. Investigation of
this exact case shows that the analytical expression for WALE actually computes
to zero. This is negative in that the solver does not get to reproduce a more
advanced expression; on the other hand, it is positive since, if the solver manages
to compute the WALE model to zero, the implementation is most likely good,
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Table 5.6: Convergence rates for WALE; νT in P5 space.

∆t ||ui − ui,TG||L2 r

5.00E-01 6.77E-01 -
1.25E-01 3.73E-02 2.09
1.00E-01 2.39E-02 2.00
6.25E-02 9.34E-03 1.99
3.125E-02 2.34E-03 1.99
2.50E-02 1.50E-03 1.99

and correct.

The results in Table 5.6 clearly reflects the solver’s ability to reproduce the
analytical expression for WALE to some extent, where the obtained convergence
rates are hovering around r ' 2 for all ∆t. If we look at the eddy viscosity at
t = 10 obtained with ∆t = 0.5 and ∆t = 0.01, we from Fig. 5.3 clearly see how
the exact solution is approximated much better for the lower time step. That is
clearly a result of the overall error in the velocity at end time being much lower
for the smallest time step, compared to larger errors for the higher time step. For
larger time steps the error contribution is, in despite of being nonzero, quite small,
thus it does not have any effect on the solving process overall. Nevertheless, for
more challenging cases this could have been problematic.

A test where the WALE model would have returned nonzero eddy viscosity
could have been done. However, as a result of the good approximations obtained

(a) νT at t = 10; ∆t = 0.5. (b) νT at t = 10; ∆t = 0.01.

Figure 5.3: WALE; discrete νT obtained with ∆t = 0.5 (a) and ∆t = 0.01 (b),
at t = 10.
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here together with the results obtained in the next section, the implementation
of the WALE model is most likely good and correct.

5.2 Test Cases

5.2.1 Simple Shear Flow

The first test case is laminar flow of simple shear between two plates that are
infinitely long in the z and x-directions. The gradients of the velocity vector is
for this case given as e.g.

∂ui
∂xj

=

0 1 0
0 0 0
0 0 0

 . (5.7)

Applying the Navier-Stokes equations one arrives at a general solution on the
form

ui = [y, 0, 0], (5.8)

for shear flow between plates located at y = 0 and y = 1. We have no-slip
condition at the bottom, whereas we at y = 1 drags the plate with a constant
velocity in the vertical direction, equal to u(1) = 1.

The velocity field can be plotted in three dimensions as seen in Fig. 5.4. This
case is extremely simple, though it does rather clearly show how the LES models
return different, both correct and wrong, results for such a trivial case. Since the
flow is laminar, no eddy viscosity should be added anywhere in the domain.

If we compute the resulting values for the differential operators applying the
Smagorinsky and WALE models, we get the results seen in Fig. 5.5 (a) and
(b). The first thing to notice from the left plot (a), is how the differential

Figure 5.4: Simple shear flow.
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(a) Smagorinsky; |S| = 1. (b) Wale; DW = 0.

Figure 5.5: Differential operators for Smagorinsky |S| (a), and WALE DW (b).

operator |S| for Smagorinsky in this case becomes equal to 1 in the whole domain,
subsequently leading to a constant eddy viscosity contribution at all locations.
This behaviour is wrong, and actually quite severe, as this type of shear flow
is the base flow in boundary layers, and boundary regions of e.g. stable jets or
similar. Perturbations, which are present in such regions, may be damped and
killed completely by the Smagorinsky models erroneous behaviour. This is a
well-known problem with this model, as briefly discussed in section 3.3.1, where
damping functions or the dynamic procedure are possible solutions. Another
solution is to apply eddy viscosity models that fix this problem through their
differential operator; thus, in comparison, the WALE model in Fig. 5.5 (b) does,
as expected, return DW = 0 in the whole domain. As a result of this, boundary
layer instabilities and perturbations are allowed to grow, instead of being damped
and killed by an erroneous contribution of eddy viscosity, as the Smagorinsky
model does. The σ model does also, as expected, return the same results as for
the WALE mode, as Dσ is computed to be equal to zero in the whole domain.

The results obtained with the Dynamic Smagorinsky model for both local and
Lagrangian averaging were for this case equal to that obtained with the WALE
model. No eddy viscosity was added as a result of Cs being computed to Cs ≈ 0
in the whole domain, eliminating the problem of |S| being nonzero. For this
simple test case, the Lagrangian averaging approach is somewhat overpowered,
as it was constructed specifically to cope with complex geometries combined with
complex, turbulent flows. Hence, as a result of this, the locally averaged (by the
GTHF) dynamic model was tested, where it returned results that were just as
good as its more advanced counterpart. It was also tested to apply two different
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initial conditions for the Lagrangian PDEs, namely Cs = 0.16 and Cs = 10−5.
Setting Cs to 0.16 resulted in the Lagrangian PDEs being pushed towards zero
as they were updated. The second initialization value resulted in Cs constantly
floating around 10−10.

5.2.2 Solid Body Rotation

The second test case is that of laminar solid body rotation, defined in three
dimensions but with a z-directed velocity component w = 0. The gradients of
the velocity vector are now given as

∂ui
∂xj

=

0 −α 0
α 0 0
0 0 0

 , (5.9)

for rotation in the anti clockwise direction. There are other possible expressions
for the gradient tensor that would have led to the same results, however, this
specific case has been chosen here. For simplicity the values of the gradients
will here be set to α = 1. Applying the Navier-Stokes equations together with
integration, results in the analytical solutions for the velocity vector as

ui = [−y + C, x+D, 0] (5.10)

We here choose the centre of the rotation to be located at origo, leading to
C = D = 0. For the velocity field see Fig. 5.6.

One interesting thing to notice here is that the rate of strain tensor becomes
equal to zero as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= 0. (5.11)

This result leads to the Smagorinsky model behaving correctly in this case, since
its differential operator |S| will become equal zero. Certainly it is clear from
Fig. 5.6 that the flow is laminar and the eddy viscosity should subsequently be
zero in the whole field, therefore, the correct behaviour is obtained through the
appliance of the differential operator |S|. See Fig. 5.7 (a) for the results obtained
with the Smagorinsky model, the eddy viscosity is as expected, and correctly,
computed to be equal to zero.

Where the rate of strain tensor became zero, the antisymmetric rate of rota-
tion tensor does for this case become nonzero as

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
=

0 −1 0
1 0 0
0 0 0

 . (5.12)

It can actually be shown that the differential operator DW of WALE, can be
directly decomposed into terms containing the rate of strain tensor, terms con-
taining the rate-of-rotation tensor, and terms containing a combination of both.
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Figure 5.6: Velocity field for the case of solid body rotation.

(a) Smagorinsky; |S| = 0. (b) WALE; DW ≈ 0.9.

Figure 5.7: Solid body rotation, differential operator values for the Smagorinsky
(a) and the WALE model (b).
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(a) Local averaging.
(b) Lagrangian averaging.

Figure 5.8: Solid body rotation; results obtained for Cs with the Dynamic
Smagorinsky model, local averaging (a) and Lagrangian averaging (b).

Hence, since Ωij here becomes nonzero, the differential operator DW also becomes
nonzero where it for this case take the value of DW ≈ 0.9 at all grid locations,
as seen in Fig. 5.7 (b). Thus, for this specific flow type, the WALE model ac-
tually fails to predict zero eddy viscosity, whereas the Smagorinsky model quite
surprisingly tackles this correctly. No plot for the σ model is included here, but
the model does, as expected, correctly compute Dσ to be equal to 0 also for this
case.

The Dynamic Smagorinsky model does also here compute the Smagorinsky
constant to be equal to zero overall, then for both Lagrangian and local averaging.
The correct behaviour is here secured in two ways: |S| is equal to zero, and the
Smagorinsky constant Cs is computed to be equal to be near zero everywhere.
For the results for Cs for both averaging techniques see Fig. 5.8.

5.3 Conclusions

In this chapter convergence tests have been done for the general residual stress
tensor implementation by applying several fabricated νT fields. Convergence tests
was also done for the Smagorinsky and WALE models. Good values for the con-
vergence rate r were obtained for all cases, pointing towards good implementa-
tions for both the general eddy viscosity terms, and for the Smagorinsky and the
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WALE models. Some stability problems when the fabricated νT in Eq. (5.6) was
applied were encountered if νT >> ν. These problems are most likely connected
to the stability problems discussed in section 4.1, hence they most likely do not
point towards general errors in the implementations. The discrete eddy viscosi-
ties for Smagorinsky and WALE were compared to their analytical counterparts,
in general showing good coherency.

When it comes to the test cases, the results obtained are good and as expected.
The Smagorinsky model fails for simple shear, whereas the WALE model, the σ
model, and the Dynamic Smagorinsky model all tackle this case perfectly. For
the case of solid body rotation the WALE model actually fails, returning nonzero
eddy viscosity for a simple case where the eddy viscosity should have been equal
to zero everywhere. Both the Smagorinsky and the Dynamic Smagorinsky model
had no problems coping with this specific case, both of them through |S| = 0,
where the dynamic model in addition secured this through Cs being computed
to be equal to 0 in the whole domain. Again the σ model proved its strengths,
and correctly returned zero eddy viscosity for this case as well.

As mentioned the problems with the Smagorinsky model seen for the shear
flow case, is especially severe for flows involving boundary layers, where the prob-
lem becomes more and more drastic as a function of the thickness of the boundary
layer δ. If δ is small, the gradients near the wall are high, thus leading to high
values for the differential operator |S|. In addition to boundary layers, simple
shear regions of some type are present in almost all types of flows. E.g. for a
stable, laminar jet the phenomenon may be found all along the boundary of the
jet. As this is a region where instabilities may start to grow, eventually lead-
ing to a breakdown of the jet, the erroneous eddy viscosity contribution of the
Smagorinsky model may lead to damping of all perturbations, and subsequently
no transition from laminar to turbulent flow. Some of these problems will be
further addressed and analysed for the FDA case in section 6.2.

It should also be noted, again, that in despite of the MMS tests having been
done for the two-dimensional case only, all the implementations have been done
in a completely general way such that if good results are obtained in 2D, results
just as good would most likely have been obtained in 3D. The two presented
test cases were performed for the three-dimensional case; thus, when e.g. the
differential operator DW for WALE was computed, the input for the solid body
rotation case was a velocity vector where the w component was equal to zero.
The implementations, both for WALE but also for the other models, clearly
managed to compute the correct eddy viscosities for both test cases. Therefore,
when the MMS and test results are combined, all arrows are pointing towards
the implementations being correct and good.



Chapter 6

Results and Discussion

Testing through the Method of Manufactured Solutions (MMS) and verification
of the implementation by some simple test cases are, in despite of their simplicity,
important ingredients. Through the MMS the general implementation has been
shown to be good, both in terms of stability and of the obtained convergence rates
of ∆t2. The simple test cases are applied merely to check that some expected
results are obtained under very special circumstances, additionally showing that
the results returned by the differential operators for some of the models are either
correct or wrong, and equal to some expected value.

In despite of the previous tests being positive, the implementation still needs
to be verified and validated by more conventional and advanced methods, to show
that the work indeed is good. For this purpose, two cases have been chosen:
the first one being the traditional setup of fully developed turbulent channel
flow in a channel, periodic in the x and z directions. Good Direct Numerical
Simulation (DNS) data obtained by higher order methods are available for a
selection of Reynolds numbers, the case is easy to set up, and is in general one
of the classic benchmarking tools in the Computational Fluid Dynamic (CFD)
community. Secondly the U.S. Food and Drug Administration (USFDA/FDA)’s
computational round robin #1 has been chosen. The case consists of blood flow
in a pipe, followed by a nozzle, a narrow pipe, and an expansion into a larger
pipe. The expansion will result in a jet that transitions into turbulent flow,
and completely dissipates after some time. Controlling the breakdown of the jet
(and hence also the transition to turbulence) is one of the challenges with this
simulation. Where under-resolved DNS in general predicts the jet to break too
early, the Large Eddy Simulations (LES) will hopefully present us with better
results.

77
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6.1 Turbulent Channel Flow

The case of fully developed turbulent channel flow is a traditional benchmarking
method, often used to test the performance of CFD codes. DNS data is available
online at [67], where the DNS simulations have been done by Moser, Kim and
Mansour (MKM) [22], and by Jimenez et al. [23]. Their DNS data was obtained
by higher order spectral methods such that the correct rate of dissipation of
turbulent kinetic energy was captured. E.g. MKM [22] used a Chebyshev-tau
formulation in the wall-normal y direction, and Fourier representations in the x
and z directions.

Figure 6.1: Domain for the channel flow case.

The channel is a computational box of dimensions Lx, Ly and Lz, where
Ly = 2δ, and Lx and Lz are problem specific in terms of the Reynolds num-
ber. For the simulations to be done here we have chosen the channel half width
δ = 1, in addition to the top wall and the bottom wall of the channel being
located at y = ±1. The two vertices defining the domain are then located at
[0,−Ly/2,−Lz/2] and [Lx, Ly/2, Lz/2]. No-slip boundary conditions are applied
at the walls, in addition to periodic boundary conditions being applied in the x
and z directions. As discretisation in space we apply a coarse mesh of 64 hexa-
hedra in each direction, where each hexahedra again is divided into 6 tetrahedra,
resulting in a total of 6 · 643 cells. Element types will be P1 elements for both
velocity and pressure, but for Reτ = [180, 395] we will also present some results
applying P2 Lagrange elements for the velocity and P1 Lagrange elements for the
pressure, then applying a coarser mesh of 6 · 323 cells. The velocity space will
then have the same number of degrees of freedom as when 6 · 643 cells is applied,
whereas both the pressure and νT will be in a lower ordered P1 space. Some
problem specific parameters are the shear velocity defined as

uτ =
√
ν∂u/∂ywall (6.1)
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Table 6.1: Parameters for the selected cases of fully developed turbulent channel
flow.

Reτ,Nom. Reτ,Act. Lx Lz QReτ

180 178.13 4πδ 4π
3
δ 0.467919

395 392.24 2πδ πδ 0.864785
590 587.19 2πδ πδ 1.376444
950 944.00 8πδ 3πδ 6.981046

and the turbulent Reynolds number defined as

Reτ =
δuτ
ν
. (6.2)

We have here chosen a kinematic viscosity of ν = 2 · 10−5. Further, the normal-
ization parameters applied when plotting the mean data are defined as

U+ =
u

uτ
(6.3)

y+ =
yuτ
ν
. (6.4)

Since the domain is periodic in both the x and z directions, some forcing
that consequently drives the flow through the domain needs to be activated.
Analytical work shows that the pressure gradient ∂p

∂x
for this specific case actually

is computed to

− ∂p

∂x
= u2

τ . (6.5)

This forcing can be activated by adding a source term to the right hand side of
the Navier-Stokes equations as

f b,S =
[
u2
τ , 0, 0

]
. (6.6)

Now two different approaches exists, the second one being the most popular
approach (used by [22], [23], and many more), but both of them applicable.

1. The Constant Gradient (CG) method. Both Reτ and ν are specified,
hence compute uτ from Eq. (6.2). Apply uτ as a constant forcing term into
the Navier-Stokes equations. Compute until the flux stabilizes, then start
to sample mean data. This method is slower compared to the next one, as
one is required to wait until the flux has stabilized before sampling of data
can be initiated. It is, however, more “natural” as the analytically correct
forcing is applied. The CG method: correct shear velocity forcing, wrong
flux.
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2. The Flux Adjustment (FA) method. Instead of applying the constant
forcing the correct mass flux is specified, where thus the forcing is adjusted
at each time step such that the correct flux is obtained. This requires two
extra ingredients: (a) the correct flux for a given Reτ , and (b) a method
of updating the forcing term. When these ingredients have been specified,
the forcing term can be updated each time step. Compared to the CG
method this one is more of a “cheating” approach, as near perfect results
will be obtained since the flux is directly adjusted to the correct one. The
FA method: wrong shear velocity forcing, correct flux.

What procedure one applies is up for choosing; however, because of the first
method being the most correct one, it has been selected here. In addition, ac-
tivating a LES model with the CG method is more of a natural choice, as the
mean velocities then will, as a result of unresolved quantities, be overpredicted,
where followingly the LES model’s task is to add dissipation, and hopefully alter
the mean velocities towards the DNS data. The FA method has also been tested
to see how the results stack up compared to the CG method, hence, some details
regarding flux computation and the forcing update should be given.

The volume fluxes for each Reτ are obtained by numerically integrating the
dimensionalised half-velocity mean profile as

QReτ =

∫ Lz/2

−Lz/2

∫ 2δ

0

uReτdydz. (6.7)

Since the profile is symmetric as uReτ (y) = uReτ (2δ − y) and independent of z,
the integral simplifies to

QReτ = 2Lz

∫ δ

0

uReτdy. (6.8)

The integrals are calculated applying the data from [22] and [23] (which come
as non-dimensionalised values, hence the uτ and ν applied here is used to di-
mensionalise them), together with NumPy’s trapezoidal method to perform the
numerical calculation. The values for QReτ can be found in the last column in
Table 6.1. As for the forcing update a simple procedure is used as

f b,S =

[
QReτ − |Q|

A∆t
, 0, 0

]
, (6.9)

where Q is the volume flux computed at the outlet/inlet of the domain, and
A = LyLz is the area of the corresponding surface. Clearly, if Q is larger than
QReτ , the source becomes negative, leading to a reduction in volume flux. Vice-
versa, if Q is smaller than QReτ , the source becomes positive and one will see an
increase in volume flux. Testing resulted in convergence to the correct flux just
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after a few time steps, compared to the other solution that needed from 10k to
50k time steps to stabilize at a higher flux.

As for the initial condition, a randomly perturbed base flow is applied such
that the flow is in a turbulent state immediately at start-up. The base flow is a
slightly modified version of the traditional log-law equation, where the x-directed
velocity is given as

u = 1.25
(uτ
κ

ln
(uτ
ν

)
+ 5uτ

)
. (6.10)

Perturbation is done for this base flow, and for the y- and z-directed velocity
components, by a random stream function created by applying Pythons random-
library. The values of this stream function was found to be important: the
perturbations needed to be high enough at start-up such that the viscosity did
not immediately damp them. On the other hand, too high values would eventually
lead to problems, as the magnitude of the perturbations possibly would be too
high. Achieving good magnitudes for the perturbations was done by multiplying
the randomized values by a constant equal to 0.0025, resulting in nice turbulent
start-up conditions.

For all cases mean velocity data for resolved DNS, under-resolved DNS, and
results obtained with the LES models activated, will be compared. Both forcing
methods will be shown, but the focus will be on applying the CG method, as
this is the most natural and correct way of handling this case. As for the mean
data, the velocities are first averaged over a long time period, and then the time-
averaged data sets are averaged over the whole channel, eventually resulting in
the plotted mean profiles. Some mean Reynolds stress data will also be shown
for Reτ = 395 and Reτ = 590. The notation is a little confusing; thus, to clarify,
e.g. for the Reynolds stress u′u′, it is computed as

u′u′ = uu− uu, (6.11)

where the upper overline now denotes the general time and domain average and
not the LES filter, whereas u here denotes the velocity obtained from the LES
simulations.

6.1.1 Reτ = 180

First we take a look at plots of the obtained mean under-resolved DNS data for
both P2P1 and P1P1 element pairs, and compare with the data provided by [22].
The first thing to notice is how the FA method gives very good mean velocity
profiles, compared to that of resolved DNS (Fig. 6.2 (a); MKM is DNS data,
UDNS is the under-resolved DNS data), where the results are slightly better
with the P1P1 combination of elements. Moving on to the CG method we in
Fig. 6.2 (b) and 6.2 (c) see how the flux balances out at a higher value compared
to the DNS profile. This is expected behaviour for all Reτ since the coarse
mesh in general will result in a huge range of turbulent effects being left out of
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(a) P1P1 vs P2P1, FA. (b) P1P1 vs. P2P1, CG.

(c) P1P1 vs. P2P1, CG, non-log.

Figure 6.2: Channel flow, Reτ = 180; mean velocities for under-resolved DNS.

the simulations. Again we see that the P2P1 mean data is worse compared to
the one obtained with P1P1, resulting in slightly higher mean velocities. Notice
how the solution in the inner part of the boundary layer is well represented, as
the matching between the DNS data and the mean data is good for y+ ∈ [0, 5]
approximately.

If we move on to the LES simulations we in Fig. 6.3 (a) see how the Smagorin-
sky model behaves for the two values of Cs = 0.16 and Cs = 0.1. It is clear that
the eddy viscosity contribution has a positive effect, as the mean velocity is ad-
justed towards the DNS data as expected. Especially in the outer region the
results obtained for Cs = 0.16 is in good agreement with the DNS data. It most
likely is just a matter of adjusting Cs such that the best possible results are ob-
tained. In the inner wall-region, where the under-resolved DNS solution actually
represents resolved DNS data quite well, the Smagorinsky model is clearly over-
dissipative, something which eventually leads to the mean data being altered a
little too much there. For Cs = 0.1 we see that the mean data places itself in
between under-resolved DNS and resolved DNS data, where the mean velocities
in the boundary layer are less affected compared to what was seen for Cs = 0.16.

The results obtained for the WALE model (Fig. 6.3 (b)) with Cw = 0.325 are
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(a) Smagorinsky, Cs = [0.1, 0.16], CG. (b) WALE, CG.

Figure 6.3: Channel flow, Reτ = 180; mean velocities for Smagorinsky and
WALE, CG method.

clearly wrong, and unexpected, as the overall mean velocities becomes slightly
higher compared to the ones obtained with under-resolved DNS. When starting
the computations after activating the WALE model, the flux increased and sta-
bilized at a higher value, quite opposite to what was seen for the Smagorinsky
model. As we see there is a slightly positive effect closer to the wall, however, at
approximately y+ = 40 the mean velocities becomes higher than those seen for
under-resolved DNS. This exact same result was obtained for the σ model and
the Dynamic Smagorinsky model, as both of them returned higher mean veloci-
ties compared to those obtained when no model was activated. This behaviour
does indeed point towards implementational errors, either in the general eddy
viscosity term, or in any of the LES models. Nonetheless, since the Smagorinsky
model returns good results, combined with this strange behaviour of the WALE,
σ, and the Dynamic Lagrangian model, some arrows are pointing towards this
being more of a universal problem for this specific case. The discussion regarding
this phenomenon is quite extensive, some results and discussion can be found in
section 6.1.5.

6.1.2 Reτ = 395

The mean velocities for this case, seen in Fig. 6.4, show the same tendencies as
the ones obtained for the Reτ = 180 case. Differences here are a larger distance
between the under-resolved DNS and the resolved DNS data, in addition to the
P2P1 simulation actually returning a slightly better solution closer to the wall for
the CG method. Again we see how the FA method produces results that are in
very good agreement with those of resolved DNS, where, as with the previous
case, the CG method also here produces too high mean velocities.

Simulations applying LES models have here been done for the Smagorinsky
model with Cs = 0.1, and the σ model with Cσ = 1.5. The Smagorinsky model
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also here has a generally positive effect on the simulation, returning a mean
velocity profile closer, though slightly higher, than the DNS data. The value of
Cs = 0.1 is too conservative here, where small adjustment of the Smagorinsky
constant most likely would have returned better results. The σ model returns
results that are similar to those seen for the WALE model for the previous case,
where mean velocities in general are higher compared to under-resolved DNS data,

(a) P1P1 vs P2P1, FA. (b) P1P1 vs. P2P1, CG.

(c) P1P1 vs. P2P1, CG, non-log.

Figure 6.4: Channel flow, Reτ = 395; mean velocities for under-resolved DNS.

Figure 6.5: Channel flow, Reτ = 395; mean velocities for Smagorinsky and σ,
CG.
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(a) Mean Reynolds stress u′u′

for Smagorinsky, σ and UDNS.
(b) Mean Reynolds stress v′v′

for Smagorinsky, σ and UDNS.

(c) Mean Reynolds stress w′w′ for Smagorinsky, σ and UDNS.

Figure 6.6: Channel flow, Reτ = 395; Reynolds stresses for UDNS, Smagorinsky
and σ.

especially outside of the boundary layer region. A positive, though extremely
weak effect is seen closer to the wall, where the σ model returns slightly lowered
mean velocity data; however, we also here see how the model returns higher mean
velocities as we come closer to the middle of the channel.

Plots for the Reynolds stresses u′u′, v′v′ and w′w′ can be seen in Fig. 6.6.
All three simulations overpredict the Reynolds stresses u′u′ as seen in Fig. 6.6
(a), where the results are highest for the σ model and the UDNS simulations,
but slightly lower for the Smagorinsky model. For the two other components in
Figs. 6.6 (b) and (c) both LES models results in better mean data compared
to that of UDNS, where it is the σ model that quite surprisingly produces the
best mean profiles. The σ model clearly dampens the two latter Reynolds stress
components, whereas the former stays unchanged. Since the mean velocity profile
for the σ model is nearly identical to the one of UDNS, the results obtained for
u′u′ is as expected; on the other hand, it looks like the two other components
are damped independently of the u′ fluctuations, where clearly the mean velocity
results are unaffected by the improved results for v′v′ and w′w′.
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6.1.3 Reτ = 590

Moving on the third case of Reτ = 590 we again see that the results shows the
same behaviour as with the two previous Reτ . If we compare the CG and the FA
methods, it is clear that the latter returns very nice results, whereas the former
returns mean velocities that are drastically higher than DNS data. The P2P1

element pair has not been tested here as a result of stability problems.
As for the LES simulations in Fig. 6.8 we again see how the Smagorinsky

model returns good results, where it is clear that Cs = 0.1 also here is a bit
small. The Dynamic Smagorinsky model with Lagrangian averaging is similar
to WALE and σ for the two previous Reτ , almost no differences can be seen
compared to the UDNS-profile, but where WALE and σ returned higher mean
velocities, this is not the case for the dynamic model. In the middle of the
channel, the returned mean data is almost identical to that of under-resolved
DNS, whereas there clearly are some effects closer to the wall where the returned
mean data is slightly improved. The results are, however, disappointing.

In Fig. 6.9 the Reynolds stresses u′u′, v′v′ and w′w′ are plotted for DNS,

(a) CG vs. FA, P1P1. (b) CG vs. FA, P1P1, non-log.

Figure 6.7: Channel flow, Reτ = 590; mean velocities for under-resolved DNS.

Figure 6.8: Channel flow, Reτ = 590; mean velocities for Smagorinsky and
Dynamic Lagrangian.
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(a) Mean Reynolds stress u′u′ for UDNS,
Smagorinsky and Dynamic Lagrangian.

(b) Mean Reynolds stress v′v′ for UDNS,
Smagorinsky and Dynamic Lagrangian.

(c) Mean Reynolds stress v′v′ for UDNS, Smagorinsky and Dynamic Lagrangian.

Figure 6.9: Channel flow, Reτ = 590; Reynolds stresses for UDNS, Smagorinsky
and Dynamic Lagrangian.

under-resolved DNS, Smagorinsky, and the Dynamic Lagrangian method. The
results are very similar to those obtained for Reτ = 395: the Smagorinsky model
produces better profiles compared to UDNS, where, quite surprisingly, the Dy-
namic Lagrangian model produces the best mean profiles for v′v′ and w′w′. The
same model does also produce lower values for u′u′ compared to the σ model
for Reτ = 395, where the results here places themselves between the UDNS and
Smagorinsky profiles. These lowered values may be connected to the improved
mean velocity data seen for this model in the same region.

6.1.4 Reτ = 950

Moving on to Reτ = 950 the results are very similar to earlier ones: the data
from the under-resolved DNS simulation positions itself at a higher mean velocity
for the CG method, whereas the FA method yields good results right out of the
box as seen in Fig. 6.10. As for the LES simulations in Fig. 6.11 it is clear that
the Smagorinsky model now works to well in that the flow rate, and followingly
the mean velocities, is pushed to mush downwards. For such a high turbulent
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(a) CG vs. FA, P1P1. (b) CG vs. FA, P1P1, non-log.

Figure 6.10: Channel flow, Reτ = 950; mean velocities for under-resolved DNS.

Figure 6.11: Channel flow, Reτ = 950; mean velocities for Smagorinsky and
WALE.

Reynolds number it is most likely so that, in despite of a Smagorinsky constant
value of Cs = 0.1, the models differential operator |S| returns high values near
the boundary as a result of the large velocity gradients in this region. Thus, the
eddy viscosity contribution becomes large, and a more noticeable reduction is
seen in the mean velocity data for this case, compared to what was seen for the
three previous Reτ . As for the WALE model we get the same results as seen for
the Reτ = 180 case, where the mean velocity profile also here places itself above
that of under-resolved DNS.

In Figs. 6.12 (a) to (e) the eddy viscosities for Smagorinsky, WALE, Sigma
and Dynamic Lagrangian have been plotted for a certain time step at three
different slices in the domain. Notice how the near wall-contribution for the
Smagorinsky model is quite large, whereas it for the three other models is nearly
non-existent; it seems very likely that the obtained mean velocities has a con-
nection to the models different wall behaviour. In the middle of the channel it
is evident that the σ and the Smagorinsky model are more similar in their con-
tribution, whereas WALE is the more conservative of these three overall. The
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(a) Smagorinsky, Cs = 0.16.

(b) WALE, Cw = 0.5. (c) σ, Cσ = 1.5.

(d) Dynamic Lagrangian, Cs. (e) Dynamic Lagrangian, νT .

Figure 6.12: Channel flow, Reτ = 950; slice plots for νT at three different
locations. Smagorinsky (a), WALE (b), Sigma (σ; c), Dynamic Lagrangian (d;
Cs) and (e) .

Dynamic Smagorinsky model with Lagrangian averaging shows good results for
Cs and νT , both being of correct order and in the same vicinity as the other
models. Maximum value for Cs varied a bit during the simulation, ranging from
everything between 0.2 and around 1. Higher values are not seen on as artefacts,
but rather as results of the computation and the dynamic method’s ability to
compute values of Cs, both large and small. However, it may be so that values
of Cs ' 1 are too high and should be clipped, e.g. to a maximum of 0.4 or 0.5.

In Fig. 6.13 (a) and (b) the normalized mean value νT/ν has been plotted
for all the four models for Reτ = 950. First notice how the wall behaviour of
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(a) Means of νT , log-log plot. (b) Means of νT , regular (non-log) plot.

Figure 6.13: Channel flow, Reτ = 950; means of νT for Smagorinsky (SM),
WALE, Sigma, and Dynamic Lagrangian (DL). The profile for y3 is also included.

all of them is indeed differing a lot: Smagorinsky (SM) does in general have a
wall scaling of y0, whereas the others seem to follow the scaling of y3 somewhat
correctly. WALE is quite conservative overall, merely adding a mean value of
one times ν in the middle of the channel. σ is about three times higher than
WALE in the middle of the domain, whereas Dynamic Smagorinsky (DL, here
Cs is updated each 10th time step) has the highest peak at around y+ = 200,
but decreases as one moves towards the centre of the channel. It is interesting
to see how SM yields good mean velocity results, whereas both DL and σ, which
have a higher eddy viscosity contribution in the middle of the channel, both
yield erroneous results for the mean velocity profiles. The only exception is the
Dynamic Lagrangian model for Reτ = 590 that in general produced a small, but
noticeable, positive effect; from Fig. 6.13 we see that it is the dynamic model
that actually has the highest contribution closer to the wall. Most likely the
addition of eddy viscosity in the near wall region is critical for the simulation
results, whereas the amount added in the outer region is somewhat irrelevant (as
long as nothing is added near enough to the wall). This is at least true for the
mean velocities and the Reynolds stress u′u′; as seen from Figs. 6.6 and 6.9 the
σ and Dynamic Lagrangian models did indeed produce better mean profiles for
the two Reynolds stresses v′v′ and w′w′, independent of the little or no improved
mean velocity profiles.

6.1.5 Discussion

The Smagorinsky model returned good results for all turbulent Reynolds num-
bers, in general producing a lower valued mean velocity profile closer to the DNS
data. Good is here said in the sense that the model behaves as expected without
applying damping-functions for νT . Its problems are, however, quite clear, not
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only for its differential operator |S|, but also in terms of the general constant
Cs. Where mean velocity for Reτ = 950 was altered too much for Cs = 0.1,
the opposite happened for the three other Reτ . In addition, the boundary layer
problems are evident, as too much eddy viscosity is added in the already well-
represented near-wall regions. On the other hand, the more conservative methods
like WALE, σ, and the Dynamic Smagorinsky model, lead to overall higher valued
mean velocity profiles for all Reτ .

A lot of time has been spent on finding the “error” and an explanation to this
quite counter intuitive phenomenon. At first (and as mentioned in the companion
article to this thesis, [6]) when simulations only had been done for Reτ = 180,
it was assumed that this could have something to do with the mentioned Reτ
being too low, eventually requiring only small amounts of modelling from the
eddy viscosity contributions. This assumption was rapidly eliminated as the ex-
act same results for these models were obtained for Reτ = 395, Reτ = 590 and
Reτ = 950. The next natural assumption was errors either in the implementa-
tions of the general eddy viscosity expression, the models, or in the simulation
setup. However, the good results obtained in the previous chapter, together with
those obtained here for under-resolved DNS and the Smagorinsky model quickly
debunks all of those assumptions. In addition, it is clear that this behaviour is
common for the WALE, σ and Dynamic Smagorinsky models, thus it is most
likely not an implementational error in those models. For testing purposes some
different implementations for WALE were tested, where slightly expressions for
the differential operator was tried out. This did, however, lead to the exact same
results as originally obtained.

As a result of these investigations, all arrows pointed towards a certain phe-
nomenon occurring for this exact case when LES models with a certain type of
behaviour was applied. The Kinetic-Energy SGS model was also tested, where
the obtained results were very similar to those of the Smagorinsky model. Both
these models includes the mentioned wall problems, whereas the WALE, σ and
Dynamic Smagorinsky models are all behaving properly near the wall. Therefore,
the problem was postulated to have a connection to the wall behaviour of the
applied LES model.

After a lot of searching around the literature, it was eventually discovered that
some people had experienced similar problems. Schmidt et al. [68] experienced
too high mean velocities when a specific version of the Dynamic Smagorinsky
model was applied with a spectral element solver, and Cottet et al. [69] obtained
too high mean velocities for the Dynamic Smagorinsky model applied with a
fourth-order finite difference method. On the other hand, Menevau et al. [36] did
in their paper obtain good results for Reτ = 650, then applying the same spectral
code as was done by MKM [22].

The most interesting results has been found in the 2014 PHD thesis of Lampitella
[70], situated at the Polytechnic University of Milan. He does turbulent channel
flow applying a Finite Volume code, together with the σ model and Dynamic
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Smagorinsky model among others. The results there show that both these mod-
els yield higher mean velocity data, compared to that of under-resolved DNS.
He gives a brief explanation in that the required behaviour of y3 scaling for νT
near walls (Chapman and Kuhn, [38]) appears overrated, and may be entirely
wrong, as it possibly depends on the solver, on the mesh, and on the flow itself.
The problem lies in the fact that for this flow not all scales are reproduced near
the wall on a coarse mesh/lower order solver; hence, no eddy viscosity is added
there, as there are unresolved fluctuations closer to the wall. In addition, all
models which return bad results follow the y3 scaling near the wall, something
which eventually results in unwanted behaviour. Lampitella [70] shows that the
models that includes a net contribution of eddy viscosity closer to the wall results
in positive solutions, thus it is evident that the y3 behaviour of WALE, σ, the
Dynamic Smagorinsky model and so on is erroneous when scales are unresolved
near the wall. This also explains why the Smagorinsky model (scales as y0), and
the Vreman model ([50], scales as y1, simulations done by [70]) in general yields
solutions that are more correct. In addition, the positive channel flow results
obtained by Meneveau et al. [36] (Lagrangian Dynamic model), are most likely a
product of them applying a computational code of spectral accuracy, leading to
the y3 scaling being the correct rate of decay for νT since most fluctuations near
the wall are resolved.

As briefly discussed in section 3.4.1, LES comes packed with some quite de-
manding factors in terms of wall resolution and so on. It may be that what is
experienced here actually is directly connected to the mentioned wall problems,
and that, for this case, if scales near the walls are left unresolved, the eddy vis-
cosity models with correct behaviour is unable to correctly control the simulation
overall. For the higher turbulent Reynolds numbers, like 590 and 950, this could
be the case as the thickness of the boundary layer δ is small (the first computa-
tional node is located at y+ ' 4.3 for the former, and at y+ ' 14.3 for the latter);
however, for Reτ = 180 where the boundary layer is thicker, it is not as clear
why this happens compared to the two other cases (the first computational node
is, however, still located outside the crucial region, at y+ ' 1.31). Some good
results were obtained with the WALE model for a P2P1 Reτ = 180 simulation on
a coarse mesh of 323 cells, where a slightly positive effect was seen for the mean
velocity profile. Nevertheless, this was most likely a result of the P1 Lagrange
elements being applied for νT for the coarse mesh, thus its eddy viscosity contri-
bution became more inaccurate, and a certain amount was added closer to the
wall, therefore resulting in improved mean data.

To test if the problem with increased flux and higher mean velocities for some
models is reproducible, an expression for νT is fabricated that includes decaying
as yn in the viscous sub- and buffer-layers, for y+ < 40 approximately. Outside
this layer the eddy viscosity is set equal to βν, whereas it for the inner layer has
the constant value κ as coefficient. Both these constant values somewhat depends
on Reτ , but for testing purposes they were here chosen to be equal to β = 4 and
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(a) Decaying νT ; Eq. (6.12).

(b) Dev. of Q for νT as in (a). (c) Dev. of Q for νT in modified (a).

Figure 6.14: (a): Fabricated νT from Eq. (6.12). (b): Initial flux development
for Eq. (6.12) with κ = 1, β = 4 and Reτ = 950. (c): Initial flux development
for modified Eq. (6.12) with κ = 10, β = 4, Reτ = 950, and decaying zone for
y+ ∈ [0, 60].

κ = 1. More precisely the function is defined as

νT =

{
βν if y+ ≥ 40

κν (y/ (y+Reτ ))
n

if y+ < 40)
, (6.12)

where n is equal to the wanted rate of decay. The function is plotted in Fig. 6.14
(a) for n = 0, 1, 2, 3, β = 4, κ = 1 and Reτ = 180. For these values of β and κ it
is assumed that the eddy viscosity has an approximate mean value of βν in the
middle of the channel, where the decaying starts from κν at y+ = 40.
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Results for Reτ = 950 in Fig. 6.14 (b) shows that the flux does indeed for
n = 0 and n = 1 decrease at start-up. For n = 3 the flux increases rapidly, clearly
illustrating the problem with the wall decaying behaviour of y3 for νT . We also
after some time see an increase in the flux for n = 1, whereas for n = 0 it keeps
going downwards.

Modifying Eq. (6.12) such that κ = 10 (which results in the decaying starting
at 10ν, a much higher value compared to those seen in Figs. 6.13 (a) and (b), this
is for illustrational purposes only), combined with altering Eq. (6.12) such that
the decaying zone instead is for the region y+ ∈ [0, 60) (justified from the mean
profiles in Figs. 6.13 (a) and 6.13 (b)), yields the results showed in Fig. 6.14 (c).
Again we see how the flux rapidly decreases for n = 0 and n = 1, whereas it
slightly increases for n = 3. Clearly the eddy viscosity added in the wall region
heavily controls the quality of the simulations, justifying the mean data obtained
for WALE, σ and Dynamic Smagorinsky. In some sense, you can add as much
eddy viscosity in the middle of the channel as you want, it will eventually not
lead to better results for the mean velocity profiles. For that to happen a net
contribution of eddy viscosity close enough to the wall is necessary; that is, not
as close to the wall as the Smagorinsky model, but closer to the wall than what
is seen for the WALE, σ and Dynamic Smagorinsky models.

A second test where eddy viscosity was added either only in the middle of
the channel, or only in the boundary layers, did eventually return results that
further strengthen this explanation. If a high amount of eddy viscosity was added
only the middle of the channel the only effect that was seen was increased mean
velocities and increased flux. On the other hand, if eddy viscosity was added only
in the boundary layer, the flux, and followingly the mean velocities, decreased
immediately at start-up, after some time stabilising at a lower flow rate.

6.2 The FDA Case

The U.S. Food and Drug Administration (USFDA/FDA)’s computational round
robin #1 available at [71], was an international round robin initiative by FDA
and the National Cancer Institute put forward in 2008-2009. The case consists
of blood flowing in a generic medical device, formed as a pipe with a simple inlet
at the left hand side, followed by a conical nozzle, a narrow pipe, and then an
expansion to a larger pipe. Boundary conditions are set to no-slip at the pipe
walls, zero pressure outlet at the right hand side, and a fixed velocity inlet at the
left hand side. Inside the domain, the fluid is at rest at start-up.

All the 28 groups that submitted results in the original round robin used
Reynolds-Averaged Navier-Stokes (RANS) methods, where none of the models
accurately predicted the breakdown point of the jet for Re = 3500 [72]. After the
round robin, near perfect results have since been obtained using DNS, LES and
hybrid RANS-LES for the same Reynolds number [73, 74, 75]. After the sudden
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Table 6.2: Physical and computational parameters for the FDA case.

Re 3500
µ 0.0035 kg/(s ·m)
ρ 1056 kg/m3

ν 3.3 · 10−6 m2/s
Inlet flow rate 3.63 · 10−5 m3/s
Time step ∆t 10−4 s
Simulation time ' 16 · 104 ·∆t s

Figure 6.15: Domain for the FDA case.

expansion, a jet will be formed, and a breakdown of the jet will occur at some
point. In general, modelling the breakdown of the jet is the hardest part of the
simulation, as it is heavily dependent on the transitional process from the laminar
flow in the narrow pipe, to the turbulent flow in the jet, eventually leading to
a breakdown process. When coarser meshes are applied there are effects in the
nozzle and the jet that are unaccounted for, hence, dissipation becomes too low
and perturbations are starting to grow too early, resulting in the jet breaking
too early. Since the Reynolds number actually is quite low, the main challenge is
here to model the transition to turbulence correctly such that the perturbations,
which trigger the breakdown of the jet, are initiated at the appropriate time.

Figure 6.16: Length parameters for the domain.

Experimental data obtained applying Particle Image Velocimetry (PIV) is
available through [76]. Here mean velocity data obtained by both under-resolved
DNS and LES simulations will be compared to that obtained with PIV, where
measurements have been done for all slices between z = −0.008 to z = 0.080 (see
Fig. 6.18). Two types of meshes will be applied; non-uniform meshes of two and
three million cells, and uniform meshes of two and three million cells. Applying
a P2P1 element pair together with a coarse mesh was also tested, but because of
stability problems no results will be included here.
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Figure 6.17: Magnitude of the velocity at a certain time step.

As a function of the measured mean velocities, a validation metric value E
will be computed and compared for all simulations. Its value determines how
close the obtained solutions are to the actual experimental data in total, where
a value of E = 0.0 reflects a perfect match between experimental and numerical
data. Computation of this metric is done applying the relative errors through
the formula

E =
1

n

n∑
i=1

∣∣∣∣ui − uiui

∣∣∣∣ , (6.13)

where n equals the number of discrete points, ui is the mean data from the
numerical experiments at location i, and ui is the experimental mean data at
location i. It is evident from the formula that if we have a perfect match between
experimental and CFD data E = 0, where E > 0 for all other cases, and its
magnitude then determines how close the CFD data is to the experimental PIV
results. In addition to this validation metric a percentage metric P will also be
computed as

P =
EUDNS − ELES

EUDNS

, (6.14)

such that the overall improvement is quantified through a percentage value. Here
EUDNS is the validation metric obtained for an under-resolved DNS simulation on
a given mesh, and ELES is the value obtained for the same mesh with some LES
model activated.

Figure 6.18: Cross section locations for mean data measurements.
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6.2.1 Non-uniform Meshes

First two non-uniform meshes of two and three million cells have been tested.
The refinement has primarily been done from x = 0.0 and right towards the
outlet, with cell size being the smallest closer to the expansion. It is expected
that this region is crucial for the simulation as this is the location of the jet, and
hence also the region for the breakdown and a lot of turbulent behaviour. Some
refinement has also been done in the nozzle, in the narrow pipe, and along the
boundary, as these are regions of high velocities and high velocity gradients as
well.

The results from the simulations on the 2M mesh can be seen in Figs. 6.19 (a)
and (b), and in Table 6.3. First notice how the UDNS case lags behind, breaking
the jet too early, hence producing lower mean velocities from slice number four.
The Smagorinsky model (SM) is generally over-dissipative, something which for
this case results in a better solution compared to UDNS; however, the breaking
happens a little too late as seen at the 15th slice. This is most likely a result of the
model being overly dissipative (as discussed in Ch. 5), both along the boundary
of the jet, and in the boundary regions, as perturbations here to some extent are
damped and killed as a result of the over-contribution of νT . Moving on to the
WALE model the results are not as good as expected, as the improvement over the
UDNS profile is evident, but small (only 55% better). Most likely it is a matter
of adjustment of Cw such that better results had been obtained, e.g. to Cw = 0.5
or even Cw = 0.6. Based on the formula given in Eq. (3.29), if one assumes that
Cs = 0.16 the WALE constant becomes equal to Cw = 0.5216, a value which
eventually would have returned better results here. Clearly, the problem with
the constants in the static models is evident, as they are not completely general,
but rather varying as functions of time, space, and maybe also the mesh. For
this case the best results are obtained with the Dynamic Smagorinsky model with
Lagrangian averaging, as it returns a validation metric of E = 0.50, and thus a
percentage improvement of P = 0.804. Compared to the WALE model, also σ
does here result in a total eddy viscosity contribution that is too low, in general
producing profiles that are better compared to UDNS and WALE, but which still

Table 6.3: Validation metrics E and P for non-uniform mesh, two million cells.

LES Model E P

None (UDNS) 2.56 -
Smagorinsky, Cs = 0.1 0.82 0.671
WALE, Cw = 0.325 1.13 0.558
Sigma (σ), Cσ = 1.6 0.92 0.64
Dynamic Smagorinsky (Lagrangian) 0.50 0.804
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(a) Mean velocity at slices; Underresolved DNS (UDNS) vs. Smagorinsky (SM) vs.
WALE vs. Experimental (Data).

(b) Mean velocity at slices; Underresolved DNS (UDNS) vs. Sigma vs. Dynamic
Smagorinsky (DL) vs. Experimental (Data).

Figure 6.19: FDA case, slice plot of mean velocity data for a non-uniform mesh
of two million cells.
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position themselves somewhat behind the experimental data. Again it seems like
a matter of adjusting Cσ to obtain better results: the constant was here equal
to Cσ = 1.6, increasing it somewhat to 1.7 or 1.8 would possible have returned
better data.

Moving on to the mesh of three million cells some very interesting results are
obtained, see Fig. 6.20 (a) and (b), and Table 6.4. Again, as expected, the UDNS
data is positioned behind the experimental profiles, where the results are better
than that of UDNS on the 2M mesh. It is interesting to see how the Smagorinsky
model fails drastically for this mesh, damping all perturbations resulting in the
jet not being broken at all. Clearly, for the 2M mesh the perturbations were
able to partially stay alive in despite of the Smagorinsky model giving them
a hard time; nonetheless, for this mesh, the model’s νT contribution manages
to completely damp them, subsequently killing all perturbations, leading to no
transition to turbulence at all. WALE returns velocity profiles that are excellent,
nearly overlapping the experimental data perfectly. Returning E = 0.35, which is
the best overall validation metric obtained in this work, the model clearly shows
its efficiency and strengths compared to the Smagorinsky model. Zooming in
on the mean profiles one may see that they still are somewhat behind those of
the experimental data, hence slightly increasing the value of Cw would also for
this case most likely have returned near to perfect results overall. Both the σ
and the Dynamic Smagorinsky models do here return good results, where the σ
model in general shows the same behaviour as the WALE model does. It returns
better results, Cσ = 1.6 is still too low, a small increment would have increased
the effects, and thus returned better results. The Dynamic Smagorinsky model
positions itself somewhat behind the experimental data, still producing a good
validation metric of E = 0.53, but a lower percentage metric compared to what
was seen for the 2M mesh is obtained here.

Table 6.4: Validation metrics E and P for non-uniform mesh, three million
cells.

LES Model E P

None (UDNS) 1.36 -
Smagorinsky, Cs = 0.1 - -
WALE, Cw = 0.35 0.35 0.742
Sigma (σ), Cσ = 1.6 0.52 0.617
Dynamic Smagorinsky (Lagrangian) 0.53 0.610
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(a) Mean velocity at slices; Underresolved DNS (UDNS) vs. Smagorinsky (SM) vs.
WALE vs. Experimental (Data).

(b) Mean velocity at slices; Underresolved DNS (UDNS) vs. Sigma vs. Dynamic
Smagorinsky (DL) vs. Experimental (Data).

Figure 6.20: FDA case, slice plot of mean velocity data for a non-uniform mesh
of three million cells.
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6.2.2 Uniform Meshes

Secondly, two meshes of two and three million cells where all cells are of uni-
form size have been tested. For this case, we omit the Smagorinsky model, as
the results most likely would have been quite similar to those obtained in the
previous section. The focus will be on WALE, σ, and the Dynamic Smagorinsky
models only. In general, the LES models should have a harder time modelling
the breakdown location, then as a result of the under-resolved DNS data being
much farther behind the experimental data compared to the two refined meshes.
Expectations in terms of the LES results have to be adjusted accordingly.

For the uniform mesh of two million cells validation metrics can be found in
Table 6.5, mean velocity at the slices can be seen in Fig. 6.21. Compared to the

Table 6.5: Validation metrics E and P for uniform mesh, two million cells.

LES Model E P

None (UDNS) 4.59 -
WALE (Cw = 0.5) 1.22 0.734
Sigma (σ, Cσ = 1.6) 1.27 0.726
Dynamic Smagorinsky (Lagrangian) 0.97 0.788

Figure 6.21: Mean velocity at slices; 2M Uniform; Underresolved DNS (UDNS)
vs. WALE vs. Sigma vs. Dynamic Smagorinsky (DL) vs. Experimental (Data)
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non-uniform meshes the under-resolved DNS solution clearly suffers from the cell
size in the region following the expansion, where the validation metric clocks in at
EDNS = 4.59, about 80% worse than that of the non-uniform mesh of two million
cells. This is expected behaviour as the cell size both in the nozzle, and near the
breakdown location, is much larger compared to the non-uniform mesh. Notice
from Fig. 6.21 how UDNS predicts that the breakdown process starts already at
slice number two, leading to the jet having been almost completely dissipated
at slice number six. Compared to the data obtained for the refined meshes it
is quite clear that the UDNS simulations here are substantially worse compared
to those obtained for non-uniform meshes. As for the LES models it is clear
that all of them under-predict the mean position for the jet breakdown. As for
the static models, adjustment of the constants would also here most likely have

Table 6.6: Validation metrics E and P for uniform mesh, three million cells.

LES Model E P

None (UDNS) 3.80 -
WALE (Cw = 0.5) 0.946 0.749
Sigma (σ, Cσ = 1.6) 1.16 0.690
Dynamic Smagorinsky (Lagrangian) 1.16 0.690

Figure 6.22: Mean velocity at slices; 3M Uniform; Underresolved DNS (UDNS)
vs. WALE vs. Sigma vs. Dynamic Smagorinsky (DL) vs. Experimental (Data)
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returned better results. On the other hand, the Dynamic Smagorinsky model
again presents us with the best solution, resulting in E = 0.97, and a percentage
improvement of P = 0.788. In total all models yields over 70% improvement
from the under-resolved data, a number which is quite high, and good.

Moving on to the uniform mesh of three million cells we first from Table 6.6
see that the under-resolved DNS data is somewhat improved from the previous
case, but not as drastically as it was for the non-uniform meshes. As for the LES
models, it is actually the WALE model that obtains the lowest validation metric,
and highest percentage improvement, here. From the plot in Fig. 6.22 it is evident
that the breaking of the jet happens a little too early for the σ model, a little
too late for the Dynamic Smagorinsky model, but nearly perfectly for the WALE
model. The errors in the computations are clearly seen at slice number two, four
and six, where in the regions ±[0.002, 0.004] all the models return profiles very
similar to that of under-resolved DNS. This is without a doubt the main source of
the errors for all the three models here, where, as seen from the plots, the WALE
model manages to capture the position of the location of the breakdown better
than the two other models. Compared to the results obtained for the uniform
two million mesh the percentage improvements are worse, but the overall results
are better in that the breakdown location is recovered more correctly.

6.2.3 Discussion

In general, as is clear from the validation metrics, all the LES models are able
to recover a quite high amount of the left out dissipation not captured in the
under-resolved DNS simulations. The results are varying in the parameter P ,
where the improvement in the results range between 50 and 80 percent. The
worst results are seen for the WALE model on the non-uniform mesh of 2M
cells where P = 0.531, where on the other hand the best results are seen with
the Dynamic Smagorinsky model with P = 0.804 on the uniform mesh of 2M
cells. Inconsistency is a problem that is evident here, especially for the Dynamic
Smagorinsky model; e.g., in the non-uniform case, good results was obtained for
the 2M mesh, whereas they were slightly worse for the 3M mesh. The same
tendencies was seen for the uniform simulations. As for the σ and WALE models
the results for the coarser meshes are unsatisfying, whereas they improve a lot
when a finer mesh is applied, i.e. the models do not have optimal behaviour in
terms of e.g. mesh independence and so on.

When it comes to the two different types of meshes applied here, there is no
doubt that the non-uniform refined meshes in general returns better solutions,
compared to their uniform counterparts. Coupled with the inconsistency problem
it is clear that mesh dependency is quite clear, especially in terms of the validation
metric E. If one rather focus on the percentage metric P , it is clear that the LES
models do in general come closer to the experimental data for the two uniform
meshes, then with a mean value of P u = 0.729, compared to the mean value
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for the non-uniform meshes P nu = 0.661. These values are clearly connected to
the validation metrics obtained for the UDNS simulations, as their values were
much lower for the refined meshes, therefore, since the UDNS simulations on the
uniform meshes are much worse, the LES models are able to restore a larger
amount of the left out dissipation.

Mean measurements of νT along the centreline and at the slices were done for
the uniform 2M and 3M simulations, such that some information was obtained
regarding the different models eddy viscosity magnitudes and their general con-
tributions. Centreline plots of νT can be found in Figs. 6.23 (a) and 6.23 (b).
The first thing to notice is how the behaviour of the models are quite similar, for
both cases, both in terms of overall magnitudes and contribution at all locations.
For the 2M mesh the normalized values of νT/ν in the jet is around 3, whereas
they for the 3M mesh are slightly lower, hovering around 2.5. Both to the left and
to the right of the breakdown the overall contribution is near zero, only disturbed
by a few spikes here and there.

The only behaviour that differs is the huge spike seen in the Dynamic La-
grangian model (DL) for both meshes at x = 0.0, where it is substantially worse
for the 3M mesh. There is also a spike at the exact same location for WALE,
though it is small compared to the DL model, which there produces a νT value
over 20 times higher than ν. Most likely it is a type of artefact from the La-
grangian equations and their clipping procedure, which, if JMM is small but JLM
is high, may produce extreme values (often removed by clipping Cs, this is not
done here). This should absolutely be investigated, as such values may cause
problems with the simulations if they are present at locations that heavily con-
trols the overall results. From the results for the 2M simulations it does not look
like it has had a huge impact on the simulations in total; however, the results
obtained for the 3M mesh may have been somewhat biased by this instability, as
the DL model produces the smallest amount of eddy viscosity in the jet, but still
results in a later breakdown compared to the other models.

In Fig. 6.24 the instantaneous velocity field and the corresponding νT fields
for Smagorinsky, WALE, σ, and Dynamic Lagrangian models have been plotted
for the non-uniform mesh of two million cells. The velocity field is obtained
from a simulation applying the σ model, where then the νT plots have been
produced applying this velocity field at a certain time step. If we start with the
Smagorinsky model (plot number two from the left), it is clear that the eddy
viscosity contributions in the near-wall region in the narrow pipe and along the
boundary of the jet, are causing this model to return poor results. For this
case the results were not as bad as for the non-uniform 3M mesh, where these
erroneous contributions there led to no breakdown at all. The contributions from
the WALE and the σ models (plots number three and four) are very similar, the
σ model seemingly having a slightly higher contribution overall. In the narrow
pipe, the WALE model adds some small amount of eddy viscosity in the middle,
but nothing near the wall as expected. σ has little or no contributions in the
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(a) Mean νT along centreline; 2M uniform mesh.

(b) Mean νT along centreline; 3M uniform mesh.

Figure 6.23: FDA case, mean plot of νT along centreline of the pipe. Uniform
meshes of two million cells (a) and three million cells (b).
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Figure 6.24: FDA case; instantaneous plots of (from left to right) the veloc-
ity field, followed by the νT fields for Smagorinsky, WALE, σ, and Dynamic
Lagrangian model. νT is here ranged from 0 to 5 · 10−6 for all cases.
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narrow part. The Dynamic Lagrangian model is the most conservative model
overall, where the contribution in the jet itself is similar to the other models, but
little or no eddy viscosity contribution is seen in the narrow pipe or closer to
the outlet. Overall the models do return good results and show nice tendencies,
not only in terms of the values for νT and general behaviour, but also for specific
and expected behaviour as near-wall contributions and similar. Identifying which
effects that specifically control the simulations in total is easy for the Smagorinsky
model, but not as easy or clear for the three other models. The addition of eddy
viscosity in the jet has without a doubt a major impact on the results: however,
why e.g. the σ model consequently returns worse results than the WALE model,
remains somewhat unclear.

As already mentioned, there is in general a problem with the static models,

(a) Plot of
(
Cσ∆

)2
for Cσ = 1.66 and ∆ as in Eq. (3.25).

(b) Plot of dynamically computed Cσ as a
function of time.

(c) Plot of dynamically computed
(
Cσ∆

)2
as a function of time.

Figure 6.25: The global dynamic σ model applied together with the uniform
mesh of two million cells. (a): Plot of constant Cσ = 1.66 and ∆ given in
Eq. (3.25), (b): Plot of dynamically computed Cσ with a mean value of Cσ =

1.72, and (c): Plot of dynamically computed
(
Cσ∆

)2
with a mean value of(

Cσ∆
)2

= 1.21 · 10−7.
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in that these models constants are not constant in time, nor in the domain (not
strictly true, it depends on the differential operator for the given model). A
global dynamic approach was discussed in section 3.4.2, where, if the general
dynamic procedure is coupled with the e.g. the σ model, one gets a global dynamic
sigma model if the tensor contractions are averaged over the entire computational
domain. This model can then be used to dynamically calculate either Cσ, or(
Cσ∆

)2
. Whatever is best needs to be verified, but it is in general positive that

the length scale does not need to be explicitly specified.

To test how this model performed, it was applied together with the non-
uniform mesh of two million cells, where again tests were performed for solving

for Cσ only, and for solving for the term
(
Cσ∆

)2
directly. Results can be seen in

Fig. 6.25: in (a) the field
(
Cσ∆

)2
has been plotted for the values Cσ = 1.66 and ∆

as in Eq. (3.25). In 6.25 (b) and (c) we have the plots for dynamically computed

Cσ and
(
Cσ∆

)2
, respectively. The first thing to notice is how this global dynamic

procedure returns nice values for Cσ, where they hoover around the mean value
Cσ ' 1.72, with a maximum of Cσ,max ∼ 1.8, and a minimum of Cσ.min ∼ 1.66.
These values are in good agreement with the value of Cσ = 1.5 presented in the
original paper [33]; however, for this case they become slightly higher, something
which was expected as the mean velocity results obtained for this case with
Cσ = 1.6 all point towards this being a too conservative value. As for solving

for
(
Cσ∆

)2
directly the results, as seen in Fig. 6.25 (c), are both surprisingly

good, and somewhat disappointing. They are good in that, if compared to the
plotted field in Fig. 6.25 (a), the results are very similar, showing that there is a
good connection between the explicitly defined ∆, and the value provided by the
dynamic procedure. In addition, it is clear from both plot (b) and (c) that the
two dynamic computations behave almost identically. On the other hand, the
results are somewhat disappointing in that the values obtained are very similar
to those applied for the static model. If we compare the dynamically computed(
Cσ∆

)2
in (c) to the static field in (a), we see that there are some differences,

but the values are in general close to each other. None of these global dynamic σ
models were tested for a full simulation; hence, no mean velocity data is included
for either of them.

One interesting question to ask is how well suited this global approach is for
this case? Clearly the computations are more stable, but most likely the values

of Cσ and
(
Cσ∆

)2
would have become locally higher if a local averaging approach

had been used; thus, the dissipational effect in the jet would possibly have been
more hard hitting, possibly leading to better mean data. This has not been
tested, but could be investigated in the future. One, however, then encounters
the problem of the dynamic procedure being applied to a model that already
satisfies the y3 wall-decaying behaviour, as discussed by [37].
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6.3 Conclusions

This chapter acts as the second part in the process of verifying and validating the
general eddy viscosity implementation, and the implementations of the different
LES models. The Smagorinsky model, the WALE model, the σ model (plus a
dynamic variant), and the Dynamic Smagorinsky model with Lagrangian aver-
aging have all been thoroughly tested for two cases: a traditional benchmarking
case, and a not-so-traditional, but still demanding, case.

The general conclusions one may draw from the results in this chapter is that
the eddy viscosity implementation has been done correctly, in addition to the
Smagorinsky, WALE, σ and Dynamic Smagorinsky models having been imple-
mented correctly. Some results obtained for the channel flow case, like heightened
mean velocity profiles for WALE, σ and Dynamic Smagorinsky, do not, if pre-
sented alone, point to the implementations being good. However, these erroneous
results are clearly coupled to the wall behaviour of these models, where again the
mean plots for νT clearly shows that the decaying rate of y3 is fulfilled for all of
them. The Smagorinsky model does for this case return good results overall, in
general producing mean velocity profiles that are much closer to the DNS data.
Nevertheless, its over contribution of νT near the wall is not only noticeable in
the mean velocity profiles, but also for Reτ = 950, where it is clear that the
near-wall problems lead to mean velocity data that is altered too much. All
the results obtained for this case do in general verify the eddy viscosity imple-
mentation, where also the good data obtained for the mean νT plots and some
selected Reynolds stresses, all point towards the LES models most likely having
been correctly implemented.

The FDA case does, in despite of some varying results, help the process of
verification and validation, strengthening the conclusions overall. One may from
the results obtained here deduce that, for cases containing transitional effects, the
Smagorinsky model without damping functions is not a good approach. Mildly
speaking. On the other hand, the three other models correctly tackles the tran-
sitional process, allowing perturbations to grow, eventually leading to the tran-
sition from laminar to turbulent flow, and a breakdown of the jet. The overall
conclusion is that all the tested LES models lead to effects that are positive and
as expected, in that all the obtained mean profiles are between 50 to 80 percent
improved over the UDNS results. The results are a bit inconsistent, as e.g. the
Dynamic Smagorinsky model returns data that is worse for the finer meshes.
There is still a way to go in terms of mesh independence, model consistency, and
similar effects; nevertheless, this is not only an implementational problem, but
also, or rather, a problem with the eddy viscosity models themselves.
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Chapter 7

Concluding Remarks

In this work the turbulence modelling method of Large Eddy Simulation (LES)
has been implemented into Oasis, a Computational Fluid Dynamics (CFD) solver
for incompressible flows based on the Finite Element method (FEM), developed
in-house at the University of Oslo (UiO). The focus when it comes to the LES
models has been on so-called eddy viscosity models, which attempt to model the
left-out dissipation, originally caused by the subgrid-scale velocities, through a
fictional eddy viscosity term. Two types of models have been presented: static
models, which include a general constant, and so-called dynamic models, which
aim towards computing these constants dynamically as functions of the flow field.

Implementational details for the general eddy viscosity term, and for the
Smagorinsky, WALE, σ, Dynamic Smagorinsky, Scale-Dependent Dynamic, and
the Kinetic Energy SGS models, were presented in Ch. 4. Starting with the gen-
eral LES contribution, the residual stress tensor was discretised with FEM, where
some subsequent problems were thoroughly discussed, before its implementation
into the Oasis framework was presented. As for the LES models selected de-
tails from the implementations were shown, where discussion regarding certain
problems and challenges was done here as well. In general, implementing mod-
els that do not require explicit computations of any sort is an easy task, since
most expressions may be coded without much effort when FEniCS’ Unified Form
Language (UFL) is applied. On the other hand, implementation of models that
require additional operations as e.g. test filtering, explicit computation of dis-
crete quantities, or additional Partial Differential Equations (PDEs) to be solved,
is a much more demanding work, as one then needs to have a bigger focus on
general optimization and implementation of good solutions.

Verification and assessment was first performed applying the Method of Manu-
factured Solutions (MMS), then to test the implementation of the general residual
stress tensor, and the Smagorinsky and WALE models. The convergence rate of
∆t2 was correctly recovered for all cases, showing that the general eddy viscosity
implementation, and the Smagorinsky and WALE models, most likely have been
correctly implemented. In addition, the eddy viscosity returned by the discrete
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Smagorinsky and WALE models were compared to the analytical ones, where
good results also here were obtained for both implementations. Further, some
simple test cases were applied to assess the models, and show some of their short-
comings and limitations. The Dynamic Smagorinsky model and the σ model did
as expected tackle both cases well, whereas Smagorinsky failed for simple shear,
and WALE failed for solid body rotation. These test cases do, in despite of being
extremely simple, both contribute to further verification of the implementations,
as the eddy viscosities were correctly computed by all models for both cases.

Further verification was done through the classic case of turbulent channel
flow in an x− z periodic channel, where DNS data from MKM [22] and Jimenez
[23] was compared to mean velocity measurements obtained for the different LES
models. In general, the Smagorinsky model, which produces too much eddy
viscosity in the near-wall regions, actually showed good tendencies for all Reτ ,
producing mean velocity data that was much closer to that of resolved DNS
compared to that of under-resolved DNS. On the other hand, the WALE, σ and
the Dynamic Smagorinsky models all failed for this case, returning over estimated
mean velocities for all Reτ . Investigation showed that this has nothing to do
with errors in the implementations, but is rather an effect of these three models
being able to correctly reproduce the wall decaying behaviour of y3 for νT . Some
slightly positive effects were seen for two cases: the Dynamic Smagorinsky model
for Reτ = 590, and the WALE model for a P2P1 simulation for Reτ = 180. For
the former one may from the mean plots for νT in Fig. 6.13 see that the Dynamic
Smagorinsky model has a larger contribution closer to the wall compared to the
σ and the WALE model, most likely leading to the more positive results. As for
the latter this was a result of the P2P1 simulation, and the fact that νT was in a
lower ordered P1 space, resulting in a larger eddy viscosity contribution also from
the WALE model closer to the wall. A fabricated νT , which included selectable
wall decaying rate, clearly showed that the net-contribution of eddy viscosity in
the wall region is controlling the quality of the simulation in total.

Validation was done through the U.S. Food and Drug Administration (USF-
DA/FDA)’s computational round robin #1, where simulations for both uniform
and non-uniform meshes of two and three million cells were performed. The
general results were good, as all LES models managed to produce better mean
velocity profiles compared to the results obtained with no LES model activated
(between 50 to 80 percent improvement). Concluding remarks are that the Dy-
namic Smagorinsky model works best for the simulations done here, as its mean
percentage improvement is the highest in total, whereas the static models are
more problematic. Both the Smagorinsky, WALE, and the σ model clearly suf-
fered from the fact that general constants were applied (also seen through the
channel case), where it was clear that small adjustments of the constants would
have produced better profiles. A global dynamic σ model was also tested, it re-

turning good values for both Cσ and
(
Cσ∆

)2
. These values were slightly higher
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compared to the value of Cσ = 1.5 presented by [33]; however, this does indeed fit
well with the fact that Cσ = 1.6, as used for the simulations in this work, was too
conservative. It is expected that the dynamically computed value of Cσ,dyn ' 1.72
would have returned better results.

7.1 Limitations

In general, there are little or no limitations in the work done here. Everything
from the eddy viscosity formulation, to the LES models, have been implemented
in a completely general way, thus rendering the Oasis framework able to han-
dle LES for all types of turbulent flows. However, if one looks for limitations,
some may be found for the Dynamic Smagorinsky model, where e.g. no ”per-
fect“ solution for the test filtering operation was implemented. A good approach
was discovered in the GTHF, but as a result of the originally proposed GTHF
function space not being available in FEniCS, a shortcut through the linear P1

Lagrange elements and their corresponding basis functions was taken. In addition
to this, the Lagrangian averaging approach chosen here has been quite problem-
atic, where some shortcuts, like e.g. the avoidance of interpolation to obtain the
upstream-located values, have been taken to arrive at a working solution.

As seen through both the channel case and the FDA-case, the LES models
that contain a universal constant of any type are problematic. Determining the
correct value of these constants is somewhat impossible from a general point of
view, since they both vary in time and space, and between experiments. For the
industry running cases where DNS or experimental data is unavailable, the need
for models that are completely general is extremely high, such that correct and
believable data may be obtained. This limitation is more of a general modelling
problem than an implementational one; however, it is clear that the Dynamic
Smagorinsky model (and other dynamic models) have a huge advantage in that
they require little or no user input, in addition to them being completely general
procedures.

In addition to this the solver may still be said to be limited to simulations
of moderate Reynolds numbers, then as a result of the near wall problems with
LES as discussed briefly in section 3.4.1. This is, nonetheless, not a limitation
in the implementations done as a part of this work, but more of a LES specific
problem.

7.2 Significance

The work done in this thesis has constructed a rigid fundamental basis for further
investigation and development of the LES framework with Oasis, then in com-
bination with unstructured meshes, complex turbulent flows, flows containing
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challenging transitional effects, and similar. Oasis is now able to handle general
LES simulations of any type, it boasting traditional but still successful models as
those applying the dynamic procedure of Germano, and more modern differential
operator models as e.g. the σ model.

For the industry, and for students, people or research groups who are genuinely
interested in doing simulations applying LES, Oasis has as a result of the work
done here become a good, robust, and efficient tool. It may be applied e.g. in
courses at educational institutions where CFD and LES are important topics, as
simple LES simulations can be carried out, the effect of the different LES models
can be directly analysed and tested, the implemented code may be presented to
students, and much more. From an industrial point of view Oasis has possibly
become a more interesting tool, as it now may be used for LES of complex,
incompressible turbulent flows of any type.

7.3 Future Work

Future work will be directed not only towards improving the current implemen-
tations, but also towards implementing new and more interesting eddy viscosity
models. As showed in Ch. 4, the amount of time spent on optimizations, espe-
cially for the Dynamic Smagorinsky model, is quite high. It is, however, most
likely room for improvement and optimization of the algorithms, such that the
amount of extra time required for LES computations could be even further re-
duced.

As an example, extending the already implemented static models into their
dynamic relatives is an easy task, as most ingredients for both procedures have
been implemented already. When it comes to implementation of new models, a
good starting point would be static and dynamic mixed models of different types.
Both the traditional mixed models presented in section 3.3.7, in addition to more
modern dynamic mixed models, which e.g. apply either the WALE model, the
σ model, or other eddy viscosity models as purely diffusive parts, are interesting
procedures.

As for the explicitly required filtering procedures both the test filters for the
dynamic models, and those required as the mesh filters for the mixed models,
should be further investigated. These procedures are in general problematic for
unstructured meshes, as no well-defined and completely general filtering proce-
dures exist. In addition, the dynamic models all contain the free parameter α,
representing the test to mesh filter ratio. In this implementation a value of α = 2
has been applied, as this is a widely used solution that has been tested and
proven to be good. However, some suitable analysis should be done in terms of
the tweaked GTHF applied in this work and α, to further justify the eventual
choice of value for this parameter.

The erroneous results obtained with WALE, σ and the Dynamic Smagorinsky
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model for the channel flow case, should definitely be further investigated. As
discussed in the corresponding section, it seems like this is a problem that has
been scarcely investigated: similar results exists, but explanations and research
done on the topic seems very scarce. In their original papers both Meneveau et
al. [36] and Toda et al. [33] received good results for their Lagrangian Dynamic
model and static σ model, respectively. Both these models failed here, hence
investigation on how to obtain similar results through Oasis should be done.
As shown in the channel flow section, this problem is directly connected to the
wall behaviour of the LES models, where again this wall behaviour most likely is
coupled with the wall problems of LES for unresolved turbulent boundary layers.
Three routes may be taken to further test this case: (a) sufficiently resolve the
boundary layer region, (b) invoke wall functions, or (c) find/develop LES models
that are able to tackle this problem directly. Hopefully solution (a) or (b) would
lead to better results for the models which in general were problematic. This is
also important from a validation point of view, as better, and hopefully good,
results should be obtained for this case.

In addition to further analysing already tested experiments, new test cases
like decaying isotropic turbulence, a turbulent plane jet, or other traditional
benchmarking methods should be investigated. As was done with the FDA case,
the solver and the capabilities of the LES models should also be further tested
for other non-trivial, non-standard, complex cases, where experimental or DNS
data is available.
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