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On thermal convectlion between non-unlformly heated planes

Jan Erik Weber

Abstract

The stability of natural convection 1n a thin, horizontal
layer subjected to horizontal as well as vertlcal temperature
gradients is investlgated on the basis of linear theory. The
boundarles are taken to be stress-free and perfectly conducting,
and the horizontal temperature gradient ls assumed to be small,
The analyslis shows that the critical Raylelgh number 1s always
larger than that for the ordinary Bénard problem, The preferred
mode of dlsturbance 1s statlionary, and will be a transverse or
longltudinal roll depending on whether the Prandtl number is less
or larger than 5,1, Finally, some calculations are made of the
converted energy assoc¢iated wlth the unstable perturbations, in-
dicating that the mechanism of instability is of thermal (con-

vective) origin,



Nomenclature

a depth of layer

k,m wave numbers in the X and z direction

;,E,E unlt vectors

v veloclity vector

U,V,w velocity components

t time

U(y) basle flow velocity

p pressure

P(x,y) Dbasic flow pressure

T temperature

To standard temperature

AT temperature difference between lower and upper plane
v2 Laplaclan operator

L operator defined by (4.3)

K,I defined by (5.2) and (5.6), respectively

Pr Prandil number ;

Ra. Rayleigh number \gaATda (g= acceleration of gravity,

KV d = coefficient of volume expansion)

Greek letters:
overall wave number
horizontal temperature gradlent

-
o

temperatures

thermal diffusivity

kinematic viscosity

density

standard denslty

amplification factor of disturbance
defined by (4,9) and (4.27), respectively
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Superscripts ' non-dimensional quantities,
* perturbation quantities




1. Introduction,

Thermal convection in thin, horizontal fluld layers uniformly
heated from below 1s quite well described in the literature (the
Bénard problem); see the revlew article by Brindley [1] for refe-
rences. In many practlcal problems, however, non-uniformly heating
may occur, and thus the layer will be subjected to horizontal as
well as vertical temperature varlations. Few theoretlical attemptis
have been made to analyse the stabllity of thin layers under such
conditions, Zierep [2] has approached the problem by investigating
a model with a discontinuous jump in the bottom temperature. Further,
Koschmieder [3] has performed a laboratory experiment on convection
between circular planes, the upper at constant temperature, the
lower non-uniformly heated, At suberitical conditions a density
gradient roll was observed, breaking up into axlally symmetric rolls
of different slzes and rotatlon when the vertical temperature
difference was sufficilently increased, Theoretlically Miller [4]

has glven a two-dimensional lirear analysis of thls problem,

In the present paper we lnvestigate the effect of horizontal
temperature variation on ordinsry Bénard convectlon, assuming that
the fluid 1s unlimited 1n the lateral directlions. Due to the hori-
zontal density gradient thus produced, a shear flow develops,and when
the temperature differencé between the bottom and top plane exceeds

a certain critical value, this flow becomes unstable,

It is well known that in the absence of shear, a non-linear
analysis must be appllied to obtain the final flow structure, being
two-dimensional rolls 1f the fluld properties are constant
(Schititer et,al.[5]), or hexagons if the properties vary with

temperature (Palm [6], Busse [7]).
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In stability problems involving a basiec flow, a preferred
direction 1is introduced Into the system, and a unique flow pattern
may be predicted from linear theory, (Liang and Acrivos [8]). The
- selected type of disturbance will depend on the instabllity
mechanisms involved, For non-stratifled shear flows, the mechanism
is purely hydrodynamical, and by Squire's theorem it can be proved
that Instabllity flrst oceurs for rolls having axes normal to the
mean flow (transverse rolls), TFor shear flow wlth unstable verti-
cal stratiflcation due to heating from below, the instabllity will
be of thermal origin if thebasic flow Reynolds number 1s sufficiently
small, and then rolls having axes aligned in the direction of the

mean flow (longitudinal rolls) will be preferred ([8],[9],[10]).

In the present problem we shall assume a small horizontal
temperature variation which implies a small basiec flow velocity.
For moderate (or large) Prandtl numbers then,the hydrodynamical
instabillty mechanlsm will not seriously affect the problem, and
thermal instabllity will dominate, Hence longltudinal rolls would
be expected., It is therefore a 1ittle surprising,at least to the
author, that the final flow pattern may be transverse or longltu-

dinal rolls depending on whether the Prandtl number 1s smaller or

larger than 5.1.

The reason for this; however, is purely of thermal origin.
This 1s indicated 1in the last part of the paper where we consider
the conversion of energy between the mean flow and the perturbation,
There we show that the horlzontal transfer of vertlcal momentum
cannot account for the change of mode about Pr = 5,1, whlle the

release of potentlal energy may do so,



2. Baslc flow,

Consider natural three-dimentlonal convection of a viscous
fluid confined between horizontal planes, see fig., 1., For
mathematical simplicity we shall assume the planes to be stress-
free and perfectly conducting, and the lateral temperature varia-
tion to be linear in the x-dlrection. For a given x-coordinate,
the temperature difference between the planes is constant, AT,
and the lower plane 1s the warmer. We then may write

AT

T=T -4 - px anda T =1 + 5L - 6x at the top and bottom

plane, respectively, where 8 1s a positive constant,

To avoid infinite temperatures on the boundaries, we must
1imit the model in the x-direction, but we assume that the ratio
of the depth to the characteristic horizontal dimension 1s so

small that the lateral boundaries will not affect the motion,

Introducing non-dimensional (primed) quantities by

2
(x,y,2) = (x',y',2")d , t = t'd_K"
(u,v,w) = (u',v',w')a"‘: 3 p = p'P‘&KT\i
T - Ty = TTAT

and making the Boussinesq approximation, we may write the governlng

equations in vector notation

> >
Pt (5L + Fovd) = ~vp + VA + RaT (2.1)
o -+ _ 2
sp * VeVT = VAT (2.2)
Vev = O (2.3)

where the primes have been dropped.
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We now consider a particular solution of these equations.,

Setting

1

%E = v =w=20
u = Uy) (2.4)

T = T(y) - Bx

"

where B now 1s dimensionless, and eliminating the pressure

from (2,1), the governing equations reduce to

D*U(y) = - BRa
\ (2.5)
D*T(y) = - BU
_a
where D = i -
These are subjJect to the boundary conditions
DU(td) = 0 , T(x3) = ¥3 (2.6)
and to the continulity condition
41
TU(y)dy = 0 (2.7)
-2
The s0lution of thls system 1s easily obtained, belng
3
U(y) = 2BRa(f - é’3—>
3 5
-l p2p. 9y AR A
N = . B2R - + - 2.8
(y) 57 B a(gs 5 5 ) -y (2.8)

For sufficiently large values of Ra (or @), the solution (2,8)
may become unstable, and this possibllity 1s investigated 1in the

next sectlons,

It 1s worth polnting out that this type of flow is solely caused



by a horlzontal density gradient, and exists even when no vertical

temperature difference 1is present (AT = 0),

3. Stablility analysis.

Following the usual approach of linear stabillty theory,

infinitesimal perturbations (denoted by carets) are introduced

into the governing equations. Setting

U(y) + u(x,y,z,t), v = V(X,y,Z,t),

e
3]

[=»]
1]

and neglecting the non-linear terms, we obtaln:

1

12U 3u 3, g
Pr (at + Uy) s Y DU(y)) TR

-1,3V v 3 2
Prot(zp + U5y - 53 + Y2y + Rab

Pt (B 4 w2 = - 3R+ vy
28 20 _ -y
sz + U(y)gy - Bu + v DT(y) = v*0
du 4 3V 4 W o g
X 3y 9z
where the carets have been dropped.
We assume solutionsg of the form
w uEy;
MEE A + -
W w(y) exp(i(kx + mz - ot))
9 0(y)

for the system (3.2)-(3.4), where the real part is

w = Wix,y,2,t)

A A
T(Y) - Bx + G(X,y,Z,t) ’ p = P(x,y) + p(x,y,z,t)

(3.2)

(3.3)

(3.4)

(3.5)

considered

(3.1)
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to have physlecal significance, The wave numbers, k and m, are

real and the growth rate o(= of + ioi) is complex. Eliminating

the pressure from (3.2), and utilizing (3.5), we finally obtain

{Pr{D2=g?)-1kgRalU+10} (D?-q2)v+ikpgRaD?Uv~-q?PrRag = 0 (3.6)

{D2.g2-1kpRalU+ic}6+pu+v-p?RavDO z 0 (3.7)

{Pr(D?-02)-ikBRal+ic} (~a?u+ikDv)+m?gRaDUyv = 0 (3.8)
Subject to the boundary conditions

v=D? =Du=2¢6-=0 for y = £3 (3.9)
Here o 1s the overall wave number defined by a2 = k? + m?,
Furthermore, we have introduced

- . U( ) -1 \ _ 3

U = _—LBRa 2(1{‘ %—-)

(3.10)

T 1.9 s Ly
= Tl < or gy - B0 )

@l
i

Equation (3.6) 1s the Orr-Sommerfeld equation which is coupled
with the energy equation (3.7). Equatlon (3.8) 1s the vertical
component of the vorticity equation combined with the equation

of continuity.



L, Method of solution.

To simplify the problem, we shall assume that § 1s small.
Then the equations (3.6)~(3.8) may be solved by a perturbation
technique using £ as a small perturbation quantity. This is
a method similar to that introduced in [8]. The solutions are

expanded 1nto the form

(u05v0,60,k09m0900H0)

(u,v,8,k,m,o,Ra)

B(ul’vlsexskz’m1sozaﬂ1) (4.1)

+

+

Ba(ua,va,ez,kz,mz,oa,Rz)

o - o =

and the different orders are obtalned by inserting these expressions
into (3.6)~(3.8), equating equal powers of B and utilizing the
solvabllity condition. For this procedure %o be valid, the Prandtl

number must be a zeroth - order quantity.

The zeroth - order system corresponds to thermal convectlon

without shear (the Bénard problem), and the equations are

{(Pr(D?~af) + 10,}(D*-al)v, - alPrR 6 = 0
{D? -~ a2 + 10,}8, + v, = O (4.2)
- adu, + ik, Dv = 0

070

It 1s well known [11] that the principle of exchange of stabilities

1s valid for thls system. Hence ci = 0, At the neutral state

(0% = 0), the governing equation may be stated

L(v,) = {(D* - uﬁ)3 + a?R v, = 0 (4.3)



with boundary conditlons

vy = D¥v, = DU =0, y =3 (4. 4)
The solutlons are readlly obtained, being

Ve = Acosmy

u, = =1 g%Q-Asinﬂy (4.5)

2
00 = 57 AcosTy
2

and R, = %? 7" for af = ki +mj = %T .

The amplitude A, which can not be determined from the linear,
homogeneous system, may be equated to unity wlthout loss of,

generality.

Next, for the first-order equations we obtain

Pr(Dz—aﬁ)2v1-aﬁPrRUel={2EPr(D2-a§)+ik°Ro(ﬁ(Dzwuﬁ)-Dzﬁ)

-101(Dz-ag)}v0+{gPrRO+u§PrR1}eo (4.6)

(D2-a2)6, +v, = (E+1k R U-10, 36 -u, (4.7)
2 .2 2 i 2 _82%y(. -2 it

Pr(D -ao){-aoul+ikoDv1}- Pr(D ao)( £u0+ik10v0) mORODUvo(M.S)

where

E=2(kk +mm), (4.9)
(VI | 0 1

Eliminating 6, from (4.6) by using (4.7), we finally get
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PrL(vl) {2£PP(D2-»0L§)2+:LkoR0(D2--ai)['E(D2

i

10 (D%2-02)2}v +{gPrR (D?-a?)+a?
1 1] 0 0 0 0

+ 0?PrR E+ik 02PrR2U-ic oPrR }0
0 0 0 0 0 1 0 o 90

subject to the boundary conditions

=

The operator L has been defined by (4.3).

Under the present conditions, L 1s easi
adjoint, Then a necessary condition for (4,10

is that the right hand side be orthogonal to

Defining the inner-product

1

+
< ,g> = T fg dy
-z

the condition for solvabllity may be stated as
<L(v ),v >= 0
1 0

From (4,13) we obtaln

_ 9n? -1
R1 = - iGl -gw-(l+Pr )

Since R must be purely real, this equation

0)

state (c%

g =0

R 0 .

1

-az)uDzﬁﬂ
o

2 2
PrRl(D ao)

-0?PrR u (4,10)
0 0 ¢

(4.11)

ly seen to be self-
} to have a solution

A\
0
(4,12)

(4.13)

(4,14%)

gives at the marginal

(4.15)

Thus we have no oscilllatory instability to first order.
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Concerning the Rayleilgh number, 1t 1s clear from physical con-
siderations that Ra generally can not contaln any term in-
volving odd powers of B8, slnce the only effect of changing sign
in B, 1s to reverse the basic velocity, which of course can not

alter the stablility condltions., Hence

Ropsg = 0 » B = 0,1,2, ——- (4,16)

For the sake of simpllcity, we shall represent the basic
veloclity by a sine-profile, which 1is indeed a good approximation.
This may be seen from table 1, where the difference between the
sine-profile 51 = f% sinmTy and the exact profile 52 = %(% - %i)

is given in percent for several values of y.

y 0 0,1 0,2 0.3 0.4 0.5
Diff, in % 0 h,2 3.4 2.1 0.7 0

Table 1: Difference between U, and U,.

Throughout the remainder of this analysis, we then take as baslc

veloclty
U(y) = ggg sin Ty (4,17)
The corresponding baslc temperature 1s obtained from (2.5), being

6(y) -y (4,18)

N
n

2 )
T(y) %52% (-y +% sinwy) -~y

0/fRa into (4.10) and utilizing

3]

U/BRa and 0O

m

Introducing U

R, = 0, = 0, we get

L(vl) = ikoﬁo{é% ﬂ“(1+Pr"1)sin2ﬂy+1rsin1ry} (4.19)

=
-

with boundary conditions v, = D?v, = D%, =0, y =%
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Setting
L S ~
Vi = 1kRy g 7 (L4Pr DV, + 1k Ry 1V, , (4.20)

71 is immediately obtained, while ;1 is found most conveniently

by Galerkin's method, giving

o«
v, = nzl Aznsin 2 (4.21)

whe re

A s 6in (~1)"
2n n7(4n2—1)[(8n2+1)3-2TT

The solution of (4.19) may then be written

2 ~
vy = ikg{- T%¥EF(1+PP_1)sin 2my + MRV, }. (4.,22)

From (4.7) and (4,.8) we now obtain the solutions for 6l and

u,, namely,
_ (27+Pr™%) 4 4 ginh(ay/v/2)
8, = iko{——§§7§§-—sin2ﬂy - §¥?sinﬂy + 573 sinh(n/avs)
2Ro X 4
+ —?2 0,}- grwEcos Ty (4.23)
where
~ o Agn
8, = sin 2n w
and
_ 3 -] Pr'-l 21{2 ~
u, = “{E§TTE(1+PP k2 5 m2}cos2ny - _?ﬁ R,D¥,
b 2 pr~!
+ ;?{koi— %— k,}sinny - 221%“ mg (4,24)

Here v, d1s defined by (4.21).
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To determine R, and o¢,, we must apply the solvability

condition to the second-order equations. These are given by
pr{(D?~a2)*v,-a2R,62} = {2Prg(D2—a§)+1k034?(n2-a5)~023]}vl
+ gPrRoel+{2Pr;(Dzwao2)—Prg2+1k,Ro[ﬁ(Dﬂ-ag)-Dzﬁ]

- ikOERoﬁ-ioz(Dz-a05}vo+{cPrRo+u02PrR2}eo (4,25)
and
(D?-ad)0,+vy= (E+ikoRoUYO,-u, +(1k Ry U+L-10,)0,+ReDBV,, (4.26)
where

t = kiZ+2koka+my 2+2mems . (4.27)

The equation for uz 1s not relevant for the present purpose,

and is thus not stated.

We now multiply (4.25) and (4.26) by (D%-0o2) and ag2PrRo,
respectively, summing and take the innerproduct with wv,. The

solvability condition for thils system ls then expressed by
<L{v,),v¢> = O _ (4,28)

After some algebra we obtaln from (4,28)

4 i
R, = _136 72R, + 11—1}'%_[8“ 8¢13%,+ %{%-2— + (-g» + %)Pr"x
8,
+ %%¥§§ Pr'2]k02+ % RoPr™'mo2+ 36(koky+mom, )2 (H.29
2
- ig, 2%-(1+ pr-ty
where
b a L] 2

5= o 2227+0l4n (4.30)

n=1 7%(4n?-1)2[(8n2+1)3-27)
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This serles converges very rapldly, glving approximately
L, = 5°63+107° (4.31)

At the neutral state, ¢, must be real, Since R, 1is real, the

real and imaginary parts of equation (4.29) reduce, respectively,

to
4
Re = o5 0% Rot iy Ro[8-042300 3Tz + (54 G a)me
+ %%E%E Pr"i]k02+ %ROPr"!moz-bBG(kokﬁmoml)2 (4.32)
2
and of 20-(14Pr™') = 0 (4.33)

The last relation implies that ci = 0 at the marglnal state,

and hence we have no oscillatory instabllity to second order.

From (4.32) we immediately conclude that R, 1s positive
and greater than zero for all kinds of disturbances, which means
that the onsel of convectlon in the present problem will occur for
a Rayleigh number larger than the critical value corresponding to
the Bénard problem. This 1s to be expected since the basic flow
convects warmer fluid 1in the upper part of the layer and colder
in the lower part, thus opposing the destabllizing effect of the

temperature difference between the lower and upper plane.

The preferred mode of disturbance will make R a minimum.
If we introduce h = mg/k, and utilize ko2 +me? = w?/2, Ry may
be wriltten
2
Ry(h) = f% 72R, +{A(Pr™',Pr"2)+ B(Pr'l)h2+36(k1+m1h)2}§T%¢5?7
(4.34)

where the expressions for A and B easily follow from (4.32}.
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It is then seen that R, has an absolute minimum either for
h =0, Xy = 0 (transverse rolls) or h = o , m; = 0 (longltudinal
rolls) depending on the values of A and B, 1.e. the Prandtl

number.

In fig. 2, R; 1is displayed for the two kind of rolls, and we

observe that for Pr < 5.1 transverse rolls are preferred, while

we get longltudinal rolls when ppr > 5,1,

It should be noted that formally (4.32) also gives one more
point of intersectlon between the transverse and longitudinal roll
curves, namely fbr Pr = 0,03, Whether this reflects any real
change of mode, however, is doubtful, since our perturbation method
is not supposed to be valid at such a small Prandtl number. In fact,
we suggest that the tendency to select transverse rolls will be
strengthened at small Pr by the increased importance of shear on

the mechanism of instability.

When Pr increases towards infinltely, the critical Raylelgh

number agsumes the asymptotlc value

Ra = Ro(l + 5 n2B?) + 0(8*) (4.35)
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5. Exchange of energy between the mean flow and the perturbation,

In this section we shall be concerned with the perturbation
energy, Taking the real parts of the component equations in (3.2),
multiplying by the real parts of u, v and w, respectively, averaging
over a wavelength in the x- and z-direction, adding, and integrating
from y = -3 to y = +3, using the boundary conditions, we finally
obtaln the familiar equatlon for the kinetic energy of the pertur-

bation

1 2_<cuZiyPiy?> = -<DU(y)Uv> + PrRa<ve> ~Pr<(Vu)2+(Vv)2+(Vyw)?2>
(5.,1)

where the bars and the brackets denote mean and vertical integra-

d
ot

tions, respectively.

Here the term -<DU Uv> represents the conversion of kinetic
energy between theperturbation and the mean flow through vertical
transfer of horizontal momentum, while the second and the third
term on the right represent conversion of potential energy to

kinetlc energy and viscous dissipation, respectively

We define

K = - <DU uv> (5.2)

Here uv = %[ur(y)vr(y) + ui(y)vi(y)] where the superscripts r
and i1 denote real and imaginary parts of the velocitles defined
by (3.5).

We will consider the marginal stable solutlons., Since the
solution denoted by subscript zero corresponds to pure convection,

it 1s obvious that TUeve = 0. The lowest order contribution to the
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Reynolds stresses is then gilven by

v = B(u1vo + uovl) + O(Bz) (5.3)
For the expression (5.2) we then obtain to second order

- 3.6(1.,6 + Pr~1)g? (5.4)

=
i

and

K = 198.1 pPr ‘a2 (5.5)

1]

for transverse and longitudinal rolls, respectlvely. Accordingly,
transverse rolls always losc kinetlc energy to the mean flow, whlle
longitudinal rolls always galn energy. Similar results were ob-
tained by Asal [12] for convectlon in Couette flow, from which 1t

was concluded that longitudinal rolls were preferred,

In the present problem a similar conclusion is obviously
Incorrect, The fastest growing mode will depend on the conversion
of potential energy as well as viscous dissipatlion. This dependence
will not fully be explored in this paper. At large Prandtl numbers,
however, 1t is immediately clear from the equation for the kinetilc
energy,(5.1), that the processes mentioned above will dominate, For
Pr of about unity, we shall conslder one important second order

term of the released potential energy.

We define
P = PrR, 1evo0o>82 = 6%? PrRap? (5.6)

where Rz 1s given by (4,32).

From the grgph of Ry in fig. 2 1t follows that the value of

P for transverse rolls will be less than its value for longltudunal
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rolls when Pr ‘is less than five, while for Pr greater than

five the opposite 1s true. Further 1t can be shown that for

Pr = 5 the release of potential energy (P) for a longltudinal
roll is asbout six times larger than the energy converted from

the mean flow through vertical momentum transfer., This indlecates
that the process of conversion of potentlal energy will dominate
for Pr about unity, and may account for the change of mode at
Pr = 5.1. Since we consider marginally stable solutions, the
left hand side of (5.1) is zero. To satisfy this condltlon, the

viscous dissipation must also be important for Pr of about unity.

6. Summary and discussion,

When the Prandtl number 1s less than 5,1, we find that the
Rayleligh number at the neutral state has a minimum for steady,
transverse rolls, i,e., rolls with axes normal to the mean flow.
For Prandtl numbers greater than 5.1, the Rayleigh number is
smallest for steady, longitudinal rolls having axes aligned 1n

the direction of the mean flow,

Our concluslions are, in some respects, similar to those
reached b& Liang and Acrivos [8] for convection in a tilted slot.
As in the present case, the neutral state remains statlonary for
all disturbance wave numbers, 1i.,e, the principle of exchange of
stabilities applies, and the critical Raylelgh number decreases
with increasing Pr to an asymptotic value independent of Pr.

In the present problem this 1limit is given by (4.35).




- 19 -

Two important differences may be noted, however, In (8]
the most unstable mode was found to be a longitudinal roll, and
the critical Rayleigh number the same asg for pure convection
without shear. In our case, the most unstable mode may be either
transverse or longltudinal depending on whether Pr 1s smaller
than 5,1 or not. The c¢ritical Raylelgh number will always be
larger than that corresponding to convection without horlzontal
density gradients. Physically this 1s due to the upward convectlon
of warm fluld and downward convection of cold fluid in the basilc

flow.

The last section has been devoted to energy considerations.
We have shown that, analogous to [12], a longitudinal roll always
gains kinetic energy from the mean flow through vertical transfer
of hofizontal momentum, while a transverse roll always loses energy
by this process, This does not explain the change of mode at
Pr = 5.1 in the present problem. By computing one particular term
in the released pofential energy, it is indicated that the mechanlsm

of instability 1s primarlly of convective origin.
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