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Abstract 

The stability of natural convection in a thin, horizontal 

layer subjected to horizontal as well as vertical temperature 

gradients is investigated on the basis of linear theory. The 

boundaries are taken to be stress-free and perfectly conducting, 

and the horizontal temperature gradient is assumed to be small, 

The analysis sho11s that the critical Rayleigh number is always 

larger than that for the ordinary Benard problem. The preferred 

mode of disturbance is stationary, and will be a transverse or 

longitudinal roll depending on whether the Prandtl number is less 

or larger than 5.1. Finally, some calculations are made of the 

converted energy associated with the unstable perturbations, in­

dicating that the mechanism of instability is of thermal (con­

vective) origin. 



Nomenclature 

d depth of layer 
k,m ... .... ... 
i,j ,k 

wave numbers in the x and z direction 
unit vectors ..,. 

v 

u,v,w 
t 
U(y) 

p 

P(x,y) 
T 

To 

velocity vector 
velocity components 
time 
basic flow velocity 
pressure 
basic flow pressure 
temperature 
standard temperature 

b.T temperature difference between lower and upper plane 
'1/2 

L 

K,I 
Pr 

Laplacian operator 
operator defined by (4.3) 
defined by (5.2) and (5.6), 
Prandtl number v 

K 

respectively 

Ra Rayleigh number gab.Td 3 (g= acceleration of gravity, 
KV Ci = coefficient of volume expansion) 

Greel< letters: 
a overall wave number 
6 horizontal temperature gradient 
e,e temperatures 
K thermal diffusivity 
v kinematic viscosity 
p density 
Po standard density 
0 amplification factor of disturbance 
~.~ defined by (4.9) and (4,27), respectively 

Superscripts ' non-dimensional quantities, 
~ perturbation quantities 
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1. Introduction. 

Thermal convection in thin, horizontal fluid layers uniformly 

heated from below is quite well described in the literature (the 

Benard problem); see the review article by Brindley [1] for refe­

rences. In many practical problems, however, non-uniformly heating 

may occur, and thus the layer will be subjected to horizontal as 

well as vertical temperature variations. Few theoretical attempts 

have been made to analyse the stability of thin layers under such 

conditions. Zierep [2] has approached the problem by investigating 

a model with a discontinuous jump in the bottom temperature. Further, 

Koschmieder [3] has performed a laboratory experiment on convection 

between circular planes, the upper at constant temperature, the 

lo11er non-uniformly heated, At subcritical conditions a density 

gradient roll was observed, breaking up into axially symmetric rolls 

of different sizes and rotation when the vertical temperature 

difference was sufficiently increased. Theoretically MUller f 4) 

has given a two-dimensional lil"ear analysis or this problem. 

In the present paper we investigate the effect of horizontal 

temperature variation on ordinary Benard convection, assuming that 

the fluid is unlimited in the lateral directions. Due to the hori­

zontal density gradient thus produced, a shear flow develops,and when 

the temperature difference between the bottom and top plane exceeds 

a certain critical value, this flow becomes unstable, 

It is well kno1m that in the absence of shear, a non-linear 

analysis must be applied to obtain the final flow structure, being 

two-dimensional rolls if the fluid properties are constant 

(SchlUter et .al. [5]), or hexagons if the properties vary with 

temperature (Palm [6], Busse [7}). 
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In stability problems involving a basic flo1~, a preferred 

direction is introduced into the system, and a unique flow pattern 

may be predicted from linear theory, (Liang and Acrivos (8]). •rhe 

selected type of disturbance will depend on the instability 

mechanisms involved, For non-stratified shear flows, the mechanism 

is purely hydrodynamical, and by Squire's theorem it can be proved 

that instability first occurs for rolls having axes normal to the 

mean flow (transverse rolls), For shear flow with unstable verti­

cal stratification due to heating from below, the instability will 

be of thermal origin if the basic flow Reynolds number is sufficiently 

small, and then rolls having axes aligned in the direction of the 

mean flow (longitudinal rolls) will be preferred ([8],[9],[10]). 

In the present problem we shall assume a small horizontal 

temperature variation which implies a small basic flow velocity, 

For moderate (or large) Prandtl numbers then,the hydrodynamical 

instability mechanism will not seriously affect the problem, and 

thermal instability will dominate. Hence longitudinal rolls would 

be expected, It is therefore a little surprising,at least to the 

author, that the final flow pattern may be transverse or longitu­

dinal rolls depending on whether the Prandtl number is smaller or 

larger than 5.1. 

The reason for this, however, is purely of thermal origin. 

This is indicated in the last part of the paper where we consider 

the conversion of energy between the mean flow and the perturbation, 

There we show that the horizontal transfer of vertical momentum 

cannot account for the change of mode about Pr = 5,1, while the 

release of potential energy may do so, 
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2. Basic flow, 

Consider natural three-dimentional convection of a viscous 

fluid confined between horjzontal planes, see fig, 1. For 

mathematical simplicity we shall assume the planes to be stress­

free and perfectly conducting, and the lateral temperature varia­

tion to be linear in the x-direction. For a given x-coordinate, 

the temperature difference between the planes is constant, t;,T, 

and the lower plane is the warmer. \1e then may write 

T = To t;,T 
t~x and T = To + t;,T - f3x at the top and bottom - 2- 2 

plane, respectively, where f3 is a positive constant, 

To avoid infinite temperatures on the boundaries, we must 

limit the model in the x-direction, but we assume that the ratio 

of the depth to the characteristic ~orizontal dimension is so 

small that the lateral boundaries will not affect the motion, 

Introducing non-dimensional (primed) quantities by 

(x,y,z) = (x',y',z 1 )d ' t = t'~ K 

(u,v,w) = (u' v' w• )!S ' • d ' 
p = p' p~~\l 

T - To = T't;,T 

and making the Boussinesq approximation, we may write the governing 

equations in vector notation 

(2.1) 

= (2,2) 

... 
'il•V = 0 (2.3) 

where the primes have been dropped, 
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vie no~1 consider a particular solution of these equations, 

Setting 

a = at v = w = 0 

u ::: U(y) (2.4) 

T ::: T(y) (3x 

where 13 now is dimensionless, and eliminating the pressure 

from (2,1), the governing equations reduce to 

D3 U(y) = - BRa 

D2T(y) - - 13U 

where D ::: d 
dy • 

These are subject to the boundary 

DU(±~) = 0 , T(±~) = +~ 

and to the continuity condition 

+1 

!u(y)dy = o 
-2 

conditions 

The sQlution of this system is easily obtained, being 

U(y) 

T(y) 
3 5 

L + L) _ y 
2 5 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 

For sufficiently large values of Ra (or 13), the solution (2,8) 

may become unstable, and this possibility is investigated in the 

next sections. 

It is worth pointing out that this type of flow is solely caused 
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by a horizontal density gradient, and exists even when no vertical 

temperature difference is present (6T = 0), 

3. ~bility analysis. 

li'ollowing the usual approach of linear stability theory, 

infinitesimal perturbations (denoted by carets) are introduced 

into the governing equations, Setting 

A " " u = U(y) + u(x,y,z,t), v = v(x,y,z,t), w = w(x,y,z,t) 

A " e = T(y) - Bx + e(x,y,z,t) , p = P(x,y) + p(x,y,z,t) 

and neglecting the non-linear terms, we obtain: 

p -1(~ + r at U(y) ~~ + v DU(y)) = - 2£+ ax 
IJ2u 

Pr-l(av + 
at U(y)~~) = - ~+ V2v + Rae (3.2) 

Pr-l(<lw + U(y)aw) = - .2.2. + IJ2w at ax <lz 

~ + U(y)~ - Bu + v DT(y) = 17 2 6 at ax (3.3) 

(3. 4) 

where the carets have been dropped, 

~/e assume solutions of the form 

{~] = {~~~~} exp(i(kx + mz - ot)) 
e e(y) 

(3.5) 

for the system (3.2)-(3,4), where the real part is considered 

(3 .1) 
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to have physical significance, The wave numbers, k and m, are 

real and the gr01qth rate cr ( = crr + icri) is complex. Eliminating 

the pressure from ( 3. 2), and utiliz:l.ng (3. 5), we finally obtain 

{D2 -a2 -iki3RaU+lcr}e+eu+v-ll 2 RavD0 = 0 

= 0 

subject to the boundary condltions 

v = D2 v = Du = 6 = 0 for 

Here a is the overall wave number defined by a 2 _ k 2 + m2 • 

Furthermore, we have introduced 

0 -
T(y)+y 

13 2 Ra 
1 9 9 5 

= "2ir (-rm y - ~ + f> 

(3. 6) 

(3 .8) 

(3 .9) 

(3 .10) 

Equation (3 .6) is the Orr-So!mnerfeld equation which ls coupled 

with the energy equation (3.7). Equation (3.8) is the vertical 

component of the vorticity equation combined with the equation 

of continuity. 
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11, t1ethod of solution. 

To simplify the problem, we shall assume that f3 is small. 

Thenthe equations (3.6)-(3.8) may be solved by a perturbation 

technique using f3 as a small perturbation quantity. This is 

a method similar to that introduced in [81 • The solutions are 

expanded into the form 

(u,v,B,k,m,a,Ra) = (uo,vo,Bo,k 0 ,mo,DoRo) 

(4.1) 

+ - -

and the different orders are obtained by inserting these expressions 

into (3,6)-(3,8), equating equal powers of f3 a.rtd utilizing the 

solvability condition. For this procedure to be valid, the Prandtl 

number must be a zeroth- order quantity. 

The zeroth - order system corresponds to thermal convection 

without shear (the Benard problem), and the equations are 

(4.2) 

It is well known (11] that the principle of exchange of stabilities 

is valid for this system. Hence ar = 0, At the neutral state 
0 

(a! = 0), the governing equation may be stated 

(4.3) 
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with boundary conditions 

y = ±! (4.4) 

The solutions are readily obtained, being 

Vo = A cos 11 y 

Uo = -i 2k -:;f Asin11y (4.5) 

2 eo = wA cos 11 Y 

and Ro = 27 4 for a2 = k2 + m2 = 
112 

1111 0 0 0 7 

The amplitude A, which can not be determined from the linear, 

homogeneous system, may be equated to unity without loss of, 

generality. 

Next, for the first-order equations we obtain 

where 

~ = 2(k k + m m ), 
0 I 0 I 

Eliminating a 
I 

from (4,6) by using (4.7), we finally get 

( 4. 6) 

(4.7) 

(4.9) 
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subject to the boundary conditions 

Y = + 1 - 2 

The operator L has been defined by (4.3). 

(4,10) 

('1.11) 

Under the present conditions, L is easily seen to be self­

adjoint, Then a necessary condition for (4,10) to have a solution 

is that the right hand side be orthogonal to 

Defining the inner-product 
+' 

<f ,g> = I f g dy 
-2 

the condition for solvability may be stated as 

<L(v ),v >= 0 
1 0 

From (4,13) we obtain 

v • 
0 

(11,12) 

(4.13) 

Since Rl must be purely real, this equation gives at the marginal 

state i 0) (al = 

r 0 al = 
(4.15) 

Rl = 0 • 

Thus we have no oscillatory instability to first order, 
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Concerning the Rayleigh number, it is clear from physical con­

siderations that Ra generally can not contain any term in­

volving odd pol~ers of 13, since the only effect of changing sign 

in 13, is to reverse the basic velocity, which of course can not 

alter the stability conditions. Hence 

R2n+l = 0 ' n = 0,1,2, (4,16) 

For the sake of simplicity, we shall represent the basic 

velocity by a sine-profile, which is indeed a good approximation. 

This may be seen from table 1, where the difference bet~reen the 

sine-profile 1 
U 1 = 211 sin 'IT y and the exact profile 

is given in percent for several values of y. 

y 

Diff. in % 

0 

0 

0,1 

4.2 

0,2 

3.4 

0,3 

2.1 

0,4 

0,7 

0.5 

0 

Table 1: Difference between U1 and U2 , 

Throughout the remainder of this analysis, we then take as basic 

velocity 

!3Ra U(y) = 24 sin 'TTY (4.17) 

The corresponding basic temperature is obtained from (2.5), being 

T(y) :: f;~~ (-y +k sin 'IT y) - y = 0(y) - y (4.18) 

Introducing U - U/!3Ra and 0 = 0/S~a into (4.10) and utilizing 

(4,19) 

with boundary conditions y = ± L 
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Setting 

v1 = ik 0 R0 ~ n 4 (l+Pr-
1)v1 + ik 0 R0 nv1, (4,20) 

~ 

v1 is immediately .obtained, while v1 is found most conveniently 

by Galerkin's method, giving 

«> 

v1 = L A2 sin 2nny 
n=l n 

where 

The solution of (4.19) may then be written 

From (4.7) and (4,8) we now obtain the solutions for e and 
1 

u1, namely, 

2Ro ~e } 4 + n 1 - '91f4!;cos n y 

where 

~ "' A2n e 1 = L sin 2n n y , 
n=l Bn2+1 

and 

N 

Here v 1 is defined by (4,21), 

(4.21) 

(4,22) 

(4,23) 
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To determine R2 and ~ 2 , we must apply the solvability 

condition to the second-order equations. These are given by 

Pr{(D 2 -a~) 2 v 2 -a~R 0 e2} = {2Pr~(D 2 -a~)+ik 0 R{U(D 2 -a~)-D 2 U] }v1 

+ ~PrR 0 el+{2Pr~(D 2 -a 0 2 )-Pr~ 2 +ik 1 R 0 [U(D 2 -a~)-D 2UJ 

(4.25) 

and 

where 

(4,27) 

The equation for U2 is not relevant for the present purpose, 

and is thus not stated, 

respectively, summing and take the innerproduct with v0 • The 

solvability condition for this system is then expressed by 

<L(v2),vo> = 0 (4.28) 

After some algebra we obtain from (4.28) 

fo TT2Ro Ro [ 81TT 4 
c.!!. + ~)Pr- 1 R2 = + 1i""•l3 8- 8•13!:1+ 16•32 + 3 

+ 21TT 4 -2] 2 7 -1 2 36(kokl+mom1 )
2 

16·32 Pr ko + 3 RoPr m0 + (4,29 

- icr2 9TT2(1+ Pr-1) 
2 • 

where 
"' 2•27•64n 2 

h) = E 
n=l TT4 ( 4n 2-1) 2 (< 8n 2+1) a-27] 

(4.30) 



This series converges very rapidly, giving approximately 

(4.31) 

At the neutral state, cr 2 must be real, Since R2 is real, the 

real and imaginary parts of equation (4.29) reduce, respectively, 

to 

(4.32) 

and (4.33) 

The last relation implies that r cr 2 = 0 at the marginal state, 

and hence ~1e have no oscillatory instability to second order. 

From (4.32) we immediately conclude that R2 is positive 

and greater than zero for all kinds of disturbances, which means 

that the onset of convection in the present problem 1dll occur for 

a Rayleigh number larger than t~e critical value corresponding to 

the Benard problem, This is to be expected since the basic flow 

convects warmer fluid in the upper part of the layer and colder 

in the lower part, thus opposing the destabilizing effect of the 

temperature difference between the lower and upper plane. 

The preferred mode of disturbance will make R2 a minimum. 

If we introduce h = m0 /k 0 and utilize 1{ 0 
2 + mo 2 = 11

2/2, Rz may 

be written 
2 

R2(h) = fk 11 2 R0 +{A(Pr- 1 ,Pr- 2 )+ B(Pr- 1 )h 2 +36(kl+mlh) 2
} 2(l+fi2) 

(4.34) 

where the expressions for A and B easily follow from (4.32), 
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It is then seen that R2 has an absolute minimum either for 

h = 0 • k 1 = 0 (transverse rolls) or h = «> • m1 = 0 (longitudinal 

rolls) depending on the values of A and B, i.e. the Prandtl 

number. 

In fig. 2, R2 is displayed for the two kind of rolls, and we 

observe that for Pr < 5.1 transverse rolls are preferred, while 

we get longitudinal rolls when Pr > 5,1, 

It should be noted that formally (4.32) also gives one more 

point of intersection between the transverse and longitudinal roll 

curves, namely for Pr = 0,03, Whether this reflects any real 

change of mode, however. is doubtful, since our perturbation method 

is not supposed to be valid at such a small Prandtl number. In fact, 

we suggest that the tendency to select transverse rolls will be 

strengthened at small Pr by the increased importance of shear on 

the mechanism of instability, 

When Pr increases towards infinitely, the critical Rayleigh 

number assumes the asymptotic value 

(4.35) 
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5, Exchange of energy between the mean flow and the perturbation, 

In this section we shall be concerned with the perturbation 

energy, Tal<ing the real parts of the component equations in (3 ,2), 

multiplying by the real parto of u, v and w, respectively, averaging 

over a wavelength in the x- and z-direction, adding, and integrating 

from y = -! to y = +1, using the boundary conditions, we finally 

obtain the familiar equation for the kinetic energy of the pertur­

bation 

! ~<u2 +v 2 +w 2 > = -<DU(y)uv> + PrRa<vS> -Pr<(VU) 2 +(Vv) 2 +(Vw) 2 > 

(5.1) 

~rhere the bars and the brackets denote mean and vertical integra­

tions, respectively, 

Here the term -<DU uv> represents the conversion of kinetic 

energy between theperturbation and the mean flow through vertical 

transfer of horizontal momentum, while the second and the third 

term on the right represent conversion of potential energy to 

kinetic energy and viscous dissipation, respectively 

We define 

K :: - <DU uv> (5.2) 

Here uv = ![ur(y)vr(y) + ui(y)vi(y)] ~rhere the superscripts r 

and i denote real and imaginary parts of the velocities defined 

by (3.5). 

We will consider the marginal stable solutions. Since the 

solution denoted by subscript zero corresponds to pure convection, 

it is obvious that u;v; = 0, The lowest order contribution to the 
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Reynolds stresses is then given by 

(5.3) 

For the expression (5.2) we then obtain to second order 

(5.4) 

and 

for transverse and longitudinal rolls, respectively, Accordingly, 

transverse rolls always lose lcinetic energy to the mean flow, while 

longitudinal rolls always gain energy, Similar results were ob­

tained by Asai (12} for convection in Couette flow, from which it 

was concluded that longitudinal rolls were preferred, 

In the present problem a similar conclusion is obviously 

incorrect, The fastest gro11ing mode will depend on the conversion 

of potential energy as well as viscous dissipation. This dependence 

will not fully be explored in this paper, At large Prandtl numbers, 

however, it is immediately clear from the equation for the kinetic 

energy,(5,1), that the processes mentioned above will dominate, For 

Pr of about unity, we shall consider one important second order 

term of the released potential energy. 

We define 

(5.6) 

where R2 is given by (4,32). 

From the graph of R2 in fig. 2 it follows that the value of 

P for transverse rolls will be less than its value for longitudunal 
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rolls 11hen Pr is less than five, while for Pr greater than 

five the opposite is true. Further it can be shown that for 

Pr = 5 the release of potential energy (P) for a longitudinal 

roll is about six times larger than the energy converted from 

the mean flow through vertical momentum transfer. This indicates 

that the process of conversion of potential energy will dominate 

for Pr about unity, and may account for the change of mode at 

Pr = 5.1. Since we consider marginally stable solutions, the 

left hand side of (5.1) is zero. To satisfy this condition, the 

viscous dissi~ation must also be important for Pr of about unity. 

6. Summary and discussion, 

\>lhen the Prandtl number is less than 5.1, we find that the 

Rayleigh number at the neutral state has a minimum for steady, 

transverse rolls, i,e, rolls with axes normal to the mean flow. 

For Prandtl numbers greater than 5.1, the Rayleigh number is 

smallest for steady, longitudinal rolls having axes aligned in 

the direction of the mean flow. 

Our conclusions are, in some respects, similar to those 

reached by Liang and Acrivos [8] for convection in a tilted slot. 

As in the present case, the neutral state remains stationary for 

all disturbance wave numbers, i.e. the principle of exchange of 

stabilities applies, and the critical Rayleigh number decreases 

with increasing Pr to an asymptotic value independent of Pr. 

In the present problem this limit is given by (4.35). 
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Two important differences may be noted, however. In (8] 

the most unstable mode was found to be a longitudinal roll, and 

the critical Rayleigh number the same as for pure convection 

without shear. In our case, the most unstable mode may be either 

transverse or longitudinal depending on whether Pr is smaller 

than 5.1 or not. The critical Rayleigh number will al\~ays be 

larger than that corresponding to convection without horizontal 

density gradients. Physically this is due to the upward convection 

of warm fluid and downward convection of cold fluid in the basic 

flow. 

The last section has been devoted to energy considerations. 

We have shown that, analogous to [12], a longitudinal roll always 

gains kinetic energy from the mean flow through vertical transfer 

of horizontal momentum, while a transverse roll always loses energy 

by this process. This does not explain the change of mode at 

Pr = 5.1 in the present problem. By computing one particular term 

in the released potential energy, it is indicated that the mechanism 

of instability is primarily of convective origin. 
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Figure 2. Rz = (Ra- Ro )/~ 2 versus Pr for transverse 
and longitudinal rolls. 


