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ABSTRACT 

The two-dimensional radiation problem and diffraction 

problem are discussed for submerged elliptic cylinders 

when a current is present. It is shown that the impact of 

the current on the wave amplitudes and wave forces are 

large. The singularity in the problem, corresponding to a 

wave travelling upstream with _,-a group velocity equal to 

the speed of the current, is examined. As expected, this 

singularity influences the motion strongly. We find, 

however, that the amplitudes and forces remain finite. 
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dingly, when one harmonic wave is diffracted by a submerged body, 

normally three new waves are generated when ~ < 1/4 and one new 

wave when • > 1/4. 

The actual wave problem has been discussed in a recent paper 

by Grue and Palm (1985) (hereafter called I) for a sUbmerged body 

of form as a circular cylinder. It turns out, however, that the 

circular cylinder is no typical representative for a submerged body 

of arbitrary two-dimensional form. For example, in the diffraction 

problem it is found that a circular cylinder, in contrast to other 

bodies, generates only one new wave also for ~ < 1 /4. In this 

paper we shall consider a submerged elliptical cylinder. The obvi­

ous advantage of this contour is that by changing the eccentricity 

we obtain bodies varying from a circle to a flat plate. 

It will be clear that the case ~ = 1/4 is of special inter­

est in this problem. Physically it corresponds to that a is tuned 

so that the wave travelling upstream has group velocity equal to 

the speed of the current. It seems to be generally accepted in the 

litterature that this case will lead to infinite wave amplitudes 

and hence infinite wave forces. We obtain, however, that the wave 

amplitudes and wave forces are finite for all values of ~. It is 

shown, however, that the motion has certain pecularities near • = 

1/4. Thus in the diffraction problem for an incoming k 2 wave 

(defined as a wave.travelling upstream) the transmitted wave tends 

towards zero as ~ + 1/4 whereas a reflected k1 wave (defined in 

section 2) is generated, travelling downstream with an amplitude 

equal to the incoming wave. The corresponding result is obtained 

for an incoming k 1 wave with the k 1 wave and the k 2 wave 

changing roles .. Due to this fact we may close to ~ = 1 /4 obtain 

practically speaking, total reflection. We find also that the 
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is the imaginary unit, and Re. denotes the real part 
J 

(with respect to j). Both x and~ satisfy the Laplacian equation 

( 2. 2) 

Assume that the cylinder is oscillating with its centre at 

x = Re.~ exp{jot), y+d = Re.~ exp(jot) 
J X J y 

( 2. 3) 

and rotating with an angular displacement Q. The body boundary 

conditions applied at the mean position of the body surface S is 

-n 
X 

where denotes the normal derivative, and 

(see Newman 1978,eq. 3.28). Here 

+ 
n is the normal vector of the body, and + 

r 

(2. 4) 

(2 • 5) 

(2 • 6) 

is the vector from the 

centre of the ellipse to a point on the surface (see fig.l). 

The linearized boundary condition at y = 0 is obtained by 

combining the dynamic and kinematic boundary conditions which gives 

u2a2x + ~ = o 
ax2 ax 

( 2. 7) 

( j o-u ..L) 2 ~ + a$ = 0 ax gay (2. 8) 

To solve (2.2) with the proper boundary conditions we shall trans-

form the mathematical problem to an integral equation. This may be 

achieved by expressing $ (and x) as a source distribution over the 

boundary of the submerged body. For a detailed derivation of the 

integral equation, we refer to I, and here only give the necessary 
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and a bar denotes complex conjugate. With 

Ua 
't = g 

the four wave numbers are defined by 

= __ v_(1-2't±l1-4't) 
2 't '2 

v ---= ---(1+2't±l1+4't) 
2't2 

For 't > 1/4, k 1 and k 2 become complex in i. 

(2. 1 5) 

(2.16) 

Before proceeding further, let us discuss shortly the far-

field motion due to the concentrated source. It is seen from 

(2.12)-(2.16) that for 't > 1/4 the solution consists of four 

waves, viz one wave with wave number k 2 at x = ~ and three 

waves with wave numbers k 1, k 3 , k 4 at x = -~. For 't > 1/4 the 

solution consists of no waves at x = ~ and two waves with wave 

numbers k 3 , k4 at x = -~. 

The various wave numbers are found as solutions of 

i) 

a is positive and known. The four solutions are indicated in 

figure 2. It is seen from the figure that, in order to get four 

waves, a must be less than a certain maximal value, i.e. 't < 1/4. 

Furthermore, in the relative frame of reference, both the k 1 wave 

and the k 2 wave have positive phase velocities which are larger 

than U. The k 1 wave has, however, a group velocity less than U, 

and is therefore located downstream. The k 2 wave has a group velo­

city larger than U, and is located upstream. The k 3 wave has posi­

tive phase velocity smaller than U, and the k 4 wave has negative 

phase velocity. These two waves are therefore located downstream. 
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Equation (2.17) is a (non-singular) Fredholm equation of 

second kind. The equation is solved by using a collocation method 

with cubic splines. A very good convergence is generally obtained 

by using 20-35 collocation points equally spaced. The more slender 

the body is, the more points are needed. The accuracy is about 1% 

or better in all results presented in this paper. 

We shall be especially interested in the far-field. By contour 

integration we obtain from (2.11 ), applying (2.12)-(2.14), that 

lim f 1 (z) = A2exp(-ik 2z) (2.21) 
x+m 

lim 
x+-m 

where 

A1 I 2 i(1-ij) 1 
~ y(s)exp(ik 1 , 2C(s))ds = 

11-4 't s 
(2 .23) 

A3, 4 i(1+ij) 1 
~ y(s)exp(ik 3 , 4c(s))ds = 

/1 +4't s 
(2.24) 

For an elliptic contour it is appropriate to write the equa-

tion for the ellipse on parameter form as 

C(9) = Rcos(e) + ibsin(e) - i(d+b) (2.25) 

and using e as variable instead of s. (For definitions of R, b, 

d and e, see fig. 1.) 

3. THE OSCILLATING ELLIPTIC CYLINDER 

Let us consider an elliptic cylinder oscillating in sway, 

heave and roll. The right hand side of the integral equation (2.17) 

is no.-1 given by (2.19) and (2.5) with f 0 chosen as zero. Thus 

h(s') is given by 
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and U = 0. As expected, the maximum relative amplitude is obtained 

in heave and for the smallest value of b/R, i.e. b/R = 0.05. For 

later reference we note that the maximum amplitude in heave for 

b/R = 0.3 occurs for vR ~ 1.2. 

To examine the effect of increasing the depth of the cylinder, 

d/R is in fig. 4 chosen as 2 (the only case where d/R is not 

one) . It is noticed that the maximum amplitude now is about 40% of 

the maximum amplitude for d/R = 1. 

In figs 5a, 5b, 5c are displayed the relative amplitudes 

for sway, heave and roll, respectively for the Froude number 

Fr = U/(gR)~ equal to 0.2. The corresponding curves for Fr = 0.4 

are shown in figs 6a, 6b, 6c. We notice that for Fr = 0.2 the k 3 

wave has a vanishing amplitude. This is also true for the k 1 wave 

except very close to ~ = 1/4 (corresponding to vR = 1.5625). 

Hence, practically speaking, for vR less than 1.5625, the motion 

for Fr = 0,2 consists of one wave at x = m (the k 2 wave) and 

one wave at x = -m (the k 4 wave). For larger values of vR 

only the k 4 wave occurs. 

For Fr = 0.4 three waves occur when ~ < 1/4, viz the k 1 

wave, the k 2 wave and the k 4 wave. For Fr = 0.7 and Fr = 1.0 

we find that all four waves have appriciable amplitudes. To get an 

idea of which of the waves that are important for a given Froude 

number, and for which values of vR these waves obtain their 

maximum amplitudes, we examine first the corresponding values 

for Fr = 0. As an example, let us consider the heave motion for 

Fr = 0. 2 (fig. 5b). We have noticed above that for Fr = 0 the 

maximum amplitude for heave occurs when vR = 1. 2 (fig. 3b) . This 

corresponds to a far-field motion with kR = 1.2 where k is the 

wave number. It seems reasonable to expect that also for Fr * 0, 
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6y < s • > + 

1 C(s') exp(-ik 1(C(s')-u))du 
1t ~ y(s)Imitexp(i~(s')) (i+j) [k 1 ~ 

S .., u-TIST 

C(s') exp(-ik2 (C(s' )-u) )du } 
- k2 ~ - ] 

_.., u-C(s) 

= 0(6) (3.4) 

To the same order of accuracy we may set k 1 = k 2 = k, say. The 

inner integral is then evaluated by contour integration. Thereby 

6y(s')-

2kim. {(i+j)exp(i~(s') - ikC(s')) h<s)exp(ikC(s)ds} 
~ s 

= 6( 6) (3.5) 

He notice that the integral in (2 .23), with k 1 ,k 2 = k, is exactly 

the same as the integral in (3.5). Hence, if y remains finite, we 

deduce that is finite in the limit, in spite of the factor 

6-1. This result is valid for an arbitrary smooth body. 

3.2 The forces 

In many practical problems where a body is osqillating, for 

example due to incoming waves, it is important to know the magni-

tude of the damping force. Usually this force is mainly due to 

viscous effects. However, if the body is, located near the free 

surface, the damping due to the radiated waves, may be of practical 

importance. To examine the magnitude of this force, we first note 

that it can be written as 

F = D sin O't ( 3. 6) 
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fig. 7 that it is important to take into account the effect of the 

current. 

It may be of interest to compare the wave damping with the 

viscous drag for the restrained body. The latter may for an ellip-

tic cylinder be written 

(3.11) 

where CD is the drag coefficient. The damping force may according 

to fig. 7 be written 

D = AgpRE 

where A is of order unity or smaller. Hence 

D 
F = A E 

c Fr2 b 
D 

(3.12) 

(3.13) 

c0 for various elliptic contours is discussed in Modern Develop­

ments In Fluid Dynamics (1938, p.415). A reasonable characteristic 

value for b/R = 0.3 is CD= 0.15. Let us choose Fr = 0.4. The 

maximum value of A is then 0.9, and the ratio between the maximum 

drag force and the viscous drag is 

D ... 40 E 
F b (3.14) 

\re see that even for very small E, D/F may be larger than unity. 

Obviously, when the depth d of the cylinder is increased, 

the damping force decreases. We have examined the magnitude of 

this effect for the case U = 0 by also computing the forces when 

d/R = 2.0. The damping force for heave in this case is displayed in 

fig. 4. Comparing this with the result for the damping force for 

Fr = 0 in fig. 7, we note that the maximum value in the deeper 

case is about 30% of the maximum value for d/R = 1. 0. 
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(2.24}. y is obtained by solving (2.17}. The right hand side of 

this equation is now (2.19} with 1'>4>/(')n = 0 and f 0 (z} given by 

(4.3}. In all examples below the distance between the mean free 

surface and the uppermost point of the ellipse is equal to R, as 

in almost all examples in section 3. Furthermore, b/R is 0.3, 

except in fig. 9. 

In the relative frame of reference, the incoming wave will be 

a wave travelling in either the same or in the opposite direction 

as the body. In the latter case the wave is what we have termed a 

k 4 wave. In the first case the wave will be either a k 2 wave, k 1 

wave or k 3 wave, depending on the magnitude of the wave number. 

From the discussion in section 2 it- follows that a k 2 wave has 

a large wave length such that both the group velocity and phase 

velocity are larger than U, a k1 wave has phase velocity larger 

and group velocity smaller than U and a k 3 wave has both group 

velocity and phase velocity smaller than U. 

4.1. The far-field motion 

Let us first consider the case U = 0. The amplitudes of the 

reflected waves are displayed in fig. 9 for various values of b/R. 

Since the amplitude of the reflected wave is zero for b/R = 1 

(Dean 1948}, we expect this amplitude to increase for decreasing 

values of b/R. This is seen to be true, and for b/R = 0.05 we 

find from the figure that the maximum reflected amplitude is about 

0.3 times the incomig amplitude. This value may be compared with 

the result for the flat plate, resently discussed by Bjordal 

(1985}. He obtains for d/R = 1 that the maximum reflected ampli­

tude is 0.294 times the incoming amplitude. 
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Froude numbers a k 3 wave will be generated by an incoming k 4 

wave. In this case we have no reflected wave, but the transmitted 

wave is spli tted in two waves, viz a k 3 \vave and a k 4 wave. 

In fig. 11 are shown the wave amplitudes for Fr = 0.4. In 

fig. 11a the incoming wave is a k1 wave and the generated waves 

is a k 2 wave and a k 4 wave. In fig. 11b the incoming wave is a 

k 2 wave, and a k4 wave and a k1 wave are generated. In both 

figs 11a and 11b the k4 wave are, however, almost negligible. 

The most characteristic feature of these two figures is that for 

an incoming k 1 wave (k2 wave) the amplitude tends towards zero 

approaching ~ = 1/4, whereas the generated k 2 wave (k 1 wave} 

obtaines an amplitude for ~ + 1/4- equal to the amplitude of the 

incoming wave. This is always found to be true. An interpretation 

of this result is that a k 1 wave or k 2 wave will be strongly 

reflected near ~ = 1/4 and as ~ = 1/4 is approached, we obtain 

with a very good approximation total reflection. Another remarkable 

feature in fig. 11b is that a 1 /a0 may be larger than one, i.e. 

we have overreflection. The overreflection is even stronger in fig. 

12, where the diffraction properties for Fr = 0.7 for an incoming 

k 2 wave are displayed. 

In fig. 11c the_ incoming wave is a k4 wave. For ~ < 1/4 

a k 1 wave and a k 2 wave are set up. Hence in this case the 

motion consists of an incoming wave travelling downstream (the k 4 

wave}, a transmitted wave (the 

wave} and a generated k 1 wave 

k 4 wave}, a reflected wave (the 

travelling downstream. For ~ > 

k• 
2 

1 /4 

the k4 wave passes by the submerged body without noticing it. If 

the submerged elliptic cylinder is replaced by a circular cylinder, 

the wave motion for ~ < 1 /4 is very different. In this case the 

k 1 wave and the k 2 wave are exactly zero, as shown in I. 
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creasing Froude numbers for incoming waves travelling downstream 

and decreases for incoming waves travelling upstream. 

For Fr = 0.2 and Fr = 0.4 we see that the maximum value of 

the first order horisontal force is about 0.4 pgRa0 • The ratio 

between this force and the viscous drag (3.11) is 

= 
0.4 ao 

c Fr 2 b 
D 

Introducing c0 = 0.15 and Fr = 0.2 we obtain that 

(4.6) 

x1 /F • 67a0 /b. The maximum value of the first order vertical force 

is 1.2 pgRa0 , obtained for Fr = 0.4 and incoming wave travelling 

downstream. The ratio between this force and the viscous drag is 

5. THE LEE-\vAVE PROBLEM 

To solve the radiation problem, it is necessary to find the 

lee-wave potential X• The knowledge of the lee-wave solution is 

also important to examine the validity of our solution. A necessary 

condition for the linearized solution to be a good approximation, 

is that ox/ox << 1. In fig. 14 is displayed maxi~~~ at x = -~ 
when b/R = 0.3. It is seen that max1~;1 is less than 0.1 for 

Froude numbers less than 0. 6. For the sake of CO!TIPl_eteness we have 

also shown the amplitudes of the lee-waves for various parameters. 

6. SUMMARY AND CONCLUSION 

The two-dimensional radiation problem and diffraction problem 

are discussed for submerged elliptic cylinders. when a current is 

present. The amplitudes of the generated waves, the damping force, 

the first order horizontal force and the mean second order horizon-

tal force are computed. It is found that the singularity at 

~ = 1/4 has a great influence on the magnitude of amplitudes and 

forces, but both the wave amplitudes and forces remain finite when 
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Fig. 2 The four wave numbers for given a and u. 
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as~-----------------------------~ 
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Fig. Ja. Amplitudes for radiated waves 
in sway or heavt> for a circle (b/L1.0, 
d/r=1 .0), · Fr=O. 
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Fig. Jc. Amplitudes for radiated waves 
in heave, sway and roll (b/R=0.05, 
d/R=1.0), Fr=O. 
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Fig. Jb. Amplitudes for radiated ~aves 
in heave, sway and roll (b/R=0.3, 
d/R=1.0), Fr=o. The dotted curve is 
the damping force D/pgRE in roll . 

·.:.,, . ~-'... "-0 
vR-

Fig. 4. Amplitudes for radiated waves 
in heave, sway and roll (b/R=O.J, 
d/R=2.0), Fr=O. The dotted curve is 
the damping force D/pgRE in heave. 
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Fig. Sa. 
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Figs 5 

vR-
• , 

Fig. Sb. 

vR-

Fig. Sc. 
·'· 

Amplitudes for radiated waves in sway (Sa), heave (Sb) and 

roll (Sc) for Fr = 0.2 (b/R = 0.3, d/R = 1.0). The arrows 

at the vR-axis indi.cate "t = 1/4. On fig. Sb are indicated 

the values . . of: ~he wave numbers k 2 and k 4 . 

- .. ·~ .... · .. · ...... -· ... .... .: , ' . -~- ..... . :.. -. ~ . ' : -
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Fig. 6a. 

. 20~------------------------------~ 

Figs 6 

Fig. 6b . 

•• £ 

1.0. 1.5 20 2.5 
vR-

Fig. 6c. 

Amplitudes for radiated waves in sway (6a), heave (6b) and 

roll (6c) for Fr = 0.4 (d/R = 1.0). The arrows at the vR-
'. - . . :_· . . 

axis indicate ~ = 1/4. 

2.5 
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: : . . 
~ ~Fr=0.4 
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;: 

vR-
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Fig. 7. Damping force D/p~R£ and mean 
second order horizontal force Fx/pg£ 2 

in heave for Fr=O, 0.2 and 0.4. The 
first arrow at the VR-axis indicates 
T=1/4 for Fr=0.4 and the second arrow 
T=1/4 for Fr=0.2. 

~ '. -~ . .: ... .. ' . 

20r-------------~ 

VR-

Fig. 8. Damping force D/pgR£ 
and mean second order horizontal 
force Fx/Pg£ 2 in roll for 
Fr=0.7. Raqiated amplitudes are 
dotted. The arrow at the vR-axis 
indicates T=1/4. 

,· . 
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as 2.5 
vR-

Fig. 9. Amplitudes of reflected waves 
in the diffraction problem for various 
values of b/R (d/R=1.0), Fr=O. 
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2D 2.5 

Fig. 10a. Amplitudes of the reflected 
k_4 _wflye and tr~nsmitted k2 wave when 

· ·'· ' ~a 1c2 ··wave 'is "irfc"iderif upon· the ·cynn­
der (b/R=0.3, d/R=1.0), Fr=0.2. 

00 

1.5 2.0 25 

Fig. 10b. Amplitudes of the reflected 
k2 wave and transmitted k4 wave when 

. a k4. wa:ve' 'in· incident" u'pon' ·the .cyi in.;... 
der (b/R=0.3, d/R=1.0), Fr=0.2. The 
arrows at the kR-axis indicate T=1/4. 
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k1R-

Fig. 11a. Amplitudes of the reflected 
k2 wave, generated k4 wave and trans­
mitted k 1 wave when a k 1 wave is 
incident upon the cylinder (b/R=0.3, 
d/R=1.0), Fr=0.4. The arrows at the 
kR-axis indicate T=l/4. 

-k,R 

1.2 5 4 3 2 

01 0.2 R 0.25 
k-4 

1D 

Fig. 11b. Amplitudes of the re­
flected k4 wave and k 1 wave and 
transmitted k 2 wave when a k2 
wave is incident upon the cylin­
der (b/R=0.3, d/R=1.0), Fr=0.4. 
The arrows at the kR-axis 
indicate T=l/4. 
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k2R-
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01 OJ 0.5 10 
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-k1R 
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•• To 

Fig. 11c. Amplitudes of the generated k 1 wave, re­
flected kz wave and transmitted k4 wave when a k 1 

wave is incident upon the cylinder (b/R=0.3, d/R;1,0), 
Fr=0.4. The arrows at the kR-axis indicate T=1/4. 
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·Fig. 12. Amplitudes of the reflected k4 wave, k 1 wave 
and k3 wave and transmitted k2 wave when a k~ wave is 
incident upon the cylinder (b/R=0.3, d/F=1.0Y, Fr=0.7. 
The arrows at the kP-axis indicate T=1/4. 

;.. 
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o.s~----------------------------------~ 
x, 

Fig. 13a. First order horizontal force x 1/pgRa0 and mean second order 
horizontal force Fx/pga6 for Fr=O, 0.2 and 0.4 with incoming wave 
travelling dov.nstream (b/R=0.3, d/R=l.O). For Fr=0.2 and 0.4 the 
incoming wave is a k4 wave. 

0.5--------------------., 

0.1 

Fr • 0~ Fu 0.2 Fr • Q,4 
•• • ~ ~ ': :.: • • •: ... ~ :: ::~•.•1111 I I II •• • • • • 

.•..•••.•...•... ~ ···•····•••······ .... 
kR 

.· 
Fig. 13~. First or~er horizontal force x,;:gRa0 and mean second order 
horizontal force Fx/pga~ for Fr=O, 0.2 and 0.4 with incoming wave 
travelling upstream (b/R=0.3, d/R=1.0). For Fr=0.2 and 0.4 the in­
coming wave is a k 2 wave. 
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1.4~----------------------------------------~ 

............... .. 

0.5 _,. 
kR 

.. .. 
····~Fr•O.' .. .. .. .. 
····~Fr•0.2 .. 

' ··.. ··. ' .. .. ' ··. ·. "1!eFr• 0 ··.. '• .. ' ... .... .. .... .. ' ... 
................ 

1.0 1.5 

Fig. 13c. First order vertical force x2/pgRa0 for Fr=O (---), for Fr=0.2 
and 0.4 with incoming wave travelling downstream(···) and for Fr=0.2 and 
0.4 with incoming wave travelling upstream(---), (b/R=0.3, d/R=1.0). 

-Fr 
co 2D Q6 05 0.45 1.0 ae 

25~~--~---T--------~------~----~ 

~.0 5.0 

Fig. 14. Amplitude of the lee-wave at x=-oo for van.ous values of b/R 
(d/R=1.0). The lee-wave number k1 is given by k1 =g/U 2 =1/Fr 2 R. The dotted 
curve is max lox/ox! at x=-oo for b/R=0.3 (d/R=1 .0). 


