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ABSTRACT 

This is the second part of the documentation of a numerical method solving the three 

dimensional Boussinesq equation. We are mainly consentraiting on numerical tests of the 

method already presented, but a treatment of the nonlinear Boussinesq equation is also 

suggested. 

Results for eigenoscillations in basins with variable depth in one direction are compared 

to numerical results obtained from a shooting method. The agreement is excellent. 

The method have with promising results been used on the three dimensional refrac­

tion/diffraction problem. 

To test the extension to nonlinear problems tw_o different cases have been investigated. The 

first is the propagation of a solitary wave and the second is a three dimensional nonlinear 

initialvalue problem in a basin. Both tests turned out nicely. 
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1. INTRODUCTION 

Introductory remarks 

This preprint is the second part of "Numerical solution of the three dimensional Boussinesq 

equations for dispersive surface waves". While the first part mainly contained analysis of 

schemes and iteration\ procedures in the linear case, the second deals with both linear and 

non-linear test examples. 

For practical reasons numeration of the chapters in the present part starts from 1. To avoid 

confusion, equations and figures in the first part are therefor referred to by the roman digit 

I. As an example we denote the sixt equation of chapter 2 in part one by (1;2.6) while the 

correspondingly situated equation in the second part is referred to as (2.6). Most notations 

used in part one is maintained unaltered. The few differences that are present are dealt 

with in the next paragraph. 

In part one vectorial quantities were recognized by arrows. Here we instead write them 

in bold face. In pharagraph 2.1 of part one numerical averaging operations were defined. 

In the present part we sometimes applies two such operations to the same quantity. In 

these cases we write a single overbar and list the appropriate coordinates behind it. As an 

example: the average of u with respect to both y and t is denoted by iiy,t. We note that 

the averaging operators are comutative. The sequential order of the coordinates is thus 

arbitrary. 
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2. EIGEN-OSCILLATIONS IN BASINS. 

In chapter 3.3 of part 1 eigen-oscillations in a rectangular basin of constant depht where 

used as test examples. We are now going to generalize by allowing for depth variations 

in the x-direction only. The y-dependence can still be assumed to be sinusoidal and the 

equations are still seperable in x,y and t. Hence the eigen-oscillation solutions may be 

expressed: 

v = v(x)eiwt sin lnY 

After they and t dependence are seperated off, the remaining eigenvalue problem is solved 

by a shooting technique as described in appendix A. Initial conditions extracted from 

these solutions are then implemented in the finite difference scheme and comparison of 

time series are made. 

We are going to investigate two test examples. In both examples the basin is confined to 

(0 < x < 3 , 0 < y < 4) , the grid increments all equal 0.5 and the reported time series 

correspond to the surface elevation at x = 0.5 y = 1 relative to the maximum value 

of the ij. All space coordinates are scaled equally to give "€ = 1". For initiation of the 

iterations, values from the previous time step are used. 

Example 1: Linear bbttom topography. The bottom function h equals ~ + kx. By the 

method described in appendix A we find w1,1 = 1.02 (the interpretation of the subscripts 

is given in the appendix) and u,v and ij as depicted in figure 2.2(a),2.2(b) and 2.2(c) 

respectively. Time series of '7 are depicted in figure 2.3. The "shooting solution" corre­

sponds to full drawn lines, the solution of the difference scheme to the marks. The results 

obtained by using one iteration/no relaxation , two iterations/no relaxation and one itera­

tion/relaxation are reported in (a),(b) and (c) respectively. The relaxation factors rx and 

r 11 (defined in chapter 3 , part 1) are chosen as ~: and ~; . This choice would optimize 

the convergence of a wave with wavenumber vector 23"" i + 2s""j in a basin of constant depth 

equal to 1. Using two iterations we get very good agreement. Most of the small deviations 

which are present are probably due to the small number of gridpoints used. One iteration 

without relaxation gives a severe amplification. One iteration with relaxation works on 

the other hand almost as well as two itrations/no relaxation. 

Example 2: Similar to example 1 except from the depth which is given by h = 1 + 
~sin 1r( l x - ~). The important point is that this bottom function has a non-zero second 

derivative. In this case we have w1 , 1 = 1.004. The eigenoscillation amplitude functions u , 
v and ij are depicted in figure 2.4 and the time series in figure 2.5. All notations, sequential 
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arrangments etc. equals those of the previous example. The agreement is approximately 

as in the first example. 

Conclusion: The present results indicate that two iterations at each time step generally 

suficce even for relatively short waves and that relaxation may be useful also in the case 

of variable depth. 
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3. REFRACTION AND DIFFRACTION OF PERIODIC WAVES 

In this chapter we are going to use the linear Boussinesq equations to study refraction and 

diffraction of periodic waves. The basic equations are (1.1), (1.5) and (1.6) of part 1. 

A channel of finite width is assumed, bounded by side-walls which completely reflects the 

waves. We allow depth variations both in x- and y- direction, except in the vicinity of 

open boundaries. 

3.1 Boundary conditions 

At a rigid wall we have the boundary condition v · n = 0, where n is a normal to the 

boundary. This reflection condition has been imposed on the side-walls of the channel, fig­

ure 2.1. The difference approximation for this condition appropriate for our test examples 

IS 

t/~+.1 . = 0 
I 2 ,J 

OyU~; = 0 

We assume a plane wave-train incident on the left side of the channnel: 

u =A sin(kx- wt) (3.1) 

where A is the amplitude of the incoming wave. At the right boundary we want to avoid 

reflection. We therefore take the radiation condition: 

au au 
-+c-=0 at ax (3.2) 

where c is the phase velocity obtained from the dispersion relation for the Boussinesq 

equations. With a considerable depth variation in the channel reflected waves may have 

a sigD.ificant amplitude. It is therefore desirable to let the reflected waves escape at the 

left boundary. When we just specify the velocity at the left boundary, equation (3.1), this 

boundary operate as a rigid wall for reflected waves. If we combine (3.1) with a radiation 

condition for waves propagating to the left, 

au au 
-- c- = 2wAcos(kx- wt) at ax 
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we have an inhomogenous boundary condition which both radiate and generate waves 

(Rygg 1985). 

The difference approximation of the conditions (3.1), (3.2) and (3.3) are accordingly: 

u3~+ .l = A sin{k(j + ! ).6.x- wn.6.i} (3.4) 
2 . 2 

. k6x w.6.t . 1 
[6tti.x- c6xat]~+1. =A{ -0 cos(--)- cK cos(-)} cos{k(J +- )6x- wn.6.t} (3.6) 

. J 2 2 2 2 

The choice of central differences in the boundary conditions is based on numerical tests. 

All the above boundary conditions are formulated for wavetrains propagating normal to 

the open boundary. With depth variations in the channel this is not the case.. The 

reflection coefficient ( ratio between amplitude of reflected and incomming waves ) for a 

wave propagating through an open boundary with angle of incidence· a is : 

(3.7) 

CB is the phase velocity used in the boundary condition (3.2) and Cx is the x-component 

of the phase velocity of the incomming wave, figure 3.1. Considering the shallow water 

equation ( omitting the dispersion term in the Boussinesq equation ) we may write: 

R =cos a -1 
cos a+ 1 

(3.8) 

For a = 45° we have a reflection coefficient R = 0.17. This indicate that waves within 

' an angle of incidence of 45 degrees produces a reflected wave with amplitude less than 17 

percent of the incoming wave. Based on this crude analysis we may though accept the 

normal boundary condition for waves with an angle of incidence up to 45 degrees. The 

test cases in this chapter fullfil! these requests. 

3.2 Two-dimensional depth-variation in a channel 

We assume plane progressive waves propagating through a channel along the x-axis. Depth 

variations is allowed in the x-direction only. The problem then reduces to a two-dimensional 

one. 

The two-dimensional linear Boussinesq equation has the form: 
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(3.9) 

(3.10) 

The difference approximation for these equations reads: 

(3.11) 

(3.12) 

The last equation is implicit in the velocity u. This gives rise to a tridiagonal set of linear 

equations, which can easely be solved by a Gaussian elimination. 

We choose the depth variation as a parabolic half cylinder situated at the bottom of the 

channel, figure 3.2(a). The shape of the cylinder exhibit from the relation: 

x2 
h = 1 - A[1 - R2 ] (3.13) 

where A is the maximum height of the cylinder, and R is half the width of the cylinder. 

At the left boundary we used the combined radiation and generating boundary condition, 

equation 3.6, and at the right boundary the radiation condition, equation 3.5. Character­

istic parameters for our simulation was: 

w = 0.71767 A=0.7 R= 2.0 

This corresponds to a wavelength of about 8 times the depth. Figure 3.2(b) gives the 

surface displacement '1 in the channel evaluated with tl;le Boussinesq equation. In figure 

3.2( c) we compare the maximum surface displacement over one periode for three different 

equations. The three equations are, the linear Boussinesq equation, the linear shallow 

water equation, and the mild-slope equation. As depicted in figure 2a of part 1 the shallow 

water equation has an error in the dispersion relation of about 10 percent for wavelengths 

8 times the depth. Accordingly it is not unexpected that the shallow water equations 

overestimate both th~ reflection from the shoal and the increase in surface displacement 

on top of the shoal. 

The mild-slope equation gives about the same surface displacement over the shoal as the 

Boussinesq equation, but the slope of the shoal is higher than the validity limit for the 
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mild-slope equation. Reflections from the shoal are for that reason markedly greather than 

predicted by the Boussinesq equation. 

3.3 Wave focusing by a circular shoal 

In the three-dimensional test case, we are studying propagation of incident plane waves 

over a circular symmetric shoal with parabolic bottom profile. The shoal is represented by 

the depth profile: 

(3.14) 

where A is the maximum height of the shoal, R is the radius of the shoal, and x,y is the 

distance from the center of the shoal in x- and y-direction respectively, The basic equations 

are the linear Boussinesq equations ( 1;1.1 and 1;1.5-1;1.6 ) with difference approximations 

exhibited in equation (1;2.6 - 1;2.9). The iteration procedure for this numerical scheme is 

discussed in chapter 3 of part 1. 

In section 3.1 several boundary conditions where discussed. For the three-dimensional 

problem we take the normal radiation condition, equation (3.5), and the generating condi­

tion, equation (3.4), for u ( the velocity in. x-direction ). Fictive quantities outside the left 

and right boundary must be specified for v, the velocity in y-direction. This is obtained 

from the irrotaional condition ( 1;1.4 ). The suitable numerical approximation reads: 

(3.15) 

Solving the implicit equations for each time step by the iterative procedure is the time­

consuming operation. It is therefore desirable to reduce the number of iterations. Hence we 

make effort to minimize the damping factors f3z and {311 (equation 1;3.9) for the dominant 

wavelengths. Equation (1;3.9) determine the relaxations factors rz and r11 respectively. 

Characteristic parameters for our test example was : 

w = 0.71767 A=0.7 R= 2.0 

l::lt = 0.5 l::lx = 0.5 l::ly = 0.2 

This corresponds to a wavelength of about 8 times the characteristic depth. The length of 

the channel is 40l::lx and the total width is 48l::ly. We utilize the symmetry in the channel 

and evaluate for half the channel width. At the line of symmetry a reflection condition has 
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been imposed. 275 time step was simulated ( ,..,. 16 periods ) before a periodic situation 

was assumed. 

Figure 3.3(a) shows the bottom profile. In figure 3.3(b) the surface displacement at a point 

of time is depicted. The wave focusing behind the shoal is viewed in figure 3.3(c), where 

the maximum surface displacement for one periode is plotted. Figure 3.4 compare the 

focusing effect evaluated with the Boussinesq equations and the shallow water equations. 

The figure show the maximum surface displacement at the centerline in the channel. The 

tendency of overestimating the reflection, as discussed in section 3.2, is distinct also in this 

example. 

In this test simulation we used four iterations. Two of them with relaxation. The relaxation 

factor was obtained choosing the Nyquist wavelength as the dominant wavelength. The 

depth profile has in this test a discontinuity in the first derivative ( see Figure 3.1 (a) ) . This 

gives rise to problems in the dispersion term in the Boussinesq equation where second order 

derivatives of h appear. The resulting noise seems to be accumulative and becomes visible 

after a number of time steps. This number is increased by applying more iterations with 

relaxation. Hence the growth of the noise must be assumed to stem from the initiation of 

the iteration procedure. If smoothing or another modifications is applied to initials values 

the problem is probably avoided without increasing the number of iterations. As shown 

in this test the growth is fairly slow and four iterations with relaxation is for most cases 

sufficient. 
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4. NONLINEARITIES 

4.1 The nonlinear formulation of the Boussinesq-equations. 

The nonlinear Boussinesq-equations corresponding to (1;1.1) and(l;1.2) reads:(Peregrine 

1972) 

(4.1) 

(4.2) 

where A is an amplitude and D is the differensial operator which gives the dispersion 

terms. Equation (4.1) is valid for amplitudes A of order E. Hence the nonlinear terms may 

be rewritten by use of the irrotational requirement (1;1.4). From (4.2) we get: 

where Dx and Dy are the components of the dispersion terms. 

4.2 Numerical representation of the nonlinearities. 

A mid-point difference approximation to (4.1) corresponding to (1;2.6) is given by: 
\ 

(4.3) 

(4.4) 

(4.5) 

This is a coupled set of equations for 'In which has to be solved by an iterative method. 

A number of line by line methods may be formulated for this spesific problem. However, 

in this report we will examinate a simpler approach. Predictor values for 'In , referred to 

as ;jn , are obtained by: 
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Substitution of '1:-! = Hr1n +'In-!) for (ijt)n-! in (4.5) gives an expression for corrected 

values for 'In : 

(4.7) 

Equation (4.6) and (4.7) may be interpreteted as two Jacobi iterations applied to the 

implicit equation ( 4.5) with 'In- I as initial values. This method will work well as long as 

the linear set of equations defined by ( 4.5) is strongly diagonal dominant. If u becomes 

comparable to the wavespeed the diagonal dominance is weakened and other methods may 

be advantagous. In the two dimensional case we have compared the performance of ( 4.6) 

and (4.7) to the performance of the fully implicit equation (4.5) (see section 4.3). 

To construct the nonlinear versions of (1;2. 7) and (1;2.8) we have to assign values to tz v 2 

and %11 v 2 at (j 6-x, (p + ~ )6-y, n6.t) and ((j + ~ )6-x, p6.y, n6.t) respectively. Geometrical 

averaging applied to velocities at t = ( n + ~ )6.t and t = ( n - ~ )6.t gives: 

Averaging in space then leads to: 

1 1 1 1 J. 1 
2v2((j + 2 )6-x, (p + 2 )6-y, n6.t) = 2 [{(uz)(n- 2) }2 + {(vY)(n- ~) }2 

+ 6-t((az)n-!(fizt + (vYt-l(vY)n)];+t.P+! 

+ o(6.t2' 6.x2, 6.y2) 

= T'!-+.! +.! + o( 6.t2' 6.x2' 6.y2) 
3 :1 ,p 2 

The difference form of ( 4.3) and ( 4.4) may then be written: 

0 = [u + 8:r.('1 + T)- t:Dz]~ +.1 
3,p 2 

0 = [ti + 811 ('1 + T)- t:D11 ]j+t.P 

(4.8) 

(4.9) 

(4.10) 

where the representation of Dz and D11 is the same as in (1;2.7). We note that (4.10) still 

is a set of linear equations for the accelerations. In two dimensions we have also tested a 

leap-frog like representation of the nonlinearity: 

(4.11) 

where 
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(4.12) 

4.3 Propagation of a solitary wave. 

In the previous section two different difference schemes was suggested for the continuity 

equation ( equation 4.5 and equation 4.6 ). Although equation ( 4.5) is implicit it reduces 

to a tridiagonal matrix in the two-dimensional case. The nonlinear velocity term may be 

represented by equation (4.10) or equation (4.11). We have consequently four possibilities 

for implementation. 

As a suitable test for the numerical approximation we use the propagation of a solitary 

wave. This stationary wave-solution is deduced in appendix B. The shape and the phase 

velocity remains constant when the solitary wave propagates on constant depth. We in­

vestigate the solitary wave after a certain distance is covered. In table 4.1 we compare the 

maximum surface displacement and the c·orresponding phase velocity evaluated with the 

four different numerical schemes. It is evident from this table that the predictor-corrector 

evaluation of the surface displacement in combination with equation (4.11) is the best 

choice. 

We now consider the propagation of a solitary wave over a shelf ( figure 4.1 a ). As the 

depth vary the shape of the solitary wave change. Figure 4.1 (b)-(d) depict three different 

stages of the propagation. The figures displays splitting of the solitary wave which is well 

known from the literature. 

4.4 A three-dimensioanal nonlinear initialvalue problem. 

An initial-value problem is solved by three different sets of equations: (i) The linear 

shallow water equations. (ii) The linearized Boussinesq equations. (iii) The non-linear 

Boussinesq equations. A rectangular basin of constant depth equal to 1 is confined to 

0 < x < L , 0 < y < B . At t = 0 we specify the surface elavation and the velocities 

equals zero. To start the time integrating procedure we need values for the velocities at 

t = ~ ~~t. Firstly the accelerations at t = 0 are found from the momentum equation . 

by using a large number of iterations. Even in the nonlinear case this can be done by 

substituting 0 forT in (4.10). Secondly the velocities at t =-~~tare found by demanding: 
l l l l 

u~.2 + u.~. = 0 "~.2 + ".~. = 0. The shape of the initial disturbance is given by: 

1ry -2 
t'J(x, y, 0) = A(1 +cos( B)) cosh ax 
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Choosing A = 0.25 a = 0.30625 B = 8 L = 40 and integrating to t = 30 we get the 

results depicted in figure 4.2 and 4.3. From the figures we can deduce that both dispersional 

effects and non-linearities are important in this example. The grid refinement tests shows 

that good accuracy is obtained by choosing D.x = D.y = D.t = 1.0. It is also clear that 

two iterations are sufficient in this case. 
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6. CONCLUDING REMARKS 

The two parts of the preprint "Numerical solution of the three dimensional Boussinesq 

equations for dispersive surface waves" should provide a good basis for applications and 

further development of the method. Both the scheme itself and the iteration procedure have 

been subjected to normal mode analyzis in the case of constant coefissients. The outcome 

of the analyzis is indeed satisfactory. More complex tests involving variable depth, open 

boundaries and nonlinearities have given resonable and very promising results. Though the 

development of the method has by no means been carried out to an ultimate level. Better 

radiation conditions should be formulated (as always) and effective ways of implementing 

irregular boundaries must be found. In addition the treatment of the nonlinearities is 

no more than a first premature attempt, even though it so far seems quite sucessful. 

Elimination of the short comings of the method in its present form is left to be done as 

parts of applying it. 

13 



APPENDIX A. 

A shooting method for eigen-oscillations in basins. 

A rectangular basin is defined by 0 < x < L , 0 < y < B . At the boundaries the 

normal component of the velocity equals zero. If the depth ,h, is independent of y the 

eigen-oscillation solutions are separable: 

\ . t 
( u, '1) = ( tl( x ), ~( x ))e""' coslnY (A- 1} 

where the values of ln = ': are obtained from the boundary conditions at y = 0 and 

y = B . Substitution of (A-1) into (1;1.1) , (1;1.5) and (1;1.6) gives: 

iw~ =- (hu)' -lnhv 

iwu =- ~' + iw€h[~(htl)"- ~htl"- ~hl~u + ~lnh'v] 

iwv =ln~ + iw€h[~(hv')'- ~hD"- ~hl~v] 

(A- 2) 

(A- 3) 

(A- 4) 

Using (A-2) to eliminate ~ we get two coupled second order equations for tl and v : 

(1- ~uh)htl" + (1- uh)h'tl' + (w2 + h"- uh{~h"- ~l~h})tl 
1 

+lnhv' + (1- 2uh)lnh'{) = 0 

~uh2v" + ~uhh'v'- (w2 -l2 h+ ~uh2 l2 )v 3 2 R 3 R 

+lnhtl1 + lnh' U = 0 

where u = €W2 • From (A-6) and the irrotational condition we easily obtain: 
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Within the accuracy of the Boussinesq equations this expression may be substituted for 

v in (A-5) to give a single second order equation for u. However, our intension is to use 

the eigen-oscillation solutions as test examples for the numerical scheme. Hence we solve 

(A-5) and (A-6) which are completely consistent with (1;1.1) , (1;1.5) and (1;1.6) . At 

the boundaries X = 0 and X = L we have the zero flux conditions u(O) = u(L) = 0. In 

addition we use the symmetriy conditions: v'(O) = v'(L) = 0. These conditions completes 

the problem by specifying the rotations to be of order f. The eigen-solutions of (A-5) and 

(A-6) may be written: 

(A- 8) 

where the pairs ull VI and u2, V2 are solutions of (A-5) and (A-6) satisfying the initial 

conditions ul = VI = v~ = o, u~ = 1 and U2 = ~ = v~ = o, V2 = 1 at X = 0. A non-trivial 

solution of the form (A-8) which also satisfy the conditions at x = L exists only if: 

(A- 9) 

For a given w , D(w) is found by integrating (A-5) and (A-6) from x = 0 to x = L by 

a Runge-Kutta technique and substituting the resulting values for ui, u2 , v~, v~ into the 

rigthmost side of (A-9). The equation D(w) = 0 is solved by a secant method. For each 

ln there exists an infinite number of eigen-values w which are denoted by Wm,n (m = 
0, 1, 2 ... ) in increasing order. 
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APPENDIX B. 

The solitary wave solution 

In the two-dimensioanal case a stationary wave-solution may be written: 

u = U(x- ct) 'I = Y(x- ct) . Substitution of these expressions into the two-dimensional 

versions of (4.1) and (4.3) gives a set of two ordinary differential equations: 

cY' =((1 + Y)U)' 

(U- c)U' =- Y'- ~cU"' 
3 

(B -1) 

(B- 2) 

The depth has been set equal to 1 and the phase speed c has to be found as a part of the 

solution. A single crested wave solution must be found from (B-1),(B-2) and the condition 

of vanishing amplitude at infinity: 

lhp. U(€), Y(€), U'(€), Y'(€), ... = 0 
e-+mf 

Integration of (B-1) and (B-2) using condition (B-3) leads to: 

Y = U(c- U)- 1 

1 2 € II -U - cU = -Y- -cU 
2 3 

(B- 3) 

(B- 4) 

(B- 5) 

Elimination of Y in (B-5) , multiplication by U' ,integration and use of (B-3) gives: 

1 3 1 2 ( u) € ( ')2 --U + -cU + U + c In 1- - = -c U 
6 2 c 6 

(B- 6) 

The maximum amplitude, U0 , is obtained when U' = 0. Hence we get the implicit relation 

for c(Uo) : 

1 3 1 2 U0 
--U0 + -cU0 + Uo + cln(1- -) = 0 

6 2 c 
(B -7) 
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H we instead of U0 introduce the maximum surface elevation A = U0 (c- U0 )- 1 , this 

equation simplifies to the explicit relation: 

2 (1 + A)2 [(1 +A) ln (1 +A)- A] 
c =~--~~~~~~--~--~ 

!A3 + ~A2 
(B- 8) 

Expansion of the left hand side of this equation in terms of powers of A leads to: 

(B- 8) 

which is a well known result. 
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FIGURE CAPTIONS 

Figure 2.1 

Scetch of a rectangular basin. 
: u -node, I : v -node, o : rJ -node. 

Figure 2.2 

Eigenoscillations in the case of a linear bottom profile, referred to as example 1 in chapter 
2. u, v and fj are depicted as functions of x in (a), (b) and (c) respectively. One unit on 
the ordinate corresponds to the maximum value of fj. 

Figure 2.3 

Time series for 'I at x = 0.5 y = 1 in the first example of chapter 2. The fully drawn 
lines correspond to the "shooting" solution, the marks to the solution obtained from the 
difference scheme. 
The integration of the difference equations is performed using: 

(a) - one iteration/no relaxation 

(b) - two iterations/no relaxation 

(c) - one iteration/relaxation as described in the chapter. 

Figure 2.4 

Analogue to figure 2.2 for example 2 in chapter 2. (sinusoidal bottom profile) 

Figure 2.5 

Analogue to 2.3 for example 2. (sinusoidal bottom profile) 

Figure 3.1 

Reflection of a propagating wave with wave number k = ki + lj. 
a is the angle of incidence. 
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Figure 3.2 

Plane periodic progressive waves. For simulation parameters see text. 

a) The depth profile ( see text ) 

b) The surface displacement 'I evaluated with the Boussinesq equation at a given point of 
time 

c) The maximum surface displacement over one periode evaluated with three different 
equations: (--) The Boussinesq equation, ( · · ·) The mild slope equation, and (- - - ) 
The shallow water equation. 

Figure 3.3 

Wave focusing by a circular shoal evaluated with the Boussinesq equation. Periodic pro­
gressive waves propagating from the left to the right. 

a) Depth profile in the channel 

b) The surface displacement 'I in the channel at a given point of time 

c) The maximum surface displacement in the channel over one periode 

Figure 3.4 

The maximum surface displacement at the line of symmetry for the Boussinesq equation 
(-) and the Shallow water equation (- - - ). 

Table 4.1 

Amplitude of the solitary wave after propagating a specified distance. 

(.6x = 0.5, .6t = 0.5, 'lo = 0.1) 

Figure 4.1 

Propagation of a solitary wave over a shelf. (.6x = 0.5, .6t = 0.5, 'lo = 0.1) 

a) The depth profile 

b) Before reaching the shelf (100.6t) 

c) Above the shelf {150.6t) 

d) Propagation in the shallow region (250.6t) 

Figure 4.2 

Perspective plots of the surface elevation 'I· 

(a) - initial elevation. 
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(b) - elevation at t = 30 found by integrating the nonlinear Boussinesq equations with 
6.x = 6.y = 6.t = 1. 

(c) -elevation at t = 30 found by integrating the linear Boussinesq equations with 6.x = 
6.y = !:::.t = 1. 

(d) - elevation at t = 30 found by integrating the linear hydrostatic equations with !:::.x = 
!:::.y = 1 and !:::.t = !~ . 

Figure 4.3 

71(x, 0, 30) as function of x for different choices of equations, grid increments and numbers 
of iterations. Three different grids are used for each equation. 
(a) Results obtained from the nonlinear Boussinesq equation for 6.x = !:::.y = !:::.t = 1. 
Fully drawn lines correspond to four iterations, marks to two iterations. 
(b) Analogue to (a) for the linearized Boussinesq equations. 
(c) Profiles obtained from the nonlinear Boussinesq equation. The fully drawn line corre­
sponds to !:::.x = !:::.y = !:::.t = 0.5 , the marks to 6.x = 6.y = 6.t = 1. Two iterations are 
used in both cases. 
(d) Analogue to (c) for the linearized Boussinesq equation. 
(e) Profiles obtained from the hydrostatic equations. Fully drawn line corresponds to 
!:::.x = 6.y = 0.5 !:::.t = ~~ , marks to !:::.x = 6.y = 1 6.t = !~ . The time step is chosen 
according to the stability requirement !:::.t < (!:::,.x-2 + !:::,.y-2 )- 1 which is stronger than the 
stability requirement ~or the Boussinesq equation. 
(f) Results from integration of the nonlinear Boussinesq equation . The fully drawn line 
corresponds to !:::.x = !:::.y = !:::.t = 0.5, the marks to !:::.x = !:::.y = !:::.t = 2. Two iterations 
are used in both cases. For x < 20 we have an instability which may be removed by 
choosing smaller time increments. (see (g)) It is not cured by increasing the number of 
iterations. 
(g) Same as (f) apart from a halvation of the time increment assosiated with the marks. 
The instability is removed, but we get a poorer approximation to the leading pulse. 
(h) Analogue to (f) for the linearized Boussinesq equation. No instability is revealed. 
(i) Results obtained from the hydrostatic equations. The fully drawn line corresponds to 
!:::.x = !:::.y = 0.5 !:::.t = ;~ , marks to !:::.x = !:::.y = 2 !:::.t = ~~. 
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Table 4.1 

Equations z = 63.9 

(4.5)& (4.11) 0.09986 

(4.5)& (4.10) 0.09981 

(4.6)& (4.10) 0.09984 

(4.6)& (4.11) 0.09989 

\ 
\ 

\ 
\ 

Figure 3.4 

t = 100~t 

tb\. 20 
' ..... _.- .......... , )C 

\ 

z = 221.0 

0.09976 

0.09969 

0.09973 

0.09980 

\ 
\ 
\ 

t = 250~t 

Amplitude of the solitary wave after propagating a specified distance. 

(~z = 0.5, ~t = 0.5, 'lo = 0.1) 
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a) N onlin. Bouss. 

(-) 4 iter. 
(++) 2 iter. 

b) Lin. Bouss. 

(-) 4 iter. 
(++) 2 iter. 

c) Nonlin. Bouss. 

(-)~x = ~y = ~t = 0.5 

(++)~x = ~y = ~t = 1. 
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d) Lin. Bouss. 

(-).6x = .6y = .6t = 0.5 

( ++ ).6x = .6y = .6t = 1.0 

e) Hydrostatic. eq. 

(-).6x = .6y = 0.5 , 6t = 30/85 

(++}.6x = .6y = 0.5, .6t = 30/43 

f) N onlin. Bouss. 
(-).6x = .6y = .6t = 0.5 

(++).6x = .6y = 6t = 2 
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g) Nonlin. Bouss. 

(-)~x = !::,.y = ~t = 0.5 

(++)~x = ~y = 2 ,~t = 1.0 

h) Lin. Bouss. 
(-)~x = ~y = ~t = 0.5 

( ++ )~x = ~y = ~t = 2 

i) Hydrostatic eq. 

(-)~x = ~y = ~t = 0.5 

( ++ )~x = ~y = ~t = 2 


