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ABSTRACT 

This paper is concerned with thermal convection in a 

tilted porous layer. The basic temperature distribution 

is spatially non-constant, due to internal heat sources 

or time-dependent boundary conditions. It is shown that 

for small angles of inclination both hexagons and two­

dimensional rolls are stable solutions. For larger 

angles only rolls may occuro The problem has a bearing 

on convection in the interior of the earth and the occur-

ence of 11 patterned ground"o 
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Nomenclature 

An , defined by ( 3. 21); 

Bq, defined by (3o12); 

en' defined by (3o8); 

C , = (Cp)m/(Cp)f; 

(Cp)m, heat capacity at 

'V ' 

l:IR' 

liT , 

constant pressure for 

the solid-fluid mexture; 

heat capacity at constant 

pressure for the fluid; 

0 0 0 
= Crx ry rz); ' , 

02 02 
= ::-2+~; ox oy 

= R- (1+iy2 )R(o) ; 
0 

temperature difference; 

between the boundaries; 

a, wave number 

ac , critical wave number; 

f(z), defined by (3.12); 

g(z), defined by (3 .. 13); 

g, = (sinY, 0,-cosy)g, 

acceleration of gravity; 

h ' depth of the layer; 
... ~ .... 
~,J ,k, unit vectors; 

k = (kx,~,O), wave number n n n 
vector; 

k , permeability; 

p , pressure; 

Ps, static pressure; 

P (n) m , defined by (3.2); 

r, = (x,y,O); 

t ' time; 

R, Rayleigh number; v, = (u,v,w) velocity; 

critical Rayleigh number; v~n) , defined by (3o2); 

defined by (3.1); x,y,z, cartesian coordinateso 

~, defined by (4o1); 

T , temperature; 

T0 , standard temperature; 

U(z) , defined by (2o6); 

U0 , defined by (2o 16); 

A,E,P,Q,S,U,V,W, coefficients of 

the amplitude equation, 

defined by (Ao10)-(A,14); 
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Greek letters 

coefficient of expansion; 

inclination angle (radians); 

expansion parameter due to 
the amplitude; 

temperature; 

defined by (3.~); 

thermal difiusivity; 

inclination angle (degrees); 

Superscripts 

' 
, 

* ' 

perturbation quantities; 

adjoint quantities; 

complex conjugate quantitieso 

1J. , viscosity; 

p , density; 

p0 , standard density; 

a , growth rate; 

T~n), defined by (3.3); 

~, defined by (4. ~); 

$, defined by (3.~0); 

wN, defined by (4. ~); 
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Non-linear thermal convection in a tilting porous layer 

1. Introduction 

This paper is concerned with thermal convection in a tilting 

layer. Our interest in this problem stems partly from the rather 

puzzling geophysical phenomenon called patterned ground (for an 

authorative review, see Washburn [1] ). In subpolar regions with 

permafrost, or in mountain areas, the ground some places shows a 

rather remarkable regular pattern. Often the pattern is composed 

of regular polygons, close to hexagons. The polygons may be either 

"sorted" or "non-sorted 11 • In the former case the borders of the 

polygons are stones surrounding finer materials ( 11 stone polygons"). 

At sloping grounds, the polygons are usually replaced by stripes 

oriented down the slope. For smaller angles of inclination polygons 

may, however, still be observedo For larger angles the stripes pre­

vail completely. The lateral dimensions of the polygons and stripes 

vary over a wide spectrum, from 20-30 em and up to several meters. 

It seems to be no satisfactory explanation for the genesis of 

the polygons and stripes. There has b@en many attempts, and parts 

of the phenomenon may be understood. No accepted theory exists, 

however, which is capable of explaining the striking regularity of 

the pattern which takes place under favourable conditions. Such a 

regular pattern has, to our knowledge, only been found in connection 

with thermal convectiono In this case it is well known from experi­

ments, as well as theory, that under certain conditions a regular 

system of stable hexagons may occur. Under other conditions a regu­

lar system of two-dimensional rolls (stripes) may exist. It is 

therefore natural to try to combine the occurrence of regular poly-
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gons and stripes with thermal convection, or a convection of similar 

nature. 

The idea to relate patterned ground to thermal convection is 

not new. It was first forwarded by Nordenskjold [2, 3] and later 

recalled by Low [4]. It has also been advocated by Gripp [5], 

Simon and Gripp [6] and Wasintynski [7]. The two latter papers 

suggest that the convection is not of thermal origin, the convective 

medium being a kind of mud which partly is dried out at the surface 

by evaporation and water supply is brought in at the bottom by melt­

ing of ice. The mud is supposed to be heaviest where the water con­

tent is smallest. The configuration is therefore unstable, and a 

motion close to what is known from thermal convection will be set 

The significance of convection in the genesis of patterned 

ground seems not to have been generally accepted by geologists. The 

phenomenon shows, however, several striking features which speak in 

favour of convection. Besides the regularity of the pattern, obser­

vations show that the hexagons are up-hexagons, i.e. upwards motion 

in the middle of the cells. As will be shown in section 5, this is 

in agreement with the assumption of convection. Moreover, also the 

occurrence of stripes at sloping grounds is in conformity with the 

existence of convection. We further mention that a rough estimate 

reveals that in actual cases thermal convection may well occur, 

though the convection will be rather slow. It may therefore be 

worth while to examine the hypothesis more closely. We want, how­

ever, to point out that the occurrence of convection can by no means 

explain the entire problem which is, indeed, very complex. Obviously 

freezing processes are important for the transport of stones and 

other materials. The role of convection is probably limited to be 
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responsible for the selection of the observed pattern. 

When convection in earlier works was suggested to be the 

reason for the formation of polygons, this was done on the basis of 

the classical experiments by Benard. This is a rather doubtful bas­

is, since, as we know now, Benard's hexagons were due to surface 

tension effects. In fact, gravity driven convection will, also in 

horizontal layers, usually have a pattern composed of two-dimensional 

rolls (Schluter, Lortz and Busse [8]). To obtain hexagons some ma­

terial coefficients, such as the viscosity, must be a function of 

the temperature, or the temperature gradient must be a function of z 

(for a review, see Palm [9]). In this paper we consider the last 

possibility, the temperature gradient being dependent on z , due to 

temperature vairations at the boundaries. 

The convection may take place in a kind of mud, or, in other 

cases, in a porous media. In the first example the matrix takes 

completely part in the convection, whereas in the second case the 

matrix is fixed. Most likely a combination of these extremes take 

place in nature. 

The intention of this paper is rather limited, compared to the 

general problem. We shall focus our interest on the problem of 

thermal convection in a sloping layer, and examine the conditions 

for occurrence of stripes and polygons. This may throw some light 

on the genesis of patterned grounds. The problem has, however, also 

its own value. For simplicity, the layer is assumed to be porous. 

The results obtained are also qualitatively valid for convection in 

other fluids. It is necessary to apply non-linear theory and find 

possible solutions of the equations. To examine which solutions may 

be realized, we also have to apply stability analysis. We shall 
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find that for small angles of inclination both hexagons and stripes 

may exist, depending on the Rayleigh number. For larger angles 

hexagons become instableo Strictly speaking, the cells which here 

are called hexagons, are slightly deformed and, as we shall see, they 

move downhill with a given small velocity. 

It may be pointed out that the actual problem also may be inter­

preted as convection set up in a tilting layer due to internal heat­

ing. This problem is of interest in the study of the interior of 

the earth. 
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2. The model 

We consider a tilting porous layer of infinite lateral extent. 

The depth of the layer is denoted_9Y h, the angle of inclination 

by y and the x- and z- axis are placed as shown in Fig. 1. It was 

mentioned in the introduction that we shall consider a basic temper­

ature gradient being z-dependent. The non-constant temperature 

gradient may be caused by internal heat sources or by temperature 

variations at the boundaries. In the last case the temperature 

profile is, strictly speaking, a function of time explicitly. We 

shall, however, disregard this explicit time dependence {f'freeze'' 

the temperature) and restrict our solution to cases where the 

changes of the temperature profile with time is rather moderate. 

In the case of internal heat sources the equations are correct with­

out any such assumptions. 

It is reasonable to assume that the lower boundary is kept at 

a constant temperature, such that the curvature of the temperature 

profile is due to temperature variations at the upper boundary. To 

obtain thermal convection the fluid must be unstably stratified with 

heavier fluid above lighter. We are therefore led to consider a 

temperature profile of the type shown in Fig. 1 which is obtained 

by cooling of the surface. However, if the lower boundary is kept 
0 

at 0 C (permafrost), the temperature must increase upwards since a 

(the coefficient of expansion) for water then is l."l.Egative. 'Ihis example is 

also incorporated in our model if in Fig. 1 the curve displays the 

variation of a.T rather than T • 

Applying the Boussinesq approximation, the governing equations 

may be written 
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(2.1) 

(2.2) 

_. 
'V • v = 0 

p = p ( 1 - a.(T-T ) ) 
0 0 

Here (2.1) expresses the balances of forces in a porous medium, 

(2.2) is the heat equation, (2.3) the continuity equation and 

(2.4) the equation of state. Moreover, p denotes the pressure, 

p the density, g the acceleration of gravity, 1..1. the viscosity, 

k the permeability, ; = (\l~v,w) the velocity, T the temperature, 

t the time, )1. the thermal diffusivity for the porous medium, 

Po and T standard density and temperature, respectively, 
0 

a. the coefficient of expansion and C is a constant. 

The upper and lower boundary are sssumed to be kept at constant 

temperature. The boundary conditions may then be written 

W=O, T=O z =- h 

w = 0, T =- ~T z = 0 

where we have chosen T = 0 at z =- h • ~T denotes the constant 

temperature difference over the layer. 

When ~T is small, the heat transfer is in the form of conduc­

tion. Let the temperature then be denoted by T(z) • The gravity 

will set up a velocity down the slope, U(z) • Assuming that 

op/ox = 0 , we find from (2. 1) and (2.4) that 

!::.ku(z) = p (1-a.(T(z)-T ))gsiny 
0 0 

(2.6) 
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For larger 6T, in the convective regime, 

... ... 
v = U(z)i + v' 

T = T(z)+8' 

p = p + p' s 

where Ps is the static pressure defined by 

op 
-~+ p (1- a.(T(z)- T ))gcos y = 0 oz 0 0 

we write 

(2.7) 

(2.8) 

Introducing (2.7) in (2 .. 1- 2.4), applying (2.6) and (2.8), and neg-

lecting the dashes, gives 

(2.10) 

o8 oT(z) ()o8 ... c ot + w o z + u z ox + v • 'V 8 = (2.11) 

The equations may be written in a non-dimensional form by choosing 

h as characteristic scale for length, ~/n for velocity, Ch2/~ 
for time, ~~/k for pressure, 6T/R for 8 

Here R is the Rayleigh number defined by 

and 6T for T(z) .. 

R _ ga.6Thk 
- X. ~/p 

(2.12) 

Equations (2.9-2.11) then take the non-dimensional form - ... ..... 
'ilp + e(sinyi- cosyk) + v = 0 

(2.14) 

\7 28- Rw oTa~z) = R(T0 - T(z)) ¥x sin Y 

o8 - oe + U 0 dx sin y + v · 'V 8 + dt 
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... 
and k denote the unit vectors in the x- and z- direction, 

respectivelye The boundary conditions become 

e = w = o z = - 1 ,o (2.17) 
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3. The amplitude equations 

To obtain the solution of (2.13)- (2.15) for small, but finite 

-amplitudes we develop R and p , 8 , v in power series in the two 

small parameters e and y • e is a measure for the amplitude in 

the steady state, the exact definition of e is not needed. We 

write 

R = 2:: ymenR(n) 
m n=o 

m=o 

(p,8,v) = 2:: enym(p,8,v)~) 
n=1 
m=o 

(3 .. 2) 

It is appropriate to introduce multiple time scales, i.e. consider 

(p, 8 ;v) as functions of t , yt , et , --- • We write 

(3.3) 

whereby 

Due to the symmetry of the problem, R must be an even 

function of y .. Therefore in (3.1) R(n) 
m = 0 when m uneven. 

Introducing (3.1), (3.2) and ( 3. 4) in ( 2. 13 ) - ( 2 • 15) and equating 

terms of equal power in € and y ' an infinite set of linear equa-

tions result. The first of these equations became 

n (1) 9(1)-tk -o(1) 0 
vp 0 -.. 0 + V 0 = 

v • vc-1) = o 
0 
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with the boundary conditions 

z =- 1 ,o (3.6) 

These are the linearized equations for convection in a horizontal 

porous slab with a temperature grandient varying with z. It is 

rather straight forward to show that the right hand side in (3.5) 

is zero, i.e. the principle of exchange of stability is valid. 

(3.5) is an eigenvalue problem with R~o) as the eigenvalue. Let 

us consider solutions of (3.5) which are Fourier modes in the x,y-
... ... .... 

coordinates, i.e. solutions of the form f(z)exp(ikn·r) where kn 
_. 

is the wave number vector and r is the vector (x,y) • Moreover, 

let 

For a given a, there is an infinite number of wave numbers satis­

fying (3.7), corresponding to Fourier modes in all directions in 

the x,y -plane. Such a solution may be written 

_. ... 

(1 ) ikn,r 
e = ~ f(z)c (t)e 

o n=-ro n 
n;i o 

.... 
implied that kn fulfil (3.7). To secure that 

must have 

c = c* · -n n' 

... 
k_n = 

... 
-k n 

is real, we 

(3.9) 

The star denotes the complex conjugate, and f(z) is real and inde-

pendent of n • 

by higher order terms. 

is an unspecified amplitude to be determined 

The eigenvalue R(o) is a function of a, 
0 

and possesses a minimum value, Rc , for a = a , say. c 

It follows from (3.5) that the vertical component of the vorti-
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city is zero .. Since the velocity field is solenoidal, v< 1 ) 1.· s 
0 

determined by a single scalarfunction "(r , and we may write 

-t(1) 
v = 

0 
(3.10) 

with ~~ denoting the two-dimensional Laplacian. Corresponding 

to (3.8), $ may be written 
...... 
i~·r 

$ = L g(z)cn(t)e 
n=-c:o 
nlo 

(3.11) 

f(z) and g(z) are found from (3.5). According to (3.6) it is 

appropriate to write f(z) in the form 

Here B1 

by (3.5) 0 

f(z) = I: Bq sinq nz 
q=1 

is chosen as unity. The other Bq 

g(z) is found 

g(z) = I: 
q=1 

to be 

Bq . 
2 2 s1.nq nz 

(qn) +a 

(3.12) 

is then determined , 

(3.13) 

Since (3.5) is not self-adjoint, we also need to solve the 

adjoint problem of (3.5) and (3.6), which are found to be 

Vp"- R(o) ~ S k + ~ = 0 
0 oz 

2,.. " 
~ 9-w = 0 

... 
"' ~ 0 v = 0 

with the boundary conditions 

e = w- = o 

One solution of (3.14) is 

z =- 1 ,o 

... .... 
-ik •r 

$ = -f(z)e N 

( 3.14) 

(3 .. 16) 
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Collecting terms of order 

n (1) 9 (1)k~ ~(1) 
vp 1 - 1 + V 1 = 

,..,28(1) R(o) oT (1) 
v 1 - 0 oz w 1 

ey , we obtain 

e(1)-:+ - ~ 
0 

oeC 1 ) 
= R(o)(T -T) 0 

0 0 ax 

oeC 1 ) oeC 1 ) 
+ u 0 + 0 

o ax 0 ,-(o) 
1 

(3 .. 17) 

To secure that these equations have a solution, the right hand side 

must be normal to any solution of the adjoint problem, i.e. to (3.16) 

where N is arbitrary. This solvability condition leads to 

( 1) -,. oeo ,. o (1) 
+ u o < eN ax > + < eN Co ) e o > = 0 

oT 1 

where brackets denote integration over the intire fluid layer. 

The first term is easily shown to be zero. Moreover, T will now 
0 

be chosen such that the second term is zero (for the temperature 

profile (5.13) T = -0. 196). We then end up with 
0 

0 n (1)) • X("' (1)) )<e e = - ~U0kN eNe 0 0 ,-(o N o 
1 

(3.19) 

where denotes the x-component of Introducing for 

and (3.19) takes the form 

C ) ~ ( t ) = - i U k~CN ( t) 
OT 0 0 

1 

(3.20) 

Similar we may collect terms of order ey2 , e: 2 and so on, and 

thereby obtain higher order terms. This is carried out in the appen-
2 dix where we have taken into account terms up to the order e:y , 

e: 2y , e:3. The various differentiai equations are solved by taking 
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into account the respective solvability conditions. The unknown 

functions of z are expressed as a sum of sinus terms, as in (3.12) 

and (3.13). It was found that it was sufficient to take into account 

only 10 terms. The result was checked by applying 20 terms, without 

obtaining any changes in the first four figures in the coefficients 

in the amplitude equation (3.22) 

R ( 0 ) R ( 1 ) and 
2 ' 0 ' 

are obtained from the solvability con-

ditions. Introducing these expressions in (3,.1) and neglecting 

higher order terms, we find the time-dependent amplitude equation. 

It is appropriate to introduce the non-scaled amplitude 

by 

A = € C n n 

A 
n 

After some calculation the amplitude equation is found to be 

defined 

( 3.21) 

(3.22) 

Here 6R = R- (1+-ty2 )R~o) and ~ is the y-component of the wave 

number. The other quantities are defined in the appendix. 

The amplitude equation (3.22) is valid to the third order in 
... ... ... 

the amplitude. k k and k__ are wave number vectors rotated 
N ' N+1 . -.N-1 

120° to each other. This is the only combination of three Fourier 

modes giving a second order term, which is necessary to obtain a 

solution Hith a hexogonal pattern. Taking into aecount these three 
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wave modes we have secured steady solution of the form we want 

to examine, viz. hexagons and two-dimensional rollso 

By linearizing (3.,22) it is seen that the minimum critical 

Rayleigh number is obtained for k~ = 0, ioe. for longitudinal 

rollso 

4o The steady solutions 

The three modes in the steady solution of (3o22) may be written 

iL. the form 

e 
iC!1r 

(4.1) 

where ~ and wN are real quantities., Since, according to lh1ea-
' rized theory, longitudinal rolls'are the most unstable solution, one 

of the three modes is assumed to be directed along the y-axis. Let 

this mode be denoted by N = 1 • The two other modes, which are 

directed ± 120° to the y-axis, are denoted by N = 2,3. We then 

have 

~=a 

kx kx 
2 = - 3 = t/3 a 

~ = k~ = - ta 

Moreover, from (3.22) it follows that 

It also follows that 

(4.3) 

(4-.4) 
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and 

(4.6) 

Equations (4.5) and (4.6) determine the amplitudes R1 and R2 • 

One solution of the equations is readily found. viz. 

(4.7) 

which shows that longitudinal rolls are a solution of the steady 

non-linear equations. It is noted that this is the only two-dimen­

sional roll solution. 

Assuming R2 -J 0, (4.4) and (4.5) lead to a third order 

equation in R1 which may have three real solutions. When y = 0 , 

two of the solutions give R1 = R2 whereas the third solution leads 

to R1 -J R2. For small values of y ' we find that for two of the 

solutions the difference between R1 and R2 is of the order y2. 

The third solution is of no physical interest since it may be shown 

to be unstable for small y-values. It will also turn out that one 

of the hexagon-solutions is always unstable. 

The real solution for e~1 ), say, may then be written 

9 ~ 1 ) = 2f ( z) [R1 co say+ R2cos ( -tj3' ax-fay-wt) 

or equivalently, 

9 ~1 ) = 2f( z) [R1cosay + 2R2cos( t/3ax-wt) cos( fay)] 

' 

(4.8) 

(4.9) 

Since R1 is not exactly equal to R2 (and R3 ) the solution in 

consideration has only approximately a hexagonal pattern, the approx­

imation being better the smaller y is • Moreover, it is also 
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noted that the quasi-hexagonal pattern is moving downstream with a 

speed w/tj3 a • 

In the next section we will apply a stability analysis to 

investigate the stability behaviour for the longitudinal rolls and 

the hexagons., 

5. The stability of the solutions 

Let El~ denote a small variation of ~ , defined by ( 4. 1). 

We then have 

6~ = oRN e i~ + i:Rw e i~ o~ (5.1) 

Moreover, we assume that 6~ has an exponential time dependence 

such that 

(5.2) 

where a is the growth rate. We then obtain from (3.22) 

(5.3) 

+ yQ[~U- (k~+1 +k~_1 )V 

+ (k~-1k~+1-~+1kfu-1) (k~+1-~-1 )W/a2}~+1~-1 (o~-1 +6~+6~-fl) 
= 0 

(-Qa~- A~+1~-1 Jo~- A~+1~-1 ( 6~-1+6~+1) 

- (QwN + yUoQk~}oRN 

+ yQ{k~U- (k~+1 +k~_1 )V 

+ (k~-1~+1-k~+1kfu-1)(~+1-kfu_1)W/a2}(~+1°~-1+RN-1 6~+1) 
= 0 
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Longitudinal rolls 

In this case R1 is given by (4.7) and R2 = R3 = 0 o a is 

determined by the equations 

From (5.5) we find, applying (4.7) 

2 Qa = - 2PR1 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

which shows that these modes correspond to stable disturbances. 

The other a-values are found from the determinant of (5 .. 6) and 

(5.7) being zero. This gives 

2 x2 2 2 
Qa = l:!R- y k2 E/a - SR1 ± AR1 

Applying (4.7) the equation takes the form 

l:!R l:!R 1 2 x2 2 
Qa = -(S-P)p-+A(p-)"2 -Y k2 E/a (5 .. 10) 

In the second term on the right hand side the plus sign has been 

chosen which corresponds to the most unstable mode. We notice from 

(5.10) that for a fixed 2 y -value, a becomes negative for suffici-

ently small values of l:!R o On the other hand, for a small, but 

fixed value of l:!R, a becomes positive for sufficiently small 

values of y 2 • Moreover, for sufficiently large values of l:!R , 

a is always negative. We also see that for y 2 sufficiently large, 

a is negative. These results are displayed in Fig. 2 where, in 

order to obtain some quantitative results, we have chosen the tempe­
rature profile given in Fig. 1 • 
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Hexagons 

To examiL~ the stability of hexagons we introduce in (5.3) and 

(5.4) the values for w, R1 and R2 given by (4.4), (4.5) and (4.6). 

The six equations lead to a 6 x 6- determinant which give rise to a 

six-order equation in a • It may be shown that the 6 x 6- determi­

nant may in fact be reduced to a 2 x 2- determinant. The correspond-

ing second order equation in a is 

(5.'11) 

The four other roots of the six-order equation in a correspond 

either to stable or neutral modes. 

Equation (5. 11) is easily discussed when y = 0. It is found 

that a subcritical region exists, i.e. instability may start for a 

Rayleigh number less than the critical value determined by the 

linear equations. Hexagons are stable for 

2 
t.R < A (2P+S) 

- (S-P)2 
(5.12) 

For larger values of 6R , hexagons become unstable. For y ~ 0 , 

we must apply numerical methods to discuss (5.11). The results are 
most easily given in a diagram, see Fig. 2. (4.5) and (4.6) give two 
different hexagon solutions, one corresponding to up-hexagons and 
one to do~m-hexagons. It follows from (5.11) that only up-hexagons 
are stable since A is positive. 

An illustrative example 

To illustrate the results found in this section, we have chosen 

the specific temperature distribution displayed in Fig. 1 • The ana­

lytic form of the temperature variation is given by 

T = - 1 - z - :E T sinpn z 
p=1 p (5. 13) 

= - 1- z- 0.467 sinnz- 0.093 sin2nz- 0 .. 013 sin3nz +• • • 
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We found that Rc = 47.3 and ac = 3.555. The other findings 

are shown in Fig. 2 • 

6. Summary and conclusion 

The main results obtained in the paper are shown in Fig. 2 , 

where the applied temperature distribution is that displayed in Fig.1. 

It is noted that for small y , a subcritical instability region 

exists. This is, however, very small; for y = 0 it takes place 

and is of no practical interest. For 

y > 11.8° only longitudinal rolls are stable. For y < 11.8° a 

region exists where only hexagons are stable. For y = 0 this is 

true for R-values larger than 47.0 and less than 51.8 • For 

larger R-values both hexagons and rolls may exist, but only one of 

the forms at the same time. This region is for y = 0 defined by 

51.8 < R < 65.9. For still larger values of R only longitudinal 

rolls may be observed. 

Notice that longitudinal rolls are the dominating pattern for 

convection in an inclined slab. For small angles of inclination and 

moderate supercritical Rayleigh numbers also hexagons may occur. As 

pointed out above, the hexagons are not true hexagons since R1 

differs somewhat from R2 and R3 • The difference is of order y2 

and is negligible for very small y-values. For more moderate values 

of y , the difference becomes, however, noticable. The 

hexagons, being steady in the form, is moving do~mwards with a given 

velocity. The hexagons are up-hexagons. This is due to our assump-

tion that the temperature at the lower boundary is kept constant. 

This seems for us to be a natural supposition. If, on the other 
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hand, the temperature at the upper boundary was kept constant where­

as the temperature at the lower boundary was increased, we would 

have obtained down-hexagons. 

Our results are also valid for convection generated by internal 

heat sources, a problem which is mathematically identical to the 

actual problem. 

Bories and Combarnous [10] have performed experiments in a 

tilted porous layer and claim to find polygons for y < 15° and 

longitudinal rolls for y > 15°. The actual temperature profile in 

their experiments is, however, not available so that a qualitative 

agreement is not possible to discuss. Due to the effect of.the end 

walls, no propagation of the hexagonal pattern takes place in their 

experiments. Our theoretical result is in rather fair accordance 

with the observations of patterned ground, discussed in the intro­

duction, and seems to build up under the assumption that thermal 

(or similar) convection is an important part of the genesis. 

Appendix 

By substituting (3.1)- (3.4) into (2.13)- (2.14) and collecting 

terms of order we derive the following sets of equations 

O(€y2): ~P~1) _ 8 ~1)k+~~1) 

~2 8~1) -R~o)~;w~1) 
where we have applied (3.20). 
Solvability condition: 

(A.2) 
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(A.3) 

Solvability condition: 

Here it is noted that the term on the right hand side in (Ao4) is 

a very important term in our discussion, and corresponds to the 

part of the second order term in the amplitude equation (3.22) being 

proportional to A € If this term is zero, no stable solution exists 

with a hexagonal pattern. The term is due to the curvature of the 

temperature profile and is therefore equal to zero when oT/oz is 

constant. In the steady state (i.e. t ~co) the second order term 

must balance the third order term whereby it follows that the coeffi-

cient for the second order term must be small. This is obviously 

fulfilled for large values of time since oT/oz approaches a con­

stant value when t ~co. It turns out, however, that the coeffi­

cient is rather small also for moderate values of time, which leads 

to and o/o,.('1) 
0 

being smallo Terms containing these quanti-

ties will therefore be cancelled in what followso 

Solvability condition: 
oe C2) 

0 ;. (1) ,. ~) (p) " 0 
___:::,_( e e > = (uNe > - R < eN(T -T)~> 
0 ,-\1)' No o o o oX 

1 
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(A .. 7) 

Solvability condition: 

Introducing R~o), R~1 ) and R~2 ) into (3.1) give 

The constants Q,E, ••• 

A<s aC1)> 
dt N o 
( "e aT (1)> 

- Nozwo 

"' ... (1) f1) -< e v o v e' > N o o 
<"e aT (1) > 

- N oz wo 
= 

(A.9) 

in (3.22) are defined by the relations 

(A.10) 

(A. 11) 

(''-":_ c * 
A -.N+1 N-1 

eN (A. 12) 
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In (A.13) we have used (A.6). At last we obtain 

<w a <1)> 
N o ~ = _ R(o) 

( Ae .21 1J> o 
- N oz wo 

(A. 14) 

(A.15) 

Using the expression (5.13) for the temperature profile the constants 

are calculated to be 

Q = 

E = 

A = 
p = 
s = 

0.4704 

40.29 

1.367 

0.3245 

0.6918 

u = 0.9941 

v = 1.048 

w = 0.9915 
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Figure legends 

Figure 1. The temperature distribution T(z) and the 

coordinate system. 

Figure 2. 

' 

---- ' 

The stability regions of hexagons and longitudinal 

rolls. 

The stability curve for hexagons. 

Stable inside, unstable outside. 

Hexagons are the only stable mode inside this curve. 

The marginal stability curve for two-dimensional rolls. 
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