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Abstract 

The finite amplitude motion in a porous medium is studied 

using Galerkin's method. The Nusselt number is obtained and 

shows good agreement with experimental values. Further, the 

stability of the stationary solution is examined. One finds 

that two-dimensional motion is stable for Rayleigh numbers and 

wave numbers inside a closed region in the Ra,a-plane. 
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1. Introduction. 

The non-linear stability of a horizontal fluid layer heated 

from below has received considerable attention in the recent years. 

Particular ~.nterest has been paid to the classical Benard problem. 

But also an increasing number of studies has been performed on con

vection in a porous medium. This is mainly because of this pheno

menon being of considerably geophysical interest~ as it may occur· 

within the earth crust. Convection may also effect the motion of 

oil and gas in permeable rock reservoirs. Mathematically convection 

in a porous medium is simpler than the ordinary Benard problem. This 

is due to the fact that the inertial terms can be neglected when the 

(particle) Reynold's number is sufficiently small, and that the usual 

viscosity term is replaced by Darcy's law. 

After the first analysis by Horton & Rogers (1945) and Lapwood 

(1948) where the possibility of free convection in a porous medium 

was pointed out, a number of both theoretical and experimental 

papers have appeared in the literature. Schneider (1963), Elder 

(1967), Buretta (1972) and Bories & Combarnous (1973) have among 

others performed laboratory experiments , measuring essentially the 

heat flux across the layer as a function of the vertical temperature 

difference. Theoretical analyses of finite amplitude convection in 

a porous medium have been performed among others by Elder (1967) and·, 

Strauss (1974) by numerical methods, while Gupta & Joseph (1973) have 

used an upper bound technique. Palm, Weber & Kvernvold (1972) have 

analysed the problem by a perturbation method. 

The present analysis is divided into two parts. Firstly the 

equations describing the steady state solution are solved numerically 

by Galerkin's method. This is analogous to the approach by Veronis 
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(1967) to the Benard problem. In connection with the Galerkin 

procedure, the present paper introduces a time transformation 

which highly improves the convergence of the solutions. The pro-

perties of the steady solutions are discussed, particularly the 

heat flux as a function of the wave number and the Rayleigh number. 

The second part of the paper deals with the stability of the 

stationary solutions with respect to infinitesimal perturbations. 

While this paper was in preparation a similar study was 

published by Strauss (1974). The present investigation confirms 

the main results of that paper. 

2. Formulation of the problem. 

In the present problem we consider free convection in a 

saturated porous layer of infinite horizontal extent. The layer 

has a thickness h and is bounded by two parallel impermeable 

planes. The boundaries are taken to be perfect conductors of 

heat and to have constant temperature, T1 

tively. 

and T + AT, 
1 

respec-

Utilizing the Boussinesque approximation, the equations 

governing the motion in a porous medium may be written (Palm & 

Weber (1971)): 

~ + 
- v = 0 k (2.1) 

(2.2) 

(2.3) 

(2.4) 
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Here p is the pressure, p 0 a standard density, p the density, 

a the coefficient of expansion, g the acceleration of gravity, 

v the viscosity, Km the thermal diffusivity for the porous medium, 

k the permeability, T the temperature, T0 a standard temperature, 
+ v = (u,v,w) the velocity, t the time and v is the Laplacian. 

c is the heat p 

capasity at constant pressure and the subscripts f and m denote 

fluid and fluid-solid mixture, respectively. The· frame of referance 

is chosen so that x- and y-axis are horizontal while the z-axis is 
+ + + 

directed upwards. i, j and k are the corresponding unit vectors, 

and z = 0 at the lower plane. 

The fields variables may then conveniently be maid dimensionless 
ch 2 

by choosing h, AT, ~Kmlk, Kmlh, as characteristic values of ~ 
Km 

length, temperature, pressure, velocity and time, respectively. Then 

by eliminating the pressure the equations become : 

where 

ae + 2 at + .v• ve = w + v e 

au 
ay 

av = 0 ax 

Ra = ga.[l.Tkh is the Rayleigh number, and 
KmV 

e, being the 

deviation from the conduction solution, is defined by 

T = T0 - ~T z + e 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Equation (2.8) says that the vertical component of vorticity 

is zero. 

The boundary conditions imposed on the system are 

e = w = o for z = 0,1 (2.10) 
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Equations(2.7) and (2.8) make it possible to introduce a 

new function ~' such that (Busse 1967) : 

+ 
~ = vx(vxk~) 

Further from (2.5) we find 

e - - _1_ vzw 
Ra 

Combining (2.5), (2.6), (2.11) and (2.12) we finally obtain 

+ 
- ~t v 2 ~ + v 4 ~ + Rav1 2 ~= [Vx(Vxk~)J•v v2~ 

with the boundary conditions 

v 2~ = az~ = o 
1 az2 for z = 0,1 

where v 2 
1 

is the two-dimensional Laplacian. 

(2.11) 

(2.12) 

(2.13) 

By introducing the scalar function ~ , we only have to deal 

with one equation, and the field variables 
+ 
v and e are obtained 

from the linear relations (2.11) and (2.12). 

The linear stability problem is well-known (Lapwood, 1948) • 

One finds a critical Rayleigh number Rae = 4w 2 for a wave number 

a = ~, where a is the overall horizontal wave number defined by 

vl2~ = - a2~. 

3. Method of solution. 

In this section we will discuss the method of solution of the 

non-linear equation (2.13), being mainly interested in the stationary 

state. There are different methods available for this purpose. Palm, 

Weber & Kvernvold (1972) have used perturbation analysis, and they 
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obtain a solution being valid for Rayleigh numbers up to about five 

times the critical value. However, for a more careful examination 

of the problem, especially when the Rayleigh number becomes larger, 

we have to use numerical methods. In this analysis we will use the 

Galerkin procedure. 

A proof similar to that by Schlfiter, Lortz and Busse (1965) 

shows that two-dimensional motion is the only stable solution for 

moderate overcrit.ical Rayleigh numbers (Kvernvold, 1972). Accor-

dingly, we assume that the steady solution is periodic in the x

direction and independent of y, and expand ~ in a Fourier series 

1j; = ~ · I Apq eipax sin q 1f z 
p:-co q:1 

( 3.1) 

where each term satisfies the boundary conditions. To assure a 

real solution, we must have 

complex conjugated. 

* A = A nm -nm' where the asterisk denotes 

Substituting (3.1) into equation (2.13), multiplying by 

e-inax sinm1rz and integrating over the layer, we obtain an infinite 

set of first order non-linear coupled differential equations 

+ ~ t 
k,l 

1 l - 2 

k,l 

where 

s -to m,l 
-1 

for 
for 

for 

m > 1 

m = 1 

m < 1 

Since no method is known to handle an infinite set of equations, 

it is necessary to truncate the series in order to obtain a finite set. 
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A commonly used method is to restrict n and m such that 

lnl + m ~ N, where N is a positive integer (Veronis 1966). 

To examine the convergency of the solution, we introduce 

the Nusselt number, Nu, which measures the convective heat transport: 

Nu = 1 - (.2.!)· 0 ( 3. 3) 
az z= 

The over-bar denotes horizontal average. 

In our approximation the Nusselt number will be a function 

of N, and the relation (2.12) together with (3.1) gives 

We will consider the truncated series as a satisfactorily good 

approximation if NuN differs from NuN+ 2 by less than 1%. 

Systems of equations with N = 4 up to N = 14 are integrated 

numerically by the Runga-Kutta method for various wave numbers and 

Rayleigh numbers. 

It turns out that the steady state solution is independent of 

the initial values of the amplitudes. Accordingly we use the steady 

solution associated with N as initial values for the computation 

with N+2. This will speed up the convergency for the Runga-Kutta 

procedure. 

For given N, the complex equations (3.2) will result in 

N(N+1) equations for the unknowns and I (A ). The number m nm . 

of equations may, however, be reduced somewhat. Numerical calcula

tions show that all steady state amplitudes are zero, when lnl + m 

is an odd number. Hence we drop such terms. Furthermore, due to 

the symmetry of the equations in the x-direction, it follows that 
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for symmetric initial conditions, i.e. 

steady solution will also be symmetric. 

Im(A ) ~ o, the resulting · nm 

However, Forster (1969) 

concludes that for Benard convection in a layer of infinite hori-

zontal extent, the lateral edges of the convective cells will be 

slightly inclined~ To examine this possibility we have done some 

numerical calculations with general initial conditions, i.e. both 

Re(Anm) * 0 and Im(Anm) * o. It is always found that the steady 

state solution has no tilt.. The cells were, however, displaced 

somewhat horizontally. Then by transforming to a new reference 

system, we will always have solutions with Im(Anrn) = 0. We there

fore only have to solve (N/2)(N/2+1) equations for a given N. 

For the Runga-Kutta method we take as convergency criterion 

that 

It turns out that it is difficult to obtain a convergent solution 

when the number of equations become sufficiently high. This is due 

the great difference in the characteristic time scale for the 

various equations. The equations in (3.2) are essentially of the 

form 
dA 
dtk = (-k2 a 2 + Ra)Ak + non-linear terms. 

The characteristic time scale is dominated by the factor k 2 a 2 

which very so0 n becomes large. In fig. 1 we have illustrated the 

trendtowards a steady solution for the two cases k = 1 and k = 10. 
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To obtain a steady solution by the Runga-Kutta method we 

have to choose time step which is smaller than the characteristic 

period for the fastest oscillating mode. This time step is, 

however, much too small for the computation of the most important 

amplitude, A1 , which accordingly leads to quite a lot of numerical 

iterations. We are, however, only interested in the steady state 

solution, and not the intermediate time variation. Therefore we 

may transform the set of equations (3.2) into another set having 

the same steady solution, but with a different time variation. This 

is achieved by introducing new time scales in the equations (3.2) 

given by : 
n2+m2 t* 

t = 1T3 

We then obtain: 

(3.4) 

1T3 
(Non-linear term). 

n2+m2 

This set of equations have the same stationary solution as 

(3.2), but now the characteristic period for the various equations 

is of the same order of magnitude. It turns out that this transfer-

mation highly improves the convergency of the method. In most 

cases the number of iterations needed to obtain a satisfactorily gooq 

solution lays between 20 and 40. In some cases (for moderate 

Rayleigh numbers) less than 10 iterations were needed. This should 

be compared to the computation by Strauss (1972) for a related 

problem, where in some cases more than 2000 iterations were required. 
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4. The non-linear steady state solution. 

The numerical calculations were carried out in the following 

manner. For a given value of Ra, The Fourier coefficients Anm 

are obtained as functions of N and the horizontal wave number, a. 

From (3.3) we obtain the corresponding Nusselt number. Fig. 2 

shows the maximum Nusselt number (with respect to the wave number) 

as a function of the Rayleigh number for various values of N. We 

observe that Nu converges very rapidly with increasing N. It is 

sufficient to take N = 2 for Ra < 2Rac, which gives 3 equations 

to solve. At Ra ~ 8Rac it is enough to take N = 12 giving 

42 equl1.tions. 

In Fig. 3 the Nusselt number is given as a function of the 

wave number for different values of Ra. 

We observe that the wave number corresponding to maximum 

heat transport varies considerably. For Ra slightly greater 

than Rae the maximum heat transport occurs for a ~ n, while 

for Ra = 7. 5 Ra c the corresponding wave number is a ~ 2. 5 w. 

In Fig. 4 the Nusselt number is displaced as a function of the 

Rayleigh number. Comparisons are also made with some experimental 

results obtained by various investigations. For large Rayleigh 

numbers the present results appear to be somewhat in the lower 

part of the range of experiments. 
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Fig. 5 shows the mean temperature profiles for different 

values of the Rayleigh number. Each profile corresponds to that 

particular wave number which maximizes the heat transport. We 

note the devel:Jpment of thermal boundary layers when the Rayleigh 

number is sufficiently high. It may happen that the boundary 

layer thickness becomes comparable with the grain diameter. In 

this case Darcy law will probably be invalid. 

5. Stability of the finite amplitude solution. 

In this section we discuss the stability of the finite two

dimensional solution obtained in chapter 4. Let ~ be an arbitrary 

three-dimensional perturbation on the steady state solution. Then, 

-by replacing w by w + w in (2.13), omitting terms quadratic in 

-w, we obtain the perturbation equation 

-+ -+ 
- ~t vz~ + v 4 ~ + Rav 11~ = vx(vxk~)·VV2lP + vx(vxkljJ)•vv 2 ~ ( 5.1) 

Here ~ must satisfy the same boundary conditions as l/1. For 

given values of Ra and a, the steady state solution is said to be 

unstable if there exists a disturbance having positive growth rate. 

If not the motion is stable. Although equation (5.1) is linear, the 

analysis is complicated by the fact that arbitrary three-dimensional 

disturbances must be considered. 

Since equation (5.1) has constant coefficients with respect 

to y and t, and the dependence of x is periodic, the solution 

can be written as an infinite series in the following way,(Busse 1967) 

(5.2) 
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The linear equations governing the amplitudes are 

obtained in the same way as used in section 2. It is· usual to 

take into account only those terms with I pI + q ~ K, where 

K = N (Busse 1967). Strauss (1974), however, has truncated the 

series so that K = N + 1. In the present paper we have determined 

the stability regions both for K = N and K = N + 1 • The 

computations show that when N is sufficiently large there is 

no significant difference in the results •. 

The perturbation equations define an eigenvalue problem 

in a ~ a(Ra,a,b,d). If for given Ra and a at least one of 

the eigenvalues has a positive real part for some value of b 

and d, the system is unstable. Accordingly we only look for 

the eigenvalue with the largest real part, and find its maximum 

value, crmax' as a function of b and d. 

We know that near Ra = Rae there is a region of stable 

rolls with real growth rate. (Kvernvold 1972). Further, Clever 

& Busse (1974), show that for Benard convection, oscillatory 

instability can occur only if the vertical component of vorticity 
+ + 

is different from zero. Since (vxv)ok = 0 for porous convection, 

a will be real in this case. 

Because of the symmetry of the steady state solution, the 

stability analysis can be further simplified. Firstly, the ampli

tudes with even and odd IPI + q separate, and secondly, each of 

these two systems separate into solutions with symmetric and anti-

symmetric x-dependence. Still it is quite a lot of numerical work 

left, because for each a and Ra, both b and d in (5.2) must 

be varied. Fortunately, the maximum growth rate always occurs 

for d = 0. In most of the Ra,a-plane the cross-roll instability, 
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i.e. d = O, IPI + q odd and symmetric x-dependence is the 

most critical one. But for a < a c and small overcritical 

Rayleigh numbers, the zig-zag instability is the most important. 

In mathematical sense the zig-zag instability is formed out of 

disturbances with d = 0, IPI + q even and antisymmetric x

dependence. 

Fig. 6 shows the results of the numerical stability calcu-

lations. Values of Ra and a inside the closed curve corre-

spond to negative values of omax; which means stable stationary 

two-dimensional motion. Outside this curve the solution is un-

stable. The Rayleigh number corresponding to the upper limit, the 

second critical Rayleigh number, is found to be c Ra2 Qo! 335. This 

value is about 45 less than that obtained by Strauss (1974). We 

find no reason for this discrepancy. The main result is, however, 

that there exists a second critical Rayleigh number above which no 

steady two-dimensional motion exists. 

We observe that for Rayleigh numbers slightly greater than 

Ra0 steady two-dimensional motion exists for a Qo! 1To At c Ra = 5Ra , 

for example, steady motion is possible for wave number in the region 

a Ql! 'II' to a Ql! 2.211'. At the second critical Rayleigh number the 

corresponding wave number is a Qo! 2.3511'. From this we would expect 

that the wave length decreases with increasing Rayleigh numbers. 

This result is qualitatively in agreement with that obtained for 

ordinary Benard convection (Busse 1967). However, experimental 

evidence (Kochschmieder (1969), Busse & Whitehead (1971)) indicates 

that the wave number is an increasing function of the Rayleigh 

number. For porous convection similar experiments have not been 

performed, and one may only speculate about the results. 
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6. Comparisons and discussions. 

In this paper we have studied non-linear convection in a 

porous medium using Galerkin's method. Two-dimensional finite 

amplitude solutions have been obtained, and the stability of these 

solutions with respect to infinitesimal three-dimensional perturba

tions has been examined. 

A comparison between the Nusselt number obtained in the 

present work and experimental results found by various investiga

tors (Schneider (1963), Elder (1967), Buretta (1972) and Bories 

& Combarnous (1973)) show good agreement. 

The stability analysis shows that for given Rayleigh number 

larger than the critical value and less than a certain number 

(the second critical Rayleigh number) there is a possibility for 

stable two-dimensional motion for a range of wave numbers. The 

second critical Rayleigh-number is given by c Ra2 Col 335. For 

Ra > Ra~ the motion will probably be three-dimensional. The 

most stable wave number is found to increase with increasing Ra, 

varying from 1T for Ra Col Ra0 to 2.35'1f for c Ra = Ra2 • 

It is worth pointing out, however, that for a given Ra 

the Nusselt number is practically constant for all wave numbers 

in the stable region. 

The equations and the boundary conditions governing the 

motion in a porous medium is analogous to those for convection in 

a fluid layer in the limit of infinite Prandtl number and stress 

free boundaries. Formally the only difference is that the 

resistance term is v ~ 2~ k v for porous convection and vv v for 

Benard convection. Surprisingly enough the stability regions for 
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for these two types of convection are quite different. The 

computation by Strauss (1972) indicates that for Benard convection 

with free boundaries and infinite Prandtl number there is no upper 

bound for stable two-dimensional motion. For Benard convection 

with rigid boundaries, however, an upper bound for the stability 

of two-dimensional motion is found,Busse (1967). 

Strauss (1974) has by a numerical method very similar to 

that used in the present analysis, discussed the steady motion and 

the stability conditions for convection in a porous medium. His 

values for the Nusselt number are in excellent agreement to the 

present results. The stability region is, however, a little 

different. Strauss obtains a second critical Rayleigh number of 

Ra~ ~ 380 in contrast to the value 335 of the present study. The 

reason for this discrepancy is not clear. 
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Figure legends : 

Illustration of the trend towards a steady state 
Eolution for the amplitudes A1 and A10 • 

Nu 

Nu 

vs. 

vs. 

Ra/Rac for different values of N. 

a2fa2 for different values of N. c 

maximum value of the Nusselt number. 

Comparison of the Nusselt number with experimental 

data. 
present analysis. 

Experimental values obtained by Schneider (1963), 
Elder (1967), Buretta (1972) and Bories & 
Combarnous (1973) are indicated by the shaded area. 

Mean temperature profiles for different values of 
Ra/Rac. 

Region of stable rolls. 

- - - marginal stability. 
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