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Abstract and introductory comments

The results of an investigation into the possibility of using
semi-classical methods in the calculation of energy levels in a
system of magnetic monopoles are presented. It was found that
semi-classical methods can successfully be used for this purpose,
and an approximatinn procedure has been developed which has
made possible a theoretic calculation of the masses of a long
array of elementary particles with errors mostly lower than 1 %
(see table 5,6A and 7).4 A machine program is now available which
calculates the mass of an elementary particle whose structure
(configuration) defined in terms of the involved magnetic mono-
poles is punched in an input card. The possibility of using

the program as a means to test various theoretic structures of an
elementary particle (mass testing procedure) by comparing its
theoretic mass calculated by the machine with the experimentally
observed one is found to be a powerful tool in the identification

of particle structures (see table 5).

The first problem which arises when one attempts to apply semi-
classical or any other quantization methods to a system of magne-

tic monopoles is related to the large size of the magnetic charges

which are greater than or equal to 1%1 times the electronic charge.



The great charge of the magnetic monopoles is generally assumed to
create almost unsolvable difficulties for the calculation of the
energy levels of a system of two opposite magnetic charges in orbit
about each others. A main contribution of the theory presented

in this and the preceeding papers on this subject is the evidence
presented in section 5, that if the semi-classic theory is applied
selfconsistently, the calculation of the energy levels is not at
-all an unsolvable problem. If semi-classical methods have been

used at all in this sort of calculations, they must have been used
without being aware (or without taking into account) that the orbltc
corresponding to the lowest energy levels are far inside the respec-
tive magnetic monopoles (their semi-major axes are far smaller than
the classical radius of the magnetic monopoles involved). Inside
the magnetic monopoles the attraction force between two charges

does not grow to infinity in a coulombian fashion, but on the con-
trary it decreases towards zero when the distance between their
centers approaches zero. As a result the force and potential field
can never become large enough to create unsolvable difficulties for

the calculation of energy levels as proved in section 5 (see tables

3A, 3B, 3C showing an example of calculated energy 1levels).

Inside magnetic monopoles the coulombian field must be replaced by
an "asymptotic coulombian" field which fulfills a few requirements
imposed by semi-classic theory. One of these requirements is that
in stead of going to - =, the potential field must go to a finite
limit calculated in section 5 when the distance r between the two
charges goes to zero. One of these asymptotic coulombian fields
(presented in the appendix) which gives a good fit between calcula-
ted and observed masses of many elementary particles has‘befn used

in our machine programs.

The structures of elementary particles identified by the mass testing

procedure mentioned above is in many cases substantially different



from conventional stru>tures. Besides the three quarks, which in
our model are ascribed a magnetic monopole charge g 13;‘0

(e being the electronic charge), an other monopole, called baric
and designated by the letter B, with a triple magnetic charge -3g
and spin 0 is included in every bariyon. The triple negative
magnetic charge of the baric neutralizes the three positive charges
of the quarks, leading to magnetically neutral baryons. Moreover,
by ascribing to the baric a single negative electric charge, it is
possible to add a positive electric charge + 1/3 to every quark
without changing the electric charges of the baryons or any other
kind of hadrons. The' use of integer electric charges
has made it possible to interpret also the masses and other proper-
ties of leptons, considered as structures formed by magnetic mono-
pole associations like the other elementary particles, without
running into difficulties created by the use of fractional electric

charges.

Substantial differences from conventional quark models are also
introduced in the interpretation of mesons. Several mesons ‘are
ascribed structures different from the quark-antiquark associations
usually ascribed to them. The main characteristic discriminating
mesons from other particles in our model is that their structures
always include two and only two fermions, whereas baryons include

three fermions, and leptons only one fermion. The modified
meson structures preéent startling symmetries related to the
various meson families, and reminiscerit of the symmetric proper-

ties ascribed to them in conventional quark models.



1. Intrbduction

The aim of this paper is to give an elementary presentation of the
method of calculating the masses of elementary particles (Barricelli
1978 B and 1980) based on a magnetic quark model, and present several
implications of the results obtained. We shall start by presenting
some of the main groups of elementary particles whose masses have
been calculated by our model. We assume that the reader is familiar
with the subdivision of elementary particles into the groups and
families listed in table 1 and with some of the basic ideas for

their interpretation by various quark associations based on the U4
quarks u, d, s and c according to conventional quark models. A
rudimentary magnetic quark interpretation t+o be better specified sub-
sequently, is also hinted for baryon families in table 1. The mas-
ses of all the particles listed in table 1 have been theoretically
calculated by applying a magnetic quark model which will be presen-
ted in this paper. All but threé of the calculated masses present
errors lower than 1% and rone has errors greater than 2.5% (see
tables 5, B6A and 7).

The model which has made these results possible is based on the
assumption that each quark has an elementary magnetic monopole charge
+g called "Dirac monopole" (see next section. It is unknown

whether the positive charge is a South or North magnetic charge).
Besides the usual three quarks, an other magnetic monopole, a boson
of spin 0 and magnetic charge -3g (hereafter called "baric" and

designated by the symbol Ba'or briefly B, see interpretations in

table 1) is supposed to be part of each baryon. The triple nega-
tive magnetic charge of the baric makes up for the positive magne-
tic charges of the three quarks, leading to magnetically neutral
baryons. The magnetic monopole charges of the quarks and the
baric are assumed to be much stronger than their electric charges
(see next section). In the semi-classical model we are going to
use, the quarks are assumed to move in orbits about the baric,
much the same way as the electrons which move in orbits about an

atomic nucleus.



Table 1

BARYONS

The 8 lightest spin 3 baryons (Octett).

p=proton, n=neutron

Mass Strange-
MEV ness
1320 -2
1190 -1
1115 -1

938 0
Charge -

(1
[$3]

Interim magnetic quark model interpretation.
B is assumed to have spin equal to zero, and
a magnetic monopol charge 3 times larger and
opposit to that of a quark.

-2
-1
-1

0

BDSS BUSS

BDDS BUDS
BUDS

BUDD

BUUS

BUUD

Spin 3/2 baryons (Decaplett).

Mags Strange-
MEV ness
1672 -3 Q
1535 -2 c =©
1385 -1 L £ ¥
1232 0 n” 2° At att
Charge - -1 0 +1 +2
Interim interpretation.

-3 BSSS

-2 BDSS BUSS

-1 BDDS BUDS RUUS

0 BDDD BUDD BUUD BUUU -

Charmed AC baryon of spin 3.
Mass(MEV) Charm Strangeness Charge Interpretation
2260 +1 0 +1 BUDC




Table 1 (continued)

MESONS

D. Two nonets of spin 0 and spin 1 respectively.

Spin 0 Nonett

Spinv1 Nomett

Mass Strange- Mass Strange-
MEV ness MEV ness
960 0 n” 1020 0 ¢
549 0 n 783 0 w

- 0 X - X0

-1 K K -1 K K +

498 +1 KO K 894 +1 kX0 KX

- - +
140 0 i m° I 771 0 D p© o
Charge > - 0 +1 Charge -+ -1 0 +1

E. Mesons involving charmed quark.

Spin 0 meson

Mass

MEV

2830 n,
Charge 0

Spin 1 meson

Mass
MEV
3095 Yy
Charge 0

Charmed mesons

Spin 0 triplet

Spin 1 triplet

Mass Strange- Mass Strange-
MEV ness " MEV ness
2040 1 rt 2140 1 pr
1868 0 p* p° 2009 0 pt*  p©
Charge + +1 0 Charge - +1 0
F. LEPTONS (Spin 3)
Mass
MEV
1807 T -
106 u
0 Y
u
0.511 e
0 V
e
Charge +1 0




An other difference from conventional quark models was introduced

by the following consideration. By ascribing to the baric also an
electric charge -1, and adding an electric charge 1/3 to each

quark it is possible without changing the electric charges of
baryons and mesons, to avoid using quarks with fractional electric
charges. By adding the electric charge 1/3 to the u and c quarks,
which in the conventional quark model have the charge +2/3,

we obtain quarks with the charge +1, and the other two quarks d and
s, which 1In the conventional theory have a charge - 1/3, obtain

an electric charge equal to zero. All this can be done without

changing the electric charges of the baryons and mesons.

This choice of electric charges proved very convenient  because it
has made possible an interpretation of the leptons by the same
magnetic monopoles used in the interpretation of baryons and
mesons. By the interpretation obtained this way the masses of
leptons canbe calculated thedretically just as the masses of ba-
ryons and mesons. Such interpretation of lepton properties would
have been impossible with the conventional quark charges without
assigning to the 1eptons\fractional electric charges such as 1/3

and 2/3 of the electron charge.

Main properties of the baric and the various quarks are listed in
table 2, where the symbols B3, Uj, Dj, ST’ C1 are used in order

to designate the baric and the four quarks u, d, s, c¢. The corres-
;> U, 0, s,

1 . . . o, .
C  where low indexes identify the number of positive magnetic char-

ponding antiparticles are designated by the symbols B

ges, upper indexes the number of negative ones, expressed in Dirac

monopole units.

The dynamic assumptions we will use in this presentation involve
only concepts familiar to every one who has been exposed to the
basic ideas of Bohr's atomic theory. It does not require any knocy-
ledge of gauge theory or any theory involving exchange of inter-
mediate particles (or vectors). A quite elementary presentation

has therefore been possible.

The methods of calculating the masses and selecting the structures

of elementary particles will be the primary object of this presen-

tation.



Table 2

. . *
Magnetic constituents of baryons, according to the integer charge model.

Name Symbol Symbol Magnetic Electric Spin Strange- Charm
full brief charge charge H=1" ness
notations notations g=1 e=1
Baric B B =3 -1 0 0 0
u-quark U, U 1 1 1/2 0 )
d-quark D, D 1 0 1/2 0 0
s-quark 5, S 1 0 1/2 -1 0
c-quark cy c 1 1 1/2 0 1

1 1 1 1
% The respective antiparticles B, , U, D, S, C have opposit magnetic

and electric charges, and opposit strangeness and charm. Lower indexes
identify positive magnetic charges; upper indexes identify negative ones.



2. The elementary magnetic monopole charge.

The theory we are going to use is based on the assumption that
elementary particles are formed by association of magnetic monopoles
which are kept together by magnetic forces, much the same way as the
nucleus and the electrons of an atom are kept together by reciprocal
electric attraction forces. In each elementary particle the number
of positive and negative (or North and South unknown whichone) ele-
mentary magnetic monopolecharges are assumed to be equal. As a re-
sult the elementary particles are'magnetically neutral, just as

the atoms, containing an equal number of positive and negative

electric charges, are electrically neutral.

According to Dirac (1931 and 1948), if there are magnetic monopole
charges, they will under certain conditions be multiples of an ele-
mentary charge g, hereafter designated as "Dirac monopole", fulfil-
ling the relation:

(1) g e = §79

where e = electronic charge, H = %ﬁ where h 1is Plank's constant,

and ¢ = velocity of light.

2
Since fic ~137.038 is known to be a pure number designated as '"the

fine structure constant", it follows:

(2) g = 1375036 o - Y137.036 hc
2

According to this formula the elementary magnetic charge (or Dirac

: 137 . '
monopole) g is about 5 times greater than the elementary electric

charge e. The large size of the elementary magnetic charge g has
major consequences, which, however, do not create unsolvable difficul-
ties for the calculation of energy levels by Bohr's or Sommerfeld's
quantization methods, if the semi-classical theory is applied in a

self consistent manner (see next three sections).

The use of magnetic monopole charges expressed by integer numbers in
terms of g has made possible a theoretic calculation of the masses

of a long arrey of elementary particles listed above. We do not
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know whether this achievement would have been possible by using

a different elementary magnetic charge.

3. The size of the magnetic monopoles and the energy level problem.

Niels Bohr's semi-classical theory is well fit to convey an under-
standing of the conditions which must be fulfilled in order to allow
a calculation of the energy levels in a system of two or more mag-
netic monopoles. This applies .in spite of the objections one may
rise about the use of a semi-classical method on the basis of Heisem-

berg's indetermination principle.*

* A consequence of the indetermination principle is that a number
of parameters which are used in Bohr's atomic theory cannot be
measured by usual methods without fulfilling conditions or accept
errors which rise doubts about the parameters physical meaning
and measurability. Nevertheless, if one uses Bohr's theory in
order to calculate the energy levels and spectral lines of the
hydrogen atom, one finds (especially if relativistic corrections
are taken into account) results which in many cases rival or
agree very well with those one obtains by using wave mechanical
methods. The essential is that one applies the semi-classical

theory selfconsistently and uses exclusively parameter values

obtained by semi-classical methods. If an "analogical" para-

meter which can be used in a physical theory presents analogies
with an other physical (for example celestial mechanical)
parameter, it is not necessary to require that it shall be pos-
sible to measure it by the same procedure; only that it leads

to correct results.



The first problem arises when one tries to calculate the orbits
and energy levels of two magnetic charges of opposite sign moving
about each others. If for example the two charges have the same
mass m and the charges g and -g (where g is given by formula 2),
and if they are assumed to be moving in circular orbits about a
common baricenter, then we can calculate the orbits and the dis-

tance between the two monopoles by using Bohr's quantization formula
(3) - mvr = nh

where n is a positive integer identifying the energy level, v is
the velocity of the two monopoles relative to the barisenter,

and r is their reciprocal distance which is constant when n
(energy level) is given. By requiring that the centrifugal force

shall be equal to the coulombian force between the two charges

57 = 2 mv we can eliminate v from formula (3) and we obtain:
T r

2n21’i2

r = 5
m g

or i1f we take formula (2) into account

8 nzﬁ

137 mc

(4) r =

For the lowest energy levels (from n=1 to n=17) this distance is
smaller than the classical radius ry of the magnetic monopole g

(classical monopole radius), which is given by the formula

r = —= or according to (2):



(5) o T 8Bmec

This classical radius i1s a measure of the lowest radius one can
ascribe the monopole g if it is assumed that its entire mass 1is

equivalent to its magnetostatic energy.*

* Tn the classical electromagnetic selfinduction interpretation
as well as in relativity theory is the mass m of the electron

identified with its electrostatic energy:

Even if the magnetic monopoles are not ascribed an additional
positive mass of their own (there are no negative masses in
classical theory) besides their magnetostatic energies, the

mass of a monopole of charge g will be given by the formula:

2 2
mect = B—

2 r
. o
from which formula (5) is derived.

Experimental measurements of the electron radius by methods
based on classical theory Hyllerds 1952) have confirmed this
result. More recent measurements by methods based on wave
mechanical theory give far smaller values for the upper limit
of the radius, and fit better the hypothesis that the radius

is 0.

In actual fact the electron radius 1is one of»those'parameters
which, because of Heisemberg's indetermination principle, can

not be measured by conventional methods without anﬂerror, more
than 100 times greater than the radius to be measured (see appen-
dix 1 and Barricelli 1978 A). This does not, however, apply

for the classical radius of the magnetic monopoles, in which

% of the radius v to be

case the minimum error is around 10
measured. The radius of the electron should be considered an
analogical parameter which in each theory must be ascribed the
value the theory requires, irrespective of measurements, if

the theory is to be used in a selfconsistent manner.



If the magnetic monopole also has a positive mass of its own in
addition to its magnetostatic energy, then its radius must be larger
than ro-
Shall we use the semi-classical theory consistently, and that is
what we will have to do if we will use it at all, we have to take
into account the fact that inside the classical radius rg the
attraction force between two monopoles does not continue to grow

to infinity but on the contrary it will decrease and approach 0
when the distance between the centers of the two magnetic monopoles
goes to 0. Within the distance rJ the potential field will there-

fore have to be weaker than the coulombian field would have been.

If one is aware of this situation, one may not use formulas based

on coulombian potentials in order to calculate the energy levels.

But let us see what would happen if one were not aware of this
situation and should try to calculate energy levels mistakenly

assuming coulombian potenials.



4. Prevailing opinions concerning the energy level problem.

If we try to calculate energy levels by using coulombian potential
and forget that, according to the semi-classical theory we are
applying, the potentials can not be coulombian inside the magnetic
monopoles, then we will face an unpleasant surprise. Both in

the relativistic and the non relativistic approach several of

the lowest energy levels become completely absurd and meaningless,
as one might expect. Taking the non relativistic case first, the
bindings energy W, which is the sum of kinetic and potential ener-
gy becomes a negative quantity greater than the total rest-mass
energy of the two monopoles a short distance inside the classical
radius. In other words the total mass of the system becomes
negative. One finds, in fact,’by taking formulas (2), (3) and

(4) into account that

(137)2mcZ

W =
6'4'n2

whereas the total rest-mass energy of the two monopoles is 2mcz.
The total mass energy \2mcz+ W of the system is therefore negative

2
for all energy levels with n2< i%%%l—

ar n< 12.5.
In the relativistic case one finds that the total mass of the
137

g

the lowest energy levels, which are the ones with the highest

In both cases

system becomes imaginary or complex for n <

actuality for the calculation of the masses of elementary particles,

become completely absurd.

It is difficult to say whether the relationship between these
absurdities and the classical radius of the monopole has not been
discovered before, or whether one has preferred to ignore it on
the consideration that since the electron is assumed to have a
radius equal to 0 in the commonest wave-mechanical theories (but
"nota bene" not in semi-classic theory, see preceeding footnote)
one has taken for granted that magnetic monopoles would also have

a radius equal to 0.



The result has been quite depressing. A typical attitude towards
this subject is reflected by the following kind of pronouncement
some times found in the literature: "Valid quantitative calcula-
tions of bindings energies have not been obtained yet. Because
of the strong forces acting between the magnetic charges it is
difficult with the present theory to make reliable calculations."

Similar considerations are offered by Schwinger (1968) and others.

The next statement on this subject is taken from a referee report:

These papers show praiseworthy efforts to create new ideas, but

the methods employed are quite inadequate for the purpose,

(i) Extremely strong magnetic fields are involved, and these
will produce large currents in the vacuum, and these cur-

rents then interact in such a way as to modify strongly

the original fields.

(ii) The dynamics of such magnetic quark systems cannot be
treated by Bohr-Sommerfeld quantization, nor can it be
treated by Dirac's formula for H-like atoms. One must
use some quantum field theory method which makes it pos-
sible to include all the large quantum field effects.
Anything less is hopeless.

Unnecessary to say that whoever delivered this prescription has
given no evidence that it would lead to the calculation of any
energy level and/or any mass of an elementary particle. Moreover,
his statement to the effect that "the dynamics of such magnetic
quarkisystems caﬁnotbe treated by Bohr-Sommerfeld quantization"

is erroneous and fundamentally false, as will be shown in the

next section.



5. The calculation of the energy levels

Let us now find out what the calculation of the energy levels will
look like if one is aware that, inside magnetic monopoles, the cou-
lombian potential must be replaced by a weaker potential field
fulfilling the requirements posed by classic electromagnetism.
Potentials fulfilling these requirements are called "asymptotic

coulombian potential approximations". Their common properties

are:

1. They approach asymptotically coulombian potentials when the

distance r between the two charges goes to infinity (r-w).

2. Within a distance comparable to the classical radius rJ they
become gradually much weaker than the coulombian potential;
and when the distance approaches zero (r-+0) the potential
energy U for two monopoles of opposite equal charges g and -g
) .
_and equal mass m= —& i1l approach a finite lower limit =-2mc

2r c2
o)

U - -2mc2 for r » 0

This requirement is a way to express that two opposite equal charges
occupying the same position (r=0) cancel out. Their magnetostatic
energy ,2mc2 is neutralized by their potential energy -2mc2 when

the magnetic field is everywhere equal to zero.

An implication of this requirement is that the bindings energy W
which is the sum of kinetic and potential energy can never be

lower than —2m02:

W > -2mc?

2m02+w . .
and the mass - “—5— can never be negative. The absurdities
: c

mentioned above can not occur when the potential field is consis-

tent with the rules of classical electromagnetism.

A simple example of this kind of potential is the "exponential
coulombian" one which for two monopoles of charges g1 and g, is

defined by the formula:



(6)

(7)

(8)

(3)
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r

o)

U(r) =

(1-Exp(—ro/r))

The force generated by it (its derivative with respect to r) is:

218,

2
r

F(r)= -

Exp (—ro/r)

In fig. 1 a plot of this potential - calculated for the case
g,°8 and 8,578 - and the force generated by it are compared with

the respective coulombian diagrams.

If we now repeat the calculation of r in the non relativistic
case, we find, by requiring that the centrifugal force shall be
equal to the attraction force:

2

mv_ F(r)
T

which if we eliminate v by using Bohr's quantization formula (3)

gives:
2.2
Zn 2 = F(r)
mr
2
If the force is coulombian, F(r)= 57 , this will bring us back to
T
2h2h2 :
the relation r= 5 and to formula (4). But if the force
mg

is not coulombian, then we must either solve the equation (8) with
respect to r, or we must use a data processing machine in order

to calculate r from formula (8) by successive approximations. We
have a computor program which can do this not only in the special

case we have considered in which g,7g and g,=-g, but in general
for any g4 and g values, and for nearly all of the (more than 50)
asymptotic coulombian fields we have tested so far.

When r is identified, v can be calculated by formula (3),and the

bindings energy is then given by formula

W=U(r)+mv2
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Fig. 1

Exponential coulombian approximation force F and potential U (solid lines)
are compared with the respective coulombian diagrams (dashed lines). Both
are given as a function of distance r betwoen two magnetic monopoles of

charges g and -g respectively (g being the Dirac mouopole). F is mesured
in units of g2/r2, U in units of M c?=g?/r,.



The total mass of the system becomes then:

(10) Mcz=2mcz+U(r)+mv2

Since the minimum value of the potential U(r) is —2m2c2 in every
asymptotic coulombian field (according to the above rules 1 and 2
which define these fields), the mass M can never be negative. The

above mentioned absurdities can not occur with these kind of fields.

The corresponding relativistic formulas can be derived bv the same
m
(@) .
1-—v2/c2

sort of argument iIf m is replaced by

formula and the total kinetic enérgy for the two monopoles is
1

2 ' .
replaced by 2m c (7========= -1) in the formula (10), where m
© 1-v2/c? ©
is the rest mass of each monopole.

Analogous formulas can be derived for the more general case in

which g, and g, are any kind of magnetic monopole charges.

Besides circular orbits like those we have described, one may
consider also other orbits for two monopoles bound to each other.
The simplest ones, which have greatest actuality for their appli-
cations in elementary particle theory are the linear oscillation
orbits described by two particles subject to oscillations on a
straight line through their common baricenter. Both particles
move simultaneously through their center of gravity in opposite
direction. They reach simultaneously their respective maximum
distances from the center of gravity and are pulled back by their
reciprocal attraction to repeat in reverse the same movements
(fig. 2).

The main characteristic discriminating linear oscillation orbits
from other orbits is that their orbital angular momentum is equal

to zero.

In stead of Bohr's quantization method expressed by formula (3)

one may use Sommerfeld's quantization conditions which have more
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Fig.2
Linear oscillation movements in a binary system in which the rst-mass

of one particle is 4 times greater than the rest-mass of the other
one (M2O=4M10).
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general applicability (see appendix 2).

We have computer programs (both relativistic and none relativistic
ones) which can calculate the energy levels and orbital parameters
for a system of two magnetic monopoles in a linear oscillation orbit
about each others. Also these programs will calculate the total
‘mass M of the system. Moreover they will calculate the maximum
distance r tetween the two monopoles and their maximum velocities

vy and Vo which are reached when they move through the baricenter
(in stead of the constant distance and the constant velocities, which
are calculated by the program for circular orbits by using formulas
(6) and (3) or the corresponding formulas for the case of two mono-
poles with different charges and masses). These energy levels
(masses) and orbital parameters are listed for the energy levels

n=1 and n=2 in the tables 3A, 3B, 3C. These tables are calculated
by using an asymptotic coulombian potential U (r) specified in
appendix 2 and quite different from the one given by formula (6).
The potential Ug depends on a single free parameter whose best

value (giving the best fit between calculated and observed masses

of elementary particles) is found to be 7%3_ or ;%§1 ~according to

formula 2, and that is the reason for its name (see appendix 2 ).

The masses in table 3A are measured by using the magnetostatic rest-

mass (energy) MO (see formula (5) and preceeding discussion) as

a unit of mass:

g )
(11) M = —— = 2399 M.E.V.

The translation into million electron volt M.E.V. is made by assu-

ming that ry is the classical radius of the electron defined by

: 2
r = —&—— .
o 2 , M beingthe mass of the electron.
2MeC e

We may read from table 3A that the total mass of a system of two

monopoles with the respective charges g and -g and the same rest



Table 3A

Masses of binary systems of magnetic monopoles with respoctive rest masses Mlo,'M2
and t%e respective magnetic charges gl,g2 (g being the Dirac monopole, and
M°= £ the monopolar unit of mass).
2r°
Energy level n=1 Energy level n=2
M2O Mo 4M0 9Mo Mo 4Mo 9Mo
LA g1- g, -g -2g -3g -g -2g -3g
Mo g 0.08}07 : 1.07933 4.08467 0.19111 1.18723 4.20033
M, 2g 1.07933 0.05671 1.05279 1.18723  0.13884 1.12998
oM, 3g 4.08467 1.05279  0.04416 4.20033  1.12998  0.10952
Table.3B ‘
Maximum reciprocal distance (r,=1) reached by the two monopoles in their linear
oscillations. ‘
Energy level n=1 Energy level n=2
M20 YMO 4M4 9Mo Mo 4Mo 9Mo
10 &1 & -8 ~2g -3g -8 —2g -3g
Mo g 0.36882 0.29541 0.26802 0.48906 0.38309 0.34473
4Mo 2g 0.29541 0.22168 0.19500 0.38309 0.28423 0.24893
9Mo 3g 0.26802 0.19500 0.16717 0.34473 0.24893 . 0.21268
Table 3C
Maximum velocities vl/c ,.va/c of the two monopoles (c being the speed of light).
Energy level n=1 _ | . Energy level n=2
M20' M0 -,4Mo 9Mo M0 4Mo 9M°
Mo & | 8 -8 -2g —3g -8 -2g -3g ‘
M, 8 ‘vl/c 0.27955 0.33946  0.36895 0.40842  0.49080 0.52941
v2/c‘ 0.27955 0.08986  0.04407 0.40842 0.13946  0.06917
4, 2g vl/c 0.08986  0.11848 .0.13418 0.13943  0.18392  0.20833
'v2/c 0.33946  0.11848  0.06007 0.49080 0.18392  0.09425
oM, 3g vy/c | 0.04407 0.06007  0.06991 0.06917 0.09425  0.10981
, v2/c 0.36895 0.13418  0.06991 0.52941  0.20833  0.10981




mass MO is only 8.3% of Mo in the energy level 1, and 19.1% of Mo

in the energy level 2. If the two monopoles have the respective
charge 2g and -g and the respective masses MMO and Mo’ the total
mass of the system will be 1.07937 MO in the energy level 1 and
1.18723 Mo in the energy level 2, etc. The total mass of the system
is in each case far lower than the sum of the rest masses of the two

monopoles. In table 3B we can read that in the first case the maximum

distance between the centers of the two monopoles is 0.36882,ro

for the energy level 1 and 0.48906 rg for the energy level 2; in the
second case the maximum distance becomes 0.29541 r for the energy
level 1 and 0.363089 ry for the ehergy level 2. 1In each case the

maximum distance becomes far lowetr than the classical radius r

of the Dirac monopole. In table 3C we can read the maximum veloci-

ties of the two particles compared with the velocities of light c.

All energy levels give real positive values of quite normal orbital

parameters.

The results we would have\obtained by using circular orbits with

the potential ana force fields defined by formulas (6) and (7)

. resemble, especially as far as the masses are concerned, to the re-
sults presented in the tables 3A, 3B and 3C (see Barricelli 1978 A).

We will see in the following sections how the calculation of energy

levels can be used in order to interpret the masses and other pro-
perties of elementary particles. The fact that before now no method

to calculate the energy levels and the mass of a system of monopoles

has been available, must have been a major handicap which may have
seriously hampered the ability to find which consequences the various
theoretic hypotheses introduced could have for the masses of elemen-
tary particles. One should not be surprised if the light brought

on by this new possibility may reveal new and unexpected features
about the structure of elementary particles, not all of them neces-

sarily in agreement with common belief.



6. Other magnetic monopoles and their masses.

The baric and the quarks are not the only magnetic monopoles involvec
in the theory. Other magnetic monopoles can be constructed by so-
called "zero-level" or (L-0) associations between charges of differ-
ent sign. An (L-0) association is a monopole whose electric and
magnetic charges are the sums of the respective charges in the as-

" sociated monopoles. Its spin is either 1 or 0 depending on whether
the association includes an odd or an even number of particles of

1 1

spin 3 (fermions). Particles of spin greater than } can not be

members of an (L-0) association.

For example the (L-0) association of a baric B’ with the quark U,
will be a monopole designated by the symbol (B3U1)0, which from
now on will be called F2 with spin 3, magnetic charge -3g+g=-2g
and electric charge -e+e=0. Its antiparticle F2 will be called
"heavy fermion" (see table 4). Schwinger introduced monopoles
with similar magnetic charges and spin properties, when he assumed
that a quark could absorb a magnetically triply charged boson of
spin zero. But in our 'semi-classical interpretation we consideér
(L-0) associations as the result of a binding at the lowest possible
nergy level (n=0), where n is the quantum number in the Bohr |
formula (3) or in the corresponding Sommerfeld formula. This energy
level is characterized by resting associated monopoles at the

lowest energy position, namely the systems barycenter.

More (L-0) associations will be introduced later on. We may, how-
ever, give notice that (L-0) associations of a monopole and its
anti-particle, such as (U1U1)0 (83B3)0 or (F2F2)0 will be con-

sidered as annihilations. This kind of association does not

give a true particle. Moreover will the (L-0) association of a
monopole, such as for example B3, with an other (L-0) association-

pfoduct, such as F2=(BaU1)O, which includes its antiparticle, be

considered as equivalent to the result obtained by removing (anni-

hilating) the two monopoles (B3 and B3) from the result:
(8¢, )0=(8%8,U0")0=u"

An other monopole, a boson of spin equal to zero, magnetic charge -g



(12)

(13)

(14)

- 19 -

and no electric charge, which is called "light boson" and is
designated by the symbol L (see table 4) was originally introduced
as a means to interpret the properties of the strange quark S, (see
below).

The three monopoles B3, U1, 1] are the primary monopoles we will

use in order to construct all the other particles by (L-0) or

higher energy associations. It is likely that also an other group
of three monopoles, namely B3, P2,L1 could have been used in their
place.

In order to obtain approximately correct theoretic values for the
masses of elementary particles, We have found it necessary to select

a common classical rad:ius rg for all magnetic monopoles. If we

take ry like the classical radius of the electron

where Me is the mass of the electron, then the mass of the electron
can also be calculated by the same rules which apply for the masses
of magnetic monopoles and the other particles (in many publications

2ro instead of v is designated as the classical radius of the

electron, as opposed to the convention we have used).

Our unit of mass Mo, to be designated as monopolar mass unit, is

defined by the preceeding formula (11). The mass Me of the electron
is then according to (12) and (11):
2
M= —S

€ 2r 02
o

= 0.000213MO = 0.511 M.E.V.

If the mass M of a magnetic monopole with a magnetic charge ig and
an electric charge je is originated exclusively by its magnetostatic

and electrostatic energy, it can be calculated by the formula:

2

. .2
M=1 M2+j Me

which in monopolar units becomes:



Table 4

Description of monopoles used (for split S and C quarks see section 10)

Name Symbol Mass Electric Magnetic Spin Definition
M,-Units charge charge EH=l brief notat.
Baric B 9.000213 -1 =3 0 B
Light boson it 1.000000 0 -1 0 L
u-quark U, 1.000213 1 1 1/2 U
Heavy fermion F, 4.000000 0 2 1/2 (BU)O
d-quark D, 1.000000 0 1 1/2 (FL)O
s-quark (compact) S1 1.079326 0 1 1/2 (FL)1
s-quark (split) T 1.068 0 1 1/2 -
c—quark (normal) c1 1.572278 1 1 1/2  ((Bs)2L)3
c-quark (I-version) I, L.562069 1 1 1/2  ((BT)2L)3



(15) M=(i2+j2x0.000213)Mo

This is assumed to be the case for the primary monopoles B3, U1,L1

and their (L-0) associations, whose masses, calculated this way,

are given in table 4.

How one calculate the masses of associations at an energy level
higher than (¢, namely (L-1) associations, (L-2) associations etc.,

will be explained in the next section.

In the brief notations used in table U4 in order to define the

various particles the indexes are omitted. For example (FL)O

stands for (B3U1)O or its antiparticle (B3U1)O; (FL)1 stands for

(F2L1)1 or its antiparticle (F2L1)1, etc. Except for the ambi-
guity between a particle and its antiparticle, which is unimport-
ant for the calculation of masses, there are no other ambiguities

created by the use of brief notations.



7. The calculation of masses for energy levels higher than zero.

Two of the quarks listed in table 4 namely the s-quark and the
c-quark, are ascribed masses which.are larger than those calcula-
ted by formula (15). It was soon discovered that in order to
interpret the masses of "strange" and "charmed" particles it would
be necessary to ascribe these two quarks greater masses than

those required by their magnetostatic and electrostatic energies,

and approaching those indicated in table 4.

This led to an interesting discovery. It was found that the mass
one would have to ascribe to the s-quark would, in many cases, lie
close to the mass of a binary system formed by an (L-1) (energy
level 1) association of two monopoles with the respective magnetic
charges -g and 2g, which is listed in table 3A. This led to the
hypothesis that the s-quark is not a single monopole, hut an (L-1)
association of a fermion and a boson with the mentioned magnetic
,L')1 or (FL)1 which

is indicated in table 4 as a definition of the s-quark (compact).

charges, as for example the association*(F

We have a machine progfam which calculate the mass of such an
association when its definition is indicated in an input card

by its "configuration'" (FL)1. This interpretation of the s-quark
was what led to the introduction of the light boson L1, which
later on also proved useful in the interpretation of the c-quark
and other particles. This way was the identity between the mass
1.079325Mo of the s-quark and the mass of a bynary (-g,2g) system

at the energy level 1 - which is indicated in table 3A - explained.

Later on also the mass of the c-quark (compact) was explained by
assuming that it is an (L-3) association ((BS)2L)3 between (BS)2

and L. Split s and c-quarks will be interpreted in section 10.

* An other alternative which has been considered is the (L-1)
. 1 1 .
association of the u-antiquark U and the monopole (B3L )0, which
would ascribe to the s-quark a configuration ((BL)OU)? in stead

of (FL)1.



A question which arises in this connection is how one goes about

in order to calculate the mass of a system consisting of more than
two monopoles or (L-0) associations. The machine programs we have
for the time being can handle only two-particle systems either with

circular orbits or with linear oscillation orbits.

Similar situations have arised earlier for example in atomic theory,
-and the solutions one has found can in part be applied also in our
case in order to obtain approximate results. There are also special
solutions which are appearently applicable for the approximation

we need (with errors not substantially greater than 1% of the re-
spective particle masses), even if they have not been used in atomic

theory. Solutions of the fcllowing kinds will be used:

If one wishes to calculate the mass of an association of two partic-
les of which one or both are associations of other particles, it is
possible in many cases to obtain the needed approximation by ignor-
ing that the two particles can themselves be associations. For
example the s-quark, which is an (L-1) association, and the c-quark,
which is an (L-3) association, will in many cases (unless it is
split, see section 10) be treated the same way as the other quarks
which are single monopoles or (L-0) associations. Likewise the

mass of the (L-3) association ((BS)2L)3 defining the c-quark is

calculated as if (BS)2 and L were two single monopoles.

These procedure is analogous to the one used in atomic theory when
one for example calculates approximate values for the energy levels
of the external (third) electron of the Litium atom by treating the
rest of the atom (the nucleous + the two internal electrons) as

a single positively charged particle.

Even if one has a suspicion that the orbits may not be linear
oscillation orbits, and may for example have an angular momentum
different from zero, it does not follow that the masses we calcu-
late by our linear oscillation program are not usable for the
approximation we need. It is well known from atomic theory‘that
different elliptical orbits corresponding to the same energy level
(same n-value) give approximately the same bindings energy. It

is reasonable to assume that some thing like that may occur also



with magnetic monopole orbits differing from linear oscillation ones.
A method to estimate the maximum error one may expect by this pro-
cedure 1s to replace the suspected orbit by a circular one, and use
our circular orbits program in order to calculete the mass of the
system. The masses we will find this way will usually be lower

than what would be obtained by the oscillation orbits program, and

‘the difference will give a high estimate of the error.

Why quarks and other fermions dislike circular orbits even when
they would lead to lower masses and energy levels is unknown. But a
similar tendency for electrons to avoid circular orbits is well known

also from semi-classical atomic theory.

An association of three monopoles can also take a form which can not
be described by the outline presented in point 1. For example will
some of the baryons, including the Proton, be interpreted by assuming
that two quarks, namely anuand a d-quark, oscillate in an internal
orbit about the baric B® in such a way that they always keep together
and behave as a single monopole with a double magnetic\charge and a
correspondingly high mass calculated by formula (15). Two monopoles
with the same magnetic charge, which, in spite of their resiprocal
‘repulsion, keep together and occupy all the time a common position
are called "positionally associated". An (L-n) association of this

kind is designated by the symbol (B3U1D1)n or briefly (BUD)n. Our

machine program is capable of calculating the mass of such a composit
particle defined by its brief expression (or configuration) (BUD)n

punched on an input card.

An other kind of movement one could imagine in this sort of a system,
is to assume that the baric p3 may all the time be at rest in the

center, and the two quarks U1 and D1 may oscillate about B3 in such

a way that their respective distances from B will all the time be
equal. We do not know whether there is a way to calculate the mass

of such a system by our present programs with adequate approximatign.



8. Exclusion principles

A very strong exclusion principle applies for positionally associa-
ted fermions. The maximum number of fermions allowed in a positional
association is 2. The lowest energy level allowed for a system

of two positionally associated fermions is n=4. There is moreover
a very strong exclusion principle which applies at this energy

" level, requiring that the two fermions must be different ones and
must moreover have different spins. This principle is obviously
stronger than Pauli's exclusion principle requiring that only one
of these two conditions must be followed by two fermions in a com-
mon orbit, which, however, is not the same as two positionally
associated fermions. Moreover the strong exclusion principle
applies for energy level n=4, but not for the energy level n=5.

The last point will be discussed below.

An example of an (L-4) system-with two positionally associated
fermions is defined by the configuration (B3U1D1)u and is represen-

ted in the structures of the Proton, the neutron and the A(1115)
barion, whose configurétions are respectively ((BUD)4U)1, ((BUD)4D)"
and ((BUD)4S)1 (see table 5). Moreover in this case the s and c-
quarks are excluded from the positional association. As a result
(BUD)4 is the only permitted (L-4) association between B and two

positionally associated quarks.

The restrictions we have described for positionally associated
fermions do not apply for positional associations which do not
include more than one fermion. For this kind of associations we
have found no restrictions either concerning the energy level or
concerning the number and spin of the positionally associated
monopoles. For example the charged pion I+ is ascribed the (L-1)

2

configuration (F U1L1)1 which involves the positional association

of one fermion U1 and one boson L1

n=1 (not n=4) with the monopole F2. Likewise is the myon U~ ascri-

bed the configuration (B3D1L1L1)1 which involves the positional

associated at the energy level

association of one fermion D1 and two L1 bosons which are (L-1)
asociated with B3.



Notice that if one of the members in a positional association

can be expressed as an (L-0) association, it may often be possible
to substitute an other positional association for it, without
changing the masses and charges and spin properties of the position-

al association or of the system as a whole. For example in the

U~ configuration (B3D1L1L1)1, the fermion D, can be replaced by

-its expression (F L1)Ov in terms of F2 and L' (see table 4), and

2

the positional association D L1L1 becomes (P2L1)OL L,. If in this
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expression we remove the L1L1—pair, by following the same rules

which apply in an (L-0) association, we obtain a new association
P2L1, which has the same charges and the same mass as the preceeding
one. This new association can therefore be substituted for the pre-

ceeding one in the y~ configuration, without changing the mass

charges and spin properties of the system, yeilding the configura-

tion (B3F2L1)1, which 1is used in tablé 5.

Likewise the 1" configuration (F2U1L1)1 given above can be replaced
by the configuration (FQ(B3D1)O)1 or ((B3U1)O(B3D1)0)1, since
D1=(F2L1)O and F2=(83U1)0 (see table 4). Both of the brief con-
.figurations (FUL)1 and ((BU)O(BD)O0)1 are used as alternative defi-

nitions of 1% in table 5, with the same result.

We should give notice that the above requirements certainly can

not be all the requirements and exclusion rules which apply for
magnetic monopoles. Many associations which would seem possible

by these rules are never found. We will add some more rules which
apply for particle decais in section 11. But we may have discovered

only a slight minority of the rules which actually apply.

We are now in a position to explain how our machine programs can be
used in order to calculate the masses of an array pf elementary

particles.



g. The theoretical calculation of the masses of elementary particles

For every particle whose mass one wishes to calculate an input card
must be entered in the program punched with the name of the par-
ticle, its configuration defining its composition and energy levels
and, if desired, one may include its spin which may be printed in
the last column of the output table as in table 5. The configuration
-will be printed in the output table's next-last column and the
particle's name in the third-last. At the top of the input cards
one must include a few cards which define the monopoles and quarks
one wishes to use among them the three primary monopoles B, U, L.
These definitions are printed at the top of table 5, which is an
example of the kind of listings one obtains in the output or reply
from the machine. The other coiumns from left to right contain the
electric and magnetic charges and the masses of the two monopoles

or associations which are part of the system, their maximum distance
and maximum velocities, and the mass of the system both in monopolar
units (MO) and in millions electron volts (MEV), together with the

energy level of the system listed under the designation N.

The MEV-masses can be directly compared with the observed masses
of the particles, which are indicated between brackets after the
names of the respective particles. This way one can verify the
ability of the theory and/or the proposed configuration to predict

the masses of the various particles.

One may notice that the interpretations of elementary particle
structures which are given by the configurations listed in table 5
differ in various respects from the interpretations given in
conventional quark models. Some of the differences arise from

the very premisses of our theory. TFor example the configurations

((BUDYHU)1, ((BUD)4D)I1, ((BUD)4S)1 and ((BUD)UC)1 of the proton
P(938), the neutron N(939), the lamda A(1115) and the charmed lamda
A,(2260) baryons, reflect our assumption that these baryons have

a structure analogous to that of a Litium atom with two quarks

(in stead of two electrons) in an internal orbit building the

(L-4) association (BUD)4, and a quark (U,D,S or C) in the external
(L-1) orbit. (Notice that the size of the internal orbit measured
by the maximum distance R in the particle (BUL)4 named NUCLEINO

and listed at the bottom of table 5 is smaller than the size of

the external orbit in all of these 4 baryons).



Other spin 3 baryons, namely Z (1197), 20(1192), £¥(1189) with the
respective configurations ((BD)1DS)u4, ((BU)1DS)4, ((BU)1US)4 have
only one quark in the internal orbit and two positionally associated
quarks in the external one. All of these configurations give spin 3}
baryons, since positionally associated quarks have opposite spins,

and linear oscillation orbits have no angular momentum.

~Notice that this interpretation not only yields a theoretic calcula-
tion of the masses (which conventional quark models do not give),
but it also yields a natural explanation to the substantial differ-
ence between the mass of A(1115) and the mass of 20(1192), which

has been a problem for conventional quark models.

. . - = -0 " "
Baryons which involve split s-quarks, namely = >, = and the "strange

spin 3/2 baryons will be treated in the next 2 sections.

We notice that in every group of baryons with common strangeness and

common spin, the lowest observed mass is found in the positively

charged particle (P(938) "and Z+(1189)),while the lowest theoretically
calculated mass belongs to the neutral particle (N(939) and £°(1192))
Electrical interactions and possible electric dipol moments are
either ignored or only rudimentarily treated in our theory which

in its present form always ascribes the lowest mass to the neutral

particle in each group.

Baryons with spin 3/2 present a problem with respect to the inter-
pretation of their spin. Their masses can be calculated with errors
lower than 1% by assuming two positionally associated external quarks

at the energy level n=5. For example the mass of the spin 3/2 baryon

A" (1232) in table 5 is fairly well calculated by the machine by
ascribing to it the (L-5) configuration ((BD)1DD)5. This presupposes
that in the energy level n=5, (as opposed to the energy level n=4)
two identical d-quarks can be positionally associated. But Pauli's
exclusion principlemust still apply and two d-quarks must therefore
have opposite spins. If all the orbits are linear oscillation ones,
this may suggest that the spin of the baryon could be 1/2 rather
than 3/2.

The simplest explanation we may suggest in order to solve this
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TABLE S

PROPERTIES OF PARTICLES NOT INVOLVING SPLIT QUARKS

PARTICLE DEFINED: B
PARTICLE DEFINED: L
PARTICLE DEFINED: U
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CONFIGURATION

uwo
(FLYD

(FL)1
((BS)21)3

CONFIGURATION

(8uD) &U) Y
((BUD)4D)1
C(BUD) 4S)1
((BUD) 4C) 1
(8D D3S)4
((BUIDS)A4
((BUYTUS) &
«(8p)10nM)S

(FE

C(BUYI (U
((BD)L(RD) I
(FUL)!

((BU) 2 (BD) I
C((BDY1AYID)2
(C(8p) 18)Y14)2
co2

(B 1(BU) 1
«Bo)t(soY1) 1
(eI AREIPEDE]

(FLL)?
(LG
(SIS Iv)
3uLL)
(BFL)1
(3(BLY I
(3(BLYCD)Y
3(BL)>S)1
(8(RL)TS)2
(3(8L):0)3

3u)1
3un) 4
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apparent contradiction is to assume that the (L-5) orbit is not
a linear oscillation orbit. We may assume for example that the
(L-5) orbit has an angular momentum equal to 1, and that the spin
of the internal quark is parallel to this angular momentum. That
would result in a baryon with an angular momentum 3/2. Also (L,-5%5)
associations with spin 1/2 would be possible with this interpreta-
tion. But their half life time may turn out to be even shorter

' than the half 1life of around 10_23 sec. (see table9C) of all spin
3/2 baryons excépf 2. Such a short life time could make their
detection very difficult. Moreover the probability of creating
a spin 1/2 baryon of energy level (L-5) might be small compared
with the probability of creating a level (L-4) baryon with the

same spin. -

We have no machine program which can calculate (L-5) orbits with

an angular momentum equal to 1. But we have a program for circu-
lar orbits. Circular (L-5) orbits have an angular momentum equal
to 5. The mass of a system ((BD)1DD)5 where the (L-5) orbit is
circular and the (L-1) orbit for (BD)1 is a linear oscillation
orbit has been calculated by our programs, and is found to be
1153.280MEV. This is substantially lower than the mass 1244.586MEV
(see table 5) which was found by using only linear oscillation
orbits. The unknown mass for an orbit with angular momentum like 1
can be expected to be closer to the mass for angular momentum zero
((L-5) linear oscillation orbit)than to the mass for angular momen-
tum 5((L-5) circular orbit). For example if we assume a linear
relationship between mass and (L-5) angular momentum, the angular
momentum 1 would correspond to a mass of 1226.326MEV, 1in good

agreement with the observed mass of the A(1232) baryon.

The mesons listed in table 5 are those which do not contain split s

+ o _+ o
and c-quarks, namely the mesons Ho, m, p ,p and the mesons D,

D+, F+, nc and ¢ involving the compact c-quark. Other mesons

involvingrsplit quarks will be presented in the next section and
are listed in table 6A and 6B. As the configurations

show, the mesons differ from baryons by the fact that they contain
only two fermions in 'stead of three. Otherwise our meson inter-

pretations are different from conventional ones, and, with few



exceptions, are not based on the assumption that mesons are
associations of a single quark with a single antiquark. Such a
requirement would ir most cases not give a correct interpretation
of their masses. The meson configurations, which are summarized

in table g present,ihowever, a very suggestive interpretation of

their properties.

Lepton configurations, and their theoretically calculated masses
are also listed in table 5. As shown by their configurations, each
lepton contains only one fermion among its constituents. As a
result some leptons (namely the electron and the neutrinos) can be
(L-0) associations. No more than one fermion can be part of an

(L-0) association, because of annihilations or exclusion rules.

A sum up of baryon, meson and lepton configurations will be pre-

sented in table 8.



10. Split s and c-quarks

Several strange or charmed elementary particles have lower masses
than would be predicted by a calculation based on ordinary (com-
pact) s or c-quarks. For example if we use our machine program

in order to calculate the mass of the spin 1/2 (octet) baryon

£9(1321) by using the configuration ((BS)1US)4, we would find a
theoretically calculated mass 1358MEV in stead of 1321MEV. Similar
deviations are found for the strange spin 3/2 (decaplett) baryons
and for most mesons involving s-quarks. Also elementary particles
involving c-quarks often have lower masses than those calculated

theoretically by using the compact c-quark.

For those baryons which have spin 3/2 we already know a reason
why the mass may be lower than that calculated on the assumption
that only linear oscillation orbits are involved. For example
we have already mentioned that the (L-5) association ((BD)1DD)S
defining the A7(1232) baryon is probably characterized by an
(L-5) orbit of angular momentum 1 in stead of a linear oscilla-
tion (L-5) orbit. Its mass may therefore be intermediate between
that of the linear oscillation orbit given in table 5 and that
of a circular (L-5) orbit, which is substantially lower (see
preceeding section). Similar considerations apply to all the
other members of the spin 3/2 decaplett. Also the strange and
charmed mesons of spin 1 are expected for reasons which will be
presented in the next section, to be formed by associations in-
volving an orbit with angular momentum 1 in stead of a linear
oscillation orbit. Also in this case we can for the same reason
expect lower masses than those calculated by assuming linear

oscillation orbits.

This, however, can not explain the lower masses observed in several
strange or charmed baryons of spin 1/2 and mesons of spin 0, nor
would it be sufficient to explain the substantial difference
observed in some strange or charmed baryons of spin 3/2 and mesons

of spin 1.

In this section we will only deal with the baryons of spin 1/2

and the mesons of spin 0.



The lowered mass exhibited by several strange hadrons can be
interpreted by assuming that some of the s-quarks involved may
behave in these cases as if they were particles with a lower mass
than that ascribed to the normal (or compact) s-quark. The dif-
ference between the two is not the same for every hadron showing
this phenomenon, and seem to be slightly higher for baryons than
for mesons. Nevertheless it is possible in most cases to obtain
predictions of hadron masses with errors not substantially greater
than 1% by substituting for the normal s-quark of mass 1.0793259 My

a so called "split" s-quark which is ascribed a mass 1.068 Mé.

This split s-quark is designated by the symbol T, (see table 4),

and its mass and other properties are specified on top of table

6A, where the symbol T, is replaced by its brief notation T. Once
the T properties are defined, the machine is capable of calculating
the masses of strange hadrons with assigned configurations in

which T is substituted for S. The masses of several baryons and
mesons involving the split s-quark are calculated this way in table
6A. (In earlier presentations of the subject, Barricelli 1978B
and 1980, two different split s-quarks,a T-split one for mesons
and a Q-split one for baryons have been used. The consideration
of orbits with angular momentum 1, see next section, has made »
the use of an extra parameter represented by the Q-split quark

unnecessary.)

The lower mass of the split s-quarks compared with the normal
(or compact) version is interpreted by assuming that in some

hadrons the s-quark S1=(F2L1)1 can be splitted into its two

components F2 and L1 which may separately be associated to the
hadron in different ways. An example to illustrate this pheno-
menon is presented at the bottom of table 6A whose last 3 items
include a normal A(1115)=((BUD)4S)1 baryon with calculated mass
.1123.9 a A(T)=((BUD)4 T)1 baryon with a T substituted for S,
whose calculated mass is 1097.4, and a A(FL)=(((BUD)4F)1L)1,
whose calculated mass is 1102.8. The mass reduction obtained
by splitting S=(FL)1 1into its two components F and L, added
separately to the complex, is in this example quite comparable

to the mass reduction obtained by substituting T for S.
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TABLE 5A

PROPERVIES OF PARTICLES INVOLVING SPLIT S-QUARK (T) DR I-VERSION OF C-QUARK

DEFINITION OF SPLIT S-QUARK (T)
PARTICLE DEFINED: T

M1

DEFINITION OF I

1.31301330

4£.063000C1
4.36821301

1.16800200
4.26821301
1.56206891
4.158063350
6€.33021321
4.1J)321332
4.3J0009¢C1
$.332023361
4.38462164
6.18484245

TEST

1.37932591
1.J580602CD
1.33000nC0

MASS: 1.36800220

~2

4.26194420

4.16567666
4.16069666

1.07932591
4.00221301
1.56206891
4.08462164
4.149B4165
4.14984165
§.14984165
L.14984165
4. 14984165
4.14984165

1.31436132
1.31436132
1.383964835

EL.CHARGEz ) MAGN.CHARGF:
R v v2
-44838)348 .58958)27 16881144
BARYONS
-36681112 -27648221 27077584
- 36680542 <27647263 .27G78256
MESONS
-35381551 -26613119 -26353345
-36818282 27557098 .27989129
- 33881500 19799139 -.19799139
-2209)556 .116866422 .11639512
«22192953 .11880492 -11457851
22092953 .11880492 - 11457851
.22393266 11880953 <11457693
22193266 -11880953 11457693
.28273027 .13136518 17831569
.28269611 -1E1)5823 .17831317
. 35700238 «26796517 22266624
35739190 227034017 «222644715
<3583519¢ .2B558895 .211266C0
TABLE 6B

1

SPINz 1/2

L

1.56226891

55517262
.5549638%0

.22683438
- 39840087
- 18683705
23864151
20567330
.20567301
.21588596
23588596
-37369781
«373494834

-

46850517
45744441
- 45970712

PARTICLES ASCRIBED AN INDEPENDENT ORBIT OF ANGULAR MOMENTUM 1

M

£.33600302
4.368003301
4.13600CC0
4.13602030

1.16800300
1.168000CV
£.)3462164
§.18484245
4.08462164
6.J3486245
4.14984165

ACCORDING T0 THE H.

MASSES TO

M2

4.08484245
4.CB4RE24S
6.08484245
4.14984165

1.06800330
1.07932591
4.16169666
4.16069666
4.62823597
4.62823597
4.62823597

BRAGSTAD VERSION OF OSSILLATION DRBITS

BE USED FOR INTERPOLATION (SEE TABLE 7)

R vi v2
BARYDNS
40181465 .318)8333 .31212650
-43115396 .313727¢4 .312560:1C
. 40050618 .30968584 31298426
39988696 .331988811 32895330
MESONS
.57825823 47534260 <47534260
. 48187968 - 39071144 - 387225G5
-28263385 ~16110508 17789946
«28262968 -18109813 17790193
. 28001136 .18269622 16183558
.28001990 -18268736 16183637
27958717 18017434 .16206728
PROGRAM

51878061
58659653
«65347329
- T1345121

42781938
.3387371
.38144281
.38123783
-84460652
.B84482492
971912732

& o

NN ot ot wd ot =d b =

-

Vi v

NN NN NN N

3747.329

1331.333
1331.32¢4

564,165
955.745
2847.293
5)J).521
§33.600
493,402
493.911
493.911
389.291
888.799

1123.922
1197.387
11)2.815

1244.53)
14J2.41)
1560.454
1711.535

1026.318
793.762
915.163
914.571

23264171

2326.695

2180.953

NAME

XI1-(1321)
X13(1321)

ETA(S549)
ETA*(758)
ETAC(283))
K3iS(478)
KOL{498)
KOL(478)
K+(494)
K+(496)
K+«(B?2)
K1x(872)

LMDA(IT1S)
LYDA(T)
LMDACFL)

NAME

DLTA(C1232)
SGMA(1385)
XI(1532)

OMGA(1672)

PHI(1121))
om(733)
K+2(872)
K1+ (892)
DU+ (2I06)
Dt (2119)
F+2(2142)

CONFIGURATICN

«BmM2L)3

«BsSIIDTI4
((BSHUT)4

(E3P D)
((BL)IUT) &
am
((rRUIITL)1
«(BTITULI
(CCAPINSTIRIA!
((BT)1F)1
«(amn1 (L)
[CS:ARREGHIIRD ¥4
((BT)1(5D)1)2

((BUD) 45) 1
C((eDUI 4T
CC(3DUIGFITLIY

CONFIGURATION

((BD)1DD)S
((sp)10T)IS
((RDYT1TT)S
((BT)1TT)S

(rms

s1)2

((8sS)1 (312
((BS)1(RDI1)2
«(BnIUIT)2
((BI)X1(8DI1)2
(BRI (3712
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Of course the result of splitting an s-quark may not always be
expressible by two-body associations, and the mass-reduction

can in most cases not be calculable by our programs. The substi-
tution of an s-quark with a reduced mass is only a roughly approxi-
mated procedure to get around this difficulty, in order to verify,

for example, whether the configuration proposed for a particle is
consistent with its mass.

Splitting of the c-quark might also have to be considered as a
possible way to interpret the masses of several charmed hadrons.

We have limited our study to the use of a c-quark substitute
I1:((B3T1)2L1)3 designated as "intern T" (see table 4), which is
obtained from the normal c-quark C1=((B3S1)2L1)3 by substituting
the split s-quark T for its normal version S (see top of table 6A).
T and I are used in stead of S and C respectively in tables 6A and

6B whenever required in order to obtain a better fit between

calculated and observed masses.

The configuration proposed for a particle is considered consistent

with its mass if a fit can be obtained by these means.




11. Interpolated masses for particles involving an independent

orbit of angular momentum 1

If the spin 3/2 decaplet baryons are characterized by an (L-5)
orbit of angular momentum 1, a question which arises is whether
some mesons as well may involve orbits of angular momentum 1.
Mesons of spin 1 are possible candidates for this class of partic-
les. For example if the two fermions included in each meson (see

. section 9) have anti-parallel spin also in the mesons of spin 1,
their spin would have to be ascribed to an orbital angular momen-

tum 1.

We have found no clear-cut way to decide whether or not this is
the case. If the spins of the two fermions involved are anti-
parallel, the angula:r momentum of the mesons of spin equal to 1
must be ascribed to —he orbits of the magnetic monopoles involved.
An interpretation, which might be applicable in many cases, is to
assume that one of tlie orbits expressed in the configuration,
probably an (L-2) or (L-3) orbit, is not a linear oscillation
orbit but an "independent"orbit of angular momentum 1 (this is the
same sort of interpretation used in section 9 for the A(1232)
baryon whose (L-5) orbit was considered an orbit of angular momen-
tum 1). This is not the only possible interpretation and may

" not apply to all mesons of angular momentum 1, since several

not aligned linear ogcillation orbits can also give a system

with orbital angular momentum different from O.

Still, if many of these mesons involve an independent orbit of angu-
lar momentum 1, we may be able to find it out, since their masses
will be intermediate between that calculated for a circular or-
bit, and tnhat calculated for a linear oscillation orbit. The mas-
ses will therefore be lower than expected according to the linear

oscillation program.

We find indeed that many mesons of spin 1 as well as baryons of
spin 3/2 have masses lower than expected (much more so and much
more frequently than is the case for mesons of spin 0 and baryons
of spin 1/2). 1In two earlier presentations of the subject
(Barricelli 1978B and 1980) these deviations were interpreted

by introducing more split quarks. In this paper we will show
that they can nearly as well be interpreted with fewer arbitrary
parameters by assuming that several mesons and baryons involve

an independent orbit of angular momentum 1.
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If we assume a linear relationship between angular momentum and
mass for orbits with a common energy level, a prediction of the

mass will be possible by interpolation between the mass calculated

by the oscillation orbits program and that calculated by the circular

orbits program. Let us see how these methods are applied.

In table 6B the masses calculated for an array of spin 3/2 baryons
and spin 1 mesons are listed. The same masses are repeated in
~table 7 for "oscillation orbits", together with the respective
masses for "circular orbits" and "interpolated" masses. The inter-
polated mass for A (1232) has already been calculated in section 9
by interpolation between the mass 1244.584 MEV for an (L-5)

orbit of angular momentum 0 (linear oscillation) and the mass
1153.280 MEV for a circular (L-5) orbit of angular momentum 5.

The result calculated on the assumption of a linear relationship

between mass and angular momentum was 1226.326 MEV.

The interpolated masses of the other baryons and mesons of table 7
are calculated by the same procedure. When comparing observed

and calculated masses one should pay attention to the fact that
the effect of splitting the s-quark is different in different par-
ticles. The use of a single split quark T, with a single reduced
mass 1.068 MO can only give an estimate of the average mass reduc-
tion one may expect by such splitting in order to evaluate whether
the splitting hypothesis is a sensible explanation in each parti-

cular case.

Besides the interpretations K° (892)=((BS)1(BD)1)2 and

K**(892)=((BS)1(BU)1)2 ascribed to an independent orbit of angular
* * ,

momentum 1 and listed in table 7, the two mesons K°" and k' have

. *
also received an other interpretation K° 1892)=((BT)1(BD)1)2 and
K+*(892)=((BT)1(BD)1)2 listed in table 6A, in which S is replaced
by the split s-quark T. Both interpretations give a comparable-fit
between observed and theoretic masses. For the moment we have no

safer method of deciding which interpretation is best.

Other spin 1 mesons whose interpretation, given in table 5, does

not involve an independent orbit of angular momentum 1 are

00(770)2(((BD)1B)1D)2, p+(770)=(((BD)1B)1U)2 and ¢(3097)=(CC)2.
In these cases we have found no alternative interpretation giving

an equally good fit between observed and calculated masses.



Table 7

Particles ancribed an independent orbit of angular momentum 1.
Output masses and interpolated masses.

BARYONS

Name and Configurations Calculated masses M.E.V.
observed mass Circular orb. Oscill., orb. Interpolated
DLTA(1232) ((BD)1DD)S 1152.828 1244.530 1226
SGMA (1385 ) ((BD)1DT)5 1310.983 1402.419 1384
XI(1530) ((BD)1TT)5 1469.279 1560. 454 1542
OMGA(1672) ((BT)1TT)5 1620.6i0 '1711.535 1693

MESONS
PHI(1020) (77)3 996.998 1026.318 1016
oM(783) (sT)2 763.712 793.762 779
k*tX(892)% ((BS)1(BU)1)2 878.290 915.063 897
ko ¥(892)" ((Bs)1(BD)1)2 877.797 914.571 896
Do *(2006) ((BI)1(BU)1)2 1990. 424 2026.171 2008
p**(2009) ((BI)1(BD)1)2 1990.949 2026 .695 2009
P (2140) ((BI)1(BT)1)2 2145.471 2180.953 2163

X
% An other interpretation of K' (892) and K°*(892), which is presented
in table 6A and gives just as good a fit with experimental maéses, is
to replace S by its split version T, in stead of assuming that the two

particles have an independent orbit of angular momentum 1 and calculating

their masses by interpolation.
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Another borderline case in which both interpretations are
possible is presented by the ¢(1020) meson. Its interpolated
mass calculated in table 7 on the assumption of an independent
(L-3) orbut of angular momentum 1 is 1016 MEV. Its calculated

oscillation oebits mass of 1026 MEV given in tables 7 and 6B
1s nearely as good.

12. Summary of configurations

In table 8 the configurations of the elementary particles presen-
ted in table 1 are listed in the same order, so that the reader
can identify each particle and its configuration by comparing the
two tables. Whenever possible the configuration of each meson

has been expressed by using the four quarks U,D,S,C or their split
versions T and I and the barie B, avoiding the use of L and F.
This has been done in order to give a uniform presentation which
stresses the symmetries and the analogies betweem particles within
each family and between related families. The only exception is
the n' meson whose interpretafion is uncertain. In the interpre-
tation of the leptons and the quarks the use of the light boson L

was unavoidable. F could everywhere be replaced by (BU)O.

The symmetric properties of the various families revealed by

these configurations make it quite improbable that the agreement
obtained between calculated and observed masses could be accident-
al. If they were, the configurations giving good agreement, if
any could be found at all, could not show the reciprocal rela-

tionship we observe,

Most meson configurations are substantially different from those
one might have expected on the basis of conventional quark models,
which hold that mesons are quark-antiquark associations.. Only
three mesons, ETA(543), OM(783) and PHI(1020) follow this pat-
tern and only the last one fits the quark selection usually

~_ascribed to 1it.

Rather than defining the mesons as quark-antiquark associations
we shall define them as particles containing two fermions,
whereas the baryons are defined as particles containing three

fermions.

Our model makes also possible the interpretation of the masses
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Table 8

Configﬁrations of the elementary particles presented in table 1.

Name and
mass

= (1321)
£ (1190)

nyP(938)
A(1115)
Aé2260)

n' (958)
n (549)
K* (494)
K (498)
1 (140)
m° (135)

p°(1863)
DT (1868)
F*(2040)

nc(283o)

t (1807)
SO
p* (106)

0
u

vu(O)

"e(0.511)

ve(O)

BARYONS
Octett of spin 1/2

Configurations Naggsgnd
Q(1672)
((Bs)1IT)4 ((BS)1UT)4 £ (1530)
((BD)1DS)4 ((BD)1US)4 etc. ¥ (1385)
((BUD)4D)1 ((BUD)4U)1 A {1232)
((BUD)4S)1
((BUD)4C)1 Charmed Lambda baryon of
MESONS
Nonetti of spin O
((BL)OUT)4 2 i ¢k1020)
(sT)1 w (783)
((BT)1(BU)O)1 K'*(886)
((BT)1(BD)O)1 ((Bu)iTL)l K'°(892)
((20)0(3D)0)1 0 (770)
((BDp)O(BD)0)1 0°(770)
Charmed triplett of spin O
((BC)1(BU)1)1 D' °(2006)
((BC)1(BD)1)1 D' *(2009)
((BC)1(BS)1)1 F'¥(2140)

Charm-anticharm of spin O

Deoapleft of spin 3/2

Configufations

((BT)1TT)5
((BD)1T7)5
((BD)1DT)5
((BD)1DD)5

((BU)1TT)5
((BD)1UT)5 et
((BD)1UD)5 et

spin 1/2

Nonett of
(TT)3
(s7)2

spin 1

((BT)1(BU)1)2
((BT)1(BD)1)2
(((BD)1B)1U)2
(((BD)1B)1D)2
Charmed triplett of spin 1
((BI)1(BU)1)2
((BI)1(BD)1)2
((Br)1(em)1)2

Charm-anticharm of spin 1

(11)1 v (3095) (cc)2
LEPTONS
El.charge Strangeness Charm

(B(BL)OC)3 3] 0 1]
(B(BL)OS)2 0 'il 0
(B(BL)OU)1 or (BFL)1 21 0 0
(B(BL)OD)1 or (BULL)L O 0 0
(BULL)O 0 0 0
(uL)o | 0 0
(pL)O 0 0 0



and other properties of leptons, which are considered as particles
containing a single fermion and a variable number of bosons. This
makes it possible to build some leptonrs,such as the electron et
and the two neutrincs Vg and vu, by (L-0) associations without
conflicting with exclusion principles and annihilation processes

which prevent (L-0) associations involving several fermions.

The difference between the e-neutrino, with the assumed configura-
tion (DL)O, and the Mu-neutrino with the assumed configuration
(BULL)O, is not clear, since D=(FL)0=(BUL)0O, and the primary mono-
poles included in the two configurations are therefore the same.
The difference must probably depend on the way in which the four
monopoles B,U,L, L &are put together, in spite of the fact that
the energy level is the same (L-0) in both neutrinoces. The two
neutrinoes can, however, in some cases replace each other, as
indicated for example by the unfrequent cases in which a myon
decays directly into an electron and a photon, without producing
an e-neutrino and a u-antineutrino as is usually the case (see

table 9A ),

Besides the three (L-0)leptons, table 8§ presents a few leptons

with higher energy levels, namely two charged leptons (MU(106)

and Tau(1807)) and two electrically neutral, SO(MSO?) and an
electrically neutral version of "~MU(106). The electrically neutral
leptons of higher energy have not been identified yet. They
represent a theoretic prediction of our model. A so called Tau
neutrino has been observed, but its mass is not well determined.
The mass of 450 MEV for the SO lepton is theoretically calculated
by assuming the configuration (B(BL)0S)2. Its decay mode  and

the ways in which it can be formed by Tau(1807) decay are suggest-

ed in an earlier preprint (Barricelli 1979).




13. Decays and the B,U,L conservation law

Besides the calculation of the masses of elementary particles,
an other way of testing the §alidity of the configurations pro-

posed is by using them in the interpretation of decay processes.

The B,U,L conservation law. An important conservation law which

apply in all decay processes is the conservation of the three
basic monopoles B,U,L, which are used in the definitions of all
particles. According to this law the three basic monopoles are
conserved in every decay process and every interaction process
between elementary particles. That means that none of these
monopoles can be created or destroyed except in the form of a

"monopole-antimonopole pair", namely a B3B?—pair, U1U1—pair or

L1L1—pair. Decay processes not following this conservation law

are appearantly impossible in nature.

An array of decay processes interpreted on the basis of the
B,U,L conservation law are listed in the tables 9 A, B,C. The
interpretation is made as follows. One compares the B,U,L

composition of the decaying particle (for example h+=(B3D1L1L1)1
which 1s composed by the basic monopoles B3B3U1L1L1L1, see table Y)

with the composition of the decay products (for example vez(D1L1)O,

vuz(B3U1L1L1)O, e+=(U1L1)O which all together contain the basic

1,11

monopoles B3U L .L.B.ULL U1L1). If there is a difference between

1717173
the two sets of basic monopoles one may introduce the necessary
number of pair formations and/or annihilations in order to bring
agreement (if possible) between the two sets (in the above example

the two pairs L1L1 and U‘]U,| are missing in the decaying particle

in order to complete the list of basic monopoles appearing in the
decay products. These two pairs are recorded in the table as

pair formations). A simple way to make sure that the two sets

can be converted to one another by pair formations and/or annihi-
lations is to remove in both sets every pair which can be found.

If the two sets become identic after the removal they will obvious-

ly be reducible into each other by simple pair formations and/or



Table 9A

Decay of elementary particles

Particle and Mean life Pairs New associatioﬁs Annihilations Decay products % of
Configuration (sec) formed decais
LEPTONS
1 1.1.1 1 _
n'e (B3D1L1L1)1 2;:10'6 LL,UU (D Ll)O,(B3U L'L )o,(ulL )0 - v=(DL)O, vu=(BULL)O, et =(uL)0, (y) 100;
- (B3D1L1Ll)0 BB, LL e*=(UL)0, v, () 10
1wy (133331111})0,(UlLl)o,(ulLl)o BB e*=(UL)0, e*=(UL)0, e =(UL)O 107
1 1 = +
Tt (33(33L1)ocl)3 ? DD (33(1331,1)091.)0,(331;» 1hHa, ( 1,)0 BB v, =(dL)0, u¥=(BFL)1, v =(DL)O 18
meaning 3 1 1 111 _
- (33(BBL1)0((B351)2L1)3)3 11,00 (B,(BL,)0D )0, (U, 17)0, (B,U L L) BB Ve=(DL)O, &*=(UL)O, T =(BULL)O 18
2 1.1.1 3 + C—
uu (F UlLl)l,(B3U L 'L )0,(B B3)0 BB n"=(ruL)1, vu=(BULL)O 10 ?
1,..3 1.1.1 + -,
uu (((B3D )1B )1U1)2,(B3U L'L7)0 _— p"=(((BD)1B)1U)2, v“=(BULL)O 23 2
1 3 1.1.1 2 : . —
UU, (nFF) ((B,T )1(B Ul)O)l,(B3U L'L7)0,n(F F,)1  -= k*=((BT)1(BU)0)1, U ~(BUIL)O, mre 2
2
UU, (nFF) (F UlLl)l,(B3U1L1L1)O,(B3B3)0,n(F2F2)1 BB ?

etc.

n*=(FUL)1, UU=(BULL)0, nll®

* The identity of the two neutrinos is given only as an example, which applies in less Than 25% of the cases (cfr. Tables

of Particle Properties. April 1978).



Table 9B

Decay of elementary particles
Particle and Mean 1life Pairs New associations Annihilations Decay products % of
Configuration (sec) formed decais
MESONS

n'- (F2U1L1)1 3;:10'8 1L (B3F2L1)1,(F2L1L1)Q - u+=(BFL)1, ve=(FmL)o, (v) 100
= ((B3D1)0(133U1)0)1 1L (UlLl)O,(DlLl)O BB &*=(UL)O, v =(DL)O, (y) 1072
LL,UU (UlLl)O,(DlLi)O,((BBUI)O(BBUI)O)I - e'=(UL)O, v,=(DL)0, m°=(FF)1 10'6
Il,e’ e (UlLl)O,(DlLl)O,e+e_ BB e+,e+,e_,\)e 10—6

me= (F2F2)1 10716 - (F2F2)O FF Y (Y..) 99
LL (UlLl)O,(UlLl)O,(B3B3)0 BB et=(UL)0, e =(UL)O, (y) 1

K'= ((B3T1)1F2)1 10’8 LL (BBFZLl)l,(BBUlLlLl)O - u*=(BFL)1, v“=(BULL)O, (y) 64
- ((3,1)1(8°0)0)1 FF ((B3D1)0(B3U1)0)1,(F‘2F2)1 - T'=((BD)O(BU)O)1, To=(FP)1, (y) 21
FF,UU, LL (F2(33F2)0L1)1,(F2U1L1)1,(F2U1L1)1 BB én+=2(FUL)1, "=(FUL)1, (y) 6

2FF (F2(B3F2)OL1)1,(F2F2)1,(F2F2)1 BB .  I'=(FUL)1, 2M°=2(FF)1 2

FF,LL (FZFZ)I,(B3F2L1)1,(F2L1L1)O - ne=(rFr)o, y*=(BFL)1, v,=(FLL)O, (y) 3

UU, LL ((BéUi)O(BBUl)O)l,(FngLl)o,(UlLl)o - m°=(FF)0, v _=(FIL)0, e’=(UL)0, (y) 5

ke= ((3,uh)11'1) 100w ((3,uh)00'th)1, (5%, 1 1 --  IT=(FUL)1, MY=(FUL)L, (y) 69
FF ((BBUl)OFZ)l,(F2F2)1,(L1L1)0 LL 2M°e =2 (FF)1 31

Ks= ((B3T1)1U1L1)1 5x10_8 FF,UU ((BBU1)0(33U1)0)1,2(F2F2)1;(LlLl)o LL 3M°=3(FF)1 21
=((B3T1)1(B3D1)0)1 20U ((33U1)0F2)1,((B3Ui)oU1Ll)1,(F2U1Ll)1 - - Me=(FF)1, T *=(FUL)1, 17=(FUL)1 12
_ v, LL ((B Ul)OUlLl)l, (BBFle)l,((BBUl)OLlLl)O—-— T~={FUL)1, u*=(BFL)1, v;(m)o 27

uu,LL (F UlLl)l,(UlLl)o,(B3U1L1L1)o,(3333)0 BB I"=(FUL)1, e =(UL)O, v =(BUIL)O, (y) 40

Reversible transition - ((B3D1)0(33T1)1)1 - - K] with opposit strang;;ess ~ 100



Table 9B(continued)

Particle and Mean life Paies New associations Annihilations Decay pfoducts % of
Configuration (sec)  formed decays

n = (SlTl)l 10718 - (LlLl)O,(FZFZ)O or (Fzgz)l LL, (FF) ve vs (1°) 41
2FF 3(F2F2)1,(L1L1)0 LL 3Me=3(FF)1 30

UU, FF (F2U1L1)1,(F2U1L1)1,(F2F2)1 -- M*=(FUL)1, N7=(FUL)1, M°=(FF)1,(y) 24

UU (F2U1L1)1,(F2U1L1)1 - M*=(FUL)1, T =(FUL)1 5

n'= ((B3L1)0U1T1)4 2 510721 opp . (((33U1)0L1)1T1)1,2(F2F2)1 - n=(sST)1, 2M°=2(FF)1 66
BB (((B3D1)1B1)1(B3U1L1)0)2 - r°=(((BD)1B)1D)2, ¥ 30

- (((B3U1)0L1)1T1)2 - - w=(sT)2, Y 2

- ((B3U1)0F2)0,(L1L1)0 FF, LL Yy Y 2

p*a (((B3U1)133)1D1)2 102w ((B3U1)O(B3U1)6)1,(F2U1L1)1 -- m°=(FF)1, T*=(FUL)1 100
G ((33T1)1(33D1)1)2 10_23 FF ((B3T1)1(B3D1)O)1,(F2F2)1 - K°=((BT)1(BD)0)1, n°=(FF)1 100
. (slTl)z 1022 UU, FF (F2U1L1)1,(F2U1L1)1,(F F )1 - M*=(FUL)1, T"=(FUL)1, T°(FF)1 90
uu (FBUiLl)l,(FZUlLl)l - M"=(FUL)1, T =(FUL)1 1

- (F2F2)1,(L1L1)0 LL nme=(FF)1, Y 9

b= (T1T1)3 1072?83, FF ((B3T1)1F2)1,((33T1)1F2)1 - K™=((BT)1F)1, K =((BT)1F)1 48
BB, LL,UU ((B3T1)1U1L1)1,((BBUl)lTlLl)l - Ki=((BT)1UL)1, K§=((BU)1TL)1 35

UU, FF (F2U1L1)1,(F2U1L1)l,(F2F2)1 — M*=(FUL)1, T =(FUL)1, n°=(FF)1 15

- (SlTl)l - n=(sT)1, Y 2

D= ((3311)1(3331)1)2 10720 g ((B301)1(33U1)1)1,(F2U1L1)1 - p°=((BC)1(BY)1)1, 11" =(FUL)1 68
(FF) ((3301)1(3391)1)1, ( (F2F2)1 ) —_— p*=((BC)1(BD)1)1, (m°=(FF)1), (v) 32

Fr=((BC)1(BS)1)1, ¥y 100

Fi= ((B3II)1(B3Q1)1)2 ~? - ((B3C1)1(B3Sl)l)l

-




Table 9C

Decay of elementary particles

Particle'and Mean life Pairs New associations Annihilations Decay products % of
Configuration (sec) formed decais
BARYONS

3 3 1 - _
n= ((B U1D1)4D1)1 918 UU,LL ((B U1D1)4U1)1,(U Ll)l,(DlLl)l - p =((BUD)4U)1, e =(UL)O, ve=(DL)0 100
3 -10 3 1.1 -
A= ((B U1D1)4sl)1 3x10 uu ((B U1D1)4U1)1,(F2U L)1 --  p =((BUD)4U)1, M =(FUL)1, (v) 64
2
FF ((B3U1D1)4D1)1,(F2F )1 -— n =((BUD)4D)1, N°=(FF)1 36
-10 2, o
rta ((B3U1)1U181)4 10 FF ((B3U1D1)4U1)1,(F2F )1 --  p =((BUD)4U)1, m°=(FF)1 52
3 1 2
FF,LL ((B’U1D1)4(F2L )0)1, (F7U L )1 == n =((BUD)4D)1, N"=(FUL)1, (y) 48
3 -20 - - _
z°= ((B D1)1U131)4 6x10 (ee) ((B3U1D1)4SI)1,(e+e ) — A =((BUL)4S)1, v, (e'e) 100
- 3 -10 - '
I’= ((3'p)1D;s )4 10 uu ((B3U1D1)4D1)1,(F2U1L1)1 --  n =((BUD)4D)1, N =(FUL)1, (v) 100
_ 3 -10 : ' ”
=°= ((B Sl)lU1T1)4 3x10 FF ((B3UlD1)4SI)1,(F2F2)1 — A =((BUD)4S)1, m°=(FF)1 100
_- 3 -10 -
="= ((8"s)1D,1.)4 2x10 U ((B3U1Dl)4sl)1,(F2U1Ll)1 -~ A =((BUD)4S)1, N =(FUL)1 100
3 ; - . -
he= ((B7U;D)4C )1 2 FF, 20U, LL ((B3U1D1)4Sl)1,2(F2U1Ll)1,(F2U1L1)1 - A =((BUD)4S)1, 2N"=2(FUL)1, M =(FUL)1 2
- 3 -23 3 -
A= ((B D1)1D1D1)5 10 uu ((B U1D1)4D1)1,(F2U1L;)1 - n =((BUD)4D)1, NI =(FUL)1 100
_= 3 —23 3 1 »J
I"= ((B Dl)iLl?lTl)S 3x10 uu ((B U1D1)4sl)1,(F2U 11 - M :((BUD)4S)1, T =(FUL)1 88
\ 3 - : . .
: L ((8°2)10,5, )4, (F_F*)1 —— E7=((BD)1DS)4, TO=(FF)1 12
= - 3 .
- ((B3D1)1T1T1)5 10 L ((2’s)1.7 )4, (7,7 )1 —  ="=((BS)1D1)4, T°=(FF)1 100
..= ‘ -— 3 _ )
Q= ((B Tl)lTlTl)S .10 FF ((B sl)1D1T1)4,(F2p2)1 - = =((BS)1DT)4, N°=(FF)1 ?
3 .
FF ((B U1D1)451)1,((B3T1)1F2)1 - A =((BUD)45)1, K =((BT)1F)1 2



annihilations (in the above example both of the two sets are

reduced to the same set U,]L1 after such pair removal).

In many cases the notation FF is used in the tables 9 A,B,C in
stead of BB,UU in a pair formation or annihilation. Likewise can

*e” be used in stead of the

a pair (L-0) associations such as e
corresponding pairs of basic monopoles. Also pairs which involve
higher energy associations (u+u—,p+p_ etc.) are possible when a

sufficient amount of energy is available.

If a decay process is possibele, the B,U,L conservation law re-
quires that the set of basic monopoles in the decaying particle
can be converted into the set of basic monopoles in the decay
products by a few pair formations and/or annihilations. But

this does not have tc be the case if the considered decay process
is faulty or impossible. For- example one of two faulty decay

processes we have found in the literature (Barricelli 1978B) 1is

the process K+aﬂ—e+e+, conflicting with the rule that two positive-
ly charged leptons can not be produced by a meson decay without

producing an equal number of neutrinos or negatively charged leptons

If we compare the B,U,L composition of the decaying particle

K+=((B3T1)1(B3U1)0)1, which is B3B3U1L1B3U1, with that of the de-

cay products, H_z(F2U1L1)1, e*=(u, 1o, e+(U1L1)0, namely
1.1 1

1
B3U U L U1L U1

another by pair formations and/or annihilations. In fact, after

1
L , we find that they are not reducible into one

removing all pairs, the first set becomes B3U1U1L1 and the second
one becomes a quite different set namely B3L1L1L1.

Similar inconsistensies could be found if the decaying particle

or one of the decay products had been assigned a faulty configu-
ration. The B,U,L test is a powerful tool as a means to detect

errors in the assigned configurations as well as in decay and

interaction processes.




14. Other rules and conservation laws

We may mention a few more conservation rules and/or implications

of already known rules and experimental observations.

The forbidden annihilation rule. This rule applies only for

baryons. If we look at the baryon decays in table 9C,we do not
.find a single annihilation. The same apply to all baryon decay
processes we have analysed so far. This is a very surprising
property of baryons which, we will see, may have important impli-

cations.

One may notice, however, that several baryon decay processes in

table 8 lead to the formation of a particle (such as n°) or a pair

of particles (such as e’e”) which will or might be annihilated
later on (by the process HO»YY or e+e~9 YY) .One may be tempted to
consider this as a sort of "postponed" or"delayed" annihilation.

In a sense it is. But look at what kind of monopoles are annihi-

lated in this delayed process. The formation of M°=(FF)1 is always
preceeded by an FF-pair formation. Likewise ete” appears only

as the result of a pair formation. The net result of these delayed
annihilations is never the elimination of monopoles included in the
decaying baryon configuration. Only the excess monopoles created
by pair-formation during the decay process can be included in a

particle where they may be subject to subsequent annihilation.

In short: The net result of a baryon decay can not be the annihila-

tion of monopoles included in the baryon, without creating the same

monopoles by pair formation.

The implications of this rule seems to be strictly relate to the
conservation of barvon number, because if no decay can eliminate
any monopole bélonging to a baryon by (either immediate or delayed)
annihilation, there will always be left a set of monopoles adequate

for the formation of a baryon.

The forbidden magnetic charge rule. An other rule which seems to

apply to all elementary particles is that no elementary particle
carrying a magnetic monopole charge can be formed by any decay or
interaction process known today. All elementary particles formed



in any known process carry an equal number of positive and negative

magnetic monopole charges and are magnetically neutral.

Other rules are the exclusion principles presented in section 8. We
shall not enumerate all the well known conservation laws which apply
in elementary particle processes. But there must be other laws and
rules which are still unidentified, because many configurations

and many decaying processes which would not seem impossible or pro-
hibited by any law which is presently known have never been observed.
In some cases this might be due to experimental difficulties such as
the difficulty to identify neutral leptons like the u®=(BULL)1 and

s°=(B(BL)0U)2 leptons (see table 8) predicted by our theory. In
other cases the unfrequent occurance of a predicted decay or a pre-
dicted particle may be the explanation. But this will hardly explain

all the cases.



15. Conclusion

A question many readers may have asked is: Why did we have to re-
gsort to the Bohr and Sommerfeld quantization method in stead of
using wave mechanics in the calculation of the energy levels and

the masses of elementary particles?

‘The problem is mainly a gquestion of selecting the most practical
method in order to calculate the energy levels to begin with, and
it has hardly any theoretical implications concerning the question
which one of the two methods (semi-classical or wave mechanical)

is more precise, since we were satisfied with a rough approximation

(errors not substantially greater than 1%).

The reason for our selection is that in semi-classic theory there
is no more than one correct method of dealing with the energy level
problem for charges the size of magnetic monopoles, and that method
leads without difficulty to the calculation of energy levels, as

we have shown in section 5. The same can not be said about the wave

mechanical approaches applied so far. The general belief that magne-
tic monopoles must be treated as point charges requiring renormali-
zation and the habit of ignoring their classical radius seems to
have led to the consistent failures in every attempt to calculate

the energy levels in a system of magnetic monopoles (see section Uu4).

These are, however, only practical considerations about the best

way to start the investigation. Now after the way is found we

are planning to use a wave mechanical approach in order to calculate
the energy levels using the same kind of potencials we have used

in the semi-classical approach. That will hardly change many of

the particle configurations we have identified, but may still avoid
the infinity and renormalization problems and,it is hoped, will

giye just as good or better results as those obtained by the semi-

classical approach.

Attempts might also be made to obtain estimates of various decay

probabilities once wave mechanical methods are introduced.

Unnecessary to say that much work remains to be done in order to

improve the interpretations of the various particles and find the

conficurations of new particles.



Appendix 1.

The impossibility of observing orbits of two elementary charges
(electric or magnetic) with an expected error smaller than i for the
orbital anguler momentum (see section 3) also puses seversre restrictiens
to the possibility of finding an experimental mesning and a precise

measure of the radius of such cherges. Let us for axsmple attempt

the following approach:
The existence of a finite radius L presumes, as a matter of

definition, that the attraction force between two equal and opposite
magnetic charges g and -~g (gr electric charges e and -e) becomes lower

than the coulombian value £- (or-gg) when r decreases to a value lower
r r
than or comparable to rg, The very radius T, of the two particles

can be defined as the distance in which the attraction force between

the two particles is bhelow its coulombian value by a certain proportion
P<1 (for example P=80%). The basic point in this argument is however
given by the question: what is the meaning of, and how do we measure the
exact attraction force between the two particles at a given distance r?

Since the force is intended to be used for the calculation of

orbits, the most direoct method for measuring or defining the force is
to put the two perticles in a circular orbit at a reciprocal distance
equal to the distance r in which we want tc meaaure the force (any
other orbit allowing the distance to vary, including scattering
experiments, would be subject to interpretations and criticism, as a
method of measuring and defining the exact force at the exact distance
r). The forece can now be calculated by measuring for example the
orbital angular momentum of on® of the particles, whioch oan be done
by hitting it twice with a photon or some cther object.

By this method, according to Heisemberg's well known argument, we
can measure the angular momentum with an error never smaller than h.

Let us now find out what will be the error in the determination
of the radius r* in the case of two elementary charges electrical or
magnetic. We are oailing this radius r* rather than r because by
the new definition r 1is not only subjeot to a measuring error but
is also dependent on the arbitrarely selected proportions P between
the attraction force F and its coulombian valus at the distance r’.
On the other hand r 13 defined as a precise quantity proportional or

equal to the classical radius of the charge (electron or magnetic



(a)

(B)

(0)

(p)

(E)

(P)

II

monopolo), irrespective of the question whether or not this radius can
be subject to a direct measurement by the method indicated above.
The proportion Pr between attraction force F and its coulombian

value 55 for two magnetic monopoles of opposite squal charges g and =~g

I -
is l#ﬁhtd by the formula

»
We want to find the r value r where this proporti.n reaches a certain
+*
value P€< 1 used in order to define the particle radius r .
P muat be equal to the ocentrifugal foroe:

R being the mass and v the velocity of each particle.
By eliminating P between (A) and (B) we obtain:

2
nv r

or

Y=g E‘

We define the angular momentum A by the formula

A w mvr

or mccording to (D)

A V
- g Ierr




- III

or after solving with respect to r:

(@) ra=

We now remember that the angular momentum A can be measured only
with one error not smaller than h, which we may express by the
formula

+
(H) A=A 4

*
A being a measured value and M its minimum error.
Formula (G) becomes then:

(1) - Sy
r

ir P happonn to bhe equal t0 our selected proportionl P for the -
dorinition of r s then r will be related to A by the following
formula which is a version of formula (F) for this particular oase:

» %
(L) A = giymr P

Putting this value intc formula (I) we obtain for Pr = P13

l(“) Vo= V;'\:'Eﬁﬁgpr

which gives the error in our measurement of the squareroot of the
particle radius.




1v

If m is the mass of a magnetic monopole given by formula (11)

in section %:

2
n o= Beee

2r 02
o

then formula (M) becomes

{;nfim&or

If g is a Dirac monopole given by formula 2 section 2,
32 = J%Z-ﬁh and the above formula becomes:

2r
}/* + 4 o
Ve = I ‘-137‘"15

Since r is supposed to be comparable to r’ and P is comparable
to 1, the orror would be slightly lower than ——= 137 or less than 10 %.
This is a rather conspicuous error but not soc large as to make
the radius of a magnetioc monopole a meaningless concsept.
A diametrally opposite result would be outained if in stead of
caloulating the error for a Dirac monopole-radius we had calculated the
error for an eleotron-radius. In that case g would have to be replaced

by e in formula (N) and since ol - 37 formula (N} would become

13
)
v a Vo 137\/—;:

The error would be more than two orders of magnitude greater than the
quantity V;"we want toc measure (since P<1).

The radius of the electron, as defined above, is not a measurable
quantity aocording to Heisemberg's indetermination principle. This
would seem to put a queation mark behind every statement to the effeot
that the eleoctron has a specific radius finite or sero.



Appendix 2.

We shall now present the relativistic semi-classgical theory for linear
oscillation in a two-body system.

The bindings energy betwesen the two particles will be a constant
E defined by: -

: 2 2
‘ -
(a) E = U(r) + (M1 + uz)c (19110 + ”2o)°
where U(r) ia the potential energy, M1 and u2 are the masses of the

two particles, while M10 and M20 are their rest masses related to M
and M2 by the formulae

M |
20

2 2,2 '
A A

being their respective absolute velocities relative to the

1

v and v,
center of gravity.
The laws of movement (impule = O, barycenter at rest) are expressed

byt

(©)  Myvy =My,

and

(D) Myry = Myr,

(E) r1 + r,=r

r being the distance between the two particles (contera), r1 and T,

their respeotive distances from center of gravity.
Sommerfeld's condition for quantitation can now be expressed by:

F -
(F) lvldrl /szzdrz nh

or according to (C) and (E)

Jfr;lvidr-- nh



If we oall T the maximum distance periodically achieved by the

two particles (maximum r-value), this formula becomes:
r

x
(1) f/ ll'vldr = nh
0

The maximum distance T, is characterived by the condition V=V, = 0,
which according to formulas (A) and (B) gives:

(1) R = U(rx)

which is a way of defining Ty in termes of the bindings energy E.

In equation (C) we may now replace M, and M_ by their values obtained

1 2
from formula (B) and then solve the equation with respect to vé or v,:
v2 2 .
(L) v : R 2 )
27 2,2 2,22 ;.2 17 2,2 2,22 ,.2
+ - M | + -
vi/o + (1-v /o M, /M vy /ot (1=v,/a )W /X,
which according to (C) and (B) gives:
2 . P4
» 2 .2 Y2 2 , .2
- L ] M -
(W) M= Myvy /v My WooMo 3 M7 M T 2t Mo/ Yoo
c - v
2
If we put
U(rx) - U(r)
b - +
Y c

formula (A) becomes according %o (I):3

(0) l(rx,r) =M o+ M,

In this formula we may replece M_ by (M) and then eliminate v, by

2
the following formula derives from (B)

2,2
(p) Ve 1 '10/'1




VII

By solving the result with respect to u1 we obtain:
2 2 2
- +
- W~ Mt M (rx,r)
(Q) 1 2(r_,T)

This way l1 is expressed as a function of rx and r only.

to formula'{P) also the product l1v1 can therefore be expressed as a

function of r_ and r only, which will be designated as P(rx,r)x

According

(R) P(rx,r) = M_v

11

and (H) becomes

T
b &

(s) 4 P(rx,r)dr = nh

Using these formulae our machine program can calculate M(rx,r)

for any given ro and r values by formula (N) then by formula (Q) 1t

obtains M, and by formula (P) it obtains v, ,and P(rx,r) is then given

by formula (R). An r_ value fulfilling formula (S) can then be obtained

by successive approximations. Once Ty is determined, formula (I)

gives the bindings energy F,and the mass M of the two-body system is
then given by

B
“'““1*%*;5

This way all of the parameters: maximum distance rx, velocities v

1
and v,, mass of the system M are obtained.

The asyptotic coulombian potential Ug(r) we are going to uge in order

to calculate the masses of elementary particles is given by the following

formula fulfilling the requiremehts presented in section 5, provided the

substitution indicated in the footnote belowxis applied:

Xpis formula gives the potential Ug(r) only for r<:rOV§: The general
asymptotic coulombian formula valid for all r values is obtained by
jsubstituting the infinite series —;L§(1+%R2+(%R2)2+(%R2)3+...)

! - SR

for the expression ‘1/SR2(1-&R2) in formyla (T)s

.
¢ B - 4 -

L
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g18,+€ ¢,

™ ule) = -

ro\ 17(1+R%) + R2Exp(1/(1+1/SR2(1—%R2)))
84s» 85 are the magnetic charges, e,y € the electric charges
of two interacting magnetic monopoles, R= %— , T being the

(@] .
distance between their centers and T, their standard radius.

S'is a free parameter whose best value (giving the best predic-
tions for the masses of elementary particles including the elec-

tron) is found to be S=5,853% 5|37 . This value of S is
suspiciouslv close the Dirac monopole expressed in units of
\/Tc, namelyﬁ; = % 137 and ‘ might not be an accident,
even though wecdo not know what .'this coincidence means.

The above potential Ug'(r‘) and the force field generated by
it are shown in fig. 3. o



du
F(r)s—

) dr
- 0.6
-0.4
-0.2
-0
1 T —r
_ro 0 :_o \
uir) w(r)

b

- '
o o 0 £

1 1 R ) Mocz

--MOCZ -M°C2
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Fig. 3

Potential field U=Ug

Potential field U =U (r) defined in appendix 2, formula (T), and its
derivative F identifying the force field generated by it, for two

Dirac monopoles of opposit magnetic charge.
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