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Abstract 

The general homogeneous solution of the differential equation 

associated with an arbitrary term of the Blasius series expansion 

of the srream function, is given. This result is used to establish 

the solution of higher order terms of the Blasius series, than 

earlier published. A numerical .example is also given. 



2. 

I. Introduction and formulation of the problem 

The two-dimensional flow induced in a viscous fluid (kinematic 

viscosiLy v) around a circular cylinder (radius a) by the follow­

ing slip velocity on the cylinder surface, 

2[ .. 2N+1 
( 1 ) v ( a , e ) = V 0 c 0 & + t aN a 1 

N=1 

is considered (r, e denote two-dimensional polar coordinates V0 

characteristic velocity). 

by, 

( 2 ) 

The velocity field (u,v) is related to the stream function v 

( u, v) = (- .!_ !! H') 
r ae 'ar 

Introducing the following dimensionless quantities, 

( 3) {

t = c 0 1R r~a = c 0 1R * 
v0a 

'V = -c0 1f.o(z;,e;R), R = 
IR 

into the vorticity equation, it is well known that the following 

asymptotic expansion of lf.o(c,e;R) can be carried out, 

(4) 1 +<c,e;R) .... +0<c,a> +-ljl1(z;,e> + ••• 
t fixed ~ 
R + • 

This expansion leads to after partial integration. and some mani-

pulations are carried out, 

(5) 
a3+o 31f.oo a2t~~o at~~o a21Jio 
~ = -- -+---ae a ~;2 a~; az;aa 

a3.,1 2 2. a•o ~ f1 a•o a t1 
--azr = -a; ~+az- ~ ( 6) 

a•l a21f.oo 31fii a2to a31f.oo 
--~+----r.;-

ae ::H;; 2 az; ;u,;ae ar;3 



(higher order terms of t1J a.re not considered) with the boundary 

conditions, 

(7) 

(8) 

lji 0 Co,a> = 0 

(at~Jo] 
af t=O 

= a + I a e2N+1 
N=1 N 

[aljlo] 0 = 
dl; t=• 

~Jt 1 <o,e> = o 

[ ~1¥1) = 0 
~- t=O 

= r b e2N+1 
N=O N 

' 

3. 

where of course the flow outside the boundary layer must be calcu­

lated before {bN} is known (N =0,1,2,···). 

The problem stated by (5, 6, 7 &8) appears for example in connection 

with oscillatory boundary layers where the time averaged Reynolds 

stresses induce the slip velocity (1) on the cylinder (see Stuart 

1966). Riley (1965) studied the problem and solved the three first 

terms in the Blasius series expansions, 

(9) 

We attempt a similar expansion of ljl 1 (~,e) , 

{ 1 0) 

These expansions give the following equations 

( 11 ) ''' Ill + do ,J, II - ''' 7 2 : Q 
~o,o ~o,o ~o,o ~o,o 
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( 1 2) 4ll/l o ,N 

- . .£1/Jnr N = 0 Do o,o , 
( 1 3) 

1 N II -s; k~ 1 ~~-k{-(2k+1)lflo,k iJil,N-k + 2(N+1)tjl~,k lji~,N-k 

[( ) 1 ] " aN·u, 
- 2 N-k + tjlo ,k ljll ,N-k} -EN t tjl o,N, N = 1 , 2, 3, ••• 

where the solution ljl 0 0 = 1 -e-c (Riley 1965, eq. 27, but deviant , 
notations) has been used to obtain (12), (13) and (14). The boundary 

conditions are, 

1/Jo,N(O) = 0 

(15) [1/J~,N]r;=o = 1 

["'~,N]c=• = 0 

.1 ,NCO) = 0 

(16) [+~,N),=o = 0 

[w~,N)t=· = 1 

Inspection of equations {12) and (13) reveals that 'Po,N and 

. .; 1 ,N have identical general homogeneous solutions for N ~ 1. 



II. Solution 

An important step in achieving the general solution of an · 

arbitrary term of the Blasius series is to establish the general 

5. 

homogeneous solution of the equation concerned. The general homo­

geneous solution ~~~~(~) of ; 0 ,N{~) can be constructed by super-

position of terms m -nc a z; e m,n Some details of the calculations 

determining {am,n} are given in appendix A. The results of these 

calculations are, 

( 1 7) 

where 

and for n > 3 

2~+ 1 ( 2N+1) 2N( 2N-1) • • • • ( 2N-n+2) e-n t] 

n=2 (n!) 2 (n-1) 

+ CN[-(6N+4)+t+ 2~+1r;ze-t 

2N+1 
+ I: (K _(2N+1)2N(2N-1)~··•(2N-n+2)t)e-nr; 

n=2 n (n!) 2 (n-1) 

+ C2N+1)((2N)!)I (-1)k-1 . (k-2)! e-C2N+k)r;1 
k=2 «2N+k)!) 2 (2N+k-1) 

(2N+1)(4N+1) 
4 

K = (2N-n+2}(n-2) K 
n 3 2 n-1 

n - n 

+ (2N+1)(2N)(2N-1)••••(2N-n+3)(!CN-n+2) 
((n-1)!)2(n3-n2) n-~ 

_ ti(3n-2)(2N-n+2)] 

n 2 (n-1) 

According to equation (12) and (13) 

( 1 8) lji (H) = 
o ,N 



when N ! 1 . For N = 0 we find, 

(19) .p(H) = A0 e-c; + B0 [1+c;e-r; l 
1 '0 

The particular solutions can now be found by variation of the 

parameters, but also by inspection matching the residual terms 

to the inhomogenity terms of (12) ~nd (13) by choosing special 

values of {a } • m,n 

Applications 

The results obtained above are now used to establish the 
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fourth term ~ 0 3 of the Blasius ueries (9) subject to conditions 
' 

(15). In this context we need to quote three first terms given by 

Riley (1965) equations (27), (28), (29) and (31), respectiveiy, 

which in our notations can be written 

(21) +o 0 = 1-e-r; 

' 

where 

(24) 
1 . -r; 

= ~ 8552 [1440+(7063+7200~)e 

~7200e- 2 r;-1200e- 3 '-1200- 3 r;-100e-~'-3e- 5 'l 
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<25) g 2 <r;> = u 6115280[99216-CS392720+477900r;+2S04S2or; 2 >e-r; 

+(5486940+5009040t)e- 2 t -(140655-417420r;)e- 3 r; 

As usual, t~~ 0 3 is written as a sum of functions f 3 , g 3 and h 3 
' 

which are independent of {aN}, i.e., 

ala2. 3a3 
.,.. = f3(r;) +- g3(r;) +_j_ h3(r;) 

0,3 a 3 a 3 
(26) 

which give, 

L3f3(r;) = 0 

L3g3(r;) = -sw~, 1 f 2 ' t " +B.Po,1f2 - 31jlo 1£2 
' 

L3h3(r;) " I t II 

= - Stjl o , 1 g2 +Sljlo 1g2 - 3 lf.lo 1g2 
' ' (27) 

[f;(r;)Jr;=t= 1 
' f3(0) = [ f ; ( !;) ] r; ="" = 0 

[g;<r;>lr;=o= g3(0) = [g;<c>Jc=· = 0 

[h~(r;)]r;=o= h3(0) ·- [h;<c> ]r;=ea = 0 

The solutions are, 

(28) 1 -r; = 392 7660 {151200 + (1957814+1058400r;)e 

-1587600e- 2 r; -441000e-3Z; -73500e- 4 r;; -6615e-sr; 

(29) g 3 (r;) = +~~!<t> + 210~ 56 {7254 -43200r; 2e-r; + (112611+129600r;)e-2r; 

+ ( -7 4 2 6 .... 2 52 0 0 r; ) e- 3 r; + (- 4 613 i 5 + 2 4 0 0 r; ) e- i4 r; 

+ (- 3 0 i 09 9 + 9 0 l; ) e- 5 r,; - 2 i 08 01 e 6 r; + 5 ~go e 7 c; } 



a. 

(30) h3(t;)- ljl~~~(t;) +9114~976 {-476~634 +(-8181t;2+751356r;3)e-r; 

where, 

with 

and, 

with 

- c1916: 177 + 9430020t;+4508136r; 2 >e- 2 t 

+ (2398£f321 + 8332949' _ 563517 ,2)e·3t 

+ (169~601 + 191772t)e-\t; 

( 14325 + 4401 ) -sc 
- 400 ~r; e 

+ 10074 -61; 2301 -7t} 
40 e -1T2e 

-7 A3 AI -0.704077008, B3 fllll-0.96801791 x10 , c3 = 0 

-7 
A3 lilllf 0.0880122017, B3 AI 0.334608072 x10 , c3 = 0. 

(lji(H) is given by equation 17.) 
0 , 3 

The first term of the second order approximation ljl 1 is 

treated in the same way, i.e., 

( 31) 

giving, 

(32) 

L~p 0 <c:) = o 
Lo q o ( d = r;e- z; 

p 0(0) = [p~(t;)]t;=O = 0 

[p~(t;)]r;=o= 1 

qo(O) = (q~(~;)jt=o = 0 

[q'(r;)];;:ao= 0 



The solutions are, 

with 

and, 

(34) 

with 

where 

Ao 
5_1i'(-1)k-1 1 ::: 
2 21<=2 k!(k-1) 2 

Bo ::: 3 +.!t(-1)k-1 (k·2)! 
'2 2 k= 2 ( k !) 2 

co ::: 1 , 

Ao = 3 + i ~(-1 )k (k-2)! (k+1) 
k=2 (k!) 2 (k-1) 

Bo = 3 +i i (-1)k-1 (k-2)! 
k=2 (k!) 2 

c - 1 0 -

is given by equation (19). 

The slip velocity induced by the time averaged Reynolds stresses 

9. 

in the Stokes layer at a long circular sylinder placed orthogonal 

to a oscillatory flow fields generates a steady slip boundary layer 

outside the Stokes layer where (see Riley 1975 equation (9), note 
deviant notations), 

[ a 1fl 0 ) = ~ sin 2 e 
ac ~=o 



which give, 

An approximate expression of the dimensionless momentumflux in 

the slip boundary layer is, 

<» 3 
M(e) = c~({ t [a Ill' Cr;) e2N+1]}2dr; 

'6 N= 0 N o, N 

which give, 

M(~) ~~~:~ 0.975 

1 0. 

This is unexpected close to a result given by Riley (1975, pp807) 

based on numerical integration which gave 

M(~) All 0.991 

In figure 2 the dimensionless tangential velocity, 

2 N1 a111o,N 8 2N+1 v = c 0 r aN -
N=o ar; 

for N1 = 2 (Riley 1965) and N1 = 3 . 

This figure indicate a three term Blasius series to give the tang-

ential velocity with resonable accuracy for 

while a four term series seems to be applicable for 



The general residual term of a test solution is, 

(A 1 ) Rm , n ( r; ; N ) = ~{ am , n t me-n r; } 

= am,n{[m(m-1)(m-2)r;m- 3 +m(m-1H1-3n)r;m- 2 

+mn(3n-2)r;m-l + (n2-n3)r;m]e-nc: 

+ [- m ( m -1 ) t m- 2 + 2m ( n -1 - 2 N ) t m- 1 

+(-n+1+2N)(n-1)tmle-(n+1 )t} 

=a {P (r;;N)e-nr; +Q (r;;N)e-(n+1 >t} 
m,n m,n m,n 

with the following properties, 

(A2) R 0 , 1 (r;;N) = 0 

(A3) Ro,2N+1(r;;N) = -2ao,2N+1N(2N+1)2e-(2N+1)r; 
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(A4) R1 , 2N+ 1 (r;;N) = a1 , 2N+ 1 [(2N+1)(6N+1) -2N(2N+1) 2r;]e-( 2N+ 1)t 

Equation (A2) indicates that -r; e is a homogeneous solution for 

every N . The construction of the other homogeneous solutions 

consists of choosing numerical values of a m,n such that 

for every n . The simplest expressions are obtained when the 

properties (A3) and (A4) are utilized. 
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Figure 1. The polar coo~dinate sy5tem (r,e) .referred to 

in the paper. 

1 3. 
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Figure 2. Dimensionless tangential velocity distribution at 
various angular positions. Full and dashed curves based on 
three and four terms of the Blasins series, respectively. 
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