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Abstract

The general homogeneous solution of the differential equation
associated with an arbitrary term of the Blasius series expansion
of the stream function, is given. This result is used to establish
the solution of higher order terms of the Blasius series, than

earlier published. A numerical example is also given.



I. Introduction and formulation of the problem

The two~dimensional flow induced in a viscous fluid (kinematic
viscosity v ) around a circular cylinder (radius a) by the follow-

ing slip velocity on the cylinder surface,
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is considered (r, 6 denote two-dimensional polar coordinates Vo
characteristic velocity).

The velocity field (u,v) 1is related to the stream function V¥

by,
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Introducing the following dimensionless quantities,
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into the vorticity equation, it is well known that the following
asymptotic expansion of ¢(z,0;R) can be carried out,
(4) W(g,85R)  ~ o(z,0) *j%*l("°)*""
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This expansion leads to after partial integration. and some mani-

pulations are carried out,
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(higher order terms of ¢ are not considered) with the boundary

conditions,
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where of course the flow outside the boundary layer must be calcu~

lated before {by} is known (N =0,1,2,-..).

The problem stated by (5, 6, 7 &8) appears for example in connection
with oscillatory boundary layers where the time averaged Reynolds
stresses induce the slip velocity (1) on the cylinder (see Stuart
1966). Riley (1965) studied the problem and solved the three first

terms in the Blasius series expansions,
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We attempt a similar expansion of ¢, (z,8) ,
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These expansions give the following equations
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where the solution Vo 0 ° 1-e" ¢ (Riley 1965, eq. 27, but deviant
. ’
notations) has been used to obtain (12), (13) and (14). The boundary

conditions are,
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Inspection of equations (12) and (13) reveals that v, ny and
?

¥,y have identical general homogeneous solutions for N2>1 ,
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II. Solution

An important step in achieving the general solution of an -
arbitrary term of the Blasius series is to establish the general
homogeneous solution of the equation concerned. The general homo-

geneous solution ¢§H§(c) of wo N(c) can be constructed by super-
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position of terms an ncme'nc . Some details of the calculations
H

determining {am n} are given in appendix A. The results of these
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calculations are,
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According to equation (12} and (13)
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when N>1, For N =0 we find,
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The particular solutions can now be found by variation of the

parameters, but also by inspection matching the residual terms
. - m_-ng
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to the inhomogenity terms of (12) and (13) by choosing special

£
values of {am,n} .

Applications

The results obtained above are now used to establish the
fourth term wo,a of the Blasius series (9) subject to conditions
(15). 1In this context we need to quote three first terms given by
Riley (1965) equations (27), (28), (29) and (31), respectively,

which in our notations can be written
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As usual, ¢°’3 is written as a sum of functions £, , g; and h,

which are independent of fayl , i.e.,
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A, ~ -0.704077008, B, ~ -0.96801791 x10~’, C; = O ;
and,
(h) _ J(HY, .
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A, ~ 0.0880122017, B, m~ 0.334608072 x10™ 7, C, = 0 .
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b

The first term of the second order approximation v, is

treated in the same way, i.e.,
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The solutions are,
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where wfﬂg(c;Ao;Bo;CO) is given by equation (19).
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The slip velocity induced by the time averaged Reynolds stresses
in the Stokes layer at a long circular sylinder placed orthogonal
to a oscillatory flow field,; generates a steady slip boundary layer

outside the Stokes layer where (see Riley 1975 equation (9), note
deviant notations),
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which give,
c, = /3 a, =1, a, ==2, a, =%, a, = -
o - > %o T ! 1 773 %2 T 75 3 94§ °
An approximate expression of the dimensionless momentumflux in
the slip boundary layer is,
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which give,

.M(%) ~ 0.975

This is unexpected close to a result given by Riley (1975, pp 807)

based on numerical integration which gave

M(%) ~ 0,991

In figure 2 the dimensionless tangential velocity,
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V = c% b3 aN .__..9_?_1\.' 92N+1
N=0 L

for N, = 2 (Riley 1965) and N, = 3.
This figure indicate a three term Blasius series to give the tang-

ential velocity with resonable accuracy for

n

le|l < 3

while a four term series seems to be applicable for

IG] < -1%1!
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The general residual term of a test solution a, ncme-n‘ is,
]
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with the following properties,
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Equation (A2) indicates that e ® is a homogeneous solution for

every N . The construction of the other homogeneous solutions

consists of choosing numerical values of a, . Such that
?

§[am,n+1pm,n+1(;;N) "'a‘m,an,*n(';;N)1 =0

for every n . The simplest expressions are obtained when the

properties (A3) and {(A4) are utilized.
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Figure 1. The polar coogdinate system

in the paper.
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Figure 2. Dimensionless tangential velocity distribution at i
various angular positions. Full and dashed curves based on
three and four terms of the Blasins series, respectively.



