
Nonlinear water waves at a submerged 
obstacle or bottom topography 

John Grue 

Division of Mechanics, Department of Mathematics 
University of Oslo, Norway 

Abstract 

Nonlinear diffraction of low amplitude deep water waves due to a shallowly sub­
merged cylindrical body or an elongated bottom topography being close to the free 
surface is studied experimentally in a wave channel and theoretically. The wave crests 
and the axis of the cylinder or the the bottom topography are parallel. The incoming 
waves, with wave length A, undergo strong nonlinear deformations at the shallowly 
submerged obstacle when the wave amplitude is not small compared to the local wa­
ter depth above the obstacle. These deformations introduce an infinite number of 
super harmonic oscillations to the flow, generating free super harmonic waves propa­
gating away from the from the obstacle superposed upon the reflected and transmitted 
waves with wave length A. The wave lengths of the super harmonic waves are A/4, 
A/9, A/16, ... , due to the quadratic in wave frequency dispersion relation for deep wa­
ter waves. Their amplitudes, growing with increasing incoming wave amplitude up to 
saturation values, are found to be prominent at the obstacle's lee side, while they are 
vanishingly small at the weather side. The second and third harmonic wave amplitudes 
are, surprisingly, in several examples found be of the same order of magnitude as the 
incoming wave amplitude. Up to 25% of the incoming energy flux may be transferred 
to the shorter waves. The theoretical model accounts for nonlinearity by the Boussi­
nesq equations in the shallow region above the obstacle, with matching to transient 
linearized potential theory in the deep water at both sides. The theory explains both 
qualitatively and quantitatively the trends observed in the experiments up to breaking. 

1 Introduction 

Low amplitude ocean waves propagating over shallow reefs, sunken rocks or under water 
ridges may, in addition to being diffracted, be broken up into shorter super harmonic free 
waves due to nonlinear free surface effects. This is true for swells propagating towards 
the Norwegian west coast where the bottom topography many places have several shallow 
under water ridges rising from deep water. The generation of the super harmonic waves 
changes the swell spectrum because a significant part of the incoming wave energy may be 
transferred to higher frequencies. This phenomenon is observed if one is sailing in a small 
boat seaward on a day when only swells are propagating towards the shore. Close to land 
the boat is responding to both longer and shorter waves. By sailing seaward, across the 
under water ridges, the shorter waves get weaker and weaker, and in the open sea only the 
pure swells are observed. 

The generation of free super harmonic waves also occurs at a shallowly submerged 
marine structure, introducing super harmonic oscillatory forces and contributions to the 
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mean horizontal drift force acting upon the structure. The mean horizontal drift force due 
to the incoming and scattered waves, usually directed along the incoming wave direction, 
may be reversed when the super harmonic waves generated at the body's lee side are large. 

In the present contribution we study this phenomenon by simplified examples experi­
mentally in a wave channel and theoretically. Incoming waves with low amplitude prop­
agating in a fluid layer with great water depth are diffracted by a submerged body or a 
bottom topography which is close to the free surface. The body· is a horizontal circular 
cylinder and the bottom topography is rectangular. Both geometries have axes parallel 
to the crests of the incoming waves. The presence of the body or the bottom topography 
introduces locally a shallow water depth which leads to significant deformations of the in­
cmning waves as they propagate from the deep fluid layer into the shallow region above 
the obstacle and to the deep layer again. The deformations of the waves at the obstacle 
are linear if the incoming wave amplitude, a, is small compared to the local shallow wa­
ter depth. Nonlinear effects become, however, prominent at the obstacle when the ratio 
between a and the local water depth is not small. The initially symmetric wave profile 
become then asymmetric and skewed, and the waves may for larger values of a be spilling 
or plunging. The nonlinear deformations introduce, in addition to the oscillations with the 
same frequency as the incoming wave frequency, w, a hierarchy of super harmonic oscilla­
tions to the flow with frequencies 2w, 3w, 4w .. . , which then generate trains of free waves 
propagating away from the obstacle. The wave length of the incoming waves, denoted by 
.\,is connected to the wave frequency w, through the dispersion relation 
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assuming that the water depth is greater than .\. By replacing w by nw, n = 2, 3, 4, ... , in 
(1) we obtain the wave lengths of the free super harmonic waves by .\j4, .\j9, .\/16, ... , 
which are superposed upon the reflected and transmitted waves with wave length .\. 

The aim of the paper is, by experiments and numerical simulations, to quantify the 
amplitudes of the super harmonic far-field waves, and to describe their generation in detail. 
We find that the super harmonic waves are remarkably pronounced at the obstacle's lee 
side. For increasing incoming wave amplitude the higher harmonics wave amplitudes are 
growing up to a saturation value is reached. As we shall see, the second and the third 
harmonic free waves may, surprisingly, attain amplitudes which are as large as the first 
harmonic transmitted wave amplitude. Mo:te specifically, we find that the free second and 
third harmonic wave amplitudes may be up to 60% of the incoming wave amplitude. This 
means that a significant amount of the incoming wave energy flux, up to 25% in the present 
examples, is transferred to the wave components being much shorter. The amplitudes ofthe 
higher harmonic waves on the weather side of the obstacle are, on the other hand, always 
very small, even if there is a large first harmonic reflected wave, or the incoming waves are 
breaking in front of the submerged obstacle. Thus, the deformations of the incoming waves 
introduce, practically speaking, changes in the flow only on the lee side of the obstacle. 

This problem was studied experimentally and theoretically by Williams (1964) for a 
horizontal plate situated very close to the free surface. His wave measurements are basically 
obtained locally at the plate. He concludes that wave components up to the third harmonic 
are present locally at the body and in the far-field. His results for the far-field is, however, 
sparce and are complicated to compare with. We find here, for moderate incoming wave 
amplitude, qualitatively the same results as Williams, that oscillations up to the third 
harmonic are introduced to the flow. For larger values of a, we find, however, that very 
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strong nonlinear effects take place locally at the obstacle, which means that the fourth and 
higher harmonic oscillations also are present. 

Measurements of second harmonic free waves generated at a slightly submerged cylinder 
are also presented by Longuett-Higgins (1977, figure 5) in connection to measurements 
of negative horizontal drift forces. He finds that the second harmonic wave amplitude 
may be as large as approximately 45% of the incoming wave amplitude, and furthermore 
that it reaches a saturation value, which magnitude is not, however, given his example. 
Another experimental work, concerning the oscillatory first-, second- and third harmonic 
diffraction forces upon a submerged circular cylinder is by Chaplin (1984). He also reports 
measurements of the reflection power due to the circular cylinder, with the conclusion that 
the first- and higher harmonic reflected waves always are very small, even if wave breaking 
occurs at the body. We obtain here the same conclusions as Chaplin regarding the reflection 
power. Chaplin also mention that second harmonic free waves, with prominent amplitude, 
are generated at the cylinder's lee side without, however, quantifying it. 

The second harmonic free waves as well as the second harmonic oscillatory forces may be 
computed by second order in the incoming wave amplitude potential theory (Lee 1968, Vada 
1987, Mciver and Mciver 1990, Friis, Grue and Palm 1991) and for larger values of a by 
nonlinear simulations, which for the submerged circular cylinder was obtained recently by 
Cointe {1989). We compare the measurements of the second harmonic free wave amplitude 
with results by the second order theory, with excellent agreement for small values of the 
incoming wave amplitude. Cointe's nonlinear simulations for the circle, originally compared 
with preliminary experiments by Grue and Granlund {1988), show striking agreement with 
the experiments, even for larger values of a when saturation is reached. 

In order to investigate the main generation mechanism of the super harmonic waves in 
more detail we also develop a simplified nonlinear wave diffraction model for the rectangular 
bottom topography case. The model accounts for nonlinearity by the Boussinesq equations 
in the shallow region above the bottom topography, with matching at the ends to transient, 
linearized potential flow, applied in the deep water. The matching procedure between the 
linear and nonlinear flow regimes is very effective, and the model shows good agreement 
with the experiments both locally at the bottom topography and in the far-field, empasizing 
that both nonlinearity and dispersion are important locally at the obstacle, while the linear, 
dispersive effects are the dominating far away. 

The experimental set up and procedure for the measurements are outlined in §2. We 
describe in §3 the experimental results for the super harmonic wave amplitudes in the far­
field. The nonlinear diffraction theory for the rectangular bottom topography is outlined 
in §4 with numerical implementation and results of simulations given in §5. 

2 Experimental set up and procedure 

The experiments are carried out in a wave channel at Department of Mathematics at the 
University of Oslo. The channel is 14.2m long, 0.47m broad and is filled with water at a 
depth which is varied from 0.44m to 0.46m. At one end the channel is equipped with a 
wave maker, a vertical rigid plate, driven by a hydraulic servo-controlled cylinder, which 
can perform oscillations under program control. At the other end of the channel there is a 
1.5m long absorbing beach, which reflects less than 10% of the incoming wave amplitude. 
The wave generation is very accurate and repeatable. The generator is operated such that 
the incoming waves are pure Stokes waves without second and higher harmonic parasittic 
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free waves superposed. 
The frequencies of the incoming waves are in the examples chosen as either w = 21r X 

0.95H z, w = 211" x 1.05H z or w = 211" X 1.22H z, with corresponding wave lengths being 
A = 1.62m, A = 1.37m or A = 1.04m, respectively. The incoming waves are practically 
speaking deep water waves, since the wave lengths corresponding to the wave frequencies 
above for in:finte water depth are respectively A = 1. 73m, A = 1.42m or A = 1.05m. The 
incoming wave amplitude is varied between 2mm and 28mm, which means that the wave 
slope is smaller than 0.17. 

The reflected and transmitted waves are measured for two different circular cylinders 
and a rectangular bottom topography, all geometries spanning the whole width of the 
channel. The smaller circle has radius R = lOOmm, while the radius of the larger one is 
R = 190mm. The rectangular bottom topography has a cross section being 500mm long 
and 410mm high. The uppermost corners of the rectangle are well rounded in order to 
reduce flow separation which may originate there. The geometries are placed with the lee 
side's furthest extention a distance of 5. 7m from the average position of the wave maker, 
and with their tops positioned horizontally within a deviation less than 0.2nun across the 
width of the channel in order to minimize cross variations in the flow which can occur at 
the lee side. The distance h between the uppermost point of the geometries and the mean 
free surface is varied between 25mm and lOOmm. 

The surface elevation is recorded by four wave gauges with a resolution of approximately 
O.lmm. The gauges are static calibrated. The accuracy of the analog to digital recording of 
the surface elevation is tested by mounting the gauges to a motorized eccentric which forced 
the gauges to perform a circular path of a given radius with constant angular velocity in 
calm fluid. Repeated tests with this arrangement revealed that the recording of the surface 
elevation has a relative accuracy better than 5% . 

The four gauges are arranged couplewise symmetric with respect to and 12cm off the 
centerplane of the channel, and with one couple a distance behind the other. This distance 
is varied between lOcm and 30cm. The arrangement enables recording of the reflected waves 
by the geometry, the reflected waves by the beach, the higher harmonic free waves and the 
forced components of the Stokes waves. Also transverse variations, which are observed at 
the geometry's lee side when wave breaking occurs, are recorded by this arrangement. 

First a set of runs was made with the gauges at the weather side, to measure the 
incoming waves and the reflection power of the obstacle. Next the runs were repeated with 
the gauges at the obstacle's lee side. The gauges were at the weather side and the lee side 
placed at different distances from the obstacle. Each experiment was running 2 minutes 
before the recording was started. The transients were then small. Then recording went on 
for 1 minute. 

Wave breaking may occur at the geometry when the incoming wave amplitude is large 
compared to the local water depth. We here denote, as seems to be standard, the breaking 
wave as a plunger when air bubbles clearly are observed in the fluid. By spilling we mean a 
breaking process which does not give rise to air bubbles in the fluid. When wave breaking 
occurs at the geometry, we observe that variations along the wave crests are introduced at 
the lee side. The measurements reveal, however, that the variations along the crest occur 
only for the super harmonic waves and not for the first harmonic component. The latter 
result is as expected since the cross variations introduced by the breaking process contain 
a minor part of the incoming wave energy, introducing a correspondingly small change in 
the first harmonic transmitted wave, which contain the dominant part of the transmitted 
wave energy. The higher harmonic wave components originate, however, from the steep 
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wave at the obstacle, and small cross variations there are then continued down-wave of the 
obstacle. In spite of the presence of the cross-variations in the wave field, the time records 
of the surface elevation at each geometric location show a steady pattern. This suggests 
that the cross variations simply are due to that the waves are propagating down the channel 
with crests not exactly orthogonal to the channel walls. By averaging across the channel 
we obtain results for the higher harmonic wave amplitudes which are almost independent 
of the distance from the geometry. Cross variations in a wave channel may also be due to 
sloshing modes or cross waves,see for example Kit, Shemer and Miloh (1987). These effects 
are very small in the present examples since the wave frequencies are chosen different from 
the cut-off frequencies and the wave amplitudes are small. 

2.1 Wave kinematics 

Let us introduce the positive :~:-axis in the mean free surface along the channel length 
directed towards the beach. The surface elevation 'TJI of the incoming waves with amplitude 
a, wave number K and wave frequency w, generated by the wave maker, reads 

m(z, t) = acos(Kz- wt + 6) +a?) cos 2(Kz- wt + 6) + ... (2) 

where t denotes time and 6 is a phase angle. a1 2) denotes the amplitude of the forced 
second harmonic wave component connected to the incoming wave. For given frequency w 
and water depth H the wave number K is obtained by the dispersion relation 

w2 = gKtanhKH (3) 

In the examples considered, tanh K H ~ 1, which means that K deviates very little from 
the value of the deep water wave number given by w2 /g. The theoretical value of a1 2) is 
thus 

(4) 

which agree with the experimental observations. We assume that the reflected waves from 
the obstacle read 

n>l 

+ L a~n) cos(Knz + nwt + 6~n)) (5) 
n>l 

where a~), n = 1, 2, ... , denote the nth harmonic reflected free wave amplitudes, a~:), n = 
2, 3, ; .. , denote the amplitude of the forced nth harmonic wave components connected to 
a~) cos(K z + wt + 6~1 )) and 6~n), n = 1, 2, ... ,are phase angles. The wave numbers Kn, n = 
2, 3, ... , are given by 

(nw) 2 = gKn tanhKnH, n = 2, 3, ... (6) 

With tanh KnH very close to unity, Kn is given by 

n2w2 
Kn = --, n = 2,3, ... 

g 
(7) 
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At the lee side of the cylinder we assume that the waves are given by 

7J+(z,t) =a~) cos(Kz- wt + 6~1 )) + L af:) cosn(Kz- wt + 6~1 )) 
n>1 

+ L a~n) cos(Knz- nwt + 6~n)) (8) 
n>1 

where a~), 1, 2, ... , denote the nth harmonic transmitted free wave amplitudes, af:), n = 
2, 3, ... , denote the amplitudes of the forced nth harmonic wave components connected to 
the first harmonic transmitted wave and 6~n), n = 1, 2, ... , are phase angles. 

The free wave amplitudes, as well as the forced wave amplitudes, are obtained from the 
time records of the surface elevation 7J(z, t). Introducing the Fourier transform by 

21r 

1)(n)(z) = ~ r-w 7J(z, t) exp( -inwt)dt, 
27r lo n=1,2, ... (9) 

we may obtain the incoming wave amplitude, a, and the reflected wave amplitude by the 
geometry, a~), by measuring 1)(1) at two positions z1 and :~: 1 + ~z at the weather side. We 
find 

1 
a= I sin(K ~z )1177(1)(:~:1) -1)(1)(:~:1 + ~z) exp( -iK ~z )I (10) 

a~) = I sin(~ ~z )lli7(1)( z1) - 1)(1)( z1 + ~z) exp( iK ~z )I (11) 

At the lee side we obtain corresponding results for the first harmonic transmitted wave 
and the reflection power due to the beach. We always find that the reflection due to the 
beach is less than 10%. The reflection by the beach is even smaller for the shorter higher 
harmonic wave components, which gives that the higher harmonic wave amplitudes at the 
lee side are obtained by 

n = 2,3,4, ... 

(12) 

n = 2,3,4, ... 

(13) 
The distance ~z between the gauges is varied between lOcm and 30 em. The position z1 is 
at the weather side varied with a distance between 0.8m and 1.5m from the geometry. At 
the lee side the location of the gauges is varied between 2m and 6.5m from the geometry. 
The results obtained for the wave amplitudes with this method are almost independent of 
the values of ~z and z1. 

3 Experimental results 

3.1 The circular bodies 

Let us then consider the waves at the lee side of the circular bodies. In figures la-b we 
display measurements of a~) and a~) for the circle with radius R = lOOmm submerged 
with distance h = lOOmm between the free surface and its uppermost point. The scatter 
obtained by different runs are indicated in the figures. The figures show that a~)/ a always 
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is very close to unity. The results for a~)/ a exhibit roughly a linear increase with a, which 
for small and moderate incoming wave amplitude agree with computations by second order 
potential theory (Friis, Grue and Palm 1991 ). We observe that the second harmonic wave 

amplitude a~) is much smaller than a~)· a~) is, however, much larger than the forced 

seoond harmonic wave amplitude, a~~, which in all examples, within the accuracy of the 

experiments, agree with the values oft{ a~)) 2 K, also shown in the figures. The third and 
higher harmonic waves are very small in the examples. 

Next we reduce the distance between the free surface and the uppermost point of the 

circle to h = 50mm. Measurements of a~) and a~) are shown in figure 2a for the circle 
with R = 100mm and wave frequency w = 211' x 1.05H z, in figure 2b for R = 100mm and 
w = 211' X 1.22H z and in figure 2c for the larger circle with R = 190mm and w = 211' X 1.05H z. 

(3) (4) . 
a+ , a+ , ... ,are agam very small. 

The values of the second harmonic free wave amplitude show some interesting features 
in these examples. We observe that a~)/ a is a monotonously growing quantity up to a 
maximum which occurs in the vicinity of the spilling limit, which also is indictated in 
the figures. We remark that the measurements of a~) fit well with results from second 

order potental theory for small incoming wave amplitude. The maximum value of a~)/ a is, 
surprisingly, very close to 0.4 in these examples (figures 2a and 2c) which means that up to 
8% of the incoming energy flux is transferred to the second harmonic free waves. We also 
note that the maximum value of a~) is almost 50% of the first harmonic transmitted wave 
amplitude. In other words, the magnitude of the second harmonic free wave amplitude 
may be comparable to the first harmonic wave amplitude in these examples. For larger 
incoming waves a~)/ a is a monotonous decaying function. The second harmonic free wave 
amplitude is completely dominating the forced second harmonic wave amplitude in these 

. (2) (2) 
examples, I.e. a+ > > a1+. 

In figure 2a we have also displayed theoretical results for a~) obtained by Cointe (1989) 
who exploit potential theory with the exact nonlinear free surface condition. Cointe's 
computations are performed for w = 211' Hz, a slightly smaller frequency than ours. The 
theoretical results for a~) fit surprisingly well with the present measurements, even also 
when spilling or plunging is observed in the wave flume. 

We observe that the values of a~)/ a exhibit a pronounced decay with increasing incom­
ing amplitude, with the largest decay occurring for the largest cylinder. The generation 
of the second harmonic wave accounts for up to 8% of the incoming energy flux in these 
examples, and is, in addition to energy loss due to wave breaking, partly explaining the 
reduced values of a~) fa in figures 2a-c. In addition to these two effects, there is energy 
lost in the bodies' boundary layer, which obviously takes place more strongly at the larger 
cylinder, with the larger decay in a~)/ a, than at the smaller cylinder, with a weaker decay 

in a~) fa, since the transfer of energy to the second harmonic wave and loss of energy due 
to wave breaking are approximately of the same strength in all of the three examples. 

In the next examples, figures 3a-b, we consider the smaller circle situated very close to 

the free surface with h = 25mm. The results for a~) and a~) are similar to the former cases 

shown in figures 2a-b. The maximum of a~)/ a is now occurring for a smaller incoming wave 
amplitude, a c::::: 5mm, with a maximum value being, surprisingly, almost the same as for 
the deeper submerged circles. Another interesting result is that the experimental values of 
a~) show excellent agreement with second order potential theory for very small incoming 
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wave amplitudes, but strongly deviate from this theory for incoming wave amplitudes 
greater than 5mm and up to the spilling limit. We would expect second order theory 

to be appropriate for obtaining a~) up to the breaking limit. The experimental results 
indicate, however, that strong nonlinear effects are contributing to the generation of the 
second harmonic waves at the body, which are not included in the second order theory. As 
in the former examples, the third and higher harmonic waves have very small amplitudes. 

One of the striking results for the circular cylinder is that linear potential theory gives 
a vanishing reflection coefficient (Dean 1948). Recently, it has been shown that also the 
second harmonic reflection coefficient is identically zero (Mciver and Mciver 1990, Friis, 
Grue and Palm 1991). Our measurements support these theoretical results. The measured 

first harmonic reflection power, a~)/ a, is always less than 0.05, which is the accuracy of the 
experiments, even if the waves are breaking at the body. With no first harmonic reflection, 

i.e. a~) ~ 0, which gives that a1:! ~ 0, the surface elevation at the weather side of the 
cylinder is approximately given by 

77(z, t) =a cos(Kz- wt + c5) +a?) cos 2(Kz- wt + c5) 

+a~) cos(K2z + 2wt + c5~)) +higher harmonic components (14) 

It is easy to demonstrate that we may measure a~) by (12) in this case. The measure­

ments show that a~) is even much smaller than a~). We also find that 17)~n)l, n = 3, 4, ... , 
are very small. Our experimental results are thus indicating that there are no first and 
higher harmonic reflected waves due to the submerged circular cylinder. This result is 
also found experimentally by Chaplin (1984) who considered circular cylinders with deeper 
submergence. 

3.2 The rectangular bottom topography 

Let us then consider the higher harmonic waves generated at the rectangle which has a 
horizontal extention, 2L = 500mm, along the wave channel, is extending across the channel 
and down to the bottom of the channel. The rectangle is submerged with a small distance 
h between the free surface and its horizontal top, which in the present examples is chosen 
to be either h = 37.5mm or h = 50mm. A large part of the incoming wave energy may be 
reflected by this body, depending on the incoming wave length, the length of the rectangle 
and its submergence. Surprisingly, however, the major part of the incoming wave energy 
is transmitted when ,\ is shorter than about ten times the horizontal extention 2L, i.e. 
,\ > 20L. This fact is illustrated in figure 4 where the transmission coefficient, obtained by 
linear theory (see §4), is shown for h/2L = 0.075, 0.1 and for ,\ > 4L. 

Results for the following two sets of parameters are then considered; set 1: h = 37.5mm 
and w = 21r x 0.95H z, i.e. h/2L = 0.075, w 2 h/ g = 0.136, and set II: h = 50mm and 
w = 21r x 1.05Hz, i.e. h/2L = 0.1, w2hjg = 0.22. In both examples the theoretical 
reflection coefficient is almost vanishing. The experimental reflection power is, however, 
approximately 0.2, which means that 4% of the incoming wave energy is reflected. We 
display in figures 5 and 6 results for_the amplitudes of the transmitted first, second and 
third harmonic free waves as a function of the incoming wave amplitude. The wave lengths 
of the first, second and third harmonic components are for set 1: ,\ = 1.62m, 0.43m and 
0.19m, respectively (figure 5), and for set II: ,\ = 1.37m, 0.36m and 0.16m, respectively 
(figure 6). We observe that the generation of the higher harmonic waves is more powerful 
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in these examples than in the previous, and we remark the strong presence of the third 
harmonic free waves which were not generated in the other examples. The results for a~) 
and a~) are very similar to those for the circular bodies, with the exception, however, 

that the values of a~) and a~) are almost of equal magnitude at the spilling limit in these 

examples. Surprisingly, the third harmonic wave amplitude becomes even larger than a~) 
at the spilling limit for parameter set I (figure 5), and may be as large as 60% of the 
incoming wave amplitude. Approximately 25% of the incoming energy flux is transferred 
to the super harmonic waves at the spilling limit in this case. For parameter set II (figure 

6) the measured maximal value of a~) /a is approximately 0.6 with a~) /a, however, being 
much smaller. The fourth and higher harmonic waves have in these examples wave lengths 
being shorter than lOcm. Measurements of such short waves are very complicated since 
the energy is quickly dissipated. 

For comparison with the experiments we develop in §4 a simplified nonlinear theory for 
the rectangular bottom topography, by taking into account nonlinear and dispersive effects 
in the shallow region above the rectangle with matching to linearized theory in the deep 
water. Results for a~), a~) and a~), obtained by this theory, are also shown in figures 5 
and 6. The theoretical computations are performed for the nonbreaking regime and agree 
surprisingly well with the experiments except close to the breaking limit. 

We observe that the dissipation of energy becomes more and more powerful with in­
creasing wave amplitude. The dissipation in the boundary layer at the geometries, being 
laminar in the examples, is for the nth harmonic oscillation proportional to (nw)612 times 
the amplitude of oscillation squared. Thus, the dissipation becomes more pronounced when 
the super harmonic oscillations are large, which explaines why we observe a stronger dissi­
pation for the examples with the rectangular bottom topography than in the examples for 
the circles. Furthermore, the dissipation leads to smaller experimental values of a~), a~) 
and a~) than predicted by the theory. 

In order to more closely examine the deformation of the incoming waves we show in 
figures 7 and 8 photographs of the surface elevation above the rectangle at subsequent time 
instants. The photographs are made with a motorized drive with a time difference between 
the pictures being P ~ 0.35s. The wave propagation direction is from left to right in the 
pictures. The photographs exhibit how the long incoming wave with one well defined crest 
steepens at the left end of the shallow region above the bottom topography (figures 7a and 
Sa). When the wave has moved to the right end, however, we clearly observe from figures 
7b-c and 8b that higher harmonic wave components are superposed on the longer wave. 

In both examples above we measure only very weak higher harmonic reflected waves 
with amplitudes being smaller than the experimental error. 

Other examples, which are not shown here, also conclude that pronounced higher har­
monic waves are introduced at the lee side of the obstacle, while there are, practically 
speaking, no such waves at the weather side. This is also the case when there is a large 
reflected first harmonic wave. 

3.3 Saturation 

In all the examples above we find that the generation of the higher harmonic wave compo­
nents takes place with increasing strength for growing wave amplitude up to when breaking 
occurs at the obstacle. For still increasing incoming wave amplitude the transfer of energy 
to the higher harmonic components reduces in power, and we find that the higher harmonic 
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wave amplitudes become saturated. Remarkably, the saturation value of a~) occurs in all 
the examples, but for parameter set I for the rectangle, for 

(15) 

For parameter set I the saturation value of a~) is a~) K 2 ,....., 0.05 The saturation values of 

a~) occur in the examples for the bottom topography for a~) K 3 ,....., a~) K 2 • Thus, the wave 
slope of the superposed transmitted waves remain bounded and small. 

4 Nonlinear theory 

Let us then study a theoretical approach for the wave diffraction due to the rectangular 
bottom topography. Relevant for the experiments the fluid layer may be assumed to be of 
infinite depth. Furthe:anore, the fluid is assumed inviscid, incompressible and the motion 
irrotational. As above, let the horizontal extention of the rectangle be denoted by 2£, be 
submerged with a small distance h below the free surface such that h/2L is a small quantity, 
and be extending infinitely deep downwards in the fluid. Let us apply coordinates with' 
the ~-axis, as introduced above, in the mean free surface, the y-axis vertical upwards and 
with the origin 0 on the vertical symmetry line of the rectangle. The uppermost corners 
of the rectangle are then located at ~ = ±L, y = -h. Let the incoming wave train with 
wave number K, frequency w = y'gK and amplitude a be incident from~ = -oo. The 
amplitude a is growing from zero for t = 0 to a constant value a0 during a time interval 
being much longer than the wave period 27r / w. 

4.1 Nonlinear flow in the shallow region 

The incoming waves are assumed to be long compared to the local depth in the shallow 
region above the topography, which means that the flow there is weakly dispersive. To 
account for both nonlinear and weakly dispersive effects we apply the nonlinear Boussinesq 
equations to the flow there, i.e. for -L < ~ < L, -h < y < 'Tl· Introducing the depth 
averaged horizontal velocity u(~, t) in the shallow region, the Boussinesq equations may be 
written a, a 

- = --((h + 'Tl)u) at a~ 
(continuity equation) (16) 

au 1 a 2 a, h2 a3u 
8t + 2 a~ u = -g a~ + 3 a2~at (equation of motion) (17) 

The pressure in the fluid is given by 

(18) 

Thus, the flow in the shallow region above the topography is determined by the values of 
'T/ and u. 

4.2 Initial value problem for the flow outside the shallow region 

The flow at the weather side and the lee side of the rectangle, i.e. for 1~1 > L, may 
according to the previous assumptions be governed by a velocity potential fjJ which satisfies 
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the two-dimensional Laplace equation 

(19) 

in the fluid domain. The potential <P is subject to the nonlinear free surface boundary 
condition. Assuming, however, that the wave slope of the incoming waves is small, i.e. 

aK << 1 (20) 

and that also the diffracted waves are of small wave slope, the free surface boundary 
condition may be linearized , i.e. 

{21) 

At the vertical walls of the rectangle <Pis subject to 

8</J 
ax = 0, X = ±L, -00 < y < -h {22) 

At the edges of the rectangle we enforce continuity of the volume flux, the free surface 
elevation and the depth averaged pressure. The first requirement gives 

r 8</J(±L, y, t) dy = Q(±L, t) 
}_h 8x 

(23) 

where we have introduced the volume flux at the ends of the shallow region by 

Q = u(17 +h) {24) 

As a first approximation, let us assume that 8¢j8x is constant in the vertical coordinate. 
( 23) then reduces to 

a¢(±~, y, t) = ~Q(±L, t) - h < y < 0 (25) 

In addition to these conditions <P also fulfills the condition 

!V<PI-+ 0 y-+ -oo (26) 

and the initial conditions that there is no free surface elevation and no applied pressure at 
the free surface for t s; 0, i.e. 

<P = 8</J/ 8t = 0, y = 0, t = 0 (27) 

4.3 Solution of the initial value problem 

The solution of the boundary value problem {19)-(27) on the weather side of the rectangle 
(for x < - L) is appropriately composed by a standing wave potential <Po and a velocity 
potential <P-L due to the outflux at x = -L, i.e. 

<P = <Po + <P-L {28) 
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The standing wave potential corresponding to an incoming and a reflected wave with am­
plitude a and-wave number K = w2 / g reads 

. ag . 
¢>o(z, y,t) = -2- exp(Ky) cosK(z + L) sm(wt + c5o) 

w 
(29) 

where c50 is an arbitrary phase angle which may be set equal to zero without loss of gener­
ality. a increases monotonously from zero to the constant value a0 following 

1 1 
a= ao[- + - tanh(wt- 3)] 

2 2 
(30) 

The transient velocity potential 4>-L may be given by a source distribution with source 
strength q_L(y1, t), -h < y1 < 0 at z = -L. By applying the velocity potential due to one 
pulsating source located at a point ( -L, y1) in the fluid domain satisfying (19) (except at 
z = -L, y = y1), (21), (22), (26), (27), which is given by Wehausen and Laitone (1960, eq. 
13.54), 4>-L reads 

) 1 10 ( I ) r I tP-L(.e, y, t = - q_L y, t ln -dy 
27r -h r1 

_fL/0 dy1 rtdrq_L(y1,r) roo ~sin(vgk(t-r))expk(y+y1)cosk(z+L) 
1r -h lo lo ygk 

(31) 

where r = lz + L + i(y- y1 )1 and r1 = lz + L + i(y + y1)1 The horizontal velocity for z < -L 
is then given by 8(¢>0 + 4>-L)/8z. By applying (31), and letting z --+ -L from below we 
obtain for -h < y < 0 

8(¢>o + 4>-L) 1 ( ) 
!:1 --+ - -q-L y, t 
uz 2 

(32) 

The source strength at z = -L is then determined by applying (25), which gives 

2 
q-L(Y, t) = --;;Q( -L, t), -h < y < 0 (33) 

The velocity potential 4>-L for z < -L is thus given by 

( ) Q (-L, t) !0 r 1 4>-L z,y,t =- h ln-dy 
7r -h r1 

2g 1t 100 dk +- drQ( -L, r) f":""i:""3 sin( vgk(t- r))(1- exp( -kh)) exp(ky) cos k(z + L) 
7rh 0 0 v gk3 

(34) 

where in the last term we have carried out the vertical integration. 
The potential ¢>L governing the flow on the lee side of the rectangle, i.e. for z > L, may 

correspondingly be given by a source distribution qL(Y, t) at z = L, -h < y < 0, i.e. 

tPL(z, y, t) = 2_ Jo qL(y1, t) ln !:....dy1 

27r -h r1 

_fL /_0 dy1 rt drqL(y1 , r) roo ~sin( vgk(t- r)) exp k(y + y1) cos k(z- L) 
1r -h lo lo ygk 

(35) 

where r = lz + L + i(y- y1)1 and r1 = lz + L + i(y + y1)1- By taking the derivative of (35) 
with respect to z and letting z --+ L from above we obtain 

(36) 
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The source strength at a: =Lis then, from (25), obtained by 

2 
qL(Y, t) = hQ(L, t), -h < y < 0 (37) 

Thus 

Q(L, t) 1° r 1 </>L(z, y, t) = h In-dy 
1r -h r1 

2g lot 100 dk --h drQ(L, r) 1:"7:""3 sin( JYk(t- r))(1- exp( -kh)) exp(ky) cos k(z- L) 
11" 0 0 ygk3 

(38) 

At the edges of the rectangle we enforce, in addition to continuity of the volume flux, 
continuity in the free surface elevation and in the depth averaged pressure. This involves 
evaluation of a<f>fat at a:= ±L which is obtained from (29), (34) and (38). For a</>-L/at 
at a:= -Land a<f>L/at at a:= L we have 

a<f>-L( -L, y, t) = - Q( -L, t) ! 0 In IY- y'i dy' 
at 1rh -h IY + y'l 

2g rt roo dk + 1rh Jo drQ( -L, r) Jo k cos( JYk(t- r))(1- exp( -kh)) exp(ky) (39) 

a<f>L(L, y, t) = Q(L, t) Jo In IY- y' dy' 
at 1rh -h IY + y'i 

2g r roo dk 
- 1rh Jo drQ(L, r) Jo k cos( VUk(t- r))(1- exp( -kh)) exp(ky) (40) 

where Q = dQ / dt. 

4.4 The far-field solution for t ~ oo 

The super harmonic oscillations introduced at the bottom topography give that the volume 
flux at the corners, fort--> oo, behave as 

Q(±L, t) = Re L Qrl exp(inw)t + 0(1/t) (41) 
n>l 

The velocity potentials </>±L become accordingly 

<!>±L(z, y, t) = ±Re {L -h2 Qr£ exp(inwt) jo a(n)(z, y, ±L, y')dy'} + 0(1/t) (42) 
n~l -h 

where 
a(n)( z, y, ±L, y') = _!__In.:._ - ~ roo exp k(y + y') cos k(z -=F L) dk ( 43) 

211" r1 11" Jo k - Kn 

denotes the familiar frequency domain Green function due to a point source oscillating with 
frequency nw,n = 1,2,3, .... The integration is above the pole Kn = n2w2 jg = n2K. For 
z --> ±oo we have 

a(n) = iexp[Kn(Y + y1 -=f i(z -=f L))J z--> ±oo (44) 
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Thus, by carrying out the vertical integration over the gaps at the edges of the rectangular 
bottom topography, the free surface elevation fort ---+ oo, :c ---+ ±oo, is obtained as 

17(z, t) = Re ~A~) exp i(nwt- Kn(:c- L)) z---+ oo 
n~l 

(45) 

17(z, t) = Re {aexp i(wt- K(:c + L)) + ~ A~n) exp i(nwt + Kn(z + L))} z---+ -oo (46) 
n>l 

where 
2Q(n) 

A~) = _____k_h (1- exp( -Knh)) 
nw 

(47) 

(n) 2Q~nl 
A_ =- nwh (1- exp( -Knh)) + 8n1 a (48) 

and 8nl denotes the Dirac delta function. 

5 Numerical integration and examples 

Let the domain lzl ::; L be subdivided into N + 1 segments with equal length ~z = J~1 and 
let ~t denote a constant time step. Following Pedersen (1991) the Boussinesq equations 
are integrated by the following scheeme which is staggered in both time and space 

[8t11 = -8:~:{(1 + 'i]zt)u}]~k+t) (49) 

' h2 2 (k) 
[8tU + 8:~:T = -8mg1] + -8z8tu]. 1 

3 •+2 
(50) 

where [ ]~k) denotes the value at Zi = -L + i~z and time tk = k~t, and 

(51) 

We have introduced the symmetric difference operator, 8t, and the midpoint average oper­
- t 

ator, () , of a quantity /(z, t), defined by 

(52) 

(53) 

The operators 8:~: and (t are defined accordingly. We thus obtain the values of u at 
zi+1, i = 0, 1, ... , N for tk+ l. = (k + t )~t and the values of 11 at Zi, i = 1, ... , N for tk+1 = 

2 2 

(k + l)~t. The volume flux at :c =±Lis obtained by extrapolation, i.e. 

{54) 
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The free surface elevation and the integrated pressure at z 0 = - L and z N +1 = L are 
obtained by (29), (39) and (40). The numerical procedure of integrating 8¢±L/8t follows 
Yeung (1982), with the time integrals discretized by 

rk roo dk 
Jo drQ(±L, r) Jo k cos( JYk(tk- r)(1- exp( -kh) exp(ky) 

k-1 ltm+l roo dk L Q(±L, tm+}) dr Jo k cos( JYk(tk- r)(1- exp( -kh) exp(ky) 
m=O t.,. 0 

k-1 

= L (Q(±L, tm+})- Q(±L, tm-})) X 

m=O 

100 dk 
X J:""i:3 sin( JYk(tk- tm)(1- exp( -kh) exp(ky) 

0 ygk3 

k-1 0 100 dk 
= .6.t L Q(±L,tm) 1:"1:3sin(Jgk(tk- tm)(1- exp(-kh)exp(ky) 

m=O 0 V gk-

Now, from Yeung (1982) we have 

where 

100 dk 
J:""i:3 sin J9kt(1- exp(ky)) 

0 ygk3 

d lot 100 dk 1 ~ = -d dr J:""i:3 sin ygkt(1- exp(ky)) = 2t:F2(-ty gflyl) 
t 0 0 v gk3 2 

:F2(n) = roo :F(u) du 
Jn u 2 

Here :F( u) denotes Dawson's integral given by 

(55) 

(56) 

(57) 

(58) 

which may effectively be computed, see Newman (1987). Introducing (55) with (56) into 
(39) and (40) we obtain 

8¢±L(±L, y, t) = ± Q(±L, tk) ro ln IY- y'i dy' 
at 1rh 1-h IY + y'l 

k-1 
4g 2 " • tk - tm V tk - tm ~ :r=-h(.6.t) L., (k- m)Q(±L, tm)[:F2( gfiy- hi)- :F2( y gjjyl)] 
7r m~ 2 2 

(59) 

We remark that the memory terms involve the time differentiated volume fluxes at the 
previous time steps. 

The numerical integration of the Boussinesq equations with the end conditions at z = 
±L is for the linear case, i.e. ajh -+ 0, compared with the corresponding time domain 
solution, with excellent agreement. 

Convergence of the numerical scheeme is achieved by increasing the value of N and 
decreasing the time step .6.t. We find that the simulations have converged for N = 0(100) 
and .6.t.ji[li = 0(0.1), giving the integrated quantities with at least three significant digits. 
No smoothing is applied. 
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ajh ~ ~ ~ ~ ~ h h h a;/;h h 

0 1.460 0 0 0 0 
0.1 1.347 0.425 0.318 0.122 0.046 
0.136 1.261 0.471 0.501 0.240 0.114 

Table 1: Fourier components of volume flux Q(L, t) for ajh 
0.136, h/2L = 0.075. 

~ h 

0 
0.019 
0.064 

0, 0.1, 0.136, w 2hjg 

ajh IA~)I/a IA~)l/a IA~)I/a IA~)I/a IA~)l/a IA~)J/a 
0 1.007 0 0 0 0 0 
0.1 0.929 0.484 0.406 0.147 0.048 0.017 
0.136 0.870 0.536 0.639 0.289 0.120 0.058 

Table 2: Far-field amplitudes for ajh = 0,0.1,0.136, w 2hjg = 0.136,h/2L = 0.075. 

5.1 Numerical results 

The numerical model is then applied to the same sets of parameters as for the experiments. 
In figures 9a-b are displayed the free surface elevation at two subsequent time instants 
for three different ratios between the incoming wave amplitude and the local water depth, 
a/ h = 0, 0.1, 0.136, for the parameters in set I, i.e. h/2L = 0.075, w 2h/ g = 0.136. The ratio 
ajh = 0.136 corresponds to the limit where spilling is observed in the experiments. The 
figures clearly show that the wave steepens with increasing value of aj h. Furthermore, we 
observe that the presence of shorter waves superposed on the basic mode takes place more 
strongly with increasing incoming wave amplitude. These two features are also emphasized 
in figure 10 which displays the volume flux at z = L as a function of time. We display 
furthermore in table 1 the six first Fourier components of Q(L, t), which shows that there 
are significant interactions up to the fifth time harmonic for the largest incoming wave 
amplitude. We note the strong presence of the second and the third harmonic oscillations 
in the volume flux for a/h = 0.136. The higher harmonic components of the volume flux 
at z = L are generating the free super harmonic waves in the far-field, with amplitudes 
given by (47). In table 2 the far-field amplitudes corresponding to the volume fluxes from 
table 1 are obtained, illustrating that the same number of super harmonic oscillations in 
the far-field and the near-field are observed. The volun1e flux Q( -L, t) at the left end of 
the rectangle shows, in contrast to Q ( L, t), almost no signs of higher harmonic oscillations, 
even for the larger incoming wave amplitudes. This explains that the higher harmonic 
waves at the weather side of the rectangle have practically speaking vanishing amplitudes. 

It is also of interest to compare the computed free surface elevation with the photographs 
shown in section 3. The non-dimensional time difference between the pictures is for param­
eter set I, PJ9Tfi ~ 5.7 (h = 3.75cm), and for parameter set II, PJ9Tfi ~ 4.9 (h = 5cm). 
Numerical results for the surface elevation in natural scale at time instants corresponding 
to the photographs are displayed in figures lla-c and 12a-b. The agreement between the 
photos and the numerical results of 7] is striking, illustrating that the theoretical model 
gives a relevant representation of the flow in the shallow region. 
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We have also made some numerical simulations by neglecting the dispersion in the 
shallow region, with results shown in figures 13a-c. The nonlinear Boussinesq equations 
are then reduced to the nonlinear Airy equations. The Airy equations, which are integrated 
by the two-stage Lax-Wendroff scheeme (see Fletcher 1988, p. 353), give a solution which 
differs from the solution by the Boussinesq equations and from what we observe in the 
experiments in two respects: Firstly, the surface elevation becomes steeper, and secondly, 
the wave crest moves with a larger speed than given by the Boussinesq equations and 
than observed in the experiments. We also observe that the steep wave predicted by 
Airy equations leads to reflection of shorter waves at a: = L, as seen in figure 13c. The 
matching procedure is, however, very effective when the effect of dispersion is included as 
in the Boussinesq equations, leading to a wave profile being less steep. For small values 
of a/ h, when the generation of the shorter waves is weaker and the effect of dispersion 
is correspondingly small, the Airy equations and the Boussinesq equations give, however, 
coinciding results. 

As a check of the computations we invoke the mean energy flux at a vertical control 
surface extending from the bottom of the fluid layer to the free surface, which at a location 
a: is given by 

h1J 1 
R:r: = (p + -pjVJ 2 + pgy)udy 

bottom 2 
(60) 

Hefe v denotes the velocity vector in the fluid and a bar the time average. In the shallow 
region, where the pressure is given by (18) and Jvj 2 :::. u2 , we obtain 

1 1 f)2u 
R = pu(h + TJ)(gTJ + -u2- -(h + 11)2-) 

:r: 2 3 8t8a: 
(61) 

Fort ---+ oo the mean energy flux at a: = -oo is given by 

(62) 

and at a: = oo by 
R 00 = L E~n)C~n) (63) 

n>l 

where Eo = tpga2, E~n) = tpgjA~n)l 2 and E~n) = tpgjA~)I 2 denote the mean energy 

densities of the incoming, reflected and transmitted waves, respectively. c~n) = tg /nw, n = 
1, 2, ... , denote the corresponding group velocities of the incoming and scattered waves. 

The mean energy flux is almost constant in the linear case, as seen in figure 14. The en­
ergy flux has, on the other hand, a small variation along the :~:-coordinate, and a weak, total 
increase of up to 7% of the incoming energy flux across the shallow region for the largest 
value of a/ h. The oscillations in the energy flux indicate the accuracy of the theoretical 
model. 

6 Conclusion 

We have experimentally and theoretically studied incoming deep water waves with small 
wave slope propagating over a slightly submerged cylindrical body or a bottom topography 
being close to the free surface. The wave length is much greater than the local water 
depth above the obstacle. Nonlinear free surface effects at the body or bottom topography 
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introduce asymmetry and skewness to the initially symmetric wave profile, and generate 
a hierarchy of shorter super harmonic free waves propagating away from the obstacle and 
superposed upon the transmitted and reflected waves with wave length being equal to the 
incoming wave length. The super harmonic waves may attain prominent amplitudes at the 
obstacle's lee side. This is, however, not true at the weather side of the obstacle where 
the super harmonic waves are very small. The generation of the higher harmonic waves 
at the lee side become more and more powerful with increasing incoming wave amplitude 
up to when breaking occurs at the obstacle. The amplitudes of the second and third 
harmonic waves attain at the breaking limit maximal values compared to the incoming 
wave amplitude, and are in some examples found to be of the same order of magnitude as 
the first harmonic transmitted waves. We find in the present examples that up to about 
25% of the incoming energy flux may be transferred to the super harmonic free waves at 
the lee side of the obstacle. 

The theoretical model, developed for a rectangular bottom topography with a horizontal 
top, accounts for nonlinearity by the Boussinesq equations in the shallow region above the 
bottom topography, with matching at the edges of the topography to linearized potential 
theory applied in the deep water regions at the weather side and the lee side. The theoretical 
and experimental results for the local flow at the bottom topography and in the far-field 
show good agreement for non-breaking waves. The theoretical model illustrates that the 
nonlinear effects at the obstacle introduce interactions between several super harmonic 
wave components locally, generating super harmonic free waves accordingly. Furthermore, 
the theory empasizes that both nonlinearity and dispersion are important at the obstacle, 
while dispersion is the dominating effect for the flow far away. The matching procedure, 
applied between the linear and nonlinear flows, is very effective in the present examples. 

Nonlinear resonant interaction may occur between the generated first, second and third 
harmonic free waves when their wave frequencies and wave numbers are forming tetrads 
by (resonant triads are impossible) 

- w + 2w + 2w - 3w = 0 (64) 

(65) 

This interaction is, however, of fourth order in the wave steepness, being very weak in the 
examples considered. 
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Figure captions 

Figure 1. 
Measurements of first and second harmonic free wave amplitudes at the lee side of the 

circular cylinder vs. incoming wave amplitude. h = 100mm. Squares: a~) fa, triangles: 

a~)/ a, dotted line: a~~ ~ ~( a~))2 K /a, dashed line: a~)/ a obtained by second order theory 
(Friis et al. 1991). a) small cylinder (R = 100mm), w = 271' x 1.05Hz. b) small cylinder 
(R = 100mm), w = 271' x 1.22H z. 

Figure 2. 
Same as figure 1, but h = 50mm. a) small cylinder (R = 100mm), w = 271' X 1.05H z. 
Crosses: a~) fa obtained by nonlinear theory, Cointe (1989, figure 12). b) small cylinder 
(R = 100mm), w = 271' X 1.22H z. c) large cylinder (R = 190mm), w = 271' X 1.05H z. The 
arrows denote respectively spilling (S) and plunging (P) limits. 

Figure 3. 
Same as figure 1, but h = 25mm. a) small cylinder (R = 100mm), w = 271' X 1.05Hz. b) 
small cylinder ( R = 100mm), w = 271' X 1.22H z. The arrows denote respectively spilling 
(S) and plunging (P) limits. 

Figure 4. 

Linear transmission coefficient a~) I a for the rectangular bottom topography vs. 2L / >., 
obtained by the theory described in §4. Solid line: hi2L = 0.075, dashed line: hi2L = 0.1. 

Figure 5. 
First, second and third harmonic free wave amplitudes at the lee side of the rectangular 
bottom topography, vs. a, for parameter set I, i.e. h = 37.5mm,w = 271' X 0.95Hz. 

Measurements: Squares: a~) I a, triangles: a~) I a, diamonds: a~) I a. Nonlinear theory: 

Solid line: a~) I a, dashed line: a~) I a, dotted line: a~) I a. The arrows denote respectively 
spilling (S) and plunging (P) limits. 

Figure 6. 
Same as figure 5, but parameter set II, i.e. h = 50mm, w = 271' x 1.05H z. 

Figure 7. 
Photographs of the wave profile at the rectangular bottom topography for h = 37 .5mm, w = 
271' X 0.95Hz, a= 5.1mm(alh = 0.136). a) time instant t1, b) time instant t1 + 0.35sec, c) 
time instant t1 + 0. 70sec. 

Figure 8. 
Photographs of the wave profile at the rectangular bottom topography for h = 50mm, w = 
271' X 1.05Hz,a = 7.5mm(alh = 0.15). a) time instant t2 , b) time instant t2 + 0.35sec. 

Figure 9. 
Surface elevation in the shallow region above the rectangular bottom topography. hi2L = 
0.075,w2h/g = 0.136. Numerical simulations with N = 100, t:..t..ji{fi = 0.1. Solid line: 
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ajh = 0.136, dashed line: a/h = 0.1, dotted line: ajh = 0. a) Time instant i1 corresponding 
to the photograph shown in figure 7a. b) Time instant i1 + 0.35sec corresponding to the 
photograph shown in figure 7b. 

Figure 10. 
Volume flux Q(L, i) for h/2L = 0.075,w2hjg = 0.136. Numerical simulations with N = 
100, Atv'ii[fi = 0.1. Solid line: ajh = 0.136, dashed line: ajh = 0.1, dotted line: a/h = 0. 

Figure 11. 
Surface elevation in the shallow region above the rectangular bottom topography in natural 
scale for the same parameters, h/2L = 0.075, w 2h/ g = 0.136, a/ h = 0.136, and time instants 
as for the photographs in figure 7. N = 100,Aiv'ii[fi = 0.1. a) Time instant it, b) time 
instant t 1 + 0.35sec, c) time instant t 1 + 0. 70sec. 

Figure 12. 
Surface elevation in the shallow region above the rectangular bottom topography in natural 
scale for the same parameters, h/2L = 0.1,w2hjg = 0.22,a/h = 0.15, and time instants 
as for the photographs in figure 8. N = 90,Aiv'ii[fi = 0.1. a) Time instant t 2 , b) time 
instant i 2 + 0.35sec. 

Figure 13. 
Surface elevation for same time instants as in figures 7 and 11. h/2L = 0.075,w 2hjg = 
0.136, ajh = 0.1. Solid line: Nonlinear Airy equations (without dispersion) applied in 
the shallow region, N = 100, Aiv'ii[fi = 0.025. Dotted line: Boussinesq equations, N = 
100, Aiv'u[Ti = 0.1. a) Time instant it, b) time instant i1 + 0.35sec, c) time instant 
i1 + 0. 70sec. 

Figure 14. 
Time averaged energy flux vs. horizontal coordinate. h/2L = 0.075,w2h/ g = 0.136, N = 
100, Aiv'u[Ti = 0.1. Solid line: a/ h = 0.136, dashed line: a/ h = 0.1, dotted line: a/ h = 0. 
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Figure 2. 

Same as figure 1, but h = 50mm. a) small cylinder (R = 100mm), w = 211" x 1.05H z. 
Crosses: a~l /a obtained by nonlinear theory, Cointe ( 1989, figure 12). b) small cylinder 
(R = 100mm), w = 211" x 1.22Hz. c) large cylinder (R = 190mm), w = 211" x 1.05Hz. The 
arrows denote respectively spilling (S) and plunging (P) limits. 
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Same as figure 1, but h = 25mm. a) small cylinder (R = lOOmm), w = 211" x 1.05Hz. b) 
small cylinder (R = lOOmm), w = 21r X 1.22Hz. The arrows denote respectively spilling 
(S) and plunging (P) limits. 
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Figure 4. 

Linear transmission coefficient a~) I a for the rectangular bottom topography vs. 2L I).., 
obtained by the theory describedin §4. Solid line: hi2L = 0.075, dashed line: hi2L = 0.1. 
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Figure 5. 
First, second and third harmonic free wave amplitudes at the lee side of the rectangular 
bottom topography, vs. a, for parameter set I, i.e. h = 37.5mm,w = 211" X 0.95Hz. 

Measurements: Squares: a~) fa, triangles: a~) fa, diamonds: a~) fa. Nonlinear theory: 
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Figure 6. 
Same as figure 5, but parameter set II, i.e. h = 50mm, w = 211" x 1.05H z. 
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Figure 7. 
Photographs of the wave profile at the rectangular bottom topography for h = 37.5mm,w = 
211" X 0.95H z, a= 5.1mm( a/ h = 0.136). a) time instant t1 , b) time instant t1 + 0.35sec, c) 
time instant t1 + 0. 70sec. 

a) 
...--~"""-H.,..__,............,..:'Cfl*<i.S'~~~._- ~r ............ ~-"" "r•,L• ~ yo .,. - 11 .,. 1 , >" ,..,,...,~ ,, • .,...._ .,.. ,..,._ ... ,..~ 

. . I . ··-. . . . : -- --- l 

.. . -
' 

b) 

Figure 8. 
Photographs of the wave profile at the rectangular bottom topography for h = 50mm, w = 
211" x 1.05Hz,a = 7.5mm(ajh = 0.15). a) time instant tz, b) time instant tz + 0.35sec. 
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Figure 9. 
Surface elevation in the shallow region above the rectangular bottom topography. h/21 = 
0.075, w 2h/ g = 0.136. Numerical simulations with N = 100, !:it..JiTh = 0.1. Solid line: 
a/ h = 0.136, dashed line: a/ h = 0.1, dotted line: a/ h = 0. a) Time instant t1 corresponding 
to the photograph shown in figure 7a. b) Time instant t 1 + 0.35sec corresponding to the 
photograph shown in figure 7b. 
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Figure 10. 
Volume flux Q(1, t) for h/21 = 0.075,w2h/ g = 0.136. Numerical simulations with N = 
100,!:it..Ji1h = 0.1. Solid line: ajh = 0.136, dashed line: a/h = 0.1, dotted line: a/h = 0. 
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Figure 11. 
Surface elevation in the shallow region above the rectangular bottom topography in natural 
scale for the same parameters, h/2L = 0.075, w2h/ g = 0.136, a/ h = 0.136, and time instants 
as for the photographs in figure 7. N = 100, !:l. t .,ji{h = 0 .1. a) Time instant t1, b) time 
instant t1 + 0.35sec, c) time instant t1 + 0. 70sec . 
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Figure 12. 

Surface elevation in the shallow region above the rectangular bottom topography in natural 
scale for the same parameters, h/2L = 0.1, w2h/ g = 0.22, a/ h = 0.15, and time instants 
~s for the photographs in figure 8. N = 90, !:l.tv'ifh = 0.1. a) Time instant t2 , b) time 
mstant t2 + 0.35sec. 



2.0 r ry/a 

1.0 

0.0 

-1.0 
... 

xjL 

-2.0 
-1.0 -0.5 0.0 0.5 

2.0 I 7J/a 

1.0 

0.0 

-1.0 
I 

xjL 
I 

-2.0 
-1.0 -0.5 0.0 0.5 

a) 

1.0 

b) 

1.0 

2.0 1 TJ/a 

1.0 

0.0 

-1.0 

r ~ xjL 

-2.0 
-1.0 -0.5 0.0 0.5 1.0 

Figure 13. 
Surface elevation for same time instants as in figures 7 and 11. hf2L = 0.075,w2hfg = 
0.136, a/ h = 0.1. Solid line: Nonlinear Airy equations (without dispersion) applied in 
the shallow region, N = 100, t:.t../iilh = 0.025. Dotted line: Boussinesq equations, N = 
100, t:.t.;grFi = 0.1. a) Time instant t1 , b) time instant t1 + 0.35sec, c) time instant 
t1 + 0.70scc. 
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Time averaged energy flux vs. horizontal coordinate. h/2L = 0.075, w 2h/ g = 0.136, N = 
100, atJgTli = 0.1. Solid line: ajh = 0.136, dashed line: a/h = 0.1, dotted line: a/h = 0. 




