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Abstract 

A major task of contemporary cognitive neuroscience of aging is to explain why episodic memory 

declines. Change in resting-state Functional Connectivity (rsFC) could be a mechanism accounting for 

reduced function. We addressed this through three studies. In Study 1, 119 healthy participants (20-

83 years) were followed for 3.5 years with verbal recall testing and MRI. Independently of atrophy, 

recall change was related to change in rsFC in anatomically widespread areas. Striking age-effects 

were observed in that a positive relationship between rsFC and memory characterized older 

participants while a negative relationship was seen among the younger and middle-aged. This 

suggests that cognitive consequences of rsFC change are not stable across age. In Study 2 and 3, the 

age-dependent differences in rsFC-memory relationship were replicated by use of a simulation model 

(Study 2) and by a cross-sectional experimental recognition memory task (Study 3). In conclusion, 

memory changes were related to altered rsFC in an age-dependent manner, and future research 

needs to detail the mechanisms behind age-varying relationships. 

 

Keywords: episodic memory; resting-state; functional connectivity; atrophy; aging; default mode 

network 
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Introduction  

A major task of contemporary cognitive neuroscience is to understand why the efficiency in forming 

and consolidating new long-term episodic memories is reduced with aging (Reuter-Lorenz and Park, 

2010, Nyberg et al., 2012). Through the concept of resting-state functional connectivity (rsFC), we 

now have a tool to study cognitive processes likely relevant for memory function (Wig et al., 2008, 

Albert et al., 2009, Durrant and Lewis, 2009, Hasson et al., 2009, Takashima et al., 2009, Stevens et 

al., 2010, Tambini et al., 2010, Wang et al., 2010a, Wang et al., 2010b): rsFC is altered after encoding 

(Albert et al., 2009, Hasson et al., 2009, Takashima et al., 2009, Daselaar et al., 2010, Stevens et al., 

2010), with the magnitude of alterations related to memory performance ((Wig et al., 2008, Albert et 

al., 2009, Takashima et al., 2009, Stevens et al., 2010, Tambini et al., 2010)).  

 

For instance, using probabilistic independent component analysis of rsFC data, Albert et al. found a 

fronto-parietal and a cerebellar component that increased in strength after motor learning (Albert et 

al., 2009). Tambini et al. found enhanced FC between the hippocampus and a portion of the lateral 

occipital complex during rest following a task with high subsequent memory, an effect that was not 

seen during a task with poor subsequent memory (Tambini et al., 2010). Additionally, the magnitude 

of the hippocampal-occipital correlation during post-task rest predicted later associative memory. 

However, the direction of reported rsFC-memory relationships vary between studies and as a 

function of the networks in question and likely the analysis methods chosen. For instance, Hasson et 

al. found six regions where rsFC varied as a function of the immediately preceding language content 

of the task and the direction of effects varied across regions (Hasson et al., 2009). Wig et al. showed 

that participants with greater task-induced deactivations in medial temporal lobe performed 

superiorly on an offline memory test (Wig et al., 2008). Takashima et al. observed weaker 

connectivity with consolidation between the posterior hippocampus and the early visual areas 

bilaterally, extending to the fusiform face area and the posterior parietal cortex (Takashima et al., 
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2009). A positive correlation was seen between memory performance and FC in the left middle/ 

inferior occipital cortex and a negative correlation in the right precuneus.  

 

It must be added that the direction of effects is not always easy to interpret due to differences with 

regard to e.g. whether global signal is regressed out (Murphy et al., 2009). One study instead focused 

on relative differences in correlation values between rest conditions, and found that magnitude of 

one such interaction predicted subsequent recognition (Stevens et al., 2010). Finally, in a very recent 

study, Tompary et al. demonstrated that the strength of post-encoding FC between the ventral 

tegmental area (VTA) and CA1 of the hippocampus, during a non-related task, selectively correlated 

with long-term associative memory (Tompary et al., 2015). In contrast, VTA–perirhinal cortex  FC 

during the same period correlated with long-term item memory. Interestingly, connectivity between 

VTA and the medial temporal lobe regions were only related to memory tested after a delay of 24 

hours.  

 

These previous studies used young and healthy participants, with fewer aging-studies actively 

manipulating protocols to study rsFC and memory consolidation. However, reduced FC in elderly (for 

a comprehensive review, see (Sala-Llonch et al., 2015)) has been related to declining cognitive 

function, including memory ((Andrews-Hanna et al., 2007, Wang et al., 2010a, He et al., 2012, Onoda 

et al., 2012, Mevel et al., 2013, Geerligs et al., 2014), but see (Ystad et al., 2010)). It has been 

suggested that higher intra-network connections, i.e. efficiency of communications within networks, 

and lower inter-network connections, reflecting specificity and selectivity of the network, may be 

beneficial for cognitive function in aging (Salami et al., 2012, Spreng and Schacter, 2012, Antonenko 

and Floel, 2014). These findings support the dedifferentiation theory of aging, according to which 

decreased selectivity results in more diffuse patterns of functional connectivity (Antonenko and 

Floel, 2014). However, findings are not fully coherent. In one study, it was found that older 
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participants showed lower connectivity of long-range connections together with higher functional 

segregation of these same connections, indicating a more local clustering of information processing 

(Sala-Llonch et al., 2014). Interestingly, higher local clustering in older participants was negatively 

related to memory performance. Also, elevated FC between left and right hippocampus has been 

associated with declining memory over 20 years in middle-aged and older adults (Salami et al., 2014).  

 

In sum, the studies reviewed above indicate a positive relationship between rsFC and memory 

performance, but with great variations across studies and networks, probably at least partly as a 

result of the analysis strategy used. On this background of previous research, tracking of cortical rsFC 

over time may provide insights into the neural foundation for decline of long-term memory in aging. 

Regrettably, such studies are as of yet lacking, except for one study reporting that relative increase in 

rsFC over 6 years within the default mode network (DMN) was related to better memory outcome in 

middle-aged and older adults (Persson et al., In press). Additionally, we recently found that while 

changes in cortico-striatal rsFC were positively related to memory change in older adults, 

hippocampal-cortical rsFC changes were negatively related to memory in younger and middle-aged 

adults (Fjell et al., 2015). We now need to address whether rsFC change across different cortical 

networks relates to altered episodic memory function over time in older adults, and whether the 

pattern of change differs from that of younger and middle-aged.  

 

We hypothesized that better preservation of rsFC over time would yield more favorable memory 

outcome at follow-up testing. Further, based on the phenomenon of over-activation or less specific 

activation patterns in aging (Reuter-Lorenz and Park, 2010, Grady, 2012), we hypothesized that 

changes in multiple networks would impact memory, and more so in older than younger and middle-

aged adults. In aging, compensatory processing (Cabeza et al., 2002), e.g. as formulated in the 

CRUNCH model (compensation-related utilization of neural circuits) (Reuter-Lorenz and Park, 2010), 
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or dedifferentiation and breakdown of functional specialization (Lindenberger and Baltes, 1994), is 

expected to resulting in a more “global” connectivity pattern with less clearly separated functional 

networks. Accordingly, more networks are expected to impact memory in older adults. Finally, we 

hypothesized that changes in regions with high connectivity to other cortical areas would impact 

memory more than changes in more isolated regions. This is related to the idea that certain brain 

areas interconnect distinct, functionally specialized systems (Buckner et al., 2009), and these seem to 

be especially vulnerable to effects of aging (Lustig et al., 2003, Sala-Llonch et al., 2015). As these are 

critical for integration of information, they were envisioned to have substantial impact on memory. 

Within the established resting-state default mode network, the most clearly defined hub-regions are 

the posterior cingulate cortex and the anterior medial prefrontal cortex (Andrews-Hanna et al., 

2010), and we expect age-related changes in these regions to be of special importance. Additionally, 

we hypothesize that the medial temporal lobe subsystem of the DMN, consisting of the medial 

temporal cortex, retrosplenial cortex, the ventral medial prefrontal cortex  and the posterior inferior 

parietal lobe (Andrews-Hanna et al., 2010), will be related to episodic memory function. 

 

Three studies were run: In Study 1, we tested the relationship between rsFC change over 3.5 years 

and changes in verbal episodic recall in older (60-86 years) and younger and middle-aged adults (20-

52 years). In Study 2, we constructed a simulation model, allowing explication of all model 

parameters, and compared the output to the empirical results from Study 1. In Study 3, we ran 

replication analyses based on a completely different cross-sectional visual recognition memory task. 

 

Study 1: Longitudinal neuroimaging and memory 

Materials and Methods 

MRI acquisition and analysis 
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Imaging data was collected using a 12- channel head coil on a 1.5 T Siemens Avanto scanner (Siemens 

Medical Solutions; Erlagen, Germany) at Rikshospitalet, Oslo University Hospital. The same scanner 

and sequences were used at both time-points. The pulse sequences used had the following 

parameters:  

For morphometric analyses: The pulse sequence used included two repetitions of a 160 slices sagittal 

T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequences with the following 

parameters: repetition time(TR)/echo time(TE)/time to inversion(TI)/flip angle(FA)= 2400 ms/3.61 

ms/1000 ms/8°, matrix = 192 × 192, field of view (FOV) = 240, voxel size = 1.25 × 1.25 × 1.20 mm, 

scan time 4min 42s.  

For functional connectivity: The resting-state BOLD sequence included 28 transversally oriented slices 

(no gap), measured using a BOLD-sensitive T2*-weighted EPI sequence  (TR = 3000 msec, TE = 

70msec, FA = 90°, voxel size = 3.44×3.44x4 mm, FOV = 220, descending acquisition, GRAPPA 

acceleration factor = 2), producing 100 volumes and lasting for ~5 min. Three dummy volumes were 

collected at the start to avoid T1 saturation effects.  

 

Surface reconstruction and subcortical labeling were performed at the Neuroimaging Analysis 

Laboratory, Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, 

University of Oslo. Morphometry analyses were performed by use of FreeSurfer v. 5.1 

(http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999, Fischl et al., 1999, Fischl and Dale, 2000, 

Fischl et al., 2002b, a), please see a detailed account elsewhere (Storsve et al., 2014, Walhovd et al., 

2014). All volumes were inspected for accuracy and minor manual edits were performed when 

needed by a trained operator on the baseline images, usually restricted to removal of non-brain 

tissue included within the cortical boundary. 

 

http://surfer.nmr.mgh.harvard.edu/
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Resting-state functional imaging data was pre-processed following LCBC’s custom analysis stream. 

Images were motion and slice timing corrected, and smoothed (5 mm full-width at half maximum 

[FWHM]) in volume space using FSL’s FMRI Expert Analysis Tool (FEAT; 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). 5 mm smoothing was chosen as we wanted to be as 

anatomically precise as possible in our analyses due to the use of ROIs derived from structural 1 mm 

volumes, while at the same time benefitting from the increased signal-to-noise ratio following from 

even moderate spatial smoothing. Then, FSL’s Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (MELODIC) was used in combination with FMRIB's 

ICA-based Xnoiseifier (FIX) to auto-classify independent components into signal and noise 

components and remove the noise components from the 4D fMRI data (Salimi-Khorshidi et al., 2014). 

A prerequisite for FIX-classification is a hand-labeled training set of typical signal and noise 

components. After manually inspecting and validating that it fitted to our data, we used the default 

classification template provided with the FIX-toolbox. Freesurfer-defined individually estimated 

anatomical masks of cerebral white matter (WM) and cerebrospinal fluid / lateral ventricles (CSF) 

were resampled to each individual’s functional space. All anatomical voxels that “constituted” a 

functional voxel had to be labeled as WM or CSF for that functional voxel to be considered a 

functional representation of non-cortical tissue. Average time series were then extracted from 

functional WM- and CSF-voxels, and were regressed out of the FIX-cleaned 4D volume together with 

a set of estimated motion parameters (rotation/translation) and their derivatives. Following recent 

recommendations about noise removal from resting-state data (Hallquist et al., 2013) we also band-

pass filtered the data (.009 - .08Hz) after regression of confound variables. In-scanner head motion 

may substantially impact measures of FC (Satterthwaite et al., 2012, Van Dijk et al., 2012), with the 

risk of causing spurious correlations, especially when comparing groups of participants where 

differences in head movement may exist. Such artifacts could lead to an underestimation of long-

range correlations and an overestimation of short-range correlations, and such motion-induced 



9 

 

artifacts could occur even after motion parameters are regressed out (Power et al., 2012). Thus, in 

addition to regressing out estimated motion parameters from the time series before they were 

entered into further analyses, and band-pass filtering the data according to current 

recommendations, motion was also included as a covariate in all statistical analyses (see Statistical 

analyses). It must also be noted that ICA based procedures for denoising of fMRI-data used in the 

present study have been shown to effectively reduce adverse effects of motion on functional 

connectivity estimates, showing similar results to methods such as spike regression and motion 

scrubbing (Pruim et al., 2015a, Pruim et al., 2015b). 

 

To calculate rsFC within established cortical functional networks, we took advantage of Yeo and 

colleagues’ (2011) cortical parcellation estimated by intrinsic functional connectivity from 1000 

participants and made available in Freesurfer’s average surface space 

(http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011) (See Figure 1). This is 

among the best validated delineations of cortical resting-state networks. The parcellation scheme 

consists of 17 networks in each hemisphere as well as values representing the estimated confidence 

of each surface vertex belonging to its assigned network. Spheres (6 dilations around center vertex; 

127 vertices) were drawn on the average surface around each network’s highest confidence vertex 

(vertices if a network consisted of several disconnected segments), resampled into individual subject 

space, and correlated with all other vertices. This resulted in rsFC estimates for each of the 17 

networks (collapsed over hemispheres) for each participant (‘intra-network’ rsFC). In addition, rsFC 

was calculated between each network and all other networks, yielding an ‘inter-network’ rsFC 

measure, 

 

[Insert Figure 1] 

 

http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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Sample 

The longitudinal sample was drawn from the ongoing project Cognition and Plasticity through the 

Lifespan at the Research Group for Lifespan Changes in Brain and Cognition (LCBC), Department of 

Psychology, University of Oslo (Westlye et al., 2010a, Westlye et al., 2010b, Storsve et al., 2014, 

Walhovd et al., 2014). All procedures were approved by the Regional Ethical Committee of Southern 

Norway, and written consent was obtained from all participants. For the first wave of data collection, 

participants were recruited through newspaper ads. Recruitment for the second wave was by written 

invitation to the original participants. At both time points, participants were screened with a health 

interview. Participants were required to be right handed (self report), fluent Norwegian speakers, 

and have normal or corrected to normal vision and hearing. At both time points, exclusion criteria 

were history of injury or disease known to affect central nervous system (CNS) function, including 

neurological or psychiatric illness or serious head trauma, being under psychiatric treatment, use of 

psychoactive drugs known to affect CNS functioning, and MRI contraindications. Moreover, 

participants were required to score ≥26 on the Mini Mental State Examination (MMSE; (Folstein et 

al., 1975), have a Beck Depression Inventory (BDI; (Beck and Steer, 1987) score ≤16, and obtain a 

normal IQ or above (IQ > 85) on the Wechsler Abbreviated Scale of Intelligence (WASI; (Wechsler, 

1999). The MMSE cut-off was used as an initial screening. We did not follow the norm cut-off value 

of 24  (Tombaugh and McIntyre, 1992), but chose 26 because we have experience from several 

previous longitudinal studies that this generally is a reasonable criterion for cognitively healthy 

elderly. For instance, Kukull et al. showed a sensitivity of .80 and a specificity of .87 for AD with a cut 

off of 26 (Kukull et al., 1994).  At both time points all scans were evaluated by a neuroradiologist and 

were required to be deemed free of significant injuries or conditions. At follow-up, an additional set 

of inclusion criteria was employed: MMSE change from time point one to time point two < 10%; 

California Verbal Learning Test II – Alternative Version (CVLT II; (Delis et al., 2000) immediate delay 

and long delay T-score > 30; CVLT II immediate delay and long delay change from time point one to 
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time point two < 60%. The CVLT cut off criterion was based on the established neuropsychological 

criterion of two standard deviations below the estimated population mean (Lezak et al., 2012), while 

the criterion for functional change was based on pragmatic considerations as there are no 

established conventions. In addition to the above mentioned, other neuropsychological domains 

tested included executive function including tests from the Miyake battery (plus-minus; number-

letter; local-global; keep track; letter memory; antisaccade; Stroop) (Miyake et al., 2000) and 

attention and working memory (the Attention Network Test; n-back; digit span) (Fan et al., 2002). 

Tests were administered at baseline and follow-up. Additionally, ≈ 100 participants underwent a 

visual recognition memory task at baseline while electrophysiological activity was recorded. 

 

Two hundred and eighty-one participants completed time point 1 (Tp1) assessment. For the follow-

up study, 42 opted out, 18 could not be located, 3 did not participate due to health reasons (the 

nature of these were not disclosed), and 3 had MRI contraindications, yielding a total of 66 dropouts 

(35 females, mean (SD) age = 47.3 (20.0) years). Detailed dropout characteristics are published 

elsewhere (Storsve et al., 2014). Of the 215 participants that completed MRI and neuropsychological 

testing at both time points, 8 failed to meet one or more of the additional inclusion criteria for the 

follow-up study described above, 4 did not have adequately processed diffusion MRI data, and 2 

were outliers (4 or more tracts showing change values >6 SD from mean). This resulted in a follow-up 

sample of 201 participants (118 females) aged 20 – 84 years at Tp1, see (Storsve et al., 2014, 

Walhovd et al., 2014). Of these, resting-state fMRI was not acquired for the first 81 and valid memory 

data was lacking for 1 additional, yielding a sample of 119 with quality checked functional, and 

anatomical MRI data as well as cognitive scores for both time points. Tp1 rsBOLD data was lacking for 

all participants between 52 and 63 years, and we therefore formed two age-groups: a younger and 

middle-aged group of 23-52 years and one group of older adults of 63-86 years.  Sample descriptives 

are provided in Table 1. As can be seen, follow up interval differed statistically between the group of 
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young and middle-aged adults and the group of older adults (3.1 vs. 3.4 years). To ensure that this 

did not affect the results, follow-up interval was included as covariate in all statistical analysis. One 

participant scored 26 on MMS for the second time point. This participant was 82.7 years and showed 

no signs of dementia on the neuropsychological evaluation, including a CVLT learning total score of 

40 words and a 30 min free recall score of 9 words, the former representing an improvement from 

the baseline score. Thus, we chose to include this participant in all further analyses.  

 

Mean MMSE score was different between age-groups, indicating that general cognitive function is 

higher in the young and middle-aged participants. This is to be expected in aging studies, and equal 

MMSE scores would this indicate age-varying sampling bias. Inherently challenging in all aging-

studies that do not have information about youth cognitive function for all participants is to balance 

the risk of age-varying sampling bias by using too strict inclusion criteria vs. the risk of including 

participants with early cognitive decline. In the present study, the thorough screening makes it less 

likely that participants have abnormal cognitive or cerebral deficits, but the same screening may have 

caused a certain bias in that the older participants on average are possibly better functioning 

cognitively compared to the population mean than the young and middle-aged participants. 

 

[Insert Table 1 about here] 

 

Statistical analyses 

Statistical analyses were done in FreeSurfer 5.3 and SPSS 22. Movement at each time point, sex and 

interval between scans were used as covariates of no interest, as well as age for all within-group 

analyses. Surface results were tested against an empirical null distribution of maximum cluster size 

across 10 000 iterations using Z Monte Carlo simulations, synthesized with a cluster-forming 

threshold of p < 0.05 (two-sided), yielding results corrected for multiple comparisons across space. 
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Pearson correlation was used to test the relationship between rsFC and age, both cross-sectionally 

and longitudinally. Also, rsFC between all nodes within a network (‘intra-network’), as well as 

between the nodes in each network and the nodes of the rest of the brain (‘inter-network’), was 

calculated, yielding a global (mean) rsFC measure. Note that for the networks consisting of only one 

region or node, intra-network FC could not be calculated. Change in global rsFC (∆rsFC) was 

calculated as the difference between time points (Tp2-Tp1) in mean z-transformed correlations 

across all nodes. Next, the relationship between memory and age was tested both cross-sectionally 

and longitudinally with partial correlations, and change in memory performance from Tp1 to Tp2 was 

tested with t-tests.  

 

For analyses of the relationship between rsFC and memory, the sum of CVLT 1-5 was used as 

‘learning score’ and the mean of 5 and 30 min CVLT recall was used as a total ‘recall score’ (see 

below). Performance change was expressed as score at Tp2 as a function of score on Tp1 (Tp2 score / 

Tp1 score), denoted as ∆learning and ∆recall, and correlated with age and global rsFC change. A 

preliminary repeated measures general linear model (GLM) showed that interval (5 vs. 30 min) from 

CVLT learning to test did not significantly affect the relationship with ∆rsFC. Thus, since the 

relationship between CVLT-score change and change in rsFC was not significantly different for 5 

minutes vs. 30 minutes recall, it should not matter whether the relationship between recall and rsFC 

was tested by use of separate CVLT scores for 5 and 30 minutes recall or rather an average of the 

two. Since using the average would yield higher reliability due to the inclusion of two rather than one 

indicator of the construct recall, as well as reducing the number of tests to be done and reported by 

50%, we chose to use the mean score for all statistical analyses. In a separate analysis, total cortical 

atrophy was included as an additional covariate. After establishing a relationship between ∆recall 

and global ∆rsFC, post hoc tests were performed where ∆recall was correlated with ∆rsFC within and 
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between each of the 17 predefined networks. Differences in correlation strength between the 

younger and middle-aged group and the group of older adults were tested by t-tests of Fisher z-

transformed correlations. 

 

To test whether common regions could be responsible for the relationship between ∆recall and 

∆rsFC, we computed ‘network overlap maps’, though the following steps: (1) For each of the 92 seed 

regions, ∆rsFC was calculated between that regions and the rest of the cortex, yielding 92 surface 

maps. (2) For all seed regions belonging to a given network, these maps were averaged, yielding rsFC 

change maps for 17 networks in the left hemisphere and 15 in the right. (3) Each of these ∆rsFC maps 

were then correlated with ∆recall, yielding maps of p-values for the relationship between rsFC 

change in that network and ∆recall. (4) The results were corrected for multiple comparisons by 

permutation testing (see above), and binarized so that each vertex was classified as “significant” or 

“not significant”. (5) All maps were stacked on top of each other, and the number of times each 

vertex was significant was counted, yielding a value of minimum zero and maximum 17 (left) or 15 

(right). A high number would mean that ∆recall and ∆rsFC was significant for many networks at that 

location. The same procedure was also done for age-interactions, i.e. the number of times vertices 

where ∆rsFC was differentially related to ∆recall in the old vs. the younger and middle-aged group. 

Local cortical atrophy was also calculated from the vertices most heavily involved across multiple 

networks, and the ∆recall and ∆rsFC correlations re-run with atrophy as an additional covariate. 

 

Finally, rsFC maps for all nodes were averaged across time points and participants to yield a map of 

mean connectivity for each vertex. This connectivity surface map was then correlated with the age-

interaction network overlap maps described above. A positive correlation would mean that vertices 

showing different ∆rsFC - ∆recall-relationships across age groups across many networks had 

relatively higher mean connectivity to the rest of the cortex. To test this further, vertices were also 
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grouped according to number of networks showing age-interactions: 0 networks, 1-5 networks, 6-10 

networks or > 11 networks. 

 

Study 1 results 

The relationships between age and rsFC are presented in Table 2. Cross-sectionally, a negative age-

relationship was seen across networks, while the global ∆rsFC - age-correlation was .23 (p < .05). 

Adding a quadratic age-term did not explain additional variance, showing that the longitudinal age-

effect was not different in different parts of the age-range. The age-relationships did not vary much 

between the specific networks. Scatterplots are presented in Figure 2 and 3.  

 

[Insert Figure 2, 3 and Table 2] 

 

Age-changes in memory function 

Cross-sectional age correlated negatively with California Verbal Learning Test (CVLT) scores at both 

time points (CVLT learning r = -.63/ -.57 at Tp1 and Tp2, respectively; CVLT 5 min recall r = -.61 and -

.49 at Tp1 and Tp2; CVLT 30 min recall r = -.60 and -.44 at Tp1 and Tp2, all p’s < 10-6). Even though 

alternative test versions were used at Tp1 and Tp2, net change from Tp1 to Tp2 was not observed 

(learning 57.9 vs. 58.6 at Tp1 vs. Tp2, t [118]= -0.85, n.s./ recall 12.8 vs. 13.1 at Tp1 vs Tp2, t [118] = 

1.52, n.s.). Age did not correlate with ∆learning (r = -.10,, n.s.) while a tendency was observed for less 

positive ∆recall with higher age (r = -.18, p = .057). A follow-up test of ∆recall in each age-group 

separately showed that the younger and middle-aged participants had a significant practice effect 

(14.0 vs. 14.7 at Tp1 vs Tp2, t [62] = 3.31, p < .005) while the older group did not show a significant 

change (11.4 vs. 11.2 at Tp1 vs Tp2, t [55] = 0.55, n.s.).  

 

Relationship between ∆rsFC and change in memory function 
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Cross-sectionally, learning and recall at baseline did not correlate with changes in rsFC in either age 

group. For the longitudinal analyses, we first run a GLM with global rsFC change as dependent 

variable, age group as fixed factor, and CVLT recall, sex and movement at each time point as 

covariates. A main effect of age group (F [1, 119] = 5.05, p < .05) and an interaction effect of age 

group × recall (F [1, 119] = 7.60, p < .01) was found. No effects were found for learning. Testing the 

relationship separately in each age group, in the older group, increased rsFC was related to better 

memory outcome (partial r = .29, p < .05), while a negative correlation was seen for the younger and 

middle-aged (partial r = -.28, p < .05, difference between correlations z = 2.91, p < .005, by tests of 

Fisher z-transformed correlations) (Figure 4). Including total cortical atrophy as an additional 

covariate did not affect the correlations (young: partial r = -.31, old: partial r = .30). To test whether 

the negative relationship was uniform across the age-range in the young group, a regression was run 

with global rsFC change as dependent and CVLT recall and the square of CVLT recall as predictors, 

and movement, age and sex as covariates of no interest. The quadratic term was marginally 

significant (p = .089). We then did follow-up partial correlation analyses for those below 30 and those 

in the young and middle-aged group from 30 years and up. In the young-young group, CVLT recall 

change correlated -.39 (p < .05, df = 27) with global rsFC change while in the old-young group the 

correlation was .17 (ns, df = 22). These correlations were marginally significantly different (Z = 1.9, p 

= .057). Change in the CVLT learning condition did not correlate with ∆rsFC (young: partial r = -.15; 

old: partial r = .15, n.s.), and so further analyses were done for ∆recall only.  

 

[Insert Figure 4] 

  

Post hoc correlations between ∆rsFC and ∆recall in all networks were calculated, yielding 17 inter-

network and nine intra-network correlations. 14 positive correlations in the old group (p < .05) and 

nine negative in the younger and middle-aged (p < .05) were found (Table 2). 20 of 26 correlations 
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were significantly different between the age groups, with no significant differences for between vs. 

within network correlations.  

 

To test whether the relationship between global ∆rsFC and age was dependent on longitudinal 

change in recall, we divided each age group in two based on whether they showed relatively higher 

vs. relatively lower preservation of recall function (median split). The results are shown in Figure 5. In 

the high-preservation group, a positive age-correlation (r = .36, p < .05) was seen, while no 

relationships was observed in the low preservation group (r = .07, n.s.). The difference between the 

correlations was marginally significant (p = .10, z = 1.64).  

 

[Insert Figure 5] 

 

Network overlap 

The similarities in correlations across networks indicated that common regions could be responsible 

for the relationship with ∆recall, and thus network overlap maps’ were computed as described above 

(Figure 6). Significant age-interactions were seen for at least 5 networks for 63% of the total number 

of vertices and at least 10 networks for 25%. Lateral, medial and inferior temporal cortex, especially 

in the left hemisphere, showed age-interactions in > 10 networks. Other regions of known relevance 

for normal memory function, such as posterior medial parietal and medial prefrontal cortex, also 

showed effects across more than 10 networks. However, some regions not traditionally regarded as 

important for memory, e.g. posterior cortical and areas around the central sulcus, still showed age 

effects across multiple networks.  

 

 [Insert Figure 6] 
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Extent of network overlap was higher for older than younger and middle-aged. In the older, ∆rsFC 

was significantly related to ∆recall in more than 10 networks in widespread regions, including left 

parahippocampal and parts of the superior temporal cortex bilaterally, and portions of the lateral 

and medial parietal and prefrontal cortex. For the young, fewer regions showed extensive network 

overlap, especially in the right hemisphere. Regions of highest overlap included the medial and 

lateral temporal cortex and the precuneus, which are prime memory regions. Here, overlapping 

effects were seen for 7-8 networks in the left hemisphere and 4 in the right.  

 

Volume change was then extracted from the vertices most heavily involved across multiple networks. 

For the older group, volume change was calculated for vertices where rsFC change in at least nine 

networks was related to recall change, while the threshold was set to three in the younger and 

middle-aged to avoid including a too small portion of the cortex. Re-running the ∆rsFC– ∆recall 

correlations in Table 2 with local cortical atrophy as additional covariate, one network correlation 

(NW 5) changed from .27 (p < .10) to .30 (p < .05) and one (NW 8 inter-network) from .27 (p < .10) to 

.28 (p < .05) for the old group. The other networks showed only minor changes after inclusion of 

atrophy as an additional covariate. 

 

Memory – rsFC change and overlap with regions of high rsFC  

Mean connectivity maps for all nodes are shown across time points and participants in Figure 7. This 

connectivity surface map was correlated with the surface map in the last row in Figure 6. A significant 

positive correlation was found in both hemispheres (left r = .48, right r = .53, p < .05 by permutation 

testing), meaning that high mean connectivity was associated with more age effects on ∆rsFC - 

∆recall-relationships. To test this further, vertices were grouped according to number of networks 

showing age-interactions: 0 networks (left hemisphere: 7.5% of vertices/ right hemisphere: 17%), 1-5 

networks (left: 24.7%/ right: 50.1%), 6-10 networks (left: 35.1%/ right: 28.9%), or > 11 networks (left: 
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32.7%/ right: 4.0%). Connectivity was very low in the vertices not showing age-interactions for any 

network. As long as age-interactions with at least one network were found, connectivity did not vary 

as a function of the number of networks showing age-interactions. 

 

[Insert Figure 7] 

 

Study 2: Simulation model 

Materials and methods 

The purpose of running a simulation study was to examine whether a hypothesized model would be 

expected to generate a set of observed patterns in the data similar to those actually observed. 

Especially, this was motivated by the observation of opposite change in rsFC in the two age-groups, 

in both cases being correlated with memory change. Importantly, the purpose of Study 2 was not to 

propose a realistic model for causes of age-related memory change. Thus, simulation data were 

generated by a model of age, connectivity and memory. The full R-code for the simulation is 

presented as Supplemental Information. The model contained the following variables (see Figure 8):  

 

[Insert Figure 8] 

 

Connectivity 

Measured connectivity is equal to exp(actual connectivity plus measurement error). The model is 

formulated in terms of logged measurement units because connectivity measurements in the real 

sample appear skewed relative to a normal distribution.  

Actual connectivity is generated from a discretized Brownian motion with drift and mean reversion. A 

Brownian motion models a process where units are exposed to a normally distributed shock or 

influence each instant in time. This causes the units in a pure Brownian motion process to diffuse 
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across the outcome space over time, spreading further and further ”away” from each other. For 

simplicity, the code uses a discrete time approximation, where the shocks only happen once a year. 

The drift in the Brownian process represents a common influence that shifts all the units in the same 

direction. In our case, this is an aging effect: A linear annual change in a cohort’s average 

log(connectivity). The simulation code allows the trend to shift at age 45. In the real data, the 

connectivity distribution does not seem to increase over time in the way a Brownian motion would 

imply. We therefore impose mean reversion, a ”force” that pulls the particles some portion of the 

way back to the population average. In sum, we get a process where everyone’s connectivity has a 

common tendency over time (an aging effect), but with individual developmental differences around 

this average trend. 

Measurement error seems probable, as well as plausible in light of the measured changes in 

connectivity: Some individuals see their connectivity doubled or halved after three years, and there is 

very strong regression to the mean. 

 

Memory 

Observed memory is “actual memory” observed with a measurement error and converted to a 

discretized scale with 16 as the maximum observation to match the range of the empirical measure, 

which had pronounced ceiling effects. 

“Actual memory” is modeled as a linear function of age and changes in log(connectivity): An initial 

memory value at age 15 is drawn from a normal distribution, the same linear memory decline occurs 

for each year of aging, and changes in log(connectivity) affect memory (with different parameters for 

the effect before and after age 45).  

In addition, there is a test-learning effect that shifts the entire distribution of the memory values 

observed at the second observation ages by a common value. 
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Actual memory is then converted to a scale similar to the one used on the actual sample: Discretized, 

in that the latent memory value is rounded to the closest integer value, and with a ceiling effect, 

whereby any value above 16 is set equal to 16.  

 

Parameter values  

The purpose this part of the study was to see whether a hypothesized “structural” model could be 

made consistent with observed patterns in empirical data.  To examine this, we created a simulation 

model and calibrated this to reproduce observed patterns. The calibration was based on the 

empirical data, which contained two memory measures (both measured on a scale from 0 to 16) and 

one connectivity measure, all taken at two ages for each of 119 participants. This data was used to 

run regressions of age on log(connectivity), age on memory, (we used only one of the memory 

measures for this exercise), of log(connectivity) on memory, and of age and log(connectivity) on 

memory. Parameters within the observed coefficient and residual standard error ranges were chosen 

and adjusted manually using trial-and-error to make visually assessed patterns in the data similar to 

those in the observed data.  These adjustments required multiple, often interconnected changes to 

the parameter values used. For instance, if the measurement error assumed for connectivity was 

increased, this meant that the assumed standard deviation of the connectivity process as an 

individual aged needed to be reduced to make the total variation in the simulated measurements of 

connectivity similar to the empirical.  

 

Study 2 results 

Simulated data were generated by a model of age, global rsFC and recall. For full results, please see 

Supplemental Information. The real and the simulated data showed a similar cross-sectional 

reduction of rsFC and memory with age, and a positive, cross-sectional relationship between rsFC 

and memory, i.e. the simulation model reproduced the relationships observed in the real cross-
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sectional data. Further, the negative ∆rsFC - ∆memory relationship in the younger and middle-aged 

and the positive relationship in the older participants were replicated (Figure 4). While the changes in 

rsFC in the real data were ∆z = 0.05 (old) vs. ∆z = -0.04 (young), in the simulated data these were 

more similar and had the same sign (∆z = -0.015 (old) vs. ∆z = -0.012 (young), demonstrating that 

increase in rsFC over time in the older age group was not necessary to observe the age-dependent 

memory relationship.  

 

Study 3: Cross-sectional replication 

The purpose of Study 3 was to test whether the effect of age on the rsFC - memory relationship could 

be replicated with cross-sectional data and a different type of memory task. If so, this would 

demonstrate that the observed relationship was not due to aspects of the CVLT per se. The rational for 

this is that the level of performance on baseline is assumed related to ongoing brain changes that can be 

measured with rsFC. Further, using a cross-sectional task from Tp1 also insured that practice effect did 

not unduly bias the results in any way. Previous research has demonstrated that sensitive tasks at 

baseline can predict future changes in certain brain properties (Raz et al., 2008). Thus, cross-sectional 

memory performance from a visual recognition task was correlated with longitudinal change in rsFC 

in the same participants as in Study 1. While no cross-sectional relationship between baseline 

memory score and rsFC change was identified in Study 1, we reasoned that a more demanding 

memory task would be better able to differentiate participants than the 16-point CVLT memory scale 

when not taking the presumably more sensitive longitudinal changes into account.  

 

Materials and methods 

Sample 

109 of the participants from Study 1 (Younger and middle-aged n = 59, Older n = 52) underwent a 

visual recognition memory task at Tp1, and were included in Study 3 (see sample characteristics in 
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Table 1). For recruitment and screening, please see description of Sample in Study 1. The sample was 

representative of the Study 1 sample, with almost identical education, IQ and MMSE scores. 

 

Memory task 

The task visual recognition memory was a modified version of one used by Duarte et al. (Duarte et 

al., 2006). E-prime (Psychology Software Tools Inc., www.pstnet.com) was used for presentation of 

stimuli and registration of responses. The total duration of the task was ~30 minutes, including 10 

minutes encoding and 20 minutes recognition test. These were separated by 45 minutes of non-

related cognitive tasks.  

 

The participants were seated in a comfortable chair, ~60 cm from a monitor used to present the 

stimuli. Responses were given by button press with the right hand on a response box. Stimuli were 

line drawings of common objects or animals in black on a white background made by a professional 

illustrator. The encoding phase consisted of two blocks, each containing 75 stimuli. The participants 

were informed that they would later be asked to perform a memory task, where they would be 

required to remember each drawing as well as in which block each drawing was presented. Each 

stimulus was presented for 1000 ms, followed by a 1000 ms window within which they were required 

to give a response. After the response, a jittered inter-stimulus interval of 700 to 3600 ms followed.  

 

The two encoding blocks were separated by 60 seconds. In the first block, the participants were 

asked to make a judgment of whether they would be able to lift what the drawing represented with 

one hand. In the second block they were asked to make a judgment of whether they would be able 

to fit what the drawing represented within a car. The response alternatives were “yes” or “no”.  

 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=4861&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.pstnet.com
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After 45 minutes of performing non-related cognitive tasks, a recognition test was given, where the 

encoded stimuli were presented inter-mingled an equal number of new line-drawings. The 

recognition block consisted of 100 drawings presented during encoding and 100 new drawings 

presented in a pseudo-randomized sequence. During this part of the experiment, each drawing was 

shown for 1000 ms, followed by a 1500 ms window within which the participant was required to give 

a response. After the response, a jittered inter-stimulus interval of 700 to 3600 ms followed. The 

participants first made a decision about whether they had seen the drawing during encoding. If they 

responded “no”, the task moved on to the next stimuli. If they responses “yes”, they got a follow up 

question on in which of the two blocks the drawing was first presented. They got three response 

alternatives: The “lift block”, the “car block” or “don’t remember”. The presentation of the 

instruction terminated when the response was given. 

 

Statistical analyses 

12 memory-related parameters were extracted: Hits, correct rejections, misses, false alarms, Hits 

reaction time (RT) , correct rejections RT, misses RT, false alarms RT, Hits standard deviation of the 

RT (sdRT), correct rejections sdRT, misses sdRT, false alarms sdRT. These were all entered into a 

principal component analysis (PCA) to extract a higher-order memory component representing the 

optimal linear combination of the 12 memory-related parameters. This component was saved and 

inverted, to ensure that higher scores represented better memory function. The relationship 

between this memory component and global rsFC change was tested in each age-group separately 

with partial correlations, and the same covariates as in Study 1 (age, movement, sex and interval 

between scans), and the correlations were compared by t-tests of Fisher z-transformed correlation 

coefficients. 

 

Study 3 results 
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One component explained 54.6% of the variance in memory score, with Eigenvalue = 6.56. The 

component matrix is shown in Table 3. The pattern of reverse relationships to global rsFC change in 

younger and middle-aged vs. older adults from Study 1 was replicated, with a significantly different 

memory-∆rsFC relationship in the two groups (Younger and middle-aged r = -.27 p < .05, Old r = .23, p 

= .11, difference between correlations z = 2.61, p < .01), Scatterplots are shown in Figure 4. 

Regressing out performance on two other speeded tests, the Stroop word reading condition and the 

“Plus” condition in the Plus/ minus test, did not affect the results (Younger and middle-aged r = -.25, 

Old r = .24, difference between correlations z = 2.56, p = .01). This indicates that processing speed is 

less likely to be the main contributor to the memory component. 

 

[Insert Table 3 about here] 

 

Discussion 

We have reported the results from three closely related studies. In Study 1, longitudinal changes in 

rsFC were related to changes in recall abilities, independently of ongoing brain atrophy. Striking age-

effects were seen, with increased rsFC predicting improved recall performance in older adults while 

reduced rsFC predicted improved recall in younger. This could mean that there are age-related 

differences in rsFC that are relevant for understanding age-decline in memory function. In Study 2, 

we constructed a simulation model that was able to reproduce the main age-effects on memory and 

rsFC reported in Study 1. In Study 3, visual recognition memory performance at baseline predicted 

longitudinal change in rsFC, with negative relationships in the group of young and middle-aged adults 

and positive relationships in the older adults. Thus, the main findings were replicated across three 

variants of the study, demonstrating that the results cannot be attributed to aspects of the specific 

memory task used or practice effects inherent in most longitudinal studies. 
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Functional connectivity change and memory function over time 

rsFC measured post-encoding may partly reflect consolidation of memory (Albert et al., 2009, Hasson 

et al., 2009, Takashima et al., 2009, Daselaar et al., 2010, Stevens et al., 2010). In the present study, 

rsFC changes were measured independently of the encoding task, and may index ongoing, trait-like 

functional characteristic of the individual, rather than specific consolidation of the encoded material 

per se. Interestingly, we found a positive relationship between rsFC change and recall change in the 

group of older adults and a negative relationship in the group of younger and middle-aged adults. 

The positive rsFC-recall change relationship in the older group is in accordance with one previous 

study of longitudinal changes within the DMN in elderly (Persson et al., In press), and a longitudinal 

drug intervention study where increased functional connectivity between left posterior hippocampus 

and the medial prefrontal cortex correlated with increases in retention scores (Witte et al., 2014). 

Several cross-sectional studies have also observed positive rsFC-memory relationships (Andrews-

Hanna et al., 2007, Wang et al., 2010a, Fjell et al., 2012, Onoda et al., 2012, Mevel et al., 2013, 

Geerligs et al., 2014, Ward et al., 2014), but not uniformly, as both higher and lower functional 

couplings have been associated with decreased cognitive functions (Antonenko and Floel, 2014). 

Ferreira and Busatto (2013) proposed that greater rsFC represents more efficient brain networks in a 

number of conditions, but that both functional specialization and functional segregation are 

important for cognition, sometimes yielding negative relationships between rsFC and cognition 

(Ferreira and Busatto, 2013). Similarly, it has been suggested that higher efficiency of 

communications within networks, and lower inter-network connections, reflecting specificity and 

selectivity of the networks, impact cognition positively (Antonenko and Floel, 2014). Geerlings et al. 

found less distinct functional networks and lower local efficiency in older adults (Geerligs et al., 

2014), and age-related increases in the recruitment of more general instead of specific functional 

networks, i.e. higher inter-network FC and lower intra-network FC, have been associated with lower 

function in specific cognitive domains (Salami et al., 2012, Spreng and Schacter, 2012, Antonenko and 
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Floel, 2014). This can be interpreted within the dedifferentiation theory of aging (Lindenberger and 

Baltes, 1994), according to which segregation of cognitive abilities, and hence functional 

specialization between networks, is reduced with aging. Our longitudinal results did not show 

differential effects of within- vs. between-network changes on memory, indicating that this 

distinction may be less important for within-subject change. However, the finding that rsFC change in 

large regions and across multiple networks was associated with memory change in older adults could 

be caused by breakdown of functional specificity resulting in more diffuse patterns of functional 

connectivity with age, possibly related to compensatory activity (Reuter-Lorenz and Park, 2010). This 

conclusion must not be overstated, however, since widespread effects were not exclusively seen in 

the older participants, with longitudinal change in nine different networks being associated with 

recall change in the younger and middle-aged group.  

 

Although rsFC – recall relationships were found for networks assumed to be of importance for 

memory, such as the DMN (Vincent et al., 2006, Spreng et al., 2009, Andrews-Hanna et al., 2014), 

additional involvement from other networks were also seen. Interestingly, the regions where age did 

not influence the relationship between rsFC change and recall change were more weakly connected 

to other networks of the cortex. Regions with strong connections to many other cortical regions play 

a key role in information integration in the cortex, and are likely critical in a range of conditions 

(Buckner et al., 2009), including memory. However, it was not only changes in the most highly inter-

connected cortical areas that drove the rsFC-memory relationships, since all regions showing at least 

one age-interaction had high connectivity.  

 

The most striking age-effect was the inverse rsFC-memory change relationship in the older vs. the 

younger and middle-aged participants. This was replicated across the longitudinal data, the 

simulated data and in the cross-sectional recognition memory task, and match what we have 
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previously seen with subcortical-cortical connectivity change (Fjell et al., 2015). To understand the 

conditions for the effect, we need to look at the longitudinal changes in rsFC in combination with the 

simulation results. Age correlated negatively with absolute rsFC and positively with change in rsFC, 

the latter caused by longitudinal decrease in the younger and middle-aged and increase in the older 

participants. Increased rsFC could potentially reflect compensatory activity in response to reduced 

efficiency of neurocognitive processing (for a review, see (Grady, 2012)). Agosta et al. found higher 

executive network connectivity in AD patients than controls, and a positive correlation with 

neuropsychological performance, interpreted as functional compensation (Agosta et al., 2012). The 

same conclusion was drawn in a study that found increased connectivity between inferior parietal 

and medial prefrontal cortex was associated with better episodic memory performance for older 

adults with small gray matter (GM) volumes, while this relationship was not seen for those with 

larger GM volumes (He et al., 2012). Similarly, Lim et al. observed higher rsFC in DMN in PiB positive 

cognitively normal older adults compared to PiB negative, with a positive relationship to episodic 

memory scores (Lim et al., 2014). Thus, in cross-sectional studies, the seemingly paradoxical pattern 

of higher rsFC in disease or risk groups, with positive correlations with cognitive function, has been 

observed previously. Still, this does not explain the discrepancy between the cross-sectional and the 

longitudinal observations in the present data. Thus, we turned to the simulation results. The purpose 

of the simulation study was to decide which terms and parameters that needed to be included in a 

model that could reproduce the observed rsFC-memory change relationship. In the simulation 

model, connectivity changed according to a common, age-related reduction and an individual shock. 

Importantly, no terms specified rsFC increases or age-dependent differences in connectivity change. 

The results clearly showed that the age-effect on the rsFC-memory relationship was not conditioned 

on increased rsFC in the older age group. Another point that can be considered is the not perfect 

test-retest reliability of rsFC (Honey et al., 2009), which makes the probability of surprising 

observations larger due to increased noise. Still, several studies have suggested that the reliability is 
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acceptable (Thomason et al., 2011, Guo et al., 2012) and rsFC has consistently been able to 

distinguish between different brain states and conditions (Barkhof et al., 2014). In sum, since we lack 

a convincing explanation for the observed increase in rsFC, we advise that this is interpreted with 

caution and replicated in an independent sample.  

 

Conclusion 

Longitudinal changes in rsFC impact recall function in a highly age-dependent manner. Of 

importance, the effect on memory was not restricted to specific networks, but was seen across large 

regions of the cortex. This phenomenon was even more evident in the older than the younger and 

middle-aged adults, in line with theoretical views on neurocognitive aging involving compensatory 

activity and reduced specificity of functional networks. The results suggest that off-line cortical 

processes are relevant for understanding the reduced efficiency in forming and consolidating new 

episodic memories commonly seen in normal aging.  
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Figure legends 

Figure 1 Functional-connectivity based parcellation of the cerebral cortex 

The cerebral cortex was parcellated according to a 17 network scheme (15 in the right hemisphere) 

(Yeo et al., 2011). For each parcellation, a point was placed in the area with the highest degree of 

confidence, and dilated to cover 127 vertices. rsFC was calculated between each of these seed 

regions and the rest of the cortex.  

 

Figure 2 Cross-sectional age – functional connectivity relationships 

Intra network rsFC is the mean connectivity (z-transformed correlations) between all seeds within a 

network, while inter-network rsFC is the mean connectivity between the seeds within a network and 

all seeds outside the network. All data points are the mean value of Tp1 and Tp2. Selected networks 

are shown. 

 

Figure 3 Longitudinal age – functional connectivity relationships 

The relationship between age and change in rsFC for selected networks. Change in rsFC is the 

difference between Tp2 and Tp1 in z-transformed correlations.  

 

Figure 4 Longitudinal recall – global functional connectivity relationship 

Left panel: The relationship between change in global rsFC and recall change from Study 1. Recall 

change is the recall scores at Tp2 divided by Tp1.  

Middle panel: Simulation results. A simulation study was run, were all terms were explicated and 

model parameters drawn from the actual data. The simulation results replicated the cross-sectional 

results and the inverse rsFC-memory change relationship from the real data, without any assumption 

of increased rsFC in the older group.  
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Right panel: Cross-sectional recognition memory replication. Relationship between change in rsFC 

and cross-sectional recognition memory performance, expressed as a principal component of 

accuracy, reaction time (RT) and RT stability.  

 

Figure 5 Relationship between rsFC change and age as a function of memory preservation 

The sample was split into those with high degree of preservation of recall scores and those with 

lower degree of preservation by a median split in each age-group separately. A positive relationship 

between age and global rsFC change was seen in the high preservation group, and no relationship 

was observed in the low preservation group. 

 

Figure 6 Anatomical distribution of recall change – functional connectivity change relationships 

rsFC change maps were computed for all networks, and each map was correlated with recall change. 

The results were corrected for multiple comparisons by permutation testing. The figure shows the 

number of networks for which recall change correlated with rsFC change, yielding a minimum of zero 

and a maximum of 17 (left hemisphere) or 15 (right hemisphere) networks. In the older group 

(middle row), rsFC – memory change relationships involved many networks and covered large parts 

of the cortex. For the younger and middle-aged (top row), number of networks involved was lower. 

Age-interactions (bottom row) were found for large parts of the cerebral cortex.  

 

Figure 7 Mean connectivity as a function of age-interactions 

The surface maps (left) show vertex-wise mean rsFC, thresholded at z > .30. The bar plots (right) 

shows mean rsFC as a function of number of age-interactions in the bottom row of Figure 6. Vertices 

not showing age-interactions in rsFC-memory change had lower rsFC with the rest of the cortex. 

 

Figure 8 Schematic outline of the variables included in the simulation model 
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 Study 1 Study 3 

 Younger and 

middle-aged 

Older adults Sig 

p < 

Younger and 

middle-aged 

Older adults Sig 

p <  

n 64 561  592 52  

Age 32.9 (23-52) 71.6 (63-86) 10-61 29.4 (20-49) 68.1 (60-83) 10-56 

Sex (females/ males) 40/ 24  29/27   38/21 27/25  

Education 15.9 (12-23) 16.5 (8-26)  15.7 (12-22) 16.6 (8-26)  

IQ 119 (101-133) 120 (90-146)  120 (101-133) 120 (90-146)  

MMSE 29.6 (27-30) 29.0 (26-30) 10-3 29.6 (27-30) 29.0 (27-30) 10-3 

Follow-up interval 3.4 (2.7-4.0) 3.1 (2.8-3.8) 10-9 3.4 (2.7-4.0) 3.1 (2.8-3.8) 10-7 

 

Table 1 Sample characteristics 

Age, IQ and MMSE values from Tp2, education from Tp1. Mean (range) values are provided. Follow-

up interval given in years. 

1 One participant lacked valid memory scores 

2 One participant lacked valid MMSE and IQ scores 

Difference between age groups was tested by independent samples t-tests, and p-values are 

provided when p < .05. 

Table 1



 Age-relationships Correlations ∆rsFC with ∆recall 

 Cross-sectional Longitudinal Younger and 

middle-aged  

Older 

 Inter Intra Inter Intra Inter Intra Inter Intra 

N1 -.14  .14  -.26  .29  
N2 -.24  .11  -.37  .29  
N3 -.24  .20  -.13  .31  
N4 -.27  .22  -.28  .32  
N5 -.15  .29  -.30  .27  
N6 -.18 -.30 .17 .12 -.21 -.18 .31 .30 
N7 -.17 -.24 .21 .17 -.25 -.18 .29 .28 
N8 -.20 -.22 .23 .25 -.21 -.13 .27 .10 
N9 -.22  .07  -.39  .29  
N10 .14  .04  -.28  .02  
N11 -.14 -.23 .23 .20 -.10 .10 .27 .23 
N12 -.18 -.23 .23 .21 -.22 -.12 .24 .18 
N13 -.19 -.23 .30 .22 -.23 -.18 .21 -.03 
N14 -.20  .17  -.31  .28  
N15 -.20 -.16 .13 .10 -.35 -.24 .31 .31 
N16 -.19 -.21 .21 .18 -.33 -.21 .30 .16 
N17 -.25 -.35 .22 .09 -.25 -.00 .29 .19 

Table 2 Correlations between age, rsFC and memory 

N: Network (Yeo et al., 2011). Inter denotes rsFC between each node in a network and all nodes 

outside that network. Intra denotes rsFC between all nodes within a network. Cross-sectional 

analyses are based on the mean of time points, while longitudinal are based on the difference (Tp2-

Tp1). Bold indicates p < .05. Numbers are partial correlations with controlling for movement, sex and 

interval between scans, as well as age for the memory analyses. Connectivity is calculated as the 

mean of hemispheres. Intra-network correlations could not be calculated for networks consisting of 

only one region. 

Table 2



 Loading 

RT correct rejection 0.91 

RT hit 0.91 

RT miss 0.88 

sdRT correct rejection 0.87 

sdRT hit 0.84 

RT false alarm 0.84 

sdRT miss 0.75 

Correct rejection -0.68 

Hits -0.59 

sdRT false alarm 0.49 

False alarm 0.46 

Miss 0.37 

 

Table 3 Component matrix 

RT: reaction time 

sdRT: The intra-individual standard deviation of the reaction time 

For the statistical analyses, the component loadings were inversed so that higher scores would 

indicate higher performance. 

 

Table 3
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Highlights 

 

 Longitudinal changes in resting-state function connectivity related to memory 

 Anatomically widespread cortical areas involved, not network-specific effects 

 Highly age-dependent relationship, with inverse relationship in young vs. older 
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