
PREFACE 

The authors have often been annoyed by the insufficient docu­

mentation of numerical methods used in applied fluid mechanics. In 

traditional papers on such subjects there is no room for a proper 

description of the numerical methods which are used. The present 

preprint is completely devoted to the documentation of a particu­

lar numerical method. He believe it will be helpful for the under­

standing of- later applications. The motivation for developing this 

method sterns from interest ~n two specific problems: Diffraction 

and refraction of swells in shallow· regions and propagation of 

long waves generated by slides or avalanches. 
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ABSTRACT 

A finite difference method for integrating the three-dimensional 

Boussinesq equations has been developed. Dispersion relations and 

the numerical stability criterion are derived. The advancement 

from one time step to next involves solving a large coupled set 

of eq~~ations for the accelerations. The solution is achieved by 

a line by line iterative technique. Different initial values are 

tested by simple simulations. Correction terms to the basic numer­

ical scheme are found. These terms are of similar mathematical 

form as the dispersion terms in the Boussinesq equations, and are 

thus easily included in the difference equations. 
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1. INTRODUCTIOH 

1.1. Introductory r~marks 

In models of wave propagation in shallow \vater the hydrostatic 

pressure approximation is comnonly used. The hydrostatic equations 

may often be effectively solved by very simple numerical schemes 

even if effects of variable depth·or non-linearity are included. 

If the ratio between typical wavelengths and depths is.less than 

say 10, deviations from hydrostatic pressure become important. 

These deviations may be approximately accounted for by adding cor­

rection terms, usually called dispersion terms, to the equations; 

The resulting Boussinesq equations are substantially more trouble­

some to handle numerically than the hydrostatic, shallow water equa­

tions. To avoid instability the finite difference representations of 

the dispersion terms have to be implicit and large coupled seta of 

ordinary equations have to be solved at each time step. In three 

dimensional cases this set of equations have to be solved by time 

consuming iterative techniques. 

. A review of commonly used nur.1.erical methods for solving 

standard wave equations is given by Meisinger and Arakawa (1976). 

Methods for numerical integration of the tw9 dimensional Boussinesq, 

or related, equations are reported by many authors, among which we 

mention Peregrine (1967), Madsen & Mey (1969), Miles (1979) and 

Pedersen & Gjevik (1983). Numerical integration of the three dimen­

sional Boussinesq equations are to our knowledge hardly reported at 

all. 

The following text is the first part of the documentation on a 

finite difference technique for solving these equations. Inclusion 

of non-linearity and tests involving complicated geometry are post­

poned to the next part. We use a staggered grid which allow imple­

mentati""'n of boundaries of rather complex shapes. At every time step 

implicit equations for the accelerations. are solved by a line by 

line iteration procedure. In the last section we introduce correc­

tion terms which improve the accuracy of the numerical scheme. These 

correction terms will be less useful in the presence of complicated 

boundaries. The numerical dispersion relations and tests of the . 
iteration procedure indicate that the numerical method is suffi-

ciently effective to solve complicated problems. 
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1 .2. Basic equations 

A cartesian coordinate system with horizontal axes Ox and 

Oy and vertical axis Oz is introduced. A typical wavelength 

A , and a typical depth h , are used as horizontal and vertical c c . 
-k 

length scales respectively. By introducing Ac(ghc) 2 as time 

scale, the linearized non-dimensional Boussinesq equations may be 

written in the form: (Peregrine 1972) • 

.£.!].= at 
+ av 

ot = 

+ 
-q•(hv) 

+ + 

-V~+€{~hqq•(h~~)- ih2q2~~}+0(€2) 

( 1 • 1 ) 

( 1 • 2 ) 

where ~ is the surface displacement, h the equilibrium depth, 

-?a i-- 0 = ~-- + J the hori-ax oy 
+ -? i" 
v = u~+VJ the mean horizontal velocity, V 

zontal gradient operator, and e = (h /A )2 a small parameter. The 
c c 

+ 
mean velocity v with components u and v is defined by 

0 
+ . + -t· 1 i {- +· - -t·} v(x,y,t) = u~+VJ = h l u(x,y,z,t)~+v(x,y,z,t)J dz 

-h 
( l . 3) 

· where u and v are the actual horizontal velo'ci ty components. 

+ 
From (1. 3) it follc:Ms immediately that v is irrational only to 

0 
order e if the depth is non-constant. We may thus write: 

+ 
Vxv = 0 < ) ah + 0 < doh 

€ ox oy ( 1 . 4) 

Rewriting the right hand side of (1 .2) by using (1 .4) leads to: 

• 
u = 

v = o o • a oh• -(h-u)+ -(-v) ax ax ox oy 

l.€h 2v 2v+o < € 2) 
6 

( 1 • 5) 

( 1 • 6) 
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• 
where we have introduced the notations 

ou 
ot = u and 

ov 
ot 

= v. (1.2) 

and (1 .5-1 .6) are identical in the case of constant depth, h = h 0 , 

for which we get: 

~ ~ 

= -h0 v • v ot 
( 1 . 7 ) 

~ ~ 

ov = -vn + ~ zvz ov 
ot 3 o ot 

( 1 • 8) 

For two dimensional problems the two formulations of the equation 

of motion are again identical. 

2. THE NUMERICAL SCHD'IE 

2.1. Grid and notations 

The numerical approximation to a quantity F at the gridpoint 

with coordinates ( a:6x, S6y, y6t) is denoted by 6x, 6y and 

6t are the grid increments. The space discretization is done on a 

standard staggered grid which is illustrated in figure 1. Approxi-

• • mations to n, u, v and u, v are calculated at different values 

of the time t. The quantities to be calculated, are thus: 

•n 
V • 1 I 

]+"'2 I p 
n+~ 

v. l... 
]+'2, p 

where j, k and n are integers. We define a difference operator 

6 by: 
X 

( 2 • 1 ) 

and correspondingly 6 and 
y 

6t. These operators will be combined 

to give higher order differences. An important example is: 

o2xpa:Y,Q = 6x(6xF)a:Y,Q = _1_(6 pY - 6 pY ) 
~ . ~ 6X X a:+~,S X a:-~,S 

( 2. 2 ) 
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The right hand side is easily recognized as the standard symmetric 

three point difference for a2F/ox2. If F is a simple harmonic 

function of x, say 6. ikx 
F = F e , \·Je get from the definition of 

o pY = iK pY 
x a,S a,~ 

where K 
2 

sin 
kt.x 

Because K has the relation the = -2- . same to t.x 
operator 0 as k has to 

X 
a/ox we will denote it as discrete 

wavenumber. Likewise we define L 
2 . lli and the discrete = - s~n 2 t.y 

'frequency Q = L sin ~t.t where 
t.t 2 w is the wave frequency obtained 

from the numerical scheme which we will refer to as the numerical 

frequency. Analogously to the difference operators we introduce 

average operators by: 

etc. ( 2 • 3) 

By use of (2.1) and (2.3) it is possible to state a difference 

analogue to the product rule of derivation: 

ox ( FG ) ccy , a = ( Fx ) Y o G Y + ( G x ) Y o r' Y 
f.J cc,f3 x a,~ a,~ x a:,S ( 2 • 4) 

By use of notations like (2.1) most of the terms in the difference 

equations will get identical indexes. To abbreviate the expressions 

we often collect terms of equal indexes within square brackets 

leaving the indexes outside the braCket. As an example we 

abbreviate the difference equation: 

to 

n n o tu J. , p+l.. = - o ,., . 
"2 X J I p+~ 

by introduction of the difference operators, and by use of square 

braCkets to: 
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For the standard five point representation of the Laplacian we will 

use the notation a. The formal definition of a reads: 

( 2 . 5 ) 

2.2. The numerical scheme 

The equlibrium depth h may be represented by an analytical 

function or by discrete values in an array. He assume that values 

for h are available at the points in space at which u and v 

are calculated. 

The difference form of the equation of continuity ( 1 • 1 ) reads: · 

( 2. 6) 

For the x component of' the equ_ation of motion ( 1 • 5) \ve get: 

{2 • 7) 

and correspondingly for the y-component 

1 •Y n 
""''€ h c5 ( u 6 h ) J . +k " X y J 2•P 

( 2 • 8) 

• • The relation between the accelerations u, v and the velocities 

u, v are implemented by: 

[ otu = u ]n j I p+~ I 

[6 • ]n 
tv = v j+~,p ( 2 • 9) 

The irnplicity of equations (2.7) and (2.8) are essential for the 

stability of the scheme. If all quantities for t <: (n-~)~t are 

calculated, the advancement to t = (n+~)~t may be sketched: 

--~· 
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( i ) Calculate nn by (2.6). 

(ii) Solve the implicit equations (2.7) and (2.8) for 

•n •n ( ) u , v by an iterative method. Chapter 3. 

(iii) Calculate by (2.9). 

For constant depth, h = h 0, the difference equations (2.6-8) 

simplify considerably: 

[ - - ( ) ]n+~ otn - h 0 oxu+oyv j+~,p+~ 

o = [u+oxn - }e:hJauJj,p+~ 

0 = [v+• ~ ~ 1 e:h2av· ]n 
~y'' - 3 0 j+~,p 

2.3 Boundary conditions 

At a rigid wall we have the boundary condition 

(2.10) 

(2 .11) 

(2.12) 

1.vhere 
0 c:'\ 

·• n is a normal to the boundary. c '•In the hydrostatic case, e: = 0, 

there is no need for additional conditions as long as the boundary 

consists of line segments parallell to the axes, and are passing 

trough the grid-points. The approximation to a boundary of general 

shape by such a series of segments, is illustated in figure lb. The 

non-hydrostatic case is somewhat more complicated. If the boundary 

is located at, say y = 0 (the fluid at y > 0), the quantities 

•n . ( u. 1... appear in the dispersion terms in equation 2. 7). He have to 
J,-'2 

assign values to these fictive quantities outside the domain by use 

of the boundary conditions and the governing equations. Because the 

fictiv·e quanties appear only in the 0( e:) terms, we may implement 
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boundary conditions valid only to O(e 0 ). At the boundary y = 0 

described above, we may thus use the irrotational condition (1 .4) 

which· gives: ~r; , = ~r; 1 • This tecnique will work· also for the 
J,-~ ],~ 

piecewise straight boundaries described earlier. 

2.4. Dispersion relations, stability analysis 

The stability analysis is limited to the case of uniform depth 

and to solutions in form of simple haroonics: 

( A A A) i(kx+ly+wt) (T),u,v) = T),u,v e 

From (1 .7-1.8) we get the dispersion relation: 

hoa2 

1 +~2a2 
3 0 

(2.13) 

(2.14) 

where a = is the absolute value of the wave number, and 

the amplitude relations 

(2.15) 

If a solution of the form: 

etc. 

is substituted into (2.9)-(2.12) we immediately obtain the rela­

tions corresponding to (2.14-2.15) simply by replacing k, 1 and 

w by the discrete analogues K, L and Q: 

g2 = (2-16) 

(2.17) 
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(2.18) 

where A2 = K2+L 2. By requiring w real we obtain from (2. 16) the 

stability criterion: 

ho~t2 < 1 
--+ 
~x2 ~y 2 

+ .ie;h2 
3 0 

(2.19) 

If ~t < /T-' h 0 the scheme is unconditionally stable independent 

of the value of ~x and 6y. This is due to the implicity in the 

dispersion terms. If e: = 0 (2.19) reduces to a standard Courant 

condition. An expansion of the right hand side of (2.14) in terms 

of a gives: 

(2 Q 20) 

If the numerical frequency -w is found from (2.16)/ and expanded 

in the same manner/ we get: 

) (2.21) 

In figure 2 we have compared w and -w for various values of 

6x1 6y and 6t. Both the figure and (2.21) illustrate the improve­

ment of the numerical scheme obtained if 6t2 is close to 

3. SOLUTION OF THE IHPLIC:rl' EQUATIONS FOR THE ACCELERATIONS 

3.1. Iteration procedure 

The equations (2.7) and (2.8) are solved by a line by line 

iterative technique. Values obtained from the previous time step 
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are used as initial values for the iteration. If approximations to 

•n •n • . • 
u. -1: and v' 1 are denoted by u. 1 and v' 1 respec-

J ,p+ 2 J+-2' p J 'p+-2 J+'2,P 

tively, improved values "* and "* obtained through u. ~ v' 1 are J ,p+ J+-2' p 

the following four steps: 

i) Solve the sets of tridiagonal equations for the intermediate 

ii) 

quantities ··+ u. 1 defined by: 
J I p+'2 

Solve the equations· for * u 

0 = [u*+r (u*-u+) + ox,n- le:ho2(hu+) + }e:h2o~u+ 
y . 2 X 

( 3 • 1 ) 

- -21 e:h6(hYo u*) + -61 e:h2o2(u*) --21 e:ho (~xo h)]. +k (3.2) 
y y y y X J,p 2 

iii) & iv) Apply the analoguous procedures to equation (2.8) using 

•* • u instead of u. 

The coefficients and serve as relaxation factors 

and this will be discussed in the next sections. 

3.2. The iteration scheme in the case ofconstant depth 

For h = h 0= constant ;the equations (3.1) and (3.2) simplify 

( 3. 3) 

( 3. 4) 

~<le note' that the set of equations for • u and • v are not coupled 
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in this case. The iteration procedure defined by (3.3), (3.4) may 

be regarded as a quasi time integration of the equation: 

( 3 0 5) 

• where q, corresponds to u, f to -6n/ox and t* is the quasi 

time. By defining ~t* = 1/rx + 1/ry, a= 1/(rx~t*), q,s = u, 
q,s+a = u+ and q,s+1 = u* (3.3)-(3.4) can be written in the form: 

[ 1 *(q,s+1_$s+a) 
(1-a:)~t 

+ 1 "'h 2 6 2 ,.. s + f ] 
"J"' 0 y'l' j,p+~ 

= -q,s+l + leh262q,s+a 
2 0 X 

+ jehJo 2 q,s+l + f]j,p+~ 

( 3. 6) 

( 3. 7 ) 

which is a standard ADI (~lternating £irection ~mplicit) scheme 

applied to equation (3.5). The relaxation factors and 

have thus interpretation as the reciprocals of the quasi time half 

steps in the ADI scheme. 

Convergence to the stationary solution of (3.5) is obtained 

when the transients vanishes. The transients are solutions of the 

homogeneous counterpart of (3.5). For a transient in form of a 

single harmonic component we may write: 

[ q,s+l = ~ q,s+a = 
y (3. 8) 

where ~x' ay and ~ = ~x~y are damping factors. Substitution of 

this component in (3.6) and (3.7) gives 

~X = ( 3 0 9) 
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where K and L are as defined in paragraph (2.1). The absolute 

value of the product ~ = ~x ~y is obviously less than 1 for all 

positive r and r , and the iteration scheme is thus uncondi-
x y . 

tionally stable. The difference between u etc at two adjacent 

time steps (real time) is generally dominated by changes in phases 

rather than energy distributions on the wavenumbers. If we are able 

to' predict the dominant wavelengths the rate of convergence can 

thus be increased considerably by making the appropriate choices of 

r and r . In the case of non-constant depth it may be advanta-
x y 

geous to vary r 
X 

and from gridpoint to gridpoint. This may 

correspond to quasi time integration of an equation of form: 

(3.10) 

3.3. Initiation of.the iteration scheme 

In this paragraph we will investigate different choices for 

the initial values of the )iteration scheme described in paragraph 

•0 n 
( 3. 1 ) . The initial values are denoted by ( u ) . +1 and 

J' p '2 

He will discuss three different possibilities: 

i) The values from the previous time step: 

(uo )n •n-1 = u ( •0 )n •n-1 v = v 

•0 n 
(v )j+~,p· 

(3. 1 1 ) 

ii) Values obtained from (2.7) and (2.8) by ignoring the disper-

sions terms: 

[( .o) --" Jn 
U : UXn j,p+~ I 

(3.12) 

These values must be expected to be poor for relatively short 

waves. 
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iii) Values extrapolated from the previous time step accounting for 

changes in the ~-term but not for changes in the dispersion 

terms: 

[ •0 n •n-1 n n-1 ] (u ) -u =-o ~ +6 n . .L 
X X J,p~ 

(3.13) 

[ •0 n ·n-1 n n-1 ] ( v ) -v =-o ~ + 6 ~ . +1 y y J ~,p 

(3.13) corresponds to an integration of the equation of motion with 

a baCkward representation of the dispersion terms 

n 
-6 n 

X 
+ {"dispersion t "}n- 1 ] erms j ,p+~ 

+ {"dispersion terms" }n-l ] '+L 
J '2tP 

(3.14) 

If the values calculated by (3.14) are used as final values for 

•n •n u , v we would get an unstable scheme. 

As a test example we choose eigenoscillations in a closed rec-

tangular basin. For constant depth the oscillations are simple 

harmonics and both the analytical equations (1 .7), (1 .8) and the 

numerical counterparts (2.10-12) are easily solved exact. In figure 

3 we have compared time series of ~ at a fixed point obtained by 

using initiation (i), (ii) or (iii) and iteration to those obtained 

from the exact solution of (2.10-12). The point is located approx-

imately midway between the left wall of the basin and the nearest 

crest. For all series depicted in the figure we have: h 0 = 1, 

k = 41t/5, 1 = 21t/25, b.x = 0.25, t::.y = 1.25 and t::.t = 0.25. This 

corresponds to a wave length about two and a half times the depth. 

The other parameters are irrelevant in this context. 
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By use of only one iteration at each time step considerable 

deviations are observed for all choices of initial values. Alter-

native (i) seems to be the best one if only the magnitude of the 

error is considered. on the other hand, the slow growth in ampli-

tude calls for a numericists disapproval. The time story related to 

alternative (iii) is subjected ·to a considerable damping while the 

corresponding for (ii) exhibits a much larger frequency than the 

exact discrete solution. The latter may be understood by the recog-

nition of (3.12) as equations of motion in the hydrostatic case 

which has a dispersion relation different from the one posessed by 

the Bouss.inesq equations. If t\vo iterations are used the deviations 

are scarcely visibl.!= (relative errors 1-2%) for any of the alter-

natives. The corresponding graphs are thus omitted in the figure. 

Although two iterations are sufficient for this problem we must 

expect that the necessary number of iterations and the sort of 

initiation that really should be used are probably very dependent 

on specific problem. As a conclusion.we may say that the investiga-

tions in this section indicate that a good choice for r and 
X 

r 
y 

is more likely to reduce the necessary number of iterations than 

good initiation is. 

4. CORRECTION TERMS TO THE BASIC NUMERICAL SCHEHE 

4.1. A preliminary derivation 
.. 

For waves parallell to they-axis we get from (2.21 ): 

or by calculating the square-root for each side: 
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He note that the leading error term has the same mathematical form 

as the leading dispersion te~ in (4.2). The leading error term 

arise from discretization error in the O(e 0 ) terms in (1 .7) and 

(1.8). This error term vahishes for 

numerical dispersion relation will be exact for e = 0 and very 

accurate for e * 0 even for large values of ~x. The error term 

may also be r~oved by changing the value of e, or in other words, 

adding an artificial dispersion term to the equations. Including 

the artificial dispersion term the equation of motion will read: 

( 4. 3) 

~hich by discretization gives: 

(4.4). 

The addition of the extra term C?rresponds to changing the value of 

c: by the amount 

( 4. 5) 

For € = 0 we get from (4.2): 

~ 
O(k 4 (e'At2,~t 4 etc. ) ) } w = h0k{, + 

(4. 6) 

= h~k{1 + O(k 4~t 4 etc)} 

In this case the scheme defined by (4.4) becomes a fourth order 

scheme. For e * 0 the scheme will not be of fourth order but the 

numerical dispersion relation will be correct to the same order of 

k as the Boussinesq equations themselves. From (4.6) it is clear 
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that the additional term in (4.4) has interpretation as a correc-

tion term for the basic numerical scheme applied to the hydrostatic 

equations. Such correction terms may be expected to be found in 

form of artificial dispersion terms also in the case of variable 

depth. 

4.2. The general derivation of the correction terms 

In the hydrostatic case, elimination of + v from (1 .1) and 

(1.2) gives: 

( 4. 7) 

The corresponding elimination applied to (2.6)-(2.9) gives: 

( 4. 8) 

where we have intro.duced the notation <> for the difference form 

of the wave operator. (4.8) is a standard mid-point discretization 

of (4. 7). He denote the exact analytical solution of (4. 7) by C. 

By use of Taylor series we get: 

( <>~"')n+~ 
... j+~,p+~ 

( 4. 9) 

where the right hand side is to be calculated at the node-point. 

A fourth order scheme for (4.7) may be constructed by introducing 

second order differences for the derivatives or their equivalents, 

in(4.9). 
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He assume, according to the ideas of the previous paragraph, 

that a fourth order scheme for the hydrostatic equations can be 

constructed by adding artificial dispersion-terms to the discreti­

sized equations of motion. Since no mixed ·space derivatives appear 

at the right hand side of (4.9), th~ corrected difference equations 

are expected to be of the form: 

[u• = 2 2• -1 2( •)]n -6 n + a 6t6 n + ~ 6 u + y h 6 hu . +1 X X X X X X X J 1 p ~ 
(4.10) 

(4.11) 

The same manipulation which leads to (4.8) applied to the set 

(-2.6), (4.10) and (4.11) gives an equation of the form (4.9). By 

use of u = -6 n + 0(6x2,6t 2 ) etc we find that the dispersion 
X 

terms give rise to a second order representation of the derivatives 

on the right hand side of (4.9) if: 

= - 1 2 
246x , = - (4.12) 

The generalized version of (4.4) is obtained by replacing the terms 

in (4.10) and (4.11) by their equivalents 

-x-
- {62(hu)+6 <fiY6 u)+6 <v 6 h)} 

X y y y X 
and 

(See paragraph 1.2.) 

-x .. 
1 1 2 ( -y • • } 

- ( -€ h - -At ) 6 ( h 6 u) + o ( v 6 h) 2 12 y y y X 
(4.13) 
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o = [~+o ~- fleh + --1 (~h- 1 ~y2-~t2)}o2(h~) y 2 12 2 y 

- (-21 eh- 11 2~t2) {o (hxo v) + 0 (~yo h)} 
X X y y 

1 2 z• 1 2 2· n --~x )6 u + -eh 6 u]. 
24 X 6 y J+~,p 

(4.14) 

Because no new terms have appeared the replacement of (2.7) and 

(2. 8) by (4. 13) and (4. 14) will not be accompanied by a significant 

increase in neither computer time nor programming effort. For con-

stant depth h = h 0 
(2.6), (4.13) and (4.14) give the dispersion 

relation: 

K2 
g2 = ------------------------------

1 
1 +( -eh 2 

3 0 
- -1 h ~t2)A2 

1 2 0 

+ 
1 

1+(-eh 2 
3 0 

+ ~K2 12 

(4.15) 

In figure 4 (4.15) is compared to the dispersion relation of the 

uncorrected scheme, (2.16). In some cases the improvements are 

substensial. Corresponding corrections to conditions at complex 

boundaries are hard to construct. In cases where reflexions from 

such boundaries are essential the correction terms in (4.13) and 

(4.14) are of less interest. 

CONCLUSION 

A numerical method for solving the Boussinesq equations has 

been described. In the case of uniform depth the scheme is proved 

to reproduce the analytical dispersion relation well. The disper-

sion relation of the scheme is further improved by inclusion of 
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the correction terms derived in section 4. In the simple tests in 

section 3 convergence for the acce)-erations \Jere achieved after two 

iterations. Use of the proposed relaxation factors will in many 

cases accelerate the convergence. The tests and discussions in this 

preprint should provide a good basis for examining the application 

of the method to problems involving nonlinearity, variations in 

depth and complicated boundaries. These will be the topics of the 

next part of the documentation. 
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FIGURE CAPTIONS 

Figure 1: The grid. 

Figure 2: Dispersion relations. The phase velocities c are 

plotted as functions of the wavelength A = 2~/a. Since 

there is no adequate characteristic wave length we choose 

A = h . A is thus the ratio between the real wave length 
c c 

and h . The full drawn lines correspond to analytical 
.~ 

dispersion relations. 4> denotes the angle between the wave 

number vector and the x-axis. 

a) ( i) 

( ii) 

(iii) 

b) 

+++ 

c) 
+++ 

d) 
+++ 

The fully inviscid set c = (tanh (a)/a)~ 

The Boussinesq equations c = a/ ( 1 + 1 2 ~ 
~) 

1 
The KDV equation c = a - -a2 

2 

analytical dispersion relation for the Boussinesq 
equations (same as a) (ii) ) 
6t = 6X = 1 • 5 I 41 = 0 
2~t : 6X : 1 • 5 1 ij) = 0 

; ''; 

same as in 
6t = 6X = 
26t = 6x = 

same as in 
same as in 
6x = 6t = 

b) 
0.25 

2.5 

b) 
b) 

1 . 5 

<I> = 0 
<I> = 0 

4> = ~/4 

Figure 3:_ Time-series of fl· All important data are given in 

paragraph 3.3. The series obtained from (2.10) through (2.12) 

and the iteration procedure are depicted by fully drawn line 

and dotted points respectively. The numbers i, ii and iii 

correspond to those in the paragraph. 
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Figure 4: The dispersion relation (4.15) for the corrected scheme 

compared to the dispersion relation for the uncorrected 

scheme (4.16) and the analytical dispersion relation of the 

Boussinesq equation. 

analytical dispersion relation 

uncorrected dispersion relation with 2t.t = ~x = 1 .5, 
~ = 0 (same as in figure 2b) 

+++ corrected dispersion relation <.,vi th 2 ~t = ~x = 1 . 5, 
<P = 0. 
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