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ABSTRACT 

The impact of a uniform current on slowly varying forces is 

examined. The model in consideration is two-dimensional, and the 

body is a 'restrained submerged circular or elliptic cylinder. 

Newman's approximation (1974) is applied to approximate the slowly 

varying force. Time histories of the slowly varying force are 

obtained for different speeds of the current. It is found that the 

slowly varying force, for incoming waves travelling against the 

current, becomes much larger for moderate speeds of the current 

than for small speeds of the current. For incoming waves travell-

ing with the current the sl~ly varying force is of the same order 

of magnitude for·moderate and low speeds of the current. 



1. INTRODUCTION 

Waves of different frequencies will due to second order 

effects give rise to wave forces with frequencies equal to the sum 

and difference of the frequencies of every two waves. If the wave 

spectrum is narrow-banded, the wave force corresponding to the 

difference frequencies will be slowly varying in time. Usually 

these slowly varying forces will be relatively small. They may, 

however, be of great importance if the system they are acting on 

has low eigen frequencies. This will, for example, often be true 

for moored bodies. For a thorough discussion of slowly varying 

forces we refer to Ogilvie (1983). 

In many actual cases where sl<:7tily varying forces are impor-

tant, a current may be present. To our knowledge the impact of a 

current on the magnitude of these forces has not yet been studied 

in the litterature. This is most likely due to the fact that the 

occurrence of a current complicates the problem seriously. In this 

note we shall therefore restrict ourselves to a rather simple 

model: The problem is two-dimensional, the current is uniform in 

space and time, and the slowly varying forces act on a restrained, 

submerged body. The assumption of two-dimensionality means that 

the incoming waves have crests parallel to the cylinder axis. We 
J 

shall only consider submerged body with circular or elliptic con-

tour. The assumption that the cylinder is restrained is relevant 

in practical cases where the cylinder is part of a construction 

performing sufficiently small first order motions. Example of such 

a construction is an oil platform with potoons or bracings being 

long cylinders. 
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Viscous effects may also give rise to slowly varying forces. 

We shall here, however, restrict ourselves to studying wave 

forces. One of the main effects of a uniform current on the wave 

field is that one incoming wave gives rise to several waves. Thus 

for ~ = Ua/g < 1/4 (a frequency, g acceleration due to gravity 

and U •speed of the current), three new waves normally are 

generated by the body, and .for ~ > 1 /4 one wave. However, in the 

special case where the submerged body is a circular cylinder, only 

one new wave is generated for all values of ~. The diffraction 

properties of the circular cylinder imbedded in a uniform current 

are treated in Grue and Palm (1984). The corresponding problem for 

the elliptic cylinder is studied in Mo and Palm (1985). Based on 

the results from these papers and by applying Newman's hypothesis 

( 1974) we shall discuss the horizontal slowly varying for.ce acting 

on the cylinder. 

2. THEORY 

Let coordinates be taken with x-axis in the mean free surface 

andy-axis positive upwards. The uniform velocity of the water, u,· 

is horizontal and along the negative x-axis. For a harmonic wave 

at a fixed point the surface elevation n may be written 

n(t) = Re A exp(iat) ( 2. 1 ) 

where t denotes ,time, Re real part, A complex amplitude, 

i imaginary unit and a frequency (frequency of encounter). 

There are four possible kind of incoming waves (see Grue and 

Palm 1984). Here we shall consider two of them: i. waves 
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travelling upstream with positive group velocity and ii. waves 

travelling downstream. For simplicity we assume that the fluid 

layer is of infinite depth. Let w be the intrinsic frequency. 

Hence w2 = gk where k is the wave number. a and w are for 

the two cases in consideration connected by 

i. a=w-Uk 

ii. a = w + Uk 

(-r = Ua < .!_) 
g 4 

The two other classes of incoming waves are given by 

(2. 2) 

{2.3) 

iii. a = w - Uk (formally the same as i, but with negative group 

velocity) and iv. a = Uk - w. For moderate values of U these 

cases correspond to short waves which in- practical applications 

usually carry modest wave energy. 

Let us then consider an irregular sea, which we approximat~ 

by an infinite sum 

~{t} = Re E A exp{ia t} m m {2.4) 

Following Newman {1974) the horizontal slowly varying force acting 

on a body may be written 

F(t} = Re E A AT exp{i{a -a )t} m n mn m n m,n 
(2.5) 

where T is the (complex} transfer function and a bar denotes 
mn 

the complex .conjugate. It is a very time consuming task to compute 

T in actual cases. Some simpler procedure is therefore needed. mn 

Such a simplification is obtained by Newman's approximation 

{1974), approximately valid for narrow-banded spectra and express

ing that 

Tmn = T mm ( 2. 6} 

). 
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T is closely related to F, the mean steady, second order force 
mm 

acting on the body due to an incoming harmonic wave with frequency 

a , by m 

Applying (2.6), {2.5) reduces to 

F(t) = Re ~ AmAnTmmexp(i(am-an)t) 
m,n 

3. NUMERICAL EXAMPLES 

It is appropriate to make a slight change in notation, 

(2. 7) 

(2.8) 

writing T = T(k ), with mm m k m 
denoting the wave number of the 

incoming wave. F(t) is determined by the transfer function T 

and ~he magnitude of the various amplitudes. Let D denote the 

distance between the uppermost point of the cylinder and the free 

surface,· 2R the diameter of the circular cylinder as well as the 

length of the major axis of the ellipse (which is parallel to the 

free surface). The minor axis B is chosen to be R. In all cases 

considered here D/R = 0.8. As actual example R = 5 m, D = 4 m, 

which are realistic dimensions of pontoons or bracings of an oil 

platform. 

In figures la, lb and 2 T(k) due to a submerged circular 

or elliptic cylinder is displayed for incoming waves travelling 

against or with the current for various values of the Froude 

number U/lgR. In the figures p denotes the density of the 

fluid. It is noted from fig. la that T is practically zero for 

U/lgR < 0.3. This is irt agreement with the classical result that 

the coefficient of reflection is zero for a submerged circular 
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cylinder when U = 0. For U/lgR larger than about 0.4 T is no 

longer small and increases rapidly with increasing Froude number. 

We therefore expect a rather abrupt change in the magnitude of the 

slowly varying force for Froude numbers larger than about 0.4. It 

is also worth noting that T (and thereby F defined by (2.7)) 

is negative in spite of the fact that the incoming wave is 

travelling in positive direction. We notice from fig. lb that for 

a submerged ellipse, and U = 0, T (and F) is positive for 

incoming waves travelling in the positive direction, as expected. 

For increasing values of the Froude number, however, T becomes 

soon negative and approaches a form similar valid for a circular 

cylinder. 

In fig. 2 T is displayed for an incoming wave travelling 

downstream, i.e. along negative x-axis. For this incoming wave T 

(and F) is negative for all Froude numbers. We also note that ·T 

has a strong tendency to be narrow-banded for increasing Froude 

numbers. The same tendency, but not so pronounced is also found 

in fig. 1. However, for moderate values of the Froude number the 

magnitude of T is much smaller in fig. 2 than in the former 

case. For the circle, T = 0 for incoming waves travell~ng down-

stream. 

To evaluate F(t) from (2.8) we also need to know the 

amplitudes. We write 

A = a ( k ) exp ( i o ""') m m m 

To obtain realistic estimates for•the real amplitude a(k ) 
m 

(2.9) 

we 

let a(k ) be given by a typical power spectrum for the wind sea. m 

The phase om is chosen as a random angle. Denoting the spectral 

energy density for S(w), we have 
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a(k ) = a(w ) = (2S(w )~w }~ m m m m 
(2.10) 

I 

As characteristic wind sea spectrum we have chosen the truncated 

tail spectrum (for a discussion of the truncated tail spectrum see 

Gran (1982}) 

w > Q 
S( w) = (2.11) 

w < Q 

where a= 0.0081 (Phillips constant). The peak frequency Q ~s 

chosen so that o2R/g = 0.45 which corresponds to a wave length 

~ = 14R, sig~ificant wave height H = 0.4R and average zero 

crossing wave period T = 'ft·/2/0. With R = 5 m: Q = 0.94 -1 s 

~ = 70 m, H =2m, T = 4.7 s. The truncated tail spectrum is shown 

in figure 3. 

The time history of the slowly varying force F(t) is dis-

played for. var~ous Froude numbers in figures 4 for incoming waves 

travelling against the current. F(t) is evaluated by using 40 

wave components, equally spaced in the wave number space. In 

figures 4(a,e} we consider a submerged elliptical cylinder and in 

4(f,g) a submerged circular cylinder. A typical feature in case of 

the elliptical cylinder (and most likely also for a body of gen-

eral contour) is that the magnitude of F(t) first decreases for 

increasing values of the Froude number. For U/lgR = 0.35, (for 

R = 5 m, U = 2.45 ms-1 ) F(t) is very close to zero. For larger 

values of the Froude number, the magnitude of F(t) ·.increases 

rapidly. Already for U/lgR = 0.4 (U = 2.8 ms-1 ) F(t) has 

obtained appreciable amplitude. For the case of a circular 

-1 cylinder F(t) is very small for U/lgR < 0.35 (U < 2.45 ms }. 

For larger values of the Froude number the force on the elliptic 

and· circ.ular contour behaves rather similar. 
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In fig. 5 is shown the slowly varying force acting on an 

elliptic cylinder due to an incoming wave travelling with the 

current when U/lgR = 0.2 
-1 (U = 1.4 ms ). Comparing with figure 

4a we note that the magnitude of F(t) is of the same order in 

the two cases. For larger values of the Froude number, F(t) = 0. 

In figures 4 and 5 F(t)/pgR2 = 0.00d corresponds to 

F(t) = 490 N/m and tlg/R = 1120 corresponds to t = 800 s 

for R = 5 m. 

CONCLUSION 

In the present paper we have studied the horizontal slowly 

varying forces on a.submerged restrained body when a uniform 

current is present. ·one main result is that the force due to 

incoming waves travelling against the current is an order larger 

than the force for incoming waves travelling with the current. 

Another typical feature is that the transfer function T 

has a marked tendency to become narrow-banded for increasing 

values of the Froude number. This tendency is more pronounced 

for waves travelling with the current than for waves travelling 

against the current. Hence for not too small values of the Froude 

number only a small part of the wave energy spectrum is respon-

sible' for the magnitude of the slowly varying force. The third, 

and perhaps the most important result, is that for the submerged 

bodies considered, the slowly varying force increases very much 

when the Froude number becomes greater than a certain value, in 

the actual example found to be about 0.4. 
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FIGURE LEGENDS 

Figure 1. Transfer functions T versus wavenumber of the incoming 

waves, which are travelling against the current. 

(a) The circular cylinder, D/R =0.8, U/lgR = 0.3,0.4,0.45,0.5 

(b) The elliptical cylinder, D/R = 0.8, B/2R = 0.5, 

U/lgR =0,0.2,0.4,0.45,0.5. The small arrows denote from 

righ.t to left the value of kR corresponding to 't = 0. 25, 

for U/lgR = 0.45,0.5, respectively. 

Figure 2. Transfer functions T for the elliptic cylinder versus 

wavenumber of the incoming waves, which are travelling with 

the current. D/R = 0.8, B/2R = 0.5, U/lgR =0,0.2,0.3,0.4. 

The small arrows denote from right to left the value of kR 

corresponding to 't = 0.25, for U/lgR = 0.2,0.3·,0.4, 

respectively. 

I 

Figure 3. The truncated tail function with a2Rjg = 0.45. 

Figure 4. Time history of th~ slowly varying force pr. unit length 

of the cylinder for incoming waves travelling a~ainst the 

current with D/R = 0.8, and B/2R = 0.5 for the ellipse. 

(a) ellipse, u = 0, (b) ellipse, U/lgR = 0.2 -1 (U=1 .4 ms ) , 

(c) ellipse, U/lgR = 0.3 (U 2.1 -1 = ms ) , 

(d) ellipse, U/lgR = 0.4 (U 2.8 -1 = ms ) , 

(e) ellipse, U/lgR = 0.45 (U 3.15 -1 = ms ) , 

(f) circle, U/lgR = 0.4 (U -1 =2.8ms ), ... 

(g) circle, U/lgR = 0.45 (U 3.15 -1 = ms ) . 

)• 
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Figure 5. Time history of the slowly varying force F(t) pr. 

unit length·of the elliptical cylinder for incoming waves 

travelling with the current. D/R = 0.8, B/2R = 0.5, 

U/lgR = 0.2 
-1 

(U = 1 .4 ms ) • 
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