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The first- and second-order forces on a submergea, restrained 

cylinder is computed by an integral equation method. It is s~own 

that,. the first-order and mean forces ccm be easily computed for 

cylinders of arbitrary shape. The solution is given for three 

specific contours. The second-order oscillatory force is computed 

only for a circular cylinder. 
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1 • lntroduction. 

By the use of Green's theorem the diffraction problem for a 

sub~erged cylinder can be transformed to an integral equation. :t:n 

a previous report in this series /1/ we solved this equation in 

the linear case for a circular cylinder by a boundary element 

method with cubic splines. A comparison with previous results 

given by Ogilvie /2/ and Mehlum /3/, obtained by different methods 

~ave encouraging results. In this report we extend the use of 

this method in two different directions. 

First we study the first-order problem for a smooth cylinder 

of arbitrary shape. It is shown that the first-order potential 

can be obtained by solving a very good conditioned set of linear 

equations. The first-order and mean forces can then be found by 

pressure integration. The numerical solution is given for three 

different cases. 

We also have computed the oscillatory second-order force on a. 

circular cylinder. By a simple application of Green's theorem, 

previously used by S¢ding /4/, this can be achieved without the 

full solution of the second-order problem. Because of a mathema

tical difficulty due to the presence of a reflected wave, the 

computation has not been extended to other contours. 
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2. Formulation of the problem. 

y 

X 
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2L 

Figure 1 • 

A 2-dimensional periodic wave with amplitude a and frequen-

cy w is disturbed by a submerged, restrained cylinder with con-

tour c. The fluid is inviscid and incompressible and the motion 

is assumed to be irrotational. A velocity potential $(x,Y,t) 

then exists. 

We introduce dimensionless quantities 

X = X 
L' y = 

(2-1 ) \P(x,y, 't") = 
-+-
F( 't") 1 = pgL2 

-+-

y 

L' 

wL 2 ~' 
-+-
f(t) 

a H 
E = h =-L' L I 

k = Lw2 
g I 

p(x,y, -r) 1 1\ = -Lp(X, Y ,t) pg 

't" = wt, 

where F is the force per unit length of the cylinder. We also 

assume that \P can be expanded in a series 

CD 

( 2-2) \P = L e:n<P(n) 
n=1 

Since the wave is periodic we write 
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{2-3) 
eli {1 ) = Re { { <1>0 { x 1 y) + <1>7 { x I y) ) e- j ·d 

{2) { -2J''t"} eli = Re <P20 {x 1 y)+<P22 {x 1 y)e 

where j is the imaginary unit and 

{2-4) <l>o<x~y) = 
1 ky jkx - -e e 
k 

is the potential of the incoming wave. This potential is correct 

to second order since the depth is infinite. <P7 <x~y)l <P20 <x~y) 

and <P22 (x 1 y) are the potentials for the disturbance of this wave 

due to the cylinder. 

It follows from Bernoulli's equation that the time-indepen-

dent part of the second-order potential only gives a third-order 

contribution to the force. ~ve therefore neglect the potential 

<1>20. 

Introduction of {2) in the exact boundary conditions and Tay-

lor expansion around Y = 0 gives the boundary conditions for 

<1>7 and <1>22: 

{2-5) 

(2-6) 

where 

(2-7) 

and 

{ <1>7)n = -{ <~>o>n 1 {x 1 y) E c 

{ <1>7)y-k<P7 = 01 y = 0 

{<!>7 }Y = 0 1 y = -oo 

{ <l>22)n = 01 {XI y) E 

{ <1>22)y-4k<1>22 = f {X) 1 

{ <1>22>y = 01 y = -oo 

c 

y = 0 

f{x) = }U [3k 2 { <I> { 1 ) ) 2 +<I> { 1 ) <I> ( 1 ) +2 ( <I> ( 1 ) ) 2 J 
2 XX X O y= 
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In addition ~7 and ~22 must satisfy the two-dimensional 

Laplace equation and the radiation conditions 

(2-9) ( ~7 ) X+ jk ~7 = 0 1 X = ±m 

(2-10) (~22)x+4jk~22 = 0, X= ±m 

Applying Greens theorem with the Greens function 

G(z, ~,k) 
m - i v ( z- ~ ) . k ( - ) 

= Re {ln(z-0-ln(z-~)+2f e k dv-21tje- 1 z-~ } 
0 -v 

we obtain (see for instance Potash /5/) 

(2-11) 

where z = x+iy is a point in the fluid. We now let z approach 

c. This limiting operation gives the integral eqation 

{2-12) 

This is an ordinary Fredholm equation of the second kind from 

which $7 can be found on c. 

we describe the contour c by the parametric equations 

x = x(e), y = y(e), e E [0,21t] 

These functions are assumed to be twice continuosly differentiable 

and may, if necessary, be approximated ~ a cubic spline, The 

continuity condition is imposed since, in the next section, we 

shall assume that the velocity potential satisfies tqe same condi-

tion. 

Equation (12) may now be written 

( 2-13) 



.... s ... 

where 

(2 .... 14) 

We have also use4 the bounda~ condition on C in(~). 
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3. The solution method. 

We divide the interval [0,2~] into N ~arts 

o =·e <e <9 <•••<9 <e 1;:1 2TC 
0 1 . 2 N-1 N 

and write the potential ~ 7 as the spline 

( 3-1 ) 
N 

~7 < e > = ~ q. B . ( e) 
i:;;:] l. l. 

where a1 is the B~spl~ne starting at 

and we have 

( 3-2) e . .N = e . ::!:2 1C • 
;1.;:!: l. 

e. , 
l.-~ 

(~ee appendix 5), 

When this is substituted in (2-13) we obtain by ool1ooation at e. 
l. 

a set of linear equations from which the coefficients qi pan be 

found: 

(3-3) 

where 

-TC(B. 1 (e.)q. 1+B.(9.)q.+B.+l(9i)q.+l) 
1- 1 1- 1 l. 1 ~ . 1 

N N 
+ ~ 1\. • . q. = I Bi'' i = 1,2, ·-·,N 

j=l 1 ] J j=l J 

A .. = 
1] 

9 ~+2 ~G < e i, e , 'k.) 

9 J B/e) on(e) A(9)de 
j-2 

B .. 
1] 

e ~ o~o < e > 
= J - on( e) G( e!, e,'k.)A( e)de. 

e. 1 J-

4>0 ;is given from (2-4), and t'he inte~Jt'<!lls ~re oc:>mputed by 

the 3-po:i.nt Gauss formula. 

Thi$ set of equations is very c;JOod conQitioned, in fact it is 

almost diagonal-dominant and caq therefore .easily be s<;>lve4 by 

straight-forward Gauss;i.an elimination. 
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4. The first-order and mean forces. 

The dimensionless Bernoulli equation 9ives 

{ 4-1 ) p{x,y, -.) = -k{ii? +~{ V'ii?) 2) ,. 

where the hydrostatic terms are neglecte4. The force per unit 

length of the cylinder is 

+ ---+- ~ 

F{ -.) = EF + € 2p +0 { € 3) 
1 2 

where 
+ -F1 = Re { f 1 e- j '" } 

+ --F2 = { -2j.,;} Re f 20+t22 e 

Substitution of {2-2) and {2-3) into {1) then gives 

{4-2) 

{4-3) 

{4-4) 

where 

---+ 21t { )-+ 
f = I Kjq, 1 n( 9)A{ 9)d9 

1 0 

- 21t -
f 2 0 = I - lK 4> {1 > q, 0 > ~ < e >A< e > de 

0 4 s s 

~ = r{2KH22- ~(~~l)) 2 )i\(e)A(9)~e 

and A{9) is given from {2-14). 

When the equations {3-3) are solved q,7 is known troro (3-1 ), 

and the integrals in (2) and {3) can be comp~ted. A~ain t~e 3-

point formula is used. 

As numerical exa~ples we have studied contour~ given ·by the 

equations 

x( 9) 

y(e) 

cos e-a cos 39 = ..;..;;;.;;;,._~1=--;.;...a....;...;~..;;...;;. 

b sin e+a sin 39 = - h. 1-Q: 



- 8 .,. 

Contours of this type are o;ften called Lewis ... forms. We have made 

computations for the three cases shown in fig. 2. 

The refl!ults are shown in fig. 3-11 and, are as one should 

expect~ We notice from (A-1) that the maximum values of the mean 

horisontal force corresponds to & reflection coefficient of 0.26 

for the ellipse and 0.23 for the ''square". 

The cornputat~on time for one comvutation (i.e. one h an~ 

one k) ranged from 30 seconds for the mo~t di;fficult c&se 

( "square", h :;: 1 • 2 5, K < 1 , 30 nodes) to 15 seconds for the easiest 

(circle, K>l, 20 nodes) when the nodes were ~istributed with some 

care. With equidistant nodes the computation time increases con

siderably. 

The computations have been carried out by a set of ALGOL 

programs on a DEC-10 computer. With FORTRAN programs on a better 

computer the computation time should be reduced considerably. 
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5. The second-order oscillatory force. 

We now introduce the radiation potentials fQr an O$cillation 

with freq\lency 2 w. These potentials are th.e solutions of 

(5-1 ) 

v 2 ~. ~ o, in the fluid 
~ 

(~.) = n., (x,y) ~ C 
~ n ~ 

( ~ .) .-4K~. = o, y = 0 
~ y ~ 

(q,.) = 0, y ;:: -a) 

~ y 

( cl>.) +4jK(j>. ;::: 0, X ~ 

l X ~ 
±a) 

i "" 1 12 

and can therefore be found in exactly the same way as c~> 7 , with K 

replaced by 4K 

equation (2-13). 

and - ( cl> ) o n replaced by n. 
~ 

in the integral 

Using Greens theorem, (2-6) and (1) one obtains 

a) 

(5.,.2) Jq,. (x,O)f(x)dx 
l. 

-a) 

where f(x) is given by (2~7). 

When 4>7 is known Of\ c it can be :found anywhere else from 

(2-11 ). Differentiation of this equation al~o ~ives 4>~ and 

cl>xx· aence f(x) can be computed when the equation, (3-3) are 

solved. 4>. (x,O) are found in exactly the same ~Y· ~his makes 
~ 

it possible to compute the first term in (4~4) and th.ereby the 

-force component f 22 without the solution of the secon~ order 

problem. 

If we write the potential of the reflected wave as 

( S-3) 

we obtain from the radiation condition (2-9) 

(5-4) lim f(x) = 0, lim f(x) = -4KjR. 
x~CX) 
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We therefore see that the right-hand side of (2) can be computed 

only when R = 0. · This restricts the use of this method to a 

circular cylinder. 

It may be of interest to estimate the +ange of parameter 

values for which the linear theory can give a fair approximation 

of the force on the cylinder. We are now a'Ple to do this. 

one restriction on the linear theory is that the wave steep-

ness must be small. we will assume that 

(5-5) 

Another restriction on the wave ampl:Ltude may be obtained by a - -comparison of f 1 and f 22 , where the latter may be taken·as a 

measure of the importance of non-linear effects. A possible 

criter:Lon for the validity of linear theory is then 

From fig. 12 we see that this implies 

e: < 0. 05 if h "' 1 • 2 5 

(5-6) e: < 0.1 if h .. 1 • 5 

e: < 0.25 if h "'1.75 

for the most important wavelengths. We see from the figures that 

only wavelengths A>n (K<2) are of interest here, and the most 

critical wave;lengths are A E [10,20]. For all these wavelengths 

(5) is satisfied when e: is chosen as in (6). We also see that 

if we study waves with amplitudes of 1-10 mJ linear theory can 

only be applied if h>1 .75 unless L is very large. 

The computation time needed in the second-order case was 5-6 
-

minutes for h)1 .5. It was necessary to use 30 nQdes .for K<l and 
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24 nod~s for k>l, and the integrand in (2) was comp~ted on the 

interval [ -7,7]. 

When h<l .5 the necessary computation time increases rapidly 

because the function f(x) becomes very ill behaved. But as we 

have pointed out previously, such values should be treated with 

strongly nonlinear methods. 

For the other two contours considered in the previous section 

we expect that the non-linear effects are ~:t;. least as important as 

for the circ!e. We therefore only show results for cases where 

the distance from the surface to the top of the cylinder (h-b) 

is at least 0.5 
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Fig. 2: The contours we have studied 
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If 1 • i I :;:: If 1 • i I 
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( 2) h = 1 • 7 5 
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Fig. 3: Amplitude of first-order force for the circle 
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Fig. 4: Mean vertical force on the circle. 
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Fig. 5: Amplitude of the first-order force for the ellipse 

0.5 

K 
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Fig. 6: Mean vertical force on the' ellipse 
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Fig. 7: Mean horisontal force on the ellipse 
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Fig. 8: Amplitude of horisontal first ... order force on the 
"square" 
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Fig. 9: Amplitude of vertical first-order force on the 
"square". 
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lf2o·jl ( 1 ) h ;:: 1 . 25 

( 2) h = 1 . 50 

( 3) h ;:: 1. 75 

2.0 4.0 

Fig. 10: Mean vertical force op the "square" 

K 
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Fig. 11: Mean horisontal force on the "square" 
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( 1 ) h :;;: 1. 25 

( 2) h = 1 • 50 

( 3) h = 1 • 7 5 

( 4) h = 2.00 

1 • 0 2.0 

Fig. 12: Amplitude of first-and second-order oscillating 
forces on the circle 
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Ap~endix A. Numerical checks. 

Apart from (5-4) there are three equations which o~n be used 

in order to check the computations. 

From momentum conservation there follows a relation between 

the reflection coefficient, r, and the mean horisontal force 

(Longuet-Higgins /6/) 

where r = IRI and R is defined in (5-3). 

In Newman /7/ a relation between the damping and exciting 

forces is derived (p. 304). With the dimensionless quantities 

used in this report this relation is 

---+ ~ -+ ~ 
(A-2) bll = K(f1 •i) 2 , b22 = K(f1•j)2 

where b 11 and b22 are the dimensionless damping force for sway 

and heave respectively. 

From energy conservation there also follows a relation 

between the damping farce and the amplitude of the radiated wave, 

A., (/7/) 
~ 

Kb. . = lA. 1 2 I i = 1 I 2 • 
~~ ~ 

When the radiation problem is solved, A. can pe found in exactly 
]. 

the same way as R. 

We have checked all these relations for some of the parameter 

values and have been satisfied with the numerical accuracy when 

they were all satisfied with an error of 1% or less. 
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Appendix B. Computation of the splines. 

The B-splines are piecewise cubic polynomials which satisties 

the following conditions 

). B.< e) = 0 e~e. 2 or e;:.ei+2 l. I.-

2 • B.< e) > 0 e. 2 <e<e. 2 l. I.- l.+ 

3 • B ~ < e) and B '.' ( e) 
l. l. 

are continuous for all e • 
i+1 

4. lf e E [x. 1 ,x.] then I a.< e> = 1 • 
I.- l. j=i-2 l. 

An example is shown in fig. 1 3 • 

X. 2 X. 1 X. xi+1 xi+2 I.- I.- l. 

Fig. 13 

The expression given in the appendix in /1/ is correct only when 

the nodes are equidistant, in the general case the expressions 

more complicated, but the value can be easily cornp~ted from the 

reo~rrence relation 

1 
B. 1 (x) = 

J, 0 

xj~x<xj+l 

otherwise 

• 

are 

x-x. xi+k-x 
B . k ( X) = l. B ( X ) + B l.. + 1 , k-1 I k > 1 

1 ' xi+k-1-xi i, k,-1 xi+k-xi+1 

We notice that this is a sum of positive quantities which can be 

evaluated without loss of numerical accuracy. The relation is 

taken from de Boor /8/, and the two-index notation is due to his 

work. 
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