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1. Introduction 

1.1 Adipose tissue biology and metabolism 

1.1.1 Adipose tissue and disease 

Dysfunctions of adipose tissue constitute the fundament of the occurrence of obesity and 

associated increased risk for diabetes mellitus type II and cardiovascular disease. Adipose 

tissue plays important roles in energy homeostasis by storing excess nutrients in the form 

of intracellular lipids. Upon starvation, adipose tissue is stimulated to release fatty acids 

and triglycerides into circulation, providing energy to peripheral tissues. In addition to its 

role in intermediary metabolism, adipose tissue is an endocrine organ, secreting various 

proteins called adipokines into circulation, affecting various tissues and organs. 

Adipokines include hormones such as leptin and adiponectin, with important roles in 

appetite regulation [1, 2], and inflammatory mediators such as tumor necrosis factor α 

(TNFα), interleukin 6 (IL6) and monocyte chemotactic protein 1 (MCP1) [2]. Adipose 

tissue of obese individuals secretes increased levels of pro-inflammatory cytokines that 

are believed to contribute to disease development [3, 4]. This chronic low grade systemic 

inflammation is believed to be involved in development of insulin resistance in peripheral 

tissues, partly by nuclear factor κ-light-chain-enhancer of activated B cells (NFκB)-

mediated impairment of insulin signaling [5].       

Adipose tissue is distributed into distinct depots and can be divided into visceral 

and subcutaneous adipose tissue (Fig. 1A). The different adipose depots have different 

properties, and the location of fat accumulation is correlated with disease risk [6]. 

Accumulation of visceral and deep abdominal subcutaneous adipose tissue is associated 

with increased risk of diabetes type II, cardiovascular disease and morbidity [7, 8]. In 

contrast, accumulation of gluteofemoral (lower body) subcutaneous fat is protective 

against diabetes [9]. The difference between these fat depots is presumably due to 

differences in their metabolic and secretory profiles [9]. 
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Figure 1 Adipose tissue depots and cellular composition. (A) Adipose tissue is mainly found in 
subcutaneous and visceral depots. Under conditions of obesity, adipose tissue expands in these and other 
depots throughout the body. Differential adipokine secretion by various adipose tissue depots may 
selectively affect organ function and systemic metabolism. From  [2] (B) Cellular composition of adipose 
tissue. The main cell type in adipose tissue is the adipocytes, but adipose tissue also contain other cell types 
including immune cells (T-cells, macrophages), fibroblasts, progenitor cells (ASCs), fibroblasts, and 
endothelial cells covering blood vessel walls. All these cell types are important for adipose tissue function. 
Modified from [2]. 

The major cell type of adipose tissue is the adipocyte, which stores lipids in the 

cytoplasm (Fig. 1B). Adipocytes can be classified into white and brown adipocytes. 

White adipocytes are the classical adipocytes of white color due to high lipid contents. 

Brown adipocytes are also lipid-filled, but have a brown color due to high mitochondria 

content. Brown adipocytes have a high metabolic rate and express uncoupling protein 1 

(UCP1), which plays a key role in thermogenesis [10]. In small rodents, brown adipocytes 

are responsible for maintaining body temperature. The existence of brown adipocytes in 

humans has been debated, and until recently it was believed that these cells were only 

present in infants. It has however been shown that adults have metabolically active 

adipose tissue expressing UCP1 [11, 12]. White and brown adipocytes are believed to 

derive from distinct developmental origins [13]. White adipocytes originate from adipose 

progenitor cells whereas brown adipocytes are derived from myogenic precursors, due to 

expression of the myogenic factor MYF5 [14]. Another class of adipocytes was recently 

discovered in mice models in which white adipocytes can acquire a brown phenotype in 

vivo. These so-called beige cells can express high levels of UCP1 upon cold exposure or 

activation of cyclic AMP (cAMP)-dependent pathways [15, 16]. 

Adipose tissue harbors a large fraction of immune cells including neutrophils, 

macrophages and T cells (Fig. 1B). In line with the increased inflammatory state of 

A B
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adipose tissue, adipose tissue of obese individuals contains an elevated number of 

immune cells compared to lean individuals; this includes local accumulations of 

macrophages in crown-like structures surrounding necrotic adipocytes [17]. These 

macrophages secrete high amounts of pro-inflammatory mediators, including the central 

inflammatory regulators TNFα and interleukin 1 beta (IL1β) [18] and are believed to 

contribute in large extent to increased levels of circulating inflammatory molecules in 

obese individuals [19].   

1.1.2 Adipose stem cells  

Adipose tissue also contains progenitor cells/stem cells. A stem cell is an unspecialized 

cell with the capacity to self-renew and differentiate [20]. Stem cells can be classified 

based on their differentiation potential. Pluripotent stem cells, such as embryonic stem 

cells (ESCs) derived from the inner cell mass of the blastocyst [21], can differentiate into 

cells of all three germ layers (endoderm, ectoderm, mesoderm). Multipotent cells harbor a 

more restricted differentiation capacity; these include tissue-specific progenitor cells such 

as neural progenitor cells (NPCs), hematopoietic stem cells (HSCs) and mesenchymal 

stem cells (MSCs). 

MSCs are stromal cells found in various stromal tissues but were first identified 

among cells isolated from bone marrow [22]. MSCs have also been identified in adipose 

tissue and can be isolated from the stromal vascular fraction (SVF) of liposuction 

aspirates [23, 24]. Adipose tissue MSCs are also commonly referred to as adipocyte 

progenitor cells, adipose stromal cells or adipose stem cells, these terms are used 

somewhat arbitrarily in the literature. In this thesis, these cells are referred to as adipose 

stem cells (ASCs). Isolation of ASCs from adipose tissue involves enzymatic digestion of 

the tissue to break down the extracellular matrix, sedimentation of SVF, and removal of 

leukocytes and endothelial cells by negative selection against CD45 (a hematopoietic cell 

surface marker) and CD31 (an endothelial cell surface marker). The remaining cells are 

seeded and expanded in culture [25]. Of note, while the CD45-CD31- plated SVF contains 

ASCs [24], plating of the SVF leads to a ‘positive selection’ of ASCs because standard 

ASC culture conditions do not support attachment of hematopoietic and endothelial 

progenitors. Thus within 1-2 days, remaining cells have gene and surface marker 

expression profiles virtually undistinguishable from CD45- and CD31- sorted cultured 

cells (Boquest, Collas, unpublished). ASCs used in our work were derived from cultured 

SVF. ASCs share many common properties with MSCs from bone marrow [26]. A 
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definition of MSCs has been proposed by the International Society for Cellular Therapy 

[27]: (i) MSCs have potential for differentiation toward the mesodermal lineages 

including adipogenic, osteogenic and chondrogenic lineages [28]; (ii) cells must grow 

adherent in culture; (iii) cells must express a defined set of surface markers including 

CD105, CD73, CD90 and lack expression of CD45, CD34, CD14 or CD11b, CD79a or 

CD19 and HLADR [27].  

1.1.3 Immunomodulatory properties of MSCs 

MSCs show unique immunomodulatory properties [29]. MSCs are immuno-privileged 

due to low expression of MHC class II [30], which may be linked to their beneficial effect 

dampening a graft vs. host disease response [31] and in treating type I diabetes [32]. 

MSCs modulate the function of a wide range of immune cells in vitro [33]. MSCs inhibit 

proliferation of T lymphocytes and natural killer cells, impair antibody production by B 

cells, inhibit maturation and function of dendritic cells and affect macrophage 

polarization [33]. These effects are mediated partly through interaction with immune cells, 

and through secretion of soluble immunomodulatory factors such as indoleamine 2,3-

dioxygenase (IDO), tumor necrosis factor-induced protein 6 (TSG6), prostaglandin E2 

(PGE2), IL6 and nitric oxide (NO) [34].  

MSCs act both in a pro- and anti-inflammatory manner depending on the 

microenvironment [35]. Upon stimulation of toll-like receptor (TLR) 2 or 4 by bacterial 

products or other stimuli, MSCs act pro-inflammatory, attracting and promoting 

differentiation of monocytes into the pro-inflammatory M1 phenotype [36]. MSCs can 

also secrete chemokines promoting neutrophil infiltration [37]. On the other hand, co-

culture of native MSCs with monocytes promotes differentiation of monocytes to the anti-

inflammatory M2 subset of macrophages [38]. Unlike classically activated M1-

macrophages, M2 macrophages are anti-inflammatory, promoting tissue repair [38, 39].  

MSCs secrete chemokines, which attracts immune cells and facilitates MSC-

immune cell interactions [40]. Infiltration of innate immune cells, including monocytes 

and neutrophils, into adipose tissue may contribute to adipose tissue inflammation [41]. 

Chemokines relevant to the work presented in this thesis are the monocyte attracting 

proteins chemerin (encoded by the RARRES2 gene) and MCP1 (encoded by the CCL2 

gene). Chemerin attracts monocytes and dendritic cells, and its serum levels increase in 

obese individuals [42, 43]. Chemerin also plays roles in adipogenic differentiation [44]. 

MCP1 is involved in monocyte attraction and in increased monocyte infiltration 
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associated with obesity [45, 46]. MCP1 also promotes monocyte proliferation within 

adipose tissue, exacerbating the inflammatory state [47]. The neutrophil attracting 

chemokines interleukin 8 (IL8), growth regulated oncogene alpha (GROα; encoded by 

CXCL1) and chemokine (C-X-C motif) ligand 5 (CXCL5) are involved in neutrophil 

attraction and angiogenesis, and generally act in a pro-inflammatory manner. MSCs 

promote neutrophil infiltration in the initial stages of inflammation [48]. IL1β is a central 

initiator of inflammation that acts by activating NFκB in target cells, leading to 

expression of pro-inflammatory mediators [49]. IL1β is involved in induction of insulin 

resistance in adipocytes [50]. 

1.1.4 Stem cell metabolism 

Adipose tissue is a metabolically active organ, and it is likely that ASCs are influenced by 

the surrounding metabolic state. Metabolism plays important roles in determining stem 

cell fate. Similar to cancer cells [51], proliferating stem cells rely highly on anaerobic 

glycolysis for energy, rather than glycolysis linked to the Krebs cycle and oxidative 

phosphorylation [52]. ESCs show high levels of glycolytic metabolism [53]. Similarly 

when somatic cells are reprogrammed into induced pluripotent stem cells, a shift from 

oxidative to glycolytic metabolism is observed [54]. Multipotent adult stem cells rely on 

different combinations of glycolysis and oxidative phosphorylation in their proliferative 

state [55].  

It has been hypothesized that stem cells use glycolysis even in the presence of 

oxygen to prevent oxidative damage, which may accelerate cell senescence [55]. Also, 

many stem cells reside in a hypoxic environment in vivo, thus glycolysis may be an 

adaptive mechanism to this environment. Differentiation of MSCs is affected by cellular 

metabolic states. Chondrogenic differentiation of MSCs typically increases glycolytic 

metabolism, while osteogenic and adipogenic differentiation is accompanied by increased 

mitochondrial metabolism [56-58]. Increased mitochondrial metabolism during 

adipogenic differentiation is partly due to the increased demand for energy for synthesis 

of fatty acids, and reactive oxygen species (ROS) produced during oxidative 

phosphorylation is indeed required for activation of the adipogenic transcription program 

[57].  

A major regulator of the glycolytic pathway is the transcription factor hypoxia 

induced factor 1, isoform alpha (HIF1α). Protein stability of HIF1α is regulated by 

oxygen tension and HIF1α is rapidly degraded under normoxic conditions. In a hypoxic 
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environment, HIF1α upregulates genes encoding glycolytic enzymes [59]. HIF1α also 

increases expression of pyruvate dehydrogenase kinases PDK2 and PDK4, which 

phosphorylate pyruvate dehydrogenase (PDH), lowering the amount of pyruvate entering 

the Krebs cycle, and hence reducing mitochondrial metabolism [60]. HIF1α activity is 

also responsive to inflammatory stimulation by TNFα [61]. In Paper II, we have 

investigated gene expression changes associated with glycolytic metabolism and the 

HIF1α pathway during adipogenic differentiation.  

1.2. Chromatin changes in adipogenesis 

1.2.1 Adipogenic differentiation 

Adipose tissue expansion observed in weight gain is caused by both an increase in 

adipocyte volume and number [6]. Approximately 10% of fat mass in adult humans is 

renewed annually, presumably by differentiation of adipose progenitor cells [62]. Most of 

our knowledge on the mechanisms of adipogenic differentiation emanates from in vitro 

studies. In our studies, ASCs are expanded in medium containing epidermal growth factor 

(EGF) and basic fibroblast growth factor (bFGF) [63]. Proliferating cells are seeded 

confluent in medium without EGF and FGF to induce cell cycle arrest. Cell confluency 

induces changes in cellular shape and intracellular architecture, favoring adipogenic 

differentiation [64].  Differentiation is elicited by an adipogenic cocktail containing 

dexamethasone, indomethacin, 3-isobutyl-1-methylxanthine (IBMX) and insulin (Fig. 

2A). These drugs collectively induce an adipogenic differentiation program which 

includes changes in cytoskeletal organization and in the appearance of lipid droplets (Fig. 

2B). In addition, accumulating cytoplasmic lipids compress the nucleus against the 

cellular periphery and causes it to shrink, most likely affecting chromatin organization 

[65]. Paper II examines large-scale chromatin organization changes elicited during the 

early adipogenic process, indeed revealing major changes. 
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Figure 2 Adipogenic differentiation of ASCs. (A) Adipogenesis is induced in ASCs after incubation with 
IMBX, indomethacine, dexamethasone and insulin [66] (B) Undifferentiated and differentiated ASCs (day 
21)  stained with Oil Red-O to visualize lipid droplets. Scale bars: 200 μm.  

1.2.2 Transcriptional changes in adipogenic differentiation 

Adipogenic induction is accompanied by changes in gene expression [66] facilitated by 

chromatin remodeling and induction of transcription factor networks [67]. The 

transcription factors peroxisome proliferator-activated receptor γ (PPARγ), and 

CCAAT/enhancer binding proteins (CEBP) CEBPα, CEBPβ and CEBPδ are central in 

this process. PPARγ is a master regulator of adipogenesis necessary and sufficient for 

adipogenic differentiation in vivo and in vitro [68, 69]. In its active form, PPARγ forms a 

dimer with retinoic acid X receptor (RXR) to activate target genes [64]. PPARγ 

colocalizes with CEBPα and both cooperate to elicit adipogenesis [70]. Remarkably, ~60% 

of genes induced during differentiation have PPARγ or CEBPα bound at the promoter 

[71]. Induction of adipogenic differentiation involves expression of transcription factors 

in a regulated sequential manner (Fig. 3A) [72]. The first wave of expression entails 

upregulation of CEBPβ, CEBPδ and Kruppel like factors (KLFs), and downregulation of 

repressors of adipogenesis, including GATA2 and KLF2. These transcription factors 

activate transcription of genes of the second transcriptional wave, in particular PPARγ 

and CEBPα, which further activate transcription of genes associated with adipocyte 

formation and lipid metabolism [72].  

Waves of gene expression are also detected at a genome-wide level. Our 

laboratory has characterized transcriptional changes at 4 time points of differentiation 

using high-throughput RNA sequencing (RNA-seq). Time points examined were ‘day-2’ 

ASCs Adipocytes
B

A

ASC Adipocyte

Adipogenic
induction: 

IBMX, Indo, 
Dex, Ins
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(D-2), that is, undifferentiated ASCs cultured under proliferation conditions (with EGF 

and bFGF; see above); day 0 (D0), the time point at which ASCs are confluent; this is 

also the time point of addition of the adipogenic cocktail; day 3 (D3), immature 

adipocytes, 3 days after adipogenic induction; and day 9 (D9), differentiated adipocytes 

[66, 73]. Transcriptomic data identify several gene clusters with distinct expression 

patterns (Fig. 3B). While some clusters are sequentially up- or downregulated, others are 

only transiently up- or downregulated. In particular, one cluster includes genes expressed 

in undifferentiated ASCs that are upregulated upon adipogenic induction (cluster 8; Fig. 

3B); this cluster includes many genes associated with lipid metabolism and adipocyte 

formation [66]. Adipogenesis therefore involves coordinated gene expression modules or 

waves of expression, leading to expression of genes associated with lipid metabolism and 

adipocyte formation. This thesis explores chromatin changes that accompany this process.   
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Figure 3 Transcriptional changes in differentiation of ASCs into adipocytes. (A) Adipogenic stimulation of 
ASCs with Insulin, IBMX, dexamethasone and indomethacin induces activity of transcription factor 
networks, ultimately leading to PPARγ activation and expression of adipocyte specific genes. Modified 
from [74] (B) Hierarchial clustering of genes into 19 clusters based on expression patters throughout 
adipogenic differentiation of ASCs (Day -2, 0, 3 and  9).  Modified from [66]. 

 

  

IBMX

(Dexamethasone)
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A

B
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1.2.3 Changes in histone modifications and chromatin states during adipogenic 

differentiation 

Post-translational histone modifications 

Cells of multicellular organisms in principal share the same genome, but show highly 

diverse phenotypes. These differences are mainly regulated by epigenetic mechanisms. 

Epi-genetics means on top of’ genetics and is defined as heritable biochemical changes of 

DNA or chromatin that result in changes in gene expression without affecting the DNA 

sequence [75]. Epigenetics involves covalent modifications of DNA including 

methylation on CpG nucleotides, post-translational modifications (PTMs) of histones and 

action of non-coding RNAs. Chromatin refers to the complex of DNA and associated 

proteins in the eukaryotic nucleus. Generally, chromatin is divided into open, accessible, 

transcriptionally permissive euchromatin, and transcriptionally silenced heterochromatin. 

The basic unit of chromatin is the nucleosome which consists of DNA wrapped 1.65 

times around a histone octamer consisting of two dimers of histone H2A and H2B and 

one tetramer with two copies of each of histone H3 and H4 [76]. The nucleosomes are 

separated by the linker histone H1, which is involved in regulating nucleosome density 

[77]. Histones have N-terminal tails that protrude from the core of the nucleosome. Both 

the globular domain and the tail of histones are common targets for PTMs that affect 

chromatin structure and function [78, 79]. These modifications include acetylation, 

methylation, phosphorylation, ubiquitylation, ADP-ribosylation, sumoylation and O-

GlcNAcylation [80]. Combinations of histone modifications affect transcription and 

chromatin organization by affecting chromatin accessibility or facilitating binding of 

transcription factors or other chromatin associated proteins. Transcriptional changes 

occurring during adipogenic differentiation are accompanied by epigenetic changes, 

including large scale chromatin remodeling and changes in patterns of histone 

modifications [66, 67, 81].  

Histone acetylation is mainly associated with transcription and transcriptionally 

permissive chromatin. Acetylation by histone acetyl transferases (HATs) of positively 

charged histones reduces the global charge of histones and their binding to negatively 

charged DNA, thus promoting a more open chromatin configuration [82]. Histone 

deacetylases (HDACs) catalyze removal of acetyl residues and chromatin condensation. 

Typically in active gene promoters, histone H3 is acetylated on lysine (K) 9 (H3K9ac) 

[83], while active enhancer regions are enriched in H3K27ac [84, 85].  
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Histone methylation is associated with transcriptional activity of silencing 

depending on which residue and to what extent it is methylated (mono, di or 

trimethylation). Histone methyltransferases (HMTs) catalyze methylation of lysine and 

arginine residues, while histone demethylases (HDMs) remove methyl groups [86]. These 

enzymes are highly specific. In particular, methylation on lysines (K) on H3 has been 

shown to be related to transcriptional outcome. Methylation of H3K4 is typically 

associated with transcriptional activity. Mono- and dimethylation of H3K4 (H3K4me1/2) 

is associated with enhancer regions [85], while actively transcribed genes typically 

contain H3K4me3 in promoter regions. However, H3K4me3 is not always associated 

with transcriptional activity, as it is also present on silenced genes, e.g. on bivalently 

marked promoters (described below). H3K36me3 has also been associated with gene 

expression and is typically enriched in gene bodies. In contrast, methylation on H3K9 and 

H3K27 is associated with transcriptional repression. H3K9me2/3 is enriched in 

heterochromatin [87], and acts by recruiting heterochromatin protein 1 (HP1/CBX3), 

which facilitates chromatin compaction [88, 89]. H3K9me3 can also be present in 

euchromatic regions, and H3K9me3 in promoters is typically associated with long term 

gene repression [90]. H3K27me3 on promoter regions is also associated with gene 

repression, however, these promoters have potential to become rapidly induced [91]. 

H3K27me3 have important roles in development, and is catalyzed by EZH2, a subunit of 

the polycomb repressor complex PRC2. Additional PTMs also provide biochemical and 

functional properties to histones [80]; however these are not discussed in further detail.  

The distribution of histone PTMs (hPTMs) throughout the genome can be 

assessed by chromatin immunoprecipitation (ChIP) [92]. In the ChIP assay, proteins and 

DNA are cross-linked with formaldehyde and chromatin is sonicated to generate 200-500 

base pair fragments (bp). The protein of interest is immunoprecipitated with a specific 

antibody, and associated DNA is purified and analyzed by quantitative PCR (qPCR), 

hybridization to DNA microarrays or whole genome sequencing. In the case of ChIP-

sequencing (ChIP-seq), the DNA fragments are mapped to the genome, and their 

enrichment (or number of sequence reads) in the immunoprecipitated fraction is 

normalized to the number of reads obtained from sequencing the ‘input’ chromatin. 

Enrichment profiles can be viewed in a genome browser (e.g. the integrated genomic 

browser; IGV; [93]) (Fig. 4A). Regions enriched in the protein of interest can be 

determined by peak calling algorithms [94]. It is not the purpose of this introduction to 

describe peaks callers used in analysis of ChIP-seq data. Suffice is to mention that the 



12 
 

width of the enriched domains detected is a key factor for the choice of the algorithm. As 

described below, nuclear lamins (structural proteins of the nuclear periphery), associate 

with chromatin in the form of large domains; this has necessitated development in our 

laboratory of a new algorithm (enriched domain detector, or EDD) [94], to identify 

significant interactions. EDD has been used in the present work to identify lamin-

interaction domains and domains of GlcNAcylated histone H2B (Paper II).  

 

Dynamic chromatin states during cell differentiation 

Epigenetic modifications act in a combinatorial manner to regulate gene expression and 

chromatin function. Histone modifications occur in combinations, resulting in ‘chromatin 

states’. Promoters of developmentally regulated genes have been described in ESCs to be 

marked by a combination of H3K4me3 and H3K27me3, a so-called ‘bivalent’ state [91, 

95]. H3K27me3 at promoter regions is associated with transcriptional repression even in 

the presence of H3K4me3. These genes are ’poised’, meaning that they retain the 

potential for expression. Adipogenic promoters are also marked by H3K4me3/H3K27me3 

in ASCs, and differentiation elicits a reduction in H3K27me3 consistent with 

transcriptional activation, while H3K4me3 is retained [96].  

Combinations of chromatin marks (histone PTMs and other chromatin-bound 

proteins) and their dynamics over time can be examined in a comprehensive manner 

using Hidden Markov Modeling (HMM) techniques. ChromHMM [97] is a machine 

learning algorithm well suited for the modeling discovery of chromatin states, that is, 

recurrent combinations of chromatin marks throughout the genome (Fig. 4A,B). We have 

used ChromHMM in Papers I and II. In Paper I, we describe the chromatin environment 

of inflammatory response genes and how the prevalence of chromatin states is altered 

between expressed and non-expressed genes. In Paper II, ChromHMM has been used to 

describe the chromatin environment of H2BGlcNAc and lamin A/C (see below), and 

determine how it evolves during adipogenic differentiation.  
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Figure 4 Chromatin states analyzed by ChromHMM. (A) Enrichment of histone modifications and CTCF 
binding sites on a 6 kb region of Chromosome 1.  States are indicated and colored based on the 
classification of states in B. (B) ChromHMM emission parameters and functional element annotations from 
the 15 states. Color intensity indicates the level of enrichment of the indicated histone mark. From [66]. 

 Using ChromHMM, our laboratory has recently reported dynamic changes in 

chromatin states during adipogenic differentiation of ASCs [66]. This study reveals that 

the number of states within the promoter and gene body largely depends on the 

expression level of the associated genes, rather than changes in expression. Highly 

expressed genes generally display the highest number of (i.e. variation in) chromatin 

states, while lowly expressed genes are occupied by few chromatin states. During 

differentiation, clusters containing highly expressed genes are also the most dynamic, 

meaning that chromatin states change the most at these loci between differentiation time 

points. In particular, genes expressed before differentiation and upregulated after 

adipogenic induction, are the most dynamic. This cluster notably includes genes 

associated with adipocyte differentiation and metabolism. The most dynamic state is the 

bivalently marked promoters, consistent with a role of bivalency in regulating 

adipogenesis [66]. Collectively, this work shows that the chromatin landscape is 

extensively remodeled in the early stages of adipogenic differentiation. 

  

A B
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1.3. Metabolic influence on epigenetics 

1.3.1 Metabolic regulation of epigenetics  

Obesity and adipose tissue expansion is associated with increased risk of developing 

insulin resistance and diabetes type II, conditions that causes somatic cells to 

continuously be exposed to elevated glucose levels. Hyperglycemia has been associated 

with epigenetic changes in promoters of inflammatory genes [98]. These changes have in 

turn been linked to a ‘metabolic memory’ concept associated with diabetes, where 

diabetic patients experience complications even after treatment and restoration of normal 

blood glucose levels [99, 100]. NFκB is considered a central player in the pathology of 

diabetes [101]. Exposure to transient hyperglycemia increases transcription of RELA 

encoding P65, an NFκB subunit, and elevated RELA transcript levels persist even after 

reduction of glucose levels to normal levels [102]. These changes have been ascribed to 

changes in promoter histone methylation patterns. Transient exposure of endothelial cells 

to hyperglycemic conditions increases occupancy of H3K4me1 on the RELA promoter. 

This effect has been ascribed to increased activity of the HMT SET7 [102, 103]. The 

RELA promoter also shows reduced H3K9me2/3 after exposure to high glucose, which 

correlates with increased binding of the HDM LSD1 and reduced levels of the HMT 

SUV39H1 [103, 104]. Diabetic complications may also be epigenetically regulated by 

increased levels of O-GlcNAcylated proteins affecting transcriptional outcome [105]. 

Interestingly, GlcNAcylation of NFκB upon exposure to elevated glucose increases its 

activity [106]. GlcNAcylation and its role in transcription are discussed in the next 

section.  

 

Figure 5. Crosstalk between intermediates in metabolism and DNA and histone modifying enzymes. From 
[107]. 
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 Nutrients may affect the epigenome in several ways (Fig. 5). Intracellular 

concentrations of specific metabolites may directly act as substrates for histone modifying 

enzymes, so the level of some histone modifications may be directly influenced by 

intracellular nutrient levels. These metabolites include acetyl CoA, UDP-GlcNAc and S-

Adenosyl-methionine (SAM), which serve as donors for histone acetyltransferases, O-

GlcNAc transferase and DNA or histone methyl transferases, respectively. Other 

metabolites act as co-factors for chromatin modifying enzymes. These include NAD+, a 

co-factor for HDACs SIRT1 and SIRT6, α-ketoglutarate, a co-factor for the Jumonji 

domain class of HDMs and ten-eleven translocation (TET) enzymes involved in DNA 

demethylation [107]. Additionally, phosphorylation of histones can be directly regulated 

by cellular metabolic state through adenosine monophosphate activated protein kinase 

(AMPK) activated in response to increasing intracellular AMP levels [108]. There is also 

extensive crosstalk between these pathways; for instance, AMPK can phosphorylate the 

O-GlcNAc transferase (OGT), the enzyme responsible for O-GlcNAc modification, 

affecting its nuclear localization and  indirectly, GlcNAcylation of histones [109].  

1.3.2  O-GlcNAc modifications of cytoplasmic and nucleoplasmic proteins 

Two to five percent of glucose taken up by cells is routed from glycolysis to the 

hexosamine biosynthetic pathway (HBP). The HBP integrates signals from metabolism of 

several nutrients including glucose, fatty acids, amino acid and nucleotides (Fig. 6A). The 

end-product of the HBP is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a 

substrate for complex extracellular N-linked glycosylation and for O-linked glycosylation 

(O-GlcNAc) of ~3000 nuclear and cytoplasmic proteins [110]. Unlike extracellular 

glycosylation, O-GlcNAcylation involves addition of a single GlcNAc moiety to serine (S) 

or threonine (T) residues on target proteins. Protein GlcNAcylation is reversible and plays 

important functions in cellular signaling. Additionally, as the proportion of intracellular 

glucose directed to the HBP is relatively constant, activity of the HBP is directly 

proportional to extracellular glucose uptake. Consequently, UDP-GlcNAc levels fluctuate 

in proportion to intracellular glucose levels and thus can be considered a glucose  sensor 

[111].  
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Figure 6 (A) Chemical composition of UDP-GlcNAc. UDP-GlcNAc integrates signals from both 
carbohydrate (glucose), lipid (acetyl coA), amino acid (glutamine) and nucleotide (UTP) metabolism. (B) 
PTM of proteins with O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), while 
hydrolysis is catalyzed by O-GlcNAcase (OGA). 

Aberrant GlcNAc cycling has been associated with disease including various cancers and 

diabetes [112]. Exposure of cells to hyperglycemia increases the global levels of GlcNAc 

modified proteins [112]. Increased GlcNAc levels were also shown to induce insulin 

resistance in adipocytes [111]. Consistently, knocking down GFAT (the enzyme 

catalyzing the committed step in HBP) reverse glucose induce insulin resistance. Thus, 

the HBP has a causal role in diabetes development  

O-GlcNAc transferase (OGT) catalyzes the GlcNAcylation of serine or threonine 

residues on target proteins (Fig. 6B). OGT is encoded by a single gene in humans, located 

on the X chromosome [113]. It is essential for mammalian development, and OGT 

knockout mice die during early embryonic development [113]. In C. elegans, OGT 

knockout is not lethal; however OGT knockout mutants show severe metabolic defects, 

suggesting a role for O-GlcNAc in metabolic regulation [114]. Three different OGT 

splice variants have been identified in humans; these mainly differ in their sub-cellular 

localization and the length of their N-terminal tetratricopeptide repeat region (TPR) 

domain [115]. Nucleocytoplasmic (ncOGT) and short OGT (sOGT) are both present in 

the nucleus and the cytoplasm, differing only in the length of their TPR domains (12 and 

2.5 repeats, respectively). The TPR region is important for substrate recognition by OGT 

[116]. Moreover, a mitochondrial form of OGT (mOGT) contains a mitochondrial 

location signal. We have in the course of this work found that in ASCs, sOGT is the most 

abundant isoform while ncOGT is the dominant form in other cells like HeLa cells 

(Rønningen and Moskaug, unpublished data). Functional differences between these 
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isoforms remain largely unknown; however it is possible that intracellular OGT isoform 

distribution or concentration may regulate the substrate specificity of OGT.  

Removal of GlcNAc residues from target proteins is catalyzed by O-GlcNAcase 

(Fig. 6B). GlcNAc turnover is rapid for many proteins and relies on OGA activity. OGA 

conditional knockout mice show severe metabolic and transcriptional defects, suggesting 

that O-GlcNAc cycling is important for metabolic regulation [117]. Expression level and 

activity of OGT and OGA are tightly coupled and evidence suggests that these two 

enzymes mutually regulate their activity, maintaining an intracellular ‘GlcNAc balance’. 

Intriguingly, OGA expression is reduced or abolished following OGT knock-down or 

knock-out [118] (Rønningen, Moskaug, unpublished results). How this down-regulation 

occurs is unknown, but one possibility is that OGA is post-translationally modified by 

OGT; indeed, both OGT and OGA have been shown to be GlcNAcylated [116]. 

Many proteins are GlcNAcylated. GlcNAcylation  may (i) affect protein folding, 

in turn modulating protein-interactions or stability, (ii) compete or act synergistically with 

phosphorylation, or (iii) act as recruitment signals for other proteins [110].  Consistent 

with the essential role of OGT in development [113], OGT and O-GlcNAc modifications 

are associated with metabolism, cell cycle regulation, transcription and translation. 

GlcNAc also has important roles in stem cell differentiation [119]. Accordingly, 

adipocyte differentiation is influenced by GlcNAc cycling. In 3T3L1 pre-adipocytes, 

protein GlcNAcylation increases during adipogenic differentiation. Further, inhibition of 

the HBP inhibits adipogenic differentiation [120]. Of note, CEBPα,  CEBPβ [121] and 

PPARγ [122] are modified by O-GlcNAcylation, although the effect of these 

modifications on differentiation remains unclear. Increasing GlcNAcylation on CEBPβ or 

PPARγ by inhibiting OGA inhibits adipogenic differentiation [121, 122]; however this 

effect is not necessarily due to these specific modifications, as OGA inhibition affects 

GlcNAcylation of many proteins. More studies are needed to elucidate the mechanisms 

by which GlcNAc is involved in regulating adipogenic differentiation.  

 Various nuclear proteins are O-GlcNAcylated, including transcription factors 

[106, 123, 124], histone modifying enzymes [125, 126], nuclear pore complex proteins 

[127] and proteins associated with the nuclear lamina [128]. OGT is involved in several 

aspects of transcriptional regulation. Supporting a role of OGT in transcriptional 

activation, OGT has been identified as a component of the transcriptional pre-initiation 

complex and RNA polymerase II has been shown to be GlcNAcylated on serine 5 and 7 

[129]. Furthermore, OGT knockdown reduces the rate of transcriptional initiation [129, 
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130]. OGT is also found in association with enzymes linked to transcriptionally active 

chromatin, including TET2/3 enzymes implicated in DNA demethylation [126, 131], and 

SET1/COMPASS which is responsible for H3K4me3 [126]. GlcNAcylation is also 

associated with increased activity of transcription factors including NFκB [106]. In 

contrast, OGT can also be linked to transcriptional repression. In Drosophila, OGT is a 

Polycomb Group protein essential for Polycomb-mediated gene repression during 

development [132, 133]. Also, O-GlcNAcylation of EZH2 regulates EZH2 protein 

stability, and H3K27me3 is partly dependent on OGT expression [125]. Additionally, 

GlcNAcylation of the SIN3A subunit of HDAC1 has repressive effects on gene 

expression [134]. OGT thus harbors multiple and complex functions in transcriptional 

regulation. 

O-GlcNAc sites have been identified on all four core histones; these include T101 

on H2A, S36 and S112 on H2B, S10 and T32 on H3 and S47 on H4 [135-138]. The 

function of these PTMs remains largely unclear. GlcNAcylation of H3S10 

(H3S10GlcNAc) has been associated with mitosis regulation and transcriptional 

repression [136]. Interestingly, this modification may affect modifications on the 

neighboring H3K9 favoring methylation rather that acetylation [136]. GlcNAcylation of 

H2AT101 is involved in destabilization of nucleosomes in vitro, providing a chromatin 

state permissive for transcription [139].  

GlcNAcylation of H2BS112 (H2BS112GlcNAc; abbreviated in Paper II as 

‘H2BGlcNAc’) has been associated with transcriptional activation in HeLa cells [138]. 

Indeed, Fujiki and colleagues report a correlation between H2BS112GlcNAc and 

monoubiquitylation on H2BK120 (H2BK120ub1), a PTM associated with transcriptional 

elongation [140, 141]. Fujiki et. al. also show that OGT is necessary for H2BK120Ub1, 

as mutating S112 on H2B reduces levels of H2BK120ub1[138]. The authors propose that 

the S112-GlcNAc residue on H2B serves as anchor for the ubiquitin ligase BRE1A, 

which facilitates ubiquitylation and subsequent gene activation [138]. In ESCs, TET2 is 

necessary for recruitment of OGT to for modification of H2BS112 [131]. 

H2BS112GlcNAc has also been shown to be negatively regulated by AMPK [109], 

supporting the role of this modification as a metabolic sensor. In Paper II, we have 

mapped by ChIP-seq the distribution of H2BS112GlcNAc during adipogenic 

differentiation, and propose that domains of H2BS112GlcNAc serve as platforms for de 

novo association of chromatin with nuclear lamins.   
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1.4. Interactions of chromatin with the nuclear lamina 

1.4.1 The nuclear lamina  

 

Figure 7 Lamins and the nuclear lamina. (A) Schematic overview of the nuclear envelope, with the outer 
nuclear membrane (ONM), inner nuclear membrane (INM) and perinuclear space. Nuclear pore complexes 
span the nuclear envelope, facilitating transport of proteins. The nuclear lamina covers the inside of the 
INM, and is associated with inner nuclear membrane proteins and chromatin in regions called lamina 
associated domains or LADs. Modified from [142]. (B) A- and B-type lamins have similar structure, 
containing a Rod domain, a nuclear localization signal and a Ig-fold. Lamins mainly differ in the post 
translational modifications and length of their C-terminal tail. From [143]. (C) Lamin A and lamin B are 
farnesylated on the cysteine residue of their CaaX domain followed by cleavage of the aaX motif and 
methylation of the cysteine residue. Lamin A, but not lamin B is cleaved by the protease ZMPSTE24, 
removing the farnesyl group. From [143]. 

We have earlier described how progenitor cell differentiation entails chromatin and gene 

expression changes. Differentiation also involves large-scale changes in the spatial 

distribution of chromatin, including re-organization of chromatin at the nuclear lamina. In 

eukaryotic cells, the genome is physically separated from cytoplasm by the nuclear 

envelope. The nuclear envelope consists of a double membrane where the outer nuclear 

membrane is continuous with the endoplasmatic reticulum. Nuclear pore complexes 

perforate the nuclear envelope to facilitate transport of macromolecules in and out of the 

nucleus. The nucleoplasmic side of the inner nuclear membrane (INM) is adjacent to a 

network of filamentous proteins called the nuclear lamina (Fig. 7A). The nuclear lamina 

is biochemically defined as the fibrous component of the nucleus which is resistant to 

nucleases, non-ionic detergents and high salt [144]. The nuclear lamina plays important 

functions in the organization and activities of the nucleus. It mediates contact between 

microtubules, actin and intermediate filaments in the cytoplasm and the nuclear lamina 

A B

C
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through interaction with proteins of the linker of the nucleoskeleton and cytoskeleton 

(LINC) complex [143, 145]. The LINC complex spans the inner nuclear membrane and 

interacts with emerin (in the inner nuclear membrane) and nuclear lamins, providing a 

mechanism for signaling from the cytoplasm to the nuclear interior [146]. The nuclear 

lamina also provides mechanical strength (mechano-resistance) to the nucleus and 

contributes to maintaining nuclear shape [147, 148]. The lamina also plays important 

roles in chromatin organization, tethering transcription factors and signaling molecules 

[149]. 

A major component of the nuclear lamina is the nuclear lamins, which are type V 

intermediate filament proteins. Nuclear lamins are composed of A- and B- type lamins 

based on their structural, functional and biochemical properties. B-type lamins (lamins B1 

and B2, encoded by the LMNB1 and LMNB2 genes respectively) are ubiquitously 

expressed. B-type lamins harbor a C-terminal CaaX motif which is post-translationally 

modified by farnesylation (Fig. 7B, C). The farnesyl group is hydrophobic and enables 

insertion of B-type lamins into the lipid bilayer of the inner nuclear membrane at the 

nuclear envelope. Due to their C-terminal farnesylation, B-type lamins remain membrane-

anchored during the entire cell cycle, even during mitosis where they remain associated 

with the endoplasmic reticulum [150].  

A-type lamins, namely lamins A and C (also often referred to as lamin A/C) are 

splice variants of the LMNA gene. As in B-type lamins, the C-terminal CaaX motif of 

lamin A is farnesylated. However, unlike for B-type lamins, the metalloprotease 

ZMPSTE24 cleaves the farnesyl group from lamin A after incorporation into the nuclear 

lamina (Fig. 7C). Lamin C is a shorter LMNA splice variant which does not contain a 

CaaX motif and is not farnesylated. Accordingly, A-type lamins are not inserted into the 

INM. They polymerize into the nuclear lamina at the nuclear periphery, but also exist as a 

detergent-soluble nucleoplasmic pool [151]. While the functions of nucleoplasmic A-type 

lamins remain unknown, evidence implicates the nucleoplasmic protein lamina-associated 

polypeptide LAP2α, which directly binds lamin A/C, in the regulation of the 

nucleoplasmic vs. peripheral pools of lamin A/C [152, 153].  

Unlike B-type lamins, A-type lamins are developmentally regulated and show 

variable expression level between cell types [154] and during stem cell differentiation 

[155]. Lamin A/C is not or weakly expressed in pluripotent ESCs, and is expressed to a 

variable extent in lineage committed progenitor cells and differentiated cells [154, 156, 

157]. Lamin A/C play a role in differentiation of tissue-specific stem cells [153, 158, 159]. 
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The role of A-type lamins in development is unclear, but may at least in part be linked to 

changes in chromatin organization. 

 Interestingly, the nucleoplasmic vs peripheral distribution of A-type lamins has 

been shown to be important in the differentiation of somatic progenitor cells [160]. 

Nucleoplasmic lamin A/C and LAP2α both affect retinoblastoma protein function [161] 

and promote cell cycle arrest in somatic progenitor cells [153, 158, 159, 162]. Moreover, 

LAP2α overexpression in mouse pre-adipocytes promotes adipogenic differentiation 

[163], arguing that the maintenance of an intranuclear pool of A-type lamins is important 

for adipogenesis. Furthermore, our laboratory has shown that in ASCs, lamin A/C 

knockdown impairs differentiation into adipocytes [164]. Thus, nucleoplasmic lamin A/C 

seem to be critical for differentiation of tissue progenitor cells and conceivably play 

important roles regulating chromatin organization and gene expression in the nuclear 

interior [160, 165].  

Other proteins are associated with the nuclear lamina, including proteins anchored 

in the INM. These include the lamina associated polypeptides (LAPs) LAP1 and LAP2β, 

emerin and lamin B receptor (LBR). These proteins have important role in anchoring 

lamins to the INM, and some of these have been also shown to bind DNA, and 

presumably also have roles in chromatin organization [166].   

Point mutations in the LMNA gene are associated with disease. To date, ~400 

mutations have been mapped to the LMNA gene [167] and are linked to ~15 classes of 

diseases collectively called laminopathies. The symptoms are diverse, including 

myopathies affecting skeletal and cardiac muscle, progeria (premature aging) which 

affects all tissues except the brain, and partial lipodystrophies leading to abnormal body 

fat distribution [167, 168]. Several lamin A point mutations notably cause familial partial 

lipodystrophy of Dunningan-type (FPLD2), a disease associated with adipogenic and 

myogenic differentiation defects [169]. FPLD2 patients present metabolic syndromes 

including glucose intolerance and insulin resistance, and are prone to type 2 diabetes 

[170].  

A key question is how lamin A mutations can cause such a wide range of diseases. 

Given the developmental regulation of lamin A/C, it is likely that these mutations affect 

properties of stem cell differentiation. Additionally, some laminopathies are associated 

with defects in heterochromatin organization at the nuclear periphery [171], thus changes 

in genome organization during differentiation may be affected. The role of LMNA 
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mutations in FPLD2 makes the study of nuclear lamin-genome interactions in an 

adipogenic context particularly relevant; this is the topic of Paper II.  

1.4.2 Lamin–chromatin interactions 

Nuclear lamins interact with chromatin in part by direct interaction with histones and 

DNA [172]. Interactions between lamins and chromatin have been shown to occur within 

large, spatially defined regions of chromatin entitled lamina-associated domains (LADs), 

ranging from 0.1-10 megabases (Mb) [173]. LADs were initially identified by mapping 

associations of lamin B1 with chromatin genome-wide using DamID. [173, 174]. DamID 

involves the fusion of a protein of interest (in this case, lamin B1) with the DNA adenine 

methyltransferase (Dam) of E. coli. The Dam enzyme methylates adenines in GATC 

sequences that lie in close proximity (within 5 kb) of the protein of interest. The 

methylated regions can be isolated, amplified and hybridized to DNA microarrays for 

identification of interacting genomic sites, or sequenced and mapped back to the genome 

[174]. Recently, LADs have also been identified using ChIP [65, 94, 175], with results 

showing high similarity to DamID LADs [94, 176].  

In general, LADs are associated with transcriptionally inactive regions, they are 

overall gene-poor, and are typically enriched in repressive H3K9me2/me3 [173]. LADs 

are spatially restricted by distinct borders, typically marked with H3K9me2/me3, 

H3K27me3, the transcription factor yin-yang 1 (YY1) and the insulator protein CCCTC-

binding factor (CTCF) [173, 177]. LAD borders also often harbor transcriptionally active 

genes oriented away from the LADs. These regions typically contain H3K4me2 [173]. 

Changes in LAD borders are believed to be important in the dynamics and differences of 

LADs between cell types [177]. Although LADs are generally transcriptionally silent, 

recent studies show that LADs can be associated also with other chromatin environments, 

and some genes in LADs may also be highly transcribed [65, 178]. While our work was 

ongoing, results from our laboratory showed that in ASCs ~5% of the genes associated 

with lamin A/C harbor H3K4me3 in the promoter, suggesting a potential for 

transcriptional activation [65]. Accordingly, a fraction of lamin A/C-associated gene are 

expressed [65].   

DamID combined with immunofluorescence microscopy with a 6-methyladenine 

M6A tracer has recently shown that lamin A LADs, in contrast to lamin B LADs, localize 

not only at the nuclear periphery but also in perinucleolar regions in the nuclear interior 

[179]. This is in line with the reported nucleoplasmic pool of lamin A/C [160]. 
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Furthermore, supporting a role for lamin A/C in nucleoplasmic and perinuclear 

compartments, our laboratory has shown that cross-linked chromatin fragmented by 

sonication or with micrococcal nuclease (MNase) leads to identification of distinct lamin 

A/C LAD patterns [176]. ChIP with MNase-digested chromatin presumably preferentially 

targets more ‘open’ (nuclease-accessible) chromatin, and these LADs probably reflect 

euchromatin regions in the nuclear interior. In contrast to sonicated LADs, MNase LADs 

are identified in gene-rich regions; the latter are however enriched in H3K9me3 and 

H3K27me3 and are predominantly repressed. LADs specific for sonicated chromatin are 

in contrast gene-poor and devoid of histone modifications, presumably reflecting more 

peripheral regions. In line with this possibility, sonication lamin A LADs display strong 

overlap with previously described lamin B DamID LADs [176]. Thus, genes in LADs are 

mostly but not always repressed, and can be present in different chromatin environments, 

mainly at the nuclear periphery, as well as in the nucleoplasm. The functional relevance 

of lamin A LADs detected in transcriptionally active or repressed chromatin contexts 

remains to be explored.  

Lamin-chromatin interactions are believed to play important parts in development. 

Lamin B1 LADs are largely conserved between cell types [180, 181]. LADs conserved 

between cell types are entitled constitutive LADs (cLADs), and are even conserved 

between species. cLADs are believed to play a part in basic chromatin architecture [180]. 

Over 90% of LADs identified by DamID are conserved throughout differentiation of 

ESCs into neural progenitor cells [181]. Nevertheless, rearrangements also occur in LADs 

during differentiation. LADs that are not conserved between cell types are commonly 

named variable LADs (vLADs) [177]. These regions typically contain genes associated 

with lineage commitment or pluripotency. For instance, upon differentiation of ESCs into 

neural progenitors, key pluripotency genes gain lamin association and are likely targeted 

to the nuclear lamina for repression. Genes associated with commitment to the neurogenic 

lineage lose lamin association and gain an increased potential for expression [181]. There 

is however strikingly no overall correlation between gain or loss of lamin occupancy and 

gene expression. A striking example is the overall absence of changes in gene expression 

(although exceptions do occur) after siRNA-mediated known-down of lamin A/C in 

ASCs [65]. Moreover, a fraction of the genes that lose lamin association upon ESC or 

ASC differentiation remain silenced [65, 181]. Release of these genes from the nuclear 

lamina has been proposed to constitute a ‘priming’ mechanism for transcriptional 

activation before differentiation into more specialized cell types [65, 142, 181].  
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The mutations in the LMNA gene leading to FPLD suggest that lamin A/C may 

have important roles in adipogenic differentiation, which may partly be mediated by 

regulation of chromatin structure. Lamin A/C occupancy in gene promoter regions in 

ASCs has recently been studied using ChIP combined with microarray hybridization 

(ChIP-chip) [65]. Adipogenic differentiation of ASCs into adipocytes causes a large scale 

remodeling of lamin A/C-promoter interactions. Approximately 4000 promoters lose 

lamin A/C interaction, while ~2000 gain interaction and ~800 retain interaction. 

Adipogenic promoters such as the PPARG2, FABP4, FABP8 and FABP9 promoters lose 

lamin A/C during differentiation, while genes associated with differentiation into other 

lineages (e.g. endodermal- and ectodermal-specific genes) remain bound to lamin A/C 

[65]. These results suggest an overall change in chromatin configuration upon adipogenic 

differentiation [65]. This study corroborates findings by Oldenburg and colleagues in our 

laboratory, showing impaired adipogenic differentiation in ASCs expressing a lamin A 

mutant or knocked-down for lamin A/C [164]. Although the Lund et al. (2013) study 

provides information about promoter-lamin interactions, genome-wide changes that 

accompany adipogenic differentiation remain unknown. In Paper II, we report and 

characterize genome-wide profiles of lamin A/C LADs in the course of in vitro 

adipogenic differentiation.  

In light of the information provided in this Introduction, we address several 

fundamental issues on ASC biology. These are: (1) what chromatin configuration 

characterizes inflammation response genes in ASCs; (2) does exposure to elevated 

glucose impact expression – or expression potential – of inflammation response genes in 

ASCs; (3) how does adipogenic differentiation affect associations of chromatin with the 

nuclear lamina and how do changes in these associations affect gene expression; and (4) 

is there an epigenetic state favoring nuclear lamin-genome interactions, which would help 

rationalize and understand the significance of developmentally-regulated lamina-

chromatin interactions. The papers presented here provide evidence for an epigenetic 

‘priming’ of inflammation response genes in ASCs by high-glucose exposure, 

conceivably accounting for their immunological properties (Paper I; Rønningen et al., 

submitted), and for domains of GlcNAcylated H2B (which we name GlcNAcylated 

domains or GADs) constituting an epigenetic platform for the de novo formation of lamin 

A/C LADs during adipogenic induction (Paper II; Rønningen, Shah et al., Genome Res., 

in press). The latter findings suggest a link between the spatial arrangement of the 

genome (through lamin A/C-chromatin interactions) and the metabolic state of ASCs.   
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2. Aims of the study 

Adipose stem cells (ASCs) play a central role in the regulation of immune functions and 

in adipose tissue development through differentiation into adipocytes. Relatively little is 

known on how chromatin-associated processes regulate these functions. In this thesis 

work, I have examined how gene expression and chromatin organization in human ASCs 

are affected by metabolic cues, with emphasis on dynamic changes in histone post-

translational modifications and spatial chromatin organization. The aims of the study 

were therefore to:  

 Determine the effect of elevated extracellular glucose on expression and 

epigenetic regulation of inflammatory genes in ASCs and adipocytes, at single-

gene and genome-wide levels 

 Determine whether adipogenic induction affects genome-wide distribution of the 

nutrient responsive S112GlcNAc on histone H2B, and characterize regions 

enriched in H2BS112GlcNAc  

 Identify changes in the genome-wide associations of chromatin with nuclear lamin 

A/C during adipogenic differentiation 

 Assess the relationship between changes in lamin A/C-chromatin interactions and 

H2BS112GlcNAc driven by adipogenic differentiation 
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3. Summary of publications 

Paper I: Epigenetic priming of inflammatory response genes by high glucose in 

adipose progenitor cells (Rønningen et al., Biochemical and Biophysical Research 

Communications, in press) 

Cellular metabolism confers wide-spread epigenetic modifications required for the 

regulation of transcriptional networks that determine cellular states. Mesenchymal 

stromal cells (MSCs) are responsive to metabolic cues including circulating glucose 

levels, and modulate inflammatory responses. We show here that long-term exposure of 

undifferentiated human primary adipose stem cells (ASCs, MSCs from adipose tissue) to 

high glucose upregulates a subset of inflammation response (IR) genes and alter their 

promoter histone methylation patterns in a manner revealing transcriptional de-repression. 

Modeling of chromatin states from recurrent combinations of seven chromatin 

modifications in nearly 500 IR genes unveil three overarching chromatin configurations 

reflecting repressive, active, and potentially active states in promoter and enhancer 

elements. We show that a high fraction of the non-expressed IR genes contain potential 

for expression, enriched in the H3K4me1 mark. Accordingly, we further show that 

adipogenic differentiation in high glucose predominantly upregulates IR genes, when 

compared to differentiation in a control glucose level. Our results indicate that elevated 

extracellular glucose levels sensitize in ASCs an IR gene expression program which is 

exacerbated in adipocytes. We propose that high glucose exposure conveys an epigenetic 

‘priming’ of IR genes, favoring a transcriptional inflammatory response upon adipogenic 

stimulation.  Chromatin alterations at IR genes by high glucose exposure may play a role 

in the etiology of metabolic diseases. 
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Paper II: Pre-patterning of differentiation-driven nuclear lamin A/C-interacting 

chromatin domains by GlcNAcylated H2B (Rønningen, Shah et al. Genome Research, 

2015, in press) 

Dynamic interactions of nuclear lamins with chromatin through lamin-associated domains 

(LADs) contribute to the spatial organization of the genome. Here, we provide evidence 

for pre-patterning of differentiation-driven formation of lamin A/C LADs by domains of 

histone H2B modified on S112 by the nutrient sensor O-linked N-acetylglucosamine 

(H2BS112GlcNAc), which we term GADs. We reveal a two-step process of lamin A/C 

LAD formation during in vitro adipogenesis, involving spreading of lamin A/C-chromatin 

interactions in the transition from progenitor cell proliferation to cell cycle arrest, and 

genome-scale redistribution of these interactions through a process of LAD exchange 

within hours of adipogenic induction. Lamin A/C LADs are found both in active and 

repressive chromatin contexts that can be influenced by differentiation status. We show 

that de novo formation of adipogenic lamin A/C LADs occurs non-randomly on GADs, 

which consist of megabase-size intergenic and repressive chromatin domains. 

Accordingly, whereas pre-differentiation lamin A/C LADs are gene-rich, post-

differentiation LADs harbor repressive features reminiscent of lamin B1 LADs identified 

in other cell types. We find that release of lamin A/C from genes directly involved in 

glycolysis concurs with their transcriptional upregulation after adipogenic induction, and 

with downstream elevations in H2BS112GlcNAc levels and O-GlcNAc cycling. Our 

results unveil an epigenetic pre-patterning of adipogenic LADs by GADs, suggesting a 

coupling of developmentally regulated lamin A/C-genome interactions to a metabolically-

sensitive histone modification. 
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4. Discussion 

4.1 Epigenetic priming of gene expression in high glucose conditions 

Given the central role of adipose tissue inflammation in disease, expression of 

inflammatory factors in adipose stem cells (ASCs) may contribute to disease development. 

In Paper I, we show that long-term exposure to elevated extracellular glucose (an 

approximation of an in vitro ‘diabetic’ condition) induces epigenetic changes in a panel of 

inflammatory response (IR) gene promoters in human ASCs. These changes include a 

reduction in H3K9me3 and H3K27me3 on promoters, suggestive of a transcriptional de-

repression mechanism. This is associated with modest upregulation of expression of some 

but not all the examined genes in our qPCR analysis, suggesting that these epigenetic 

changes are necessary but not sufficient for transcriptional activation. Rather, they may 

act as a ‘priming’ mechanism enabling transcriptional upregulation following stimulation, 

e.g. after adipogenic or inflammatory induction. This is in line with previous studies 

showing effects of hyperglycemia on H3K9 and H3K27 methylation and on activity of 

the respective H3K9 and H3K27 HMTs and HDMs in endothelial cells, cardiomyocytes 

and monocytes [103, 104, 182, 183]. The epigenetic changes observed are likely to be due 

to altered activity of these enzymes also in ASCs. It would be interesting in future studies 

to examine the impact of sustained or acute high glucose exposure on HMT/HDM levels 

and activity in an adipose context.  

We further show, by high-throughput bioinformatic analyses of IR genes in ASCs, 

that most non-expressed IR genes harbor chromatin states compatible with potential for 

expression. These chromatin states include marking of enhancers (or putative enhancers) 

by H3K4me1, and marking of promoters by H3K27me3, with no detection of the 

transcription elongation mark H3K36me3; these epigenetic marks are consistent with a 

repressed transcriptional state. Interestingly, the detection of H3K4me1 in these 

regulatory regions suggests an additional priming mechanism for IR gene expression. 

H3K4me1 marking of enhancer elements suggests that either these enhancers are in use 

(i.e., they regulate distant cognate promoters), or that they will be used at a later stage, e.g. 

after an adipogenic or an inflammatory signal.  

Supporting the view of ‘priming’ of gene activation by H3K4me1 enhancer 

marking is the discovery of a set of enhancers mono-methylated on H3K4 prior to, or in 

early stages of, adipogenic differentiation, and in any case prior to transcriptional 

activation of their cognate genes [66]. H3K4me1 has also been described to act as a 
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priming mechanism prior to subsequent activation of enhancers upon acquisition of the 

H3K27ac mark [66, 184, 185]. Priming IR gene activation by H3K4me1 upon cell culture 

in high glucose may therefore determine the inflammatory potential of ASCs after 

adipogenic induction. Interestingly, hyperglycemia is associated with increased activity of 

SET7, the H3K4me1 methyltransferase, resulting in increased levels of H3K4me1 on 

inflammatory promoters [103, 186], suggesting that this priming mechanism may be more 

evident in cells exposed to elevated glucose.  

In support of this possibility, we show that adipogenic differentiation under high 

glucose conditions promotes an overall upregulation of IR genes to a larger extent than in 

undifferentiated cells. An implication may be that adipocytes differentiated under 

hyperglycemic conditions in vivo (e.g. in a context of insulin resistance) secrete elevated 

levels of inflammatory mediators, contributing to a systemic low-grade inflammatory 

state and disease development. Additionally, epigenetic changes mediated by 

hyperglycemia may influence ASCs’ immunomodulatory properties following injury. We 

hypothesize from our observations that culture in high glucose induces changes in 

chromatin organization which may facilitate or poise IR genes for increased expression 

following additional input from other pathways. 

4.2 Metabolic regulation of early adipogenic differentiation? 
Transcriptional changes occur rapidly, within hours of adipogenic induction and involve 

extensive chromatin remodeling. These chromatin changes entail both transient and more 

stable ‘opening’ of chromatin in vicinity of lineage-specific genes, facilitating 

transcription [67]. In Paper II, we report massive transcriptional changes associated with 

induction of adipogenic differentiation (from D0 to D1), corroborating the D0 – D3 gene 

expression changes reported by Shah et al. [66]. Interestingly, a large fraction of the 

genes upregulated on D1 is associated with cellular metabolism. Upregulated genes 

include HIF1A, genes encoding several glycolytic enzymes (e.g. GAPDH, PGK1, TPI1, 

ENO1, LDHA, LDHB, PGAM1) and genes associated with repression of oxidative 

phosphorylation (e.g. PDK4) (Paper II, Supplemental Fig. 4). Remarkably, increased 

expression of most of these genes is transient, returning to undifferentiated ASC 

expression level by D3 and D9, suggesting a ‘boost’ of glycolytic metabolism following 

adipogenic induction. Previously published studies have claimed that oxidative 

metabolism is a pre-requisite for adipogenic differentiation, and that differentiation is 

accompanied by a boost of oxidative phosphorylation [56, 57]. However, these studies 
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have examined later time-points in adipogenesis, and oxidative phosphorylation may be 

more important at these stages. Since the metabolic changes associated with adipocyte 

formation is dependent on PPARγ [72], which is upregulated at a later stage of 

adipogenic differentiation (day 2-6), the early stage of adipogenic differentiation 

presumably does not involve lipid synthesis to a large extent, which rely on oxidative 

metabolism. Thus, glycolysis may play a role in adipogenic induction. We are initiating 

studies to further investigate metabolic changes associated with initiation of adipogenic 

differentiation of ASCs. Interestingly, the boost in glycolytic gene expression is 

consistent with a transient increase in H2BGlcNAc and associated proteins (OGA, OGT 

and overall GlcNAc modifications) – suggesting an increase in O-GlcNAc cycling – and 

a reorganization of chromatin at the nuclear lamina on D1 of adipogenic differentiation. 

Our data suggest a functional link between cellular metabolic state, histone modifications 

and chromatin architecture.  

4.3 LAD dynamics in adipogenic differentiation 
Lamin A/C LADs are associated with actively transcribed regions in undifferentiated 

ASCs 

LADs are typically associated with a repressive chromatin environment [65, 94, 173, 175, 

177, 187]. LADs are largely conserved between cell types [180] and these cLADs are 

believed to play roles in the fundamental organization of chromatin architecture in the 

nuclear space [172]. This is contrast to the vLADs which may perhaps play a more 

regulatory function (although this is not strongly substantiated yet). In Paper II, we show 

that lamin A/C LADs are enriched also in active genes and regulatory elements in 

undifferentiated ASCs. However, after differentiation, LADs gain repressive chromatin 

features that are more typical of LADs. As lamin A/C is found both at the nuclear 

periphery and in the nuclear interior [160, 165], the heterochromatic vs. euchromatic 

nature of lamin A/C-chromatin interactions evidenced in our study is likely influenced by 

its dual localization. Peripheral LADs are enriched in heterochromatin [173, 188] while 

intranuclear lamin A/C LADs are likely in a more euchromatic environment, as expressed 

genes tend to localize in the nuclear interior. Supporting a role for lamin A/C also in 

euchromatin organization, work in our laboratory has shown that a fraction of lamin A/C-

bound promoters is marked by H3K4me3 and/or is expressed [65]. Our results therefore 

indicate that lamin A/C LADs can be found both in active and repressive chromatin 

contexts, the balance of which can be influenced by cell differentiation status. 
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De novo LAD formation after adipogenic induction – how does LAD remodeling occur? 

In Paper II, we observe a major shift in lamin A/C LADs after adipogenic induction, 

with essentially no sequence overlap between D0 and D1 LADs. The question emerges 

then, of whether nuclear lamins are relocalized or translocated within the nuclear interior 

during adipogenic induction. The existence of an intranuclear pool of lamin A/C 

complicates the interpretation of our results. ChIP-seq data provide information on the 

sequence associated with lamin A/C, but does not provide indications on the nuclear 

localization of the LADs. The intranuclear lamin A/C pool is regulated by the lamin 

binding protein LAP2α [158]. LAP2α knock-out causes redistribution of nucleoplasmic 

lamin A/C to the nuclear periphery, and also inhibits differentiation [158, 159]. This 

suggests that undifferentiated progenitor cells require a pool of intranuclear lamin A/C to 

be able to differentiate. This is consistent with our findings (Paper II) showing that a 

large fraction of lamin A/C LADs are enriched in genes and regulatory elements, some of 

which are active, which tend to be localized in the nuclear interior (in a euchromatic 

environment, as discussed above). The de novo LADs formed on D1 of adipogenic 

induction show some properties suggesting positioning at the nuclear periphery. Indeed, 

post-adipogenic induction lamin A/C LADs become more intergenic (reduced gene 

density and reduced association with regulatory elements) and thus are more similar to 

lamin B1 LADs identified by DamID in other cell types [173, 180]. Given that lamin B1 

is restricted to the nuclear periphery (by virtue of its anchoring in the inner nuclear 

membrane), lamin B1 LADs are thus associated (presumably) exclusively with the 

nuclear periphery; our findings therefore suggest that de novo lamin A/C LADs form 

predominantly at the nuclear periphery.  

 Based on our results, we propose the following model (Fig. 8). In undifferentiated 

cells, lamin A/C is associated with a gene-rich, euchromatic environment, mainly in the 

nuclear interior; these associations may involve LAP2α, which binds directly to lamin 

A/C and chromatin. Nevertheless, lamin A/C also likely interacts with chromatin at the 

nuclear periphery. Upon differentiation, LADs are globally reorganized, resulting in 

increased amount of LADs at the nuclear lamina. The LADs formed on D1 lose their 

overall euchromatic properties and are more heteroch romatic, similarly to lamin B1 

LADs. 
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Figure 8 Model of shift in lamin A/C LAD organization upon adipogenic induction. On day 0, lamin A/C 
LADs are mainly associated with gene-rich, actively transcribed regions; a significant fraction of LADs is 
present in the nuclear interior, presumably bound to LAP2α. Upon adipogenic induction, there is a global 
rearrangement of LADs, and LADs become overall gene-poor and transcriptionally repressed. This 
probably involves re-shuffling of LADs both at the periphery and in the nucleoplasmic pool, and likely also 
between the different compartments. The increased overlap of lamin A/C LADs with lamin B1 LADs on D1 
suggests an increased amount of peripheral vs. internal LADs after differentiation.   
 
Are LADs stable in differentiated cells? 

Another important point that remains to be elucidated is whether lamin A/C and 

associated LADs translocate at a later stage of adipogenic differentiation. We report in 

Paper II that lamin A/C LADs are overall maintained between D1 and D9. This suggests 

that the radial positioning of lamin A/C-genome interactions is relatively stable in the 

nuclear space. This however does not exclude the possibility that lamin A/C-chromatin 

complexes affecting specific genomic regions translocate within the nucleus: in this 

scenario, the genomic sequence underlining these LADs would remain the same, but their 

position would change. We have currently no direct evidence that the de novo lamin A/C 

LADs harbor a more repressive configuration than D0 LADs but we show a reduction of 

lamin A/C LAD-associated gene expression on D1 and D3 (Paper II, Fig. 1G).  

Another important issue is that the ChIP-seq results are combined from millions of 

cells. When investigating LADs at the a single cell level, only approximately 30% of the 

LADs are found at the nuclear periphery [178]. 3D fluorescence in situ hybridization (3D-

FISH) combined with lamin A/C immunostaining (3D immuno-FISH) corroborates these 

findings for single loci within LADs [65]. So clearly, not (or very seldom) all alleles of a 

locus interacting with nuclear lamins are at the nuclear periphery. The LADs identified to 

date using high-throughput genomic approaches (ChIP, DamID) represent the ensemble 

of lamin A/C-chromatin interactions in the entire cell population. It may be that changes 

in lamin-chromatin association occur in single cells between the different time-points 
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examined in our study, although the overall LAD sequence is, at the cell population level, 

the same.  

Interestingly, a recent study reports the genome-wide mapping of LADs by 

DamID-seq in an array of 400 single cells [189]. The data reveal a core organization 

involving constitutive gene-poor LADs between individual cells, which may play a 

fundamental architectural role. Variable contacts in contrast form the basis of cell-

specificity of LADs. In support of our findings in Paper II, the variable LADs tend to be 

more gene-rich and associated with transcriptionally active regions [189]. A single-cell 

analysis of lamin A/C LADs in the context of our adipogenic differentiation system 

would provide invaluable information on the dynamics of lamin-genome interactions 

during the D0-D1 transition, as data from individual cells may be interpreted as time-

point transitions between D0 and D1.  

4.4 Is H2BS112GlcNAc enriched in genic or intergenic regions?  
We report also in Paper II that H2BS112GlcNAc is present in large repressed regions in 

ASCs. The genomic context of H2BGlcNAc however differs from previous reports [131, 

138]. We have shown that in ASCs and adipocytes, H2BGlcNAc is primarily localized in 

gene-poor or intergenic regions, and that genes found in H2BGlcNAc domains (GADs) 

are generally repressed. In contrast, Fujiki and colleagues have reported that, 

H2BGlcNAc enrichment is predominantly found in genes that are transcriptionally active 

[138] and in euchromatic areas co-enriched with H3K4me2 and H2BK120ub1. Several 

factors may explain this apparent key discrepancy.  

 One important factor is the difference in antibodies used in the studies. Whereas 

Fujiki and colleagues used a custom made rabbit polyclonal antibody, we used in our 

work the only commercially available antibody at the time to our knowledge, namely a 

rabbit polyclonal antibody to H2BS112GlcNAc from Abcam (ab130951). Unfortunately 

we were not able to access the ’Fujiki antibody’ at the time we undertook our studies (and 

to date). Therefore, we have extensively characterized the Abcam antibody (Paper II, Fig. 

2, Supplemental Fig. 2). Our conclusion is that the Abcam antibody is specific to the 

GlcNAcylated form of H2B, although it has some non-specificity to unmodified H2B. In 

particular, H2BGlcNAc enrichment shows very little overlap with pan-H2B enrichment 

in ASCs, suggesting that the antibody is specific enough to ensure robustness of our ChIP 

data. It would be interesting to determine H2BGlcNAc genomic enrichment profiles using 

the ‘Fujiki antibody‘ in ASCs; however this seems currently of reach.  
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 Another factor explaining the discrepancy is the cell types examined. Whereas 

Fujiki et al. have examined HeLa cells [138] – a transformed aneuploidy cell line, we 

have used primary, normal diploid ASCs [190]. To address whether there are cell type-

specificity of H2BGlcNAc genomic profiles, we have recently initiated a comparative 

study (unpublished results). We have mapped by ChIP-seq in the human HepG2 

hepatoblast cell line lamin A/C LADs and H2BGlcNAc, using the same antibodies as in 

Paper II. In addition, to provide an idea of how dynamic lamin A/C LADs would be in 

relation to GADs, we also treated HepG2 cells with 10 μM cyclosporin A (CspA) for 72 h 

to induce a “steatotic”-like state, i.e. stimulate an adipogenic phenotype (A. Sørensen and 

P. Collas; data not shown). The rationale for this was to provide an adipogenic system 

complementary to our ASC differentiation system and to determine the relationship 

between lamin A/C LAD and GAD enrichment after CspA treatment. Using the EDD 

algorithm [94] for domain detection, we found that lamin A/C LADs cover 350 and 255 

Mb of the genome in control and CspA-stimulated HepG2 cells, respectively, making up 

11 and 8% of the genome (Fig. 9A). Thus, LAD coverage under these conditions appears 

to be similar or slightly reduced. However, gene density increases after CspA treatment, 

from 2.1 genes/Mb to 6.4 genes/Mb, respectively (Fig. 9B), indicating a major 

redistribution of lamin A/C LADs after stimulation, and a change in the genomic 

properties of these LADs. Changes in LAD patterns are manifested by either loss of 

LADs, gain of LADs (de novo LADs) or extension of already existing LADs (spreading; 

Fig. 9C). These results indicate thus far that, as in ASCs (Paper II), lamin A/C LADs are 

remodeled during adipogenic differentiation, yet in this system, lamin A/C LADs tend to 

become gene-rich after stimulation. 

We next examined H2BGlcNAc distribution through the HepG2 genome before 

and after CspA stimulation. We show that domains of H2BGlcNAc (GADs) cover 14 and 

11% of the genome in control and treated cells, respectively (454 and 351 Mb) through 

360 to 310 domains (Fig. 9A). Overlap between GADs is highly conserved between 

control and CspA-treated cells, as determined by Jaccard index calculation (Fig. 10). 

GADs show high gene density, both before and after treatment, at 14 vs.12 genes/Mb 

(Fig. 9B). Importantly, we note that gene density of GADs in HepG2 cells is clearly 

distinct from that in ASCs in which GADs are consistently gene poor (~2 genes/Mb; 

Paper II). Since we used the same antibody in both studies, this suggests that the 

genomic context of H2BGlcNAc varies between cell types. This is either cell type-

dependent, or may represent a difference between primary cells (ASCs) and cell lines 
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(HepG2). The latter is supported by the fact that H2BGlcNAc has been reported to be 

enriched in genes in the HeLa cell line [138]; however, more work is clearly needed to 

validate this possibility, notably by ChIPing H2BGlcNAc from HeLa cells. This work is 

currently ongoing in our laboratory.  

 

Figure 9 Characteristics of LADs and GADs in control and CspA-stimulated HepG2 cells. (A) Percent of 
the human  genome covered by LADs and GADs. (B) Gene density in LADs and GADs. (C) IGV browser 
view of LMNA and H2BGlcNAc enrichment in a region of chromosomes 1 and 7 in control (Ctl) and 
CspA-stimulated HepG2 cells. Red frame highlights a region of de novo lamin A/C enrichment in CspA-
treated cells, in a H2BGlcNAc-rich domain.  

During adipogenic differentiation of ASCs, we report in Paper II de novo LADs 

form almost exclusively on pre-existing domains of H2BS112GlcNAc, which we called 

GADs, suggesting that GADs pre-pattern de novo LAD formation and that patterns of 

LAD formation may be dependent on the cellular metabolic state. We examined whether 

this held true for HepG2 cells, given the remodeling of LADs after CspA treatment we 

reported above. Our preliminary data show that a proportion of de novo lamin A/C LADs 

form on GADs (Fig. 9C, frame). This is quantified by calculating the Jaccard index of 

overlap between LADs and GADs before and after CspA treatment (Fig. 10). This shows 

that while LADs and GADs essentially do not overlap in control cells (Ji = 0.1), overlap 

is highly significant (Ji = 0.5) in stimulated cells. This suggests that, as in ASCs, de novo 

lamin A/C LAD formation upon adipogenic induction in HepG2 cells may be pre-

patterned by GADs.  

A B

C
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Figure 10 Jaccard index determination of the overlap between LADs and GADs. Note the increase in 
overlap after CspA treatment (red arrow), supporting, in a different cell type, our findings in Paper II. 

A recent review also questions the quality of the H2BS112GlcNAc ChIP-seq data 

published by Fujiki et al (2011) [191]. Genomic profiles of promoters claimed to be 

enriched in H2BGlcNAc (Fig. 11) reveal, in at least 5 out of the top 20 genes supposedly 

enriched in H2BS112GlcNAc, very low if any enrichment in H2BS112GlcNAc in 

promoter regions relative to overall background level. This suggests that the conclusions 

drawn in the earlier study [138] may be overstated. It will be important to resolve the 

issue of genomic enrichment in H2BS112GlcNAc in a variety of primary cells and cell 

lines, as we have initiated in our laboratory.  

 

Figure 11 Re-analyzed H2BS112GlcNAc ChIP-seq profiles from selected ‘highly enriched in H2BGlcNAc’ 
loci in the Fujiki et al. (2011) data. Modified from [191] 

OGT has multiple roles in chromatin regulation, and the mechanism by which 

OGT identifies its substrate in different contexts is incompletely understood. OGT 

substrate specificity may be regulated by several means including isoform distribution, 

oligomerization, UDP-GlcNAc concentration, PTMs and through interactions with other 
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proteins [192]. Several studies have shown that GlcNAcylation of H2B by OGT is 

dependent on TET enzymes for recruitment onto chromatin [126, 131, 193]. RNA-seq 

analysis shows however that TET enzymes are not expressed in ASCs [66]; therefore, 

other mechanisms may be involved in bringing OGT to chromatin in this cell type. The 

difference in regulation may also explain the discrepancy in genomic localization of 

H2BGlcNAc in ASCs compared to previous studies [138].  

4.5 Is there a functional relationship between H2BGlcNAc and LADs?  
We show in Paper II that de novo lamin A/C LADs form on previously enriched 

H2BGlcNAcylated domains on D1 of adipogenic differentiation. To our knowledge, this 

is the first study describing a relationship between lamin A/C and GlcNAcylated proteins. 

This connection is however not surprising, as OGT modifies several proteins at the 

nuclear envelope, including nuclear pore complexes [127] and the inner nuclear 

membrane protein emerin [128]. Indeed we have shown enrichment of O-GlcNAc 

modified proteins in the nuclear periphery in ASCs and HeLa cells (Fig. 12). Here, we 

provide additional evidence for a role of GlcNAcylation at the nuclear lamina, with 

H2BGlcNAc acting as a pre-patterning factor for positioning of genes at the nuclear 

lamina upon adipogenic induction. 

 

Figure 12 O-GlcNAc modifications are located at the nuclear periphery. Immunofluorescence images of 
human ASCs and HeLa cells stained with RL2 antibodies which recognize pan-O-GlcNAc modifications. 
DNA is stained with DAPI. 

 We have, however, not yet been able to show a clear functional link between 

H2BGlcNAc and the establishment of lamin A/C LADs. We have shown using HeLa cell 

lysates that lamin A/C co-immunoprecipitates with H2BGlcNAc and vice versa, and that 

this interaction is not direct, but rather mediated through DNA (A. Oldenburg, 

α-O-GlcNAc DNA Merge

ASC
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O-GlcNAc

O-GlcNAc

DNA

DNA
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unpublished results). H2B and lamin A/C have been shown to interact through the N-

terminal part of H2B [194]. Due to the partial affinity of the anti-H2BS112GlcNAc 

antibody used in our work to unmodified H2B (see above), further studies are needed to 

validate this interaction. Nonetheless, the role of H2BGlcNAc in pre-patterning of lamin 

A/C-chromatin interactions does not necessarily require direct protein-protein interaction, 

and it is possible or even likely that lamin A/C, H2BGlcNAc and associated chromatin 

are part of larger protein complexes.  

Establishing a causal relationship between LADs and GADs would require 

showing that removal of H2BGlcNAc prevents or somehow affects de novo LAD 

formation. This is however challenging. Methods for studying specific O-GlcNAc 

modifications typically involve manipulations of overall O-GlcNAc levels, not specific 

modifications on specific proteins. Typical approaches involve knock-down of OGT, 

inhibition of central enzymes in the HBP, or altering availability of metabolites in the 

HBP (glucose, glutamine, glucosamine, etc.). These approaches will however affect 

various GlcNAcylated proteins and a wide range of cellular processes, and have a large 

degree of non-specificity. Additionally, since both OGT and OGA are essential proteins 

for cell survival [113, 195], perturbing these enzymes may cause several off-target effects 

including stress responses, defects in cell cycle regulation or transcription. Another 

strategy to more specifically manipulate H2BGlcNAcylation would consist in introducing 

a mutant form of H2B. For antibody validation in Paper II, we expressed H2B fused to 

EGFP or Ty1 tags, and introduced a substitution from a serine to an alanine on residue 

112 (H2BS112S A mutation). We have attempted using these constructs for functional 

analysis; however under  the conditions tested so far, expression levels of exogenous 

epitope-tagged H2B remains presumably too low (estimated from Western blots to less 

than 10% of total H2B; our unpublished data), it may not cause an overall change in 

genome organization. Indeed, using these constructs, we show by ChIP-qPCR no clear 

effect on the association of specific loci with lamin A/C in ASCs on D1 of differentiation 

(our unpublished results). An approach to study the functional effect of H2BGlcNAc 

would be to stably express H2BS112A in ASCs, assess H2BS112GlcNAc levels, and 

determine the effect of this substitution on de novo lamin A/C LAD formation and 

adipogenic differentiation.  
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4.6 Conclusions and perspectives 
Overall, this thesis provides insight in how the epigenome and chromatin organization is 

potentially affected by the cellular metabolic state. We show that:  

i. High glucose concentration affects epigenetic priming of inflammatory response 

gene promoters in ASCs, priming these for enhanced expression upon subsequent 

adipogenic stimulation. 

ii. Adipogenic induction of ASCs induces up-regulation of metabolic genes, and a 

major reorganization of lamin A/C LADs. 

iii. Metabolically-linked H2B GlcNAcylation acts as pre-patterning factor for 

differentiation-driven lamin A/C reorganization.  

Our results speculatively suggest a coupling between cellular metabolic state and the 

spatial organization of genome involving a nutrient-sensitive histone modification. 

Nonetheless, several questions remain to be answered. In particular, the mechanism by 

which chromatin movement occurs in the D0/D1 transition, i.e. immediately after 

application of the adipogenic stimulus, needs to be examined in more detail. Does this 

involve shuffling of large chromatin domains from the nuclear interior to the nuclear 

periphery and vice versa? Or does it involve local reorganization of lamins in the 

respective compartments? FISH analysis would provide answers on any changes in the 

radial positioning of LADs and inter-LAD regions during the early stages of adipogenic 

induction. Live-cell locus tracking using for example CRISPR/Cas9-EGFP tagging of loci 

[196] within LADs would provide a dynamic real-time component to this analysis of 

chromatin dynamic. What is the role of the intranuclear lamin A/C and chromatin anchor 

LAP2α in this context? In addition, studying changes in LADs in three dimensional space 

using chromosome conformation capture (3C) techniques would provide useful 

information for understanding these mechanisms. It would also be important to establish a 

functional role of H2BGlcNAc in LAD formation; to this end, functional studies using a 

H2BS112 mutant that cannot be GlcNAcylated will be crucial. The work presented in this 

thesis provides novel information on chromatin organization in adipogenic differentiation, 

and how this may be affected by metabolic cues. 
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