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It is shown how the model of junction alignment suggested 

by Schreiner (1971) to explain the motion of cilia and 

undulating flagella also explains the motion of the rotating 

helical flagellum. It is found that whether the flagellum 

exhibits an undulating or a rotating motion only depends on 

how the motion is initiated, Geometrical considerations 

show that the maximum longitudinal displacement that can 

exist between linked junctions is 2 nm, and considerations 

on the rate of work by the organism in swimming show that 

the average force component from each link in the direction 

of the filament is at least 5·5·10-8 dyn. 



- 1 -· 

Introduction. 

In a paper on the mechanics of the ciliary beat, Schreiner 

(1971) argues- in opposition to the commonly held view-

that the cilium drives the surrounding liquid during the so-

called recovery stroke, while it follows the motion of the 

liquid during the so-called effective stroke, This picture 

is supported by an analysis by Wilson & Schreiner (1971) of 

the flow due to the motion of cilia. On the basis of this 

alternative view of the ciliary beat, Schreiner (1971) sug­

gests a model that will explain the observed motion of bends 

in cilia and undulating flagella. 

The model is based on the assumption - supported by ob­

servations reported in the literature (Satir (1965, 1968)) ~ 

that the shaft of cilia and flagella has two main structural 

' components, a longitudinally inextensible set of 9+2 fila-

ments parallel to the axis, and a matrix whose transvEcJrse 

dimensions are retained under bending and where originally 

normal sections remain normal to the axis, Any region of the 

organelle where these two structural components are locked 

together will then be rigid, l!'urther, the angle of bending 

between two locked regions is constant as long as both regiops 

remain locked, If there is an inherent limit to the curvature 

of the organelle - more real1stically the relation between 

bending moment and curvature could be non-linear - the outer 

locked region and a bend of constant shape will be pushed 

outward when the length of the inner locked region increases, 

The locking is perceived as links formed between sets of junc­

tions in the matrix and a set of junctions on each peripheral 

filament, Figure 1, The length of a locked region will then 



increase when new links are formed between pairs of slightly 

displaced junctions at one end of the region. The junction 

pairs will then be aligned by the contractile force in the 

new link. As the bend propagates along the organelle, links 

are broken at the front end of the bend, the junctions remain 

unlinked through the bend, and new links are formed at the 

rear end of the bend, but now with another pairing of the 

junctions. 

Linking ~! matrix and filament junctions on the helical 
flagellum. 

The above description applies to bends propagating in a 

plane, In the helical flagellum the bend is three-dimensional, 

and reaches from one end of the organelle to the other. Thus 

if matrix and filaments are locked together in regions, these 

regions must necessarily be in the bend. 

The moment at a point on the helical axis of the external 

forces acting on the part of the rotating helix to the rear 

of this point has been determined by Schreiner (1970), If 

the expression for the moment is developed along the flagellum 

itself, the component along the axis of an element of the 

flagellum expresses the torsion on the element, and the com­

ponent normal to the axis expresses the bending moment on 

the element, In this way the torsion and the bending moment 

along the single rotating helical flagellum of a microorganism 

plotted in Figure 2 were determined. 
.... 

The i-component of the 

bending moment - Ci, j ',k 1 ] are unit vectors along the helical 

radius, the axis of the element, and the positive normal to 

these, respectively - varies both in sign and size, while the 
.... 
k'-component varies in size only. The 

.... 
k'-component could 



be balanced by an inherent limit to the curvature, but an addi·-· 

-· tional mechanism is needed to balance the i-.. oomponent and 

maintain the shape of the helix. The protein dynein, which is 

generally assumed to be associated with the generation of for .. 

oes in cilia and flagella, has been found on the peripheral 

filaments, but not on the central filaments (Gibbons (1963)). 

Within the frame of the model this indicates that the central 
... 

filaments are permanently looked to the matrix. The i-oom-

ponent of the bending moment would then be balanced if in addi-

tion a peripheral filament not on the 

the matrix. 

... 
i-axis were looked to 

When the helix, Figure 3a, has a constant radius R and 
2 pitch angle 9 , its radius of curvature is R

0
= R/oos 9. If 

the angle v , Figure 3b, is measured from the positive 

-· k-direotion the strain on the bent cylinder of radius r is 

r . r 2" . 
S = - Sln \! = 'i"> COS o Sln \! , 

Ro 11. 
( 1 ) 

Since the junction sets in the matrix deforms with the matrix, 

while sets on the filaments are inextensible, (1) shows that 

the most favorable conditions for linking the two sets occur 

where sin v = 0 , that is where and 0 
\1 = 180 • 

With nine peripheral filaments there can not always be a 

filament at either of these angles in every transverse 

section when the flagellum rotates like a speedometer wire. 

The linking must therefore be possible even with some 

distortion in the matrix, The central angle between 

neighbour filaments is on the average 360°/9 = 40°, and 

there will therefore always be a filament in either of the 

diametrically opposite bands \} ± Q 

'"'o and 180° + \} + Q 
- '"'0 

when ~ 0 = 10° • It follows that if linking of matrix and 



- 4 -

peripheral filaments can be accomplished within the bands 

v
0 

± 13
0 

and 180° + v
0 

± f3
0 

, where as will be shown below 

0 < " < 0 then the vo - "o ' 
... 
i-component of the bending moment can 

be balanced everywhere. 

In his review of flagellar movement, Holwill (1966) reports 

that both the central and the peripheral filaments 11appear to 

extend continuously along the flagellum without twisting and 

spiraling". On the helix the peripheral filaments then cut 

the lines v = constant at an angle a , Figure 3a, given by 

tga 2rrr r 
= ""2-rr""R.::;/"'c""os e = R cos 9 ' (2) 

where 2rrR/cos 9 is the curvelength of one full turn of the 

helix. The length S of each region of a filament that is 

inside the band where junctions may be linked is thengiven by 

S tga = 2rf3
0 

, 

and by (2) 

where 13
0 

is measured in radians. 

On a helix of positive thread the filaments have a negative 

twist relative to the lines v = constant, Figure 3a, Figure 4. 

With the speedometer wire rotation corresponding to the posi­

tive threaded helix pushing the head - see Schreiner (1970) -

new links between the stretched matrix and the filament are 

formed at A. The contractile forces in the streched links 

force the flagellum to rotate, reducing the angle v of each 

link, and thereby also the length of each link. At B the 

matrix set is unstrained and the link length is at its minimum, 

from which it is eventually stretched until the links are 
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broken at Co Then another filament enters the diametrically 

opposite band at A1 
0 New links are formed between the fila­

ment and the surrounding compressed matrix, These links the~ 

go through the same process, contracting between A' and B', 

mretching between B' and C'o 

Only the balancing of the bending moment has so far been 

considered, but even the torsion will be balanced by the link­

ing of matrix and filamentso For since the peripheral fila,-· 

ments are twisted relative to the lines v = constant and at 

intervals connected to the matrix, the situation is 

equivalent with the one shown in Figure 5o There two 

non-deformable planes are connected by central and peripheral 

non-deformable filaments, and the structure is then rigid 

under torsiono 

Thus both the bending moment and the torsion on the 

rotating helical flagellum can be balanced by the linking of 

matrix and filaments originally suggested to explain the 

motion of ciliao 

In cilia and undulating flagella all peripheral filaments 

are connected to the matrix in the same regions, while in the 

helical flagellum only one filament is connected to the 

matrix in any regiono This difference could be a consequence 

of differing organizations o~ the motile system, but it could 

also be a result solely of how the motion is initiatedo The 

latter case would imply that a) the motion of the organelle 

is initiated in a restricted region and that b) the align­

ment of one newly linked junction pair leeds to the linking 

of the next pairo vllien two junctions are too far apart 

their linking may be impossible, But when their distance is 

reduced to a certain level by contractions in the neighbouring 
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link, the junctions are automatically linked. Therefore any 

linked region will grow in the direction away from where it 

was initiated, An undulating wave moving down the tail will 

then be the result when the segment closest to the head is 

made to swing back and forth, and a helical wave results when 

the innermost segment is made to rotate on a cone. 

We note that unlinked junctions probably also have a 

lateral displacement. For if not the passive motion of the 

cilium through its "effective" stroke might be impossible, 

since on first occation.all junctions along one filament would 

simultaneously be linked to the matrix junctions, the cilium 

would turn rigid, and further rotation would be impossible. 

Displacements in the he]ix. 

If sections in the matrix originally normal to the axis 

remain strictly normal, the relative displacement * D( v ) 

* between the matrix and filament junction sets a distance !/, 

along the filament measured from B towards A - Figure 4b -

will be given by 

D(v*) * E: 
= 9.. 2 ' 

where e is the matrix strain expressed by (1), and the 

factor t enters because onJy one endpoint of !1,* is dis­

placed, As seen in (2) a is a small angle when r << R,and 
therefore 

* *; . *; *; !/, = rv s1.n a ~ rv tg a = Rv cos 9 • 

Introducing e from (1) we then get 

where * \) 

* * * D(v ) = tr cos 8 v sinv , 

is measured in radians. The new links are 

(3) 
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formed at * A , where v = v
0 

+ ~ 0 , and wheretherefore the 

junction displacement is 

According to Sleigh (1962) the diameter 2r of the peripheral 

filament pattern is 2 
~ 1,6•10 nm. With ~ 40° Q = 10° o= ,,_,0-

and v < " o- ~-'o the longitudinal junction displacement at which 

links may be formed is then 

Forces in the helix. 

Stimulated forces act on the deforming matrix only when 

it is connected to the filaments. The net work on any linked 
,Figure 4, 

segment AC 1 is then equal to the difference between the work 

done in link contraction on AB and in link stretching on 

BC. Figure 6 shows a sketch of the changing links bet~1een 

A and B. With constant lateral distance a between the 

two junction sets the changes in link length are due to the 

changes in the longitudinal displacement of the matrix set 

alone. If 
... 

6p is the - unknown - contractile force in the 
.... 

link and D is the longitudinal velocity of the matrix junc-

tion J 1 relative to the filament junction J 2 , then the 

rate of work done in the link is 

... 

• ... .... 
l'>p·D (4) 

where 6p is the longitudinal component of the link force, 

The absolute size of 6p = 6p sin 8 depends on both the size 

of /1p and on the angle !3 =arc tg(D/a), where a is unknown. 

If the distance between the junctions on the filament is b 
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the number of links pr unit length is b-1 , and the longitu­

dinal force pr unit length at ~* is 

* * p( ~ ) == op(,<>, )/b • 

The longitudinal force in an element * d~ is then 

-+ * * -4 * _,* dp = p(~ )d~ (- sinai + cos a j ) , (5) 

where are unit vectors in the direction of the 

periphery, the axis and the normal to cylindrical flagellum 
•* respectively, at the point ~ of the element. 

From (3) the longitudinal displacement vector is 

-+ * * * ---+* -t* D(v) ==trcosev sinv (sinai- cosaJ) 

During the speedometer wire rotation of the flagellum new 

junctions will continuously pass through the element at the 

* ang 1e v = constant, and the intersection B between the 

filament and the line 0 v = 0 or \) progresses along 

the flagellum. The rate of change in longitudinal displace-

ment of junctions at * \) is then 

~ ·X· o * * *' -t* -t* D(v ) == tr cos Sv(sin v + v cosv J(sin o;i -coso; j ) , 

and the rate of work is then from (4) 

• 0 

d d_, _,D 1 ' e ( * ) d * · ( · * * *) wt == p· == -2r cos p ~ ~ v s1n v + v cos v 

Since * * ~ == Rv /cos 9 , the rate of work on the segment AC 

is 
vo+So 

·s ** * * * * =- tr R v p(~ ('J ))(sinv +v cos v )dv 
vo-So 

= - t 1' Rv I ( v 
0

) (6) 
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Since each filament is linked to the 111atrix twice on each 

full turn of the helix, the total available rate of work in 

a helix of k full turns is 

(7) 

which must be equal to the rate of external work, Expressions 

for this rate of external work and for are given by 

Schreiner (1970). If the radii of head and helix are both A, 

and the ratio between longitudinal and transverse friction 

on an element of the cylindrical flagellum is y = t we get 

from Schreiner (1970) 

and 

2 wt ~ 64 • 6r.uAU 

u 
1 5 7i. 

(8) 

(9) 

respectively, where I.L is the viscosity of the surrounding 

liquid and U is the velocity of swimming, The value for y 

taken above is probably 

known. (With y = 0.55 

too low, but its actual value is un-
2 

1 wt ~ 80 • 6n~.L AU • ) When the rela-

tions (8) and (9) are introduced in (7), we find that 

( 10) 

As long as the distribution of longitudinal force pr unit 

length * * p(R, (v )) remains unknown the integral 

is unsolvable, If the force in the link is the same under 

contraction and extension, will be zero for \) = 0 
0 

and reach its maximum for v
0 

= 13
0 

Therefore we expect the 

value of v
0 

to lie between these extremes, 0 < v < 0 
o - "o • 



\'/hen \) = 0 
0 

'"' 1 0 ·-

no motion is possible. If the average longi-

tudinal force pr unit length is P
0 

, the integral will with 

v
0 

= ~ 0 = 10° be 
2S 0 

I
0

=P
0 
I (sinv+v cosv)clv= P0 ·2~\sin2s0= 0,12 P

0
• ('11) 

(10) and (11) then show that the average value of the longi­

tudinal force pr unit length must at least be 

If a microorganism with a helix of two full turns k = 2 and 

radius equal to the radius of the spherical head, R = A=1~m, 
·-2 say, and radius of the filament pattern r ~ 8•1 0 ~liD, 

swims through water with a velocity U = 100 !Jm/s , then 

Dynein is found (Gibbons (1963)) in the arms protruding 

from the peripheral filament$ at regular intervals of 

12-14 nm (Hopkins (1970)). If these arms are the connections 

between matrix and filaments, then the component of the force 

in these connections parallel to the filament is on the 

average at least 

Since its relation to op is 

-8 5.5•10 dyn. 

6p = op/sin(arc tg ~) , 

the average link force 6p still remains unknown, due to 

the unknovrr, minimum link length a , 
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The idea of junction linking and alignment is just a 

modelt and it is possible that this model has been streched 

to arrive at the last numerical results. Much more has to 

be known about the details of flagellar structure before the 

internal forces can be fully described. 
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Figure Legends, 

Figure 1. The inextensible filament junction sets AA and BB 
and the deformable matrix sets A'A' and B'B' can be 
connected in the straight regions, 

Fi,sure 2, 

Figure ). 

Plots of the dimensionless torsion a) 
moment b) along the h~lical flagellum. 

and bending 
'!' = 9, COS 9/R , 

0 . 

where 9, is distance along the flagellum from the tip 1 

e is pitch angle and R is helical radius. 

(Parameter values ~ = 1, 9 = 40°, y = t). 

a) Sketch of a part of the helix, with the notations 
used in the analysis. A filament AA cuts the line 
\1 = 0, RB, at an angle o: 
b) Notations in a section normal to the flagellar axis. 

Figure 4. a) Segments ABC and A1 B 1 C1 of the filaments may be 
connected to the matrix. 
b) Notations on the segment ABC • 

Figure 5. A cylinder where non-deformable parallel sections are 
connected_ by central and peripheral filaments of un­
changing length is rigid under torsion. 

Figure 6. Sketch of 
tion J 1 
notations 

a contracting link between the matrix june­
and the filament junction J 2 , with the 
used in the analysis of the force. 
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