
CORAL: A Model-Based Approach to
Risk-Driven Security Testing

Doctoral Dissertation by

Gencer Erdogan

Submitted to the Faculty of Mathematics and

Natural Sciences at the University of Oslo

in partial fulfillment of the requirements for the degree

Philosophiae Doctor (Ph.D.) in Computer Science

August 2015

6

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1706

Abstract

The continuous increase of sophisticated cyber security risks exposed to the public,
industry, and government through the web, mobile devices, social media, as well as
targeted attacks via state-sponsored cyberespionage, clearly show the need for software
security. Security testing is one of the most important practices to assure an acceptable
level of security. However, security testers face the problem of determining the tests
that are most likely to reveal severe security vulnerabilities. This is important in order
to focus security testing on the most risky aspects of a system.

In response to this challenge, the security testing community has proposed an ap-
proach to support security testing with security risk assessment (risk-driven security
testing). In general, the purpose of risk-driven security testing is to focus the testing
on the most severe security risks that the system under test is exposed to. However,
current approaches carry out risk assessment at a high-level of abstraction (for exam-
ple, business level) and then perform the testing accordingly. This is a disadvantage
from a testing perspective because it leaves a gap between the risks and the test cases
which are defined at a low-level of abstraction (for example, implementation level).
This gap makes it difficult to identify exactly where in the system risks occur, and
exactly how the risks should be tested. This also indicates that current approaches
focus on risk-driven test planning at a high-level of abstraction for test management
purposes, and do not necessarily focus on guiding the tester in designing test cases that
have the ability to reveal vulnerabilities causing the most severe risks.

This thesis proposes a model-based approach to risk-driven security testing, named
CORAL, which is specifically developed to help security testers select and design test
cases based on the available risk picture. The CORAL approach consists of seven
steps supported by a risk analysis language. The risk analysis language is a modeling
language based on UML interactions, and is formalized by an abstract syntax and a
schematically defined natural-language semantics.

As part of the development and evaluation process of the CORAL approach we
carried out three industrial case studies. In the first two case studies, we investigated
how risk assessment may be used to identify security test cases, as well as how security
testing may be used to improve security risk analysis results. The experiences we
obtained from these two industrial case studies helped us to, among other things, shape
the CORAL approach. In the third case study we carried out the CORAL approach
in an industrial setting in order to evaluate its applicability. The results indicate that
CORAL supports security testers in producing risk models that are valid and directly
testable. By directly testable risk models we mean risk models that can be reused and
specified as test cases based on the interactions in the risk models. This, in turn, helps
testers to select and design test cases according to the most severe security risks posed
on the system under test.

iii

Abstract

iv

Acknowledgements

First and foremost I would like to express my profound gratitude to my supervisor
Ketil Stølen for his guidance and encouragement. His insight, attention to detail, and
feedback have been invaluable throughout the course of this work. He has been a
constant source of inspiration, motivation and knowledge, and I thank him for the
fruitful discussions and everything I have learned from him. I also wish to thank my
second supervisor Lillian Røstad for all the valuable recommendations and feedback.

I am grateful to Atle Refsdal and Fredrik Seehusen for their insightful suggestions
and ideas for how to improve my work, for the interesting discussions, and for co-
authoring most of the papers in this thesis. I have also co-authored papers with Yan Li,
Ragnhild Kobro Runde, Jan øyvind Aagedal, and Jon Hofstad. I wish to thank all of
them for their efforts and collaboration.

The work on this thesis has been conducted within the DIAMONDS project (201579/
S10) funded by the Research Council of Norway under the VERDIKT program, as well
as the RASEN project (316853) funded by the European Commission within the 7th
Framework Programme.

Many thanks to the guest scientists in the DIAMONDS project: Alexander Pretschner
and Fabio Martinelli. I am also thankful to the members of the DIAMONDS advisory
board. Both the guest scientists and the members of the advisory board have on a
number of occasions provided useful feedback and advice.

I have during the PhD studies been employed by SINTEF ICT as a research fellow
at the Department of Networked Systems and Services. Many thanks to the research
director Bjørn Skjellaug and all the colleagues for providing a very pleasant and moti-
vating working environment.

I have also at a number of occasions presented my research to Bjørnar Solhaug,
Aida Omerovic, Olav Skjelkv̊ale Ligaarden, Mass Soldal Lund, Gyrd Brændeland, and
Tormod H̊avaldsrud. Thanks for the many interesting discussions, for all the useful
feedback and advice you have provided, and for being among the many great colleagues
who I have been so lucky to collaborate and socialize with. I would also like to thank
Aida for reading and commenting on my thesis.

Thanks to the many members of the administrative and academic staff at the
University of Oslo for helping me whenever I needed assistance.

I would like to thank my friends for all the support, all the joyful time we spend
together, and for reminding me that there is a world outside my office.

Most of all I would like to thank my dear family: I thank my parents Haci Ali Erdogan
and Zeynep Köker for all their hard work and sacrifices to give their children better
lives and opportunities, and I would like to thank my wonderful sisters Berivan Erdogan
and Meral Erdogan, and my brother-in-law Stephen Rodriguez-Elizalde, for all the un-
conditional love, support, encouragement, patience and at times sacrifice. I would also

v

Acknowledgements

like to thank Stephen for reading and commenting on my thesis.

vi

List of original publications

1. Gencer Erdogan, Yan Li, Ragnhild Kobro Runde, Fredrik Seehusen, Ketil Stølen.
Approaches for the combined use of risk analysis and testing: a system-
atic literature review. International Journal on Software Tools for Technology
Transfer, 16(5):627–642, 2014.

2. Gencer Erdogan, Atle Refsdal, Ketil Stølen. A systematic method for risk-
driven test case design using annotated sequence diagrams. In Pro-
ceedings of the 1st International Workshop on Risk Assessment and Risk-driven
Testing (RISK’13), pages 93–108. Springer, 2014.

3. Gencer Erdogan, Atle Refsdal, Ketil Stølen. Schematic generation of English-
prose semantics for a risk analysis language based on UML interactions.
In Proceedings of the 2nd International Workshop on Risk Assessment and Risk-
driven Testing (RISK’14), pages 205–310. IEEE Computer Society, 2014.

4. Gencer Erdogan, Ketil Stølen, Jan øyvind Aagedal. Evaluation of the CORAL
approach for risk-driven security testing based on an industrial case
study. Technical report SINTEF A27097, SINTEF ICT, 2015. Submitted.

5. Gencer Erdogan, Fredrik Seehusen, Ketil Stølen, Jon Hofstad, Jan øyvind Aagedal.
Assessing the usefulness of testing for validating and correcting se-
curity risk models based on two industrial case studies. International
Journal of Secure Software Engineering, 6(2):90–112, 2015.

The publications 1 - 5 are available as Chapters 9 - 13 in Part II of this thesis. In
the case of publications 2 and 3, we have included the full technical reports which are
extended, slightly revised versions of the published papers.

vii

List of original publications

viii

Contents

Abstract iii

Acknowledgements v

List of original publications vii

Contents ix

List of figures xiii

I Overview 1

1 Introduction 3
1.1 Background and motivation . 3
1.2 Objective . 5
1.3 Contribution . 6

1.3.1 The CORAL approach . 6
1.3.2 Empirical studies . 6
1.3.3 Systematic literature review . 8

1.4 Thesis overview . 8

2 Problem characterization 11
2.1 Conceptual clarification . 11

2.1.1 Security . 11
2.1.2 Testing . 12
2.1.3 Security testing . 14
2.1.4 Risk assessment . 14
2.1.5 Security risk assessment . 16
2.1.6 Modeling . 17
2.1.7 Model-based testing . 18
2.1.8 Model-based security testing . 18
2.1.9 Model-based security risk assessment 18
2.1.10 Risk-driven model-based security testing 18

2.2 Problem specification . 19
2.3 Success criteria . 20

ix

Contents

2.3.1 The CORAL risk analysis language 20
2.3.2 The CORAL method for risk-driven security testing 22

3 Research method 25
3.1 The technology research method . 26
3.2 Evaluation strategies . 28
3.3 How we have applied the research method 30

4 State of the art 37
4.1 Modeling . 37
4.2 Model-based testing . 40
4.3 Model-based security testing . 42

4.3.1 Approaches with main focus on functional security testing . . . 42
4.3.2 Approaches based on fuzzing . 43
4.3.3 Approaches with main focus on pattern-based security testing . 44
4.3.4 Approaches with main focus on threat-based security testing . . 45

4.4 Risk-driven testing . 46
4.4.1 Approaches addressing the combination of risk analysis and test-

ing at a general level . 47
4.4.2 Approaches with main focus on model-based risk estimation . . 48
4.4.3 Approaches with main focus on test-case generation 48
4.4.4 Approaches with main focus on test-case analysis 49
4.4.5 Approaches based on automatic source code analysis 50
4.4.6 Approaches targeting specific programming paradigms 50
4.4.7 Approaches targeting specific applications 51
4.4.8 Approaches aiming at measurement in the sense that measure-

ment is the main issue . 51
4.5 Risk-driven security testing . 52

5 Summary of contributions 55
5.1 The CORAL approach . 56
5.2 The CORAL risk analysis language . 57

5.2.1 Graphical notation . 57
5.2.2 Abstract syntax . 63
5.2.3 Natural-language semantics . 65

5.3 The CORAL method for risk-driven security testing 68
5.3.1 Test planning (Step 1) . 70
5.3.2 Threat scenario risk identification (Step 2) 71
5.3.3 Threat scenario risk estimation (Step 3) 72
5.3.4 Threat scenario risk evaluation (Step 4) 73
5.3.5 Threat scenario test case design (Step 5) 74
5.3.6 Test execution (Step 6) . 74
5.3.7 Test incident reporting (Step 7) 75

5.4 Overview of industrial case studies . 75
5.4.1 Empirical studies on the combinations of security risk analysis

and security testing . 75
5.4.2 Empirical study on the applicability of the CORAL approach . 77

5.5 Overview of systematic literature review 77

x

Contents

6 Overview of research papers 79
6.1 Paper 1: Approaches for the combined use of risk analysis and testing:

a systematic literature review . 79
6.2 Paper 2: A systematic method for risk-driven test case design using

annotated sequence diagrams . 80
6.3 Paper 3: Schematic generation of English-prose semantics for a risk

analysis language based on UML interactions 80
6.4 Paper 4: Evaluation of the CORAL approach for risk-driven security

testing based on an industrial case study 81
6.5 Paper 5: Assessing the usefulness of testing for validating and correcting

security risk models based on two industrial case studies 81

7 Discussion 83
7.1 The CORAL risk analysis language . 84

7.1.1 Graphical notation . 84
7.1.2 Natural-language semantics . 88

7.2 The CORAL method for risk-driven security testing 89
7.3 Relating our contributions to the state of the art 91

7.3.1 Relating the CORAL approach to other risk-driven testing ap-
proaches from a risk assessment perspective 91

7.3.2 Relating the CORAL approach to other risk-driven testing ap-
proaches from a testing perspective 94

7.3.3 Relating our empirical evaluations to evaluations in other risk-
driven testing approaches . 97

7.3.4 Relating our systematic literature review to similar literature re-
views . 98

8 Conclusion 101
8.1 The CORAL approach . 101
8.2 Empirical studies . 103
8.3 Systematic literature review . 104
8.4 Directions for future work . 104

Bibliography 107

II Research Papers 121

9 Paper 1: Approaches for the combined use of risk analysis and testing:
a systematic literature review 123

10 Paper 2: A systematic method for risk-driven test case design using
annotated sequence diagrams 141

11 Paper 3: Schematic generation of English-prose semantics for a risk
analysis language based on UML interactions 179

12 Paper 4: Evaluation of the CORAL approach for risk-driven security
testing based on an industrial case study 199

xi

Contents

13 Paper 5: Assessing the usefulness of testing for validating and cor-
recting security risk models based on two industrial case studies 221

xii

List of Figures

2.1 Conceptual model for security. 12
2.2 Conceptual model for testing. 13
2.3 Conceptual model for security testing. 14
2.4 The overall risk management process (adapted from ISO 31000 [70] and

modified). 15
2.5 Conceptual model for risk assessment. 15
2.6 Conceptual model for security risk assessment. 16
2.7 Conceptual model for model. 17

3.1 The main steps in the technology research method (adapted from Sol-
heim and Stølen [140]). 27

3.2 Evaluation strategies (adapted from McGrath [97]). 29
3.3 Research process for the development of the artifacts. 33

5.1 The overall relationship between the CORAL risk analysis language and
the CORAL method for risk-driven security testing. 56

5.2 Graphical notation for the diagram frame. 57
5.3 Graphical notation for lifelines. 58
5.4 Graphical notation for messages. 60
5.5 Graphical notation for risk-measure annotations. 61
5.6 Graphical notation for interaction operators. 62
5.7 The CORAL method for risk-driven security testing. 69
5.8 Black-box model of feature Exercise Options. 70
5.9 Risk evaluation matrix constructed with respect to the frequency scale

and consequence scale. 72
5.10 Threat scenario: Malicious user gains access to another system feature

by changing parameter exerciseMethod. 73
5.11 Threat scenario annotated with risk-measure annotations. 74
5.12 Risk R1 is mapped on the risk matrix with respect to likelihood Likely

and consequence Moderate. 75
5.13 Security test case based on the threat scenario in Figure 5.10. 76

xiii

List of Figures

xiv

Part I

Overview

1

Chapter 1
Introduction

In this chapter we present the background and motivation for our work, describe our
objective, present the main contributions, and give an overview of the thesis.

1.1 Background and motivation

Software security is the ability of software to resist events that threaten its depend-
ability with the preservation of integrity, confidentiality, and availability of informa-
tion [71, 90, 99]. The continuous increase of sophisticated cyber security risks exposed
to the public, industry, and government through the web, mobile devices, social media,
as well as targeted attacks via state-sponsored cyberespionage, undoubtedly show the
importance and need for software security [30, 119, 148]. Software security is achieved
by conducting various software security practices, which are the result of systematic
studies for creating secure software [98], within the software development life cycle.
Some of the major contributions in this respect are: the Security Touchpoints for a
Software Development Lifecycle by McGraw [99], the Security Development Lifecycle
by Microsoft [65, 103], and the Secure Software Development Lifecycle by Wysopal
et al. [163]. Examples of security practices are security requirements engineering, ar-
chitectural security risk analysis, and security testing. The state of software security
practices in the software industry shows that security testing is one of the most impor-
tant practices within a development life cycle in order to achieve secure software [100].

Security testing is a type of testing conducted to evaluate the degree to which a test
item, and associated data and information, are protected so that unauthorized persons
or systems cannot use, read, or modify them, and authorized persons or systems are not
denied access to them [73]. A test item is a work product that is an object of testing,
for example a system or a design specification. The field of software testing has over the
last two decades increasingly adopted a model-based approach to testing. According
to Utting et al. [153], model-based testing is a variant of testing that relies on explicit
behavior models that encode the intended behaviors of a system under test and/or
the behavior of its environment. This is motivated by the fact that, traditionally, the
process of deriving tests tends to be unstructured, not reproducible, undocumented,
unmotivated in terms of lack of detailed rationale for the test design, and dependent on
the creativity of individual engineers [118,130,153]. Because of similar reasons, security
testing also adopts a model-based approach to testing. Model-based security testing
is a relatively new field and is in particular focused on the systematic and efficient

3

Introduction

specification and documentation of security test objectives, security test cases and test
suites, as well as to their automated or semi-automated generation [49,131].

Due to the complexity of systems and software it is impossible to exhaustively test
every single aspect of any given system under test [73]. We cannot test all possible
inputs, combinations of inputs, execution paths, or all potential failures caused by,
for example, user interface design errors or incomplete requirements analyses [80]. In
addition, when testing security-critical software, we are faced with the problem of
determining the tests that have the ability to reveal vulnerabilities causing the most
severe security risks. Moreover, security testing is limited by strict budget and time
constraints. In order to address these problems, there has been suggested a number of
testing approaches in which the testing process is supported by risk assessment [40].
These problems do not only apply to security testing, but also to testing in general [51].
In fact, it seems like the testing community has arrived at a common understanding
that testing in general should be supported by risk assessment in order to tackle the
aforementioned problems. This is reflected by the recent software testing standard
ISO/IEC/IEEE 29119 [73,74] which provides a general testing process that is supported
by risk assessment. In general, the purpose of supporting a testing process with risk
assessment is to focus the testing on the most severe risks that the system under test is
exposed to. The purpose of supporting security testing with security risk assessment,
however, is to focus the testing process on the most severe security risks that the system
under test is exposed to. We refer to security testing approaches that are supported
by security risk assessment as risk-driven security testing approaches. Although the
term “risk-based” is commonly used in this context, we use the term “risk-driven” to
correctly reflect the fact that risks are used as the main guiding factor to steer all
phases of the testing process [48].

Security risk assessment is typically carried out in three consecutive steps that in-
volve identifying, estimating, and evaluating security risks [72]. The purpose of risk
identification, in the context of risk-driven security testing, is to identify possible un-
wanted incidents that the system under test and/or its environment may be exposed
to, and that may harm security assets. An example of a security asset is the confiden-
tiality of certain information. The purpose of estimating risks is to estimate how often
unwanted incidents may occur, as well as to estimate the consequence of unwanted
incidents given that they occur. Finally, the purpose of evaluating risks is to prioritize
the unwanted incidents with respect to their estimated likelihood of occurrence and
consequence, and select the most severe security risks to test based on their prioriti-
zation. Having carried out risk assessment, we may focus the testing on the security
risks selected for testing. This involves test planning, test case design, test case imple-
mentation, test case execution, and test result evaluation/reporting, with respect to
the security risks selected for testing.

Although a number of risk-driven testing approaches have been suggested, in which
only a handful specifically address security, the field is still immature. Based on our
systematic literature review [40], we discovered that there is clearly a need for further
research within the field of risk-driven testing in general. In particular, the field needs
more formality and preciseness as well as dedicated tool support, and there is very lit-
tle empirical evidence regarding the usefulness of the various approaches. In addition,
there is a lack of common ground. It seems that many of the approaches have been
developed in isolation, and with little impact on the field so far. Moreover, current
approaches carry out risk assessment at a high-level of abstraction (for example, busi-

4

1.2 Objective

ness level) and then perform the testing accordingly. This is a disadvantage from a
testing perspective because it leaves a gap between the risks and the test cases which
are defined at a low-level of abstraction (for example, implementation level). This
gap makes it difficult to identify exactly where in the system risks occur, and exactly
how the risks should be tested. This also indicates that current approaches focus on
risk-driven test planning at a high-level of abstraction for test management purposes,
and do not necessarily focus on guiding the tester in designing test cases that have the
ability to reveal vulnerabilities causing the most severe risks.

Security testing goes beyond simple black-box probing on the application/ presen-
tation layer and functional security testing, such as testing whether input validation
mechanisms or cryptographic protocol mechanisms are correctly implemented [117].
Thompson [151] argues that to truly test for security, we must test like detectives fol-
lowing clues to insecure behavior and then zeroing in on vulnerabilities, and highlights
the need for proper methods and techniques. This is also pointed out by Potter and
McGraw [117] who underline that to properly test for software security, security testers
must use a risk-driven approach to security testing, because by identifying risks in the
system and creating tests driven by those risks, a software security tester can properly
focus on aspects of the system in which an attack is likely to succeed.

This thesis addresses these problems, and focuses specifically on the domain of
risk-driven security testing from a model-based perspective.

1.2 Objective

The main objective of this thesis is to provide a model-based approach to risk-driven
security testing that is specialized for security testers. The approach should systemati-
cally guide security testers in a security testing process in which security risk assessment
is used to select and design test cases. This means that the approach should provide
a modeling language that uses constructs comprehensible to security testers. That
is, the modeling language should be capable of expressing risk-related information for
security risk assessment purposes, as well as expressing the behavior of a system and
its environment for security testing purposes, in an easily understandable manner. In
addition, since the risk assessment is used as a basis for test selection and test design,
the approach should help security testers in producing risk models (as a result of risk
assessment) that are valid and directly testable. Finally, the modeling language should
be formally defined in order to support the development of tools and methods.

In summary, our objective is to develop a model-based approach to risk-driven
security testing, that is:

1. comprehensible to security testers,

2. useful for the purpose of selecting and designing test cases with respect to the
risk assessment results,

3. effective in the sense that it produces risk models that are valid and directly
testable, and

4. sufficiently rigorous to support the development of tools and methods.

5

Introduction

1.3 Contribution

This thesis provides three kinds of contributions. First, it provides a new artifact
in terms of a risk analysis language and a method for risk-driven security testing.
The risk analysis language and the method for risk-driven security testing are tightly
integrated, and we refer to them collectively as the CORAL approach. Second, it
provides empirical studies in terms of industrial case studies. In the case studies,
we investigate how security risk assessment may be used to support security testing
(and vice versa), and the applicability of the CORAL approach. Third, it provides an
overview of state of the art approaches that combine risk analysis and testing, in terms
of a systematic literature review.

1.3.1 The CORAL approach

The CORAL approach consists of a security risk analysis language, and a stepwise
method in which the risk analysis language is applied. The term method, in this
context, should be understood as “a means or manner of procedure, especially a regular
and systematic way of accomplishing something” [35]. The risk analysis language
is based on UML interactions [110] and is formalized by an abstract syntax and a
schematically defined natural-language semantics. The method for risk-driven security
testing consists of seven steps that are supported by the risk analysis language. The
seven steps of the method are test planning, threat scenario risk identification, threat
scenario risk estimation, threat scenario risk evaluation, threat scenario test case design,
test execution, and test incident reporting. The risk analysis language and the stepwise
method are tightly integrated and they are specifically developed to help security testers
systematically carry out risk-driven security testing. Moreover, the CORAL approach
bridges the gap between high-level risks and low-level test cases by systematically
guiding security testers in identifying exactly where in the system risks may occur, and
exactly how to test the identified risks.

The graphical notation of the risk analysis language (in other words, the concrete
syntax) provides the necessary constructs for modeling the system under test and its
environment, as well as identifying, estimating, and evaluating security risks that the
system under test is exposed to. The graphical notation is also used for designing
security test cases. Moreover, the models representing test cases are used for test
execution, as well as for reporting test results.

The abstract syntax provides a set of rules, in terms of a context-free grammar,
that defines the correct combinations of the constructs in the CORAL risk analysis
language. The syntax is useful for modeling interactions that are syntactically correct
in the CORAL language.

The natural-language semantics provides a set of rules for schematically translating
threat scenarios modeled using the CORAL language into English prose. Testers may
use the natural-language semantics to clearly and consistently document, communicate
and analyze security risks.

1.3.2 Empirical studies

In the course of the work leading up to this thesis, we carried out three industrial case
studies. In the first two industrial case studies, we investigated how security testing

6

1.3 Contribution

may be used as a means to improve the security risk analysis results, as well as how the
risk analysis results may be used as a starting point to identify security test cases. The
experiences we obtained from these two industrial case studies helped us to, among
other things, shape the CORAL approach. In the third case study we tried out the
CORAL approach in an industrial setting in order to evaluate its applicability. In
particular, we investigated to what extent the CORAL approach helps security testers
in designing valid risk models and directly testable threat scenarios, as well as to what
extent the CORAL approach is useful for black-box testing and white-box testing.
As mentioned in Section 1.3.1, the CORAL language is based on UML interactions.
The threat scenarios modeled using the CORAL language are therefore represented
as interactions, and by a directly testable threat scenario we mean a threat scenario
that can be reused and specified as a test case based on its interactions. Throughout
this thesis, we sometimes use the terms threat scenario and risk model interchangeably
when the distinction is not important.

The first case study was carried out between March 2011 and July 2011, the second
case study was carried out between June 2012 and January 2013, and the third case
study was carried out between October 2014 and December 2014. In the first case study,
we analyzed a multilingual web application which is designed to deliver streamlined
administration and reporting of all forms of equity-based compensation plans. In the
second case study, we analyzed a mobile application designed to provide various online
financial services to the users on their mobile devices. In the third case study, we
analyzed the same web application which we had previously analyzed in the first case
study. However, this time we applied the CORAL approach and analyzed different
features of the web application.

From the first two case studies we found out that threat scenarios are a good starting
point for identifying security test cases. However, in the approach carried out in the
first two case studies we were only able to identify high-level test procedures, which
we in turn had to refine into test cases in an ad hoc manner. This indicated a need
for formality and preciseness in the process of designing test cases. We also found
out that the test results are useful for correcting risk models in terms of adding or
deleting vulnerabilities, as well as editing likelihood values. Moreover, the test results
also proved to be useful for validating risk models in terms of discovering the presence
or absence of presumed vulnerabilities, and thereby increasing the trust in the risk
models.

In the third case study we found out that, by making use of the CORAL approach,
testers are able to identify both valid risk models, and directly testable threat scenarios.
The case study results show that the risk models produced in the CORAL approach
were valid and of high quality. This is backed up based on two observations. First, we
identified the majority of vulnerabilities (11 out of 13 vulnerabilities) by testing the
risks considered as most severe. Only two vulnerabilities were identified by testing the
risks considered as low risks. Second, we managed to identify all relevant security risks,
compared to previous penetration tests, by using the CORAL approach. In addition,
we identified five new security risks not detected by the previous penetration tests.
We also made direct use of all threat scenarios identified in the case study as security
test cases, and we were able to conduct the complete CORAL approach for black-box
testing and white-box testing of the system under test.

7

Introduction

1.3.3 Systematic literature review

The systematic literature review brings forth a state of the art of the literature on
approaches for the combined use of risk analysis and testing, based on publications
related to this topic. The systematic literature review was carried out according to the
following six steps: (1) define the objective of the study, (2) define research questions,
(3) define the search process including inclusion and exclusion criteria, (4) perform
the search process, (5) extract data from relevant full texts, and (6) analyze data and
provide answers for the research questions. This process is constructed based on the
guidelines given by Kitchenham and Charters [83].

For all the approaches identified in the systematic literature review we describe
their main goal and the strategies used to achieve that goal, the contexts in which they
are considered to be particularly useful, their level of maturity with respect to degree of
formalization, empirical evaluation, tool support, and finally the relationships between
the approaches with respect to citations between the publications.

The survey highlights the need for more structure and rigor in the definition and
presentation of the approaches. Evaluations are missing in most cases. The survey
may serve as a basis for examining approaches for the combined use of risk analysis
and testing, or as a resource for identifying the adequate approach to use.

1.4 Thesis overview

The Faculty of Mathematics and Natural Sciences at the University of Oslo recommends
that a dissertation is presented either as a monograph, or as a collection of research
papers. We have chosen the latter.

This dissertation is based on a collection of five research papers and structured into
two main parts. Part I is the introductory part and provides the context and an overall
view of the work. Part II contains the collection of research papers. The purpose of
the introductory part is to explain the overall contributions presented in the research
papers, and to explain how the contributions fit together. The introductory part is
organized into the following eight chapters (including this one).

Chapter 1 – Introduction provides background and motivation for this thesis,
describes the objective, gives an overview of the main contributions, and provides an
overview of the thesis.

Chapter 2 – Problem characterization provides a conceptual framework for the
central concepts used in this thesis, specifies the problem addressed, and then it refines
the overall objective presented in Chapter 1 into a set of success criteria that the
artifacts must fulfill.

Chapter 3 – Research method presents a method for technology research and
explains how we used this method throughout the course of the work leading up to this
thesis.

Chapter 4 – State of the art presents the state of the art of relevance for this
thesis.

8

1.4 Thesis overview

Chapter 5 – Summary of contribution presents the main contributions of this
thesis, that is, the CORAL approach, the empirical studies, and the systematic litera-
ture review.

Chapter 6 – Overview of research papers provides an overview and a summary
of the publications produced in the course of the work leading up to this thesis.

Chapter 7 – Discussion provides a discussion with respect to the success criteria
defined in Chapter 2 and discusses to what extent our artifacts fulfill the success criteria.
Moreover, we also discuss how our contributions are related to, and extend, the state
of the art.

Chapter 8 – Conclusion concludes the thesis by summarizing the work and what
has been achieved, as well as discussing different directions for future work.

The research papers in Part II are self-contained and can be read independently of
each other. Because the papers are self-contained, they do overlap to some extent with
respect to methodological and terminological explanations. We recommend that the
papers are read in the order they appear in the thesis. However, readers that are only
interested in the CORAL approach can read Papers 2 and 3. Readers that are only
interested in the empirical evaluations, that is, the industrial case studies, can read
Papers 4 and 5. Readers that are only interested in the systematic literature review
can read Paper 1.

9

Introduction

10

Chapter 2
Problem characterization

In Chapter 1 we presented the overall motivation and objective for our research. In this
chapter we refine this objective into a set of success criteria. In Section 2.1 we clarify
a set of core concepts that play an essential role throughout the thesis. In Section 2.2
we specify the problem addressed in this thesis. In Section 2.3 we present the success
criteria that should be fulfilled for a successful accomplishment of our objective.

2.1 Conceptual clarification

This section clarifies the main terminology used throughout the thesis. Concepts re-
lated to security, testing, risk assessment, and modeling are presented and their mean-
ing in the context of this work is clarified.

2.1.1 Security

In this thesis, we use the term security in the meaning of information security. Accord-
ing to ISO/IEC 27000 [71], “information is an asset that, like other important business
assets, is essential to an organization’s business and consequently needs to be suitably
protected. Information can be stored in many forms, including: digital form (for ex-
ample, data files stored on electronic or optical media), material form (for example, on
paper), as well as unrepresented information in the form of knowledge of the employ-
ees. Information may be transmitted by various means including: courier, electronic or
verbal communication. Whatever form information takes, or the means by which the
information is transmitted, it always needs appropriate protection.” As shown in Fig-
ure 2.1, information security may be specialized into three main dimensions: integrity,
confidentiality, and availability.

• Security refers to the preservation of confidentiality, integrity and availability of
information [71, p. 3].

• Integrity is the property of protecting the accuracy and completeness of infor-
mation [71, p. 4].

• Confidentiality is the property that information is not made available or dis-
closed to unauthorized individuals, entities, or processes [71, p. 2].

11

Problem characterization

Figure 2.1: Conceptual model for security.

• Availability is the property of information being accessible and usable upon
demand by an authorized entity [71, p. 2].

2.1.2 Testing

In this section, we present the concepts related to software testing that are relevant for
this thesis. Our primary source for the notion of software testing and related notions
is the international software testing standard ISO/IEC/IEEE 29119 [73,74]. However,
for relevant notions not found in ISO/IEC/IEEE 29119 [73, 74], we use IEEE 829 [67]
and BS 7925-1 [149].

Testing is the process of executing a software system with the intent of finding
errors [108]. ISO/IEC/IEEE 29119 [74] groups the testing activities that may be per-
formed during the life cycle of a software system into three process groups: organiza-
tional test process, test management process, and dynamic test process. The purpose of
the organizational test process is to develop, monitor conformance and maintain orga-
nizational test specifications, such as the organizational test policy and organizational
test strategy [74].

According to ISO/IEC/IEEE 29119 [74], there are three test management pro-
cesses: test planning, test monitoring and control, and test completion. These generic
test management processes may be applied at the project level (project test manage-
ment), for test management at different test phases (for example, system test manage-
ment, acceptance test management) and for managing various test types (for example,
performance test management, usability test management). The reader is referred to
ISO/IEC/IEEE 29119 [74] for further details with respect to these three test manage-
ment processes.

According to ISO/IEC/IEEE 29119 [74], there are four dynamic test processes: test
design & implementation, test environment set-up & maintenance, test execution, and
test incident reporting. The dynamic test processes are used to carry out dynamic
testing within a particular phase of testing (e.g. unit, integration, system and accep-
tance) or type of testing (e.g. performance testing, security testing, usability testing).
Throughout this thesis, when we refer to a test process in general, we refer to the
aforementioned dynamic test process. The conceptual model for testing used in this
thesis is defined in Figure 2.2, and includes the following concepts.

• Test policy is an executive-level document that describes the purpose, goals,
and overall scope of the testing within an organization, and which expresses why
testing is performed and what it is expected to achieve [73, p. 4].

12

2.1 Conceptual clarification

Figure 2.2: Conceptual model for testing.

• Test plan is a detailed description of test objectives to be achieved and the
means and schedule for achieving them, organized to coordinate testing activities
for some test item or set of test items [73, p. 9].

• Test requirement is a capability that must be met or possessed by the system
(requirements may be functional or non-functional) [149].

• System is an interacting combination of elements that aims to accomplish a de-
fined objective. These include hardware, software, firmware, people, information,
techniques, facilities, services, and other support elements [16, p. 2-3].

• Feature is a distinguishing characteristic of a system (includes both functional
and non-functional attributes such as performance and re-usability) [67, p. 9].

• Test case is a set of preconditions, inputs (including actions, where applicable),
and expected results, developed to drive the execution of a test item to meet
test objectives, including correct implementation, error identification, checking
quality, and other valued information [73, p. 7]. The terms test case and test are
sometimes used interchangeably.

• Test procedure is a sequence of test cases in execution order, and any associated
actions that may be required to set up the initial preconditions and any wrap up
activities post execution [73, p. 10].

• Test environment refers to facilities, hardware, software, firmware, procedures,
and documentation intended for or used to perform testing of software [73, p. 8].

• Test incident is an unplanned event occurring during testing that has a bearing
on the success of the test. Most commonly raised when a test result fails to meet
expectations [149].

13

Problem characterization

• Test failure is the deviation of the software from its expected delivery or ser-
vice [149].

• Test result is an indication of whether or not a specific test case has passed or
failed, that is, if the actual result observed as test item output corresponds to
the expected result or if deviations were observed [73, p. 10].

• Stakeholder is a person or organization that can affect, be affected by, or per-
ceive themselves to be affected by a decision or activity [70, p. 4].

2.1.3 Security testing

Security testing is a type of testing conducted to evaluate the degree to which a test
item, and associated data and information, are protected so that unauthorized persons
or systems cannot use, read, or modify them, and authorized persons or systems are
not denied access to them [73]. In other words, the purpose of security testing is to
determine whether a system meets its specified security requirements [49]. The basic
security concepts that need to be covered by security testing are integrity, confidential-
ity, and availability. The conceptual model for security testing is shown in Figure 2.3.
For the definition of test requirement see Section 2.1.2.

Figure 2.3: Conceptual model for security testing.

• Security test requirement is a test requirement specialized towards security.

2.1.4 Risk assessment

It is necessary to give an overview of the risk management process before we look closer
into risk assessment and other relevant concepts. ISO 31000 Risk management - Prin-
ciples and guidelines [70] is our main building block in terms of defining and explaining
the concept of risk management and the concepts related to risk management. The
overall risk management process shown in Figure 2.4 is taken from [70, p. 14]. There
is however one deviation: our definition of risk estimation is equivalent to what ISO
31000 refers to as risk analysis. Instead, we use the term risk analysis in line with how
the term is used in practice to denote the five step process in the middle of Figure 2.4
starting with establishing the context and ending with risk treatment.

The most relevant part of the risk management process within the context of this
thesis is risk assessment. That is, the steps related to risk identification, risk estimation,
and risk evaluation. We will therefore explain these steps in the following. The reader
is referred to ISO 31000 [70] for a detailed explanation of the complete risk management
process depicted in Figure 2.4.

14

2.1 Conceptual clarification

Figure 2.4: The overall risk management process (adapted from ISO 31000 [70] and
modified).

Risk identification is the process of finding, recognizing and describing risks. This
involves identifying sources of risk, areas of impact, events (including changes in cir-
cumstances), their causes and their potential consequences. Risk identification can
involve historical data, theoretical analysis, informed and expert opinions, and stake-
holder’s needs [70, p. 4]. Risk estimation is the process of comprehending the nature
of risk and determining the level of risk. Risk estimation provides the basis for risk
evaluation and decisions on whether risks need to be treated, and on the most appro-
priate risk treatment strategies and methods [70, p. 5]. Risk evaluation is the process
of comparing the results of risk estimation with risk criteria to determine whether the
risk and/or its magnitude is acceptable or tolerable. Risk evaluation assists in the
decision about risk treatment [70, p. 6]. The conceptual model for risk assessment is
shown in Figure 2.5. For the definition of stakeholder see Section 2.1.2.

Figure 2.5: Conceptual model for risk assessment.

• Risk is the combination of the consequences of an event with respect to an
objective and the associated likelihood of occurrence [70, p. 1].

15

Problem characterization

• Objective is something the stakeholder is aiming towards or a strategic position
the stakeholder is working to attain [36].

• Risk source is an element which alone or in combination has the intrinsic po-
tential to give rise to risk [70, p. 4].

• Event is the occurrence or change of a particular set of circumstances [70, p. 4].

• Likelihood is the chance of something happening [70, p. 5].

• Consequence is the outcome of an event affecting objectives [70, p. 5].

• Risk criterion is the term of reference against which the significance of a risk
is evaluated [70, p. 5].

• Risk level is the magnitude of a risk or combination of risks, expressed in terms
of the combination of consequences and their likelihood [70, p. 6].

2.1.5 Security risk assessment

Security risk assessment is the process of risk assessment specialized towards security.
Lund et al. [91] classify risk assessment approaches into two main categories.

• Offensive approaches: risk assessment concerned with balancing potential gain
against risk of investment loss. This kind of analysis is more relevant within
finance and political strategy making.

• Defensive approaches: risk assessment concerned with protecting what is already
there.

In the context of security, the defensive approach is the one that is relevant. The
conceptual model for security risk assessment is shown in Figure 2.6. For the definitions
of risk, objective, risk source, and event see Section 2.1.4.

Figure 2.6: Conceptual model for security risk assessment.

• Asset is anything that has value to the stakeholders [71].

• Security requirement is a specification of the required security for the sys-
tem [149].

• Security risk is a risk caused by a threat exploiting a vulnerability and thereby
violating a security requirement.

16

2.1 Conceptual clarification

• Unwanted incident is an event representing a security risk.

• Threat is potential cause of an unwanted incident [71].

• Vulnerability is weakness of an asset or control that can be exploited by a
threat [71].

2.1.6 Modeling

This section clarifies the notion of model used in this thesis. The conceptual model for
model is shown in Figure 2.7. The concepts described here are based on information
provided by Larkin and Simon [87], Chao [25], TOGAF (The Open Group Architecture
Framework) [114], and SWEBOK (Software Engineering Body of Knowledge) [16].

Figure 2.7: Conceptual model for model.

A model may be represented either in a sentential manner, that is, textual repre-
sentation, or in a graphical/diagrammatic manner.

1. According to Larkin and Simon [87] “in a sentential representation, the expres-
sions form a sequence corresponding, on a one-to-one basis, to the sentences
in a natural-language description of the problem. Each expression is a direct
translation into a simple formal language of the corresponding natural-language
sentence.”

2. According to Larkin and Simon [87] “in a diagrammatic representation, the ex-
pressions correspond, on a one-to-one basis, to the components of a diagram
describing the problem. Each expression contains the information that is stored
at one particular locus in the diagram, including information about relations with
the adjacent loci.”

In this thesis, we use the term model in the meaning of graphical/diagrammatic
model.

• Model is a representation in which information is indexed by twodimensional
location [87]. A model provides a smaller scale, simplified, and/or abstract rep-
resentation of the subject matter.

• View represents a related set of concerns.

• System model represents a system.

17

Problem characterization

• Risk model represents risks.

• Test model represents tests/test cases.

• Test environment model represents the test environment.

2.1.7 Model-based testing

Model-based testing is a software testing approach that relies on behavioral models of
a system under test and its environment to derive test cases. Usually, the test model
is derived in whole or in part from a model that describes functional or non-functional
aspects of the system under test [153].

• Model-based testing is testing that involves the construction and analysis of
system models, test environment models and test models to derive test cases.

2.1.8 Model-based security testing

Model-based security testing is in particular focused on the systematic and efficient
specification and documentation of security test objectives, security test cases and test
suites, as well as to their automated or semi-automated generation [49,131].

• Model-based security testing is security testing that involves building the
behavioral model, defining test selection or generation criteria and transforming
them into operational test case specifications [49].

2.1.9 Model-based security risk assessment

Based on the notions of model and security risk assessment we define the term model-
based security risk assessment as follows.

• Model-based security risk assessment is security risk assessment in which
each step of the process includes the construction and analysis of models.

2.1.10 Risk-driven model-based security testing

Based on the notions of model-based security testing and model-based security risk
assessment we define the term risk-driven model-based security testing as follows.

• Risk-driven model-based security testing is model-based security testing
that makes use of model-based security risk assessment within the security test-
ing process to support risk-driven test planning, risk-driven test design and im-
plementation, and risk-driven test reporting.

In this thesis, we distinguish between two strategies for the combined use of security
risk assessment and security testing. In risk-driven model-based security testing we use
security risk assessment to support security testing as described above. However, we
may also use security testing to support the security risk analysis process. This is
referred to as test-driven (model-based) security risk analysis [39, 44].

• Test-driven model-based security risk analysis is model-based security risk
analysis that makes use of model-based security testing within the security risk
analysis to validate and correct risk models.

18

2.2 Problem specification

2.2 Problem specification

The problem addressed in this thesis is based on challenges identified within the domain
of testing, risk-driven testing, and security testing.

With respect to testing in general, we note the following challenges. First, due
to the complexity of systems and software it is impossible to exhaustively test every
single aspect of any given system under test [73]. We cannot test all possible inputs,
combinations of inputs, execution paths, or all potential failures caused by, for example,
user interface design errors or incomplete requirements analyses [80]. Second, when
testing security/safety/reliability-critical software, testers are faced with the problem
of determining the tests that have the ability to reveal faults/errors/failures causing the
most severe risks. Third, testing is limited by strict budget and time constraints [51].
In order to address these problems, there has been suggested a number of testing
approaches in which the testing is supported by risk assessment [40], that is, risk-
driven testing.

With respect to risk-driven testing in general, we note the following challenges.
First, although a number of risk-driven testing approaches have been suggested, in
which only a handful specifically address security, the field is still immature and needs
to be improved. Based on our systematic literature review [40], we discovered that there
is clearly a need for further research within the field of risk-driven testing in general.
The field needs more formality and preciseness as well as dedicated tool support, and
there is very little empirical evidence regarding the usefulness of the various approaches.
Second, current approaches carry out risk assessment at a high-level of abstraction (for
example, business level) and then test accordingly. This is a disadvantage from a
testing perspective because it leaves a gap between the risks and the test cases, which
are defined at a low-level of abstraction (for example, implementation level). This
gap makes it difficult to identify exactly where in the system risks occur, and exactly
how the risks should be tested. This also indicates that current approaches focus on
risk-driven test planning at a high-level of abstraction for test management purposes,
and do not necessarily focus on guiding the tester in designing test cases that have the
ability to reveal faults/errors/failures causing the most severe risks.

With respect to security testing in general, we note the following challenge. There
is a need for proper methods and techniques for security testing because security test-
ing goes beyond simple black-box probing on the application/presentation layer and
functional security testing, such as testing whether input validation mechanisms or
cryptographic protocol mechanisms are correctly implemented [117]. To properly test
for software security, security testers must use a risk-driven approach to security test-
ing, because by identifying risks in the system and creating tests driven by those risks,
a software security tester can properly focus on aspects of the system in which an at-
tack is likely to succeed [117]. However, as pointed out in the previous paragraph, only
a handful risk-driven testing approaches specifically address security, and the field is
still immature and needs more formality and preciseness.

Our objective is to address the aforementioned challenges by developing a model-
based approach to risk-driven security testing, that is:

1. comprehensible to security testers,

2. useful for the purpose of selecting and designing test cases with respect to the
risk assessment results,

19

Problem characterization

3. effective in the sense that it produces risk models that are valid and directly
testable, and

4. sufficiently rigorous to support the development of tools and methods.

2.3 Success criteria

In Chapter 1 and Section 2.2 we outlined the problem areas addressed by this thesis
and thereby argued that there is a need for a risk-driven model-based security testing
approach that is comprehensible to security testers, useful for test selection and test
design, effective in terms of producing valid and directly testable risk models, and
sufficiently rigorous for tool and method development. In this section we refine these
points into a set of success criteria that our approach, that is the CORAL approach,
should fulfill. In the following we motivate and present the success criteria related to
the CORAL risk-analysis language, and the CORAL method for risk-driven security
testing.

2.3.1 The CORAL risk analysis language

The CORAL approach is to be applied within the domain of risk-driven security testing.
In order to support model-based security testing, as well as model-based security risk
assessment, which are necessary in a model-based approach to risk-driven security
testing, the CORAL language must provide graphical constructs that support both
security testing, as well as security risk assessment. That is, the graphical notation of
the CORAL risk analysis language must be appropriate for the domain of risk-driven
security testing. Thus, Success Criterion 1.

Success Criterion 1. The graphical notation must be appropriate for the domain of
risk-driven security testing.

By appropriate for the domain of risk-driven security testing, we mean that the
graphical notation should make an integrated use of constructs that are well known
within the domain of testing, security, and risk assessment. In addition to be appropri-
ate for the domain of risk-driven security testing, the language has to be appropriate
for security testers because they are the main target audience. Thus, Success Criterion
2.

Success Criterion 2. The graphical notation must be appropriate for security testers.

By appropriate for security testers, we mean that the graphical notation should
be comprehensible to and fit for security testers. This includes the use of a modeling
notation commonly used by testers for the purpose of test design and execution, as
well as for the purpose of risk assessment, which is also an activity commonly carried
out by security testers [117, 151].

To fully benefit from model-based testing, which promotes the idea of using explicit
abstract models of a system under test and/or its environment to automatically derive
tests [153], proper tool support is necessary. However, in order to implement a tool

20

2.3 Success criteria

that correctly supports a given modeling language, the language must be appropriate
for tool implementation. By appropriate for tool implementation, we mean that the
modeling language must be precisely defined in terms of syntax and semantics. A
precise definition of a modeling language is also useful for method developers. Thus, to
support tool implementation and method development, the graphical notation of the
CORAL language must be precisely defined in terms of syntax and semantics. Thus,
Success Criterion 3.

Success Criterion 3. The graphical notation must be appropriate for tool implemen-
tation and method development.

Situations may arise where the information conveyed by CORAL risk models are
interpreted differently by different testers. Thus, in order to help software testers to
clearly and consistently document, communicate and analyze risks, the CORAL risk
analysis language must provide a structured approach to generate the semantics of
CORAL risk models in terms of English prose, that is, a natural-language semantics.
The natural-language semantics is supposed to be used by testers to document, commu-
nicate and analyze risks within the risk-driven testing process. The natural-language
semantics must therefore be comprehensible to security testers when conducting risk
assessment. Thus, Success Criterion 4.

Success Criterion 4. The English-prose semantics of CORAL risk models must be
comprehensible to security testers when conducting risk assessment.

To support the fulfillment of Success Criteria 1 and 2, we base the graphical notation
of the CORAL language on UML interactions [110] (the rationale behind this is ex-
plained in detail in Chapters 3 and 5). This means that the CORAL language extends
UML interactions with constructs representing risk-related information. Moreover, this
also means that the constructs provided by the CORAL language are inherited from
UML interactions. We therefore need to make sure that when translating a CORAL
risk model into English prose, the resulting English prose of the constructs inherited
from UML interactions are consistent with their semantics in the UML standard [110].
Thus, Success Criterion 5.

Success Criterion 5. The English-prose semantics of the constructs inherited from
UML interactions must be consistent with their semantics in the UML standard.

Finally, in order to make sure that the resulting English prose scales with respect
to the underlying CORAL risk models, we need to ensure that the complexity of the
resulting English prose scales linearly with the complexity of CORAL risk models in
terms of size. Thus, Success Criterion 6.

Success Criterion 6. The complexity of the resulting English prose must scale lin-
early with the complexity of CORAL risk models in terms of size.

21

Problem characterization

2.3.2 The CORAL method for risk-driven security testing

Because the main target audience of the CORAL approach is security testers, the
steps in the CORAL method must be in line with the steps commonly carried out
in a software testing process (dynamic testing). In particular, the steps related to
security risk assessment must be tightly integrated with the testing process in order
to assist testers in risk-driven test selection and test design. By following standard
testing processes, the CORAL method should be comprehensible to security testers.
Thus, Success Criterion 7.

Success Criterion 7. The method must be comprehensible to security testers.

The overall goal of a risk-driven security testing approach is to focus the testing
on the most severe security risks that the system under test is exposed to. Whether
or not the testing is focused on the most severe security risks is entirely based on
the information on which the risk assessment is based. In a model-based approach to
risk-driven security testing, this information is captured in the risk models produced
during the risk assessment. In other words, in the CORAL approach, this information
is captured in CORAL risk models. It is therefore important that the risk models are
valid in order to correctly focus the testing on the most severe security risks. Thus,
Success Criterion 8.

Success Criterion 8. The method must produce security risk models that are valid.

It is also important to keep in mind that the information on which any risk assess-
ment is based will always be limited and will therefore contain an inevitable epistemic
uncertainty. However, by conducting a model-based approach to risk-driven security
testing, which includes a model-based approach to risk assessment, risk assessment is
carried out in a systematic manner, which we believe will help reduce the epistemic
uncertainty.

In a model-based approach to risk-driven security testing, the models associated
with security risks are used as a basis for designing security tests. However, such
models are in general defined at a high level of abstraction, which leaves a gap between
the risks represented by the models, and the test cases addressing those risks. In order
to bridge this gap, risk models must be defined at a low level of abstraction, which in
turn enables security testers to design and execute test cases by making direct use of
the low-level risk models. That is, we need to identify directly testable risk models.
Recall that the CORAL language extends UML interactions. This means that CORAL
risk models are expressed in terms of UML sequence diagrams, and by directly testable
risk models we mean risk models that can be reused and specified as test cases based
on the interactions in the risk models. Thus, Success Criterion 9.

Success Criterion 9. The method must produce security risk models that are directly
testable.

It is important to identify security risks at the application level, as well as at the
source-code level. That is, from a black-box perspective and a white-box perspective,
respectively. Although model-based testing is commonly regarded as a pure black-box

22

2.3 Success criteria

testing technique, we believe it may be beneficial to apply model-based testing also
for the purpose of white-box testing. The idea of white-box testing, in this context, is
to model relevant parts of the system under test, based on information gathered from
source code, in order to identify where in the source code a security risk may occur.
This, in turn, may help identifying how risks initiated from the application layer affect
the system under test at the source code level. Thus, Success Criteria 10.

Success Criterion 10. The method should be appropriate for black-box testing and
white-box testing.

By appropriate for black-box testing and white-box testing, we mean that the com-
plete CORAL method for risk-driven security testing should be conductible both in a
white-box testing context, as well as in a black-box testing context.

23

Problem characterization

24

Chapter 3
Research method

Computer science is a young field that has had an identification problem. There have
been disagreements throughout the years on whether computer science is science, en-
gineering, mathematical science or art [33]. For example, Abelson and Sussman [1]
claim that computer science is not a science, and back up their claim by contrasting
computation with classical mathematics. Brooks [20] argues that science is concerned
with the discovery of facts and laws, while computer science is an engineering discipline
concerned with building things.

This identification problem is due to the diverse nature in which computer science
is applied. Computer science is constantly forming relationships with other fields and
thereby settling the foundation for new fields to evolve. Some examples are: auto-
nomic systems, bioinformatics, biometrics, biosensors, cognitive prostheses, cognitive
science, DNA computing, immersive computing, neural computing and quantum com-
puting [33]. Although there are some objections to the classification of computer science
as a science, there is a widely established agreement that computer science is in fact
a science. Hartmanis [61, 62], Rosenbloom [124] and Denning [33] point out that that
computer science is fundamentally different and is regarded as a fourth great scien-
tific domain that typically forms relationship with the physical sciences (which focus
on nonliving matter), life sciences (which focus on living matter), and social sciences
(which focus on humans and their societies). Being such an interdisciplinary scientific
domain, it is important to utilize the appropriate research method when executing a
research project within a given context of computer science.

Depending on the underlying context, a research project within interdisciplinary
scientific domains, such as computer science, is typically carried out by utilizing what
is commonly referred to as the scientific method [37]. It is beyond the scope of this
thesis to give a detailed explanation of the scientific method, but the following is a
short explanation adapted from Dodig-Crnkovic [37]: “The scientific method is the
logical scheme used by scientists searching for answers to the questions posed within
science. The scientific method is used to produce scientific theories, including both
scientific meta-theories (theories about theories) as well as the theories used to design
the tools for producing theories (instruments, algorithms, etc.).” Furthermore, the
scientific method is sometimes considered as the classical, standard, or traditional way
of performing research [95,140], in which the goal is to seek new knowledge about the
world as it is, for example, new knowledge about the cosmos, nature, humans, animals,
plants, societies, etc. Following Solheim and Stølen [140], we refer to the scientific

25

Research method

method as the classical research method. Putting it very simply, the starting point of
a researcher, when utilizing the classical research method, would be to ask: What is
the real world like?

However, March and Smith [95] point out that information technology research
studies artificial as opposed to natural phenomena. It deals with human creations such
as information systems, that is, artifacts. Wieringa [160] defines artifact as something
created by people for some practical purpose, for example, algorithms, methods, no-
tations, techniques, and even conceptual frameworks. Based on this, Wieringa [160]
defines design science as “the design and investigation of artifacts in context”, and
explains that the studied artifacts are designed to interact with a problem context in
order to improve something in that context. While classical research tries to under-
stand reality, design science is technology oriented and attempts to create artifacts that
serve human purposes.

The technology research method [140] is closely related to design science. The tech-
nology research method is an iterative method that consists of three consecutive steps:
problem analysis, innovation, and evaluation. These steps correspond to the design cy-
cle in design science. The design cycle is also an iterative process and consists of three
consecutive steps: problem investigation, treatment design, and treatment validation.
However, the design cycle is part of a larger cycle referred to as the engineering cycle,
in which a designed and validated treatment is implemented in the problem context,
and the implementation is evaluated [160]. In technology research, the artifact is eval-
uated (also within its intended context) in the evaluation step. The starting point of a
researcher, when utilizing the technology research method, would be to ask: how can
one produce new and better artifacts? Given the scope of this thesis, and the desired
results from the work initiated by this thesis (as described in Chapter 2), we have
mainly conducted research according to the technology research method.

In the following we first give an overview of the technology research method, and
then we give an overview of evaluation strategies to evaluate an artifact, and finally we
explain how we applied the research method in the work leading to this thesis.

3.1 The technology research method

The technology research method is iterative and motivated by the need for a new arti-
fact, or the need to improve an existing artifact [140]. The researcher starts by identi-
fying a set of requirements to the artifact. Depending on the artifact, the requirements
may be identified from the viewpoint of existing users, potential/new users, as well as
other stakeholders, such as people who seek to obtain economical gain by maintaining
or selling the artifact. Then, having identified the requirements, the researcher aims
to invent an artifact which fulfills the requirements. This is the step in which the
researcher needs to be innovative and use his/her creativity and technical expertise.
Finally, having developed the artifact, the researcher needs to evaluate the artifact to
check whether it fulfills the requirements and thereby whether it satisfies the (poten-
tial) need. If the evaluation yields successful results, the researcher may argue that the
artifact satisfies the need. If the results are negative, the researcher may try to adjust
the artifact accordingly and reiterate the evaluation. Thus, the technology research
method consists of the following three steps (see Figure 3.1).

1. Problem analysis: The researcher captures a potential need for a new or im-

26

3.1 The technology research method

proved artifact by interacting with possible users and other stakeholders.

2. Innovation: The researcher tries to construct an artifact that satisfies the po-
tential need. The overall hypothesis is that the artifact satisfies this need.

3. Evaluation: Based on the potential need, the researcher formulates predictions
about the artifact and checks whether these predictions come true. Predictions
are evaluated/tested by making use of evaluation strategies (described in Sec-
tion 3.2). If the results are positive, the researcher may argue that the artifact
satisfies the need.

Figure 3.1: The main steps in the technology research method (adapted from Solheim
and Stølen [140]).

According to Solheim and Stølen [140], technology research shares a common pat-
tern with classical research, while action research may be regarded as a special case
of technology research. However, the objectives in each research approach are differ-
ent. Table 3.1 shows the main objectives of classical research, technology research, and
action research.

• As mentioned above, the starting point of a researcher in classical research would
be to ask: What is the real world like? That is, there is a need for a new theory
to explain the world as it is. In classical research, the resulting new theory is
evaluated by comparing it to the relevant part of the real world, and the overall
hypothesis is that the new theory/explanation agrees with reality.

• According to Davison et al. [32], the application focus of action research involves
solving organizational problems through intervention while at the same time con-
tributing to knowledge. However, the researcher and the researcher’s activities
are included in the research object. In other words, the researcher and the object
under study are not clearly separated [140]. The need is defined in terms of action
plans addressing the organizational problems. The action plans are executed in
the organization and evaluated by examining their effect in terms of solving the

27

Research method

Table 3.1: The main objectives of classical research, technology research, and action
research [140].

Classical
research

Technology
research

Action
research

Problem Need for new
theory

Need for new
artifact

Need for
improved

organization

Solution New
explanations
(new theory)

New artifact Action plan

Compares solution to: Relevant part of
the real world

Relevant need Relevant need
for

improvement

Overall hypothesis The new
explanations
agree with
reality

The new
artifact satisfies

the need

The actions
result in an
improved

organization
satisfying the

need

underlying problem. The overall hypothesis is that an action A implies that the
organization’s need for improvement is satisfied.

3.2 Evaluation strategies

According to McGrath [97], evaluation strategies are carried out to gather evidence to
assess the degree of generality, precision, and realism of the artifact under evaluation.
This is illustrated in Figure 3.2. Generality indicates that results are valid across
populations. Precision indicates that the measurements are precise. Realism indicates
that evaluation is performed in environments similar to reality.

When gathering a batch of research evidence, one is always trying to maximize the
scores on generality, precision and realism of the prediction under evaluation. While it
is most desirable to maximize all of these three qualities simultaneously, it is, however,
an impossible act [97]. Broadly speaking, it is therefore important to consider factors
such as the nature of the predictions (that is, whether the predictions address the
generality, precision or realism of an artifact), the maturity of the artifacts addressed
by the predictions, and the available resources (time, cost and people) when choos-
ing evaluation strategies. In the following, we give an overview of the most common
evaluation strategies.

• Field study is a direct observation of “natural” systems, with little or no inter-
ference from the researcher. Field studies are strong on realism but lack precision
and generality because they are difficult to replicate.

• Field experiment is similar to field study in the sense that it is an experiment
carried out in a natural environment. However, in field experiments, the difference

28

3.2 Evaluation strategies

Figure 3.2: Evaluation strategies (adapted from McGrath [97]).

is that the researcher intervenes and manipulates a certain factor.

• Experimental simulation is a laboratory test simulating a relevant part of the
real world.

• Laboratory experiment gives the researcher a large degree of control and the
possibility to isolate the variables to be examined. It scores high on precision but
lacks realism and generality.

• Qualitative interview is a collection of information from a few selected indi-
viduals. The answers are more precise than those of a survey, but cannot be
generalized to the same degree.

• Survey is a collection of information from a broad and carefully selected group
of informants. The information is typically collected via questionnaires or inter-
views. Surveys have a high degree of generality, however, they are less controlled
than experiments and therefore lack precision. Moreover, the likelihood of bias
on the part of the respondents may weaken the realism of a survey.

• Non-empirical evidence is argumentation based on logical reasoning. It scores
high on generality, but low on realism and precision because it is not empirical.

• Computer simulation is operating on a model of a given system. This means
that computer simulations are system-specific and therefore score higher on re-
alism than non-empirical evidence, but lower on generality.

These eight strategies are further divided into the following four groups of pairs as
shown in Figure 3.2.

• I The evaluation is performed in a natural environment.

29

Research method

• II The evaluation is performed in an artificial environment.

• III The evaluation is independent of environments.

• IV The evaluation is independent of empirical measurements.

In addition to the above evaluation strategies, Wieringa [160] and Zelkowitz et
al. [173] point out the following additional strategies.

• Case study is an empirical inquiry that draws on multiple sources of evidence
to investigate one instance (or a small number of instances) of a contemporary
software engineering phenomenon within its real-life context, especially when the
boundary between phenomenon and context cannot be clearly specified [128].
According to Yin [167], “a case study allows investigators to focus on a “case”
and retain holistic and real-life perspective.” For example, when studying a
method for security testing, a software development life cycle, or organizational
and managerial processes. The results of a case study can help determine to what
extent an artifact is useful, comprehensible and scalable.

• Literature review examines existing publications related to a topic and a scope.
The method is often used to identify the current state of art and state of practice
within a field. Moreover, it may also be useful to confirm an existing hypothesis.
However, a weakness with a literature search is that it may be biased in the
selection of published works [173].

• Expert opinion is an evaluation strategy in which the design of an artifact is
submitted to a panel of experts, who imagine how such an artifact will interact
with problem contexts imagined by them and then predict what effects they think
this would have [160]. However, this kind of validation is limited to the expert’s
understanding of the artifact under evaluation.

• Technical action research is the use of an artifact prototype in a real-world
problem to help a client and to learn from this [160]. This is typically carried
out as one of the last stages before an artifact moves from the “laboratory” to
the real world.

3.3 How we have applied the research method

As mentioned in the introduction of this chapter, we have mainly made use of the
technology research method. Following its iterative nature we changed and improved
the artifacts, that is, the CORAL approach, and its related success criteria as new
insight was gained. The documentation of the three phases, that is, the problem
analysis, the innovation, and the evaluation are found in Chapter 2, Chapter 5, and
Chapter 7, respectively. Figure 3.3 illustrates our research process for developing the
artifacts. Each activity depicted in Figure 3.3 is explained in the following paragraphs.

30

3.3 How we have applied the research method

Develop conceptual model. In order to establish a common platform with respect
to concepts relevant to the topic of this thesis, we developed a conceptual frame-
work in which we clarify the notions of security, testing, security testing, risk assess-
ment, security risk assessment, model, model-based testing, model-based security test-
ing, model-based security risk assessment, and finally risk-driven model-based security
testing (RMST). Our conceptual framework is developed with respect to established
concepts from state of the art literature, and is documented in Section 2.1. While
developing the conceptual framework, we discovered that not only may security risk
assessment support security testing, but also that security testing may support security
risk analysis. As clarified in Section 2.1.10, we refer to the latter as test-driven security
risk analysis [39, 44].

Carry out systematic literature review. To obtain a holistic picture of the field
addressed by this thesis, we carried out a systematic literature review in which we
reviewed approaches that combine risk analysis and testing in general. That is, in
addition to approaches addressing security, we also reviewed approaches that address
other qualities, such as safety and reliability. We identified a total of 25 approaches
related to risk-driven testing, and a total of 3 approaches related to test-driven risk
analysis. The complete literature review is documented in Sections 4.4 and 4.5, as well
as in Paper 1, which also describes the review process. The literature review revealed
the following main issues.

1. The field needs more formality and preciseness, as well as dedicated tool support.

2. There is very little empirical evidence regarding the usefulness of the approaches.

3. Risk assessment is carried out at a high-level of abstraction (for example, business
level), while test cases are defined at a low-level of abstraction (for example,
implementation level). This introduces a gap between identified risks and the
test cases exploring the risks.

Identify success criteria for an approach to RMST. To address the above
issues, we defined an overall objective to develop a method for risk-driven security
testing supported by a graphical modeling language that is:

1. comprehensible to security testers,

2. useful for the purpose of selecting and designing test cases with respect to the
risk assessment results,

3. effective in the sense that it produces risk models that are valid and directly
testable, and

4. sufficiently rigorous to support the development of tools and methods.

We refined these goals into the following ten success criteria. These success criteria
are explained in detail in Chapter 2. Success criteria 7 through 10 were quite persistent
throughout the work, while success criteria 1 through 6 were adjusted as new knowledge
was obtained from the industrial case studies.

31

Research method

• Success Criterion 1. The graphical notation must be appropriate for the do-
main of risk-driven security testing.

• Success Criterion 2. The graphical notation must be appropriate for security
testers.

• Success Criterion 3. The graphical notation must be appropriate for tool
implementation and method development.

• Success Criterion 4. The English-prose semantics of CORAL risk models must
be comprehensible to security testers when conducting risk assessment.

• Success Criterion 5. The English-prose semantics of the constructs inherited
from UML interactions must be consistent with their semantics in the UML
standard.

• Success Criterion 6. The complexity of the resulting English prose must scale
linearly with the complexity of CORAL risk models in terms of size.

• Success Criterion 7. The method must be comprehensible to security testers.

• Success Criterion 8. The method must produce security risk models that are
valid.

• Success Criterion 9. The method must produce security risk models that are
directly testable.

• Success Criterion 10. The method should be appropriate for black-box testing
and white-box testing.

Develop approach combining security risk assessment and security testing.
In an initial attempt to fulfill the success criteria, we developed an approach consisting
of three phases. In this approach, we were interested in exploring the two strategies
for the combined use of security risk assessment and security testing. That is, not only
were we interested in supporting security testing with security risk assessment (risk-
driven security testing), but also in supporting security risk analysis with security
testing (test-driven security risk analysis). The three-phased approach is carried out
as follows. Phase 1 expects a description of the target of evaluation. Then, based on
this description, the security risk assessment is planned and carried out. The output of
Phase 1 is security risk models, which is used as input to Phase 2. In Phase 2, security
tests are identified based on the risk models and executed. The output of Phase 2 is
security test results, which is used as input to the third and final phase. In the third
phase, the risk models are validated and corrected with respect to the security test
results. In this approach, we made use of the CORAS risk analysis language [91] to
model risks and to carry out security risk assessment. This approach is documented in
detail in Paper 5.

32

3.3 How we have applied the research method

Figure 3.3: Research process for the development of the artifacts.

Carry out first industrial case study. Using the approach described in the pre-
vious paragraph, we carried out an industrial case study in which we analyzed a mul-
tilingual web application, which is designed to deliver streamlined administration and
reporting of all forms of equity-based compensation plans. The web application was

33

Research method

deployed on the servers of a third party service provider, as well as maintained by the
same service provider with respect to infrastructure. However, the web application
was completely administrated by the client commissioning the case study for business
purposes, such as customizing the web application for each customer, as well as patch-
ing and updating features of the web application. The focus of this case study was to
analyze the system to identify security risks that may be introduced internally by the
client when administrating the application, as well as security risks that may be intro-
duced externally via features available to customers. In this case study, it was decided
not to consider security risks related to infrastructure because this was a contractual
responsibility of the service provider. This case study is referred to as Case Study 1 in
Paper 5.

The objective of this case study was to assess how useful risk assessment is for
identifying and designing tests (risk-driven security testing), as well as to assess how
useful testing is for validating and correcting security risk models (test-driven security
risk analysis).

Carry out second industrial case study. In the second case study, we analyzed
a mobile application designed to provide various online financial services to the cus-
tomers on their mobile devices. In contrast to the first case study, this application was
deployed on the local servers of the client commissioning the case study. The online
financial services were accessible only via a dedicated mobile application installed on
a mobile device. Moreover, all aspects related to maintenance and administration was
the responsibility of the client. However, some few aspects related to content displayed
to the customers were directly handled by a third party. The main focus of this case
study was to analyze the mobile application to identify security risks that may be in-
troduced from an external point of view. That is, we identified security risks that may
be introduced by the third party when administrating the few aspects of the mobile
application, as well as security risks that may be introduced via features available to
customers. This case study is referred to as Case Study 2 in Paper 5.

The objective of this case study was the same as the objective of the first case study.

Collect and analyze data from first and second case study. In short, the
results from both case studies may be summarized as follows.

With respect to risk-driven security testing, we discovered that threat scenarios are
a good starting point for identifying security test cases. Having CORAS risk models [91]
as the starting point, we may identify tests with respect to single threat scenarios, or
with respect to a chain of threat scenarios (CORAS risk models are represented as
directed acyclic graphs). The problem, however, was that we were only able to identify
high-level test procedures due to the high-level nature of CORAS risk models. This,
in turn, caused us to refine each high-level test procedure into an executable test case
in a manual and ad hoc manner.

With respect to test-driven security risk analysis, we discovered that the test results
are useful for correcting risk models in terms of adding or deleting vulnerabilities, as
well as editing likelihood values. Moreover, the test results also proved to be useful
for validating risk models in terms of discovering the presence or absence of presumed
vulnerabilities.

The problem related to risk-driven security testing indicated the need for a rigorous
process to select and design test cases. In order to bridge the gap between high-level

34

3.3 How we have applied the research method

risks (from which high-level test procedures are defined) and the low-level test cases
actually testing the risks, we need to express risks at the level of test cases. This also
means that there is a need for a risk analysis language capable of expressing risks as
well as test cases.

Update success criteria and develop the CORAL approach. In light of the
discoveries made through the case studies described above, we decided to develop a
method for risk-driven security testing supported by a domain-specific language to
help security testers select and design test cases based on the available risk picture. In
search of a suitable notation for our language, we reviewed the literature and found
that UML interactions, along with statechart diagrams and class diagrams, are the
most commonly used notations for testing purposes [10, 34, 111]. We selected UML
interactions as the basis for our notation, and thus developed an interaction based risk
analysis language (CORAL).

Based on these design decisions, we updated success criteria 1 through 6 and de-
veloped the CORAL approach. The CORAL approach is presented and described in
Papers 2, 3 and 4.

Carry out third industrial case study. In the third case study, we applied the
CORAL approach and tested the same system as described in the first case study.
However, in this case study, we tested two features not considered in the first case
study: a feature for selling shares, and a feature for exercising options for the purpose
of buying shares in a company. The objective of the case study was to evaluate to what
extent the CORAL approach helps security testers in selecting and designing test cases.
The test report delivered to the client that commissioned the case study describes, in
addition to the test results, risk models and security tests designed with respect to
the risk models. Our hypothesis was that the report is good in the sense that (1) the
risk models are valid, and (2) the threat scenarios represented by the risk models are
directly testable. By a directly testable threat scenario, we mean a threat scenario that
can be reused and specified as a test case based on its interactions. Thus, the units
of analysis in this case study were the risk models. The case study is documented in
Paper 4.

Collect and analyze data from third case study. In short, the case study results
may be summarized as follows.

With respect to our first hypothesis, that is, the CORAL approach is effective in
terms of producing valid risk models, we noted two supporting observations. First,
we identified in total 21 risks, and 11 of these risks were considered as most severe,
while the remaining 10 risks were considered as low risks. By testing the 11 risks we
identified 11 vulnerabilities, while by testing the remaining 10 risks we identified only
2 vulnerabilities. Second, we identified all relevant security risks compared to previous
penetration tests. In addition, we identified five new security risks and did not leave
out any risks of relevance for the features considered.

With respect to our second hypothesis, that is, the CORAL approach is effective in
terms of producing directly testable threat scenarios, we noted the following supporting
observation. The results obtained in the case study point out that all threat scenarios
were directly testable. We believe this result is generalizable because, in the CORAL

35

Research method

approach, risks are identified at the level of abstraction testers commonly work when
designing test cases [10,34,111]. This is also backed up by the fact that we made direct
use of all threat scenarios as security test cases.

To complement the case study results, we have also carried out an analytical eval-
uation of the CORAL language using the SEQUAL framework [85]. SEQUAL is a
general framework used for discussing and evaluating the quality of models, as well as
the quality of modeling languages. This is documented in Chapter 7.

36

Chapter 4
State of the art

In this chapter, we first give an overview of state of the art related to modeling (Sec-
tion 4.1) and model-based testing (Section 4.2) in general. Then, in Sections 4.3, 4.4,
and 4.5 we present state of the art of relevance for the artifacts developed in this thesis.
For a more detailed discussion on the relationship of our artifacts to the literature, the
reader is referred to Section 7.3. The reason why this is not discussed in this chapter
is because we first need to present our artifacts in detail, which we do in Chapter 5,
before we relate them to the literature presented in this chapter.

4.1 Modeling

The usage of graphical models to describe computer systems may be traced back to
the 1950’s [169], and the graphical notations commonly applied today may be traced
back to the 1970’s. Chen [26] proposes an entity-relationship model, which builds
on the earlier principles of a network model [7], a relational model [31], and an en-
tity set model [136]. Chen [26] points out that instead of using the network model,
the relational model, and the entity set model separately, systems should be mod-
eled in a unified manner to reflect a more natural view. According to Chen [26], the
entity-relationship model adopts a more natural view in the sense that the real world
consists of entities and relationships. The advantages of describing systems in terms of
graphical models (versus sentential models) is also pointed out from a cognitive science
perspective. Larkin and Simon [87] point out that sentential representations are one-
dimensional because information is indexed by position in a list (like the propositions
in a text), while graphical representations are two-dimensional because information is
indexed by location in a plane. This two-dimensional property makes graphical mod-
els superior to a verbal description for solving problems. Research in diagrammatic
reasoning shows that the form of representations has an equal, if not greater, influence
on cognitive effectiveness as their content [104]. The following points list the main
advantages of graphical models as given by Larkin and Simon [87].

• Graphical models can group together all information that is used together, thus
avoiding large amounts of search for the elements needed to make a problem-
solving inference.

• Graphical models typically use location to group information about a single ele-
ment, avoiding the need to match symbolic labels.

37

State of the art

• Graphical models automatically support a large number of perceptual inferences,
which are extremely easy for humans.

Sentential representations do not provide the abovementioned advantages, but does,
for example, preserve relations such as temporal or logical sequence [87]. Thus, we may
divide modeling notations in two main categories: graphical and sentential. Moreover,
we may group modeling notations in various modeling paradigms. According to Lam-
sweerde [154] and Utting et al. [153], modeling notations can be grouped into seven
modeling paradigms: state-based (or pre/post) notations, transition-based notations,
history-based notations, functional notations, operational notations, stochastic nota-
tions, and data-flow notations. In the following, we give a brief overview of these
paradigms.

State-based (or pre/post) notations. State-based notations are used to model
a system as a collection of variables [153]. These models represent admissible system
states at some arbitrary snapshot of the internal state of the system, as well as oper-
ations that may modify the states [154]. The states are described in terms of sets, se-
quences, relations, and functions, and the operations are described in terms of pre/post
conditions [63]. Examples of state-based (or pre/post) notations are Z [143, 144], Vi-
enna Development Method (VDM) [76], and B [2].

Transition-based notations. Transition-based notations are used to model the re-
quired transitions from one system state to another (including the transition from a
state S to itself) [154]. These models are typically represented as nodes with edges
connecting the nodes. The nodes represent states in the system, while the edges rep-
resent transitions between the states. Transitions between states are triggered by the
dispatching of series of events. Examples of transition-based notations are finite state
machines (FSM) [89], and Statecharts such as UML State Machines [110].

History-based notations. History-based notations are used to model a system by
describing the allowable traces of its behavior over time [153]. These kinds of models
may represent time in various ways, for example, linear or branching, discrete or con-
tinuous, and time points or time intervals. A well known example of a history-based
notation is UML interactions [110], which is inspired by Message Sequence Charts [126].

Functional notations. Functional notations specify a system as a structured col-
lection of mathematical functions [154]. Functional notations may be divided into two
groups: algebraic specifications and high-order functions. In the context of model-
based testing, algebraic specifications focus mainly on data type abstraction and may
be used for testing data type implementations [52]. High-order functions are grouped
into logical theories in terms of type definitions, variable declarations, and axioms
defining the various functions in the theory [154].

Operational notations. Operational notations are used to model a system in terms
of a structured collection of executable processes. These notations are particularly use-
ful for describing distributed systems and communication protocols [153]. An example
of an operational notation is the Petri net notation [53].

38

4.1 Modeling

Stochastic notations. According to Utting et al. [153]: “Stochastic notations de-
scribe a system by a probabilistic model of the events and input values and tend to be
used to model environments rather than the system under test. For example, Markov
chains are used to model expected usage profiles, so that the generated tests exercise
that usage profile.”

Data-flow notations. According to Utting et al. [153]: “Data-flow notations con-
centrate on the data rather than the control flow. Prominent examples are Lustre,
and the block diagrams of Matlab Simulink, which are often used to model continuous
systems.”

The above paradigms address both graphical and sentential notations, and several
paradigms can often be represented in one single notation [153]. Similar paradigms are
provided by Krogstie [85] with a particular focus on graphical notations. Based on a
survey of state of the art approaches for conceptual modeling, Krogstie [85] presents
the following graphical modeling perspectives.

• Behavioral perspective. Systems are modeled in terms of states and transi-
tions between the states, similar to transition-based notations mentioned above.
Example notation: finite state machines (FSM) [89].

• Functional perspective. Systems are modeled in terms of transformations. A
transformation is defined as an activity, which transforms a set of phenomena to
another set of phenomena. Other terms used for the main concept are function,
process, activity and task. Example notation: data flow diagrams (DFD) [50].

• Structural perspective. Systems are modeled in terms of entities describing
the static structure of the system. Example notation: entity-relationship [26].

• Goal and rule perspective. Systems are modeled in terms of goals and rules,
where a rule is something that influences the actions of a set of actors [85].
Example notation: entity-relationship with time [96].

• Object perspective. Systems are modeled in terms of objects, processes, and
classes, and other concepts commonly found in object-oriented programming lan-
guages [85]. Example notation: the Unified Modeling Language [110].

• Communication perspective. The communication perspective is based on lan-
guage/action theory [6,134]. According to Krogstie [85], “the basic assumption of
language/action theory is that persons cooperate within work processes through
their conversations and through mutual commitments taken within them.”

• Actor and role perspective. Systems are modeled in terms of actors (or
agents) and roles. Typically, the nodes represent a social actor/role, and the
edges connecting the nodes represent a relationship between the actors. Example
notation: i* (i star) [170].

• Topological perspective. The topological perspective is related to the mod-
eling of the topological ordering between different concepts, for example, the
modeling of where different tasks shall be performed. Example notation: place-
oriented modeling [56].

39

State of the art

Modeling techniques within the above perspectives are mostly used for human sense-
making, supporting human communication, computer-assisted analysis, quality assur-
ance (model-based testing), model deployment and activation, and to give the context
for a traditional system development project [85].

4.2 Model-based testing

The basic ideas of model-based testing can be traced back to the 1970s [29,153]. Since
then, numerous approaches for model-based testing have been suggested. Dias-Neto
et al. [34] provide a systematic literature review in which they analyze 202 model-
based testing approaches. A similar comprehensive review is also provided by Hierons
et al. [63]. It is beyond the scope of this thesis to describe the various approaches,
hence the reader is referred to the aforementioned surveys for a detailed explanation
and classification of exiting model-based testing approaches. Based on the existing
approaches, Utting et al. [153] provide a generic model-based testing process which is
divided into three phases: model specification, test generation, and test execution. The
phase related to model specification focuses on building a model of the system under
test, choosing test selection criteria, and specifying tests. The phases related to test
generation and test execution focus on the usage of tools to generate and execute test
cases. Utting and Legeard [152], Utting et al. [153], Schieferdecker [130], and Hierons
et al. [63] provide an overview of current model-based testing tools.

According to Utting and Legeard [152], the benefits of model-based testing may be
grouped into six ares: system under test fault detection, reduced testing cost and time,
improved test quality, requirements defect detection, traceability, and requirements
evolution. The following points give a brief explanation of these benefits. The reader
is referred to Utting and Legeard [152] for a detailed explanation.

• System under test fault detection. Model-based testing is effective in terms
of identifying faults in systems that are under development, as well as systems
that have been been deployed and used for some time. Moreover, numerous
industrial case studies show that the number of faults detected by applying a
model-based testing process is in most cases greater than the number of faults
detected by a manual process [152].

• Reduced testing cost and time. Model-based testing reduces testing cost and
time because the time needed to write and maintain the model, plus the time
spent on directing the test generation, is less than the time needed to manually
design and maintain a test suite.

• Improved test quality. Model-based testing improves test quality because
the test design and generation process is systematic and repeatable, and because
generated tests are associated with system requirements in a clear and transparent
manner.

• Requirements defect detection. Model-based testing helps detecting errors in
the system requirements and system design because the model is precise enough
to be analyzed by computer. Of course, this requires that the analyzed model is
free of errors potentially introduced by the tester.

40

4.2 Model-based testing

• Traceability. Model-based testing facilitates traceability in terms of relating
each test case to the model, the test selection criteria, and to the informal system
requirements.

• Requirements evolution. Model-based testing requires less effort in maintain-
ing test suites with respect to changing and evolving requirements, compared to
manual testing.

As pointed out in Section 4.1, there is a variety of modeling paradigms that may be
applied in model-based testing, and in practice, several paradigms can be represented in
one single notation [153]. However, based on the systematic literature review provided
by Dias-Neto et al. [34], the three most popular notations used in model-based testing
are statechart diagrams, class diagrams, and sequence diagrams. These are followed
by other notations commonly used within model-based testing, such as the Object
Constraint Language (OCL) [112], finite state machines [89], activity diagrams [110],
object diagrams [110], and the Z notation [143, 144]. This does not necessarily mean
that the three most popular notations are better suited for model-based testing, com-
pared to the other notations, because the various notations focus on different aspects
of the system under test, that is, states, transitions, traces, etc. However, this does
indicate that most approaches focus on testing a system with respect to transitions
between various states in the system, or with respect to traces of events (occurring
over time) in the system.

Model-based testing is mostly applied at the level of system testing, followed by
integration testing, unit testing, and regression testing. This ranking is based on the
systematic literature review reported by Dias-Neto et al. [34], which was conducted
in 2007. In a recent survey, conducted in 2014, Binder et al. [11, 12] investigates the
state of model-based testing in practice by surveying 100 practitioners. The survey
indicates that this trend has in fact not changed over the years, and that model-based
testing is still mostly used at the level of system testing, followed by integration testing,
unit testing, and regression testing [12]. Moreover, the survey shows that model-
based testing is mostly carried out to test web applications, enterprise IT applications
(including packaged applications), and embedded controller applications (real-time).
In addition, the survey shows that model-based testing is not only used for automated
test generation and execution, but also for designing test cases for manual executions,
and for other purposes such as identifying test data and test suites, as well as for
documenting test cases. From a human factor perspective, the survey shows that
practitioners usually have very high expectations to model-based testing, and that
model-based testing does not completely fulfill the high expectations. On the positive
side, however, nearly all participants in the survey rate model-based testing as an
effective testing approach.

As pointed out by Binder et al. [12], model-based testing clearly has the potential
of increasing the rigorousness, efficiency, and effectiveness of software testing in the
industry. However, a recent survey addressing the practice on software testing in
Canada shows that model-based testing has not fully arrived in the industry [51]. This
is also in line with the findings of a similar survey, conducted in 2011, which addressed
the practice on software testing in Germany, Switzerland, and Austria [130]. On the
positive side, compared to older surveys, Garousi et al [51] report on a more positive
trend with respect to the usage of model-based testing in the industry.

41

State of the art

4.3 Model-based security testing

Model-based security testing is a relatively new field. Most of the approaches within
model-based security testing have been published after 2010. Model-based security
testing is in particular focused on the systematic and efficient specification and doc-
umentation of security test objectives, security test cases and test suites, as well as
to their automated or semi-automated generation [131]. Current approaches may be
grouped into four categories [131].

• Approaches with main focus on functional security testing.

• Approaches based on fuzzing.

• Approaches with main focus on pattern-based security testing.

• Approaches with main focus on threat-based security testing.

Approaches addressing functional security testing mainly focus on testing the im-
plementation of security features, in order to evaluate whether the system exhibits
the expected security behavior. Fuzzing is a black-box testing technique in which the
system under test is stressed with invalid, unexpected, or random inputs at its inter-
faces. The purpose is to identify vulnerabilities causing failures in the system [129].
Approaches addressing pattern-based testing focus on testing a system with respect to
known attack patterns, in order to evaluate whether the system is vulnerable to certain
malicious attacks. Threat-based security testing approaches focus on identifying po-
tential threat scenarios the system under test may be exposed to. The threat scenarios
are then used as a basis to identify security tests, which in turn are executed on the
system under test. The purpose is to evaluate whether the system under test is vulner-
able to certain security risks caused by the threat scenarios. The terms threat-based
testing and risk-based testing are sometimes used interchangeably. However, there are
some fundamental differences: In addition to identifying threat scenarios, risk-driven
testing approaches estimate and evaluate security risks in order to focus the testing on
the most severe security risks. Risk-driven testing approaches are discussed in detail
in Sections 4.4 and 4.5.

In the following, we present relevant approaches for the aforementioned categories.
However, some of the approaches may belong to more than one category. The catego-
rization is an attempt to group papers with respect to their main focus, so that those
that are related are discussed close to each other.

4.3.1 Approaches with main focus on functional security test-
ing

Jürjens and Wimmel [79,161] propose a method for specification-based testing for the
purpose of detecting vulnerabilities in security-critical systems. In particular, they
focus on security testing firewalls [79], and transaction systems [161]. The proposed
approach specifies a system by making use of Focus, which is a mathematical and
logical framework for the specification, refinement, and verification of distributed, re-
active systems [21]. Test cases are generated from the system specifications. Jürjens
also suggests an approach to specification-based security testing by making use of the

42

4.3 Model-based security testing

language UMLsec [78]. UMLsec is a UML profile that provides security concepts in
order to support the development of secure systems [77].

Blackburn et al. [13] summarize the results of applying a model-based approach
to automate functional security testing. The process for the automated security test
approach begins with the development of a model, by making use of a commercial tool
named SCRtool, representing functional security requirements. Then, they make use
of a commercial tool set named T-VEC in order to translate the functional security
requirements to a test specification, from which test vectors are generated. Then, the
T-VEC tool is used to generate test drivers for the purpose of executing tests. Finally,
test results are compared with the expected results from the test vectors to determine
whether the system under test complies with the functional security requirements. The
approach is targeted towards Java applications and database servers.

Mouelhi et al. [106] propose a model-driven approach for specifying, deploying and
testing access control policies in Java applications. The approach consists of five steps.
The purpose of the first step is to build a security model of the application. The secu-
rity model is a platform independent model which captures the access control policies
defined in the requirements of the system. In the second step, the security model is au-
tomatically transformed into Policy Decision Points (PDP), which are the points where
policy decisions are made. In the third and fourth step, the PDPs are integrated into
the functional code of the application, and to reduce the risk of introducing mistakes
during the integration, the approach makes use of aspect oriented programming tech-
niques to support systematic integration. Finally, in step five, the resulting integrated
application is tested in terms of mutation testing to ensure that the final running code
conforms to the security model. Xu et al. [165] also present a model-based approach
for testing access control implementations. Similar to the aforementioned approach,
Xu et al. also carry out tests in terms of mutation testing. However, their approach
generates tests automatically, and it generates test code in a variety of languages, such
as Java, C, C++, C#, and HTML/Selenium IDE.

Katkalov et al. [81] introduce a method to test the functionality and security of
a distributed application based on cryptographic protocols. The approach is model
driven and represents test cases in terms of UML activity diagrams. The test cases are
defined at the implementation level by automatically transforming the UML activity
diagrams into Java test code. The approach also provides a custom domain-specific
language tailored to design and test security protocols, as well as guidelines to support
the modeler in designing test cases for complex systems.

4.3.2 Approaches based on fuzzing

Schieferdecker et al. [131] provide a model-based fuzzing approach in which the valid
sequences of a system, specified in UML sequence diagrams, are altered in terms of
changing the order and appearance of messages. This is done by either rearrang-
ing/altering/removing messages in a valid sequence in order to obtain an invalid se-
quence, or by rearranging/altering/removing a group of messages encapsulated by con-
trol structures, that is, interaction operators, of UML 2.x sequence diagrams. The
former enables straight-lined sequences to be fuzzed in terms of removing, repeating,
replacing, or relocating messages in the sequence diagram. The latter allows more
sophisticated fuzzing by applying similar fuzzing techniques at the level of interaction
operators that avoids less efficient random fuzzing. The latter also includes fuzzing

43

State of the art

the interaction operators, for example by negating a guard of an interaction operand,
changing the bounds of a loop operand, or disintegrate combined fragments. The
approach was developed in a European ITEA2 project named DIAMONDS, and the
detailed description of the approach can be found in the public project publications [92].
Schneider et al. [132] provide a model-based fuzzing approach based on the aforemen-
tioned approach. However, in this approach they focus particularly on generating new
test cases during test execution, as well as on taking previous test results into consid-
eration when generating new test cases, in order to reduce the test execution time.

Wang et al. [156, 157] suggest a model-based fuzzing approach to improve the effi-
ciency of security testing of database management systems, as well as network services.
The approach consists of a general framework for model-based behavioral fuzzing that
is guided by final state machine models. The final state machine models support state-
aware fuzzing, automate a so-called multi-phase fuzzing process, and detect test-script
errors.

Johansson et al. [75] present a model-based fuzzing method which aims to im-
prove conformance testing. The method is named T-Fuzz and is a fuzzing framework
for telecommunication networks. As mentioned by the authors, the T-Fuzz framework
shares similarities with the approach provided by Schieferdecker et al. [131], and Schnei-
der et al. [132]. However, compared to these approaches, T-Fuzz “can automatically
generate values for all models in TTCN-3 without relying on third party generators or
mutators [75]”.

4.3.3 Approaches with main focus on pattern-based security
testing

Lebeau et al. [88] aim at improving the accuracy and precision of vulnerability testing
of web applications, by means of models and test patterns, in order to avoid both false
positives and false negatives. They suggest an approach to automate model-based
vulnerability testing of web applications. The approach is supported by a commercial
tool named CertifyIt [138]. The approach consists of four activities. In the first activity,
the security test engineer formalizes test purposes with respect to a set of vulnerability
test patterns. The rationale is that the generated test cases have to cover the test
purposes. In the second activity, the tester defines a model that captures the behavioral
aspects of the system under test in order to generate consistent sequences of stimuli.
In the third activity, abstract test cases are automatically generated with respect to
the artifacts defined in the two previous activities. In the fourth activity, the tester
prepares executable test cases by specifying the abstract test cases as executable scripts.
Finally, the test cases are automatically executed, and the test results are recorded.

Bozic et al. [17–19] also suggest a model-based security testing approach specialized
for web applications. The approach makes use of UML state machines in order to model
certain web-vulnerability attack patterns. In particular, they focus on SQL injection
attack patterns, as well as cross site scripting attack patterns. Other attack patterns
may also be modeled. Based on the modeled attack patterns, they automatically
execute the attacks, that is, the security test cases.

44

4.3 Model-based security testing

4.3.4 Approaches with main focus on threat-based security
testing

Wang et al. [158] provide a model-driven approach to test possible violations of security
policies. Threats to security policies are modeled using UML sequence diagrams. Based
on these models, a set of threat traces are extracted, where each threat trace represents
a sequence of events that should not occur during system execution. Each threat trace
is matched with actual execution traces in the system, and if an execution trace is an
instance of a threat trace, security violations are reported.

Armando et al. [5] present an approach to security testing of web-based applica-
tions in which test cases are automatically derived from counterexamples found through
model checking. The approach consists of four steps and requires an informal descrip-
tion of the protocol used by the web-application, as well as a description of the system
under test and its environment. In the first step, an abstract model, amenable to formal
analysis of the protocol, is formulated and message mapping information is specified.
In the second step, the abstract model is automatically analyzed via model checking.
If one of the expected security properties is violated, a counterexample is discovered.
If no counterexample is found, the procedure terminates. In the third step, an abstract
test sequence, in terms of UML sequence diagrams, is generated from the counterex-
amples. Finally, in the fourth step, a concrete test sequence, that is, a test case, is
generated from the abstract test sequence and then executed. The result is recorded
and a verdict is assigned accordingly.

Zulkernine et al. [175] propose an attacker-centric approach for automatic model-
based security testing. Attack scenarios are modeled using formalisms based on ex-
tended abstract state machines. The models represent system attack behavior in terms
of states, conditions, and transitions. The attack scenarios are made executable by de-
veloping a so-called suitable attack signature generator, based on the attack scenarios.
The resulting attack signatures are then passed to an attack test engine, which executes
the attack, that is, the security test, on the system under test.

Botella et al. [14] present an approach similar to the one presented by Lebeau et
al. [88]. However, the focus of the approach presented by Botella et al. [14] is not on
patterns, but rather on the specification of security test objectives and how the test
objectives may be used to extract test cases from a predefined model. In order to
formalize security test objectives, Botella et al. [14] propose a test purpose language
and show how this language can be used to formalize security test objectives using the
tool CertifyIt. Security test cases are generated from a predefined model with respect
to the formalized security test objectives. The approach is evaluated by applying it on
two cryptographic components, one software component and one hardware component.

Marback et al. [93, 94] propose a threat-based security testing approach that au-
tomatically generates security test sequences from attack trees, and transforms the
test sequences into executable tests. The approach consist of three main steps. The
first step consists of modeling threat models in terms of threat trees. The second step
consists of generating security test sequences from the threat trees. The third step
consists of creating executable test cases from the test sequences by considering valid
and invalid inputs. Threat trees are modeled by making use of the Microsoft Threat
Modeling Tool [101, 102]. Security test sequences are generated by making use of a
software implemented by the authors. The tool takes threat models as input and gen-
erates test sequences, adds input parameters to test sequences, generates test inputs

45

State of the art

including valid and invalid inputs, and finally generates test scripts that execute all
test sequences with assigned input values.

Hagerman et al. [60] propose an approach for security testing of aerospace launch
systems. The approach is based on building a security test suite from behavioral
models, attack types, and mitigation models. The goal of the approach is to generate
a security test suite to provide a scalable model-based testing approach to test proper
mitigation of security attacks. Behavioral and mitigation models may be modeled
using UML sequence diagrams, UML activity diagrams, final state machines, and petri
nets. Mitigation models describe mitigation patterns associated with an attack. Based
on the mitigation patterns, mitigation test paths (in the model) are generated and
then woven into the behavioral model. In other words, the mitigation models are used
to identify certain attack paths, and these attack paths are then integrated with the
model representing the system under test.

Thomas et al. [150] do not provide an approach to model-based security testing.
However, they point out the lack of benchmarks that may be used to test and evaluate
existing model-based testing approaches. To this end, Thomas et al. [150] present an
approach to security mutation analysis which they apply on Magento, a fully-fledged
open source e-commerce web application. In the approach, the authors create security
mutants by injecting vulnerabilities in a systematic way. In particular, they consider
the causes of vulnerabilities according to OWASP top 10 web application security
risks [115], the application’s business logic, as well as other consequences of vulnera-
bilities, such as STRIDE attacks [103]. In addition, using their benchmark, Thomas et
al. [150] evaluate the approach provided by Marback et al. [93, 94], and Xu [164].

4.4 Risk-driven testing

In Paper 1 we present the results from a systematic literature review addressing the
combined use of risk analysis and testing. There are basically two main strategies for
the combined use of risk analysis and testing: the use of risk analysis to support the
testing process, and the use of testing to support the risk analysis process. We refer to
the first strategy as risk-driven testing and to the second strategy as test-driven risk
analysis. Since both strategies are strongly related, we present and discuss relevant
approaches addressing both strategies.

In the systematic literature review, we identified a total of 32 papers. Some of
these papers were written by the same authors and describe different aspects of the
same approaches. By grouping the 32 papers based on first author, we obtain 24
approaches. In order to include relevant approaches published after the completion of
our systematic literature review, we conducted a similar search process and found four
additional approaches. This gives a total of 28 approaches. 25 out of the 28 approaches
address risk-driven testing, while 3 out of the 28 approaches address test-driven risk
analysis. Similar to Section 4.3, we categorize the approaches with respect to their
main focus so that the approaches that are related are discussed close to each other.
The approaches may overlap the various categories. The approaches are categorized
into the following nine different categories.

• Approaches addressing the combination of risk analysis and testing at a general
level.

46

4.4 Risk-driven testing

• Approaches with main focus on model-based risk estimation.

• Approaches with main focus on test-case generation.

• Approaches with main focus on test-case analysis.

• Approaches based on automatic source code analysis.

• Approaches targeting specific programming paradigms.

• Approaches targeting specific applications.

• Approaches aiming at measurement in the sense that measurement is the main
issue.

• Approaches with main focus on security, that is risk-driven security testing.

In the following, we present relevant approaches within the abovementioned cate-
gories. However, we discuss the approaches addressing risk-driven security testing in
Section 4.5. The reader is referred to Paper 1 for detailed description of the review
process, and discussion related to the research questions addressed in the literature
review.

4.4.1 Approaches addressing the combination of risk analysis
and testing at a general level

The approaches provided by Amland [4], Felderer et al. [45, 47], Redmill [121, 122],
and Yoon et al. [168] address risk-driven testing at a general level. The focus of both
Amland [4] and Redmill [121,122] is on the risk analysis part. Amland [4] achieves test
case prioritization by expert meetings where probability indicators and failure costs are
determined for each relevant function, and then combined into a risk exposure value.
However, other elements, such as frequency of use, may also be taken into account.
For Redmill [121, 122], test case prioritization may also be performed on the basis of
either probability or consequence analysis alone.

In contrast, Yoon et al. [168] assume that the risk exposure value has been prede-
termined by a domain expert, and use mutation analysis to assess whether a test case
covers a given fault or not. Each test case is then given a total weight based on the
correlation with all the risks weighted with their individual risk exposure values.

Felderer et al. [45, 47] show a model-based approach to risk-driven testing, with
the focus on product risks affecting the quality of the product itself. The approach
includes a static risk assessment model using the factors of probability, impact, and
time, each determined by several criteria. Each criterion is determined by a metric to
be evaluated automatically (e.g., code complexity), semi-automatically (e.g., functional
complexity), or manually (e.g., frequency of use and importance to the user).

Amland [4] includes a real case study on the application of risk-driven testing in
a project within the financial domain. The case study indicates a positive effect in
reduced time and resources, which also may increase quality as more time may be
spent on the critical functions. Yoon et al. [168] present an experimental evaluation
based on a real aircraft collision avoidance system, and find that their approach is more
effective than using risk exposure values alone.

47

State of the art

Both Amland [4] and Redmill [121, 122] emphasize the human and organizational
factors. For risk-driven testing to reach its potential, there must exist a structured
testing process, where everyone involved (e.g., programmers and test managers) un-
derstand how the risk analysis results should be used to direct the testing process. The
risk-driven testing approach provided by Felderer et al. [47] is aligned with standard
test processes, and the paper describes four stages for risk-driven test integration in
a project. Challenges for integration at the initial stage in an anonymized industrial
application are discussed, with a number of practical lessons learned. The approach
itself is not compared to other approaches.

4.4.2 Approaches with main focus on model-based risk esti-
mation

There are two approaches with main focus on model-based risk estimation, namely
the approaches proposed by Gleirscher [54, 55] and Ray et al. [120]. Both approaches
use state machine diagrams of the system behavior as a starting point. Gleirscher [54,
55] analyzes the state machine diagrams to identify hazards threatening the safety of
the system. Also, a test model describing both the system and the environment is
transformed into a Golog script, from which test cases can be derived.

Ray et al. [120] estimate reliability-based risks for individual scenarios as well as for
the overall system by estimating the complexity for each state in each component and
then using well-known hazard techniques for determining the severity of each scenario.
Testing is not presented as part of the approach itself, but in the experimental validation
using a library management case study. The approach is found to improve test efficiency
by finding bugs responsible for severe failures and also finding more faults than two
risk analysis approaches used for comparison.

4.4.3 Approaches with main focus on test-case generation

In the approach provided by Nazier et al. [109] and Wendland et al. [159], test cases are
generated automatically from models with risk annotations. Test-case generation is also
the focus of Kloos et al. [84] and Zimmermann et al. [174]. Kloos et al. [84], Nazier et
al. [109], and Zimmermann et al. [174] focus on safety-critical systems, while Wendland
et al. [159] emphasize the generality of their approach to cover critical situations in any
kind of system.

For Wendland et al. [159], the starting point is a requirements specification formal-
ized as an integrated behavior tree. The tree is then augmented with risk information
combining likelihood and severity into risk levels. For each risk exposure, an appro-
priate test directive should be identified by experienced personnel, describing precisely
the test derivation technique and strategy to be used for each risk level. The test
themselves can then be generated automatically by the use of a tool.

In the approach provided by Nazier et al. [109], fault trees are used as system
models, and state charts as system behavior models. Risk analysis information in the
form of expected causes of failures are extracted from fault tree analysis and associated
with system state chart elements. From this, a risk-driven test model is generated
automatically, and verified to be correct, complete and consistent using a model checker.
The model checking is also used to generate the risk-driven test cases.

48

4.4 Risk-driven testing

Fault tree analysis is also used by Kloos et al. [84] to identify event sets in order of
descending risk. A detailed algorithm is provided for using the event sets to transform
the base model, a finite state automaton describing possible system situations, into a
test model from which test cases are generated.

In the approach provided by Zimmermann et al. [174], the main idea is to use
systematic construction or refinement of risk-driven test models so that only critical
test cases can be generated. The approach uses state charts and model-based statistical
testing with Markov chains test models to describe the simulation and system under
test.

Tool support is important for both Nazier et al. [109] and Wendland et al. [159].
While Nazier et al. [109] has implemented a prototype tool, Wendland et al. [159] assert
that all features discussed in the paper will be integrated in their existing modeling
environment tool Fokus!MBT using UML profiles.

The approach by Kloos et al. [84] is not supported by a dedicated tool, but they
make use of some existing tools for part of their evaluation. The approach is demon-
strated on a modular production system, where it is found that the approach provides
a significant increase in the coverage of safety functions.

No tool support is mentioned in the approach provided by Zimmermann et al. [174].
The approach is tested on a railway control system, and found to be successful in
generating only critical test cases which represent high risk.

4.4.4 Approaches with main focus on test-case analysis

The approaches proposed by Chen et al. [27, 28], Entin et al. [38], and Stallbaum et
al. [145] focus on analyzing the generated test cases to select and prioritize the most
critical ones based on risk. For Chen et al. [27, 28] and Stallbaum et al. [145], UML
activity diagrams are used as the basic model from which test cases are generated,
whereas Entin et al. [38] use state charts.

For each test case, Chen et al. [27, 28] start by estimating the cost based on the
consequence of a fault for the customer or the vendor, and then deriving what the
authors refer to as the severity probability for each test case based on the number
and severity of defects. Finally, risk exposure (cost multiplied with probability of
occurrence) is calculated for each test case, before those with the highest risk exposure
are selected for safety tests.

Stallbaum et al. [145] use the test model first for generating unordered test case
scenarios, and then for ordering these based on the risk information provided in the
model. Risk prioritization may be based on the total risk score, that is, the sum of the
risks of all actions covered by the test case scenario, or by only considering risks not
already covered by previously chosen test case scenarios.

Markov chains are used for the test case generation in the approach provided by
Entin et al. [38], which also uses the prioritization algorithm of Stallbaum et al. [145]
to prioritize previously generated test suites.

Of the approaches outlined in this section, only the one by Stallbaum et al. [145] is
supported by a dedicated prototype tool, but all have been tested on examples taken
from real systems. Using a subset of IBM WebSphere Commerce 5.4, the approach
provided by Chen et al. [27, 28] is found to be more effective and cover more critical
test cases with a slightly better case coverage. A significant increase in coverage is
reported by Entin et al. [38], where it is also mentioned that much effort was needed

49

State of the art

to convince various interest groups (e.g., software developers and management) of the
benefits of model-based testing. The approach provided by Stallbaum et al. [145] is
evaluated on a real income tax calculation example, and the approach is found to enable
early detection of critical faults.

4.4.5 Approaches based on automatic source code analysis

A different kind of approach is provided by Hosseingholizadeh [64] andWong et al. [162],
which are based on automatic source code analysis. The approach by Wong et al. [162]
is one of the few ones which focus on test-driven risk analysis. Risk of code is described
as the likelihood that a given function or block within source code contains a fault. A
fault within source code may lead to execution failures, such as abnormal behavior or
incorrect output. The risk model is updated based on metrics related to both the static
structure of code as well as dynamic test coverage. A more complex static structure
leads to higher risk, while more thoroughly tested code has less risk.

The approach suggested by Hosseingholizadeh [64] is based on the approach pro-
vided by Wong et al. [162], but focuses on risk-driven testing aiming at test prioritiza-
tion and optimization. More structural observations are added to the analysis process
in the approach suggested by Wong et al. [162], such that, for example, errors in loop
conditions result in a higher risk for the affected code block.

The approaches by both Hosseingholizadeh [64] and Wong et al. [162] are supported
by prototype tools for automating the source code analysis. Even though the approach
suggested by Wong et al. [162] has been tested on a real program, where the program
faults were found to be located in the blocks and functions identified as high risk, the
authors are careful to conclude with respect to the generalizability of the results.

4.4.6 Approaches targeting specific programming paradigms

The risk-driven testing approach given by Kumar et al. [86] is targeted towards aspect-
oriented programming (AOP), arguing that AOP solutions typically have an enterprise
or platform level scope and, therefore, AOP errors have a much larger impact than er-
rors in traditional localized code. The approach consists of a model for risk assessment,
an associated fault model, and AOP testing patterns. The risk model is intended to be
used for high-level business decisions to determine the role of AOP in the enterprise or
in a particular project. Using the fault model and the test framework, test plans and
test cases can be created to mitigate risk identified using the model. The framework
supports both white-box and black-box testing, using unit and regression testing. The
existing AOP testing patterns are targeted towards service-oriented architectures and
enterprise architecture solutions.

A more low-level approach is provided by Rosenberg et al. [123], identifying the most
important classes to test in an object-oriented program. The probability of failure of a
portion of code (that is, a class) is determined by its complexity. For this, Rosenberg
et al. [123] use six metrics identified by the Software Assurance Technology Center at
NASA Goddard Space Flight Center. These metrics include both internal complexity
(for example, number of methods in the class and minimum number of test cases
needed for each method), the structural position of the class (for example, depth in
inheritance tree and number of immediate subclasses), and relationship to other classes
(for example, coupling and the number of methods that can be invoked from the

50

4.4 Risk-driven testing

outside). For all these metrics, threshold values are defined, and a class is said to
have high risk if at least two of the metrics exceed the recommended limits. If further
prioritization is needed, it is up to the project to determine the criticality of each of
the high-risk classes.

The approach provided by Kumar et al. [86] is said to have been used with reason-
ably large customers, but this is not described in the paper. Empirical assessment is
not documented by Rosenberg et al. [123] either. Neither one of the two approaches
seem to be supported by a dedicated tool.

4.4.7 Approaches targeting specific applications

Bai et al. [8,9] show an approach for risk-driven group testing of semantic web services.
Test cases are grouped according to their risk level, and the groups with highest risk
are tested first. Services that do not meet a defined threshold are ruled out. In this
way, a large number of unreliable web services are removed early in the testing process,
reducing the total number of executed tests. In the risk analysis, failure probability
and importance are analyzed from three aspects: ontology data, service, and composite
service. In addition, a run-time monitoring mechanism is used to detect dynamic
changes in the web services and adjust the risk accordingly. The approach is evaluated
in an experiment using the BookFinder OWL ontology to compare risk-driven testing
with random testing. The experiment concluded that the risk-driven testing approach
greatly reduced the test cost and improved test efficiency.

Web services are also the focus in the framework of Casado et al. [23, 24], where
the aim is to test the advanced, long-lived transactions used in web services. The
conceptual framework is hierarchically organized into four levels, consisting of (1) a
method to define functional transactional requirements, (2) division into subsystems
of transaction system properties, (3) applying risk analysis for predefined properties of
web services transactions, and (4) applying testing techniques to generate test scenarios
and mitigate risks. The most developed part of the framework is the use of fault tree
analysis to perform risk analysis for the recovery property. This analysis is exemplified
using a travel agency example, but no empirical evaluation is reported.

4.4.8 Approaches aiming at measurement in the sense that
measurement is the main issue

The approach suggested by Schneidewind [133] explicitly supports both risk-driven
testing and test-driven risk analysis. With a focus on reliability, the paper describes a
risk-driven reliability model and a testing process where the risk of software failure is
used to drive test scenarios and reliability predictions. Both consumer and producer
risks are considered. In addition to comparing empirical values of risk and reliability
to specified threshold values, emphasis is placed on evaluating also the model that
predicts risk and reliability.

The approach provided by Schneidewind [133] does not seem to be supported by a
dedicated tool, but the approach is applied to a real application involving the NASA
space shuttle flight software. For this application, all tests are passed with the con-
clusion that this safety critical software has been accepted. The predicted consumer
reliability is compared to the actual reliability, and also to predicted reliability using

51

State of the art

another approach (Yamada S Shaped Model), with favorable results for the approach
suggested by Schneidewind [133].

The approach suggested by Souza et al. [141, 142] defines a set of risk-driven test-
ing metrics to control and measure (i) the risk-driven test cases, (ii) the risk-driven
testing activities, and (iii) the impact and advantages of using risk-driven testing in an
organization. The risk-driven testing process, together with the proposed metrics, is
tested in a real case study involving developers of an Eclipse-based tool environment
for automatic development of simulators. The results are positive, concluding that for
this application, the proposed approach was able to find the most important defects
earlier than a more traditional functional approach to testing, thus saving costs. The
case study also demonstrated the need for better tools, and the authors report to be
working on such a tool, supporting in particular risk management which test engineers
find more difficult to perform than testing.

4.5 Risk-driven security testing

Based on the literature review, we identified six approaches that focus on risk-driven
security testing. These are the approaches suggested by Xu et al. [166], Murthy et
al. [107], Zech et al. [171, 172], Botella et al. [15], Großmann et al. [57, 58], and See-
husen [135].

In the approach suggested by Xu et al. [166], formal threat models in the form of
predicate/transition nets are used to generate the security tests. These are then con-
verted into executable test code using a model-implementation mapping specification.
The approach is not supported by a dedicated tool. However, the approach is applied
in two case studies based on real-world systems: a web-based shopping system and
a file server implementation. For both systems, multiple security risks were found,
and the approach was also able to kill the majority of the security mutants injected
deliberately.

The approach provided by Murthy et al. [107] focuses on how to introduce risk-
driven testing principles into application security testing. The approach combines best
practices from various areas like NIST and OWASP to model threat scenarios and test
cases. The paper reports on a case study comparing traditional testing with risk-driven
testing on a gaming application. Risk-driven testing was found to provide savings in
time, cost, and resource usage.

Security testing is also the focus of Zech et al. [171,172], targeting especially cloud
computing environments. This is a model-based approach to risk-driven testing, em-
phasizing the negative perspective where the main goal is not to assure system validity
but rather to show its deficiency. Model-to-model transformations are used from a
system model to a risk model and then to a misuse-case model. In addition, testing is
performed by run-time model execution, instead of the more traditional approach of
generating executable test code from the models. No empirical evaluation is reported.
The approach is supported by a dedicated tool, developed as an Eclipse plug-in.

The approaches suggested by Botella et al. [15], Großmann et al. [57, 58], and
Seehusen [135] identify security risks by making use of the CORAS risk analysis lan-
guage [91]. The risk models contain threat scenarios which are used in these approaches
to identify high-level test procedures. The test procedures are in turn used to design
concrete test cases. Seehusen [135] provides guidelines explaining how threat scenarios

52

4.5 Risk-driven security testing

in CORAS risk models may be used as a basis to identify high-level test procedures.
Botella et al. [15] and Großmann et al. [57,58] employ a similar strategy as suggested

by Seehusen [135] in order to identify high level test procedures based on the threat
scenarios represented in a CORAS risk model. Then, for each test procedure, they
identify an associated test pattern. While Botella et al. [15] make use of UML class
diagrams, object diagrams, and state machines to express the test model (instantiation
of the test pattern), Großmann et al. [57,58] incorporate guidelines for how certain test
cases should be modeled, as part of the test pattern instantiation (referred to as test
design strategy).

The approach provided by Seehusen [135] is supported by a tool for the purpose
of creating CORAS risk models. Botella et al. [15] make use of the tool provided by
Seehusen [135] for the purpose of risk modeling, while they use the tool CertifyIt for
test-case design and execution. The approach provided by Großmann et al. [57, 58]
is supported by a tool framework which they use to create risk models (using the
CORAS notation), as well as models representing test cases which are in turn used for
test execution.

53

State of the art

54

Chapter 5
Summary of contributions

This thesis provides three kinds of contributions. First, it provides a new artifact in
terms of a risk analysis language and a method for risk-driven security testing. The risk
analysis language and the method for risk-driven security testing are tightly integrated,
and we refer to them collectively as the CORAL approach. Second, it provides empirical
studies related to risk-driven security testing and test-driven security risk analysis, in
terms of industrial case studies. Third, it provides an overview of state of the art
approaches that combine risk analysis and testing, in terms of a systematic literature
review.

The approaches included in the systematic literature review are approaches that
combine risk analysis and testing in general. That is, in addition to approaches ad-
dressing security, we also reviewed approaches that address other qualities, such as
safety and reliability. We did this in order to get a holistic picture of the domain. The
insight obtained from the literature review was mainly used to support the development
of the CORAL approach. However, the systematic literature review is also a contribu-
tion on its own because it may serve as a basis for examining various approaches that
combine risk analysis and testing, and it may serve as a resource for identifying the
appropriate approach to use.

The industrial case studies were also carried out to support the development of the
CORAL approach. Based on problems identified in the systematic literature review, we
developed possible solutions which we tried out in industrial case studies. In total, we
carried out three case studies, and from each case study we gathered new information
which eventually led to the creation and further improvement of the CORAL approach.
However, the case studies are also contributions on their own because they provide
insight, that are general in nature, about the combination of risk analysis and testing
in practice.

The reminder of this chapter is organized as follows. Section 5.1 presents an
overview of the CORAL approach, while Sections 5.2 and 5.3 present in more detail
the risk analysis language and the method for risk-driven security testing, respectively.
Section 5.4 presents an overview of the industrial case studies, and finally, Section 5.5
presents an overview of the systematic literature review.

55

Summary of contributions

5.1 The CORAL approach

The CORAL approach consists of a risk analysis language and a method for risk-driven
security testing. The approach is specialized for security testers, and its purpose is
to help security testers to systematically carry out risk-driven security testing. As
illustrated in Figure 5.1, the CORAL risk analysis language lies at the core of the
approach, and it is applied within the CORAL method for risk-driven security testing.
The risk analysis language is a modeling language based on UML interactions [110].
There are two main reasons for this. First, UML interactions are among the top three
modeling languages within the model-based testing community [34], and often used
for testing purposes [10, 111, 153]. Second, in the risk analysis language, we represent
risk-related information by annotating the constructs inherited from UML interactions
with appropriate graphical icons. By annotating the constructs inherited from UML
interactions with risk-related information, we bring risk analysis to the work bench
of testers without the burden of a separate risk analysis language, thus reducing the
effort needed to adopt the approach. The risk analysis language consists of the following
three components: a graphical notation, an abstract syntax, and a natural-language
semantics.

Figure 5.1: The overall relationship between the CORAL risk analysis language and
the CORAL method for risk-driven security testing.

The method for risk-driven security testing consists of seven steps that are sup-
ported by the risk analysis language. The seven steps of the method are: test planning,
threat scenario risk identification, threat scenario risk estimation, threat scenario risk
evaluation, threat scenario test case design, test execution, and test incident reporting.

The graphical notation of the risk analysis language provides the necessary con-
structs for identifying, estimating, and evaluating security risks. The graphical nota-
tion is also used for designing security test cases. Moreover, the models representing
the test cases are used for test execution, as well as for reporting test results.

The abstract syntax provides a set of rules, in terms of a context-free grammar,
that defines the correct combinations of the constructs in the CORAL risk analysis
language. The syntax is useful for modeling interactions that are syntactically correct
in the CORAL language.

56

5.2 The CORAL risk analysis language

The natural-language semantics provides a set of rules for schematically translating
threat scenarios modeled using the CORAL language into English prose. Testers may
use the natural-language semantics to clearly and consistently document, communicate
and analyze security risks.

5.2 The CORAL risk analysis language

In this section we give a more detailed explanation of the CORAL risk analysis language
with respect to its graphical notation, abstract syntax, and natural-language semantics.

5.2.1 Graphical notation

The graphical notation of the CORAL language is mainly based on the graphical
notation of UML interactions [110]. However, the graphical icons that are used to
represent risk-related information in the CORAL language are based on corresponding
graphical icons in the CORAS risk analysis language [91]. This is a deliberate design
decision because the graphical icons in CORAS are empirically shown to be cognitively
effective [139].

The various constructs in the CORAL language can be grouped into five categories:
diagram frame, lifelines, messages, risk-measure annotations, and interaction operators.

Figure 5.2: Graphical notation for the diagram frame.

Diagram frame. The diagram frame is the frame in which an interaction is modeled.
An interaction may represent the system under test, its environment, as well as threat
scenarios that the system under test and its environment is exposed to. A threat sce-
nario includes the threat causing the threat scenario, the aspect of the system under test
exposed to the threat scenario, the unwanted incident caused by the threat scenario,
and the security asset harmed by the unwanted incident. Figure 5.2 illustrates the
graphical notation for the diagram frame. The diagram frame is graphically equivalent
to the diagram frame in UML interactions [110, p. 516]. However, there is one main
difference between the diagram frame used in the CORAL language and the diagram
frame used in UML interactions. In UML interactions, different kinds of interaction

57

Summary of contributions

diagrams may be represented within the diagram frame, such as sequence diagrams,
communication diagrams, interaction overview diagrams, and timing diagrams. In the
CORAL approach, only interaction sequence diagrams constructed using the CORAL
language may be represented. No other constructs may be used.

Similar to UML interactions, the keyword sd is used to denote that the diagram
is a sequence diagram. The keyword sd is followed by the name of the diagram, that
is, an abstract description of the interaction modeled within the diagram frame. The
keyword and the name of the diagram is placed in a pentagon in the upper left corner
of the diagram frame, as illustrated in Figure 5.2.

Lifelines. According to UML, a lifeline represents an individual participant in an
interaction [110, p. 504]. As illustrated in Figure 5.3, we distinguish between five
different lifelines: general lifeline, deliberate threat lifeline, accidental threat lifeline,
non-human threat lifeline, and asset lifeline.

Figure 5.3: Graphical notation for lifelines.

The general lifeline is graphically equivalent to a lifeline in UML interactions. In
the CORAL language, a general lifeline is used to model the system under test, as well
as the environment interacting with the system under test. The name of the lifeline
is placed inside the rectangle of the lifeline as illustrated in Figure 5.3. The naming
convention of a general lifeline is equivalent to the naming convention of lifelines in
UML interactions [110, p. 505].

58

5.2 The CORAL risk analysis language

The lifelines representing threats are used to model threats that may initiate threat
scenarios, which in turn may cause security risks in the system under test. Inspired
by CORAS [91], we distinguish between three kinds of threats: deliberate threat,
accidental threat, and non-human threat. A deliberate threat is a human threat that
has malicious intents. For example, a hacker, or a malicious employee in a company
or an organization (insider). An accidental threat is also a human threat, but this
threat is different in the sense that it does not have malicious intents. For example, a
system administrator with low security knowledge may carry out an action, with good
intentions, but still cause a security risk without realizing it. The non-human threat is
a threat that may be anything else except a human. For example, a power failure in a
server hall may cause problems with respect to the availability of a system. Another
example is a security bug in a source code that compromises the integrity of certain data
when executed. In practice, the distinction between a human threat and a non-human
threat is sometimes not straight forward. For example, if a hacker exploits a security
bug in a source code in order to attack a system, then the threat is the hacker. On the
other hand, if the security bug lies dormant in the source code and is triggered at some
point during system execution, then the threat is the bug in the source code, that is, a
non-human threat. In other words, the distinction between a human threat and a non-
human threat depends on the viewpoint from which a threat is regarded. The name of
a threat is placed below the icon representing the threat as illustrated in Figure 5.3.
The name of a threat typically represents a threat profile which is described by the
tester. A threat may, for example, be named “hacker” (deliberate threat), “database
administrator” (accidental threat), or “computer virus” (non-human threat).

During the steps for threat scenario risk identification, estimation, and evaluation,
we assess security risks that may harm certain security assets we want to protect. That
is, the security risk assessment is carried out with respect to certain security assets that
are regarded important and that need protection. In the CORAL language, we use the
asset lifeline to model and represent a security asset. The name of a security asset
is placed below the moneybag icon representing the asset as illustrated in Figure 5.3.
Examples of security assets are “availability of customer data” and “integrity of bank
transactions”. What is meant by “customer data” and “bank transactions” has to be
described by the tester.

Messages. According to UML, a message defines a particular communication be-
tween lifelines of an interaction [110, p. 505]. UML interactions distinguish between
complete, lost and found messages. Complete messages have both a sender and a re-
ceiver lifeline. A lost message has a sender lifeline, but not a receiver lifeline. A found
message has a receiver lifeline, but not a sender lifeline. The graphical notation for
these messages are different. However, lost and found messages are unnecessary in
most interaction models and are used in rare situations [127].

Furthermore, UML interactions categorize complete messages into synchronous and
asynchronous messages. The synchronous and asynchronous messages have different
graphical notations. A synchronous message is used to call an operation, and the
lifeline transmitting a synchronous message always expects a responding message. An
asynchronous message, on the other hand, is used to send a signal which may or
may not be responded. Synchronous messages are therefore syntactically more strict
than asynchronous messages because they require a corresponding response message
for each operation call. However, at a logical level, sending a signal and calling an

59

Summary of contributions

operation are similar. Both types of messages involve a communication from a sender
to a receiver [127].

In the CORAL language, we are interested in expressing complete interactions be-
tween two lifelines, in terms of a communication from a sender to a receiver. We
therefore make use of complete messages in the CORAL language. Moreover, because
synchronous and asynchronous messages are similar at a logical level, it is not necessary
to express both in the CORAL language. For this reason, we choose to treat all mes-
sages in the CORAL language as asynchronous messages. The graphical notation for
messages in the CORAL language are therefore based on the graphical notation for the
asynchronous message in UML interactions [110, p. 518]. As illustrated in Figure 5.4,
we distinguish between five messages in the CORAL language: general message, new
message, altered message, deleted message, and unwanted incident message.

Figure 5.4: Graphical notation for messages.

The general message is graphically equivalent to the asynchronous message in UML
interactions [110, p. 518], and it is used to model the expected behavior between
lifelines representing the system under test and the environment interacting with the
system under test, that is, the interaction between general lifelines. Recall that general
lifelines are used to model the system under test and its environment. The signature
of a message in the CORAL language, that is, the content of a message, is placed
above the arrow representing the message, as illustrated in Figure 5.4. Signatures are
written using the same convention as given for messages in UML interactions [110, p.
507]. In addition, we represent the risk related information, in the signatures, using a
red-colored, bold, and italic font to distinguish between the expected behavior and the
risk-related information.

The messages representing a new, an altered, a deleted and an unwanted incident
message are used in combination to represent threat scenarios. A new message is a
message that is initiated by a threat. This may be a deliberate human threat, an
accidental human threat, or a non-human threat. A new message is represented by
a red triangle which is placed at the transmitting end of the message. An altered
message is a message in the system under test that has been altered by a threat to
deviate from its expected behavior. Altered messages are represented by a triangle with
red borders and white fill. A deleted message is a message in the system under test that
has been deleted by a threat. Deleted messages are represented by a triangle with red

60

5.2 The CORAL risk analysis language

borders and a red cross in the middle of the triangle. Finally, an unwanted incident is a
message modeling that an asset is harmed or its value is reduced. Unwanted incidents
are represented by a yellow explosion sign.

Risk-measure annotations. The risk-measure annotations are used to annotate
messages for the purpose of estimating and evaluating security risks. As illustrated in
Figure 5.5, we distinguish between three kinds of risk-measure annotations: frequency,
conditional ratio, and consequence.

Figure 5.5: Graphical notation for risk-measure annotations.

The frequency annotation represents either the frequency of the transmission or
the frequency of the reception of a message. The graphical notation of a frequency
annotation is equivalent to the graphical notation of a comment generally used in
UML [110, p. 56]. The connector on the frequency annotation is attached on either
the transmission end or the reception end of a general message, new message, or an
altered message. It may also be attached on the transmission end of an unwanted
incident message. In Section 5.2.2 we define the syntax of the CORAL language, and
we explain why the frequency annotation cannot be attached on a deleted message, or
on the reception end of an unwanted incident message. The frequency is written inside
the comment frame, in terms of an interval followed by a time unit, as illustrated in
Figure 5.5.

The conditional ratio annotation represents the ratio by which a message is received,
given that it is transmitted. The conditional ratio annotation may be attached on a
general message, a new message, or an altered message. The conditional ratio may not
be attached on a deleted message and an unwanted incident message. The reason for
this is explained in Section 5.2.2. The conditional ratio annotation is attached below
the mid-center of the message.

The consequence annotation represents the consequence an unwanted incident has
on an asset. Recall that an unwanted incident is represented by an unwanted incident
message. The consequence annotation may only be attached on unwanted incident
messages. The reason for this is explained in Section 5.2.2. Similar to the conditional
ratio annotation, the consequence annotation is also attached below the mid-center of
the message.

61

Summary of contributions

Interaction operators. In UML interactions, messages may be combined in rectan-
gles containing special keywords in order to convey a particular relationship between
the combined messages. The rectangle encapsulating the messages is referred to as a
combined fragment, while the keyword is referred to as an interaction operator. An in-
teraction operator specifies the operation that defines the semantics of the combination
of messages [110, p. 482]. As illustrated in Figure 5.6, the CORAL language makes use
of four interaction operators inherited from UML interactions: potential alternatives
(keyword alt), referred interaction (keyword ref), parallel execution (keyword par),
and loop (keyword loop). All interaction diagrams are by default encapsulated within
an implicit combined fragment that makes use of an interaction operator named weak
sequencing (keyword seq) [110, p. 482]. The seq operator is the implicit composition
mechanism of interactions. However, because the seq operator is always implicitly
included in all interaction models, it is generally not modeled explicitly. We therefore
describe the graphical notation of the aforementioned interaction operators.

Figure 5.6: Graphical notation for interaction operators.

Depending on the keyword, the combined fragment may have one or more com-
partments in which messages may be modeled. The compartments are referred to as
interaction operands. If the keywords alt or par are used, then the combined fragment
may consist of one or more operands. If the keywords ref or loop are used, then the
combined fragment may only consist of one operand. However, the operand in ref does
not contain messages, but rather text describing the name of the interaction that is
referred to, as illustrated in Figure 5.6.

According to UML, the interaction operator potential alternatives (alt) designates
that the operands represent a choice of behavior [110, p. 482]. The UML standard
requires that the chosen operand must have an explicit or implicit guard expression
that evaluates to true. An implicit true guard is implied if the operand has no ex-
plicit guard. In the CORAL language, we currently allow only the usage of implicit
true guards. We therefore do not model guards when using the interaction operator

62

5.2 The CORAL risk analysis language

potential alternatives.
According to UML, the interaction operator parallel execution (par) designates a

parallel merge between the behaviors of the operands. A parallel merge defines a set
of traces that describe all the ways that events of the operands may be interleaved
without obstructing the order of the events within the operands [110, p. 483].

According to UML, the interaction operator loop designates that the operand rep-
resents a loop. The keyword loop, which is placed in a pentagon in the upper left corner
of the diagram frame (see Figure 5.6), may be followed by no integers, one integer, or
a pair of a maximum and a minimum integer. If the pentagon only consists of the
keyword loop, then the operand represents a loop with zero as lower bound and infin-
ity as upper bound. If loop is accompanied by an integer int , the operand represents
a loop that loops exactly int times. Finally, if loop is accompanied by two integers,
minint and maxint , the operand represents a loop that loops minimum minint times
and maximum maxint times [110, pp. 485-486].

According to UML, an interaction use (ref) refers to an interaction. The interac-
tion use is shorthand for copying the contents of the referred interaction where the
interaction use is. To be accurate, the copying must take into account substituting
parameters with arguments and connect the formal gates with the actual ones [110, p.
501].

5.2.2 Abstract syntax

The syntax of the CORAL risk analysis language is defined in Extended Backus-Naur
Form [69]. The syntax defines a set of rules which explain how we may combine the
constructs in the CORAL language in order to model syntactically correct interactions.

Throughout the definition of the syntax, we use different fonts to distinguish be-
tween the non-terminals and the terminals. Non-terminals are written in fontmath mode,
while terminals are written in font Sans Serif. The terminals written in font Bold Sans
Serif represent the type of a syntactical element. Furthermore, we make use of eight
undefined terms in the grammar; identifier , asset lifeline, int , minint , maxint , exact ,
interval , and time unit . The reader is referred to Appendix A in Paper 3 for the ex-
planation of these terms. We present the syntax by grouping the syntactical elements
that are closely related; risk interaction, messages, lifelines, risk-measure annotations,
and interaction operators.

Risk interaction. The term risk interaction is a collective term for the various
constructs in the CORAL language.

risk interaction = message | weak sequencing | potential alternatives
| referred interaction | parallel execution | loop;

Messages. In the following, we define the syntax of the five different kinds of mes-
sages in the CORAL language: general, new, altered, deleted, and unwanted incident
messages. The collective term for general, new and altered messages is risky message,
the term for a deleted message is deleted message, and the term for an unwanted
incident message is unwanted incident message.

63

Summary of contributions

message = risky message | unwanted incident message
| deleted message;

risky message = rm(identifier , transmitter lifeline, receiver lifeline,
risky message category , transmission frequency ,
conditional ratio, reception frequency);

unwanted incident message = uim(identifier , transmitter lifeline, asset lifeline,
transmission frequency , consequence);

deleted message = dm(identifier , transmitter lifeline,
receiver lifeline);

risky message category = general | new | alter;

In Section 5.2.1, we highlighted three constraints with respect to risk-measure an-
notations on messages. As reflected in the syntax, the constraints are the following.

1. Frequency annotations may not be attached on a deleted message, nor may it be
attached on the reception end of an unwanted incident message.

2. The conditional ratio may not be attached on a deleted message or an unwanted
incident message.

3. The consequence annotation may only be attached on unwanted incident mes-
sages.

The reason to the first constraint is that a deleted message in the CORAL language
represents the complete deletion of a message. That is, if a message is deleted, then
it is not transmitted and therefore not received. It therefore does not make sense to
estimate how often a message is not received, given that it is not transmitted. A
message is either deleted, or it is not. Also, in the context of testing, we are interested
in testing the messages that may cause the deletion of other messages.

We see from the syntax that the lifeline receiving an unwanted incident message is
an asset lifeline. The asset lifeline is modeled in an interaction to represent the asset
that is harmed by an unwanted incident. The frequency attached on the transmission
end of an unwanted incident conveys how often an unwanted incident harms a certain
security asset. This information needs to be represented only once. It is therefore not
necessary to represent the same information by attaching a frequency on the reception
end of an unwanted incident.

With respect to the second constraint, a conditional ratio may not be attached
on a deleted message because the deleted message represents a complete deletion, as
described above. A conditional ratio is the ratio by which a message is received, given
that it is transmitted. Thus, it may only be attached on general, new, and altered
messages.

With respect to the third constraint, as mentioned above, an unwanted incident
message represents an unwanted incident that harms a security asset. In order to
represent the impact of an unwanted incident, that is, to what degree the unwanted
incident harms a security asset, we annotate the unwanted incident message with a
consequence value. Thus, consequence values may not be attached on other messages
than unwanted incident messages.

64

5.2 The CORAL risk analysis language

Lifelines. In the following, we define the syntax of the lifelines in the CORAL lan-
guage. The lifeline transmitting a message and the lifeline receiving a message may be
the same kind of lifeline. It may also be identical, that is, a lifeline may send a message
to itself.

transmitter lifeline = general lifeline | deliberate threat lifeline
| accidental threat lifeline
| non-human threat lifeline;

receiver lifeline = general lifeline | deliberate threat lifeline
| accidental threat lifeline
| non-human threat lifeline;

general lifeline = gl(identifier);

deliberate threat lifeline = dtl(identifier);

accidental threat lifeline = atl(identifier);

non-human threat lifeline = ntl(identifier);

Risk-measure annotations. In the following, we define the syntax of the risk-
measure annotations in the CORAL language. The term exact refers to an exact
value, while the term inerval refers to an interval. The reader is referred to Appendix
A in Paper 3 for examples and further explanation.

transmission frequency = frequency ;

reception frequency = frequency ;

frequency = f(exact , time unit) | f(interval , time unit);

conditional ratio = cr(exact) | cr(interval);
consequence = c(identifier);

Interaction operators. In the following, we define the syntax of the interaction
operators in the CORAL language. In Extended Backus-Naur Form, “{ }−” means an
ordered sequence of one or more repetitions of the enclosed element [69]. This means
that the interaction operators seq, alt and par may consist of an ordered sequence of
one or more risk interactions. The term risk interaction is defined above.

weak sequencing = seq({risk interaction}−);
potential alternatives = alt({risk interaction}−);
referred interaction = ref(identifier);

parallel execution = par({risk interaction}−);
loop = loop(risk interaction) | loop(int , risk interaction)

| loop((minint , maxint), risk interaction);

5.2.3 Natural-language semantics

Situations may arise where the information conveyed by interactions modeled using the
CORAL language are interpreted differently by different testers. Thus, in order to help
software testers to clearly and consistently document, communicate and analyze risks,

65

Summary of contributions

we define a structured approach to generate the semantics of interactions constructed
by the CORAL language in terms of English prose.

For each terminal representing the type of a syntactical element defined in Sec-
tion 5.2.2, there is an associated English-prose semantics defined in this section. The
English-prose semantics is defined by a function � � that takes a syntactical element as
input, and provides English prose of the syntactical element. Similar to Section 5.2.2,
we group the syntactical elements that are closely related.

Messages. In the following, we define the English-prose semantics for the messages
in the CORAL language. Let the syntactical variables

• id range over identifier

• t range over transmitter lifeline

• r range over receiver lifeline

• al range over asset lifeline

• f range over frequency

• cr range over conditional ratio

• c range over consequence

�rm(id , t , r , general, f1, cr , f2)� = The message id is transmitted from �t� to �r�
�f1�, the transmission leads to its reception �cr�,
and the reception occurs �f2�.

�rm(id , t , r , new, f1, cr , f2)� = The new message id is transmitted from �t� to �r�
�f1�, the transmission leads to its reception �cr�,
and the reception occurs �f2�.

�rm(id , t , r , alter, f1, cr , f2)� = The altered message id is transmitted from �t� to �r�
�f1�, the transmission leads to its reception �cr�,
and the reception occurs �f2�.

�uim(id , t , al , f , c)� = The unwanted incident id occurs on �t� �f �,
and impacts asset al �c�.

�dm(id , t , r)� = The message id transmitted from �t� to �r� is deleted.

Lifelines. In the following, we define the English-prose semantics for the lifelines in
the CORAL language. Let the syntactical variable

• id range over identifier

66

5.2 The CORAL risk analysis language

�gl(id)� = id

�dtl(id)� = the deliberate threat id

�atl(id)� = the accidental threat id

�ntl(id)� = the non-human threat id

Risk-measure annotations. In the following, we define the English-prose semantics
for the risk-measure annotations in the CORAL language. Let the syntactical variables

• id range over identifier

• e range over exact

• i range over interval

• tu range over time unit

Undefined values are represented by ⊥.

�f(e, tu)� = with frequency e per tu
�f(i , tu)� = with frequency interval i per tu
�f(⊥, ⊥)� = with undefined frequency

�cr(e)� = with conditional ratio e
�cr(i)� = with conditional ratio interval i

�cr(⊥)� = with undefined conditional ratio

�c(id)� = with consequence id
�c(⊥)� = with undefined consequence

Interaction operators. In the following, we define the English-prose semantics for
the interaction operators in the CORAL language. Let the syntactical variables

• d range over risk interaction

• id range over identifier

• x range over int

• a range over minint

• b range over maxint

The pair of square brackets, ‘[’ and ‘]’, is part of the resulting English-prose semantics
and it is used to enclose an operand.

67

Summary of contributions

�seq(d1, d2, .., dm)� = [�d1�] weakly sequenced by [�d2�] weakly sequenced by ...
weakly sequenced by [�dm�]

�alt(d1, d2, .., dm)� = either [�d1�] or [�d2�] or ... or [�dm�]

�ref(id)� = Refer to interaction: id .

�par(d1, d2, .., dm)� = [�d1�] parallelly merged with [�d2�] parallelly merged with ...
parallelly merged with [�dm�]

�loop(d)� = loop minimum zero times and maximum infinitely [�d�]

�loop(x , d)� = loop exactly x times [�d�]

�loop((a, b), d)� = loop minimum a times and maximum b times [�d�]

5.3 The CORAL method for risk-driven security

testing

As illustrated in Figure 5.7, the CORAL method for risk driven security testing consists
of seven steps. We also see from the figure that the CORAL risk analysis language
lies at the core of the method. In order to initiate the process for risk-driven security
testing, the tester needs to gather the necessary description of the system under test.
This is used as input to the first step. The description of the system under test may
be in form of system diagrams, use case documentation, system manuals, source code,
executable versions of the system, and so on.

Based on the system description given as input to Step 1, we plan the risk-driven
security testing process, prepare the model of the system under test, identify secu-
rity assets we need to protect, define frequency scales, define consequence scales, and
construct the risk evaluation matrix based on the frequency and consequence scales.
The system under test is modeled as UML interactions by making use of the CORAL
language.

In Step 2, we take as input the model of the system under test, as well as the
security assets identified in Step 1. Based on these inputs, we first identify security
risks by analyzing the models with respect to the security assets. Security risks are
represented by unwanted incident messages. Then we identify threat scenarios that
may cause the security risks. The output of this step is a set of threat scenarios that
the system under test is exposed to.

In Step 3, we take the threat scenarios identified in Step 2 as input. In addition,
we make use of the frequency and consequence scales defined in Step 1. Based on these
inputs, we estimate the frequency of the messages causing security risks. As part of the
frequency estimation, we also estimate the conditional ratio between the transmission
of a message and the reception of a message. Based on these estimates, we calculate the
frequency of security risks. Moreover, we estimate the consequence of security risks in
terms of impact on security assets. The estimates are modeled by using the constructs
related to risk-measure annotations in the CORAL language. The output of this step
is the set of threat scenarios given as input to the step, updated with risk-measure
annotations.

68

5.3 The CORAL method for risk-driven security testing

Figure 5.7: The CORAL method for risk-driven security testing.

In Step 4, we take the estimated threat scenarios as input. Based on this input, we
evaluate the risks caused by the threat scenarios. First, we plot the risks into the risk
evaluation matrix with respect to their estimated frequency and consequence values.
Second, we specify suspension criteria, which are used as a basis for selecting the most
severe security risks that need to be tested. According to the software testing standard
ISO/IEC/IEEE 29119 [73], suspension criteria are used to stop all or a portion of the
testing activities. Third, we aggregate risks, that are similar in nature, in order to
evaluate whether their risk level should be increased. If the risk level is increased, we
assess whether they should be included in the testing. Finally, based on the suspension
criteria, we select the risks to test, and exclude the risks that are not regarded as severe.
The output of this step is a set of risks selected for testing.

In Step 5, we design security test cases with respect to the set of risks selected for
testing. First, for each risk selected for testing, we refer to the threat scenario in which
the risk occurs. Second, for each threat scenario, we specify a test objective. Third, for
each test objective, we select the interaction fulfilling the test objective by annotating

69

Summary of contributions

the threat scenario with stereotypes from the UML Testing Profile [111]. The output
of this step is a set of security test cases.

In Step 6, we carry out security testing with respect to the test cases designed in
Step 5. The test cases may be executed manually, semi automatically, or automatically.
This depends on whether the test case is implementable in a tool, for example as an
executable model, or whether the interaction conveyed by the test case must be carried
out manually.

In Step 7, we write a test incident report. First, we analyze the test results and
confirm test incidents. A test incident occurs if a security test case fails [74, p. 38].
Second, we document each test incident. For each test case that fails, we use its model
as a basis for documenting the test incident. The result is a test incident report. This
report is then communicated to the relevant stakeholder. The test incident report may
be used as input for a new run of the CORAL method. It may also be used as a basis
for re-testing after the test incidents have been treated.

In the following, we present an example-driven explanation of the CORAL method.
The example is a small fragment from an industrial case study which is reported in
Paper 4. The system under test, in the example, is a feature in a web-based e-business
application designed to deliver streamlined administration and reporting of all forms
of equity-based compensation plans. The feature is named Exercise Options and it is
used for buying shares in a company.

5.3.1 Test planning (Step 1)

In the case study, we modeled the system under test by analyzing the source code
(white-box model), and observing the behavior of the system under test by executing
it on a test environment (black-box model). In the following, we will only focus on
the black-box model of Exercise Options (see Figure 5.8). A user may exercise op-
tions by typing in the number of options to exercise and then submitting the request
(exercise(options)). Then the web application responds with a request for selecting
the method, that is, the attorney, by which the options are to be exercised (selectEx-
erciseMethod). The user selects the method for exercising options by checking the
appropriate attorney and then pressing continue (continue(exerciseMethod)). Upon
successful method selection, the web application responds with a confirmation stating
that the options have been exercised (exerciseRequestConfirmation).

Figure 5.8: Black-box model of feature Exercise Options.

70

5.3 The CORAL method for risk-driven security testing

Having modeled the system under test, we identified a number of security assets.
The asset identification was conducted together with the customer. One of the security
assets identified in the case study was integrity of data for the feature Exercise Options.
As part of Step 1, we also defined a likelihood scale in terms of frequencies, and a
consequence scale. Table 5.1 shows an example of a frequency scale, while Table 5.2
shows an example of a consequence scale for security asset integrity of data. These scales
are used in Step 3 for estimating security risks. Figure 5.9 shows the risk evaluation
matrix constructed with respect to the frequency scale and consequence scale. The
risk matrix is used in Step 4 to evaluate security risks. Risks are grouped in nine levels
horizontally on the matrix where Risk Level 1 is the lowest risk level and Risk Level 9
is the highest risk level. The risk level of a risk is identified by mapping the underlying
color to the column on the left-hand side of the matrix.

Table 5.1: An example frequency scale.

Likelihood Definition Frequency
interval

Certain 100 times or more per year [100,
∞〉:1y

Likely From and including 25 to less than 100 times per year [25,
100〉:1y

Possible From and including 10 to less than 25 times per year [10, 25〉:1y
Unlikely From and including 1 to less than 10 times per year [1, 10〉:1y
Rare From and including 0 to less than 1 times per year [0, 1〉:1y

Table 5.2: An example consequence scale for security asset integrity of data.

Consequence Definition

Catastrophic The integrity of the number of options being exercised is
compromised

Major The integrity of user data is compromised

Moderate The integrity of terms and conditions is compromised

Minor The integrity of log data is compromised

Insignificant The integrity of text in the graphical user interface is compromised

5.3.2 Threat scenario risk identification (Step 2)

Let us assume that a malicious user attempts to access another system feature, say
an administrative functionality, by altering certain parameters in the HTTP request
sent to Exercise Options. The malicious user could achieve this, for example, by
first intercepting the request containing the message continue(exerciseMethod) using
a network proxy tool such as OWASP ZAP [116], and then altering the parameter
exerciseMethod in the message. This alteration, could in turn give the malicious user
access to another system feature. This unwanted incident occurs if the alteration is

71

Summary of contributions

Figure 5.9: Risk evaluation matrix constructed with respect to the frequency scale and
consequence scale.

successfully carried out, and Exercise Options responds with another system feature
instead of the expected message exerciseRequestConfirmation. Thus, the unwanted
incident may occur after the reception of the last message in Figure 5.8. The resulting
threat scenario is shown in Figure 5.10.

The threat scenario in Figure 5.10 shows that the new message interceptHTTPRe-
quest causes the message continue(exerciseMethod) to be received by the network
tool, rather than the web application. This is an alteration, and the message con-
tinue(exerciseMethod) is therefore annotated with a triangle that has red borders and
white fill, indicating that the message has been altered. Furthermore, we see that if the
malicious user successfully tampers the parameter exerciseMethod, which is shown by
the new messages setExerciseMethod(otherSysFeat) and continue(otherSysFeat), then
the web application responds with another system feature instead of the expected
message exerciseRequestConfirmation. If the web application responds with another
system feature, then that is an alteration of the content of message exerciseRequest-
Confirmation. The new content of the message, due to the alteration, is shown by the
altered message respOtherSysFeat. We represent risk-related content in the messages
using a font that is red colored, bold, and italic. The reception of the altered mes-
sage respOtherSysFeat causes access to another system feature, and thus, causes the
occurrence of the security risk which is illustrated by the unwanted incident message.

5.3.3 Threat scenario risk estimation (Step 3)

To come up with estimates, we based ourselves on knowledge data bases such as
OWASP [115], Symantec threat reports [148], Cisco security reports [30], reports and
papers published within the software security community, as well as expert knowledge
within security testing. The estimates in Figure 5.11 illustrate risk estimation.

We see from Figure 5.11 that the malicious user successfully alters the parame-

72

5.3 The CORAL method for risk-driven security testing

Figure 5.10: Threat scenario: Malicious user gains access to another system feature by
changing parameter exerciseMethod.

ter exerciseMethod with frequency [20,50〉:1y. Given that parameter exerciseMethod
is successfully altered and transmitted, it will be received by Exercise Options with
conditional ratio 0.8. The conditional ratio causes the new frequency [16,40〉:1y for
the reception of message continue(otherSysFeat). This is calculated by multiplying
[20,50〉:1y with 0.8. Given that message continue(otherSysFeat) is processed by Ex-
ercise Options, it will respond with another system feature. This, in turn, causes the
unwanted incident (security risk) to occur with frequency [16,40〉:1y. The unwanted
incident has an impact on security asset integrity of data with consequence Moderate.

5.3.4 Threat scenario risk evaluation (Step 4)

Let us rename the risk (another system feature is accessed by changing parameter exer-
ciseMethod) as R1. In order to identify the likelihood value of risk R1, we need to map
its frequency to the frequency scale in Table 5.1. We see from Figure 5.11 that risk R1
has frequency [16,40〉:1y. By mapping this frequency interval to the frequency scale in
Table 5.1, we see that it overlaps the likelihood values Possible and Likely. However,
we also see that the frequency interval is skewed more towards Likely than Possible.
For this reason, we choose to assign likelihood Likely on risk R1. We map risk R1
to the risk evaluation matrix based on likelihood Likely and consequence Moderate.
The result is shown in Figure 5.12. Based on its position in the risk matrix (and the
underlying color of the cell), we see that it has Risk Level 6.

Let us, for the sake of the example, say that the suspension criterion was defined
as “test all risks of Risk Level 6 or more”. Based on this criterion, we select all risks
in the matrix that are of Risk Level 6 or more. This means that we select risk R1 for
testing. If there had been risks that were similar in nature, then we would have to

73

Summary of contributions

Figure 5.11: Threat scenario annotated with risk-measure annotations.

aggregate them in order to evaluate whether their risk level should be increased. If the
risk level is increased as a result of risk aggregation, we assess whether they should be
included in the testing. The reader is referred to Paper 2 and Paper 4 for examples of
risk aggregation.

5.3.5 Threat scenario test case design (Step 5)

Risk R1 is selected for testing. This means that we need to design a security test case
with respect to the threat scenario in which risk R1 occurs, that is, Figure 5.10. One
possible test objective is “verify whether the malicious user is able to access another
system feature by changing parameter exerciseMethod into a valid system parameter”.
Based on this test objective, we annotate the threat scenario in Figure 5.10 with
stereotypes from the UML Testing Profile [111]. The resulting security test case is
shown in Figure 5.13. Needless to say, the security tester takes the role as “malicious
user” in the test case.

5.3.6 Test execution (Step 6)

The test case in Figure 5.13 may be executed in different ways. In the case study, we
executed the test case semi automatically from a black-box perspective. We intercepted
the HTTP requests and responses using OWASP Zed Attack Proxy tool [116], and
thereby tampered with the parameter exerciseMethod. The test case was executed on
a test environment prepared by the client.

74

5.4 Overview of industrial case studies

Figure 5.12: Risk R1 is mapped on the risk matrix with respect to likelihood Likely
and consequence Moderate.

5.3.7 Test incident reporting (Step 7)

In the test report we include, in addition to the test results, risk models and security
tests designed with respect to the risk models. In the case study, the test case in
Figure 5.13 did not fail. That is, it was not possible to access another system feature
by changing parameter exerciseMethod into a valid system parameter. This was docu-
mented in the test report using Figure 5.13, explaining its test objective (as described
above), and writing its test result. The test report may be used as input for a new
run of the CORAL approach, and each test case documented in the test report may
be fully repeated with respect to their models.

5.4 Overview of industrial case studies

In the course of the work leading up to this thesis, we carried out three industrial case
studies. In the first two industrial case studies, we investigated how risk assessment
may be used to identify, select, and design security test cases, as well as how security
testing may be used as a means to validate and correct the security risk analysis results.
The experiences we obtained from these two industrial case studies helped us to, among
other things, shape the CORAL approach. In the third case study we carried out the
CORAL approach in an industrial setting, in order to evaluate its applicability.

5.4.1 Empirical studies on the combinations of security risk
analysis and security testing

The first case study was carried out between March 2011 and July 2011, while the
second case study was carried out between June 2012 and January 2013. In the first

75

Summary of contributions

Figure 5.13: Security test case based on the threat scenario in Figure 5.10.

case study, we analyzed a multilingual web application which is designed to deliver
streamlined administration and reporting of all forms of equity-based compensation
plans. In the second case study, we analyzed a mobile application designed to provide
various online financial services to the users on their mobile devices. Both case stud-
ies were carried out in an industrial setting, and the analyzed systems were already
deployed in production and used by a large number of customers every day.

In the case studies, we carried out security risk analysis using the CORAS approach,
which is a model-driven approach to risk analysis [91]. However, we combined security
risk analysis and security testing in a three-phased approach. Phase 1 expects a de-
scription of the target of evaluation. Then, based on this description, the security risk
assessment is planned and carried out. The output of Phase 1 is security risk models
expressed as CORAS risk models, which is used as input to Phase 2. In Phase 2, secu-
rity tests are identified based on the risk models and executed (this is the risk-driven
security testing part of our three-phased approach). The output of Phase 2 is security
test results, which are used as input to the third and final phase. In the third phase,
the CORAS risk models are validated and corrected with respect to the security test
results (this is the test-driven security risk analysis part of our three-phased approach).
By conducting this approach, we investigated how the risk assessment results may be
used as a starting point to identify security test cases, as well as how security testing
may be used as a means to improve the security risk analysis results.

With respect to risk-driven security testing, we found out that threat scenarios
are a good starting point for identifying security test cases. However, we were in this
approach only able to identify high-level test procedures, which were directly based on
the threat scenarios in a CORAS model, before manually describing the test procedures
into detailed test cases. This indicated the need for formality and preciseness in the
process of designing test cases. As pointed out by our systematic literature review
in Paper 1, this is also a problem that reoccurs in most of the risk-driven testing
approaches in the literature. These findings guided us to improve risk-driven security

76

5.5 Overview of systematic literature review

testing in terms of actively using the risk assessment for the purpose of designing test
cases, instead of designing test cases after the risk assessment. This motivation shaped
the development of the CORAL approach.

With respect to test-driven security risk analysis, we found out that the test results
are useful for correcting the risk models in terms of adding or deleting vulnerabilities,
as well as editing likelihood values. Furthermore, the test results also proved to be
useful for validating the risk models in terms of discovering the presence or absence of
presumed vulnerabilities, and thereby increasing the trust in the risk models. The case
studies are described in detail in Paper 5.

5.4.2 Empirical study on the applicability of the CORAL ap-
proach

The third case study was carried out between October 2014 and December 2014. In
the third case study, we again analyzed the multilingual web application which is
designed to deliver streamlined administration and reporting of all forms of equity-
based compensation plans. Similar to the first two case studies, the third case study
was also carried out in an industrial setting.

In the third case study, we carried out the CORAL approach as described in Sec-
tion 5.3. The purpose of the case study was to evaluate to what extent the CORAL
approach helps security testers in test selection and test design. The case study results
indicate that the CORAL approach is effective in terms of producing valid risk models.
This is backed up by two observations. First, we identified in total 21 risks, and 11 of
these risks were considered as most severe, while the remaining 10 risks were consid-
ered as low risks. By testing these 11 risks we identified 11 vulnerabilities, while by
testing the remaining 10 risks we identified only 2 vulnerabilities. Second, we identi-
fied all relevant security risks compared to previous penetration tests. In addition, we
identified five new security risks and did not leave out any risks of relevance for the fea-
tures considered. However, the fact that we identified 2 vulnerabilities by testing low
risks reflects the epistemic uncertainty that is associated with frequency/consequence
estimates.

The CORAL approach seems to work equally well for black-box and white-box
testing. One point worth noting for white-box testing is that the threat scenarios help
locating risks at the source code level although they are initiated at the application
level.

Finally, one of the most important findings we did in the case study is that the
CORAL approach is very useful for identifying security test cases. We made direct use
of all threat scenarios identified in the case study for the purpose of security test case
design and execution. The case study is described in detail in Paper 4.

5.5 Overview of systematic literature review

The objective of the systematic literature review was to review and bring forth state
of the art approaches for the combined use of risk analysis and testing, based on
publications related to this topic.

The systematic literature review process consisted of the following six steps: (1)
define the objective of the study, (2) define research questions, (3) define the search

77

Summary of contributions

process including inclusion and exclusion criteria, (4) perform the search process, (5)
extract data from relevant full texts, (6) analyze data and provide answers for the
research questions. This process was constructed based on the guidelines given by
Kitchenham and Charters [83].

As already mentioned, there are basically two main strategies for the combined use
of risk analysis and testing.

• The use of testing to support the risk analysis process

• The use of risk analysis to support the testing process

We refer to the first strategy as test-driven risk analysis and to the second strategy as
risk-driven testing. In the literature review, we address the following research questions.

• RQ1 What approaches exist for performing risk-driven testing (RT) and test-
driven risk analysis (TR)?

• RQ2 For each of the identified approaches, what is the main goal, and what
strategies are used to achieve that goal?

• RQ3 Are there contexts in which TR and RT are considered to be particularly
useful?

• RQ4 How mature are the approaches, considering degree of formalization, em-
pirical evaluation, and tool support?

• RQ5 What are the relationships between the approaches, considering citations
between the publications?

The answers to the above research questions, including the complete details for each
step in the process, are documented in Paper 1. However, in general, we discovered
that, within the field addressed by this survey, there is clearly need for further research.
The field needs more formality and preciseness as well as dedicated tool-support. In
particular, there is very little empirical evidence regarding the usefulness of the various
approaches. In addition, there is little common ground for the different approaches. It
seems that many of the approaches have been developed in isolation, and with little
impact on the field so far.

78

Chapter 6
Overview of research papers

The main results of the work presented in this thesis are documented in the papers in
Part II. In the following we give an overview of these research papers, by describing
the topics of each paper and indicating how much of the results are credited the author
of this thesis.

6.1 Paper 1: Approaches for the combined use of

risk analysis and testing: a systematic litera-

ture review

Authors: Gencer Erdogan, Yan Li, Ragnhild Kobro Runde, Fredrik Seehusen,
Ketil Stølen.

Publication status: Published in the International Journal on Software Tools for
Technology Transfer (vol. 16, no. 5, 2014) [40].

My contribution: Gencer Erdogan was one of two main authors, responsible for
about 45% of the work.

Main topics: This paper presents a systematic literature review, and brings forth
state of the art approaches for the combined use of risk analysis and testing, based on
publications related to this topic. The existing approaches are first identified through a
systematic literature review. The identified approaches are then classified and discussed
with respect to main goal, context of use, and maturity level. The paper highlights
the need for more structure and rigor in the definition and presentation of approaches.
Evaluations are missing in most cases. The paper may serve as a basis for examining
approaches for the combined use of risk analysis and testing, or as a resource for
identifying the adequate approach to use.

79

Overview of research papers

6.2 Paper 2: A systematic method for risk-driven

test case design using annotated sequence dia-

grams

Authors: Gencer Erdogan, Atle Refsdal, Ketil Stølen.

Publication status: Technical report SINTEF A26036, SINTEF ICT, 2014. The
report presented in this thesis is a revised and extended version of the paper published
in proceedings of the 1st International Workshop on Risk Assessment and Risk-driven
Testing (RISK’13) [41].

My contribution: Gencer Erdogan was the main author, responsible for about 90%
of the work.

Main topics: This paper presents the CORAL approach for risk-driven security
testing in an example-driven manner. The paper mainly focuses on the steps related
to test planning, threat scenario risk identification, threat scenario risk estimation,
threat scenario risk evaluation, and threat scenario test case design. The paper also
presents the CORAL risk analysis language and how it is applied in the approach.
Thus, the paper may also be used as a guideline for conducting risk-driven security
testing using the CORAL approach.

6.3 Paper 3: Schematic generation of English-prose

semantics for a risk analysis language based on

UML interactions

Authors: Gencer Erdogan, Atle Refsdal, Ketil Stølen.

Publication status: Technical report SINTEF A26407, SINTEF ICT, 2014. The
report presented in this thesis is a revised and extended version of the paper published
in proceedings of the 2nd International Workshop on Risk Assessment and Risk-driven
Testing (RISK’14) [42].

My contribution: Gencer Erdogan was the main author, responsible for about 90%
of the work.

Main topics: This paper presents the abstract syntax and the natural-language
semantics of the CORAL language. The abstract syntax is presented in the Extended
Backus-Naur Form [69]. The natural-language semantics is presented in terms of a
systematic translation of CORAL diagrams into English prose. The translation is
carried out in three steps. A CORAL diagram is first translated into a corresponding
textual representation with respect to the abstract syntax. The textual representation
of a diagram is then translated into English prose by making use of a translation
algorithm, which is also presented in the paper. The paper highlights the necessity of

80

6.4 Paper 4: Evaluation of the CORAL approach for risk-driven security testing
based on an industrial case study

a natural-language semantics, provides an analytical comprehensibility evaluation of
the produced English prose, and presents translation examples.

6.4 Paper 4: Evaluation of the CORAL approach

for risk-driven security testing based on an in-

dustrial case study

Authors: Gencer Erdogan, Ketil Stølen, Jan øyvind Aagedal.

Publication status: Technical report SINTEF A27097, SINTEF ICT, 2015. Sub-
mitted.

My contribution: Gencer Erdogan was the main author, responsible for about 90%
of the work.

Main topics: This paper presents experiences from applying the CORAL approach
in an industrial case. The objective of the industrial case study was to evaluate to
what extent the CORAL approach helps security testers in selecting and designing test
cases, as well as to what extent the CORAL approach is appropriate in the context of
black-box testing and white-box testing. The system under test was a comprehensive
web-based e-business application designed to deliver streamlined administration and
reporting of all forms of equity-based compensation plans, and is used by a large number
of customers across Europe. The case study indicates that the CORAL approach is
effective in terms of producing valid risk models and directly testable threat scenarios.
Moreover, the CORAL approach seems to work equally well for black-box and white-
box testing.

6.5 Paper 5: Assessing the usefulness of testing for

validating and correcting security risk models

based on two industrial case studies

Authors: Gencer Erdogan, Fredrik Seehusen, Ketil Stølen, Jon Hofstad,
Jan øyvind Aagedal.

Publication status: Published in the International Journal of Secure Software En-
gineering (vol. 6, no. 2, 2015) [43]. This thesis presents the camera-ready version of
the paper because the published version was not available at the time of writing.

My contribution: Gencer Erdogan was the main author, responsible for about 90%
of the work.

81

Overview of research papers

Main topics: This paper presents an evaluation of an approach in which we combine
security risk analysis and security testing. The evaluation is based on two industrial
case studies. The objective was to assess how useful testing is for validating and
correcting security risk models, as well as how useful risk assessment is for identifying
and designing security test cases. The approach is divided into three phases. Phase 1
expects a description of the target of evaluation. Then, based on this description, the
security risk assessment is planned and carried out. The output of Phase 1 is security
risk models, which are used as input to Phase 2. In Phase 2, security tests are identified
based on the risk models and executed. The output of Phase 2 is security test results,
which are used as input to the third and final phase. In the third phase, the risk models
are validated and corrected with respect to the security test results. The evaluation
is carried out by comparing the risk models produced before and after testing. The
case studies indicate that the test results are useful for correcting the risk models in
terms of adding or deleting vulnerabilities, as well as editing likelihood values. The
test results are also useful for validating the risk models in terms of discovering the
presence or absence of presumed vulnerabilities. Moreover, the risk models are useful
for identifying security test procedures.

82

Chapter 7
Discussion

This chapter is divided into three sections. In Section 7.1 we discuss and evaluate
the CORAL risk analysis language, while in Section 7.2 we discuss and evaluate the
CORAL method for risk-driven security testing, in both cases with respect to the
success criteria defined in Section 2.3. In Section 7.3, we relate our contributions, that
is, the CORAL approach, our industrial case studies, and our systematic literature
review, to the state of the art and discuss how they extend and improve the state of
the art.

Before we discuss and evaluate the CORAL approach it is necessary to revisit
the technology research method and have a closer look at the role of success criteria.
First of all, technology research is research for the purpose of producing new and
improved artifacts [140]. By artifacts, we mean objects manufactured by human beings.
The success criteria are used to express the overall expectations of the artifacts. For
example, as explained in Section 2.3, we have defined a success criterion which states
that the CORAL method for risk-driven security testing must be comprehensible to
security testers. We may in turn use this success criterion as a test to check whether
we have succeeded in producing such a method. Thus, a success criterion characterizes
a test that may be carried out to check if the technology research undertaken was
successful [146].

The tests characterized by the success criteria may be specified and carried out
using evaluation techniques such as case studies, analytical evaluations, computer sim-
ulations, surveys, and so on. As pointed out in Chapter 3, the purpose is to gather a
batch of evidence in order to maximize scores related to generality, precision, and re-
alism of the artifact under evaluation [97]. However, it is necessary to consider factors
such as the nature of the success criteria (whether the success criteria consider the gen-
erality, precision or realism of an artifact), the maturity of the artifact addressed by the
success criteria, and available resources such as time, cost and people when choosing
evaluation techniques. While it is most desirable to maximize the generality, precision
and realism of an artifact simultaneously, it is, however, an impossible act [97].

As explained in Chapter 5, the artifact in this thesis is the CORAL approach. We
identified in total 10 success criteria for the CORAL approach. Because the CORAL
approach is to be used by security testers in an industrial setting, we have mainly
evaluated the CORAL approach in an industrial case study with respect to the success
criteria (documented in Paper 4). We also evaluated our initial risk-driven testing
approach, which shaped the CORAL approach, in industrial case studies (documented

83

Discussion

in Paper 5). To complement the results obtained in the case study reported in Paper
4, we have also evaluated the CORAL approach by conducting analytical evaluations.
In particular, analytical evaluations of the CORAL risk analysis language. The results
obtained from these evaluations are promising, but this does not mean that the success
criteria are completely fulfilled. As for any research dependent on empirical evidence,
epistemic uncertainty related to the gathered batch of evidence is always present. It
is therefore, in principle, not possible to state that a success criterion is completely
fulfilled, even if the epistemic uncertainty is insignificant. However, in our case the sit-
uation is even worse, not because we have done bad work, but because it is extremely
difficult to conduct experiments and studies of technology for industrial use and ar-
rive at fully convincing conclusions. The results obtained from industrial case studies
are valuable for maximizing scores related to realism, but the results are difficult to
generalize. This is because the replication of industrial case studies is extremely hard
to design and carry out in practice [128], and many industrial case studies in software
engineering are carried out based on availability due to strict budget and time con-
straints [128]. We therefore discuss the extent to which the success criteria have been
fulfilled, in Sections 7.1 and 7.2, given these considerations.

7.1 The CORAL risk analysis language

In this section, we evaluate and discuss the extent to which the success criteria related
to the graphical notation, and the natural-language semantics, have been fulfilled.

7.1.1 Graphical notation

In order to discuss and evaluate the extent to which the graphical notation fulfills the
success criteria, we make use of the SEQUAL framework [85]. SEQUAL is a general
framework used for discussing and evaluating the quality of models, as well as the
quality of modeling languages. The framework has been empirically shown to be valid
and useful in practice [105]. Different parts of SEQUAL can be used in a number
of different ways, but we use it primarily for evaluating the graphical notation of the
CORAL risk analysis language. SEQUAL suggests addressing the following six areas
for language quality when evaluating the quality of a modeling language [85].

1. Domain appropriateness (relates the modeling language and the domain).

2. Comprehensibility appropriateness (relates the language to the social actor in-
terpretation).

3. Participant appropriateness (relates the participant knowledge to the language).

4. Modeler appropriateness (relates the language to the knowledge of the one doing
the modeling).

5. Tool appropriateness (relates the language to the interpretation from the techni-
cal audience (tools)).

6. Organizational appropriateness (focuses on to what extent the language used is
appropriate to reach organizational goals of the organization using it).

84

7.1 The CORAL risk analysis language

In the following, we discuss the success criteria for the graphical notation, that
is Success Criteria 1, 2, and 3 described in Section 2.3.1, with respect to domain,
comprehensibility, participant, modeler, and tool appropriateness. Organizational ap-
propriateness is outside the scope of the evaluation because the CORAL language is
not developed for a specific organization.

Success Criterion 1. The graphical notation must be appropriate for the domain of
risk-driven security testing.

By appropriate for the domain of risk-driven security testing, we mean that the
graphical notation should make an integrated use of constructs that are well known
within the domain of testing, security, as well as the domain of risk assessment. As
already pointed out in Chapter 5, the CORAL risk analysis language is appropriate
for the domain of risk-driven security testing for several reasons. First, the language
is based on UML interactions, which are among the top three modeling languages
within the model-based testing community [34], and often used for testing purposes [10,
111, 153]. Second, the CORAL language is specifically developed to support security
testers to conduct security risk assessment of a system under test. By annotating
the constructs inherited from UML interactions with risk-related information such as
threat, unwanted incident, and security asset, we bring security risk assessment to the
work bench of testers without the burden of a separate risk analysis language. The
risk-related concepts used in the graphical notation are in line with concepts defined in
the international standard for information security risk management [72], as well as the
international standard for information security management systems [71]. Third, the
constructs representing risk-related information are visually based on corresponding
symbols used in the CORAS language [91], which have been empirically shown to
be cognitively effective [139]. Fourth, the process of risk assessment, in the CORAL
approach, involves security risk modeling. The resulting risk models are used as a basis
for designing and subsequently executing security test cases.

Thus, the graphical notation of the CORAL language supports security testing,
as well as security risk assessment, and is therefore appropriate for the domain of
risk-driven security testing.

Success Criterion 2. The graphical notation must be appropriate for security testers.

By appropriate for security testers, we mean that the graphical notation should
be comprehensible to and fit for security testers. This success criterion is related to
comprehensibility appropriateness, participant appropriateness, and modeler appropri-
ateness. The SEQUAL framework refers to the principles provided by Moody [104] for
discussing these areas of appropriateness. Moody [104] suggests the following nine
principles: Semiotic clarity, perceptual discriminability, semantic transparency, com-
plexity management, cognitive integration, visual expressiveness, dual coding, graphic
economy, and cognitive fit.

The principle of semiotic clarity states that there should be a 1:1 correspondence
between semantic constructs and graphical symbols. In the CORAL language, there
is a 1:1 correspondence because none of the anomalies related to symbol redundancy,
symbol overload, symbol excess, and symbol deficit are possible. Symbol redundancy

85

Discussion

occurs when multiple graphical symbols are used to represent the same semantic con-
struct. Symbol overload occurs when multiple semantic constructs are represented by
the same graphical symbol. Symbol excess occurs when graphical symbols do not cor-
respond to any semantic construct. Symbol deficit occurs when there are semantic
constructs that are not represented by any graphical symbols.

The principle of perceptual discriminability states that different symbols should be
clearly distinguishable from each other. The symbols representing a threat, an un-
wanted incident, a security asset, and a frequency estimate are easily distinguishable
from each other because of their distinct shapes and colors. Figure 5.11 shows an ex-
ample of a CORAL risk model, and we see that the aforementioned symbols are easily
distinguishable. Although the conditional ratio symbol and the consequence symbol
are rectangular, they are easily distinguishable because conditional ratios may be as-
signed on general, new, and altered messages, while consequences are assigned only on
unwanted incident messages. In addition, conditional ratios are always represented as
nonnegative real numbers, while consequences are always represented textually. How-
ever, the new, altered, and deleted messages are similar in the sense that they all have
a triangular shape at the transmission end, but they are distinguishable with respect
to the coloring inside the triangles (see Figure 5.4). In our experience, CORAL risk
models typically contain a greater number of new messages compared to the number
of altered and deleted messages. In some cases, particularly in large risk models, this
makes it somewhat difficult to spot the altered/deleted messages. We may mitigate
this by using different shapes at the transmission end on new, altered and deleted mes-
sages. However, the reason why we use triangles (in combination with the color red)
is to support semantic transparency, which is discussed next.

The principle of semantic transparency states that symbols should use visual repre-
sentations whose appearance suggests their meaning. The risk-related symbols used in
the CORAL language are based on the corresponding symbols used in the CORAS risk
analysis language [91]. The symbols in CORAS are designed to convey their meaning.
For example, the symbol depicting a human with “devil horns” conveys a deliberate
threat, and the triangle with red borders conveys a threat scenario. This has been em-
pirically shown to be cognitively effective [139], and these concepts are also commonly
used in security testing [117], which is why we use similar symbols in the CORAL
language.

The principle of complexity management states that the language should include
explicit mechanisms for dealing with complexity. Dealing with complexity, in this
context, refers to the ability of a visual notation to represent information without over-
loading the human mind [104]. In order to reduce the complexity of risk models, the
CORAL language makes use of the UML construct ref (interaction use) to divide com-
plex risk models into simpler risk models. The ref construct refers to an interaction,
and it is shorthand for copying the contents of the referred interaction [110, p. 501].
Because of its modular property, the ref construct may also be used to support cogni-
tive integration. The principle of cognitive integration states that the language should
include explicit mechanisms to support integration of information from different dia-
grams. The cognitive integration supported by the ref construct is limited because it
only gives an abstract description, and not any detailed information, about the referred
interaction. However, this is sufficient for constructing high-level risk models, which
are useful for getting an overview of the various risk models and their relationships.
Thus, a security tester may divide complex risk models into simpler risk models, as

86

7.1 The CORAL risk analysis language

well as compose high-level risk models, by making use of the ref construct.
The principles of visual expressiveness and dual coding refer to the usage of the full

range and capacities of visual variables, and the usage of text to complement graphics,
respectively. In addition to using symbols that are distinguishable with respect to shape
and color, the CORAL language uses a red colored, bold, and italic font to highlight the
risk-related information (text) on messages. Based on our experience, this convention
is useful only for new and altered messages, as well as unwanted incidents. The text
on new messages is always formatted as risk-related information because the messages
are initiated by threats. The text on altered messages is formatted as risk-related
information when highlighting the alteration in the message. This could be a part of
the text or the complete text on the altered message. The text on unwanted incidents
are always formatted as risk-related information because they represent that assets are
harmed or reduced in value. This formatting strengthens the visual expressiveness and
helps security testers to keep track of and distinguish between risk-related and non
risk-related information on the messages.

The principle of graphic economy states that the number of different graphical
symbols should be cognitively manageable. The number of symbols should ideally be
limited to 6 symbols. However, this only applies if a single visual variable is used, for
example, if a language only uses shapes [104]. If a language consists of more than 6
symbols, which is the case in the CORAL language, then one can deal with graphic
complexity by increasing visual expressiveness. We have explained above how this is
achieved and also how text is used to complement the graphics, which in turn strength-
ens the visual expressiveness. In particular, we position the symbols representing new,
altered, deleted, and unwanted incident messages so that they are horizontally aligned
with the message, as well as correctly oriented with respect to the message direction.
These two visual variables give an additional increase to the visual expressiveness [104].

The principle of cognitive fit states that the language should use different visual
dialects for different tasks and audiences. The CORAL language is mainly to be used
by security testers, for the purpose of risk-driven security testing. This implies that
the CORAL language must provide concepts and a corresponding graphical notation
necessary to carry out security risk assessment, as well as security testing. As discussed
above, and as pointed out in the discussion of the first success criterion, the CORAL
language does provide this. However, this also means that the CORAL language re-
quires testers to be familiar with security risk assessment. Security testers usually
have this required background, because they often have to carry out activities related
to security risk assessment, such as creating security abuse/misuse cases, performing
architectural risk analysis, and building risk-driven security test plans [117].

Based on the above discussion, we find it reasonable to assume that the graphical
notation of the CORAL language is appropriate for security testers.

Success Criterion 3. The graphical notation must be appropriate for tool implemen-
tation and method development.

The third success criterion is related to tool appropriateness. A prerequisite for tool
interpretation is that the language must have a syntax and semantics that are formally
defined [85]. As discussed in Section 5.2, the CORAL language is accompanied by an
abstract syntax as well as a natural-language semantics. Testers may use the abstract
syntax in order to create risk models that are syntactically correct, and the natural-

87

Discussion

language semantics in order to clearly and consistently document, communicate and
analyze risks (documented in Paper 3). The abstract syntax and the natural-language
semantics may also be used by tool and method developers. The graphical notation
is supported by the necessary foundation for tool implementation and is therefore
appropriate for tool implementation.

7.1.2 Natural-language semantics

The fulfillment of the success criteria related to the natural-language semantics is
thoroughly discussed in Paper 3. In the following, we highlight the main arguments
that support the fulfillment of the success criteria.

Success Criterion 4. The English-prose semantics of CORAL risk models must be
comprehensible to security testers when conducting risk assessment.

The comprehensibility of the resulting English prose is supported both from a gen-
eral viewpoint and from a security testing viewpoint.

From a general viewpoint, we observe the following two points. First, the structure
of the translations is similar to the structure of their corresponding CORAL risk models.
In particular, the ordering of the translated constructs is maintained. Second, the
user-defined text is unchanged in the translations. By user-defined text, we mean the
text typed in CORAL risk models, such as the text on messages, lifelines, frequency
assignments, consequence assignments, and so on. The reader is referred to Paper 3
for translation examples.

From a security testing viewpoint, we observe that risk-related concepts from the
CORAL language are integrated with concepts from UML interactions in the resulting
English prose. As already explained in Section 5.1, UML interactions are often used by
testers for testing purposes. It is therefore reasonable to assume that security testers
understand the concepts from UML interactions. Moreover, we find it reasonable to
assume that security testers also comprehend the risk-related concepts we introduce in
the CORAL language, such as altered messages and messages representing unwanted
incidents, because these are concepts that are also known within the security testing
community. For example, in fuzz testing, the expected behavior of a system is at-
tempted altered by providing invalid, unexpected, or random data, which may lead to
unwanted incidents [113].

Success Criterion 5. The English-prose semantics of the constructs inherited from
UML interactions must be consistent with their semantics in the UML standard.

In Paper 3 we present the English-prose semantics of the constructs in the CORAL
language. Moreover, we show that the English-prose semantics of the constructs inher-
ited from UML interactions are consistent with their semantics in the UML standard.
We do this by relating the English-prose semantics of the constructs in the CORAL
language with the semantics of the corresponding constructs given in the UML stan-
dard [110].

Success Criterion 6. The complexity of the resulting English prose must scale lin-
early with the complexity of CORAL risk models in terms of size.

88

7.2 The CORAL method for risk-driven security testing

As shown in Paper 3, the definition of the translation algorithm ensures that the
structure of the resulting English prose mirrors the risk model that is translated, and
that there is a linear relationship between the size of the risk model and its resulting
English prose. A formal argument that this would hold for any risk model d could be
given based on induction over the syntactical structure of d .

7.2 The CORAL method for risk-driven security

testing

Success Criterion 7. The method must be comprehensible to security testers.

The steps in the CORAL method related to test planning, threat scenario test case
design, test execution, and test incident reporting are in line with corresponding steps
in the dynamic test process defined in the software testing standard ISO/IEC/IEEE
29119 [74]. The dynamic test process is used to carry out testing within a particular
phase of testing (for example unit, integration, system and acceptance) or type of
testing (for example security testing, performance testing, usability testing) [74]. The
steps provided by the dynamic test process are steps typically carried out in testing
projects and are therefore familiar to software testers. This is true whether the testing
is focused on security or other software qualities. Moreover, the steps in the CORAL
method related to threat scenario risk identification, threat scenario risk estimation,
and threat scenario risk evaluation, are also familiar to security testers because security
testers often have to carry out activities related to security risk assessment [117,151].

This means that the CORAL method for risk-driven security testing is in line
with standard testing processes, as well as activities typically carried out by security
testers. Thus, it is reasonable to assume that the CORAL method for risk-driven
security testing is comprehensible to security testers.

Success Criterion 8. The method must produce security risk models that are valid.

In order to evaluate to what extent the CORAL method produces valid security
risk models, we addressed the following research questions in the industrial case study
reported in Paper 4.

• Research Question A: To what extent is the risk level of identified risks correct?

• Research Question B: To what extent are relevant risks identified compared
to previous penetration tests?

The two variables that determine the risk level of a risk, that is, the frequency value
and the consequence value, are estimates based on data gathered during the security
risk assessment. In other words, these estimates tell us to what degree the identified
risks exist. Thus, in principle, the higher the risk level, the more likely it is to reveal
vulnerabilities causing the risk. The same applies the other way around. That is, the
lower the risk level, the less likely it is to reveal vulnerabilities causing the risk.

The results obtained for Research Question A show that 11 vulnerabilities were
revealed by testing the risks considered as most severe, while only 2 vulnerabilities were

89

Discussion

revealed by testing the risks considered as low risks. Additionally, the 2 vulnerabilities
identified by testing the low risks were assigned low severity. These findings indicate
that the risk levels of identified risks were highly accurate. In contrast, if we had found
2 vulnerabilities by testing the most severe risks, and 11 vulnerabilities by testing
the low risks, then that would have indicated inaccurate risk levels, and thus a risk
assessment of low quality. However, the fact that we found two vulnerabilities by
testing the low risks reflects the inevitable epistemic uncertainty that is associated
with frequency/consequence estimates. This basically means that the more empirical
data we gather for the estimates, the more certain we may be about the risk levels. The
results obtained for Research Question B show that we identified all relevant security
risks compared to previous penetration tests. In addition, we identified five new security
risks and did not leave out any risks of relevance for the features considered.

This initial evaluation of the CORAL method indicates that the method is capable
of producing valid risk models. To this end, the success criterion is fulfilled. However,
as future work, the CORAL method may be supported by techniques for mitigating
epistemic uncertainty. Further empirical studies are then needed to evaluate the ben-
efits and the feasibility of such techniques in the context of the CORAL method.

Success Criterion 9. The method must produce security risk models that are directly
testable.

CORAL risk models represent threat scenarios that the system under test is exposed
to. In order to evaluate to what extent the CORAL method produces security risk
models that are directly testable, we addressed the following research question in the
industrial case study documented in Paper 4.

• To what extent are the threat scenarios that causes the identified risks directly
testable?

Recall that the CORAL language extends UML interactions. This means that
threat scenarios represented by CORAL risk models are expressed in terms of UML
interaction sequence diagrams. By a directly testable threat scenario, we mean a threat
scenario that can be reused and specified as a security test case based on its interactions.
The results obtained for the above research question point out that all threat scenarios
were directly testable. We believe this result is generalizable because, in the CORAL
approach, risks are identified at the level of abstraction testers commonly work when
designing test cases [34]. This is also backed up by the fact that we made direct use
of all threat scenarios as security test cases. Thus, based on this, it is reasonable
to assume that the CORAL method is capable of producing threat scenarios that
are directly testable. Moreover, this supports one of the main goals of the CORAL
approach, which is, as pointed out in Chapter 5, to help security testers systematically
design test cases with respect to the risk assessment results.

However, it is important to note that the CORAL approach is designed to be used
by individual security testers, or by a group of security testers collaborating within
the same testing project. The risk models produced by a tester, or a group of testers
working together, will most likely be used by the same tester(s) to design test cases,
and consequently execute the test cases.

90

7.3 Relating our contributions to the state of the art

Success Criterion 10. The method should be appropriate for black-box testing and
white-box testing.

In order to evaluate the CORAL method with respect to Success Criterion 10, we
addressed the following research question in the industrial case study documented in
Paper 4.

• To what extent is the CORAL approach useful for black-box testing and white-
box testing, respectively?

By appropriate for black-box testing and white-box testing, we mean that the com-
plete CORAL method for risk-driven security testing should be conductible both in a
white-box testing context, as well as in a black-box testing context. As documented in
Paper 4, all the steps in the CORAL method were fully applicable both in a black-box
context, and in a white-box context. Thus, it is reasonable to assume that the CORAL
method is appropriate for black-box testing and white-box testing.

7.3 Relating our contributions to the state of the

art

In the following, we relate our contributions to the state of the art and discuss how
they extend and improve the state of the art. In order to get a holistic picture, we
relate the CORAL approach to risk-driven testing approaches at a general level, and
not only to risk-driven testing approaches specialized for security. The purpose of
risk-driven testing is to focus the testing process on the most severe risks that the
system under test is exposed to. This is achieved by first conducting risk assessment
of a system under test, and then carrying out the testing process with respect to the
risk assessment results. We will therefore relate the CORAL approach to other risk-
driven testing approaches from a risk assessment perspective (Section 7.3.1), as well
as from a testing perspective (Section 7.3.2). Moreover, in Section 7.3.3 we relate the
empirical evaluations of the CORAL approach, that is, our industrial case studies, to
the evaluations of the state of the art approaches. Finally, in Section 7.3.4 we relate
our systematic literature review to similar literature reviews.

7.3.1 Relating the CORAL approach to other risk-driven test-
ing approaches from a risk assessment perspective

Risk assessment is the overall process of identifying, estimating, and evaluating risks [70].
In the context of risk-driven testing approaches, risk assessment is carried out to iden-
tify, estimate, and evaluate risks posed on the system under test. Current risk-driven
testing approaches carry out risk assessment using different techniques. However, we
may divide the approaches in two overall groups based on how they carry our risk as-
sessment: approaches that support model-based risk assessment, and approaches that
support table-based risk assessment (see Table 7.1).

The most commonly used table-based risk assessment approach is Hazard and Op-
erability (HazOp) analysis [68]. The approaches provided by Amland [4], Chen et
al. [27, 28], Kumar et al. [86], Redmill [121, 122], Souza et al. [141, 142], and Yoon et

91

Discussion

al. [168] use techniques inherited from HazOp analysis, while the approaches provided
by Bai et al. [8, 9], Entin et al. [38], Felderer et al. [45, 47], Hosseingholizadeh [64],
Huang et al. [66], Rosenberg et al. [123], Schneidewind [133], Stallbaum et al. [145],
and Wong et al. [162] use techniques that can be regarded as specializations of HazOp
analysis in which they mainly focus on metrics such as code complexity, functional com-
plexity, and testability when identifying and estimating risks. The CORAL approach
belongs to the group that supports model-based risk assessment, and we will therefore
not further discuss approaches supporting table-based risk assessment. The reader is
referred to Chapter 4 for details related to approaches that support table-based risk
assessment. In the following, we relate the CORAL approach to the approaches sup-
porting model-based risk assessment by discussing risk identification, risk estimation,
and risk evaluation separately.

Table 7.1: Approaches supporting model-based risk assessment and approaches sup-
porting table-based risk assessment.

Risk-driven testing approaches

Model-based risk assessment Table-based risk assessment

Botella et al. [15] Amland [4]

Casado et al. [23, 24] Bai et al. [8, 9]

Gleirscher [54, 55] Chen et al. [27, 28]

Großmann et al. [57, 58] Entin et al. [38]

Kloos et al. [84] Felderer et al. [45, 47]

Murthy et al. [107] Hosseingholizadeh [64]

Nazier et al. [109] Huang et al. [66]

Ray et al. [120] Kumar et al. [86]

Seehusen [135] Redmill [121,122]

Wendland et al. [159] Rosenberg et al. [123]

Xu et al. [166] Schneidewind [133]

Zech et al. [171,172] Souza et al. [141,142]

Zimmermann et al. [174] Stallbaum et al. [145]

Wong et al. [162]

Yoon et al. [168]

Risk identification. The approaches provided by Casado et al. [23,24], Gleirscher [54,
55], Kloos et al. [84], Nazier et al. [109], Ray et al. [120], and Zimmermann et al. [174]
make use of Fault Tree Analysis [155] for the purpose of identifying safety risks.
Moreover, Casado et al. [23, 24], Kloos et al. [84], Nazier et al. [109], and Ray et
al. [120] explicitly show how fault tree analysis is conducted in their approach, while
Gleirscher [54, 55] and Zimmermann et al. [174] only refer to the usage of fault tree
analysis for the purpose of identifying safety risks. While fault tree analyses in these
approaches are useful for identifying specific safety risks, they do not include infor-
mation such as the threat profile initiating the chain of events causing the risk, the

92

7.3 Relating our contributions to the state of the art

likelihood of an event occurring, and the consequence of a risk. These are constructs
that are necessary in a risk assessment [70].

The approaches provided by Botella et al. [15], Großmann et al. [57, 58], and See-
husen [135] identify security risks by making use of the CORAS risk analysis lan-
guage [91]. As already mentioned in Chapter 5, the graphical notation and the con-
cepts used in the CORAL approach are based on constructs in the CORAS approach.
These approaches are therefore closely related to the CORAL approach with respect
to the process of identifying risks. However, the main difference is that the threat
scenarios and risks identified in these approaches are described at a high-level of ab-
straction [135], and that the risk models are represented as directed acyclic graphs,
while in the CORAL approach the risk models are represented as interaction sequence
diagrams.

Murthy et al. [107] makes use of Microsoft’s threat modeling process for identifying
risks. However, it is unclear exactly how the authors use this process for identifying
risks. Microsoft’s threat modeling process is a comprehensive process which consists of
different approaches to identify risks, such as attack tree modeling, system modeling
combined with a security assessment technique referred to as STRIDE, making use of
a categorized threat list, as well as making use of attack patterns [102].

The approach provided by Wendland et al. [159] makes use of behavior trees [59] for
the purpose of identifying risks at the level of requirements engineering. This approach
is not concerned about identifying risks caused by threat scenarios, but rather carrying
out qualitative risk assessment with an overall question in mind: what are the risks
if certain requirements are not fulfilled? Having this in mind, the behavior trees are
annotated with qualitative risk exposure values.

Xu et al. [166] make use of Predicate/Transition Nets (based on Petri Nets) [53] to
model possible attack paths, which in turn may be used to identify possible security
risks that the system under test is exposed to. Although threat modeling as given by
this approach is useful to identify possible security risks, it does not intend to focus the
testing on the most risky paths. The purpose of the approach is to identify possible
attack paths by threat modeling, and then identify the corresponding test cases.

Zech et al. [171,172] identify security risks by matching attack patterns on the public
interfaces of a system under test. The pattern matching is carried out automatically,
which in turn produces risk models in terms of UML class diagrams [110]. The produced
risk models contain information about possible attack scenarios that may be carried
out on the public interfaces. However, it does not contain information regarding the
threat initiating the attack, and the chain of events causing the security risk.

What is common for all the approaches discussed above is that they model risks
and the system under test in separate models using separate modeling languages. This
makes it difficult to get an intuitive understanding with respect to exactly how and
where the risks affect the system under test. The risk models in the CORAL approach
represent specific threat scenarios, security risks caused by the threat scenarios, and
the relevant aspects of the system affected by the risks, within the same model. This
enables testers to identify exactly how and where certain security risks may occur.

Risk estimation. None of the approaches using fault tree analysis [23,24,54,55,84,
109,120,174] make use of risk-measure annotations for estimating the likelihood of the
occurrence of a risk (fault), or the consequence of the occurring risk. The approaches
using fault tree analysis leave it to the tester to identify the most severe risks without

93

Discussion

providing any basis for estimating the risks. This is also true for the approach provided
by Xu et al. [166].

The approaches using the CORAS approach [15, 57, 58, 135] estimate risks in a
similar manner as in the CORAL approach. This is because the process of estimating
risks in the CORAL approach is inspired by the process of estimating risks in the
CORAS approach. However, the main difference is related to what we refer to as
conditional ratios in the CORAL approach. While the CORAS approach makes use of
conditional probabilities to calculate the frequency of a threat scenario, we make use
of conditional ratios for the same purpose.

The remaining approaches [107, 159, 171, 172] make use of qualitative values for
representing likelihoods and consequences. The qualitative likelihood and consequence
values are typically defined as High, Medium and Low. However, none of these ap-
proaches explain what is meant by High/Medium/Low.

Risk evaluation. The purpose of risk evaluation is to evaluate and prioritize risks
that the system under test is exposed to, with respect to the likelihood and conse-
quence estimates. The testing process is then focused on the most severe security
risks. However, since none of the approaches using fault tree analysis, including the
approach provided by Xu et al. [166], make use of risk-measures in terms of likelihood
and consequence, risk evaluation with respect to risk-measures is not carried out in
these approaches. Instead, these approaches leave it to testers to evaluate the risks in
an ad hoc manner based on their experience and knowledge.

The approaches making use of the CORAS approach use the risk estimates assigned
on a CORAS risk model to make a prioritized list of threat scenarios [15, 57, 58, 135].
The threat scenarios are then used as a basis for identifying/designing test cases. This
is different from our approach. In the CORAL approach, we map the risks to a risk
evaluation matrix based on the risk estimates, and then make a prioritized list of
risks. We then select the most severe risks that the system under test is exposed to,
and design test cases by making use of the threat scenarios causing the selected risks.
Moreover, we also aggregate similar risks to select additional threat scenarios that need
to be tested.

The remaining approaches make use of 3× 3 risk evaluation matrices that are con-
structed from qualitative likelihood and consequence values defined as High, Medium,
and Low [107, 159, 171, 172]. In traditional risk analysis, risk evaluation matrices are
designed to group the various combinations of likelihood and consequence into three
to five risk levels (for example, high, medium, and low). Such risk levels cover a wide
spectrum of likelihood and consequence combinations and are typically used as a ba-
sis for deciding whether to accept, monitor or treat risks. However, in the setting of
risk-driven testing, one is concerned about prioritizing risks to test certain aspects of
the system under test which is exposed to risks. A higher granularity with respect to
risk levels, as presented in the CORAL approach, may therefore be more practical.

7.3.2 Relating the CORAL approach to other risk-driven test-
ing approaches from a testing perspective

Risk assessment may help testers to focus the activities in a test process (that is, test
planning, test design, test implementation, test execution, and test evaluation/reporting)

94

7.3 Relating our contributions to the state of the art

on the most severe risks posed on the system under test [48]. However, current risk-
driven testing approaches use risk assessment mainly to focus the test planning process
in terms of test selection, as well as to focus the test design process with respect to
the most severe risks. We will therefore relate the CORAL approach to current risk-
driven testing approaches by discussing how risk assessment is used to support test
selection and test design. Moreover, since the CORAL approach supports model-based
testing, we will relate the CORAL approach to the risk-driven testing approaches also
supporting model-based testing (see Table 7.2).

The approach provided by Seehusen [135] focuses on the identification of test proce-
dures expressed in natural language, and techniques for prioritizing the test procedures.
The approach does not consider model-based testing, and is therefore not discussed in
this section. Although the approaches provided by Chen et al. [27,28], Entin et al. [38],
and Stallbaum et al. [145] do not support model-based risk assessment, they do how-
ever support model-based testing. We will therefore include these approaches in the
following discussion.

Table 7.2: Approaches supporting model-based testing and approaches not supporting
model-based testing.

Risk-driven testing approaches

Model-based testing Not model-based testing

Botella et al. [15] Amland [4]

Casado et al. [23, 24] Bai et al. [8, 9]

Chen et al. [27, 28] Felderer et al. [45, 47]

Entin et al. [38] Hosseingholizadeh [64]

Gleirscher [54, 55] Huang et al. [66]

Großmann et al. [57, 58] Kumar et al. [86]

Kloos et al. [84] Redmill [121,122]

Murthy et al. [107] Rosenberg et al. [123]

Nazier et al. [109] Schneidewind [133]

Ray et al. [120] Seehusen [135]

Stallbaum et al. [145] Souza et al. [141,142]

Wendland et al. [159] Wong et al. [162]

Xu et al. [166] Yoon et al. [168]

Zech et al. [171,172]

Zimmermann et al. [174]

Test selection. Test selection with respect to risk assessment basically involves es-
tablishing the scope of the testing with respect to the most severe risks posed on the
system under test. As explained in Section 7.3.1, the most severe risks are identified as
a result of risk assessment. The approaches using fault tree analysis [23, 24, 54, 55, 84,
109, 120, 174] focus on the identification of safety risks. Other approaches also consid-
ering safety risks are provided by Chen et al. [27, 28], and Entin et al. [38] who make

95

Discussion

use of techniques inherited from HazOp analysis. However, while these approaches
do identify safety risks, they do not estimate nor evaluate risks, as explained in Sec-
tion 7.3.1. Thus, they select tests based on safety risks perceived as the most severe in
an ad hoc manner. That is, they do not employ systematic techniques for estimating
and evaluating the identified safety risks in order to select tests accordingly.

The approaches using CORAS [15,57,58,135] select tests with respect to the most
severe risks by systematically identifying, estimating, and evaluating risks posed on the
system under test. These approaches are closely related to the CORAL approach with
respect to selecting tests. However, as mentioned in Section 7.3.1, these approaches
identify risks at a high-level of abstraction, which is in contrast to our approach, where
we identify risks at a low-level of abstraction and select tests accordingly.

The approaches provided by Murthy et al. [107], Stallbaum et al. [145], and Zech
et al. [171, 172] test the most complex features of a system under test based on es-
timates related to code complexity, functional complexity and testability; the more
complex features are, the more risky they are, which means that they should be tested
accordingly. While code complexity and functional complexity are important factors
for identifying risky parts/features of a system, they are not the only factors. In prac-
tice, other factors may be considered, for example, vulnerability statistics and incident
reports.

Wendland et al. [159] select tests with respect to qualitative risk levels assigned to
requirements. The aim is to plan the testing at the level of requirements engineering.
In contrast to our approach, this is test selection at a high-level of abstraction.

Similar to the approaches addressing safety risks, Xu et al. [166] do not estimate
nor evaluate risks, and therefore do not select tests with respect to a systematic risk
assessment. They select tests based on security risks perceived as the most severe, in
an ad hoc manner.

Test design. Test design with respect to risk assessment involves specifying test
cases or test procedures that address the most severe risks. The various approaches
use different techniques for modeling test cases. The approaches using fault tree analy-
sis [23,24,54,55,84,109,120,174], as well as the approach provided by Entin et al. [38],
model test cases by making use of state machine diagrams similar to UML state ma-
chines [110]. Although most of the risk-driven testing approaches model state machines
based on fault trees for the purpose of designing test cases, there are some existing gaps
between fault trees and state machines that has to be taken into consideration [82].
The approach provided by Ray et al. [120] maps fault trees to state machines using
three different modeling notations: use cases are defined based on fault trees, then
sequence diagrams are modeled with respect to each use case, and finally the relevant
aspects of the sequence diagrams are modeled as state machines. Moreover, while the
approaches mentioned above focus on modeling state-based test cases, our approach
focuses on modeling interaction-based test cases.

The approaches using CORAS [15,57,58] identify high level test procedures based on
the CORAS risk models. Then, for each test procedure, they identify an associated test
pattern. While Botella et al. [15] make use of UML class diagrams, object diagrams, and
state machines to create the test model (instantiation of the test pattern), Großmann
et al. [57, 58] incorporate guidelines for how certain test cases should be modeled as
part of the test pattern instantiation (referred to as test design strategy). Similar to
Großmann et al. [57,58], Wendland et al. [159] also make use of test design strategies for

96

7.3 Relating our contributions to the state of the art

modeling test cases. In other words, they do not restrict the test design to one specific
modeling notation, but rather use different modeling notations for different test pattern
instantiations. However, as pointed out by Neto et al. [34], UML class diagrams, state
machine diagrams, and UML interaction sequence diagrams are modeling notations
most commonly used within model-based testing. In the CORAL approach, we create
test models in terms of interaction sequence diagrams. Another important point is that
these approaches combine different modeling notations for the purpose of modeling and
representing the test model, while in the CORAL approach, we represent the system
model, risk model, and test model using one notation.

The approaches provided by Chen et al. [27,28] and Stallbaum et al. [145] create test
models using UML activity diagrams [110]. A test case in these approaches is a path in
an activity diagram. Both approaches are concerned about identifying the most risky
paths in the test model, and thereby selecting those paths for testing. However, the
purpose of an activity diagram is to provide a sequential flow of related activities and
conditions of the flow [110]. The activities are described at a high-level of abstraction
and are useful for describing high-level test procedures, similar to the approaches using
CORAS [15,57,58, 135].

The approaches provided by Murthy et al. [107] and Zech et al. [171,172] make use
of misuse cases for the purpose of identifying test cases. Murthy et al. [107] make use
of high-level misuse cases simlar to UML use case diagrams [125, 137] for the purpose
of designing security test cases. However, these kinds of diagrams are mostly useful
in the context of requirements engineering [125, 137]. Zech et al. [171, 172] make use
of misuse cases that are represented as UML class diagrams, and are used to generate
test case code. Similar to Zech et al. [171, 172], Xu et al. [166] also generate test case
code, but in the latter approach the authors make use of Predicate/Transition Nets for
this purpose.

7.3.3 Relating our empirical evaluations to evaluations in other
risk-driven testing approaches

As pointed out in our systematic literature review in Paper 1, there is very little
empirical evidence regarding the usefulness of the various approaches. Most of the
approaches either carry out evaluations/experiments based on in-house or industrial
software [8, 9, 64, 66, 107, 120, 133, 162, 166, 168, 171, 172], or provide small practical ex-
amples in order to illustrate the applicability of the approach [15, 23, 24, 54, 55, 57,
58, 84, 86, 109, 135, 141, 142, 145, 174]. Some approaches do not report on any evalu-
ations [121–123, 159]. However, a handful of approaches have been carried out and
evaluated in industrial case studies/projects [4, 28, 38, 47]. We will therefore, in the
following, relate our evaluations to the evaluations provided by Amland [4], Chen et
al. [28], Entin et al. [38], and Felderer et al. [47].

Amland [4] evaluates the risk-driven testing approach by conducting an industrial
case study on a retail banking application. This evaluation is mainly concerned about
the usefulness of risk assessment to support the test management in focusing resources
on the most risky areas of the system under test. Amland [4] highlights that the benefits
of risk-driven testing are reduced resource consumption, and improved quality.

Chen et al. [28] evaluate their regression testing approach by applying it within
an industrial project where they test three components of IBM WebSphere Commerce.
The approach uses risk assessment to identify regression test suites addressing the most

97

Discussion

severe risks. They evaluate their approach by comparing how well their test suites cover
risks, versus how well non-risk-driven test suites cover risks.

Entin et al. [38] evaluate the effectiveness of their model-based testing approach
within an industrial project that follows the Scrum development life cycle. As part of
their approach, they apply risk assessment (as given by Stallbaum et al. [145]) for the
purpose of prioritizing test suites. Based on their evaluation, Entin et al. [38] argues
that risk-driven test prioritization makes the testing more efficient in terms of resource
consumption in the test project.

Felderer et al. [47] evaluate their generic risk-driven testing approach by applying
it in an industrial project, where they test a web application. However, this evaluation
is not concerned about the effectiveness/efficiency of the risk-driven testing approach,
but it rather focuses on the challenges related to introducing risk-driven testing in an
industrial test project. Based on their experience, the authors provide guidelines for
integrating risk-driven testing in industrial test projects.

What is common for all these evaluations is that they are mainly concerned about
how risk-driven testing supports test management in focusing the resources on the most
severe risks. In the evaluation of the CORAL approach (documented in Paper 4), we
are mainly concerned about evaluating the effectiveness of our approach in terms of
producing valid risk models, as well as producing risk models that are directly testable.
That is, in our evaluation, we are mainly concerned about how the tester may benefit
from the risk assessment results, and not only how the test management may focus the
test project based on risk assessment results.

Moreover, in our first two industrial case studies reported in Paper 5, we evaluate
how useful risk assessment results are for the purpose of identifying test cases, as well
as how useful test results are for validating and correcting security risk models. That
is, not only did we evaluate how testers may benefit from the risk assessment results,
but also how risk analysts may benefit from test results.

7.3.4 Relating our systematic literature review to similar lit-
erature reviews

Chapter 4 gives an overview of state of the art approaches to risk-driven testing identi-
fied through our systematic literature review. Seven of the 28 approaches in our survey
are also included in a recent study by Alam et al. [3]. The authors focus on risk-driven
testing, and they describe each of the approaches in great detail. They also include
example tables and figures from some of the approaches they review. In contrast, the
main contribution in our literature review is a comparison of the approaches with re-
spect to a set of predefined criteria. Using a systematic search process, our survey
includes papers on risk-driven testing not discussed by Alam et al. [3], while at the
same time excluding approaches not published in peer-reviewed journals/proceedings.
In addition, we also include papers related to test-driven risk analysis.

Another recent literature review has been conducted by Felderer et al. [46]. This lit-
erature review discusses 17 risk-driven testing approaches. Fifteen of these approaches
are also included in our literature review. The remaining two approaches are not
included in our literature review because we exclude approaches not published in peer-
reviewed journals/proceedings. However, while we analyze and discuss the approaches
for risk-driven testing with respect to main goal, context of use, and maturity level
(including how risk assessment and testing are carried out), Felderer et al. [46] fo-

98

7.3 Relating our contributions to the state of the art

cus specifically on discussing and analyzing how risk estimation is carried out in the
approaches they review.

In our survey, we only consider the approaches combining risk analysis and test-
ing. Using a search process similar to the one we carry out in the literature review
documented in Paper 1, Sulaman et al. [147] review methods for risk analysis of IT
systems. Their study may be seen as complementary to our literature review, as the
sets of papers are disjoint.

99

Discussion

100

Chapter 8
Conclusion

This chapter concludes Part I of the thesis by summarizing the results and pointing
out directions for future work.

8.1 The CORAL approach

The continuous increase of sophisticated cyber security risks exposed to the public,
industry, and government through the web, mobile devices, social media, as well as
targeted attacks via state-sponsored cyberespionage, clearly show the need for software
security. Security testing is one of the most important security practices in order to
assure an acceptable level of software security. However, due to the complexity of
systems and software it is impossible to exhaustively test every single aspect of any
given system under test. In addition, security testing is limited by strict budget and
time constraints. Moreover, when testing security-critical software, security testers
face the problem of determining the tests that are most likely to reveal severe security
vulnerabilities. In response to this challenge, the testing community has proposed a
security testing approach which is supported by security risk assessment. The purpose
is to focus the testing process on the most severe security risks that the system under
test is exposed to. This is referred to as risk-driven security testing.

However, in our systematic literature review, which was conducted as part of the
work leading up to this thesis, we discovered that current risk-driven testing approaches
suffer from three main issues, namely:

• the field needs more formality and preciseness, as well as dedicated tool support,

• there is very little empirical evidence regarding the usefulness of the approaches,
and

• risk assessment is carried out at a high-level of abstraction (for example, business
level), while test cases are defined at a low-level of abstraction (for example,
implementation level). This introduces a gap between identified risks and the
test cases exploring the risks.

This thesis contributes specifically to the domain of risk-driven security testing
from a model-based perspective. To address the above issues, our overall objective has
been to develop a model-based approach to risk-driven security testing that is:

101

Conclusion

1. comprehensible to security testers,

2. useful for the purpose of selecting and designing test cases with respect to the
risk assessment results,

3. effective in the sense that it produces risk models that are valid and directly
testable, and

4. sufficiently rigorous to support the development of tools and methods.

To this end, we have put forward a model-based approach to risk-driven security
testing named CORAL. The CORAL approach consists of a risk analysis language
and a method for risk-driven security testing, which are specialized for security testers.
There are six main reasons to why the CORAL approach is comprehensible to security
testers.

• The risk analysis language is based on UML interactions, which are among the
top three modeling languages within the model-based testing community and
often used for testing purposes.

• The risk-related information in the language is represented by annotating the
constructs inherited from UML interactions with appropriate graphical icons.
This, in turn, brings risk assessment to the work bench of testers without the
burden of a separate risk analysis language.

• The graphical notation of the language is in accordance with the principles for
achieving effective visual notations [104], and is in addition based on correspond-
ing symbols used in the CORAS language [91] which have been empirically shown
to be cognitively effective [139].

• The resulting English prose from the natural-language semantics uses concepts
that are known to security testers, it preserves the structure of CORAL risk
models, and it keeps the user-defined text in CORAL risk models unchanged.
In addition, the resulting English prose of the constructs inherited from UML
interactions is consistent with their semantics in the UML standard. Moreover,
the complexity of the resulting English prose scales linearly with the complexity
of the CORAL risk models in terms of size.

• The resulting risk models are used as a basis for designing and subsequently
executing security test cases.

• The method for risk-driven security testing is in line with standard testing pro-
cesses, as well as activities typically carried out by security testers.

The risk analysis language is formalized in terms of an abstract syntax and a
schematically defined natural-language semantics. The abstract syntax provides a set
of rules, in terms of a context-free grammar, that defines the correct combinations
of the constructs in the CORAL risk analysis language. The syntax may be used to
create risk models that are syntactically correct. The natural-language semantics pro-
vides a set of rules for schematically translating CORAL risk models into English prose

102

8.2 Empirical studies

to clearly and consistently document, communicate and analyze security risks. These
points support the rigorousness of the CORAL approach.

The CORAL approach helps security testers in selecting test cases by systemati-
cally carrying out security risk assessment of a system under test. Based on the risk
assessment, security testers are able to identify security risks that the system under
test is exposed to, and then select the most severe risks to test. As part of the risk
assessment, testers must create risk models using the CORAL language. The resulting
risk models are used for designing and executing security test cases.

We have also carried out the CORAL approach in an industrial case study, from
which we have gathered promising results indicating that the approach is effective in
the sense that it produces valid and directly testable risk models. The empirical studies
are discussed closer in the following section.

8.2 Empirical studies

As part of the development and evaluation process of the CORAL approach to risk-
driven security testing, we conducted three industrial case studies. The first two case
studies are reported in Paper 5, while the third case study is reported in Paper 4. In
addition to the case studies, we have also carried out an analytical evaluation of the
CORAL risk analysis language as explained in Section 7.1.

The first two industrial case studies provided valuable insight in how security testing
may benefit from security risk assessment (that is, risk-driven security testing), as well
as how security risk analysis may benefit from security testing (that is, test-driven
security risk analysis).

With respect to risk-driven security testing, we found that threat scenarios are a
good starting point for identifying security test cases. However, we also found that in
order to fully benefit from this, there had to be an established process to refine high-
level threat scenarios into detailed test cases. This was an important insight because
this indicated the need for formality and preciseness in the process of designing test
cases. These findings guided us to improve risk-driven security testing in terms of
actively using the risk assessment for the purpose of designing test cases, instead of
designing test cases after the risk assessment. By doing so, we bridge the gap between
high-level security risks and low-level security test cases. This motivation shaped the
development of the CORAL approach.

With respect to test-driven security risk analysis, we found that the test results
are useful for correcting the risk models in terms of adding or deleting vulnerabilities,
as well as editing likelihood values. Furthermore, the test results also proved to be
useful for validating the risk models in terms of discovering the presence or absence of
presumed vulnerabilities, and thereby increasing the trust in the risk models.

The third industrial case study provided valuable insight with respect to the appli-
cability of the CORAL approach. In particular, the case study results indicated that
the CORAL approach is capable of guiding security testers in identifying risk models
that are valid and of high quality. Moreover, the CORAL approach proved to be appli-
cable both in the context of black-box testing and white-box testing. One of the most
important findings we did in the case study was that the CORAL approach is very
useful for identifying security test cases. We made direct use of all threat scenarios
represented by CORAL risk models for the purpose of security test case design and

103

Conclusion

execution. This, in turn, bridges the gap between high-level security risks and low-level
security test cases.

8.3 Systematic literature review

In order to obtain a holistic view of the domain of risk-driven testing, as well as test-
driven risk analysis, we conducted a systematic literature review, which is documented
in Paper 1. In the literature review we include approaches addressing risk-driven testing
and test-driven risk analysis in general. By doing so, we obtained a complete overview
of the domain. Moreover, Paper 1 reports on a total of 22 approaches related to risk-
driven testing, and 2 approaches related to test-driven risk analysis. In Chapter 4,
we include 3 additional approaches related to risk-driven testing, and 1 additional
approach related to test-driven risk analysis. These approaches were not included in
Paper 1 because they were published after we had conducted our systematic literature
review. This gives a total of 25 approaches related to risk-driven testing, and a total of
3 approaches related to test-driven risk analysis. The main finding of our systematic
literature review are summarized in Section 8.1.

8.4 Directions for future work

There are a number of interesting directions for future work. As explained in Paper
4, we carried out the CORAL approach in an industrial case study where we focused
mainly on web application security. However, it would be beneficial with more indus-
trial case studies where we carry out the CORAL approach in different domains. For
example cloud security, network protocol security, security in smart home systems, and
so on. This would provide more empirical evidence with respect to the applicability of
the CORAL approach and help us identify strengths and weaknesses of the CORAL
approach with respect to the different domains.

Another interesting future work would be to investigate the comprehensibility of
the graphical notation of the CORAL language by interviewing or surveying security
testers. Although we have specifically designed the CORAL approach for security
testers, and discussed how the CORAL approach is appropriate for security testers, as
well as for the domain of risk-driven security testing, it is not obvious how the modeling
notation may be interpreted by practitioners.

One obvious direction of future research is to develop a modeling tool for the
CORAL approach. As pointed out in our literature review in Paper 1, the field of
risk-driven testing needs more formality and proper tool support. The CORAL lan-
guage is already formalized, and this opens for appropriate tool support for the CORAL
approach. A supporting tool would obviously increase the efficiency of risk modeling.
Moreover, it could also support automatic test execution since the CORAL approach
makes direct use of the risk models for test identification and test execution purposes.
Also, another interesting point worth exploring in the context of tools, is to investigate
to what extent known attack patterns, such as those listed in Common Attack Pattern
Enumeration and Classification (CAPEC) [22], may be automatically transformed into
CORAL risk models. This would assist security testers in creating risk models based
on known attack patterns.

104

8.4 Directions for future work

The CORAL risk models are created during the security risk assessment process,
and represent potential threat scenarios posed on a system under test, which in turn
cause security risks that the system under test may be exposed to. In the CORAL
approach we make use of the risk models for the purpose of risk-driven test selection,
as well as for risk-driven test design. However, one interesting future work would be
to investigate how the CORAL risk models may assist the domain of requirements
engineering, for the purpose of identifying security requirements. Moreover, since we
make use of the CORAL risk models to design security test cases, it would be interesting
to investigate how this can be applied in the context of test-driven software development
(TDD).

105

Conclusion

106

Bibliography

[1] H. Abelson and G.J. Sussman. The Structure and Interpretation of Computer
Programs. Journal of Curriculum Studies, 19(1):91–103, 1987.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

[3] M. Alam and A.I. Khan. Risk-based testing techniques: A perspective study.
International Journal of Computer Applications, 65(1):33–41, 2013.

[4] S. Amland. Risk-based testing: Risk analysis fundamentals and metrics for soft-
ware testing including a financial application case study. Journal of Systems and
Software, 53:287–295, 2000.

[5] A. Armando, R. Carbone, L. Compagna, K. Li, and G. Pellegrino. Model-
Checking Driven Security Testing of Web-Based Applications. In Proc. 3rd Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW’10), pages 361–370. IEEE Computer Society, 2010.

[6] J.L. Austin. How to do things with words. Oxford University Press, 1962.

[7] C.W. Bachman. Data Structure Diagrams. ACM SIGMIS Database, 1(2):4–10,
1969.

[8] X. Bai and R.S. Kenett. Risk-based adaptive group testing of semantic web
services. In Proc. 33rd Annual IEEE International Computer Software and Ap-
plications Conference (COMPSAC’09), pages 485–490. IEEE Computer Society,
2009.

[9] X. Bai, R.S. Kennett, and W. Yu. Risk assessment and adaptive group testing
of semantic web services. International Journal of Software Engineering and
Knowledge Engineering, pages 595–620, 2012.

[10] P. Baker, Z.R. Dai, J. Grabowski, ø. Haugen, I. Schieferdecker, and C. Williams.
Model-Driven Testing: Using the UML Testing Profile. Springer, 2008.

[11] R.V. Binder, A. Kramer, and B. Legeard. 2014 Model-based Testing User Sur-
vey: Results. http://model-based-testing.info/wordpress/wp-content/

uploads/2014_MBT_User_Survey_Results.pdf, Model-Based Testing Commu-
nity, 2014. Accessed June 11, 2015.

107

Bibliography

[12] R.V. Binder, B. Legeard, and A. Kramer. Model-based testing: where does it
stand? Communications of the ACM, 58(2):52–56, 2015.

[13] M. Blackburn, R. Busser, A. Nauman, and R. Chandramouli. Model-based ap-
proach to security test automation. In Proc. International Software Quality Week,
pages 1–8. NIST, 2001.

[14] J. Botella, F. Bouquet, J.-F. Capuron, F. Lebeau, B. Legeard, and F. Schadle.
Model-Based Testing of Cryptographic Components – Lessons Learned from Ex-
perience. In Proc. 6th International Conference on Software Testing, Verification
and Validation (ICST’13), pages 192–201. IEEE Computer Society, 2013.

[15] J. Botella, B. Legeard, F. Peureux, and A. Vernotte. Risk-Based Vulnerabil-
ity Testing Using Security Test Patterns. In Proc. 6th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA’14), pages 337–352. Springer, 2014.

[16] P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge
2004 version. Technical Report 19759, IEEE Computer Society, 2004.

[17] J. Bozic, D.E. Simos, and F. Wotawa. Attack Pattern-based Combinatorial
Testing. In Proc. 9th International Workshop on Automation of Software Test
(AST’14), pages 1–7. ACM, 2014.

[18] J. Bozic and F. Wotawa. XSS Pattern for Attack Modeling in Testing. In Proc.
8th International Workshop on Automation of Software Test (AST’13), pages
71–74. IEEE Computer Society, 2013.

[19] J. Bozic and F. Wotawa. Security Testing Based on Attack Patterns. In Proc.
7th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW’14), pages 4–11. IEEE Computer Society, 2014.

[20] F.P. Brooks Jr. The Computer Scientist As Toolsmith II. Communications of
the ACM, 39(3):61–68, 1996.

[21] M. Broy and K. Stølen. Specification and Development of Interactive Systems -
Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[22] Common Attack Pattern Enumeration and Classification (CAPEC). https://

capec.mitre.org/. Accessed May 31, 2015.

[23] R. Casado, J. Tuya, and M. Younas. Testing long-lived web services transactions
using a risk-based approach. In Proc. 10th International Conference on Quality
Software (QSIC’10), pages 337–340. IEEE Computer Society, 2010.

[24] R. Casado, J. Tuya, and M. Younas. A framework to test advanced web ser-
vices transactions. In Proc. 4th International Conference on Software Testing,
Verification and Validation (ICST’11), pages 443–446. IEEE Computer Society,
2011.

[25] W.S. Chao. System Analysis and Design: SBC Software Architecture in Practice.
Lambert Academic Publishing, 2009.

108

Bibliography

[26] P.P.-S. Chen. The Entity-relationship Model – Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[27] Y. Chen and R.L. Probert. A risk-based regression test selection strategy. In
Proc. 14th IEEE International Symposium on Software Reliability Engineering
(ISSRE’03), Fast Abstract, pages 305–306. Chillarege Press, 2003.

[28] Y. Chen, R.L. Probert, and D.P. Sims. Specification-based regression test se-
lection with risk analysis. In Proc. 2002 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’02), pages 1–14. IBM Press, 2002.

[29] T.S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE
Transactions on Software Engineering, 4(3):178–187, 1978.

[30] Cisco 2015 Annual Security Report. http://www.cisco.com/web/offers/lp/

2015-annual-security-report/index.html?KeyCode=000657658. Accessed
May 5, 2015.

[31] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM, 13(6):377–387, 1970.

[32] R. Davison, M.G. Martinsons, and N. Kock. Principles of canonical action re-
search. Information Systems Journal, 14(1):65–86, 2004.

[33] P.J. Denning. Is Computer Science Science? Communications of the ACM,
48(4):27–31, 2005.

[34] A.C. Dias Neto, R. Subramanyan, M. Vieira, and G.H. Travassos. A Survey on
Model-based Testing Approaches: A Systematic Review. In Proc. 1st ACM Inter-
national Workshop on Empirical Assessment of Software Engineering Languages
and Technologies (WEASELTech’07), pages 31–36. ACM, 2007.

[35] The Free Dictionary: Dictionary, Encyclopedia and Thesaurus. Definition of
“method”. http://www.thefreedictionary.com/method. Accessed May 27,
2015.

[36] businessdictionary.com: Definition of “objective”. http://www.

businessdictionary.com/definition/objective.html. Accessed June
24, 2015.

[37] G. Dodig-Crnkovic. Scientific Methods in Computer Science. In Proc. Confer-
ence for the Promotion of Research in IT at New Universities and at University
Colleges in Sweden, pages 1–7. M”alardalen University, 2002.

[38] V. Entin, M. Winder, B. Zhang, and S. Christmann. Introducing model-based
testing in an industrial scrum project. In Proc. 7th International Workshop on
Automation of Software Test (AST’12), pages 43–49. IEEE Computer Society,
2012.

[39] G. Erdogan, Y. Li, R.K. Runde, F. Seehusen, and K. Stølen. Conceptual Frame-
work for the DIAMONDS Project. Technical Report A22798, SINTEF Informa-
tion and Communication Technology, 2012.

109

Bibliography

[40] G. Erdogan, Y. Li, R.K. Runde, F. Seehusen, and K. Stølen. Approaches for
the combined use of risk analysis and testing: a systematic literature review.
International Journal on Software Tools for Technology Transfer, 16(5):627–642,
2014.

[41] G. Erdogan, A. Refsdal, and K. Stølen. A Systematic Method for Risk-driven
Test Case Design Using Annotated Sequence Diagrams. In Proc. 1st International
Workshop on Risk Assessment and Risk-driven Testing (RISK’13), pages 93–108.
Springer, 2014.

[42] G. Erdogan, A. Refsdal, and K. Stølen. Schematic Generation of English-prose
Semantics for a Risk Analysis Language Based on UML Interactions. In Proc. 2nd
International Workshop on Risk Assessment and Risk-driven Testing (RISK’14),
pages 205–310. IEEE Computer Society, 2014.

[43] G. Erdogan, F. Seehusen, K. Stølen, J. Hofstad, and J.ø. Aagedal. Assessing
the Usefulness of Testing for Validating and Correcting Security Risk Models
Based on Two Industrial Case Studies. International Journal of Secure Software
Engineering, 6(2):90–112, 2015.

[44] G. Erdogan and K. Stølen. Risk-driven Security Testing versus Test-driven Se-
curity Risk Analysis. In Proc. 1st ESSoS Doctoral Symposium (ESSoS-DS’12),
pages 5–10. Citeseer, 2012.

[45] M. Felderer, C. Haisjackl, R. Breu, and J. Motz. Integrating manual and auto-
matic risk assessment for risk-based testing. In Proc. 4th International Conference
on Software Quality (SWQD’12), pages 159–180. Springer, 2012.

[46] M. Felderer, C. Haisjackl, V. Pekar, and R. Breu. An Exploratory Study on Risk
Estimation in Risk-Based Testing Approaches. In Proc. 7th Software Quality
Days (SWQD’15), pages 32–43. Springer, 2015.

[47] M. Felderer and R. Ramler. Experiences and challenges of introducing risk-based
testing in an industrial project. In Proc. 5th International Conference on Software
Quality (SWQD’13), pages 10–29. Springer, 2013.

[48] M. Felderer and I. Schieferdecker. A taxonomy of risk-based testing. International
Journal on Software Tools for Technology Transfer, 16(5):559–568, 2014.

[49] ETSI Technical Committee Methods for Testing and Specification (MTS). Meth-
ods for Testing and Specification (MTS); Security Testing; Basic Terminology.
ETSI Technical Report 101 583 v1.1.1, European Telecommunications Standards
Institute, 2015.

[50] C.P. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques.
Prentice Hall Professional Technical Reference, 1979.

[51] V. Garousi and J. Zhi. A survey of software testing practices in Canada. Journal
of Systems and Software, 86(5):1354–1376, 2013.

[52] M.-C. Gaudel and P. Le Gall. Testing data types implementations from algebraic
specifications. In Formal methods and testing, pages 209–239. Springer, 2008.

110

Bibliography

[53] H.J. Genrich. Predicate/Transition Nets. In Petri Nets: Central Models and
Their Properties, pages 207–247. Springer, 1987.

[54] M. Gleirscher. Hazard-based selection of test cases. In Proc. 6th International
Workshop on Automation of Software Test (AST’11), pages 64–70. ACM, 2011.

[55] M. Gleirscher. Hazard analysis of technical systems. In Proc. 5th International
Conference on Software Quality (SWQD’13), pages 104–124. Springer, 2013.

[56] S. Gopalakrishnan, J. Krogstie, and G. Sindre. Adapting UML Activity Diagrams
for Mobile Work Process Modelling: Experimental Comparison of Two Notation
Alternatives. In The Practice of Enterprise Modeling, pages 145–161. Springer,
2010.

[57] J. Großmann, M. Berger, and J. Viehmann. A Trace Management Platform
for Risk-Based Security Testing. In Proc. 1st International Workshop on Risk
Assessment and Risk-driven Testing (RISK’13), pages 120–135. Springer, 2014.

[58] J. Großmann, M. Schneider, J. Viehmann, and M.-F. Wendland. Combining Risk
Analysis and Security Testing. In Proc. 6th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA’14),
pages 322–336. Springer, 2014.

[59] Behavior Tree Group. Behavior Tree Notation. Technical Report v1.0, ARC
Center for Complex Systems, 2007.

[60] S. Hagerman, A. Andrews, S. Elakeili, and A. Gario. Security Testing of an
Aerospace Launch System. In Proc. IEEE Aerospace Conference (AC’15), pages
1–11. IEEE Computer Society, 2015.

[61] J. Hartmanis. Some Observations About the Nature of Computer Science. In
Foundations of Software Technology and Theoretical Computer Science, pages
1–12. Springer, 1993.

[62] J. Hartmanis. On computational complexity and the nature of computer science.
ACM Computing Surveys, 27(1):7–16, 1995.

[63] R.M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen, A.J.H. Simons,
S. Vilkomir, M.R. Woodward, and H. Zedan. Using Formal Specifications to
Support Testing. ACM Computing Surveys, 41(2):9:1–9:76, 2009.

[64] A. Hosseingholizadeh. A source-based risk analysis approach for software test
optimization. In Proc. 2nd International Conference on Computer Engineering
and Technology (ICCET’10), pages 601–604. IEEE Computer Society, 2010.

[65] M. Howard and S. Lipner. The Security Development Lifecycle: SDL, a Process
for Developing Demonstrably More Secure Software. Microsoft Press, 2006.

[66] P. Huang, X. Ma, D. Shen, and Y. Zhou. Performance Regression Testing Tar-
get Prioritization via Performance Risk Analysis. In Proc. 36th International
Conference on Software Engineering (ICSE’14), pages 60–71. ACM, 2014.

111

Bibliography

[67] IEEE Computer Society. IEEE 829 - Standard for Software and System Test
Documentation, 2008.

[68] International Electrotechnical Commission. IEC 61882, Hazard and Operability
studies (HAZOP studies) - Application guide, 2001.

[69] International Organization for Standardization. ISO/IEC 14977:1996(E), In-
formation technology – Syntactic metalanguage – Extended BNF, first edition,
1996.

[70] International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

[71] International Organization for Standardization. ISO/IEC 27000:2009(E), In-
formation technology – Security techniques – Information security management
systems – Overview and vocabulary, 2009.

[72] International Organization for Standardization. ISO/IEC 27005:2011(E), Infor-
mation technology – Security techniques – Information security risk management,
2011.

[73] International Organization for Standardization. ISO/IEC/IEEE 29119-
1:2013(E), Software and system engineering - Software testing - Part 1: Concepts
and definitions, 2013.

[74] International Organization for Standardization. ISO/IEC/IEEE 29119-
2:2013(E), Software and system engineering - Software testing - Part 2: Test
process, 2013.

[75] W. Johansson, M. Svensson, U.E. Larson, M. Almgren, and V. Gulisano. T-Fuzz:
Model-Based Fuzzing for Robustness Testing of Telecommunication Protocols. In
Proc. 7th International Conference on Software Testing, Verification and Valida-
tion (ICST’14), pages 323–332. IEEE Computer Society, 2014.

[76] C.B. Jones. Systematic Software Development using VDM. Prentice Hall Inter-
national, 1990.

[77] J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In UML
2002 – The Unified Modeling Language, pages 412–425. Springer, 2002.

[78] J. Jürjens. Model-based security testing using umlsec: A case study. Electronic
Notes in Theoretical Computer Science, 220(1):93–104, 2008.

[79] J. Jürjens and G. Wimmel. Specification-Based Testing of Firewalls. In Perspec-
tives of System Informatics, pages 308–316. Springer, 2001.

[80] C. Kaner. The Impossibility of Complete Testing. Technical report, http://
www.kaner.com/pdfs/imposs.pdf, 1997. Accessed May 30, 2015.

[81] K. Katkalov, N. Moebius, K. Stenzel, M. Borek, and W. Reif. Modeling test
cases for security protocols with securemdd. Computer Networks, 58(0):99–111,
2014.

112

Bibliography

[82] H. Kim, W.E. Wong, V. Debroy, and D. Bae. Bridging the Gap Between
Fault Trees and UML State Machine Diagrams for Safety Analysis. In Proc.
17th Asia Pacific Software Engineering Conference (APSEC’10), pages 196–205.
IEEE Computer Society, 2010.

[83] B. Kitchenham and S. Charters. Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01, Keele Univer-
sity, and University of Durham, 2007.

[84] J. Kloos, T. Hussain, and R. Eschbach. Risk-based testing of safety-critical em-
bedded systems driven by Fault Tree Analysis. In Proc. 4th International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW’11),
pages 26–33. IEEE Computer Society, 2011.

[85] J. Krogstie. Model-Based Development and Evolution of Information Systems -
A Quality Approach. Springer, 2012.

[86] N. Kumar, D. Sosale, S.N. Konuganti, and A. Rathi. Enabling the adoption
of aspects-testing aspects: A risk model, fault model and patterns. In Proc.
8th ACM International Conference on Aspect-Oriented Software Development
(AOSD’09), pages 197–206. ACM, 2009.

[87] J.H. Larkin and H.A. Simon. Why a Diagram is (Sometimes) Worth Ten Thou-
sand Words. Cognitive Science, 11(1):65–100, 1987.

[88] F. Lebeau, B. Legeard, F. Peureux, and A. Vernotte. Model-Based Vulnerability
Testing for Web Applications. In Proc. 6th International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW’13), pages 445–
452. IEEE Computer Society, 2013.

[89] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[90] C.Y. Lester and F. Jamerson. Incorporating Software Security into an Under-
graduate Software Engineering Course. In Proc. 3rd International Conference on
Emerging Security Information, Systems and Technologies (SECURWARE’09),
pages 161–166. IEEE Computer Society, 2009.

[91] M.S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 2011.

[92] S. Maag. Final Security Testing Techniques. Technical Report D5.WP2,
http://www.itea2-diamonds.org/_docs/D5_WP2_v10_FINAL_Final_

Security_Testing_Techniques.pdf, DIAMONDS Consortium, 2013. Ac-
cessed June 15, 2015.

[93] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu. Security Test Generation
using Threat Trees. In Proc. ICSE Workshop on Automation of Software Test
(AST’09), pages 62–69. IEEE Computer Society, 2009.

[94] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu. A threat model-based
approach to security testing. Software: Practice and Experience, 43(2):241–258,
2013.

113

Bibliography

[95] S.T. March and G.F. Smith. Design and natural science research on information
technology. Decision Support Systems, 15(4):251–266, 1995.

[96] P. McBrien, A.H. Seltveit, and B. Wangler. An Entity-Relationship Model Ex-
tended to Describe Historical Information. In Proc. Information Systems and
Management of Data (CISMOD’92), pages 244–260. Citeseer, 1992.

[97] J.E. McGrath. Groups: interaction and performance. Prentice-Hall, 1984.

[98] G. McGraw. Software security. Security & Privacy, IEEE, 2(2):80–83, 2004.

[99] G. McGraw. Software Security - Building Security In. Addison-Wesley, 2006.

[100] G. McGraw, S. Migues, and J. West. Building Security In Maturity Model
(BSIMM-V). Technical Report Release 5.1.2, BSIMM Project, 2013.

[101] Microsoft Threat Modeling Tool. http://www.microsoft.com/en-us/sdl/

adopt/threatmodeling.aspx. Accessed June 16, 2015.

[102] Threat Modeling. https://msdn.microsoft.com/en-us/library/ff648644.

aspx. Accessed April 18, 2015.

[103] Security Development Lifecycle. http://www.microsoft.com/en-us/sdl/

default.aspx. Accessed May 5, 2015.

[104] D.L. Moody. The “Physics” of Notations: Toward a Scientific Basis for Con-
structing Visual Notations in Software Engineering. Transactions on Software
Engineering, IEEE, 35(6):756–779, 2009.

[105] D.L. Moody, G. Sindre, T. Brasethvik, and A. Solvberg. Evaluating the Qual-
ity of Information Models: Empirical Testing of a Conceptual Model Quality
Framework. In Proc. 25th International Conference on Software Engineering
(ICSE’03), pages 295–305. IEEE Computer Society, 2003.

[106] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon. A Model-Based Framework
for Security Policy Specification, Deployment and Testing. In Model Driven
Engineering Languages and Systems, pages 537–552. Springer, 2008.

[107] K.K. Murthy, K.R. Thakkar, and S. Laxminarayan. Leveraging risk based testing
in enterprise systems security validation. In Proc. 1st International Conference
on Emerging Network Intelligence (EMERGING’09), pages 111–116. IEEE Com-
puter Society, 2009.

[108] G.J. Myers, T. Badgett, and C. Sandler. The Art of Software Testing. John
Wiley & Sons, 2011.

[109] R. Nazier and T. Bauer. Automated risk-based testing by integrating safety
analysis information into system behavior models. In Proc. 23rd International
Symposium on Software Reliability Engineering Workshops (ISSREW’12), pages
213–218. IEEE Computer Society, 2012.

[110] Object Management Group. Unified Modeling Language (UML), superstructure,
version 2.4.1, 2011. OMG Document Number: formal/2011-08-06.

114

Bibliography

[111] Object Management Group. UML Testing Profile (UTP), version 1.2, 2013.
OMG Document Number: formal/2013-04-03.

[112] Object Management Group. Object Constraint Language, version 2.4, 2014.
OMG Document Number: formal/2014-02-03.

[113] P. Oehlert. Violating assumptions with fuzzing. Security Privacy, IEEE, 3(2):58–
62, 2005.

[114] The Open Group. The Open Group Architecture Framework Version 9.1, 2011.

[115] Open Web Application Security Project. https://www.owasp.org/index.php/
Main_Page. Accessed January 13, 2015.

[116] OWASP Zed Attack Proxy. https://www.owasp.org/index.php/OWASP_Zed_

Attack_Proxy_Project. Accessed January 13, 2015.

[117] B. Potter and G. McGraw. Software Security Testing. Security & Privacy, IEEE,
2(5):81–85, 2004.

[118] A. Pretschner. Model-Based Testing. In Proc. 27th International Conference on
Software Engineering (ICSE’05), pages 722–723. ACM, 2005.

[119] Managing cyber risks in an interconnected world - Key findings from The
Global State of Information Security Survey 2015. http://www.pwc.com/

gx/en/consulting-services/information-security-survey/assets/

the-global-state-of-information-security-survey-2015.pdf. Accessed
May 5, 2015.

[120] M. Ray and D.P. Mohapatra. Risk analysis: A guiding force in the improvement
of testing. IET Software, 7:29–46, 2013.

[121] F. Redmill. Exploring risk-based testing and its implications. Software Testing,
Verification and Reliability, 14:3–15, 2004.

[122] F. Redmill. Theory and practice of risk-based testing. Software Testing, Verifi-
cation and Reliability, 15:3–20, 2005.

[123] L. Rosenberg, R. Stapko, and A. Gallo. Risk-based object oriented testing. In
Proc. 24th Annual Software Engineering Workshop, pages 1–6. NASA, Software
Engineering Laboratory, 1999.

[124] P.S. Rosenbloom. A new framework for computer science and engineering. IEEE
Computer, 37(11):23–28, 2004.

[125] Lillian Røstad. Access Control in Healthcare Information Systems. PhD thesis,
Norwegian University of Science and Technology, 2008.

[126] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

[127] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-
erence Manual, Second Edition. Addison-Wesley, 2005.

115

Bibliography

[128] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons, 2012.

[129] I. Schieferdecker. Model-Based Fuzz Testing. In Proc. 5th IEEE International
Conference on Software Testing, Verification and Validation (ICST’12), page
814. IEEE Computer Society, 2012.

[130] I. Schieferdecker. Model-based testing. IEEE Software, 29(1):14–18, 2012.

[131] I. Schieferdecker, J. Großmann, and M. Schneider. Model-Based Security Testing.
In Proc. 7th Workshop on Model-Based Testing (MBT’12), pages 1–12. Electronic
Proceedings in Theoretical Computer Science (EPTCS 80), 2012.

[132] M. Schneider, J. Großmann, I. Schieferdecker, and A. Pietschker. Online Model-
Based Behavioral Fuzzing. In Proc. 6th International Conference on Software
Testing, Verification and Validation Workshops (ICSTW’13), pages 469–475.
IEEE Computer Society, 2013.

[133] N.F. Schneidewind. Risk-driven software testing and reliability. International
Journal of Reliability Quality and Safety Engineering, 14:99–132, 2007.

[134] J.R. Searle. Speech acts: An essay in the philosophy of language. Cambridge
University Press, 1969.

[135] F. Seehusen. A Technique for Risk-Based Test Procedure Identification, Pri-
oritization and Selection. In Proc. 6th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA’14), pages
277–291. Springer, 2014.

[136] M.E. Senko, E.B. Altman, M.M. Astrahan, and P.L. Fehder. Data structures
and accessing in data-base systems, I: Evolution of information systems. IBM
Systems Journal, 12(1):30–44, 1973.

[137] G. Sindre and A.L. Opdahl. Eliciting security requirements with misuse cases.
Requirements Engineering, 10(1):34–44, 2005.

[138] Smartesting. http://www.smartesting.com/en/. Accessed June 16, 2015.

[139] B. Solhaug and K. Stølen. The CORAS Language - Why it is designed the way
it is. In Proc. 11th International Conference on Structural Safety and Reliability
(ICOSSAR’13), pages 3155–3162. Taylor and Francis, 2013.

[140] I. Solheim and K. Stølen. Technology research explained. Technical Report A313,
SINTEF Information and Communication Technology, 2007.

[141] E. Souza, C. Gusmão, K. Alves, J. Venâncio, and R. Melo. Measurement and
control for risk-based test cases and activities. In Proc. 10th Latin American Test
Workshop (LATW’09), pages 1–6. IEEE Computer Society, 2009.

[142] E. Souza, C. Gusmão, and J. Venâncio. Risk-based testing: A case study. In
Proc. 7th International Conference on Information Technology: New Generations
(ITNG’10), pages 1032–1037. IEEE Computer Society, 2010.

116

Bibliography

[143] J.M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

[144] J.M. Spivey. The Z Notation: A Reference Manual, 2nd Edition. Prentice Hall
International, 1992.

[145] H. Stallbaum, A. Metzger, and K. Pohl. An automated technique for risk-based
test case generation and prioritization. In Proc. 3rd International Workshop on
Automation of Software Test (AST’08), pages 67–70. ACM, 2008.

[146] K. Stølen. Teknologivitenskap. Draft, 2015.

[147] S.M. Sulaman, K. Weyns, and M. Höst. A Review of Research on Risk Analysis
Methods for IT Systems. In Proc. 17th International Conference on Evaluation
and Assessment in Software Engineering (EASE’13), pages 86–96. ACM, 2013.

[148] Symantec Internet Security Threat Report, Volume 20, April 2015. http://www.
symantec.com/security_response/publications/threatreport.jsp. Ac-
cessed May 5, 2015.

[149] Testing Standards Working Party. BS 7925-1 Vocabulary of terms in software
testing, 1998.

[150] L. Thomas, W. Xu, and D. Xu. Mutation Analysis of Magento for Evaluat-
ing Threat Model-Based Security Testing. In Proc. 35th Annual Computer Soft-
ware and Applications Conference Workshops (COMPSACW’11), pages 184–189.
IEEE Computer Society, 2011.

[151] H.H. Thompson. Why Security Testing Is Hard. Security & Privacy, IEEE,
1(4):83–86, 2003.

[152] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Mor-
gan Kaufmann, 2007.

[153] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability, 22(5):297–312, 2012.

[154] A. van Lamsweerde. Formal Specification: A Roadmap. In Proc. 22nd Inter-
national Conference on Software Engineering (ICSE’00), pages 147–159. ACM,
2000.

[155] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree Handbook.
Technical Report NUREG-0492, U.S. Nuclear Regulatory Commission, 1981.

[156] J. Wang, T. Guo, P. Zhang, and Q. Xiao. A Model-Based Behavioral Fuzzing
Approach for Network Service. In Proc. 3rd International Conference on Instru-
mentation, Measurement, Computer, Communication and Control (IMCCC’13),
pages 1129–1134. IEEE Computer Society, 2013.

[157] J. Wang, P. Zhang, L. Zhang, H. Zhu, and Y. Xiaojun. A Model-Based Fuzzing
Approach for DBMS. In Proc. 8th International Conference on Communications
and Networking in China (CHINACOM’13), pages 426–431. IEEE Computer
Society, 2013.

117

Bibliography

[158] L. Wang, E. Wong, and D. Xu. A Threat Model Driven Approach for Security
Testing. In Proc. 3rd International Workshop on Software Engineering for Secure
Systems (SESS’07), pages 10–16. IEEE Computer Society, 2007.

[159] M.-F. Wendland, M. Kranz, and I. Schieferdecker. A systematic approach to
risk-based testing using risk-annotated requirements models. In Proc. 7th In-
ternational Conference on Software Engineering Advances (ICSEA’12), pages
636–642. IARA, 2012.

[160] R.J. Wieringa. Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, 2014.

[161] G. Wimmel and J. Jürjens. Specification-Based Test Generation for Security-
Critical Systems Using Mutations. In Formal Methods and Software Engineering,
pages 471–482. Springer, 2002.

[162] W.E. Wong, Y. Qi, and K. Cooper. Source code-based software risk assessing. In
Proc. 2005 ACM Symposium on Applied Computing (SAC’05), pages 1485–1490.
ACM, 2005.

[163] C. Wysopal, L. Nelson, D.D. Zovi, and E. Dustin. The Art of Software Security
Testing. Addison-Wesley, 2006.

[164] D. Xu. A Tool for Automated Test Code Generation from High-Level Petri Nets.
In Applications and Theory of Petri Nets, pages 308–317. Springer, 2011.

[165] D. Xu, L. Thomas, M. Kent, T. Mouelhi, and Y. Le Traon. A Model-based
Approach to Automated Testing of Access Control Policies. In Proc. 17th ACM
Symposium on Access Control Models and Technologies (SACMAT’12), pages
209–218. ACM, 2012.

[166] D. Xu, M. Tu, M. Sandford, L. Thomas, D. Woodraska, and W. Xu. Automated
Security Test Generation with Formal Threat Models. IEEE Transactions on
Dependable and Secure Computing, 9(4):526–540, 2012.

[167] R.K. Yin. Case Study Research: Design and Methods (5th edition). SAGE
Publications, 2013.

[168] H. Yoon and B. Choi. A test case prioritization based on degree of risk expo-
sure and its empirical study. International Journal of Software Engineering and
Knowledge Engineering, 21:191–209, 2011.

[169] J.W. Young Jr. and H.K. Kent. An Abstract Formulation of Data Processing
Problems. In Proc. 13th National Meeting of the Association for Computing
Machinery, pages 1–4. ACM, 1958.

[170] E.S.K. Yu and J. Mylopoulos. Using Goals, Rules, and Methods to Support
Reasoning in Business Process Reengineering. In Proc. 27th Hawaii International
Conference on System Sciences (HICSS’94), pages 234–243. IEEE Computer
Society, 1994.

118

Bibliography

[171] P. Zech. Risk-Based Security Testing in Cloud Computing Environments. In Proc.
4th International Conference on Software Testing, Verification and Validation
(ICST’11), pages 411–414. IEEE Computer Society, 2011.

[172] P. Zech, M. Felderer, and R. Breu. Towards a Model Based Security Testing
Approach of Cloud Computing Environments. In Proc. 6th International Confer-
ence on Software Security and Reliability Companion (SERE-C’12), pages 47–56.
IEEE Computer Society, 2012.

[173] M.V. Zelkowitz and D.R. Wallace. Experimental Models for Validating Technol-
ogy. Computer, 31(5):23–31, 1998.

[174] F. Zimmermann, R. Eschbach, J. Kloos, and T. Bauer. Risk-based statistical test-
ing: A refinement-based appraoch to the reliability analysis of safety-critical sys-
tems. In Proc. 12th European Workshop on Dependable Computing (EWDC’09),
pages 1–8. The Open Archive HAL, 2009.

[175] M. Zulkernine, M.F. Raihan, and M.G. Uddin. Towards Model-Based Automatic
Testing of Attack Scenarios. In Computer Safety, Reliability, and Security, pages
229–242. Springer, 2009.

119

Bibliography

120

Part II

Research Papers

121

Chapter 9
Paper 1: Approaches for the combined use
of risk analysis and testing: a systematic
literature review

123

124

Chapter 10
Paper 2: A systematic method for
risk-driven test case design using annotated
sequence diagrams

141

142

SINTEF ICT
Networked Systems and Services
2014 03 24

SINTEF A26036 Unrestricted

Report

A Systematic Method for Risk driven
Test Case Design Using Annotated
Sequence Diagrams

Author(s)
Gencer Erdogan, Atle Refsdal, and Ketil Stølen

Table of Contents

1 Introduction . 4
2 Overview of Method . 5
3 Example: Guest Book Application . 8
4 Step 1: Threat Scenario Identification . 9

4.1 Identifying Threat Scenarios with Respect to the Integrity of
the Guest-Book’s Source Code . 9

4.2 Identifying Threat Scenarios with Respect to the Availability
of the Guest Book Entries . 14

5 Step 2: Threat Scenario Risk Estimation . 18
5.1 Estimating Risks Posed on the Integrity of the Guest-book’s

Source Code . 19
5.2 Estimating Risks Posed on the Availability of the Guest Book

Entries . 23
6 Step 3: Threat Scenario Prioritization . 26
7 Step 4: Threat Scenario Test Case Design . 28
8 Related Work . 32
9 Conclusion . 33

Acknowledgments. 33

1 Introduction

Risk-driven testing (or risk-based testing) is a testing approach that use risk
analysis within the testing process [5]. The aim in risk-driven testing is to focus
the testing process with respect to certain risks of the system under test (SUT).

However, current risk-driven testing approaches leave a gap between risks,
which are often described and understood at a high level of abstraction, and
test cases, which are often defined at a low level of abstraction. The gap exists
because risk analysis, within risk-driven testing approaches, is traditionally used
as a basis for planning the test process rather than designing the test cases.
Making use of risk analysis when planning the test process helps the tester to
focus on the systems, aspects, features, use-cases, etc. that are most exposed to
risk, but it does not support test case design. In order to bridge the gap between
risks and test cases, risk-driven testing approaches should not merely make use
of the risk analysis when planning the test process, but also when designing test
cases. Specifically, risk-driven testing approaches must provide testers with steps
needed to design test cases by making use of the risk analysis.

In this report, we present a systematic and general method, intended to
assist testers, for designing test cases by making use of risk analysis. A test
case is a behavioral feature or behavior specifying tests [16]. We employ UML
sequence diagrams [15] as the modeling language, conservatively extended with
our own notation for representing risk information. In addition, we make use of
the UML Testing Profile [16] to specify test cases in sequence diagrams. The
reason for choosing sequence diagrams is that they are widely recognized and
used within the testing community. In fact, it is among the top three modeling
languages applied within the model-based testing community [14]. By annotating
sequence diagrams with risk information, we bring risk analysis to the work
bench of testers without the burden of a separate risk analysis language, thus
reducing the effort needed to adopt the approach. Recent surveys on trends
within software testing show that the lack of time and high costs are still the
dominating barriers to a successful adoption of testing methods and testing tools
within IT organizations [6].

Our method consists of four steps. In Step 1, we analyze the SUT and identify
threat scenarios and unwanted incidents with respect to relevant assets. In Step
2, we estimate the likelihood of threat scenarios and unwanted incidents, as well
as the consequence of unwanted incidents. In Step 3, we prioritize and select
paths which consist of sequences of threat scenarios leading up to and including
a risk. In Step 4, we design test cases with respect to the paths selected for
testing.

Section 2 gives an overview of our method. Section 3 introduces the web
application on which we apply our method to demonstrate its applicability. Sec-
tions 4, 5, 6 and 7 employ the four steps on the web application, respectively.
Section 8 relates our method to current risk-driven testing approaches that also
address test case design. Finally, we provide concluding remarks in Sect. 9.

4

2 Overview of Method

Before going into the details of our method, we explain the assumed context in
which it is to be applied. A testing process starts with test planning, followed
by test design and implementation, test environment set-up and maintenance,
test execution, and finally test incident reporting [10]. Our method starts after
test planning, but before test design and implementation. Furthermore, the first
and the fourth step in our method expect as input a description of the SUT
in terms of sequence diagrams and suspension criteria, respectively. Suspension
criteria are used to stop all or a portion of the testing activities [9]. This is also
known as test stopping criteria or exit criteria. Suspension criteria are used in
our method to reflect the investable testing effort. We assume that these inputs
are obtained during test planning. Next, we assume that the preparations for
carrying out risk analysis have been completed, i.e., that assets have been iden-
tified, likelihood and consequence scales have been defined, and a risk evaluation
matrix has been prepared with respect to the likelihood and consequence scales.
Our method consists of four main steps as illustrated in Fig. 1; dashed docu-
ment icons represent input prepared during test planning, solid document icons
represent output from one step and acts as input to the following step.

Fig. 1. Overview of the steps in the method.

5

In Step 1, we analyze the SUT to identify unwanted incidents with respect
to a certain asset to be protected, as well as threat scenarios resulting from
manipulations initiated by the threat. This step expects as input a sequence
diagram specification of the SUT and the asset that is to be considered. First,
we identify the aspects of the SUT we are interested in analyzing. We then
annotate each aspect with a label, containing a unique identifier. Second, we
prepare a corresponding sequence diagram to capture risk information for each
aspect label. Each sequence diagram inherits the SUT specification encapsulated
by the underlying aspect label. Additionally, it represents the asset as a lifeline.
The threats that may initiate threat scenarios are also represented as lifelines.
Third, we identify unwanted incidents that have an impact on the asset, and
threat scenarios that may lead to the unwanted incidents. The output of this step
is a set of annotated sequence diagrams that represent manipulated behavior of
the SUT and its context, in terms of threat scenarios and unwanted incidents.

In Step 2, we estimate the likelihood for the occurrence of the threat scenar-
ios and the unwanted incidents in terms of frequencies, the conditional probabil-
ity for threat scenarios leading to other threat scenarios or to unwanted incidents,
as well as the impact of unwanted incidents on the asset. The input for this step
is the output of Step 1. Additionally, this step expects a predefined likelihood
scale in terms of frequencies, and a predefined consequence scale in terms of
impact on the asset. First, we estimate the likelihood for the occurrence of the
threat scenarios and the unwanted incidents using the likelihood scale, as well as
the conditional probability for threat scenarios leading to other threat scenarios
or to unwanted incidents. Second, we estimate the consequence of unwanted
incidents using the consequence scale. The output of this step is the same set
of sequence diagrams given as the input for the step, annotated with likelihood
estimates and consequence estimates as described above. A risk in our method
is represented by an unwanted incident (i.e., a message to the asset lifeline) to-
gether with its likelihood value and its consequence value. A sequence of threat
scenarios may lead up to one or more risks. Additionally, different sequences of
threat scenarios may lead up to the same risk. We refer to a sequence of threat
scenarios leading up to and including a risk as a path.

In Step 3, we prioritize and select paths for testing. The input for this
step is the output of Step 2. Additionally, this step employs the predefined risk
evaluation matrix. First, we prioritize the paths by mapping them to the risk
evaluation matrix based on the likelihood (frequency) value and the consequence
(impact) value of the risk included in the paths. We then select the paths based
on their risk level, i.e., their position in the risk evaluation matrix. Second, we
aggregate similar risks in different paths in order to evaluate whether to select
additional paths for testing. The output of this step is a set of paths selected for
testing.

In Step 4, we define test objectives for each path selected for testing, and
then we specify test cases with respect to the test objectives. A test objective
is a textual specification of a well-defined target of testing, focusing on a single
requirement or a set of related requirements as specified in the specification of

6

the system under test [16]. A test objective merely describes what (logic) needs
to be tested or how the system under test is expected to react to particular
stimuli [16]. The input for this step is the output of Step 1 and the output of
Step 3. Additionally, this step expects predefined suspension criteria. First, we
define one or more test objectives for each path selected for testing. A path may
have one or more test objectives, but one test objective is defined only for one
path. We use one test objective as a basis for specifying one test case. Second,
we specify a test case by first identifying the necessary interaction in the relevant
path. By necessary interaction, we mean the interaction that is necessary in order
to fulfill the test objective. Then, we copy the necessary interaction into a new
sequence diagram. Finally, we annotate the new sequence diagram, with respect
to the test objective, using the UML Testing Profile [16]. We continue designing
test cases in this manner with respect to the predefined suspension criteria. The
output of this step is a set of sequence diagrams representing test cases.

Table 1 shows the notation for annotating sequence diagrams with risk in-
formation. We have mapped some risk information to corresponding UML con-
structs for sequence diagrams. Assets and threats are represented as lifelines.
Inspired by CORAS [12], we distinguish between three types of threats; deliber-
ate threats (the leftmost lifeline in the Notation column), accidental threats (the
center lifeline in the Notation column) and non-human threats (the rightmost
lifeline in the Notation column). Manipulations and unwanted incidents are rep-
resented as messages. We distinguish between three types of manipulations; new
messages in the sequence diagram (a message annotated with a filled triangle),
alteration of existing messages in the sequence diagram (a message annotated
with an unfilled triangle), and deletion of existing messages in the sequence di-
agram (a message annotated with a cross inside a triangle). Aspect labels, like-
lihoods, conditional probabilities and consequences do not have corresponding
UML constructs for sequence diagrams. However, the following constraints ap-
ply: A likelihood can only be attached horizontally across lifelines. A likelihood
assignment represents the likelihood, in terms of frequency, of the interaction
preceding the likelihood assignment. The purpose of messages representing un-
wanted incidents is to denote that an unwanted incident has an impact on an
asset. A consequence can therefore only be attached on messages representing
unwanted incidents. A conditional probability may be attached on any kind of
message except messages representing unwanted incidents. A conditional prob-
ability assignment represents the probability of the occurrence of the message
on which it is assigned, given that the interaction preceding the message has
occurred.

7

Table 1. Notation for annotating sequence diagrams with risk information.

Risk information UML construct Notation

Aspect label N/A

Asset Lifeline

Threat Lifeline

Manipulation Message

Unwanted incident Message

Likelihood N/A

Conditional probability N/A

Consequence N/A

3 Example: Guest Book Application

As mentioned in Sect. 1, our method is a general method for designing test cases
by making use of risk analysis. In this demonstration, we focus on security, and
apply the steps presented in Sect. 2 on a guest book that is available in the
Damn Vulnerable Web Application (DVWA) [4]. One of DVWA’s main goals is
to be an aid for security professionals to test their skills and tools in a legal envi-
ronment [4]. DVWA is programmed in the scripting language PHP and requires
a dedicated MySQL server to function correctly. We are running DVWA version
1.8 on the HTTP server XAMPP version 1.8.2 [26], which provides the required
execution environment.

The SUT in this demonstration is a guest book in DVWA. Figure 2a shows a
screenshot of the guest book user interface before a guest book entry is submit-
ted, while Fig. 2b shows a screenshot of the user interface after the guest book
entry is successfully submitted. Figure 2c represents its behavioral specification
expressed as a sequence diagram. A guest book user may use a web browser in a
client to sign the guest book by typing a name and a message, and then submit
the guest book entry by clicking the “Sign Guestbook” button. If the name input
field is empty, the guest book form replies with a warning message. If the name
input field is not empty, but the message input field is empty, the guest book
form also replies with a warning message. If neither of the input fields are empty,
the guest book form submits the entry to the guest book database. The guest
book database stores the entry and replies with the message true indicating that
the transaction was successful. Having received the message true, the guest book

8

form retrieves all of the guest book entries from the database, including the one
just submitted, and displays them to the client.

Fig. 2. (a) Screenshot of the guest book before submitting a new entry. (b) Screen-
shot of the guest book after submitting the entry. (c) Specification of the guest book
expressed as a sequence diagram.

4 Step 1: Threat Scenario Identification

The SUT in this demonstration is the guest book explained in Sect. 3. Let us
assume that we are interested in analyzing the guest book with respect to the
following two security assets:

– Integrity of the guest-book’s source code.
– Availability of the guest book entries.

In Sect. 4.1, we identify threat scenarios with respect to the integrity of the
guest-book’s source code, while in Sect. 4.2, we identify threat scenarios with
respect to the availability of the guest book entries.

4.1 Identifying Threat Scenarios with Respect to the Integrity of
the Guest-Book’s Source Code

As shown in Fig. 3a, we have identified three aspects labeled with aspect labels
A1, A2 and A3. For the aspect represented by aspect label A1, we are interested

9

in analyzing the interaction composed of the messages signGB(name,msg) and
alert(nameEmpty), with respect to the integrity of the guest-book’s source code.
The same reasoning applies for A2 and A3. The aspects identified in this example
are small. In practice it may well be that one is interested in analyzing bigger
and more complex aspects. The granularity level of an aspect is determined by
the tester.

Fig. 3. (a) Specification of the guest book annotated with aspect labels. (b) Corre-
sponding sequence diagram of the aspect encapsulated by aspect label A3, which also
shows the security asset integrity of the guest-book’s source code as a lifeline.

Suppose we are only interested in analyzing the aspect encapsulated by aspect
label A3. Figure 3b shows a sequence diagram corresponding to the interaction
encapsulated by aspect label A3. Additionally, it represents the abovementioned
security asset as a lifeline. We now have a sequence diagram we can use as a
starting point to analyze the SUT aspect encapsulated by aspect label A3, with
respect to integrity of the guest-book’s source code. We represent the risk related
information in bold and italic font, in the sequence diagrams, to distinguish
between the specification and the risk related information.

We proceed the analysis by identifying unwanted incidents that may have an
impact on the security asset, and threat scenarios that may lead to the unwanted
incidents. The integrity of the guest-book’s source code may be compromised if,
for example, a malicious script is successfully stored (i.e., injected) in the guest
book database. A malicious script that is injected in the guest book database is

10

executed by the web browser of the guest book user when accessed. This modifies
the content of the HTML page on the user’s web browser, thus compromising
the integrity of the guest-book’s source code. These kinds of script injections
are also known as stored cross-site scripting (stored XSS) [18]. We identify the
occurrence of an XSS script injection on the guest book database as an unwanted
incident (UI1), as represented by the last message in Fig. 4. An XSS script is
successfully injected in the guest book database only if the database successfully
carries out the transaction containing the XSS script. This is why UI1 occurs
after the occurrence of message true on lifeline GBDatabase.

Fig. 4. Identifying a first path in which unwanted incident UI1 may occur.

UI1 may be caused by different sequences of threat scenarios that manipu-
lates the expected behavior of the guest book. Recall that we refer to a sequence
of threat scenarios leading up to and including a risk as a path. In each of the
sequence diagrams in Figs. 4, 5, and 6, we identify a different path in which UI1
may occur.

11

The first path in which UI1 may occur, i.e., the sequence diagram in Fig. 4,
shows that UI1 may occur if the msg parameter in messages signGB(name,
msg) and submit(name,msg) is replaced with XSSscript, representing an XSS
script. This is an alteration of the guest-book’s expected behavior. We therefore
replace the messages signGB(name,msg) and submit(name,msg) with messages
representing alterations.

These alterations may be initiated by different threats. Let us say we are in-
terested in analyzing this further from a hacker perspective, which is categorized
as a deliberate threat. A hacker may successfully carry out an XSS script injec-
tion by, for example, first downloading the HTML files of the guest book using
the web browser, in order to create a local copy of the guest-book’s user inter-
face (downloadGBFormHtmlFiles, GBFormHtmlFiles and <<create>>). Having
successfully saved a local copy of the guest-book’s HTML files, the hacker re-
moves all restrictions, such as the maximum number of characters allowed in the
name and message input fields when submitting a guest book entry (removeOn-
SubmitRestriction and removeOnClickRestriction). Then, the hacker refers all
actions to the original guest book by making use of its web address (referFor-
mActionToOriginalGBForm). Finally, the hacker loads the local copy of the
guest book in the web browser, writes an XSS script in the message field, and
submits the guest book entry containing the XSS script (openLocalCopyGB,
loadLocalCopyGB, LocalCopyGB and HsignGB(name,XSSscript)). Note that all
of the messages described in this paragraph are annotated as new messages in
the sequence diagram (message with a filled triangle).

The second path in which UI1 may occur, i.e., the sequence diagram in
Fig. 5, also shows that UI1 may be caused by replacing the msg parameter in
messages signGB(name,msg) and submit(name,msg) with XSSscript. However,
we also see that the second path has some threat scenarios different from the
first path, thus representing a different path in which UI1 may occur.

In the second path, we first assume that the hacker gathers information about
the setup of the URLs that are sent from a client to the guest book form. The
hacker exploits this information to prepare a valid URL that contains an XSS
script and that targets the guest book form. The process of preparing URLs in
this way is also known as URL forging. This is commonly carried out by hackers,
or other malicious users, with the objective to force legitimate users of a web
application to execute actions on their behalf. These kinds of attacks are known
as cross-site request forgery attacks [19]. Having successfully forged the URL
containing the XSS script, the hacker sends it to a legitimate user of the guest
book (forgedURLReplacingMsgWithXSSscript). We choose not to model how the
hacker forges the URL and by what means the hacker sends the forged URL.
The assumption is that a hacker successfully forges a URL capable of injecting
an XSS script into the guest book database, and that the URL is successfully
sent to a legitimate user of the guest book.

Having received the URL, the legitimate user executes it via the web browser
of the client (executeForgedURL). Consequently, this results in the execution

12

Fig. 5. Identifying a second path in which UI1 may occur.

of the messages signGB(name,XSSscript), submit(name,XSSscript) and true,
which finally leads to the occurrence of UI1.

In the case of the third path, i.e., the sequence diagram in Fig. 6, we as-
sume that the hacker is able to intercept the HTTPS connection between the
client and the guest book form using a proxy tool by, for example, following
the guidelines explained in [1]. The hacker first configures the tool to auto-
matically inject an XSS script in a certain part of the HTTPS request sent to
the guest book form (<<create>> and configureAutoInjectXSSscriptInMsgIn-
HTTPSRequest). Then, the hacker starts the interception feature of the tool
for intercepting the HTTPS request between the client and the guest book
form (interceptClientHTTPSRequest and interceptHTTPSRequest). The conse-
quence of intercepting the HTTPS requests sent from the client is the redirection
of message signGB(name,msg) to the proxy tool. The redirection of message
signGB(name,msg) is an alteration of the expected behavior of the guest book.
Thus, we replace message signGB(name,msg) with a message representing an
alteration.

Having successfully intercepted the HTTPS request sent from the client, the
proxy tool automatically injects the XSS script into the HTTPS request (injec-
tXSSscriptInMsg). Then, the proxy tool sends the HTTPS request containing
the XSS script to the guest book form (PTsignGB(name,XSSscript)). Conse-
quently, this results in the execution of the messages submit(name,XSSscript)
and true as in the first and the second path, which finally leads to the occurrence
of UI1.

13

Fig. 6. Identifying a third path in which UI1 may occur.

4.2 Identifying Threat Scenarios with Respect to the Availability of
the Guest Book Entries

The identification of threat scenarios, with respect to the availability of the
guest book entries, is carried out in a similar manner as explained in Sect. 4.1.
As shown in Fig. 7a, we have identified one aspect labeled with aspect la-
bel B1. In this case, we are interested in analyzing the interaction composed
of messages signGB(name,msg), submit(name,msg), true, selectAllGBEntries(),
allGBEntries and display(allGBEntries), with respect to the availability of the
guest book entries. Figure 7b shows the sequence diagram corresponding to the
interaction encapsulated by aspect label B1. We use the sequence diagram in
Fig. 7b as a starting point for analyzing the SUT aspect encapsulated by aspect
label B1, with respect to the availability of the guest book entries.

The availability of the guest book entries is compromised if, for example, the
guest book entries in the guest book database are somehow deleted. The guest
book entries may be deleted by executing an SQL query, on the guest book

14

Fig. 7. (a) Specification of the guest book annotated with an aspect label. (b) Corre-
sponding sequence diagram of the aspect encapsulated by aspect label B1, which also
shows the security asset availability of the guest book entries as a lifeline.

database, which is constructed for deleting the guest book entries. Such SQL
queries may be executed, for example, by submitting the queries to the database
via the guest book form. This way of executing SQL queries is known as SQL
injections. We identify this as unwanted incident UI2, as shown by message (UI2)
GB entries deleted due to SQL injection in Fig. 8.

An SQL injection may be caused, from a hacker perspective, based on a
similar path as the one presented in Fig. 4. The difference between the path
in Fig. 4 and the path in Fig. 8 is that the hacker initiates an SQL injec-
tion (HSignGB(name,SQLinjection)), and that the msg parameter in messages
signGB(name, msg) and submit(name,msg) in Fig. 8 is replaced with SQLin-
jection, representing an SQL query constructed for deleting guest book entries.
Additionally, we see from Fig. 8 that the occurrence of unwanted incident UI2
leads to some additional manipulations of the expected behavior of the guest
book.

Given that unwanted incident UI2 occurs, the guest book database no longer
contains any guest book entries. However, having requested all guest book en-
tries from the database (selectAllGBEntries()), the guest book form expects
guest book entries. Naturally, the database does not return any guest book en-
tries because there are none (noGBEntries), which in turn leads the guest book
form not to display any guest book entries (display(noGBEntries)). These are al-

15

Fig. 8. Identifying a first path in which UI2 may occur.

terations of the expected behavior of the guest book, as a result of the occurrence
of UI2, and are therefore shown as messages representing alterations.

A second example of an unwanted incident, that compromises the availabil-
ity of the guest book entries, is the deletion of the guest book entries before it
reaches the client expecting them. This may be achieved by, for example, first
intercepting the HTTPS response transmitted from the guest book form, and
then deleting the guest book entries situated inside the captured HTTPS re-
sponse. We identify this as unwanted incident UI3, as represented by message
(UI3) GB entries deleted by intercepting HTTPS response in Fig. 9.

Similar to the third path in which UI1 occurs, we assume that a hacker uses a
proxy tool for intercepting the HTTPS connection between the guest book form
and the client. The hacker first configures the tool for automatically deleting

16

Fig. 9. Identifying a first path in which UI3 may occur.

the guest book entries situated inside the HTTPS responses (<<create>> and
configureAutoDeleteGBEntriesInHTTPSResponse). Then, the hacker starts the
interception feature of the tool for intercepting the HTTPS response between
the guest book form and the client (interceptGBFormHTTPSResponse and in-
terceptHTTPSResponse). The consequence of intercepting the HTTPS responses
sent from the guest book form is the redirection of message display(allGBEntries)
to the proxy tool. The redirection of message display(allGBEntries) is an alter-
ation of the expected behavior of the guest book. Thus, we replace message
display(allGBEntries) with a message representing an alteration.

Having successfully intercepted the HTTPS response from the guest book
form, the proxy tool automatically deletes all guest book entries situated in
the HTTPS response (deleteAllGBEntries). This leads to the occurrence of un-
wanted incident UI3. Finally, the proxy tool sends the altered HTTPS response
containing no guest book entries to the client (PTdisplay(noGBEntries)).

17

5 Step 2: Threat Scenario Risk Estimation

Table 2 shows the likelihood scale that we assume has been established during
preparation of the risk analysis. The likelihood scale is given in terms of frequency
intervals.

Table 2. Likelihood scale.

Likelihood Description

Rare [0, 10>:1y Zero to less than ten times per year
Unlikely [10, 50>:1y Ten to less than fifty times per year
Possible [50, 150>:1y Fifty to less than one hundred and fifty times per year
Likely [150, 300>:1y One hundred and fifty to less than three hundred times

per year
Certain [300, ∞>:1y Three hundred times or more per year

In practice, it is common to use one likelihood scale when estimating the
likelihood for the occurrence of threat scenarios and unwanted incidents. It is
also possible to use one consequence scale, when estimating the consequence
unwanted incidents have on certain assets. However, this may be difficult and
impractical because the consequence unwanted incidents have on different assets
may be difficult to measure by the same means. As mentioned in Sect. 4, we
consider two different assets in this demonstration, namely the integrity of the
guest-book’s source code and the availability of the guest book entries.

Table 3 shows the consequence scale for security asset integrity of the guest-
book’s source code. The consequence scale in Table 3 is given in terms of impact
on the integrity of certain categories of the guest-book’s source code. For ex-
ample, an unwanted incident has a catastrophic impact on the security asset
if it compromises the integrity of the guest-book’s source code that carries out
database transactions. Similar interpretations apply for the other consequences
in Table 3. Table 4, on the other hand, shows the consequence scale for security
asset availability of the guest book entries. The consequence scale in Table 4 is
given in terms of impact on the availability of the guest book entries. For ex-
ample, an unwanted incident has a catastrophic impact on the security asset if
it makes the guest book entries unavailable for one week or more. Similar inter-
pretations apply for the other consequences in Table 4. We assume that these
consequence scales have been established during preparation of the risk analysis.

In Sects. 5.1 and 5.2, we make use of Table 2 for estimating the likelihood for
the occurrence of threat scenarios and unwanted incidents. When estimating the
consequence unwanted incidents have on the security assets, however, we make
use of the consequence scale addressing the asset under consideration. That is,
in Sect. 5.1 we use Table 3 and in Sect. 5.2 we use Table 4.

18

Table 3. Consequence scale for security asset integrity of the guest-book’s source code.

Consequence Description

Insignificant The integrity of the source code that generates the aesthetics is
compromised

Minor The integrity of the source code that retrieves third party ads is
compromised

Moderate The integrity of the source code that generates the user interface is
compromised

Major The integrity of the source code that manages sessions and cookies is
compromised

Catastrophic The integrity of the source code that carries out database transactions
is compromised

Table 4. Consequence scale for security asset availability of the guest book entries.

Consequence Description

Insignificant Guest book entries are unavailable in range [0, 1 minute>
Minor Guest book entries are unavailable in range [1 minute, 1 hour>
Moderate Guest book entries are unavailable in range [1 hour, 1 day>
Major Guest book entries are unavailable in range [1 day, 1 week>
Catastrophic Guest book entries are unavailable in range [1 week, ∞>

5.1 Estimating Risks Posed on the Integrity of the Guest-book’s
Source Code

Figure 10 shows likelihood estimates for the first path in which unwanted in-
cident UI1 occurs, as well as a consequence estimate for UI1. The tester may
estimate likelihood values and consequence values based on expert judgment,
statistical data, a combination of both, etc. Let us say we have acquired informa-
tion indicating that hackers most likely prepare injection attacks in the manner
described by the interaction starting with message downloadGBFormHtmlFiles,
and ending with message LocalCopyGB in Fig. 10. For this reason, we choose to
assign likelihood Likely on this interaction. Note that Likely corresponds to the
frequency interval [150, 300>:1y (see Table 2).

XSS script injection attacks are less likely to be initiated by hackers com-
pared to other kinds of injection attacks they initiate (such as SQL-injection
attacks) [22]. For this reason, we choose to assign a probability 0.8 on message
HsignGB(name,XSSscript), indicating that it will occur with probability 0.8
given that the messages preceding it has occurred. This probability assignment
leads to a different frequency interval for the interaction starting with message
downloadGBFormHtmlFiles and ending with messageHsignGB(name,XSSscript).
The frequency interval for the aforementioned interaction is calculated by mul-
tiplying [150, 300>:1y with 0.8, which results in the frequency interval [120,
240>:1y. This frequency interval is in turn used to calculate the subsequent

19

Fig. 10. Estimating the likelihood of the first path in which unwanted incident UI1
occurs, as well as the consequence of UI1.

frequency interval, in the path, in a similar manner. This procedure is carried
out until the frequency interval for the whole path is calculated. The frequency
interval for the whole path is then mapped to the likelihood scale in Table 2
in order to deduce a likelihood value. The deduced likelihood value represents
the likelihood value for the whole path, and thereby the likelihood value for the
unwanted incident included in the path.

We proceed the estimation by identifying conditional probabilities for the
remaining messages. We assume message signGB(name,XSSscript) will occur
with probability 1 since the hacker has removed all restrictions on the local
copy of the guest book form. The guest book form is programmed in the script-
ing language PHP. Although PHP makes use of what is known as “prepared
statements” to validate input directed to the database, bypassing the validation
is still possible if the prepared statements are not handled correctly [23]. These
kinds of bypasses require insight into the structure of the source code and are

20

therefore harder to exploit. For this reason, we choose to assign a probability 0.6
on message submit(name,XSSscript). We assume message true will occur with
probability 1, as there is nothing that prevents the database from executing the
query containing the XSS script if it has made all its way into the database.

We calculate the frequency interval for the whole path by multiplying [150,
300>:1y with the product of the abovementioned conditional probabilities. That
is, we multiply [150, 300>:1y with 0.48, which results in the frequency inter-
val [72, 144>:1y. By mapping this frequency interval to the likelihood scale in
Table 2, we see that the frequency interval is within the boundaries of likeli-
hood Possible. This means that the path represented by the sequence diagram
in Fig. 10, and thereby unwanted incident UI1, may occur with likelihood Possi-
ble. Finally, an XSS script injected in the database has the objective to execute a
script on the end user’s web browser for different purposes. This means that the
injected XSS script modifies the source code that generates the user interface.
Thus, UI1 has an impact on the security asset with a moderate consequence.

Figure 11 shows likelihood estimates for the second path in which UI1 occurs.
As explained in Sect. 4.1, the second path shows an example of how the hacker
may inject an XSS script in the guest book database by performing a cross-site
request forgery attack. The detection of whether a web application is vulnera-
ble to cross-site request forgery attacks is easy [19], and thus an attack hackers
most likely will try to exploit. Based on this, we assign likelihood Likely on the
interaction composed of message forgedURLReplacingMsgWithXSSscript. How-
ever, the increased awareness of cross-site request forgery attacks has, in turn,
brought about an increased usage of countermeasures preventing successful ex-
ecution of such attacks [21]. For this reason, we choose to assign a probability
0.5 on message executeForgedURL.

Given that the forged URL is successfully executed, then there is nothing
preventing the client in submitting the guest book entry containing the XSS
script (signGB(name,XSSscript)). The probability for the occurrence of message
signGB(name,XSSscript) is therefore 1. The probability for the occurrence of
messages submit(name,XSSscript) and true is 0.6 and 1, respectively, for the
same reason as given for the first path. The likelihood value for the second path
is calculated in a similar way as explained for the first path. That is, we multiply
the frequency interval [150, 300>:1y (likelihood Likely) with the product of
the conditional probabilities assigned on the messages succeeding the likelihood
assignment in the path, which in this case is 0.3. This results in the frequency
interval [45, 90>:1y. By mapping this frequency interval to the likelihood scale in
Table 2, we see that it overlaps Unlikely and Possible. However, we also see that
the frequency interval is skewed more towards Possible than Unlikely. For this
reason, we choose to assign Possible on the second path, which means that UI1
may occur with likelihood Possible in the second path. If a frequency interval
overlaps several likelihood values, as it does for the second path, then the tester
has to decide on which likelihood value to assign. In this demonstration, we
decide to assign a likelihood value by analyzing the skewness of the frequency

21

Fig. 11. Estimating the likelihood of the second path in which UI1 occurs.

interval. Such decisions may vary from situation to situation and has to be made
and justified by the tester.

Figure 12 shows likelihood estimates for the third path in which UI1 occurs.
Intercepting HTTPS connections is possible and in some situations easy to carry
out [1]. However, the exploitability of vulnerabilities in encrypted communication
protocols, such as HTTPS, is difficult on a large scale [20]. For this reason, we
choose to assign likelihood Possible on the interaction starting with message
<<create>> and ending with message interceptHTTPSRequest.

Let us, for the sake of the example, assume that the guest book is making
use of proper countermeasures, e.g., as presented in [17], in order to signifi-
cantly mitigate the possibility for successful HTTPS interceptions. Assuming
this, we choose to assign a probability 0.2 on message signGB(name,msg). If
the HTTPS connection between the client and the guest book form is success-
fully intercepted, however, the proxy tool injects the msg parameter of mes-
sage signGB(name, msg) with an XSS script (injectXSSscriptInMsg). Then, the
proxy tool sends the guest book entry containing the XSS script to the guest
book form (PTsignGB(name,XSSscript)). The probability for the occurrence of
messages injectXSSscriptInMsg and PTsignGB(name,XSSscript) is therefore 1.
The probability for the occurrence of messages submit(name,XSSscript) and true
is 0.6 and 1, respectively, for the same reasons as given for the first path.

We calculate the likelihood value for the third path as explained for the
first and the second path. That is, we multiply frequency interval [50, 150>:1y
(likelihood Possible) with the product of the conditional probabilities assigned
on the messages succeeding the likelihood assignment in the path, which in this

22

Fig. 12. Estimating the likelihood of the third path in which UI1 occurs.

case is 0.12. This results in the frequency interval [6, 18>:1y. We map this
frequency interval to the likelihood scale in Table 2, and see that it is skewed
more towards Unlikely than Rare. Based on this, we choose to assign likelihood
Unlikely on the third path. Hence, UI1 occurs with likelihood Unlikely in the
third path.

5.2 Estimating Risks Posed on the Availability of the Guest Book
Entries

As pointed out in Sect. 4.2, the path in which UI2 occurs (see Fig. 13) is sim-
ilar to the first path in which UI1 occurs (see Fig. 10). In fact, the interaction
starting with message downloadGBFormHtmlFiles and ending with message Lo-
calCopyGB is identical in both paths. As shown in Fig. 10, we assigned likelihood
Likely on the aforementioned interaction. Given that the aforementioned inter-
action is identical in both paths, we also assign likelihood Likely on the same
interaction in the path where UI2 occurs.

Hackers performing injection attacks will most likely carry out SQL-injection
attacks [22]. We therefore choose to assign probability 1 on message HsignGB(

23

Fig. 13. Estimating the likelihood of the path in which UI2 occurs, as well as the
consequence of UI2.

name, SQLinjection). The probability for the occurrence of messages signGB(
name, SQLinjection), submit(name,SQLinjection) and true is 1, 0.6 and 1,
respectively. The justification for assigning these three probability values is
the same as the justification given for messages signGB(name,XSSscript), sub-
mit(name,XSSscript) and true in the path shown in Fig. 10. Based on these
conditional probabilities and likelihood Likely, we calculate the frequency inter-
val for the whole path, i.e., the frequency interval for the occurrence of UI2, in a
similar manner as explained throughout Sect. 5.1. The frequency interval for the
occurrence of UI2 is [90, 180>:1y, from which we have deduced likelihood Pos-
sible as shown in Fig. 13. Finally, the occurrence of UI2 implies that the guest
book entries in the database are deleted. Since the guest book in this demon-

24

stration does not have any mechanisms for creating a backup of the guest book
entries, the deleted guest book entries will most likely never be available again.
Thus, UI2 has an impact on the security asset with a catastrophic consequence.

Figure 14 shows likelihood estimates for the path in which UI3 occurs, as
well as a consequence estimate for UI3. Similar to the third path in which UI1
occurs (see Fig. 12), we assume that a hacker uses a proxy tool for intercepting
the HTTPS connection between the client and the guest book form. Based on the
same justification given for the third path where UI1 occurs, we assign likelihood
Possible on the interaction starting with message <<create>> and ending with
message interceptHTTPSResponse.

Fig. 14. Estimating the likelihood of the path leading to unwanted incident UI3, as
well as the consequence of UI3.

Given that the guest book makes use of proper countermeasures against
HTTPS interceptions, we assign probability 0.2 on message display(allGBEntries).
If, however, the HTTPS response gets intercepted, then there is nothing pre-
venting the proxy tool from deleting the guest book entries situated inside the
HTTPS response. Thus, we assign probability 1 on message deleteAllGBEntries.
We calculate likelihood values as explained throughout Sect. 5.1 and see from
Fig. 14 that UI3 occurs with likelihood Unlikely. The occurrence of UI3 im-
plies that the guest book entries are deleted at an HTTPS response level. This

25

means that the guest book entries are only deleted while in transit from the
guest book to the client. Since the purpose of the guest book is to read and
submit guest book entries, it is easily noticeable if the guest book constantly
produces responses containing no guest book entries. Based on this observation,
and because the guest book in this demonstration is rather simple and easy to
administrate, one should be able to apply a fix within a day. Thus, UI3 has an
impact on the security asset with a moderate consequence.

6 Step 3: Threat Scenario Prioritization

Figure 15 shows the risk evaluation matrix established during preparation of the
risk analysis. The risk evaluation matrix is composed of the likelihood scale in
Table 2 and the consequence scale in Tables 3 and 4. In traditional risk analysis,
risk evaluation matrices are designed to group the various combinations of likeli-
hood and consequence into three to five risk levels (e.g., low, medium and high).
Such risk levels cover a wide spectrum of likelihood and consequence combina-
tions and are typically used as a basis for deciding whether to accept, monitor
or treat risks. However, in the setting of risk-driven testing, one is concerned
about prioritizing risks to test certain aspects of the SUT exposed to risks. A
higher granularity with respect to risk levels may therefore be more practical.
The risk evaluation matrix in Fig. 15 represents nine risk levels, horizontally
on the matrix. The tester defines the interpretation of the risk levels. In this
demonstration we let numerical values represent risk levels; [1] represents the
lowest risk level and [9] represents the highest risk level.

In Step 1, we identified five different paths. Three of these paths, i.e., the
paths shown in Figs. 4, 5 and 6 includes UI1, which is a risk posed on the integrity
of the guest-book’s source code. Let us name these paths UI1P1, UI1P2 and
UI1P3, respectively. Similarly, let us name the path including UI2 (see Fig. 8)
as UI2P1, and the path including UI3 (see Fig. 9) as UI3P1. UI2 and UI3 are
risks posed on the availability of the guest book entries.

In Step 2, we estimated that UI1P1 and UI1P2 occur with likelihood Pos-
sible, and that UI1P3 occurs with likelihood Unlikely. The risk caused by these
paths, i.e., UI1, was estimated to have a moderate consequence on the integrity
of the guest-book’s source code. The likelihood for the occurrence of UI2P1
was estimated to Possible, while the likelihood for the occurrence of UI3P1 was
estimated to Unlikely. Moreover, UI2 and UI3 were estimated to have a catas-
trophic and moderate consequence, respectively, on the availability of the guest
book entries.

We map each path to the risk evaluation matrix with respect to the likelihood
value and the consequence value of the risk included in the path. The result is
shown in the risk evaluation matrix in Fig. 15. Let us say we are only interested
in testing the paths that have a risk level [5] or higher. Based on this, we see
from the risk evaluation matrix in Fig. 15 that we need to select UI1P1, UI1P2
and UI2P1 for testing. However, this selection excludes UI1P3, which is the
third path that leads to UI1, and which is only one risk level less than the other

26

Fig. 15. Risk evaluation matrix.

two paths leading to UI1. Such clear cut selections are often difficult to justify
because it is not obvious why some paths are selected for testing, while others
are excluded. One way to come up with supporting evidence for confirming or
refuting such clear cut selections, is to aggregate the likelihood values in the
paths leading to the same risk.

UI1P1, UI1P2 and UI1P3 are separate paths. By separate paths, we mean
paths that do not overlap in content such that no possible instance of one path
can be an instance of the other. This also means that one path cannot be a
special case of the other. We may therefore identify an aggregated likelihood
value by summing up the frequency interval in each path. The frequency inter-
val in UI1P1, UI1P2 and UI1P3 is [72, 144>:1y, [45, 90>:1y and [6, 18>:1y,
respectively. We sum up these frequency intervals and get the new frequency
interval [123, 252>:1y. We map this frequency interval to the likelihood scale in
Table 2 and see that it is skewed more towards Likely than Possible. This means
that the aggregated likelihood value for the paths UI1P1, UI1P2 and UI1P3 is
Likely. However, we see from the frequency interval for UI1P3 that it has an
insignificant contribution for the aggregated likelihood value. In fact, we still get
Likely as the aggregated likelihood value if we exclude the frequency interval for
UI1P3 from the aggregation. Because of this, we choose not to select UI1P3 for
testing. We select UI1P1, UI1P2 and UI2P1 for testing.

27

7 Step 4: Threat Scenario Test Case Design

Suppose, for the sake of the example, the following suspension criteria is given:
“Define no more than two test objectives per path selected for testing, and
specify a test case with respect to each test objective you define”. The paths we
selected for testing in Step 3 are UI1P1, UI1P2 and UI2P1. The following lists
one test objective for path UI1P1, one test objective for path UI1P2, and two
test objectives for path UI2P1.

– Test objective 1 for path UI1P1 : Verify whether the guest book database
(lifeline GBDatabase) stores an XSS script, by submitting an XSS script via
the client (lifeline C).

– Test objective 1 for path UI1P2 : Verify whether the guest book database
(lifeline GBDatabase) stores an XSS script by executing a forged URL, con-
taining an XSS script, on the client (lifeline C).

– Test objective 1 for path UI2P1 : Verify whether the guest book form
(lifeline GBForm) displays no guest book entries by submitting an SQL
query, via the client (lifeline C), that is constructed for deleting the guest
book entries.

– Test objective 2 for path UI2P1 : Verify whether the guest book database
(lifeline GBDatabase) deletes guest book entries by submitting an SQL
query, via the client (lifeline C), that is constructed for deleting the guest
book entries.

We proceed by specifying test cases with respect to the test objectives. First,
for each test objective, we identify the necessary interaction in the relevant
path. By necessary interaction, we mean the interaction that is necessary in
order to fulfill the test objective. Then, we copy the necessary interaction into
a new sequence diagram. Finally, we annotate the new sequence diagrams, with
respect to the test objectives, using the UML Testing Profile [16]. Because the
tester defines the test objectives, it is the tester who knows which interactions
are necessary to fulfill the test objectives. In test objective 1 for path UI1P1,
we are interested in testing whether the guest book database stores an XSS
script injected via the client. That is, we are interested in testing the interaction
consisting of messages signGB(name,XSSscript), submit(name,XSSscript) and
true in path UI1P1 (Fig. 4). Thus, we copy this interaction from path UI1P1
into a new sequence diagram. The result is shown in Fig. 16a. Note that we choose
not to copy other messages from path UI1P1 because they are not needed for
fulfilling the test objective.

In test objective 1 for path UI1P2 (Fig. 5), we are interested in testing the
interaction consisting of messages executeForgedURL, signGB(name,XSSscript),
submit(name,XSSscript) and true. In test objective 1 for path UI2P1 (Fig. 8),
we are interested in testing the interaction consisting of messages signGB(name,
SQLinjection) and display(noGBEntries). Finally, in test objective 2 for path
UI2P1 (Fig. 8), we are interested in testing the interaction consisting of mes-
sages signGB(name, SQLinjection), submit(name,SQLinjection) and true. We

28

Fig. 16. (a) The interaction necessary to fulfill test objective 1 for path UI1P1. (b)
The interaction necessary to fulfill test objective 1 for path UI1P2. (c) The interaction
necessary to fulfill test objective 1 for path UI2P1. (d) The interaction necessary to
fulfill test objective 2 for path UI2P1.

follow the same procedure as described above and model sequence diagrams
containing the interactions necessary for fulfilling each of the test objectives in
this paragraph. Figures 16b, 16c, and 16d show the interactions necessary for
fulfilling test objective 1 for path UI1P2, test objective 1 for path UI2P1, and
test objective 2 for path UI2P1, respectively.

We specify test cases by annotating the sequence diagrams in Fig. 16 using the
stereotypes given in the UML Testing Profile [16]: The stereotype <<SUT>> is
applied to one or more properties of a classifier to specify that they constitute the
system under test. The stereotype <<TestComponent>> is used to represent
a component that is a part of the test environment which communicates with
the SUT or other test components. Test components are used in test cases for
stimulating the SUT with test data and for evaluating whether the responses of
the SUT adhere with the expected ones. The stereotype <<ValidationAction>>
is used on execution specifications, on lifelines representing test components, to
set verdicts in test cases. The UML Testing Profile defines the following five
verdicts: None (the test case has not been executed yet), pass (the SUT adheres
to the expectations), inconclusive (the evaluation cannot be evaluated to be

29

pass or fail), fail (the SUT differs from the expectation) and error (an error
has occurred within the testing environment). The number of verdicts may be
extended, if required.

The system under test in Fig. 16a is the guest book database (lifeline GB-
Database), because we are testing whether the guest book database stores an
XSS script submitted via the client. The system under test in Figs. 16b and 16d
is also the guest book database. In the former, we again test whether the guest
book database stores an XSS script, but this time we execute a forged URL
containing an XSS script via the client. In the latter, we test whether the guest
book database deletes the guest book entries by submitting an SQL query via
the client. The system under test in Fig. 16c is the guest book form (lifeline GB-
Form), because we are testing whether the guest book form displays no guest
book entries as a result of executing an SQL injection. Based on this, we an-
notate lifeline GBDatabase in Figs. 16a, 16b and 16d, and lifeline GBForm in
Fig. 16c with stereotype <<SUT>>.

The client (lifeline C) and the guest book form (lifeline GBForm) in Figs. 16a,
16b and 16d stimulate the system under test, i.e., the guest book database, with
test data in terms of XSSscript, XSSscript, and SQLinjection, respectively. Thus,
we annotate lifelines C and GBForm in Figs. 16a, 16b and 16d with stereotype
<<TestComponent>>. In Fig. 16c, however, it is only the client that stimulates
the system under test, which in this case is the guest book form. Thus, we an-
notate the client (lifeline C) in Fig. 16c with stereotype <<TestComponent>>.

As mentioned above, test components are also used for evaluating whether the
responses of the SUT adhere with the expected ones. We see from Figs. 16a, 16b
and 16d that the test components receiving the responses of the SUT is the
guest book form. Thus, we add an execution specification on lifeline GBForm in
Figs. 16a, 16b and 16d, annotated with stereotype <<ValidationAction>> to
set the verdict for the test case. Similarly, we add an execution specification on
lifeline C in Fig. 16c, annotated with stereotype <<ValidationAction>>. The
verdict is set to fail meaning that the SUT differs from the expected behavior.
For example, if XSS script injection is successfully carried out then the SUT
differs from the expected behavior, which should be to prevent XSS injections.

The outcome of these annotations is one test case, per test objective, as shown
in Figs. 17, 18, 19 and 20. Figure 17 represents a test case specified with respect
to test objective 1 for path UI1P1. Figure 18 represents a test case specified
with respect to test objective 1 for path UI1P2. Figure 19 represents a test case
specified with respect to test objective 1 for path UI2P1. Figure 20 represents a
test case specified with respect to test objective 2 for path UI2P1.

30

Fig. 17. Test case specified with respect to test objective 1 for path UI1P1.

Fig. 18. Test case specified with respect to test objective 1 for path UI1P2.

Fig. 19. Test case specified with respect to test objective 1 for path UI2P1.

31

Fig. 20. Test case specified with respect to test objective 2 for path UI2P1.

8 Related Work

Although risk analysis, within risk-driven testing, is traditionally used as a basis
for planning the test process, few approaches also provide guidelines for deriving
test cases as part of the approach. These approaches explain the process of iden-
tifying, estimating and prioritizing risks either partly or by briefly mentioning
it. In [2, 11], risks are identified by making use of fault tree analysis, however,
there is no explanation on how to estimate and prioritize the risks. In [7], the
authors refer to fault tree analysis for identifying risks. There is no explanation
on how to estimate and prioritize risks. In [13], the authors refer to a risk analysis
approach published by NIST [25] for identifying security risks. However, there
is no further explanation on how to identify and estimate the security risks,
yet, security risks are prioritized with respect to a predefined risk assessment
matrix. In [27], security risks are identified solely by matching attack patterns
on the public interfaces of a SUT. The estimation and prioritization of risks are
only based on a complexity factor for specific operations in the SUT. In prac-
tice, other factors may be considered, e.g., vulnerability statistics and incident
reports. In [3], test cases are prioritized by calculating a risk exposure for test
cases, with the objective to quantitatively measure the quality of test cases. Risk
estimation is carried out by multiplying the probability of a fault occurring with
the costs related to the fault. However, there is no explanation about how risks
are identified. In [24], risks are estimated by multiplying the probability that
an entity contains fault with the associated damage. Similar to [3], this value
is used to prioritize test cases, and there is no explanation about how risks are
identified.

All of these approaches use separate modeling languages or techniques for
representing the risk analysis and the test cases: In [2, 7, 11], fault trees are used
to identify risks, while test cases are derived from state machine diagrams with
respect to information provided by the fault trees. In [13], high level risks are
detailed by making use of threat modeling. Misuse cases are developed with
respect to the threat models, which are then used as a basis for deriving test
cases represented textually. In [27], risk models are generated automatically by

32

making use of a vulnerability knowledge database. The risk models are used as
input for generating misuse cases, which are also identified in similar manner.
Misuse cases are used as a basis for deriving test cases. In [3, 24], a test case is
a path in an activity diagram, starting from the activity diagram’s initial node
and ending at its final node. In [3], risks are estimated using tables, while in [24],
risk information is annotated on the activities of an activity diagram, only in
terms of probability, damage and their product.

9 Conclusion

In order to bridge the gap between high level risks and low level test cases, risk-
driven testing approaches must provide testers with a systematic method for
designing test cases by making use of the risk analysis. Our method is specifically
designed to meet this goal.

The method starts after test planning, but before test design, according to
the testing process presented by ISO/IEC/IEEE 29119 [10]. It brings risk anal-
ysis to the work bench of testers because it employs UML sequence diagrams as
the modeling language, conservatively extended with our own notation for rep-
resenting risk information. Sequence diagrams are widely recognized and used
within the testing community and it is among the top three modeling languages
applied within the model based testing community [14]. Risk identification, es-
timation and prioritization in our method are in line with what is referred to as
risk assessment in ISO 31000 [8]. Finally, our approach makes use of the UML
Testing Profile [16] to specify test cases in sequence diagrams. This means that
our method is based on widely accepted standards and languages, thus facilitat-
ing adoption among the software testing community.

Acknowledgments. This work has been conducted as a part of the DIAMONDS
project (201579/S10) funded by the Research Council of Norway, the NESSoS
network of excellence (256980) and the RASEN project (316853) funded by the
European Commission within the 7th Framework Programme, as well as the
CONCERTO project funded by the ARTEMIS Joint Undertaking (333053) and
the Research Council of Norway (232059).

References

1. F. Callegati, W. Cerroni, and M. Ramilli. Man-in-the-Middle Attack to the HTTPS
Protocol. IEEE Security & Privacy, 7(1):78–81, 2009.

2. R. Casado, J. Tuya, and M. Younas. Testing Long-lived Web Services Transactions
Using a Risk-based Approach. In Proc. 10th International Conference on Quality
Software (QSIC’10), pages 337–340. IEEE Computer Society, 2010.

3. Y. Chen, R.L. Probert, and D.P. Sims. Specification-based Regression Test Se-
lection with Risk Analysis. In Proc. 2002 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’02), pages 1–14. IBM Press, 2002.

33

4. Damn Vulnerable Web Application (DVWA). http://www.dvwa.co.uk/. Accessed
August 11, 2013.

5. G. Erdogan, Y. Li, R.K. Runde, F. Seehusen, and K. Stølen. Conceptual Frame-
work for the DIAMONDS Project. Technical Report A22798, SINTEF Information
and Communication Technology, 2012.

6. V. Garousi and J. Zhi. A survey of software testing practices in Canada. Journal
of Systems and Software, 86(5):1354–1376, 2013.

7. M. Gleirscher. Hazard-based Selection of Test Cases. In Proc. 6th International
Workshop on Automation of Software Test (AST’11), pages 64–70. ACM, 2011.

8. International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

9. International Organization for Standardization. ISO/IEC/IEEE 29119-1:2013(E),
Software and system engineering - Software testing - Part 1: Concepts and defini-
tions, 2013.

10. International Organization for Standardization. ISO/IEC/IEEE 29119-2:2013(E),
Software and system engineering - Software testing - Part 2: Test process, 2013.

11. J. Kloos, T. Hussain, and R. Eschbach. Risk-based Testing of Safety-Critical Em-
bedded Systems Driven by Fault Tree Analysis. In Proc. 4th International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW’11),
pages 26–33. IEEE Computer Society, 2011.

12. M.S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 2011.

13. K.K. Murthy, K.R. Thakkar, and S. Laxminarayan. Leveraging Risk Based Testing
in Enterprise Systems Security Validation. In Proc. 1st International Conference on
Emerging Network Intelligence (EMERGING’09), pages 111–116. IEEE Computer
Society, 2009.

14. A.C. Dias Neto, R. Subramanyan, M. Vieira, and G.H. Travassos. A Survey on
Model-based Testing Approaches: A Systematic Review. In Proc. 1st ACM Inter-
national Workshop on Empirical Assessment of Software Engineering Languages
and Technologies (WEASELTech’07), pages 31–36. ACM, 2007.

15. Object Management Group. Unified Modeling Language (UML), superstructure,
version 2.4.1, 2011. OMG Document Number: formal/2011-08-06.

16. Object Management Group. UML Testing Profile (UTP), version 1.2, 2013. OMG
Document Number: formal/2013-04-03.

17. R. Oppliger, R. Hauser, and D. Basin. SSL/TLS session-aware user authentication
- Or how to effectively thwart the man-in-the-middle. Computer Communications,
29(12):2238–2246, 2006.

18. Open Web Application Security Project (OWASP).
https://www.owasp.org/index.php/Cross-site Scripting (XSS). Accessed Septem-
ber 5, 2013.

19. Open Web Application Security Project (OWASP).
https://www.owasp.org/index.php/Top 10 2013-A8-Cross-
Site Request Forgery (CSRF). Accessed December 16, 2013.

20. OWASP Top 10 2013 – A6 – Sensitive Data Exposure.
https://www.owasp.org/index.php/Top 10 2013-A6-Sensitive Data Exposure.
Accessed December 17, 2013.

21. OWASP Top 10 2013 – Release Notes. https://www.owasp.org/index.php/Top 10 2013-
Release Notes. Accessed September 6, 2013.

22. OWASP Top 10 Application Security Risks – 2013.
https://www.owasp.org/index.php/Category:OWASP Top Ten Project. Ac-
cessed September 6, 2013.

34

23. PHP manual. http://php.net/manual/en/pdo.prepared-statements.php. Accessed
September 6, 2013.

24. H. Stallbaum, A. Metzger, and K. Pohl. An Automated Technique for Risk-based
Test Case Generation and Prioritization. In Proc. 3rd International Workshop on
Automation of Software Test (AST’08), pages 67–70. ACM, 2008.

25. G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Infor-
mation Technology Systems. NIST Special Publication 800-30, National Institute
of Standards and Technology, 2002.

26. XAMPP. http://www.apachefriends.org/en/xampp.html. Accessed August 11,
2013.

27. P. Zech, M. Felderer, and R. Breu. Towards a Model Based Security Testing Ap-
proach of Cloud Computing Environments. In Proc. 6th International Conference
on Software Security and Reliability Companion (SERE-C’12), pages 47–56. IEEE
Computer Society, 2012.

35

Technology for a better society
www.sintef.no

Chapter 11
Paper 3: Schematic generation of
English-prose semantics for a risk analysis
language based on UML interactions

179

180

SINTEF ICT
Networked Systems and Services
2014 10 27

SINTEF A26407 Unrestricted

Report

Schematic Generation of English prose
Semantics for a Risk Analysis Language
Based on UML Interactions

Author(s)
Gencer Erdogan, Atle Refsdal, and Ketil Stølen

CONTENTS

I Introduction 4

II Success Criteria 4

III Approach 4

III-A Abstract syntax of CORAL . 5

III-B English-prose semantics of CORAL . 5

IV Discussion 6

IV-A The English-prose semantics of CORAL diagrams must be comprehensible to software testers when

conducting risk analysis . 6

IV-B The CORAL semantics of the constructs inherited from UML interactions must be consistent with

their semantics in the UML standard . 8

IV-C The complexity of the resulting English prose must scale linearly with the complexity of CORAL

diagrams in terms of size . 10

V Related Work 10

VI Conclusion 10

References 11

Appendix A: Abstract Syntax of CORAL 12

A-A Messages . 12

A-B Lifelines . 12

A-C Risk-measure annotations . 13

A-D Interaction operators . 13

Appendix B: English-prose Semantics of CORAL 14

B-A Messages . 14

B-B Lifelines . 14

B-C Risk-measure annotations . 15

B-D Interaction operators . 15

Appendix C: Overview of the Graphical Notation of CORAL 15

I. INTRODUCTION

Risk-driven testing is an approach that uses risk analysis

to focus the testing process with respect to certain risks

posed on the system under test. When conducting risk-driven

testing, testers need to clearly and consistently document,

communicate and analyze risks, in order to correctly focus

the testing with respect to the most severe risks.

In earlier work, we presented a systematic method for

designing test cases by making use of risk analysis [1], [2].

As part of the method, we also introduced a risk analysis

language based on UML interactions which we refer to as

CORAL. CORAL extends UML interactions with constructs

for representing risk-related information in sequence dia-

grams, and it is specifically developed to support software

testers in a risk-driven testing process.

As we explain in [1], [2], testers may use CORAL in

three consecutive steps to identify, estimate, and evaluate

risks. The graphical icons representing risk-related infor-

mation in CORAL are based on corresponding graphical

icons in CORAS, which is a model-driven approach to risk

analysis [3]. This is a deliberate design decision because

the graphical icons in CORAS are empirically shown to be

cognitively effective [4]. Appendix C gives an overview of

the graphical notation of CORAL.

However, situations may arise where the information con-

veyed by CORAL diagrams, i.e., interactions represented by

CORAL constructs, are interpreted differently by different

testers. Thus, in order to help software testers to clearly and

consistently document, communicate and analyze risks, we

present a structured approach to generate the semantics of

CORAL diagrams in terms of English prose. We evaluate

the approach based on some examples.

The CORAL language is also accompanied by a formal

semantics, but as indicated above, this report presents only

the natural-language semantics of CORAL. We present the

natural-language semantics and the formal semantics of

CORAL in different reports, because their purposes and

target audiences are different. The main target audience of

the natural-language semantics is software testers, while the

main target audiences of the formal semantics are method

developers or tool developers.

The remainder of this report is organized as follows.

Section II lists the success criteria our approach aims

to fulfill. Section III gives a stepwise explanation of the

approach, and presents the examples on which we base

our evaluation. Section IV elaborates on the fulfillment

of the success criteria. Section V provides an overview

of related work, while Section VI gives some concluding

remarks. Appendix A and Appendix B provide the complete

abstract syntax and the complete English-prose semantics

of the CORAL language, respectively. Finally, Appendix C

gives an overview of the graphical notation of the CORAL

language.

II. SUCCESS CRITERIA

There are three key design decisions that shape our

success criteria.
First, the main target audience of the natural-language

semantics of CORAL is software testers. CORAL is sup-

posed to be used by testers to document, communicate and

analyze risks in a risk-driven testing process. Thus, our first

success criterion is: The English-prose semantics of CORAL

diagrams must be comprehensible to software testers when

conducting risk analysis.
Second, CORAL is based on UML interactions and only

extends UML interactions with constructs representing risk-

related information. Thus, our second success criterion is:

The CORAL semantics of the constructs inherited from

UML interactions must be consistent with their semantics

in the UML standard.
Third, the approach must ensure scalability. Thus, our

third success criterion is: The complexity of the resulting

English prose must scale linearly with the complexity of

CORAL diagrams in terms of size.

III. APPROACH

Inspired by CORAS [3], we generate the English-prose

semantics in three consecutive steps, as shown in Figure 1. In

Step 1, we translate a CORAL diagram into a corresponding

textual representation. This step takes a CORAL diagram as

input. First, for each construct in the CORAL diagram, we

identify its corresponding syntactical element in the abstract

syntax of CORAL. Second, we replace the variables in the

syntactical element with content, i.e., user-defined text, from

the construct in the diagram. The output of this step is a

textual representation of the CORAL diagram given as input

to the step. The abstract syntax of CORAL is defined in

Section III-A.
In Step 2, we translate the textual representation of

a CORAL diagram into English prose, by making use

of the translation algorithm defined in Section III-B. The

translation algorithm is defined in terms of a function that

takes syntactical elements as input and provides their English

prose translation.
Before presenting the translation function, we need to

explain weak sequencing, which is a key construct in UML

interactions. Weak sequencing is the implicit composition

mechanism combining the constructs of an interaction, and

is defined as follows [5]:

1) The transmission of a message must occur before its

reception.

2) Events on the same lifeline are ordered in time, where

time proceeds from the top of the lifeline towards the

bottom of the lifeline, and where an event is either

the transmission of a message or the reception of a

message.

In the translation function, we use the term ‘weakly se-
quenced by’ to denote weak sequencing as defined above.

4

Figure 1. Generating English-prose semantics of CORAL diagrams.

In Step 3, we make use of a pretty-printer to format the

English prose in a structured manner. The technical details

of such a pretty-printer are outside the scope of this report,

and are therefore not discussed here.

A. Abstract syntax of CORAL

In this section, we define the abstract syntax of CORAL

expressed in the Extended Backus-Naur Form [6]. The

syntax defined in this section is an excerpt of the complete

syntax, but it is sufficient for walking through the examples

in the report. The complete syntax is defined in Appendix A.

We use the following undefined terms in the gram-

mar: identifier, asset lifeline, exact, interval, and

time unit. The term identifier is assumed to represent any

alphanumeric string. The term asset lifeline is assumed to

represent an alphanumeric string describing the name of an

asset lifeline. The term exact is assumed to represent a non-

negative real number, including 0. That is, exact ∈ R≥0.

The term interval is assumed to represent an interval of

non-negative real numbers, including 0. The intervals are

represented in standard mathematical notation. That is, one

of the following:

• [a, b]
• [a, b〉
• 〈a, b]
• 〈a, b〉

where a, b ∈ R≥0, and a ≤ b. The term time unit
is assumed to represent an alphanumeric string describing

a unit of time, e.g., second(s), minute(s), hour(s), day(s),

year(s), etc.

In the abstract syntax, we use different fonts to distinguish

between the non-terminals and the terminals. Non-terminals

are written in font math mode, while terminals are written

in font Sans Serif. The terminals written in font Bold
Sans Serif represent the type of a syntactical element.

For each terminal representing the type of a syntactical

element, there is an associated English-prose semantics

defined in Section III-B.

risk interaction = message | weak sequencing
| potential alternatives
| referred interaction
| parallel execution;

message = risky message
| unwanted incident message;

risky message = rm(identifier,
transmitter lifeline,
receiver lifeline,
risky message category,
transmission frequency,
conditional ratio,
reception frequency);

unwanted incident message = uim(identifier,
transmitter lifeline,
asset lifeline,
transmission frequency,
consequence);

transmitter lifeline = general lifeline
| deliberate threat lifeline;

receiver lifeline = general lifeline
| deliberate threat lifeline;

general lifeline = gl(identifier);

deliberate threat lifeline = dtl(identifier);

risky message category = general | new | alter;

transmission frequency = frequency;

reception frequency = frequency;

frequency = f(interval, time unit);

conditional ratio = cr(exact);

consequence = c(identifier);

weak sequencing = seq({risk interaction}−);
potential alternatives = alt({risk interaction}−);
referred interaction = ref(identifier);

parallel execution = par({risk interaction}−);

B. English-prose semantics of CORAL

The English-prose semantics of a syntactical element is

given by the function � �, which is defined below for the

excerpt of the abstract syntax presented in Section III-A.

Let the syntactical variables

• d range over risk interaction
• id range over identifier
• t range over transmitter lifeline
• r range over receiver lifeline

5

• al range over asset lifeline
• f range over frequency
• cr range over conditional ratio
• c range over consequence
• e range over exact
• i range over interval
• tu range over time unit

Undefined values are represented by ⊥. The pair of square

brackets, ‘[’ and ‘]’, is a part of the semantics that is used

to enclose an operand.

�seq(d1, d2, .., dm)� = [�d1�] weakly sequenced by

[�d2�] weakly sequenced by ...

weakly sequenced by [�dm�]
�alt(d1, d2, .., dm)� = either [�d1�] or [�d2�] or ...

or [�dm�]

�ref(id)� = Refer to interaction: id.

�par(d1, d2, .., dm)� = [�d1�] parallelly merged with

[�d2�] parallelly merged with ...

parallelly merged with [�dm�]
�rm(id, t, r, general, f1, cr, f2)� =

The message id is transmitted from �t� to

�r� �f1�, the transmission leads to its reception

�cr�, and the reception occurs �f2�.

�rm(id, t, r, new, f1, cr, f2)� =
The new message id is transmitted from �t� to

�r� �f1�, the transmission leads to its reception

�cr�, and the reception occurs �f2�.

�rm(id, t, r, alter, f1, cr, f2)� =
The altered message id is transmitted from �t� to

�r� �f1�, the transmission leads to its reception

�cr�, and the reception occurs �f2�.

�uim(id, t, al, f, c)� =
The unwanted incident id occurs on �t� �f�,

and impacts asset al �c�.

�gl(id)� = id

�dtl(id)� = the deliberate threat id

�f(i, tu)� = with frequency interval i per tu

�f(⊥, ⊥)� = with undefined frequency

�cr(e)� = with conditional ratio e

�cr(⊥)� = with undefined conditional ratio

�c(id)� = with consequence id

�c(⊥)� = with undefined consequence

Figure 2 illustrates some examples of CORAL diagrams

which we obtained by applying our method [1], [2] on a

guest book that is available in the Damn Vulnerable Web

Application [7]. We demonstrate the schematic translation

of CORAL diagrams into English prose by, first, translating

the diagrams in Figure 2 into their corresponding textual

representation. The resulting textual representation is shown

in Figure 3. Then, we translate the textual representation

of the diagrams into its corresponding English prose, by

using the translation function presented in this section. The

resulting (pretty-printed) English prose of the diagrams in

Figure 2 is shown in Figure 4.

IV. DISCUSSION

In this section, we discuss the fulfillment of the three

success criteria given in Section II.

A. The English-prose semantics of CORAL diagrams must
be comprehensible to software testers when conducting risk
analysis

The comprehensibility of the resulting English prose is

supported both from a general viewpoint and from a software

testing viewpoint.

From a general viewpoint, we observe the following two

points. First, the structure of the translations in Figure 4 is

similar to the structure of their corresponding CORAL dia-

grams in Figure 2. In particular, the ordering of the translated

CORAL constructs is maintained. For example, let us con-

sider the translation in Figure 4a. The first sentence states:

“The new message forgedURLReplacingMsgWithXSSscript
is transmitted from the deliberate threat Hacker to C with

undefined frequency, the transmission leads to its reception

with undefined conditional ratio, and the reception occurs

with undefined frequency”. By comparing the translation in

Figure 4a to its corresponding diagram in Figure 2a, we see

that the first sentence corresponds to the first message in

the diagram. Similarly, we see that the second sentence in

Figure 4a corresponds to the second message in Figure 2a,

and so on. Second, the user-defined text is unchanged in the

translations. By user-defined text, we mean the text typed in

CORAL diagrams, such as the text on messages, lifelines,

frequency assignments, consequence assignments, and so on.

From a software testing viewpoint, we observe that risk-

related concepts from CORAL are integrated with concepts

from UML interactions in the resulting English prose. UML

interactions are among the top three modeling languages

within the testing community, and often used for testing

purposes [8]. It is therefore reasonable to assume that testers

understand the concepts from UML interactions. Moreover,

we find it reasonable to assume that testers also comprehend

the risk-related concepts we introduce in CORAL, such

as altered messages and messages representing unwanted
incidents, because these are concepts that are also known

within the testing community. For example, in fuzz testing,

the expected behavior of a system is altered by providing

invalid, unexpected, or random data, which may lead to

6

Figure 2. Examples of CORAL diagrams.

unwanted incidents [9]. Table I lists the UML interaction

concepts and the risk-related concepts used in CORAL.

To illustrate how UML interaction concepts and risk

related concepts in CORAL are integrated, let us consider

the first message in Figure 2d. This message represents

an altered message. In CORAL, an altered message is a

message in the system model which has been altered due

to unexpected system behavior or unexpected input data.

Figure 4d shows the corresponding translation as: “The

altered message submit(name,XSSscript) is transmitted from

GBForm to GBDatabase with frequency interval [150, 300>
per 1y, the transmission leads to its reception with condi-

tional ratio 0.6, and the reception occurs with frequency

interval [90, 180> per 1y”. The translation shows that we

have a message that is transmitted between two lifelines
(UML interaction concepts). Furthermore, the translation

also shows that the message is altered, transmitted and

received with a given frequency, and that the transmission of

the message leads to its reception with a given conditional

Table I
UML INTERACTION CONCEPTS AND RISK-RELATED CONCEPTS USED IN

CORAL

UML interaction concepts Risk-related concepts

Message New message

Altered message

Deleted message

Unwanted incident message

Lifeline Deliberate threat lifeline

Accidental threat lifeline

Non-human threat lifeline

Asset lifeline

Interaction operators: Risk-measure annotations
Weak sequencing assigned on messages:

Potential alternatives Frequency

Referred interaction Conditional ratio

Parallel Consequence

Loop

7

Figure 3. Textual representation of the corresponding CORAL diagrams in Figure 2.

ratio (risk-related concepts).

B. The CORAL semantics of the constructs inherited from
UML interactions must be consistent with their semantics in
the UML standard

The CORAL constructs inherited from UML interactions

are messages, lifelines and the interaction operators: seq, ref,
alt, par and loop. The interaction operator weak sequencing
(seq) is defined and related to CORAL in Section III.

According to the UML standard, a “message defines a

particular communication between lifelines of an interac-

tion,” and “the signature of a message is the specification

of its content” [5] (pp. 505–506). A message also defines

its transmission event (which occurs on the transmitter

lifeline) and its reception event (which occurs on the receiver

lifeline) [5] (p. 506). Thus, a message may be defined as

the triple (id, t, r), where id represents the signature, t rep-

resents the transmitter lifeline, and r represents the receiver

lifeline. We define a message in a similar manner. However,

as explained in Section III, we also distinguish between

the category of a message, i.e., whether it is a general,

new, altered, deleted or an unwanted incident message. In

addition, we allow the assignment of a frequency value

on the transmission/reception of general, new and altered

messages, as well as the transmission of unwanted incident

messages. Conditional ratios are assigned on general, new

and altered messages, while consequences are assigned only

on unwanted incident messages. Deleted messages have no

risk-measure annotations. The syntax and semantics of a

deleted message is given in Appendices A and B, respec-

tively. As we can see from the translations in Figure 4,

the English prose of messages are generated according to

their category, and contain information about the message

signature, the lifeline transmitting the message, the lifeline

receiving the message, and the risk-measure annotations

assigned on the message if they are defined.

According to the UML standard, an “interaction use (ref)
refers to an interaction. The interaction use is shorthand for

copying the contents of the referred interaction where the

interaction use is. To be accurate the copying must take into

account substituting parameters with arguments and connect

the formal gates with the actual ones.” [5] (p. 501). Figure 2b

shows an example of an interaction use named Sign guest

8

Figure 4. English prose of the corresponding CORAL diagrams in Figure 2.

9

book. The interaction referred to by this interaction use is

shown in Figure 2e. We use the term ‘refer to interaction’

to denote an interaction use, as shown in the translations in

Figures 4a and 4b.

According to the UML standard, the “interaction operator

potential alternatives (alt) designates that the operands

represent a choice of behavior” [5] (p. 482). The UML

standard requires that the chosen operand must have an

explicit or implicit guard expression that evaluates to true.

An implicit true guard is implied if the operand has no

explicit guard. In CORAL, we currently allow only the usage

of implicit true guards. However, the syntax and semantics

of CORAL is easily extendable to support explicit guards

as well. As shown in Figure 4a, we use the term ‘either’

in front of the first operand of an alt operator, and then the

term ‘or’ between each subsequent operand to reflect the

disjunctive behavior of the alt operator.

According to the UML standard, the “interaction oper-

ator parallel execution (par) designates a parallel merge

between the behaviors of the operands. A parallel merge

defines a set of traces that describes all the ways that events

of the operands may be interleaved without obstructing the

order of the events within the operands” [5] (p. 483). We

use the term ‘parallelly merged with’ between each operand

to denote a parallel merge between the behaviors of the

operands.

The above paragraphs show that the CORAL semantics

of the constructs inherited from UML interactions are con-

sistent with their semantics in the UML standard.

C. The complexity of the resulting English prose must scale
linearly with the complexity of CORAL diagrams in terms
of size

As illustrated by Figure 2 and Figure 4, the definition

of the translation function in Section III-B ensures that

the structure of its output mirrors the input diagram, and

that there is a linear relationship between the size of input

and output. A formal argument that this would hold for

any diagram d could be given based on induction over the

syntactical structure of d.

V. RELATED WORK

To the best of our knowledge, no risk-driven testing

approach provides a similar schematic generation of natural

language semantics as presented in this report. Most ap-

proaches use risk tables/matrices or risk annotated models

as a means for documenting, communicating and analyz-

ing risks posed on the system under test. However, some

approaches provide guidelines for documenting risk-related

information in natural-language semantics.

Redmill [10] provides a set of guide words with associated

definitions, which may be used as a basis for documenting

risk-related information. The set of guide words are used to

describe different ways in which system services may fail,

and they are designed to focus the testing on the various

types of failures that may occur. What Redmill [10] refers

to as failure is similar to what we refer to as unwanted

incident in CORAL. However, the resulting description of a

failure, which is obtained by making use of the guide words,

does neither describe the likelihood nor the consequence of

the failure.

Gleirscher [11] makes use of a safety analysis pattern

for describing informal test cases. An informal test case is

described in terms of a chain of events that may lead to a

hazard (or hazardous state). What Gleirscher [11] refers to

as hazard is similar to what we refer to as unwanted incident

in CORAL. However, the informal test cases do neither

describe the likelihood nor the consequence of hazards.

Furthermore, the events that lead up to a hazard are similar

to what we refer to as the transmission/reception of messages

in CORAL. As shown in previous sections, we describe

the likelihood of the transmission/reception of messages

(in terms of frequencies), as well as the likelihood and

consequence of unwanted incidents.

Nazier and Bauer [12] provide a template for documenting

safety risk information, while Kumar et al. [13] provide a

template for documenting risk-related information within the

domain of aspect oriented programming. Both approaches

extract risk-related information provided by fault trees. The

risk-related information consists of the expected causes of

failures and the combination of these causes which may

lead to the root node (the fault) of the fault tree. A fault is

similar to what we refer to as unwanted incident in CORAL.

None of these approaches consider the likelihood or the

consequence of the faults when documenting the risk-related

information using their templates.

Souza et al. [14] use a taxonomy-based questionnaire for

documenting risk-related information. The taxonomy-based

questionnaire is answered by those involved in the risk-based

testing approach suggested by the authors, and the objective

is to “identify only technical risks that are commonly

related to software functionalities or requirements” [14]. The

approach makes sure to gather and document the likelihood

of risks (in terms of risk exposure values), but it does not

consider the consequence of risks.

VI. CONCLUSION

CORAL is a risk analysis language based on UML

interactions, and it is specifically developed to support

software testers in a risk-driven testing process. CORAL

extends UML interactions with constructs for representing

risk-related information in sequence diagrams.

In this report, we presented a structured approach to

generate the semantics of CORAL diagrams in terms of

English prose. The CORAL semantics is developed to help

testers to clearly and consistently document, communicate

and analyze risks in a risk-driven testing process. In partic-

ular, it helps testers to: (1) obtain a correct understanding

10

of CORAL diagrams, (2) analyze risks posed on the system

under test in a clear and consistent manner, and (3) clearly

communicate risks posed on the system under test.

We argue that the resulting English prose is compre-

hensible by testers because: (1) it preserves the structure

of CORAL diagrams, (2) it keeps the user-defined text in

CORAL diagrams unchanged, and (3) it uses concepts that

are known to software testers. In addition, the resulting

English prose of the constructs inherited from UML in-

teractions is consistent with their semantics in the UML

standard. Moreover, the complexity of the resulting English

prose scales linearly with the complexity of the CORAL

diagrams in terms of size.

ACKNOWLEDGMENT

This work has been conducted as a part of the

DIAMONDS project (201579/S10) funded by the Research

Council of Norway, the NESSoS network of excellence

(256980) and the RASEN project (316853) funded by

the European Commission within the 7th Framework Pro-

gramme, as well as the CONCERTO project funded by the

ARTEMIS Joint Undertaking (333053) and the Research

Council of Norway (232059).

REFERENCES

[1] G. Erdogan, A. Refsdal, and K. Stølen, “A Systematic Method
for Risk-Driven Test Case Design Using Annotated Sequence
Diagrams,” in Proc. 1st International Workshop on Risk
Assessment and Risk-driven Testing (RISK’13). Springer,
2014, pp. 93–108.

[2] ——, “A Systematic Method for Risk-Driven Test Case
Design Using Annotated Sequence Diagrams,” SINTEF In-
formation and Communication Technology, Technical Report
A26036, 2014.

[3] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk
Analysis: The CORAS Approach. Springer, 2011.

[4] B. Solhaug and K. Stølen, “The CORAS Language - Why it
is designed the way it is,” in Proc. 11th International Con-
ference on Structural Safety and Reliability (ICOSSAR’13).
CRC Press, 2013, pp. 3155–3162.

[5] Unified Modeling Language (UML), superstructure, version
2.4.1, Object Management Group, 2011, OMG Document
Number: formal/2011-08-06.

[6] ISO/IEC 14977:1996(E), Information technology – Syntactic
metalanguage – Extended BNF, first edition, International
Organization for Standardization, 1996.

[7] “Damn Vulnerable Web Application,” accessed September
16, 2014. [Online]. Available: http://www.dvwa.co.uk/

[8] A. D. Neto, R. Subramanyan, M. Vieira, and G. Travassos, “A
Survey on Model-based Testing Approaches: A Systematic
Review,” in Proc. 1st ACM International Workshop on Em-
pirical Assessment of Software Engineering Languages and
Technologies (WEASELTech’07). ACM, 2007, pp. 31–36.

[9] P. Oehlert, “Violating assumptions with fuzzing,” Security
Privacy, IEEE, vol. 3, no. 2, pp. 58–62, 2005.

[10] F. Redmill, “Theory and practice of risk-based testing,” Soft-
ware Testing, Verification and Reliability, vol. 15, no. 1, pp.
3–20, 2005.

[11] M. Gleirscher, “Hazard-based selection of test cases,” in Proc.
6th International Workshop on Automation of Software Test
(AST’11). ACM, 2011, pp. 64–70.

[12] R. Nazier and T. Bauer, “Automated risk-based testing by
integrating safety analysis information into system behavior
models,” in Proc. 23rd International Symposium on Software
Reliability Engineering Workshops (ISSREW’12). IEEE,
2012, pp. 213–218.

[13] N. Kumar, D. Sosale, S. N. Konuganti, and A. Rathi,
“Enabling the adoption of aspects-testing aspects: A risk
model, fault model and patterns,” in Proc. 8th ACM Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’09). ACM, 2009, pp. 197–206.

[14] E. Souza, C. Gusmão, and J. Venâncio, “Risk-based testing:
A case study,” in Proc. 7th International Conference on
Information Technology: New Generations (ITNG’10). IEEE,
2010, pp. 1032–1037.

11

APPENDIX A.

ABSTRACT SYNTAX OF CORAL

In this appendix, we define the abstract syntax for the CORAL language using the Extended Backus-Naur Form (EBNF) [6].

The abstract syntax is presented by grouping the syntactical elements that are closely related.

We use the following undefined terms in the grammar: identifier, asset lifeline, int, minint, maxint, exact,
interval, and time unit.

• The term identifier is assumed to represent any alphanumeric string.

• The term asset lifeline is assumed to represent an alphanumeric string describing the name of an asset lifeline.

• The terms int, minint and maxint are assumed to represent non-negative natural numbers, including 0, where minint
is less than, or equal to, maxint. That is, int, minint, maxint ∈ N0, minint ≤ maxint.

• The term exact is assumed to represent a non-negative real number, including 0. That is, exact ∈ R≥0.

• The term interval is assumed to represent an interval of non-negative real numbers, including 0. The intervals are

represented in standard mathematical notation. That is, one of the following:

– [a, b]
– [a, b〉
– 〈a, b]
– 〈a, b〉

where a, b ∈ R≥0, and a ≤ b.
• The term time unit is assumed to represent an alphanumeric string describing a unit of time, e.g., second(s), minute(s),

hour(s), day(s), year(s), etc.

Throughout the definition of the abstract syntax, we use different fonts to distinguish between the non-terminals and the

terminals. Non-terminals are written in font math mode, while terminals are written in font Sans Serif. The terminals

written in font Bold Sans Serif represent the type of a syntactical element. For each terminal representing the type of a

syntactical element, there is an associated English-prose semantics defined in Appendix B. We start by defining the term

risk interaction, which is a collective term for the various constructs of CORAL.

risk interaction = message | weak sequencing | potential alternatives
| referred interaction | parallel execution | loop;

A. Messages

In the following, we define the syntax of the five different messages in CORAL: general, new, alter, delete,

and unwanted incident messages. The collective term for general, new and alter messages is risky message, the term

for a deleted message is deleted message, and the term for an unwanted incident message is unwanted incident message.

message = risky message | unwanted incident message | deleted message;

risky message = rm(identifier, transmitter lifeline, receiver lifeline,
risky message category, transmission frequency,
conditional ratio, reception frequency);

unwanted incident message = uim(identifier, transmitter lifeline, asset lifeline,
transmission frequency, consequence);

deleted message = dm(identifier, transmitter lifeline, receiver lifeline);

risky message category = general | new | alter;

B. Lifelines

In the following, we define the syntax of the lifelines in CORAL. The term transmitter lifeline represents the

transmitter lifeline for all message categories defined in Appendix A-A, while receiver lifeline represents the receiver

lifeline for the risky message and the deleted message categories. The receiver lifeline of an unwanted incident message

is asset lifeline, because the purpose of an unwanted incident message is to denote that an unwanted incident has an

12

impact on an asset.

transmitter lifeline = general lifeline | deliberate threat lifeline
| accidental threat lifeline | non-human threat lifeline;

receiver lifeline = general lifeline | deliberate threat lifeline
| accidental threat lifeline | non-human threat lifeline;

general lifeline = gl(identifier);
deliberate threat lifeline = dtl(identifier);
accidental threat lifeline = atl(identifier);

non-human threat lifeline = ntl(identifier);

C. Risk-measure annotations

In the following, we define the syntax of the risk-measure annotations in CORAL. Frequencies may be assigned on

the transmission and the reception of risky messages, as well as on the transmission of unwanted incident messages.

Conditional ratios are assigned only on risky messages, and consequences are assigned only on unwanted incident messages.

Deleted messages have no risk-measure annotations. CORAL allows the assignment of exact frequencies, as well as

frequency intervals. An exact frequency may for example be expressed as “10:1y” meaning “10 occurrences per year”,

while a frequency interval may be expressed as “[10,50]:1y” meaning “from and including 10 up to and including 50

occurrences per year”. CORAL also allows the assignment of exact conditional ratios and conditional ratio intervals. An

exact conditional ratio is simply a non-negative real number (including zero), while a conditional ratio interval is an interval

of non-negative real numbers (including zero).

transmission frequency = frequency;

reception frequency = frequency;

frequency = f(exact, time unit) | f(interval, time unit);

conditional ratio = cr(exact) | cr(interval);
consequence = c(identifier);

D. Interaction operators

In the following, we define the syntax of the interaction operators in CORAL. The interaction operators seq, alt, ref and

par are discussed in Section IV. According to UML, there are three syntactical definitions of the interaction operator loop
depending on whether there are no integers, one integer, or a pair of a maximum and a minimum integer given together with

the operator [5] (pp. 485–486). If only loop is given, the operand represents a loop with zero as lower bound and infinity as

upper bound. If loop is accompanied by an integer int, the operand represents a loop that loops exactly int times. Finally,

if loop is accompanied by two integers, minint and maxint, the operand represents a loop that loops minimum minint
times and maximum maxint times.

In EBNF, “{ }−” means an ordered sequence of one or more repetitions of the enclosed element [6]. This means that

the interaction operators seq, alt and par may consist of an ordered sequence of one or more risk interactions. The term

risk interaction is defined initially in this appendix.

weak sequencing = seq({risk interaction}−);
potential alternatives = alt({risk interaction}−);
referred interaction = ref(identifier);

parallel execution = par({risk interaction}−);
loop = loop(risk interaction) | loop(int, risk interaction)

| loop((minint, maxint), risk interaction);

13

APPENDIX B.

ENGLISH-PROSE SEMANTICS OF CORAL

In this appendix, we define the English-prose semantics for the CORAL language. The English-prose semantics is defined

by a function � � that takes a syntactical element as input, expressed in the textual syntax defined with EBNF in Appendix A,

and provides English prose of the syntactical element.

This appendix is structured similar to Appendix A; we define the English-prose semantics for messages, lifelines, risk-

measure annotations and interaction operators in the same order.

A. Messages

In the following, we define the English-prose semantics for the five different messages in CORAL. The syntax of

messages is defined in Appendix A-A. Let the syntactical variables

• id range over identifier
• t range over transmitter lifeline
• r range over receiver lifeline
• al range over asset lifeline
• f range over frequency
• cr range over conditional ratio
• c range over consequence

�rm(id, t, r, general, f1, cr, f2)� = The message id is transmitted from �t� to �r� �f1�,

the transmission leads to its reception �cr�,

and the reception occurs �f2�.

�rm(id, t, r, new, f1, cr, f2)� = The new message id is transmitted from �t� to �r� �f1�,

the transmission leads to its reception �cr�,

and the reception occurs �f2�.

�rm(id, t, r, alter, f1, cr, f2)� = The altered message id is transmitted from �t� to �r� �f1�,

the transmission leads to its reception �cr�,

and the reception occurs �f2�.

�uim(id, t, al, f, c)� = The unwanted incident id occurs on �t� �f�,

and impacts asset al �c�.

�dm(id, t, r)� = The message id transmitted from �t� to �r� is deleted.

B. Lifelines

In the following, we define the English-prose semantics for the lifelines in CORAL. The syntax of lifelines is defined in

Appendix A-B. Let the syntactical variable

• id range over identifier

�gl(id)� = id

�dtl(id)� = the deliberate threat id

�atl(id)� = the accidental threat id

�ntl(id)� = the non-human threat id

14

C. Risk-measure annotations

In the following, we define the English-prose semantics for the risk-measure annotations in CORAL. The syntax of

risk-measure annotations is defined in Appendix A-C. Let the syntactical variables

• id range over identifier
• e range over exact
• i range over interval
• tu range over time unit

Undefined values are represented by ⊥.

�f(e, tu)� = with frequency e per tu
�f(i, tu)� = with frequency interval i per tu
�f(⊥, ⊥)� = with undefined frequency

�cr(e)� = with conditional ratio e
�cr(i)� = with conditional ratio interval i

�cr(⊥)� = with undefined conditional ratio

�c(id)� = with consequence id
�c(⊥)� = with undefined consequence

D. Interaction operators

In the following, we define the English-prose semantics for the interaction operators in CORAL. The syntax of interaction

operators is defined in Appendix A-D. Let the syntactical variables

• d range over risk interaction
• id range over identifier
• x range over int
• a range over minint
• b range over maxint

The pair of square brackets, ‘[’ and ‘]’, is a part of the resulting English-prose semantics and it is used to enclose an operand.

�seq(d1, d2, .., dm)� = [�d1�] weakly sequenced by [�d2�] weakly sequenced by ...

weakly sequenced by [�dm�]

�alt(d1, d2, .., dm)� = either [�d1�] or [�d2�] or ... or [�dm�]

�ref(id)� = Refer to interaction: id.

�par(d1, d2, .., dm)� = [�d1�] parallelly merged with [�d2�] parallelly merged with ...

parallelly merged with [�dm�]

�loop(d)� = loop minimum zero times and maximum infinitely [�d�]

�loop(x, d)� = loop exactly x times [�d�]

�loop((a, b), d)� = loop minimum a times and maximum b times [�d�]

APPENDIX C.

OVERVIEW OF THE GRAPHICAL NOTATION OF CORAL

Figure 5 shows an overview of the graphical notation of the CORAL language.

15

Figure 5. Graphical Notation of CORAL.

16

Technology for a better society
www.sintef.no

Chapter 12
Paper 4: Evaluation of the CORAL
approach for risk-driven security testing
based on an industrial case study

199

200

SINTEF ICT
Networked Systems and Services
2015 07 28

SINTEF A27097 Unrestricted

Report

Evaluation of the CORAL Approach for
Risk Driven Security Testing Based on
an Industrial Case Study

Author(s)
Gencer Erdogan1, Ketil Stølen1, and Jan Øyvind Aagedal2

1 Department for Networked Systems and Services, SINTEF ICT, PO Box 124 Blindern,
N 0314 Oslo, Norway

2 Accurate Equity, Martin Linges vei 25, N 1364 Fornebu, Norway

Table of Contents

1 Introduction . 4
2 The CORAL Approach . 4
3 Research Method . 6
4 Overview of Industrial Case Study . 7

4.1 Test Planning (Phase 1) . 7
4.2 Security Risk Assessment (Phase 2) . 8
4.3 Security Testing (Phase 3) . 11

5 Case Study Results . 12
6 Discussion . 14
7 Related Work and Conclusions . 15

1 Introduction

Security testers face the problem of determining the tests that are most likely
to reveal severe security vulnerabilities. Risk-driven security testing has been
proposed in response to this challenge. Potter and McGraw [20] argue that se-
curity testers must use a risk-driven approach to security testing, because by
identifying risks in the system and creating tests driven by those risks, a se-
curity tester can properly focus on aspects of the system in which an attack is
likely to succeed. Unfortunately, only a handful approaches to risk-driven testing
specifically address security, and the field is immature and needs more formality
and preciseness [4].

We have developed a method for risk-driven security testing supported by
a domain-specific language which we refer to as the CORAL approach, or just
CORAL [5, 6]. It aims to help security testers to select and design test cases
based on the available risk picture.

In this report we present experiences from applying CORAL in an industrial
case. We evaluate to what extent the CORAL approach helps security testers
in selecting and designing test cases. The system under test is a comprehensive
web-based e-business application designed to deliver streamlined administration
and reporting of all forms of equity-based compensation plans, and is used by
a large number of customers across Europe. The system owner, which is also
the party that commissioned the case study (often referred to as party in the
following), require full confidentiality. The results presented in this report are
therefore limited to the experiences from applying the CORAL approach.

The report is organized as follows. In Sect. 2 we give an overview the CORAL
approach. In Sect. 3 we present our research method. In Sect. 4 we give an
overview of the case study, and in Sect. 5 we present the obtained results or-
ganized according to our research questions. In Sect. 6 we discuss these results,
and finally in Sect. 7 we relate our work to other approaches and conclude by
highlighting key findings.

2 The CORAL Approach

The CORAL approach consists of a domain-specific risk analysis language and
a method for risk-driven security testing within which the language is tightly
integrated. Figure 1 presents an example of a risk model expressed in the CORAL
language. The dashed arrows are not part of the model, but used to point out
the various constructs explained below.

A threat is a potential cause of an unwanted incident. A threat scenario is a
chain or series of events that is initiated by a threat and that may lead to an
unwanted incident. An asset is something to which the party on whose behalf we
are testing assigns value and hence for which the party requires protection. A new
message is a message initiated by a threat, and is represented by a red triangle at
the transmission end. An altered message is a message in the system under test
(SUT) that has been altered by a threat to deviate from its expected behavior.

4

It is represented by a triangle with red borders and white fill. A deleted message
is a message in the SUT that has been deleted by a threat. It is represented by
a triangle with red borders and a red cross in the middle. An unwanted incident
is a message modeling that an asset is harmed or its value is reduced. It is
represented by a yellow explosion sign. A frequency is the frequency of either
the transmission or the reception of a message. A conditional ratio is the ratio
by which a message is received, given that it is transmitted. A consequence is
the consequence an unwanted incident has on an asset. A risk, in our approach,
is the frequency of an unwanted incident and its consequence for a specific asset.

Fig. 1. Example of a CORAL risk model.

As illustrated in Fig. 2, the CORAL method expects a description of the
SUT as input. The description may be in the form of system diagrams and
models, use case documentation, source code, executable versions of the system,
and so on. The CORAL method involves seven steps grouped into three phases:
Test planning, security risk assessment, and security testing. The output from
applying CORAL is a test report.

Fig. 2. Input and output of the CORAL method.

5

In Phase 1, we identify security assets to be protected, define frequency and
consequence scales, and define the risk evaluation matrix based on the frequency
and consequence scales.

In Phase 2, we carry out the risk modeling in three consecutive steps. First,
we identify security risks by analyzing the models of the SUT with respect to the
security assets. Then we identify threat scenarios that may cause the security
risks. Second, we estimate the frequency of the identified threat scenarios and
risks by making use of the frequency scale, and the consequence of risks by
making use of the consequence scale. Third, we evaluate the risks with respect
to their frequency and consequence estimates and select the most severe risks to
test.

In Phase 3, we conduct security testing in three consecutive steps. First, for
each risk selected for testing, we identify the threat scenario in which the risk
occurs and specify a test objective for that threat scenario. To obtain a test case
fulfilling the test objective, we use stereotypes from the UML Testing Profile [17]
to annotate the threat scenario with respect to the test objective. Second, we
carry out security testing with respect to the test cases. The test cases may be
executed manually, semi automatically, or automatically. Third, based on the
test results, we write a test report.

3 Research Method

As illustrated by Fig. 3 we conducted the case study in four main steps. First, we
designed the case study by defining the objective, the units of analysis, as well as
the research questions. Second, we carried out the CORAL approach within an
industrial setting. Third, we collected the relevant data produced by executing
the CORAL approach. Fourth, we analyzed the collected data with respect to
our research questions. This research approach is inspired by the guidelines for
case study research in software engineering provided by Runeson et al. [22].

Fig. 3. The main activities of the research method.

As pointed out in Sect. 1, the objective of the case study was to evaluate
to what extent the CORAL approach helps security testers in selecting and
designing test cases. The test report delivered to the party that commissioned
the case study describes, in addition to the test results, risk models and security
tests designed with respect to the risk models. Our hypothesis was that the
report is good in the sense that (1) the risk models are valid, and (2) the threat
scenarios are directly testable. By a directly testable threat scenario, we mean

6

a threat scenario that can be reused and specified as a test case based on its
interactions. Thus, the units of analysis in this case study are the risk models.

With respect to point (1), we defined two research questions (RQ1 and RQ2).
With respect to point (2), we defined one research question (RQ3). Additionally,
we carried out both black-box and white-box testing of the SUT, because we
were interested in investigating the usefulness of the CORAL approach for both
black-box and white-box testing (RQ4).

RQ1 To what extent is the risk level of identified risks correct?
RQ2 To what extent are relevant risks identified compared to previous pene-

tration tests?
RQ3 To what extent are the threat scenarios that causes the identified risks

directly testable?
RQ4 To what extent is the CORAL approach useful for black-box testing and

white-box testing, respectively?

4 Overview of Industrial Case Study

As mentioned in Sect. 1, the system under test was a web-based application pro-
viding services related to equity-based compensation plans. The web application
was deployed on the servers of a third party service provider and maintained
by the same service provider with respect to infrastructure. However, the web
application was completely administrated by the client commissioning the case
study for business purposes, such as customizing the web application for each
customer, as well as patching and updating various features of the web applica-
tion.

In order to limit the scope of the testing, we decided to test two features
available to customers: a feature for selling shares (named Sell Shares), and a
feature for exercising options for the purpose of buying shares in a company
(named Exercise Options). In the following, we explain how we carried out the
CORAL approach by taking you through a fragment of the case study. We
consider only Exercise Options and two potential threat scenarios: one from a
black-box perspective and one from a white-box perspective.

4.1 Test Planning (Phase 1)

We modeled Exercise Options from a black-box perspective by observing its
behavior. That is, we executed Exercise Options using a web browser, observed
its behavior, and created the model based on that. We also modeled Exercise
Options from a white-box perspective by executing and analyzing its source
code. Figures 4a and 4b show the black-box model and the white-box model of
Exercise Options, respectively.

Together with the party we decided not to consider security risks related to in-
frastructure because this was a contractual responsibility of the service provider
hosting the web application. Instead, we focused on security risks that may be

7

Fig. 4. (a) Black-box model of feature Exercise Options. (b) White-box model of
feature Exercise Options.

introduced via the application layer. Thus, the threat profile is someone who has
access to Exercise Options, but who resides outside the network boundaries of
the service provider. We identified security assets by consulting the party. The
security asset identified for Exercise Options was integrity of data.

We also defined a frequency scale and a consequence scale together with
the party. The frequency scale consisted of five values (Certain, Likely, Possi-
ble, Unlikely, and Rare), where each value was defined as a frequency interval.
For example, the frequency interval for likelihood Possible was [5,20〉:1y, which
means “from and including 5 to less than 20 times per year.” The consequence
scale also consisted of five values (Catastrophic, Major, Moderate, Minor, and
Insignificant), where each value described the impact by which the security asset
is harmed. For example, consequence Major with respect to security asset in-
tegrity of data was defined as “the integrity of customer shares is compromised.”
The scales were also used to construct the risk evaluation matrix illustrated in
Fig. 7.

4.2 Security Risk Assessment (Phase 2)

We identified security risks by analyzing the black-box and white-box models of
Exercise Options with respect to security asset integrity of data. We did this by
first identifying unwanted incidents that have an impact on the security asset.

8

Second, we identified alterations in the messages that had to take place in order
to cause the unwanted incidents (to be represented as altered messages). Third,
we identified messages initiated by the threat which in turn could cause the
alterations (to be represented as new messages).

Let us consider a threat scenario for the black-box model of Exercise Options.
Assume that a malicious user attempts to access another system feature, say an
administrative functionality, by altering certain parameters in the HTTP request
sent to Exercise Options. The malicious user could achieve this, for example, by
first intercepting the request containing the message continue(exerciseMethod)
using a network proxy tool such as OWASP ZAP [19], and then altering the pa-
rameter exerciseMethod in the message. This alteration, could in turn give the
malicious user access to another system feature. This unwanted incident occurs
if the alteration is successfully carried out, and Exercise Options responds with
another system feature instead of the expected message exerciseRequestConfir-
mation. Thus, the unwanted incident may occur after the reception of the last
message in the black-box model (Fig. 4a). The resulting threat scenario is shown
in Fig. 5. We carried out a similar analysis during white-box testing by analyzing
the model in Fig. 4b. The resulting threat scenario for the white-box model is
shown in Fig. 6.

Fig. 5. A threat scenario for the black-box model of feature Exercise Options.

In order to estimate how often threat scenarios may occur, in terms of fre-
quency, we based ourselves on knowledge data bases such as OWASP [18], re-
ports and papers published within the software security community, as well as
expert knowledge within security testing. We see from Fig. 5 that the malicious

9

Fig. 6. A threat scenario for the white-box model of feature Exercise Options.

user successfully alters the parameter exerciseMethod with frequency [20,50〉:1y.
Given that parameter exerciseMethod is successfully altered and transmitted,
it will be received by Exercise Options with conditional ratio 0.8. The condi-
tional ratio causes the new frequency [16,40〉:1y for the reception of message
continue(otherSysFeat). This is calculated by multiplying [20,50〉:1y with 0.8.
Given that message continue(otherSysFeat) is processed by Exercise Options, it
will respond with another system feature. This, in turn, causes the unwanted in-
cident (security risk) to occur with frequency [16,40〉:1y. The unwanted incident
has an impact on security asset integrity of data with consequence Moderate.

Figure 7 shows the obtained risk evaluation matrix. The numbers in the
matrix represent the 21 risks identified in the case study. Each risk was plotted
in the matrix according to its frequency and consequence estimate. Risks are
grouped in nine levels horizontally on the matrix where Risk Level 1 is the
lowest risk level and Risk Level 9 is the highest risk level. The risk level of a risk
is identified by mapping the underlying color to the column on the left-hand side

10

of the matrix. For example, Risks 11 and 19 have Risk Level 8, while Risk 20
has Risk Level 4. The risk aggregation did not lead to an increase in risk level
for any of the risks. The suspension criterion in this case study was defined as
“test all risks of Risk Level 6 or more.” Based on this criterion, we selected 11
risks to test from the risk evaluation matrix.

Fig. 7. Risk evaluation matrix.

4.3 Security Testing (Phase 3)

The test objective for the threat scenarios in Figs. 5 and 6 was defined as: “Verify
whether the malicious user is able to access another system feature by changing
parameter exerciseMethod into a valid system parameter”. Based on this test
objective, we annotated the threat scenarios with stereotypes from the UML
testing profile [17]. For example, the resulting security test case for the threat
scenario in Fig. 5 is shown in Fig. 8. Needless to say, the security tester takes
the role as “malicious user” in the test case.

We carried out all black-box tests manually and used the OWASP Zed Attack
Proxy tool [19] to intercept the HTTP requests and responses. We carried out
all white-box tests semi automatically supported by the debug mode in Eclipse
IDE, which was integrated with a web-server and a database. We also carried
out automatic source code review using static source code analysis tools for
the purpose of identifying potential threat scenarios. The tools we used for this
purpose were Find Security Bugs V1.2.1 [7], Lapse plus V2.8.1 [13], and Visual
Code Grepper (VCG) V2.0.0 [24].

11

Fig. 8. Security test case based on the threat scenario in Fig. 5.

5 Case Study Results

In this section we present the results from the case study. We group the results
with respect to our research questions.

RQ1 To what extent is the risk level of identified risks correct? As
shown in the risk evaluation matrix in Fig. 7, we identified in total 21 security
risks. The risk aggregation did not lead to an increase in risk level for any of the
risks. Based on the suspension criterion defined by the party, we tested 11 risks
(all risks of Risk Level 6 or more).

The testing of these 11 risks revealed 11 vulnerabilities. The vulnerabilities
were assigned a severity level based on a scale of three values (Low, Medium,
and High). High severity means that the vulnerability should be treated as soon
as possible, and one should consider taking the system offline while treating the
vulnerability (“show stopper”). Medium severity means that the vulnerability
is serious and should be treated based on available time and resources. Low
severity means that the vulnerability is not serious and it should be treated
if seen necessary. Four vulnerabilities were assigned severity Medium, and the
remaining 7 vulnerabilities were assigned severity Low.

We also tested the 10 risks initially not selected for testing, in order to have
a basis for comparison. This testing revealed only 2 vulnerabilities of severity
Low.

RQ2 To what extent are relevant risks identified compared to pre-
vious penetration tests? The party commissioning the case study had pre-
viously executed commercial penetration tests. We did not get access to the
reports or results from these penetration tests due to confidentiality reasons.
However, it was confirmed by the party that we had identified 16 security risks

12

which had also been identified by the previous penetration tests. Additionally,
we had identified 5 new security risks which had not been identified by the pre-
vious penetration tests. Moreover, the party also confirmed that we had not left
out any risks of relevance for the features considered in the case study.

RQ3 To what extent are the threat scenarios that causes the iden-
tified risks directly testable? The identified 21 security risks were caused by
31 threat scenarios. The 11 risks initially selected for testing were caused by 18
threat scenarios, while the remaining 10 risks were caused by 13 threat scenarios.
We identified 18 security test cases based on the 18 threat scenarios causing the
11 risks. Similarly, we identified 13 security test cases based on the 13 threat
scenarios causing the remaining 10 risks.

RQ4 To what extent is the CORAL approach useful for black-box
testing and white-box testing, respectively? Table 1 gives an overview of
the results obtained during black-box testing and white-box testing. The row
“risks tested” represents the number of risks initially selected for testing, as well
as those not initially selected for testing (in parentheses). The row “vulnerabili-
ties identified” represents the number of vulnerabilities identified by testing the
risks initially selected for testing, as well as the number of vulnerabilities iden-
tified by testing the risks not initially selected (in parentheses). The four rows
at the bottom of Table 1 provide statistics on the use of the various modeling
constructs of CORAL to express the threat scenarios.

Table 1. Results obtained during black-box testing and white-box testing.

Black-box White-box Total

SUT diagrams analyzed 11 2 13

Threat scenarios
identified

27 4 31

Risks identified 19 2 21

Test cases identified 27 4 31

Risks testes 10 (plus 9) 1 (plus 1) 11 (plus 10)

Vulnerabilities identified 4 medium and 5
low (plus 0)

2 low (plus 2 low) 4 medium and 7
low (plus 2 low)

New messages 144 17 161

Altered messages 52 8 60

Deleted messages 10 7 17

Unwanted incidents 30 4 34

13

6 Discussion

The two variables that determine the risk level of a risk, that is, the frequency
value and the consequence value, are estimates based on data gathered during
the security risk assessment. In other words, these estimates tell us to what
degree the identified risks exist. Thus, in principle, the higher the risk level, the
more likely it is to reveal vulnerabilities causing the risk. The same applies the
other way around. That is, the lower the risk level, the less likely it is to reveal
vulnerabilities causing the risk.

The results obtained for RQ1 show that 11 vulnerabilities were revealed by
testing the risks considered as most severe, while only 2 vulnerabilities were
revealed by testing the risks considered as low risks. Additionally, the 2 vulnera-
bilities identified by testing the low risks were assigned low severity (see Table 1).
These findings indicate that the risk levels of identified risks were quite accurate.
In contrast, if we had found 2 vulnerabilities by testing the most severe risks,
and 11 vulnerabilities by testing the low risks, then that would have indicated
inaccurate risk levels, and thus a risk assessment of low quality. The results ob-
tained for RQ2 show that we identified all relevant security risks compared to
previous penetration tests. In addition, we identified five new security risks and
did not leave out any risks of relevance for the features considered. In summary,
the results obtained for RQ1 and RQ2 indicate that the produced risk models
were valid and of high quality, and thus that the CORAL approach is effective
in terms of producing valid risk models.

The results obtained for RQ3 point out that all threat scenarios were directly
testable. We believe this result is generalizable because, in the CORAL approach,
risks are identified at the level of abstraction testers commonly work when de-
signing test cases [3]. This is also backed up by the fact that we made direct
use of all threat scenarios as security test cases. Thus, the CORAL approach is
effective in terms of producing threat scenarios that are directly testable. How-
ever, it is important to note that the CORAL approach is designed to be used by
individual security testers, or by a group of security testers collaborating within
the same testing project. The risk models produced by a tester, or a group of
testers working together, will most likely be used by the same tester(s) to design
test cases, and consequently execute the test cases.

In general, the CORAL approach seems to work equally well for black-box
testing and white-box testing. Based on the results obtained for RQ4, we see
that it is possible to carry out the complete CORAL approach both in black-
box testing and white-box testing. The reason why Table 1 shows lower numbers
in the white-box column compared to the numbers in the black-box column,
is because we had fewer white-box models to analyze compared to black-box
models.

Table 1 also shows that the threat scenarios mostly consisted of new messages
and altered messages. Only 17 out of 272 messages were deleted messages. This
may be an indication that threat scenarios can be sufficiently expressed without
the usage of deleted messages. Nevertheless, they are important to document
that an interaction is deleted by a threat. Note that the number of unwanted

14

incidents (34) is greater than the number of identified risks (21). This is because
some of the risks reoccurred in several threat scenarios, and thus had to be
repeated in every threat scenario in which they reoccurred.

Another important observation is that the threat scenarios identified dur-
ing white-box testing helped us locate where in the source code risks occurred,
although the threat scenarios were initiated at the application level.

7 Related Work and Conclusions

In order to get a holistic picture, we relate the CORAL approach to other risk-
driven testing approaches at a general level and not only to approaches focus-
ing on security. In addition, because the CORAL approach is a model-based
approach, we will relate our approach to other model-based approaches. The
reader is referred to our systematic literature review for an overview of state of
the art risk-driven testing approaches, where we also review approaches that are
not model-based [4].

Most model-based approaches make use of fault tree analysis (attack tree is
a variant of a fault tree) for the purpose of safety risk assessment [2, 8, 12, 15,
21, 27]. While fault tree analysis in these approaches are useful for identifying
specific safety risks, they do not include information such as the threat profile
initiating the chain of events causing the risks, the likelihood of an event oc-
curring, and the consequence of risks. These constructs are necessary in a risk
assessment [10]. Moreover, these approaches do not provide any guidelines for
estimating or evaluating risks. The approaches leave it to the tester to identify
the most severe risks in an ad hoc manner, and plan the testing process accord-
ingly. In these approaches, test cases are designed by first analyzing the fault
tree diagrams, and then modeling state machine diagrams (similar to UML state
machines [16]) that represent test cases exploring the faults. However, there are
some existing gaps between fault trees and state machines that need to be taken
into consideration when modeling state machine diagrams based on fault tree
diagrams [11]. In addition, while these approaches focus on modeling state-based
test cases, our approach focuses on modeling interaction-based test cases.

The risk-driven security testing approaches provided by Botella et al. [1],
Großmann et al. [9], and Seehusen [23] make use of the CORAS risk analysis
language [14] for the purpose of security risk assessment. The graphical nota-
tion of the CORAL risk analysis language is based on the CORAS language.
The CORAL approach is therefore closely related to these approaches. However,
there are some fundamental differences. First, CORAS risk models represent
threat scenarios and risks at a high-level of abstraction, while we represent these
at a low-level of abstraction. Second, CORAS risk models are represented as
directed acyclic graphs, while we represent risk models as sequence diagrams,
which are better suited for model-based testing [3]. Third, these approaches use
the risk estimates assigned on a CORAS risk model to make a prioritized list
of threat scenarios which in turn represent a prioritized list of high-level test
procedures [23]. The high-level test procedures are then used as a starting point

15

for identifying/designing test cases either manually or by instantiating certain
test patterns. In the CORAL approach, we map the risks to a risk evaluation
matrix based on the risk estimates, and then we make a prioritized list of risks.
We then select the most severe risks that the system under test is exposed to,
and design test cases by making use of the CORAL risk models in which the
selected risks occur.

The approach provided by Wendland et al. [25] makes use of behavior trees
for the purpose of identifying risks at the level of requirements engineering. This
approach does not identify risks by modeling threat scenarios, but rather by car-
rying out high-level qualitative risk assessment, and annotate the behavior trees
with qualitative risk exposure values. The approach does not explicitly model
test cases, but instead provides guidelines (referred to as test design strategy)
testers may use to model test cases.

Zech et al. [26] identify security risks solely by matching attack patterns on
the public interfaces of a system under test. The pattern matching is carried out
automatically, which in turn produces risk models in terms of UML class dia-
grams [16]. The produced risk models contain information about possible attack
scenarios that may be carried out on the public interfaces. However, the risk
models do not contain information regarding the threat initiating the attacks,
and the chain of events causing the security risks. The approach transforms the
risk models into misuse case models, represented as class diagrams, from which
test cases are generated.

What is common for all the approaches discussed above is that they model
risks and the system under test in separate models using separate modeling
languages. This makes it difficult to get an intuitive understanding with respect
to exactly how and where the risks affect the system under test. The risk models
in the CORAL approach represent specific threat scenarios, security risks caused
by the threat scenarios, and the relevant aspects of the system affected by the
risks, within the same model. This enables testers to identify exactly how and
where certain security risks may occur.

In this report, we have presented an evaluation of CORAL based on our expe-
riences from applying the approach in an industrial case study. The SUT in the
case study was a web application designed to deliver streamlined administration
and reporting of all forms of equity-based compensation plans. The objective
of the case study was to evaluate to what extent the CORAL approach helps
security testers in selecting and designing test cases. In the CORAL approach,
we base the test selection and the test design on the risk models produced during
the security risk assessment. Our hypothesis was that the produced risk mod-
els are valid, and that the threat scenarios represented by the risk models are
directly testable.

The case study results indicate that the CORAL approach is effective in terms
of producing valid risk models. This is backed up by two observations. First,
we identified in total 21 risks, and 11 of these risks were considered as most
severe, while the remaining 10 risks were considered as low risks. By testing
these 11 risks we identified 11 vulnerabilities, while by testing the remaining

16

10 risks we identified only 2 vulnerabilities. Second, we identified all relevant
security risks compared to previous penetration tests. In addition, we identified
five new security risks and did not leave out any risks of relevance for the features
considered.

The CORAL approach seems to work equally well for black-box and white-
box testing. One point worth noting for white-box testing is that the threat
scenarios help locating risks at the source code level although they are initiated
at the application level.

Finally, one of the most important findings we did in the case study is that
the CORAL approach is very useful for identifying security test cases. We used
all threat scenarios identified in the case study for the purpose of security test
case design and execution.

Acknowledgments. This work has been conducted as a part of the DIAMONDS
project (201579/S10) and the AGRA project (236657) funded by the Research
Council of Norway, as well as the RASEN project (316853) funded by the Eu-
ropean Commission within the 7th Framework Programme.

References

1. J. Botella, B. Legeard, F. Peureux, and A. Vernotte. Risk-Based Vulnerability Test-
ing Using Security Test Patterns. In Proc. 6th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA’14),
pages 337–352. Springer, 2014.

2. R. Casado, J. Tuya, and M. Younas. Testing long-lived web services transactions
using a risk-based approach. In Proc. 10th International Conference on Quality
Software (QSIC’10), pages 337–340. IEEE Computer Society, 2010.

3. A.C. Dias Neto, R. Subramanyan, M. Vieira, and G.H. Travassos. A Survey on
Model-based Testing Approaches: A Systematic Review. In Proc. 1st ACM Inter-
national Workshop on Empirical Assessment of Software Engineering Languages
and Technologies (WEASELTech’07), pages 31–36. ACM, 2007.

4. G. Erdogan, Y. Li, R.K. Runde, F. Seehusen, and K. Stølen. Approaches for
the Combined Use of Risk Analysis and Testing: A Systematic Literature Review.
International Journal on Software Tools for Technology Transfer, 16(5):627–642,
2014.

5. G. Erdogan, A. Refsdal, and K. Stølen. A Systematic Method for Risk-driven
Test Case Design Using Annotated Sequence Diagrams. In Proc. 1st International
Workshop on Risk Assessment and Risk-driven Testing (RISK’13), pages 93–108.
Springer, 2014.

6. G. Erdogan, A. Refsdal, and K. Stølen. Schematic Generation of English-prose
Semantics for a Risk Analysis Language Based on UML Interactions. In Proc. 2nd
International Workshop on Risk Assessment and Risk-driven Testing (RISK’14),
pages 205–310. IEEE Computer Society, 2014.

7. Find Security Bugs V1.2.1. http://h3xstream.github.io/find-sec-bugs/. Accessed
April 30, 2015.

8. M. Gleirscher. Hazard-based selection of test cases. In Proc. 6th International
Workshop on Automation of Software Test (AST’11), pages 64–70. ACM, 2011.

17

9. J. Großmann, M. Schneider, J. Viehmann, and M.-F. Wendland. Combining Risk
Analysis and Security Testing. In Proc. 6th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA’14), pages
322–336. Springer, 2014.

10. International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

11. H. Kim, W.E. Wong, V. Debroy, and D. Bae. Bridging the Gap Between Fault Trees
and UML State Machine Diagrams for Safety Analysis. In Proc. 17th Asia Pacific
Software Engineering Conference (APSEC’10), pages 196–205. IEEE Computer
Society, 2010.

12. J. Kloos, T. Hussain, and R. Eschbach. Risk-based testing of safety-critical embed-
ded systems driven by Fault Tree Analysis. In Proc. 4th International Conference
on Software Testing, Verification and Validation Workshops (ICSTW’11), pages
26–33. IEEE Computer Society, 2011.

13. Lapse Plus Console V2.8.1. https://code.google.com/p/lapse-plus/. Accessed April
30, 2015.

14. M.S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 2011.

15. R. Nazier and T. Bauer. Automated risk-based testing by integrating safety anal-
ysis information into system behavior models. In Proc. 23rd International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW’12), pages 213–218.
IEEE Computer Society, 2012.

16. Object Management Group. Unified Modeling Language (UML), superstructure,
version 2.4.1, 2011. OMG Document Number: formal/2011-08-06.

17. Object Management Group. UML Testing Profile (UTP), version 1.2, 2013. OMG
Document Number: formal/2013-04-03.

18. Open Web Application Security Project. https://www.owasp.org/index.php/
Main Page. Accessed April 30, 2015.

19. OWASP Zed Attack Proxy. https://www.owasp.org/index.php/OWASP Zed
Attack Proxy Project. Accessed April 30, 2015.

20. B. Potter and G. McGraw. Software Security Testing. Security & Privacy, IEEE,
2(5):81–85, 2004.

21. M. Ray and D.P. Mohapatra. Risk analysis: A guiding force in the improvement
of testing. IET Software, 7:29–46, 2013.

22. P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons, 2012.

23. F. Seehusen. A Technique for Risk-Based Test Procedure Identification, Prioritiza-
tion and Selection. In Proc. 6th International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA’14), pages 277–291.
Springer, 2014.

24. Visual Code Grepper V2.0.0. http://sourceforge.net/projects/visualcodegrepp/.
Accessed April 30, 2015.

25. M.-F. Wendland, M. Kranz, and I. Schieferdecker. A systematic approach to risk-
based testing using risk-annotated requirements models. In Proc. 7th International
Conference on Software Engineering Advances (ICSEA’12), pages 636–642. IARA,
2012.

26. P. Zech, M. Felderer, and R. Breu. Towards a Model Based Security Testing Ap-
proach of Cloud Computing Environments. In Proc. 6th International Conference
on Software Security and Reliability Companion (SERE-C’12), pages 47–56. IEEE
Computer Society, 2012.

18

27. F. Zimmermann, R. Eschbach, J. Kloos, and T. Bauer. Risk-based statistical
testing: A refinement-based appraoch to the reliability analysis of safety-critical
systems. In Proc. 12th European Workshop on Dependable Computing (EWDC’09),
pages 1–8. The Open Archive HAL, 2009.

19

Technology for a better society
www.sintef.no

Chapter 13
Paper 5: Assessing the usefulness of testing
for validating and correcting security risk
models based on two industrial case studies

221

222

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

