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SUMMARY
Fungi play crucial roles in decomposition, symbiotic interactions, and biogeochemical 

cycling in most terrestrial ecosystems, including the Arctic. Arctic species and ecosystems 

are, by nature, highly evolved, with function and timing of seasonal events and finely tuned 

to their habitat. However, ongoing climate change is having detrimental effects on this 

balance. Therefore, an understanding of the fungal biodiversity of today’s ecosystems is 

urgently needed. The main objective of this work was to investigate fungal richness and 

community structure, and their drivers at different spatial and temporal scales in the High 

Arctic region, using high-throughput sequencing of the internal transcriber spacer (ITS) 

region. In three studies (I, II, IV), fungal communities of Bistorta vivipara (ectomycorrhizal 

“ECM” plant species with wide spread distribution in the Arctic) roots were explored, in 

samples collected from natural Arctic tundra environment. In one study (III), soil samples 

were collected from a winter snow manipulation experimental site. All study sites were 

located on Svalbard. Sampling was performed from fine (I; centimetre) to broad (II; 

kilometre) spatial; and fine (III; weekly) to broad (IV; monthly, seasonally) temporal scales.

I found that fungal community structure varies both spatially and temporally and patterns are 

typically scale-dependent. Structural patterns were weaker at fine scales than at broad scales 

of space and time. At broad scales, community structure variation was related to variation in 

environmental conditions (temperature, moisture, soil properties etc.); however, a large 

proportion of community variation remained unexplained at all scales. Root-associated 

fungal richness showed a typical species-area relationship, and was related to root size per 

host plant, geographical span of sampling. Fungal richness was also related to environmental 

factors, e.g. lower richness was found in sites with soil conditions characterized as edge 

habitats for the host plant, and experimentally increased snow depth clearly influence the 

fungal richness. Furthermore, I found that temporally fluctuating environmental and weather 

conditions significantly influence fungal richness, and that increase in winter. ECM fungal 

genera Tomentella, Cortinarius and Inocybe were highly frequent both in roots and soil; in 

addition, saprotrophic genera Mortierella was common in soil. In conclusion, the spatial 

structure of fungal communities is influenced by environmental filtering over broad spatial 

scales, whereas stochastic processes are more important on finer scales. Temporal variations 

in weather and environmental conditions are important determinant of community structural 

pattern both at fine and broad (growing season versus winter) temporal scale. However, 
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given the large residuals it is very difficult to pin-point the key drivers of community

variations operating at different scales.
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INTRODUCTION
General background

The kingdom fungi includes moulds, mushrooms, lichens, rusts, smuts and yeasts and is one 

of the most diverse groups of eukaryotic microorganisms that play fundamental ecological 

roles. Fungi are important belowground components in all terrestrial ecosystems; e.g., they 

drive nutrient cycling and influence aboveground biomass production through their roles as 

mutualistic organisms (e.g., mycorrhizae, endophytes and lichens), decomposers and 

pathogens (Smith & Read 2010). Approximately  80% of all known terrestrial plants form 

associations with mycorrhizal fungi (Trappe 1987). Fungi are also an important food 

resource for micro-arthropods such as Oribatid mites (Schneider et al. 2005), Collembola 

(Scheu & Simmerling 2004) or Enchytraeid worms (Hedlund & Augustsson 1995). 

According to Kirk et al. (2008) there are ~98,128 species of fungi described to date 

(accounting for synonyms). However, previous efforts by Hawksworth (1991) estimated the 

number of fungal species to reach ~1.5 million. In fact, recent estimates based on new 

sequencing methods predict the existence of over ~5 million of fungal species in the world 

(Blackwell 2011). That being true, we have discovered to date a mere ~2% of all extant 

fungal species. Therefore, we still have a limited understanding on fungal taxonomy and 

environmental sampling for this group, and there is a pressing need to re-evaluate fungal 

diversity (Bass & Richards 2011).

Ecology studies the interactions among organisms and between organisms and their 

environment. In addition, the main goal of community ecology is to identify the mechanisms 

defining the structure of ecological communities and their variation in space and time. To 

this end, the fundamental principle underlying existing biodiversity patterns, known as the 

distance decay of similarity, defines how the level of similarity among communities 

decrease with the increase in geographical and temporal scales (Gaston & Blackburn 1999;

Nekola & White 1999; Whittaker et al. 2001). Thus, patterns change across spatial and 

temporal scales, and specific patterns are usually determined by multiple processes working 

at different scales and/or are scale-dependant. Therefore, species diversity could only be 

fully understood through studies incorporating observations from different temporal and 

spatial scales and testing multiple hypotheses specifically generated to assess species 

diversity. Knowledge on spatio-temporal variations in fungal richness and community 

structure is crucial to understand the structure and dynamics of all terrestrial ecosystems; 

however, obtaining this type of information is far from simple (Fierer 2008).
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In recent years, researchers have shown an interest in understanding how variations 

in geographical and temporal distances influence fungal community composition in different 

terrestrial ecosystems. Thus, fungal communities are known to be influenced by multiple 

patterns and processes and to be strongly scale-dependent (Vik 2014); in addition, previous 

studies have also documented that community structure varies with space (Bahram et al.

2012; Bahram et al. 2013; Põlme et al. 2013; Tedersoo et al. 2014; Davison et al. 2015) and 

time (Buée et al. 2005; Izzo et al. 2005; Koide et al. 2007; Smith et al. 2007; Davey et al.

2012; Voříšková et al. 2014; Vargas-Gastélum et al. 2015). Such variations in fungal 

communities are caused not only by niche-based processes such as host species and taxa, 

soil type, nutrient availability or changes in environmental conditions with increasing 

distance (Lilleskov et al. 2002; Toljander et al. 2006; Ishida et al. 2007; Peay et al. 2010a;

Kjøller et al. 2012; Tedersoo et al. 2013), but also by stochastic processes mainly caused by 

dispersal limitations (Hubbell 2001; Cottenie 2005; Peay et al. 2010b; Peay et al. 2012;

Peay & Bruns 2014). However, despite the importance of spatial and temporal variations in 

defining patterns of biological diversity, these patterns and their drivers are poorly known 

for High Arctic fungal communities (Gardes & Dahlberg 1996). 

The Arctic environment is characterised by cold winters and cool summers, with an 

average air temperature for the warmest month (July) below 10 °C. Low precipitation, low 

moisture conditions, short growing seasons, wind exposure, presence of continuous 

permafrost and soil movement caused by freeze-thaw cycles provide an unfavourable 

condition for Arctic tundra biotic communities (Chapin & Shaver 1981; Chapin & Körner 

1995; Callaghan et al. 2005). Additionally, periglacial processes also influence the 

vegetation and soil conditions at a distances below 1 m (Washburn 1980). 

Even in such extreme Arctic conditions, fungi are ubiquitous in Arctic environments 

(Newsham et al. 2009; Geml et al. 2012; Timling & Taylor 2012) and are abundant in soil 

and plant tissues. Fungi have also been recorded from other Arctic habitats such as sea-water 

and sea-ice (Gunde-Cimerman et al. 2003; Kristiansen 2014), cryoconite holes, glacial 

environments (Säwström et al. 2002; Sonjak et al. 2006; Cameron et al. 2012) and 

permafrost (Ozerskaya et al. 2009; Kochkina et al. 2012; Bellemain et al. 2013). Fungi 

represent one of the most diverse groups of organisms in the Arctic (Dahlberg et al. 2013). 

Fungal species from all major phyla have been recorded in this region (Wallenstein et al.

2007; Geml et al. 2012), being also represented in less extreme environments. According to 

Dahlberg et al. (2013), approximately 4,350 fungal species have been described from the 

Arctic, although the total number may well exceed 13,000 due to lack of data, possibly 
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because of their cryptic nature. Similar to other elements of terrestrial ecosystems, fungi 

play crucial ecological roles in the Arctic, including recycling soil organic matter 

(saprotrophs), acting as important plant and animal pathogens (biotrophs), transferring 

nutrients and water from the soil to their hosts, particularly through their association with 

plants as mycorrhiza (symbiotrophs) and enhancing plant performance (Gardes & Dahlberg 

1996; Ludley & Robinson 2008; Newsham 2011; Timling & Taylor 2012).

Mycorrhizal symbiosis is mutualistic relationship, where fungi assist plants’ uptake 

of nutrients and water from soil and receive C from the host plant in return. They have 

pivotal roles in Arctic terrestrial ecosystem where low water and poor nutrient availability 

limit plant growth and productivity (Gardes & Dahlberg 1996; Timling & Taylor 2012). 

Depending upon the host and mode of root infection there major type of mycorrhizal 

association (arbuscular - fungi produce arbuscules, hyphae, and vesicles within root cortex 

cells; ericoid – fungi form coils of hyphae within thin hair roots of the Ericaceae plants; and 

ectomycorrhiza (ECM) - fungi form a mantle around roots and a Hartig net between root 

cells), possibly exist in Arctic (Gardes & Dahlberg 1996; Newsham et al. 2009). ECM fungi 

is of particular interest in Arctic due to their ability form association with many wide spread 

Arctic plant species belonging to genera such as Bistorta, Betula, Dryas and Salix 

(Hesselmann 1900; Väre et al. 1992). ECM fungi not only provides majority of the nitrogen 

(N) to Arctic plants (Hobbie & Hobbie 2006; Hobbie et al. 2009), but also they have ability 

to survive at lower temperatures than their host roots (Lehto et al. 2008; Korhonen et al.

2013). These ecosystem services are fundamental not only for primary production, but for 

the long-term functioning of the Arctic ecosystem.

The Arctic region has become warmer over the past century (Kaufman et al. 2009)

and climate models predict a continuous warming following the trend in anthropogenic 

carbon and greenhouse emissions (Moritz et al. 2002; A.C.I.A. 2005). This warmer climate 

is also expected to influence air and surface temperatures and summer and winter 

precipitation patterns. Many climate models predict an increase in precipitation of more than 

50% over the levels recorded in 2006-2014, in particular as snow in winter (A.C.I.A. 2005;

IPCC 2013; Bintanja & Selten 2014). Increased snow accumulation can also enhance soil 

temperature and act as a temperature buffer (Semenchuk et al. 2013). The large carbon (C) 

pool in permafrost soil is very sensitive to such climatic fluctuations (Davidson & Janssens 

2006; Elberling et al. 2013), and increased temperatures may release large amounts of stored 

C through increased soil respiration (Karhu et al. 2014). This turnover of soil C also 

threatens the stability of the Arctic C pool. To this end, several studies have already shown 
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how Arctic tundra vegetation has changed  in response to recent climate warming (Chapin et 

al. 1995; Sturm et al. 2001; Walker et al. 2006; Elmendorf et al. 2012; Sistla et al. 2013;

Rumpf et al. 2014).

Despite the importance of fungi in Arctic ecosystems, our knowledge on how fungi 

respond to on-going climatic change is still scarce, in particular regarding their response to 

warmer soil conditions during winter. There is a growing body of literature investigating the 

effect of summer warming, suggesting significant changes in fungal richness and 

composition (Clemmensen et al. 2006; Deslippe et al. 2011; Deslippe & Simard 2011;

Deslippe et al. 2012; Morgado et al. 2014; Geml et al. 2015). More recently, Semenova et 

al. (2014) reported an increase in proportion of saprotrophic fungi, both in dry and moist 

tundra, due to an increase in litter accumulation during summer in plots subjected to 

warming (Wahren et al. 2005; Walker et al. 2006). Warming-induced changes in soil fungal 

community composition may cause substantial changes in fungal decomposer activity in 

mineral soils (Timling & Taylor 2012; Sistla et al. 2013), and an increase in C utilization 

and C losses to the atmosphere (Rinnan & Bååth 2009).

Arctic conditions are in general logistically challenging, and a short growing season 

and irregular fruiting patterns are major limitations to understand the distribution and 

ecological patterns of Arctic fungi. Earlier Arctic fungal surveys were based on the 

collection of fruiting bodies (mushrooms), microscopy of roots and fungal culture isolation, 

which allowed detecting only a small fraction of total Arctic fungal diversity (Petersen 1977;

Väre et al. 1992; Gulden & Torkelsen 1996). The applications of molecular approaches, on 

the other hand, are essential to untie the black box of Arctic fungal ecology (Gardes & 

Dahlberg 1996; Horton & Bruns 2001; Peay 2014). Thus, High-Throughput Sequencing 

(HTS) is a powerful alternative to traditional identification techniques, as it enables us to 

identify the presence of hundreds of co-existing species in relatively small environmental 

samples. More importantly, this technique allows us analysing a large number of samples 

whilst providing a considerable sequence depth per sample. The development of HTS 

methods has revolutionized fungal ecology  (Lindahl et al. 2013), capturing the enormous 

fungal diversity that can be present in each individual environmental sample (Buée et al.

2009; Jumpponen & Jones 2009; Öpik et al. 2009; Amend et al. 2010; Jumpponen et al.

2010; Tedersoo et al. 2010; Dumbrell et al. 2011; Davey et al. 2012; Kauserud et al. 2012;

Clemmensen et al. 2013; Schmidt et al. 2013; Talbot et al. 2014; Tedersoo et al. 2014; 

Sterkenburg et al. 2015).
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Arctic species and ecosystems are, by nature, highly evolved in function and finely 

tuned within their habitat and timing of seasonal events (Hodkinson et al. 2001; Hodkinson 

& Coulson 2004). This fine-tuned balance is currently being disturbed both at the spatial and 

temporal scales due to climate change, increasing the urgency in the need to understand and 

comprehensively describe current Arctic fungal diversity patterns. This gap in Arctic fungal 

diversity knowledge, in particular regarding spatial and temporal patterns, and the level of 

sensitivity of Arctic biodiversity to climate change, inspired me to use HTS methods to 

identify the spatial and temporal variation of High Arctic fungi and the underlying 

mechanisms determining these patterns. 

Pre-existing knowledge on spatial and temporal variation in High Arctic fungi

Existing literature regarding the main topics of this thesis is scarce; however, there are some 

examples of studies on the spatial structure of Arctic fungi at different scales. At the fine 

spatial scale (3 × 3 m), Botnen et al. (2014) found that root-associated fungal communities 

lack spatial structure in natural Arctic tundra environments. In contrast to natural tundra 

environments, patterned ground features (periglacial characteristics) significantly affect soil 

fungal community structure to an spatial scale down to a meter (Timling et al. 2014). At 

broad scale (kilometre), root-associated fungal community were similar within sites and 

regions, suggesting a mechanism of environmental filtering for structuring communities 

(Blaalid et al. 2014). In another  study, comparing alpine sites (Norway) and a High Arctic

site (Svalbard), Bjorbækmo et al. (2010) found a weak geographical structure in Dryas 

octopetala root-associated fungal communities at a broad spatial scale; however, they found 

high spatial heterogeneity within each locality. Moving towards a more broader spatial scale

over the North American Arctic, encompassing the five bioclimatic zones, Timling et al.

(2012) and Timling et al. (2014) found that root-associated and soil fungal community 

structure change gradually among bioclimatic zones and was affected by geology, soil 

properties and vegetation.

When comparing fungal richness at the global level, this tends to decrease with the 

increase in latitude (Tedersoo et al. 2012; Tedersoo et al. 2014). However, this pattern did 

not apply for higher latitudes in the Northern hemisphere (Bjorbækmo et al. 2010; Timling

et al. 2012; Timling et al. 2014). Within the Svalbard archipelago (encompassing three 

bioclimatic zones, A, B and C), Blaalid et al. (2014) found a slight decrease in per-plant 

OTU richness with the increase in latitude and suggested that Arctic fungi were not 

subjected to dispersal limitations in this region (Geml et al. 2012). Compared to broad 
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spatial scales, environmental conditions are highly heterogeneous at the fine scale, possibly 

leading to a reduced stability of fungal communities (Izzo et al. 2005), which could 

consequently affect their spatial patterns (Pickles et al. 2009; Wolfe et al. 2009). Due to the 

importance of environmental filtering in shaping Arctic fungal community structure, it is 

essential to identify the environmental filters acting across different spatial scales (Timling 

& Taylor 2012; Blaalid et al. 2014).

Compared to spatial structure, much less is known about the temporal structure of 

fungal communities (Bahram et al. 2015), especially in the Arctic (Timling & Taylor 2012). 

Available literature on temporal variation in Arctic fungal communities suggests that fungal 

communities are relatively stable at higher taxonomical level, with some variation at the 

order level (Cantharellales and Aphyllophorales) within the growing season (Wallenstein et 

al. 2007; Deslippe et al. 2012). Within higher taxonomic levels, some species or genera that 

may also be active only under a smaller range of environmental conditions therefore vary 

temporally. In the studies mentioned above, sampling frequency was low and they were 

based on automated ribosomal intergenic spacer analysis (ARISA) and traditional Sanger 

sequencing. Sanger sequencing from environmental samples, may provide overall 

taxonomic diversity information, but it is unable to capture complete coverage therefore, is 

insufficient in describing community complexities.

Along a temporal succession gradient (∼72 to ∼10 000 years), root-associated fungi 

show a directional non-replacement shift in the Arctic (Davey et al. 2015), implying that 

fugal communities change at broad temporal scale. Therefore, it is essential to understand 

the possible influence of climate warming and changes in seasonality on Arctic ecosystems 

(A.C.I.A. 2005). Changes in climatic conditions may affect fruiting patterns (Kauserud et al.

2010) and spore production (Kauserud et al. 2011), which could subsequently influence the 

temporal variation of fungal community structure and richness.

Most Arctic fungal studies have been conducted during the snow free growing-

season, assuming that fungal activity is restricted or does not occur at low temperatures in 

frozen soils during the winter (Tibbett & Cairney 2007). However, evidence suggests that 

(a) snow cover is an important factor driving the seasonal variation in fungal communities in 

cold environments (Zinger et al. 2009); (b) certain cold adapted fungi are able to grow and 

survive at low temperatures (Robinson 2001; Lehto et al. 2008; Korhonen et al. 2013); (c) a 

significant amount of  decomposition takes place in winter under the snow (Schmidt & 

Lipson 2004); and (d) microbial biomass peaks in winter under the snow (Lipson et al.

2002; Kuhnert et al. 2012) and this biomass is dominated by fungi (Schadt et al. 2003; 
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Nemergut et al. 2005; Buckeridge et al. 2013). Seasonal variation in fungi can for instance 

drive changes in the patterns of nutrient cycling (Schadt et al. 2003; Schimel et al. 2007). 

Therefore, knowledge on temporal variation in fungal communities, and how this relates to 

the variation in environmental conditions, is important to understand soil nutrient dynamics 

in the Arctic tundra.

Biases associated with HTS-based analyses of fungal communities 

HTS provides an opportunity to investigate deeper layers of the microbial communities and 

allows to identify a larger number of species with a less biased qualitative picture of the 

community composition compared to other molecular techniques (Sogin et al. 2006; Öpik et 

al. 2009; Lindahl et al. 2013). These platforms include Roche 454, Illumina, IonTorrent, 

PacBio, Helicos, SOLiD and NANOPORE. All these systems rely on a complex 

combination of chemistry and computing capabilities and have their own drawbacks and 

benefits depending on the type of study. In addition, constant developments in HTS 

technology are a cause of major concern, as the old versions of the technique can potentially 

become obsolete with the advent of a new one. In 2013, Roche announced that 454 

platforms will not be supported in the near future. The surge of cheaper and >300 bp paired-

end (PE) sequencing techniques developed by MiSeq along with the >8000 bp reads from 

PacBio essentially suppressed the use of 454 technology. Following this technological 

development, I also switched from 454 (I) to Illumina (II-IV) during the progress of this 

work.

The constant development in HTS technology means that the newer methods 

outperform earlier approaches in terms of resolution and magnitude, providing 

unprecedented insights into fungal community ecology. However, without a deep 

understanding on the possible methodological biases, limitations related to the type of 

markers used or other bioinformatics challenges, large-scale sequencing risks yielding 

artificial results and misleading conclusions. Thus, it is possible to introduce errors in fungal 

community analyses from field sampling via laboratory procedures, enzyme and primer 

selection, tag switching, bioinformatics analyses and data interpretation (Carlsen et al. 2012;

Lindahl et al. 2013; Oliver et al. 2015; Philippe et al. 2015; Schnell et al. 2015). However, 

HTS-induced errors could be reduced, to some extent, with knowledge currently available 

following the incorporation of fungi into FUNGuild (Nguyen et al. 2015), SCATA (http:/ 

/scata.mykopat.slu.se), PIPITS (Gweon et al. 2015), QIIME (Caporaso et al. 2010) and 

MOTHUR (Schloss et al. 2009) platform tutorials and in the guideline and protocol for HTS 
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data analysis (Huse et al. 2010; Nilsson et al. 2011; Lindahl et al. 2013; Bálint et al. 2014;

Nguyen et al. 2014; Hart et al. 2015; Tedersoo et al. 2015). In addition, errors could be 

further limited through the use of a well curated ITS database (Kõljalg et al. 2013),using the 

ITS sequence dataset for reference-based chimera analysis (Nilsson et al. 2015), the 

application of robust clustering algorithms (Huse et al. 2010; Kunin et al. 2010; Edgar et al.

2011) and using robust fungal specific primer targeting ITS2 region (Ihrmark et al. 2012)

and software for detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences 

of fungi (Nilsson et al. 2010; Bengtsson-Palme et al. 2013). Increasing sequencing depth per 

sample (Smith & Peay 2014) and using repeated PCR reactions with different annealing 

temperatures can also increase the recovery of fungal diversity (Schmidt et al. 2013). Thus, 

through the combined application of the approaches and guidelines mentioned above, most 

biases and limitations associated with HTS are likely avoided. However, the use of a ‘mock 

community’ is highly recommended as a positive control in HTS analysis (Nguyen et al.

2014).

The model study plant system: Bistorta vivipara

Bistorta vivipara (L.) Delarbre (Polygonaceae; syn.: Polygonum viviparum) is an 

ectomycorrhizal, polyploid (high and variable chromosome numbers (2n = c.77–132; c.7x–

12x), perennial herbaceous (2.5–24 cm high) plant species, with a wide distribution in 

circumpolar Arctic and Alpine habitats (Hultén 1968; Aiken et al. 2007). Earlier findings 

have shown that pH and nutrient levels are particularly important for average performance 

and density of B. vivipara (Wookey et al. 1994; Totland & Nyléhn 1998; Bills et al. 2015). 

This plant species was used as study plant in three studies (I, II, IV).

Bistorta vivipara have a mixed reproduction system enabling both sexual and asexual 

reproduction; bulbils are typically borne in basal regions and flowers are borne distally

within an inflorescence (Fig. 1a). Flowers rarely produce viable seeds and asexual 

reproduction is normally by the bulbils, which disperse from the inflorescence, form roots, 

and establish new physiologically independent plants (Diggle 1997). Bulbils (also termed as 

brood tubers) are small bulb-like structures, rich in starch, and preferred food for Rock 

Ptarmigan - Lagopus mutus (Moss & Parkinson 1975), barnacle goose - Branta leucopsis

(Kuijper et al. 2006), and reindeer (Lindwall et al. 2013). The main axis of B. vivipara is an

unbranched rhizome, grows plagiotropically, 3–4 cm below the soil surface having the roots 

and apical meristems are attached.
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Using microscopy, morphological 

and culture based technique it has been 

shown that B. vivipara form an ECM 

symbiosis with fungi (Hesselmann 1900; 

Read & Haselwandter 1981; Massicotte et

al. 1998). The small and compact root 

system of B. vivipara (Fig. 1b, 1c) allows 

to study whole root fungal community 

(Blaalid et al. 2012; Kauserud et al.

2012), and makes it an excellent model 

plant with high level of reproducibility in 

community profile. Although, B. vivipara

is ECM plant, other fungal groups such as

latent saprobic, pathogenic and dark 

septate fungi fungi were also observed on 

roots (Newsham et al. 2009; Blaalid et al.

2012; Yao et al. 2013; Blaalid et al. 2014; 

Botnen et al. 2014). 

Figure 1. Bistorta vivipara (a) above ground 

part of the plant includes the inflorescence 

(flower and bulbils) (b) washed root system

where roots are attached to the rhizome of 

the plant and showing extensive ECM root 

tips and (c) hand drawing of the plant 

showing both above- and below-ground part. 
(Photos © - Pernille Bronken Eidesen (a), Sunil 

Mundra (b), Cecilia Helmerson (c)).
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OBJECTIVES
The main objective of the thesis was to investigate the patterns and underlying processes of 

fungal richness and community structure at different spatial and temporal scales in the High 

Arctic, using Svalbard as study location.

The main objective was approached through four studies addressing three major 

research questions:

 How do root-associated fungal richness and communities vary spatially: from fine scale

(centimetre; study I and II) within the same habitat to broad scale (kilometre; study II) 

among habitats; and what are their drivers?

 How do root-associated fungal richness and communities vary temporally: from fine 

scale (weekly; study III) to broad scale (monthly and seasonally; study IV); and what are 

their drivers?

 How do nutritionally edge habitats of the host plant contribute to overall Arctic fungal 

diversity (study II); and what are the core Arctic fungal taxa (study I-IV)?
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MATERIAL AND METHODS
Study sites and sampling design

Sampling for all four studies were carried out in a High Arctic archipelago, Svalbard 

(ranging from 74-81°N and 10-35°E; Fig. 2a). Svalbard is often described as an undisturbed 

Arctic environment and falls within the zone of continuous permafrost. Periglacial and 

permafrost-related terrain features are widespread in areas that are not covered by glaciers. 

The geology of Svalbard is also highly diverse, and various bedrocks further influence the 

soil properties (Harland 1998). Three of the five Arctic bioclimatic (BC) zones are 

represented in Svalbard (Elvebakk 1999; Walker et al. 2005): the middle Arctic tundra zone 

(BC zone C; mean temperature for the warmest month: 5-7 °C); the northern Arctic tundra 

zone (BC zone B; 3-5 °C) and the Arctic polar desert zone (BC zone A; 3°C). The zones are 

recognized by the difference of the plant communities, known as zonal vegetation types 

(defined by various plant and moss species and their coverage). Sampling design differed for 

each study based on the specific ecological question (see each article for the details). 

Sampling for study I (fungal community structure at fine spatial scale) was performed in 

Dryas heath in front of the Midtre Lovénbreen glacier (Ny Ålesund; Fig. 2b). For two 

studies (II - fungal community structure at broad spatial scale, IV - temporal variation in 

Arctic fungi) samples were also collected in Dryas heath, but from a different location

(Isdammen; Fig. 2c). Additional samples for study II were collected from a high productive

bird-cliff (Vestpynten) 

and a low productive

mine habitats

(Bjørndallen; Fig. 2c). 

Sampling for study III 

(effect of increased snow 

depth on Arctic fungi) 

was performed at a mesic 

meadow site located in 

the Adventdalen valley 

(Longyearbyen). Study

III differed from the 

others in two ways;

firstly, sampling plots 

Figure 2. An outline map of (a) Svalbard, (b) Ny Ålesund

and (c) Longyearbyen, showing different study sites.
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were placed in an experimental set-up rather than along natural gradients. The experimental 

set up constituted of six snow fences (used to enhance winter snow accumulation) and 

control plots established by Elisabeth Cooper in 2006 (Cooper et al. 2011). A small 

sampling plot (0.5 × 0.5 m) was established in both deeper snow area of fence (~ 5 away 

from fence) and control area. Secondly, fungi in soil samples were analysed rather than 

fungi associated with B. vivipara roots. For other three studies (I, II, IV), plants with their 

whole root system were excavated and treated as described in study I. Relevant abiotic and 

biotic variables were measured for each study (for details see individual study).

Molecular analysis

In three studies (I, II, IV) DNA was extracted from the entire plant roots using a modified 

CTAB extraction protocol (Murray & Thompson 1980). In study III, total soil genomic 

DNA was extracted using PowerSoil® DNA Isolation Kit (MO-BIO Laboratories, CA, 

USA), according to the manufacturer’s protocol. The extracted DNA was further purified 

using the E.Z.N.A soil DNA kit (Omega Biotek, USA) following the manufacturer's 

protocol. The 454 sequencing technique was used in study I; fungal specific primers ITS1F 

and ITS4 (White et al. 1990; Gardes & Bruns 1993) were used in the first step, whereas the 

ITS5 and ITS2 fusion primers (White et al. 1990) were used in the nested step that targeted 

the internal transcriber space (ITS) 1 region of the nuclear ribosomal rDNA repeat. In other 

three studies (II-IV) Illumina PE (300 × 2) sequencing was employed; forward primers 

fITS7a (Ihrmark et al. 2012) and reverse primer ITS4 (White et al. 1990) were used to 

amplify ITS2 region. Bioinformatic treatment of 454 and Illumina data differed slightly. 

Reads with length <200 bp and >550 bp, homopolymers exceeding 8 bp, ambiguous base 

call >0, and more than one mismatch in the forward primer sequence, were removed from 

the data set, using split_library.py function implemented in QIIME v. 1.8.0 (Caporaso et al.

2010). Quality filtered reads were exercised for de-novo chimera checking using usearch61 

algorithm (Edgar 2010). Non-chimeric reads were clustered into Operational Taxonomic 

Units (OTUs) at 97% similarity threshold using the uclust algorithm and the most abundant 

sequence of each cluster was designated as representative sequence (Edgar, 2010). Clusters 

represented by <5 sequences were discarded as likely sequencing errors (Nguyen et al.

2014). Representative sequence of each cluster was subjected to BLASTn search against the 

quality-checked UNITE+INSD fungal ITS sequence database, containing both identified 

and unidentified sequences (Kõljalg et al. 2005; Kõljalg et al. 2013).
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Statistical analysis

Most of the statistical analyses were carried out in R (R Core Development Team 2014). 

Detrended correspondence analysis “DCA” (Hill & Gauch 1980) and global nonmetric 

multidimensional scaling “GNMDS” (Kruskal 1964; Kruskal et al. 1973), were applied in 

parallel to describe patterns of variation in fungal OTU composition (I-IV; for more details 

see I). Assessment of similarity between GNMDS ordinations was made by Procrustes 

analysis (Oksanen et al. 2013). Accepted GNMDS solutions were rotated to principal 

components and the rotated axes were rescaled to half-change (H.C.) units by the postMDS()

procedure in the vegan package. DCA ordinations were run with default options. All 

ordinations were inspected for known artefacts such as arch effects, tongue effects and 

strong outliers (Økland 1990). A reliable gradient structure was inferred if similar results 

were obtained by the use of the two methods (GNMDS and DCA) and no obvious artefacts 

were observed (Økland 1996). Similarity of ordinations was evaluated by calculating 

Kendall’s rank correlation coefficient (τ) between pairs of DCA and GNMDS axes (Kendall 

1938). Axes were considered similar if |τ| > 0.4 (Liu et al. 2008). Interpretation was 

performed by calculation of τ between GNMDS axes and each explanatory variable, and by 

the use of the envfit function in vegan package, in which each explanatory variable (biotic 

and abiotic) is separately regressed on GNMDS axes 1 and 2 by linear regression analysis. 

Additionally, multivariate permutational analysis of variance “PERMANOVA” as 

implemented in the Adonis function of the package vegan was used to test the interaction 

terms (III, IV). Empirical semi-variance analyses, as implemented in the R package geoR (I) 

was used to describe the spatial patterns. Mantel test was performed to assess the correlation 

between two different distance matrices (II, IV). Temporal patterns of fungal communities 

were also investigated using partial canonical correspondence analysis “CCA” (ter Braak 

1986), in which the effects of all spatial eigenvectors were partialled out from the 

constrained ordination.

Generalized Linear Model (GLM, I), ANOVA (II), Generalized Linear Mixed 

Models (GLMM) fit by maximum likelihood (III) and Covariate ANOVA (IV) were used to 

test the variation in fungal species richness in relation to factor and vector variables. 

Bonferroni correction of p-value was used at each step in the forward selection procedure 

(Blanchet et al. 2008) to prevent bias due to multiple testing (Legendre & Legendre 2012).

Accumulation curve for OTUs and sampling effort were calculated following Ugland et al.

(2003) protocol and shared species analysis was performed using EstimateS (Colwell 2013).
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STUDIES
Study I. Fungal community structure at fine spatial scale

The aim of the study was to assess the structural relationship between the aboveground 

vegetation encompassing the host plant B. vivipara and the root-associated fungal 

community of this host plant, and to determine the possible biotic and abiotic drivers of fine-

scale spatial patterns in richness and composition of root-associated fungi. The study site 

was located in at Dryas heath in front of the Midtre Lovénbreen glacier. Results showed that 

root-associated fungi lacked spatial structure at 0.3 × 3 m scale and were not affected by soil 

variables. A weak relationship between root-associated fungal communities and the cover of 

two ECM plants, B. vivipara and Salix polaris, was found, and richness increased with host 

root length and root weight. Results suggest that at fine spatial scales root-associated fungal 

communities are influenced by neighbouring ECM plants; but not by soil nutrients.

Study II. Fungal community structure at fine and broad spatial scale

Bistorta vivipara-associated fungal communities are highly heterogeneous over fine scale

and environmental filtering operates at broad scales. Here, effect of environmental filtering 

on B. vivipara-associated ECM communities was further investigated by comparing core 

habitats with rarer edge habitats for the host. In this study, three sites consisting of one core 

habitat (Dryas heath) was compared with two edge habitats representing extremes in terms 

of nutrient-availability; a bird manured, nutrient-enriched site and a barren, nutrient-depleted 

mine tailings. Study site and associated soil conditions significantly affected community 

composition and richness of ECM fungi. ECM richness was overall lower in both edge 

habitats compared to core habitat. Community structure within each site was significantly 

influenced by spatial variables. Sharing of fungal species between habitats was low and 

communities of species poor edge habitats were poorly nestedness in species rich core 

habitat. Overall, species belonging to phylum Basidiomycota and genera Tomentella, 

Cortinarius, Hebeloma and Cenococcum were dominating, but within sites composition 

differ: stress tolerates genera Hebeloma and Laccaria were frequent in nutrient-poor site 

whereas functional competitor Lactarius and Russula were common in nutrient-rich site. In 

summary, environmental filtering do structure ECM community composition among 

different sites with strongly contrasting soil conditions, whereas stochastic spatial processes 

are more important within each site. Our results further show that rare edge habitats strongly 

contribute to the overall gamma-diversity of ECM fungi associated with B. vivipara.
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Study III. Effect of increased snow depth on Arctic fungi

Aim of this study was to address the effect of experimentally increased snow depth on ECM 

and saprotrophic fungal species richness and community composition, over one growing 

season. The study site was located in the Svalbard. Soil samples were collected weekly from 

medio July to medio September in plots subjected to deep snow treatment and in control 

plots. In soil dominating fungal genera were Tomentella, Cortinarius, Inocybe and 

Mortierella. The richness of ECM fungi decreased while the richness of saprotrophic fungi 

increased in response to increased snow depth. Fungal richness significantly varied with 

time and peaked after a period with warmer and moister weather conditions; and observed 

temporal pattern of richness differ between deep snow and control treatment. A significant 

week snow treatment and sampling date effect was observed for saprotrophic fungal 

communities, but ECM fungal communities were not affected by snow treatment and time. 

Our results suggest that some fungal species are favoured while some are disfavoured by 

increased winter snow that may even go locally extinct. 

Study IV. Temporal variation in Arctic fungi

Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to 

environmental variables, is essential to understand energy and nutrient cycling in Arctic 

ecosystems. Roots of B. vivipara were sampled at 10 time intervals over two years; in the 

growing season (June, July and September) and in the winter (November and April). 

Sampling site was established in Dryas heath at Isdammen (Svalbard). ECM genera 

Tomentella, Cortinarius, Inocybe, Hebeloma and Cenococcum were temporally persistent, 

however, the species belonging to these genera varied in roots throughout both years and all 

seasons. Overall, ECM fungal richness seemed higher in winter, and species belonging to 

Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. 

Structure of ECM fungal communities was primarily affected by spatial factors. However, 

after accounting for spatial effects, significant seasonal variation was evident, and this 

variation showed some correspondence with seasonal changes in environmental conditions. 

Significant month × year interactions were observed both for fungal richness and 

community composition, indicating unpredictable between-year variation. Thus, to draw 

firm conclusions, replication over several years is needed. However, the available data 

indicate that arctic ECM richness and community structure differ between summer (growing 

season) and winter, possibly due to reduced activity of the core community, and addition of 

fungi adapted for winter conditions forming a winter-active fungal community.
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DISCUSSION
The research in this thesis has increased our knowledge and understanding of how richness 

and community structure of High Arctic fungi vary through space and time, and how they 

are influenced by biotic and abiotic factors. The scale of sampling in this study ranged from 

fine to broad, both spatially (centimetre to kilometre) and temporally (weekly, monthly to 

seasonally), which covered a small amount of possible environmental variations existing in 

the Arctic terrestrial ecosystem. At fine both spatial and temporal scales, fungal 

communities show weak structural patterns; stochastic phenomena seem to be important for 

structuring communities on these scales. At broad spatial and temporal sampling scales, 

community structural pattern becomes clearer. Variation in environmental conditions (i.e. 

temperature, moisture and soil conditions) plays a major role in shaping the communities at 

these broad scales. It is noteworthy that fine spatial heterogeneity existing in Arctic fungal 

communities blurs their temporal patterns (Izzo et al. 2005). Compare to fungal 

communities drivers for fungal richness differs slightly. Root-associated fungal richness 

increases with an increase in root surface area and also with extending sampling geographic 

span, demonstrating the existence of a species-area relationship for fungal richness 

(Arrhenius 1921). Additionally, richness also varies among habitats with diverse soil 

conditions, suggesting importance of local environmental conditions. Across different 

temporal scales, moisture and temperature seems important factors causing variation in 

fungal richness patterns. Overall, it seems that community and richness patterns vary across 

different scales and that different factors drive the observed patterns. Therefore, it is difficult 

to assess the scale relevant for particular ecological theories, as ecological processes operate 

over a range of spatial and temporal scales (Bunnell & Huggard 1999; Pickles et al. 2009; 

Wolfe et al. 2009; Chave 2013; Brickhill et al. 2015). Multi-scale spatial and temporal 

studies covering a range of complex environmental gradients are likely to fill important gaps 

in our knowledge of compositional distributional patterns and the ecological processes 

operating on these scales (Halvorsen 2012). In this thesis, included studies were carried out 

at different spatial and temporal scales; hence variation of fungal community structure and 

richness across different scale can be addressed.

There has been much discussion about methodological limitations which may affect 

observations of fungal richness and communities (Huse et al. 2010; Nilsson et al. 2011; 

Lindahl et al. 2013; Bálint et al. 2014; Nguyen et al. 2014; Hart et al. 2015; Tedersoo et al.

2015). However, HTS methodologies are robust enough to capture ecological patterns in 
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fungal communities. Therefore, the Discussion here focuses on the ecological aspects of the 

results. Potential biases associated with applied HTS methods will not be discussed in the 

thesis, as a comprehensive literature review of this subject, and how to handle such data 

appropriately, are provided in the Introduction section. The main findings are briefly 

discussed below.

Fungal species richness and its drivers in the Arctic

Bistorta vivipara root-associated fungi were explored in three studies (I, II, IV), and soil 

fungi were investigated in another study (III). In one study (I) 454 sequencing was utilized 

with amplification of the ITS1 region, while in the other three studies (II, III, IV), Illumina

Miseq sequencing was employed with 

amplification of the ITS2 region. However, 

considering that (a) sequence data were 

processed mostly using similar protocols and 

the same clustering threshold (97%) using 

QIIME (Caporaso et al. 2010; Edgar 2010);

(b) 454 and Illumina sequencing data 

produce similar diversity estimates (Smith & 

Peay 2014); and (c) ITS1 and ITS2 region 

yield similar results (Blaalid et al. 2013; 

Monard et al. 2013); data across the studies 

can be compared. Among the three root-

associated fungal studies, I found that overall 

fungal OTU (species) richness was highest in 

the temporal study over inter-annual scales (1165; IV), compared with both spatial studies 

(broad scale: 756; II; fine scale: 676; I; Fig. 3). In temporal study (IV), sampling was 

performed in different months across two year time period. Due to temporally variable 

environmental conditions in the Arctic, considerable temporal variation of fungi was 

expected, because tolerances to high temperature and low moisture differ among fungal 

species (Coleman et al. 1989; Robinson 2001; Talley et al. 2002). Therefore, different 

fungal species adapted to local environmental conditions exist at different time-point. 

Additionally, temporal turnover in host root biomass, the availability of root tips and local 

mortality of fungi may allow associations with different fungal species (Izzo et al. 2005). 

This overall leads higher fungal species richness with repeated sampling of the same site. 

Figure 3. Barplot showing the number 

of samples and total as well as 

ectomycorrhizal (ECM) fungal species

in each of the study included in this 

thesis.
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The number of samples was fewer in broad spatial scale study (II) compared with fine 

spatial scale study (I), but sampling was performed in three localities differing in soil 

conditions. The existence of environmental filtering in Arctic habitats (Blaalid et al. 2014),

creates a habitat-specific fungal species pool (II). Therefore sampling in habitat with 

different soil conditions will allow capturing more fungal species. I also found that within 

natural tundra habitat at fine spatial scales, size-related characteristics of B. vivipara roots 

were important determinants of fungal richness (I). Observed increase in fungal richness,

when expanding the geographic spans of the sampling; and with increase in root size;

suggesting a species-area relationship, where higher numbers of species are expected with 

increase in area being available for fungal colonization (Arrhenius 1921; Peay et al. 2007). 

Across the studies, average total fungal species richness associated with roots of B. 

vivipara ranged from 56 – 71 in natural tundra habitat (I, II, IV). Bistorta vivipara root-

associated fungal species richness observed here was similar to earlier HTS based studies 

(average 27 – 93 species per plant) from Arctic and Alpine areas (Yao et al. 2013; Blaalid et 

al. 2014; Botnen et al. 2014; Davey et al. 2015). In study I, and in the literature mentioned 

above, fungal species were not categorised functionally, and included ECM, saprotrophic,

pathogenic, dark septate and lichen-forming fungi. However, a large proportion of species 

were ECM fungi. Similarly, in studies II and IV, I found that a major proportion of total 

fungal richness comprised of ECM fungi (27; II and 41; IV). ECM fungal richness recovered 

using HTS is higher than in earlier studies analysing B. vivipara-associated ECM fungi

using root tip morphotyping and Sanger sequencing (Fontana 1977; Massicotte et al. 1998; 

Ronikier & Mleczko 2006; Mühlmann et al. 2008). This higher richness of ECM fungal 

species may indicate that host plant is able to associate with a range of fungal species having 

functional redundancy (Tedersoo et al. 2006; Courty et al. 2008; Bahram et al. 2011; Rineau 

& Courty 2011). Additionally, low host specificity of fungi may allow association with 

generalist fungi in the Arctic (Timling et al. 2012; Botnen et al. 2014). Association with 

multiple ECM species may provide resilience under variable environmental conditions 

(Druebert et al. 2009; Pena et al. 2010); enhances the host’s productivity (Baxter & Dighton 

2001; Jonsson et al. 2001; Wilkinson et al. 2012); and allow the plants to more rapidly and 

easily colonize newly available habitats (Botnen et al. 2014). 

In contrast with natural tundra habitats, root-associated fungal richness was lower in

nutritionally edge habitats of the B. vivipara plant. Sharing as well as nestedness of species 

between core tundra habitat and nutritionally edge habitats was also low (II). Lower richness 

in edge habitats are most likely related to environmental filtering processes, where fungal 
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species are influenced by low- and high-nutrient availability (Lilleskov et al. 2002). The low 

sharing of species among sites, and the weak nestedness of the edge habitat communities 

within the core habitat, suggests presence of a separate specialist fungal community in B. 

vivipara roots when growing in nutritionally marginal soil conditions. Following this 

strategy plant do not invest C for the less beneficial generalist fungal species (Kennedy 

2010); and species with suitable functional traits for a given environment, and species that 

are able to survive under local environmental conditions are selected (Mayfield & Levine 

2010).

Results showed that both total (139) and ECM (54) fungal species richness per 

sample was higher in soil (III) than in root (I, II, IV). Soil is inhabited by various generalist 

fungi with diverse functional roles in overall ecosystem functioning. Lower ECM fungal 

richness in B. vivipara roots suggests that they are a specific niche particularly for ECM 

fungi that facilitates specialist fungi (Kennedy 2010). Soil is a seed bank where both active 

and dormant fungal spores can persist (Lennon & Jones 2011), and it is therefore expected 

to be richer and more diverse. This may potentially result in higher ECM fungal richness in 

soil. In most of the analyses here, presence-absence data and/or Hellinger transformed data 

were used, with fungal biomass not being measured. Hence, variation in fungal abundance 

remains unknown. Nevertheless, ECM fungal abundance is expected to be higher on roots, 

due to their symbiotic nature and easy access for fungi to C from the host plant. Addressing 

this question requires careful sampling, in which all of the thin mycelia attached to host 

roots and extended into the surrounding soil are collected. Most of the current ECM fungal 

studies are relying on root-tips collection approach, which gives overall compositional 

pictures, but do not provide complete insights about the extent of their mycelial systems in 

soil; therefore knowledge of overall ECM mycelial dominance and their contribution to 

nutrient cycling remains scares (Genney et al. 2006; Anderson & Cairney 2007).

At fine temporal scales within the growing season, fungal richness significantly 

increased over the duration of a week, when higher precipitation and temperature were 

recorded (III). Over the broad temporal scale, fungal richness recorded for the winter 

seasons were similar and comparably high, whereas the richness level between growing-

seasons differed (IV). Results from temporal studies suggest that in dry arctic environment, 

unfavourable environmental conditions such as poor soil moisture content, strongly limit the 

fungal richness. Therefore, higher precipitation-induced, greater soil moisture condition may 

trigger brief pulses of resource availability to fungi, and possibly can increase fungal 

richness, due to their differential water stress tolerance (Coleman et al. 1989; Talley et al.
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2002). In arid desert ecosystems, it has been shown that fungal richness is affected directly 

by moisture (Zak et al. 1995) and/or indirectly by moisture-induced changes in soil 

chemistry, especially N (Fierer & Schimel 2002). I also found that variation in winter snow 

conditions and soil nutrient influence the fungal richness (II, III). Therefore, it is difficult to 

detangle the relative effect of weather and soil conditions on temporal variation of Arctic 

fungi. 

The overall richness results show that fungal species richness is not distributed 

randomly over different spatial and temporal scales in the Arctic. Fungal richness increases 

with increasing root surface area and geographical distance of sampling. Additionally, a 

diverse species pool exists in the winter season and in habitats with diverse soil conditions. 

In their Arctic Biodiversity Assessment report, Dahlberg et al. (2013) suggest the existence 

of ~4350 fungal species in the entire Arctic. The study here, using HTS methods, detected 

distinct genetic groups representing over one third of this total Arctic fungal richness, but 

probably underestimated the number of species present in the sampled region, as rarefaction 

curves did not level off. This suggests that future studies should explore the fungal richness 

of Arctic ecosystems, since the existence of yet undiscovered groups is highly likely

(Dahlberg et al. 2013). Habitats with diverse environmental and seasonally extreme 

conditions (winter season) are likely of great importance for the overall gamma diversity in 

the Arctic.

Considering the findings of spatio-temporal variation in fungal richness described 

above, it is recommended that future studies: (a) perform intensive spatial and temporal 

sampling; (b) collect detailed soil and weather metadata linked to each sample; and (c) 

consider potential methodological biases. This will strengthen the data gathered and should 

avoid misleading conclusions.

Core fungal taxa in Arctic

Across all studies, basidiomycetes were dominant, followed by ascomycetes (Fig. 4). At the 

phylum level, no clear compositional shift was observed across different spatial and 

temporal scales within natural tundra environment, indicating that representative taxonomic 

composition was recovered using HTS. Timling et al. (2014) and Bellemain et al. (2013)

found a dominance of ascomycetes compared with basidiomycetes in Arctic patterned-

ground soil and permafrost sediments. A possible explanation for this difference is the use of 

different molecular methodologies and the span of the sampling scale: for example, the latter 

study sampled 16,000–32,000 old permafrost soil. Within all root fungal studies (I, II, IV) 
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typical ECM forming genera such as 

Tomentella, Cortinarius, Inocybe, Russula, 

Hebeloma and Cenococcum were dominant. In 

the soil study (III), the ECM forming genera 

Tomentella, Cortinarius and Inocybe were 

also dominating but thereafter saprotrophic 

fungal genus Mortierella was common. 

Mortierella is a cosmopolitan psychrophilic 

fungus occurring in soil and air (Bergero et al.

1999). Culture-based studies have shown 

Mortierella to be one of the most frequent 

genera in Arctic soil (Singh et al. 2012), and 

has the ability to degrade lignocellulose (Ruan et al. 2012).

Overall, the taxonomy results suggest that species belonging to the genera 

Tomentella, Cortinarius and Inocybe form a core Arctic fungal community, and probably 

have certain abilities that favour their survival in extreme Arctic environments. This is 

consistent with earlier reports showing dominance of these genera in Arctic soils (Geml et 

al. 2012; Morgado et al. 2014; Timling et al. 2014) and roots (Bjorbækmo et al. 2010;

Timling et al. 2012; Blaalid et al. 2014; Botnen et al. 2014). The results here also 

corroborate a previous sporocarp collection study, which also observed a dominance of 

Tomentella, Cortinarius and Inocybe in the Arctic (Gardes & Dahlberg 1996). Species 

belonging to the genus Tomentella were common in nutritional edge habitats (II), and were 

not affected by increased snow depth conditions (III). This suggests adaptations of the genus 

to extreme and variable Arctic environmental conditions. The genus Tomentella includes 

species having contact, short distance and medium-distance type extramatrical mycelium 

morphology (Agerer 2001, 2006). Fungal species having longevity and higher mycelial 

spread, such as these Tomentella, are of particular importance for host plants, as they allow 

them to have a greater range of nutrient mobilization from organic compounds (Molina et al.

1992; Dahlberg & Stenlid 1995). Both Cortinarius and Inocybe are known to contain high 

species diversity, including several true arctic-alpine taxa (Gardes & Dahlberg 1996). The 

dominance of Cortinarius in Arctic tundra is possibly due to its medium-distance fringed 

exploration type and hydrophobic rhizomorphs, which provide better drought resistance 

(Agerer 2006; Lilleskov et al. 2011). The genus consists of symbiotic ECM fungi, but in 

stressful, nitrogen-limited Arctic environments it may decompose complex organic matter 

Figure 4. Phylum level distribution of 

total species detected in each of the 

study included in this thesis.
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for N mobilization (Bödeker et al. 2014). In study IV, I found that the species richness of 

Cortinarius was higher in winter, suggesting that the genus may possess survival strategies 

for winter conditions when C from the host plant is limiting.

Taxonomic composition was similar across all studies in natural tundra habitat (I-

IV), but in non-optimal habitat of B. vivipara this fungal composition differ (II). As 

mentioned earlier that in edge habitats specialist fungal species exist, this was further 

supported by the difference in taxonomic distribution among sites (II). In the nutrient-poor 

metal rich mine tailing site, species belonging to Laccaria and Hebeloma were dominating. 

Both Laccaria and Hebeloma have differential expression of metallothioneins in response to 

heavy metals (copper and cadmium), therefore association with these ECM fungi probably 

aid survival and growth of ECM plants in areas contaminated by heavy metals (Ramesh et 

al. 2009; Reddy et al. 2014). It is also shown that species of Hebeloma can have high 

nutrient acquisition at low pH (Leprince & Quiquampoix 1996). In nutrient-rich bird-cliff 

site abundance of functional competitors Lactarius and Russula indicates their resistance to 

increased N level. Berg & Verhoef (1998) also found dominance of Lactarius at N saturated 

coniferous forest. 

In all studies, a high proportion of OTUs remained taxonomically unclassified

(average 29%), suggesting enormous fungal diversity with unidentified function and 

taxonomy persists in the Arctic (Schadt et al. 2003; Rosling et al. 2011). Sequencing of 

environmental DNA is a powerful tool to explore cryptic fungal diversity, but robust 

identification of fungal taxa using this technique is a huge challenge. I used well curated 

latest version of the UNITE reference sequences database for sequence identification 

(Kõljalg et al. 2005; Kõljalg et al. 2013), and seems there is necessity to include more 

reference sequences of known fungi, especially from the Arctic region. Additionally, 

suitable multi-locas approach for species identification can also give precise taxonomy 

annotations of fungal species (Gazis et al. 2011; Vrålstad 2011).

I used official barcode of fungi “ITS region” in the study (Schoch et al. 2012). This 

region consists of ITS1, conserved 5.8S region and ITS2 region. ITS1 region  is more 

variable than ITS2 (Nilsson et al. 2008), which may result in some taxonomical differences 

(Mello et al. 2011). Therefore, the best option is to amplify whole ITS region for fungal 

identification, but widely used Illumina HTS technologies currently can only offer a read 

length of ~600 bp, and unable to cover whole ITS region. This suggests the need of cheaper 

sequencing technology providing more read length. 
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Fungal community structure and its drivers in the Arctic

In all studies, communities were explored using HTS, which allowed capturing rare species, 

which would otherwise have been underestimated using traditional methodologies. 

However, accumulation curves either did not approach asymptotes (I-IV). This suggests that 

(a) total fungal communities in any habitat and at each sampling time was not recovered, 

and that further extended sampling would reveal additional undiscovered species; (b) there 

is a high spatial (I, II) and temporal (III, IV) variation in communities, and so sampling more 

plots with higher sampling frequency might capture majority of present fungal community.

In agreement with Izzo et al. (2005), I also found that high spatial heterogeneity 

blurred the pattern of temporal variation in communities (III, IV), and therefore temporal 

sampling should be performed in a small area where soil and vegetation conditions are 

homogeneous. I found that root-associated fungal communities did not show any spatial 

autocorrelation above 0.3 m (I; i.e., neighbouring host plants separated by > 0.3 m have 

different communities). This heterogeneity may be explained by periglacial processes and 

fine scale topographic variation, which play a major role in increasing small-scale landscape 

heterogeneity in the Arctic (Washburn 1980; Stewart et al. 2014). Such features cause huge 

spatial heterogeneity in vegetation and soil conditions; consequently, winter snow cover can 

also vary at fine spatial scales, creating a local microhabitat. Snow cover can insulate the 

ground against extreme low air temperatures, increase the soil moisture level, alter soil 

nutrient availability and affect the duration of the growing season in the Arctic (Cooper 

2014; Semenchuk et al. 2015). This fine scale variability in environmental conditions makes 

conditions to be more stressful for the underlying ecosystems and their component species. 

Plant roots and fungal mycelia experience highly variable conditions in terms of biotic and 

abiotic factors (mineral, nutrient, and water supply) even at temporal and spatial 

microscales. In such an extremely complex environment, heterogeneous fungal communities 

consisting of high numbers of micro-niches are expected. (Bruns 1995; Taylor 2002; Smith 

& Read 2010). However, a larger proportion of recovered fungal communities consisted of 

rare species, suggesting that fungal species co-exist rather than out-compete each other

(Bruns 1995), and such co-existence may lead to reduced fungal community structure.

Additionally, uneven sampling of temporally variable microniches may potentially influence 

the fungal community structural patterns.

In all studies, some associations between fungal community variation and biotic and 

abiotic environmental variables were found, but a considerable amount of variation 

remained unexplained, suggesting a high degree of randomness. This may be due to the 
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importance of competition, random extinction and colonization (Kennedy et al. 2009;

Kennedy 2010; Koide et al. 2011; Kjøller et al. 2012; Pickles et al. 2012), which can 

enhance local variation in fungal community composition. The establishment of ECM is 

strongly limited by low spore germination in the absence of a host (Ishida et al. 2008), with 

limited ECM dispersal also enhancing spatial (Peay et al. 2012) and temporal (Peay & Bruns 

2014) heterogeneity. In addition, unmeasured abiotic, and biotic factors such as 

belowground host C allocation, the release of spores, and/or recruitment of newly 

germinated mycelium during periods not suitable for vegetative growth and reproduction 

may affect fungal community structure (Bahram et al. 2015). Therefore, combined effects of 

all of these processes make it very hard to pin-point the key drivers of community variation 

operating at different spatial and temporal scales.

Although field-based ecological studies provide information on the role of specific 

processes in natural systems, it is difficult to generalize the results to systems other than 

those being directly studied. In a way field-based studies are similar to experiments, in  that 

they involve setting up plots for sampling purposes; however, but it is very difficult to 

control many aspects of the system and some, e.g., temperature, precipitation, wind and soil 

composition are totally uncontrollable (Hairston 1989). Additionally, numerous biotic and 

abiotic interactions take place through space and time, making it difficult to assess the main 

drivers affecting biodiversity. Laboratory experiments performed in controlled environments 

can be useful to test different hypotheses generated by field research about the factors 

influencing fungal community ecology. Common garden/pot experiments under different 

soil conditions, where plants are generated from seed, may allow hypothesis testing about 

fungal community succession with space and time. In addition, the inoculation of known 

fungal species in such experiments can also add information about competitive interactions 

of fungi.
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CONCLUDING REMARKS
The research in my thesis shows that fungal richness increases with an increase in root 

surface area and also with expanding sampling geographic span, demonstrating the existence 

of a species-area relationship. Additionally, results show that temporal changes in species 

richness can have multiple drivers - climatic and environmental conditions as well as 

duration of the studies. Species belonging to the genera Tomentella, Cortinarius and Inocybe

form a core Arctic fungal community, and probably have certain abilities that favour their 

survival in extreme Arctic environments. I find that a high proportion of fungal species 

remains unclassified, which suggests that possibly, public sequence database lack proper 

reference sequences, and/or Arctic harbour enormous hidden fungal diversity which need to 

be explored (Dahlberg et al. 2013). The existence of specialist fungal species pool in edge 

habitats are of great importance for the overall diversity in the Arctic ecosystem and such 

habitat need to be included in large scale fungal biodiversity survey. Arctic fungal 

community structure varies both spatially as well as temporally; and structural patterns are 

typically scale-dependent. Ecological signals in the data (i.e., community variation along 

gradients) may be weaker at fine scales than at broad scales of space and time. I observe that 

high amount of community variations remains unexplained therefore, it very difficult to pin-

point the key drivers of community variation operating at different spatial and temporal 

scales. High spatial heterogeneity in fungal communities mask the pattern of temporal 

variation in communities, therefore it is very important to consider contribution of both 

spatial and temporal variables in order to understand the underlying processes shaping 

fungal communities. I advocate the study of the underlying drivers behind temporal and 

spatial variation in fungal communities in order to facilitate understanding of how large 

scale environmental changes may affect biological communities in the future. The factors 

affecting spatial and temporal components of richness and communities affect not only the 

distribution and the number of fungal species, but also natural ecosystems and the ecosystem 

services that they provide.
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FUTURE PERSPECTIVES – the role of space and time in fungal 

community ecology

 Fungal communities are highly heterogeneous even at very fine spatial scales in the 

Arctic. It is therefore important to conduct further studies in which interplant sampling 

distance is very low (< 0.3 m), in which sampling is at the root tip level, or where very 

minute soil samples at collected at very small (millimetre) spatial distances.

 To understand the true influence of large-scale geographical factors and possible 

influence of biogeographical parameters like dispersal and vicariance, sampling habitats 

should be as homogeneous among sites as possible. By investigating the same habitat 

type at several locations, the effect of local edaphic factors is minimised, and patterns 

created by other underlying or less influential factors may be revealed.

 In order to demonstrate effects of environmental and climatic changes on the seasonal 

dynamics of fungal community composition and richness, comparative studies over 

several years in different climatic regions are needed; and to account for annual 

variability in climate, long-term monitoring studies are suggested.

 Broad scale studies combining both spatial and temporal community variation are 

urgently required as global biodiversity is diminishing at an accelerated pace. It is critical 

to understand the underlying mechanisms of the factors affecting species richness and 

composition both locally and regionally in a broad range of terrestrial ecosystems.

 Soil nutritional level is often more limiting than temperature for Arctic vegetation, and 

based on the results presented here, soil conditions seems important for overall Arctic 

fungal diversity as well. Therefore, Arctic habitats with diverse condition need to be 

included in large-scale fungal biodiversity surveys and global initiatives such as earth 

microbiome projects (Gilbert et al. 2010) and national ecological observatory networks 

(Kampe et al. 2010).

 In order to determine overall biotic community dynamics, research is needed to move 

from a “who is there” to a “why are they there” and “what are they doing” perspective. 

Further research is required to detect any functional shifts related to spatial and temporal 

changes in fungal communities in the natural environment.
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