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Abstract 

Vapor explosions, also called thermal detonation, occur when liquified gas comes into 
contact with water. During the contact of the two liquids with considerably different 
temperatures, intensive boiling of one of them takes place which is accompanied by an 
explosive increase in pressure. Similar phenomenon also arises in the cooling systems of 
nuclear power stations when as a result of some accident the heated particles of nuclear 
fuel settle in the cold water. This leads to the explosive boiling of the liquid and to a 
rapid increase of the pressure. 

As a first stage this preprint presents analytical and numerical modelling of small 
scale single drops of liquified gas in water, and propagation of shock waves in liquids with 
bubbles containing evaporating drops of liquified gas. 
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1 Introduction 

Plans to exploit oil and gas fields in the Norwegian continental shelf usually include options 
to transport LNG (liquified natural gas) by ships to markets in Europe and America. 
The possibility of sinking, ship-ship collision or grounding needs to be considered in the 
development plans. Such accidents can of course occur near towns and other densely 
populated areas. 

If LNG ship is involved in an accident such that large quantities of liquified gas escapes, 
a large explosion can occur (Bankoff 1978). 

LNG ships are designed and operated to very high standards, because of the dangers 
involved in handling LNG. Nuclear power stations, similarly, are designed and operated 
to very high standard. Nevertheless, accidents do occur in nuclear power stations ( Cro­
nenberg 1980). It does not take much imagination to visualise an accident along the 
populated coast involving a LNG ship. The potential consequences of such an accident 
need to be known. 

At this preprint small scale single drop explosions were modelled analytically and 
numerically and evolution of shock waves in liquids with bubbles containing evaporating 
drops of liquified gas was studied numerically. 
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2 Dynamics of bubble containing evaporating liquid 
droplet 

2.1 Formulation of the problem 

The dynamics of gas and vapor bubbles was studied in many papers, discussed in reviews 
(Plesset & Prosperetti 1977, Feng & Leal 1997). Let us consider the behaviour of a 
spherical drop of liquified gas, surrounded by spherical vapor layer in the liquid. The 
processes occuring within the drop, bubble and around the bubble in the surrounding 
liquid are assumed to be spherically symmetric, so all parameters depend on time t and 
radial Eulerian coordinate r only. We assume that the "cold" drop and surrounding "hot" 
liquid are incompressible and ideal, and vapor can be described by the equation of state 
for perfect gas. 

We will suppose also pressure uniformity within the bubble, which prevails when the 
size of the bubble is much less than the length of a sound wave in the gas (Nigmatulin et 
al 1981). 

Within the framework of the assumptions made, the continuity, heat and state equa­
tions for gas phase will have the form (Nigmatulin et al 1981) 

(1) 

b(t) :::;: r :::;: a(t) 

where C9 , >..9 , R9 , W9 are specific heat of gas at constant pressure, thermal conductivity, 
gas constant, and velocity of the gas; b(t) is the drop radius, a(t) is the radius of the 
bubble. Here the subscripts d, g and R refer to the parameters of the drop, gas, and 
surrounding liquid respectively. 

The same equations for the liquid drop and surrounding liquid will have the form 
(Nigmatulin 1990) 

(2) 

C ard _ 1 a (, 2 ard) Pd d-- -- /\dT-
at r 2 ar ar 

Wd = 0, Pd = const , 0 ::S: r ::S: b(t) 

C ( ar£ TXT ar£) _ 1 a (' 2 aTg) P£ £ - + vvg- --- A£T-
at ar r 2 ar ar 

Wgr 2 = Wta a2 , pg = const , a(t) ::S: r 

here Wta is the velocity of the liquid at the bubble surface (Wta = Wg(a)). 
The boundary conditions for equations (1), (2) at the centre ofthe drop, on the moving 

boundaries b(t) and a(t) and at infinity are (Nigmatulin 1990) 

ard 
r = 0: ar = 0 

2 



(3) 

~ = p9(W9b- b(t)) = -pdb(t) 

r = b(t): T9b = Tdb = Ts9(P9) 

r = a(t): 

r -too 

), 8Tg _), 8Td = Cf! 
98r dar ~ 

Tga = T.ea 

W9a =a= W.ea 

P.ea = P9 - 2cr/a 

T.e -t T= = const P -t P= = const 

Here I! is the latent heat of evaporation of the drop, ~ is the of phase transition rate per 
unit interfacial surface (~ > 0 for evaporation). T89 (P) is the saturation temperature; cr 
is the surface tension. 

Being in the saturated state at the interface vapor obeys the Clapeyron-Clausius equa­
tion 

(4) 

The Rayleigh equation for bubble oscillations in incompressible fluid has a form: 

(5) dW.ea §.W2 _ P9 - P=- 2cr/a 
a dt + 2 .ea- P.e 

When the pressure uniformity condition in gas is satisfied, there is an integral of heat 
equation for the gas which can be obtained by substitution of continuity equation to heat 
equation and using equation of state (Nigmatulin 1990) 

(6) 

f(r)/: = f(a)- f(b) 

The continuity equation for the gas with the use of the pressure uniformity condition and 
the boundary conditions, yields the velocity profile in the gas: 

(7) W - b2 W 1 [.x (T) 28Tg] lr r3- b3 dPg 
g - r 2 gb + r 2 p g r or b - 3"1 p r 2 dt 

g I g 

So, the system of basic equations consists now on three nonlinear equations of convectional 
heat conductivity in different space regions (in the drop, gas, and liquid), four ordinary 
differential equations (Rayleigh equation (5), Clapeyron-Clausius equation (4), equation 
for pressure (6), and equation for radius of the drop (3), and boundary conditions (3). 

The considered problem is characterized by considerable variations of the vapor ther­
mophysical parameters along the vapor layer. For example for the system sea water 
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(300K) - liquified hydrogen (Ts = 22K for P = latm) or sea water (300K) and liquified 
helium (Ts = 4.2K for p = 1 atm) the thermal diffusivity coefficient D 9 = >..9 / p9 c9 is 
changing by a factor of fourty. 

The high temperature gradient in the thin vapor layer (T£/Ts » 1) leads to the strong 
variation of vapor density (p9 = P9 / R9T9 ) and thermal conductivity along the vapor 
layer. That is why it is very important to take into account the dependence of thermal 
conductivity on temperature in the heat equation for gas phase. Another thermophysical 
parameters: >..d, Pd, Cd, C9 , .e, >..e, pe, Ce can be considered as constants. 

2.2 Discussion of the results 

The problem was solved numerically using a finite-difference technique by dividing the 
whole system into spherical layers inside the drop and bubble and outside the bubble. 
There are two moving boundaries b(t) and a(t) at this problem. We used the new variables 
for "freezing" the moving boundaries: 

(8) 
r E (0, b(t)): 'T7 = b(t) , 

r E (b(t),oo):~ = :=~, 

'fl E (0, 1) 

~E(O,oo) 

So the boundaries now are not miving and fixed in the points 

(9) 
r = 0 +-+ 'T7 = 0 ; r = b(t) +-+ 'T7 = 1, ~ = 0 

r = a(t) +-+ ~ = 1 ; r --+ oo +-+ ~ --+ oo 

With allowance made for the finite thermal conductivity of liquid, the boundary condition 
at infinity can be applied to the last layer of the liquid. 

Calculations were made for different size 0.1-1.0 mm of drops. Surrounding liquid was 
water at 293K. The initial pressure in the system was 1 atmosphere. We used different 
liquified gases at the saturation temperature. Thermophysical parameters were taken 
from (Vargaftik 1972). 

Calculations made for different initial temperature distributions in the vapor indicate 
that initial temperature distribution has effect only on initial time interval. That is why 
we used as initial condition linear temperature distribution in the vapor. 

Calculations show that the variation of the saturation temperature at the drop surface 
and variation of the interface bubble surface temperature are very small: 

(10) 
Tea- Teao 1 ----« 

Teao 

Here the subscript 0 refers to the parameters of the initial state. So, it is possible to 
consider these temperatures as constants, and surrounding liquid as a thermostat. Hence 
it is possible to simplify the problem: don't solve the heat equations inside the frop and 
surrounding liquid, but solve it in the gas only. 

Analysis of the evaporation process show that because p9 « Pd the characteristic time 
of the drop radius change due to evaporation is much greater than the characteristic time 
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of heat processes. That is why at the time intervals, comparable with the characteristic 
time of heat processes the drop radius can be considered as constant. This was confirmed 
by calculations. 

We computed variants corresponding to different drop and bubble radii, liquid and 
drop temperatures. Figure 1 illustrates the behaviour of pressure inside the bubble, 
containing the drop of liquified hydrogen (b0 = 0.1 mm). The curves 1-3 correspond to 
different initial bubble size: ~~ = 1.05; 1.1; 1.2 (t* = b6/ D9 ). 

The calculations have shown that there are two stages of the process. First or dy­
namic stage is characterized by intensive pressure oscillations in the gas during the time 
interval rv b5/ D9 . At this stage the pressure in the bubble can be considerably greater 
than intitial atmosphereic pressure. The second or thermal stage is characterized by the 
monotonic growth of the vapor bubble; pressure in the vapor is settled and equal to the 
external pressure P9 = P 00 ; the temperature profile is approaching to the quasistationary 
temperature distribution. The initial value of the vapor layer thickness has significant 
effect on the process at the dynamic stage. 

The calculations have shown that decrease of the initial vapor layer thickness leads to 
an increase of the pressure oscillations amplitude and the oscillations attenuation time. 
The decrease of the initial vapor layer size leads also to a sharp increase of the evapo­
ration rate and the velocity of bubble surface a. This is connected with the growth of 
temperature gradient in the vapor phase due to the decrease of vapor layer thickness. 
Figure 2 illustrates the characteristic temperature and velocity profiles inside the bubble 
at different moments of time. b0 = 1 mm, a0 = 1.1. mm. Curves 1-5 correspond to the 
moments of time tjt* = 0.1; 0.2; 0.5; 1.0; 5.0. The calculations have shown that at the first 
stage of the process there is slight change of the initial linear temperature distribution in 
the gas phase, but the strong change of the velocity field. At the second thermal stage of 
the process the velocity profiles approaches to the quasi-steady configurations. 

3 Shock waves in liquids with bubbles containing 
evaporating drops of liquified gas 

The basic results of studying of a single bubble in a liquid volume are also valid for bubble 
mixtures with a low dispersed-phase volume concentration. The specific properties of 
the bubbly liquids include: the existence of internal small scale flows, the high density 
and compressibility of the medium, the low distrurbance propagation velocity, and the 
constancy of the carrier-phase density. In dynamic processes, however, one of the most 
interesting properties of bubbly liquids is the manifestation of local deformation inertia 
when the bubble volume changes and the elasticity of the gas in the bubble. 

3.1 Basic assumptions 

A mixture of liquid and two-pahse bubbles containing evaporating liquid droplets can be 
considered in the framework of the mechanics of interacting and interpenetrating continua, 
the first phase being the carrier liquid and the second the bubbles, each of which contains a 
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cryogenic-liquid droplet and its vapor. Similar problem when the bubbles contains heated 
solid particles was considered by Khabeev (1997). Wave processes in a liquid with bubbles 
containing liquid droplets are considered here under the following basic assumptions: 

(i) the distances over which the flow parameters (for example, oscillatory wavelengths) 
vary significantly are much larger than the distances between the bubbles, which 
are themselves much larger than the bubble diameters (i.e. the volume fraction of 
the vapor phase is small enough, a 2 ~ 0.1); 

(ii) the mixture is locally monodispersed, i.e. in each material volume all the bubbles 
are spherical and of the same radius; 

(iii) viscosity and thermal conduction are important only in the processes of interphase 
interaction and, in particular, in bubble pulsations; 

(iv) nucleation, fragmentation, interaction and coagulation of the bubbles are absent; 

( v) the velocities of the macroscopic motion of the phases coincide. 

The last assumption allows us to describe bubble volume changes, temperature distri­
butions inside and around the bubbles, condensation and evaporation in terms of the 
spherically symmetrical model using the equations for bubble radial pulsations and radial 
thermal conduction of the liquid. 

3.2 System of equations of a liquid with two-phase bubbles 

We will consider the closed system of equations for investigating the wave process in this 
medium. For one-dimensional plane motion, we will write the equations in the Lagrange 
coordinates x ant t. The conservation equations for the masses of each phases and number 
density are (Nigmatulin, Khabeev & Zuong 1988): 

opl + PPl ov = 0. p poa Pol= const' p = Pl + P2 
ot Po ox ' 1 = 1 1 ' 

op2 + PP2 ov __ O . * 3 P2 - p a 2 a 2 = 4/37ra n , a 1 + a2 = 1 
ot Po ox ' - 2 ' 

p; = (M9 + 4/37rd3p~)/Vb, Vb = 4/37ra3 , p~ = const, p;Vb = const 

on pn ov 
-+--=0 
ot Po ox 

(11) 

Here a is the volume concentration, n is the number of bubbles per mixture unit volume, 
p is the density, M9 is the vapor mass in the bubble, p~ is the drop density, p; is the 
two-phase bubble mean density, v is the velocity, dis the drop radius. The subscripts 1 
and 2 refer to the carrier liquid and bubble phase, respectively. The subscript 0 refers to 
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the unperturbed parameters. The superscript 0 denotes the true material density. The 
balance equation for the mixture momentum is: 

(12) 

here ~ is the surface tension coefficient, p is the pressure. 
The Rayleigh equation for the radial fluid motion around a bubble, which takes the 

radial fluid inertia into account has the form: 

(13) 

(1 ,-~-. ) 8w1 3 ( 1 ,-~-. ) 2 4vl _ P2 - p1 - 2~/ a 
- 'f'l a--+- - 'f-'2 w1 + -w1 - ----=----'----ot 2 a p~ 

¢2 = (a2) 113 (2 + a 2) - 3a2 
1- a2 

Here v is the kinematic viscosity of the liquid, w is the radial velocity, ¢1 and ¢2 are 
correction coefficients for taking into account the "nonsingleness" of the bubble. These 
corrections characterize the difference of the fictitious pressure at infinity from the average 
pressure in the liquid. 

Transfer processes in a two-phase mixture are determined by the distributions of mi­
croparameters near inhomogeneities. For an analysis not to be too complicated, one has 
to make use of models that could considerably simplify the microprocess equations. A 
possible model is one that employs the concept of a cell with a test bubble in it at any 
point specified by a vector x. The cell dimensions are determined by the volume fractions 
of the phases and equal to aa;13 , the cell centre coinciding with the centre of the test 
bubble. This cell moves with the macroscopic velocity v(t, x) of the vapour phase at the 
point considered. The distributions of microparameters inside a cell are described by the 
equations for the corresponding microprocesses with the boundary conditions on the test 
bubble surface (which determine the interphase interaction) and on the external bound­
ary of the cell (which determine the action of the external, relative to the cell, carrying 
phase). 

For describing the nonstationary interphase heat and mass transfer, we will use a 
spherically symmetric "trial" bubble model. We will consider a trial bubble with a cryo­
genic liquid droplet at its center. We assume that the temperature of the surrounding 
liquid (water) is much higher than cryogenic liquid boiling point. The liquid droplet evap­
orates and forms a vapor layer. The temperature of microparticles of droplet, vapor and 
surrounding liquid will depend on macrocoordinate x, radial microcoordinate r, counted 
from the test bubble center and timet 

Tf = Tf(x, r, t) 

For Tf(x, r, t) we have the heat equations inside the droplet (r ~ d) in vapor (d ~ r ~a), 
and in liquid (r 2': a). The radial velocity ofthe liquid w~ is determined from the continuity 
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equation for incompressible liquid. The radial velocity of the vapor w~9 can be determined 
from the continuity equation taking into account the equation of state 

P~ = R9 T~9 p;9 

and homobaricity (pressure uniformity) in the vapor phase: P~ = P2(x, t). 
In 2.2 was shown that the heat processes inside the droplet and in surrounding liq­

uid are insignificant, and the temperature of the droplet can be considered as uniform 
and equal to the saturation temperature, and temperature of the surrounding liquid is 
constant: 

T~d = T~d(x, t) = Ts(P2) , 

According to Clapeyron-Clausius equation 

T{ = const 

(14) 8Ts _ T ( 1 pgs) 8P2 
at - fpgs - pgd 8t ' 

here f is the latent heat of evaporation, the subscript s refers to the saturation parameters. 
A numerical study of this system of equations would take too much CPU time. A sim­

plification of the system is required. A numerical analysis indicates that the quasi-steady 
solution of the heat conduction equation in the vapor layer, which takes into account the 
temperature dependence of the vapor thermal conductivity, is a good approximation of 
the exact solution. For the time intervals under consideration, the droplet radius change 
can be neglected. Accordingly, we obtain the following relations for the pressure and mass 
of the vapor: 

(15) 

here 'Y is the specific heat ratio, c9 is the specific heat of vapor at constant pressure. 
In the problem under consideration, the temperature dependence of the vapor thermal 

conductivity must be taken into account, the simplest approximation used in the literature 
being linear (Vargaftik 1972). The system of basic equations was transformed to a form 
suitable for numerical integration: 

_ap = _ 3 _a2_P_w 
at a 
OV = 3 a2pow 
ox pa 

(16) 
fJ2p op 
ox2 + Fx(x) ox = G(p,p2, a2, a, w) 

(1 '"" ) ow 3 ( 1 '"") 2 4vl _ P2 - p - 2~/ a 
- '+'1 a- + - - '+' w + -w - '-----''---~--'--

ot 2 a alp~ 
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P = P1 + P2, 

a 1 + a 2 = 1, 

0 0 
PI= p1a1 , p1 = const, 

p; = (M9 + 4/37rd3p~)/~, 
P2 = p;a2 , a1 = 4/31fa3n , 

~ = 4/31fa3 , p~ = const , 

The system (16) is separated. The mixture density, saturation temperature, pressure in 
the bubble, bubble radius and radial velocity are determined from differential equations 
which don't contain the derivatives relative to x. The average pressure and mixture den­
sity are determined from linear differential equations which don't contain the derivatives 
relative to t. These two equations allow us to determine the velocity and pressure fields 
of the mixture at fixed instants through the known fields of the remaining parameters. 

The initial conditions correspond to the uniform state: 

t=O, g=po, P2=Po+2l:,/ao, a=ao, Ts=Ts(Po), 
( 17) a2 = a2o , w = v = 0 , M9 = M90 

where initial mass of the vapor M 90 is determined by integrating the vapor density over 
the vapor layer thickness using initial temperature profile. At x = 0 and x = L, the 
boundary conditions have the form 

(18) 

(19) 

X= 0: 

X= L: 

p = f(t) 

8P =O 
ox 
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In the case of shock waves: f(t) = p1 = canst. The relation between Eulerian and 
Langrangian coordinates is: 

(20) y(x, t) = 1t V(x, T)dT 

The system of basic equations with corresponding initial and boundary conditions can be 
used for studying the general regularities of propagation of plane nonstationary waves. 
The solution of this multiparameter problem depends on the nondimensional combinations 
characterizing the role of capillary effects, the liquid viscosity in radial bubble oscillations, 
the volume fraction, the sizes of the droplet and bubble, the thermophysical properties of 
the liquid and vapor, and the shock wave strength. In addition, the process depends on 
the shape of the initial impulse, its duration, and the initial conditions. 

3.3 Numerical study of wave processes in a liquid 
with two-phase bubbles 

Equations (16) with initial and boundary conditions were solved numerically using a 
combination of the sweep method for the partial differential equation (for determining 
the mixture pressure field) and the Euler method for ordinary differential equations. 

For checking and debugging the computer program, we calculated the evolution of 
compression waves in vapor-liquid mixtures without liquid droplets. The numerical results 
are in a good agreement with the data of (Nigmatulin, Khabeev & Zuong 1988). 

The evolution of shock-waves was investigated for the mixture of water with liquid 
hydrogen droplets surrounded by vapor shells. The following values of the thermophysical 
parameters were used: 

Po= 1 bar, !:1p = 0.2 bar, To= 300 K , Tso = 22 K , 

p~ = 963 kg/m3 , p~o = 0.08 kg/m3 , p~ = 70.92 kg/m3 , 

Cg = 1.15. 104 J/(kg. K) ' f = 4.6. 105 J/kg . 

.A(T0 ) = 1.83 · 10-1 W /(m · K) , >.(80 K) = 5.32 · 10-2 W /(m · K) 

Figures 3 and 4 show the profiles of the mixture pressure at different instants of time 
before and after wave reflection from the rigid wall. Due to local deformation inertia, as a 
result of the conversion of the kinetic energy input of the wave into potential compression 
energy, the mixture pressure p(x, t) may be greater than the amplitude of the original 
wave. 

The wave propagates in a mixture with increasing pressure rather than in one with 
uniform parameters. This is because, as distinct from mixtures with gas or vapor bubbles, 
the wave is preceded by a process of liquid droplets evaporation into the vapor layer and 
hence a pressure increase in the vapor layer and in the mixture. The oscillations in 
the reflected wave (Fig. 4) have nonlinear character and their maximum amplitude is 
considerably higher than the amplitude of the original wave. 

To study the effect of initial pressure on the process, we computed a variants for a 
mixture at high initial static pressure. In this case, due to the increased liquid boiling 
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point and increased wave velocity the nonstationarity of the state ahead of the shock wave 
had almost no effect. 

When the other conditions are fixed, an increase in the initial pressure results in a 
decrease in the interphase heat and mass transfer rates and, hence, in an increase in the 
pulsations during shock wave propagation. Clearly, as the initial static pressure in the 
system increases, the length of relaxation to the steady-state regime also increases. This 
is attributable to the increase in not only the wave velocity but also the vapor mass in 
the vapor layer for a fixed initial radius, since the vapor density increases. This leads to 
a marked increase of the role of the vapor inertia. 

Figure 5 illustrates the profiles of the mixture pressure before and after reflection from 
rigid wall. The reflection has a nonlinear character. The reflection coefficient of shock 
wave in Figure 5 

K = P}nax- p~ax 
P po -R' 

max 0 

where P~= is the maximum wave pressure before the reflection, and P}n= is the maximum 
pressure at the wall surface during the reflection. So the shock strength at the rigid wall 
surface can be considerably greater than the amplitude of the incident wave. 

Figure 6 shows the behaviour of the pressure at the wall surface during the time. 
The maximum value of the pressure at the wall surface depends on the amplitude of 

the wave, and also on concentration of phases and bubble size ( dispersity). Increasing 
of disperse phase concentration leads to the increasing of pressure amplitude on the wall 
surface. 

Figure 7 shows the profiles of the mixture pressure at different instants of time for 
another boundary condition at the x = L: p = p0 . The rarefaction wave is propagating 
from the right side. First this wave is propagating in undisturbed area with increasing 
pressure, and later this wave makes shock wave weeker. 

We computed variants corresponding to different bubble and droplet radius, volume 
concentrations, and initial pressure. Varying a droplet radius at some constant initial 
bubble radius affects the liquid evaporation rate and hence the rate of pressure increase 
ahead of the shock wave. An increase in droplet radius leads to more intense liquid 
evaporation, due to the decrease in vapor layer thickness, and to a wave velocity increase. 
With decrease in the ratio of the drop and initial bubble radii, a smooth passage to a 
liquid-vapor mixture with single-phase bubbles (without droplets) takes place. 

It is shown that unlike to liquids with single-phase bubbles in liquids with two-phase 
bubbles decrease of the initial bubble size leads to increasing of the amplitude of oscilla­
tions. This is caused by the intensification of droplets evaporation due to the increasing 
of interfacial surface. 

Conclusion 

A mathematical model to describe the dynamics of bubble containing the dropelt of 
liquified gas with allowance for the nonlinear non-steady interphase heat and mass transfer 
has been proposed. General regularities of the behaviour of such "two-phase" bubble 
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depending on the initial conditions and thermophysical properties of phases have been 
studied on the basis of this model. 

Wave evolution and reflection in a liquid with two-phase bubbles each containing 
a droplet of liquified gas is studied numerically. The influence of the basic governing 
parameters on the structure and evolution of waves in these media is investigated. The 
phenomenon of the nonlinear anomalous enhancement of waves reflected from a rigid wall 
is established. 

The proposed models can be useful for analysis and understanding of such complicated 
phenomenon as vapor explosion. 
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Figure 1: Pressure vs time curve for the bubble containing the droplet of liquified hydrogen 
(bo=0.1 mm). The curves 1-3 correspond to different initial bubble size: ao/bo=l.05; 1.1; 1.2. 
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Figure 2: Evolution of the temperature (a) and velocity (b) profiles inside the vapor layer. 
bo = 1 mm, ao = 1.1 mm. Curves 1-5 correspond to the moments of time: tjt* = 0.1; 0.2; 0.5; 

1.0; 5.0. 
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Figure 3: Pressure wave profiles before reflection from rigid wall. Curves 1-3 correspond to 
times: t = 20 ms; 25 ms; 30 ms. The dashed curve is the envelope of pressure peaks. d = 1 mm, 
ao = 5 mm, a2o = 0.02, P=l Po= 1.2. 
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Figure 4: Pressure wave profiles after reflection from rigid wall. Curves 1, 2 correspond to 
times: 35 ms, 50 ms. Parameters are the same as in Figure 3. 
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Figure 5: Pressure wave profiles before and after reflection from rigid wall. d = 0.5 mm; 
ao = 2.5 mm; a2o = 0.005; P00 / Po= 2. Curves 1-3 correspond to times: 
a) 1 ms; 3 ms; 4.125 ms 
b) 4.125 ms; 5 ms; 6 ms. 
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Figure 6: Pressure at the surface of rigid wall vs time. a2o = 0.005; d = 0.5 mm; ao = 2.5 mm; 

Poo/Po = 2. 

PfR 
0 

1.0~----------~----------~--------~ 
0 f. Z 3 X,H 

Figure 7: Pressure profiles at different moments of time. Curves 1-4 correspond to times: 5 ms; 
10 ms; 15 ms; 20 ms. d = 1 mm; ao = 5 mm; a2o = 0.02; Pool Po= 1.2. 
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