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DETEill~INATION OF SAMPLE SIZE FOR DISTRIBUTION-FREE 

TOLER.ANCE LIMITS 

WILLIAM C. GUENTHER 

UNIVERSITY OF WYOMING 

Many problems involving distribution-free 

tolerance limits can be solved quickly with a . 

good binomial table.. This paper considers se­
veral situations for which such a table yields 

under a given set of conditions the minimum sample 
size required. 

1. INTRODUCTION 

Let x1 ,x2 , ••• ,Xn be a random sample from a continuous 

distribution having probability density function f(x) and 

distribution function F(x) • Denote the order statistics 

by Y1 ,Y2 , ••• ,Yn and let p and y be given positive fractions 

less than 1. If 

then (y.,y.) 
l J 

( 1 • 1 ) 

is called a two sided tolerance interval with 

tolerance coefficient y for a fraction p of the probability 

of the destribution of X • Similarly, if 

( 1 • 2) 

or 

( 1 • 3) 

then (y. 9 co) and (-c-.::_:),y.) are respectively one sided tolerance 
l J 

intervals with tolerance coefficient y for a fraction p of 

the probability of the distribution of X . The numbers 

y. ,y. are called lower and upper tolerance limits respectively. 
l J 
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One type of problem which has received considerable 

attention in the literature requires as its solution for a given 

i or j or both the minimum n which satisfies ( 1. ·1), ( 1. 2) 9 

oT (1.3) depending upon which case is under consideration. 

Some papers which have dealt with this situation a.re those by 

Murphy [5], Scheffe and Tukey [7], Sommerville [8], and Wilkes 

[10]. In these papers are found specially constructed tables, 

an approximate formula for n , and solutions using the incom­

plete beta table of Pe~r~on [6]. 

A second type of problem is obtained by imposing a second 

condition on the random interval [ (Y. , Y.) , (Y. , cv), or ( -~, y.) J. 
l J l J 

Suppose that for given y' 6' Po~ p1 9 where p1 > Po' we desire 

a lower tolerance limit y. such that the inequalities 
l 

(I. 4) 

and 

( 1 • 5) 

are both satisfied for minimum n • Faulkenberry and Weeks [1] 

have considered the corresponding problem for three parametric 

cases (uniform, exponential, and normal). As motivation they 

have suggested a possible application in which a manufacturer 

desires a lower tolerance limit but does not want it to be un--· 

necessarily small since this may mllire his product look inferior. 

Similarly for the two sided case we could seek tolerance limits 

such that the conditions 

( 1 • 6) 

and 

( 1. 7) 

are both satisfied for minimum n • To illustrate the use of 

this case a producer of a product with lower and upper speci-
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fication limits may wish to assure with tolerance coefficient 

y that at least a fraction of his product is between 

and but does not want theso numbers unnecessarily far 

apart (and perhaps not in the range of defective material). 

It is well known (and immediately obvious) that the left 

hand side of (1.2) can be written as 

( 1. 8) 

~nd the left hand side of (1.3) as 

( 1 • 9) 

where n 

E(r;n,p) = ) ,_, 
w=r 

The left hand side of (1.1) is slightly more difficult to 

handle but it is shown a number of places in the literature, 

including textbooks (i.e. 9 Hogg and Craig [3, pp. 182-85]) 9 

that 

where V has a bata distribution with parameters j - i and 

n - j + i + 1 Using the relationship between the incomplete 

beta integral and the sum of binomial terms yields 

Pr[F(Y.)- F(Y.) > p] = E(n-j+i+1;n,1-p) 
J 1 

(1.10) 

We will illustrate the usefulness of binomial tables (~~d 

Poisson tables for large n) in the solution of the type of 

problems described above. 

2. FIRST TYPE OF PROBLEM; ONE CONDITION ON TOLERANCE INTERVAL 

Using ( 1 • 1 0), ( 1 • 8) , and ( 1. 9) we can rewrite ( 1 . 1 ) 9 ( 1 • 2 L 

and (1.3) as 



E(n-j+i+1;n,1-p) > y 

E(i;n,1-p) ~ y 

E(n-j+1;n,1-p) ~ y 
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( 2. 1 ) 

(2.2) 

(2.3) 

respectively. As an example let p = .90, y = .95 i = 1 , 

j = n - 1 . The above inequalities become 

E(3;n,.10) > .95 

E(1 ;n, .10) > .95 

E(2;n,.10) > .95 

With the Ordnance Corps [9] table we find (by observation) 

that to satisfy the inequalities we must have n ~ 61, n ~ 29, 

n ~ 46 respectively. Then in the two sided case the desired 

tolerance limits are y 1 . and y60 with n = 61 ; in the lower 

tolerance limit case we use y 1 with n = 29 ; in the upper 

tolerance limit case we use y45 with n = 46 . 

3. SECOND TYPE OF PROBLEM; TWO CONDITIONS ON TOLERANCE 

INTERVAL 

As a first example we consider a problem involving a 

lower tolerance limit. Let Po = .85, y = .90, p1 = .96, 

6 = .05 . Then inequalities (1.4) and (1.5) become 

E(i;n,.15) ~ .90, E(i;n,.04) ~ .05 

The solution is obtained by trial starting with i = 1 • From 

the binomial table we find with i = 1 that we must have 

n ~ 19 and n ; 1 to satisfy the two inequalities so that no 

solution is possible. With i = 2 we find that we need 

n > 25 and n < 9 again an impossibility. Similarly, we get = 
with i = 3 n > 34 and n < 21 

i = 4 n > 43 and n < 34 

i = 5 n > 52 and n < 50 
i = 6 n > 60 and n < 66 
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Hence~ the minimum sample size to provide a solution is n = 60 

a..nd the lower tolerance limit is Under the assumption that 

X has a normal distribution Faulkenberry and Weeks [1] found 

that n = 35 for this problem. 

As a second example suppose that p 0 , p 1 , y, and o are 

as in the first example but we desire a two sided tolerance 

interval. We get the same inequalities and the same solution 

except that i is replaced by n - j + i + 1 That is, 

n = 60, 60 - j + i + 1 = 6 or j - i = 55 • Possible choices 

are (y5,y60)' (y4,y59), (y3,y58),(y2,y57)' (y1,y56). We may 

prefer the "symmetric" interval (y3 ,y58). 

As a third example suppose that we agai:r:. use the same 

p0 , p 1 , y, 6 but desire an upper tolerance limit. Again we 

get the same inequalities with the same solution except that 

i is replaced by n - j + 1 • Thus n = 60, 60 ~ j + 1 = 6 

j = 5J and ~he upper tolerance limit is y 55 , the 6th largest 

observation as contrasted with the 6th smallest in the lower 

tolerance limit case (as we would expect). 

Finally, we consider a case for which the Poisson approxi-

mation is useful. Suppose that we desire a lower one sided 

tolerance limit when Po = .95 , p 1 = .98, y = .90, o = .05 • 

Now the inequalities ( 1. 4) and ( 1. 5) become 

E(i;n,.05) ~ .90 , E(i;n,.02) ~ .05 

Since the solution requires that n > 150, the Ordnance Corps 

table is of no use. The Harvard [2] table contains n's up 

to 1000 but in steps of 20 in the range needed. Thus, it is 

convenient to replace the above inequalities by 

E(i;.05n) > .90 , E(i;.02n) < .05 

where 
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As before increase i until a solution is found. With i = 10 

and linear interpolation the Molina [4] table yields 

E(10;14.21) = .90 E(10;5.42) = .05 

so that .05n? 14.21, n > 284.2 and .02n < 5.42, n < 271 

but with i = 11 we find 

E(11;15.4) = .90, E(11;6.17) = .05 

so that .05n? 15.4,n? 308 and .02n < 6.17, n < 308.5 . 

Hence n = 308 and the tolerance limit is y11 • 
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