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ABSTRACT. In this paper we consider a binary, monotone system whose component 
states are dependent through the possible occurence of independent common shocks, i.e. 
shocks that destroy several components at once. The individual failure of a component 
is also thought of as a shock. Such systems can be used to model common cause failures 
in reliability analysis. The system may be a technological one, or a human being. It is 
observed until it fails or dies. At this instant, the set of failed components and the failure 
time of the system are noted. The failure times of the components are not known. These 
are the socalled autopsy data of the system. For the case of independent components, i.e. 
no common shocks, Meilijson (1981), Nowik (1990), Antoine et al. (1993) and Gasemyr 
(1995) discuss the corresponding identifiability problem, i.e. whether the component life 
distributions can be determined from the distribution of the observed data. Assuming a 
model where autopsy data is known to be enough for identifiability, Meilijson (1994) goes 
beyond the identifiability question and into maximum likelihood estimation of the pa­
rameters of the component lifetime distributions based on empirical autopsy data from a 
sample of several systems. He also considers lifemonitoring of some components and condi­
tionallifemonitoring of some other. In Gasemyr & Natvig (1994) a corresponding Bayesian 
approach is presented. Due to prior information one advantage is that the identifiability 
problem represents no obstacle. Here, the first part of our previous paper is extended to the 
shock model, the motivation being that the autopsy model is of special importance when 
components cannot be tested separately because it is difficult to reproduce the conditions 
prevailing in the functioning system. 

Key words: fatal set, critical set, critical shock, natural conjugate prior, mixture of prod­
ucts of gamma distributions 

1. Introduction and basic model 

In this section the basic model is introduced and motivated whereas the main results are 
given in Section 2. Some aspects of the computation of the distribution of the autopsy 
data are considered in Appendix 1. In Section 3 a parallel system of two components, also 
subjected to a common shock, is treated in depth. Some technical details in the deductions 
are left to Appendix 2. 

Consider a binary, monotone system (E, ¢),where E = {1, · · ·, n} is the set of components 
and ¢ is the structure function describing the state of the system in terms of the binary 
states of the components. The system may be a technological one, or a human being. It is 

1 



observed until it fails or dies. At this instant, the set of failed components and the failure 
time of the system are noted. The failure times of the components are not known. These 
are the socalled autopsy data of the system. 

For the case of independent components Meilijson (1981), Nowik (1990), Antoine et al. 
(1993) and Gasemyr (1995) discuss the corresponding identifiability problem, i.e. whether 
the component life distributions can be determined from the observed data. For a very 
readable presentation of these efforts we recommend to start with the paper Antoine et al. 
(1993). They stress the importance of the autopsy model in situations in which components 
cannot be tested separately for instance because it is difficult to reproduce the conditions 
prevailing in the functioning system. The most obvious such situation is when components 
are actually dependent, which, however, is outside the scope of the mentioned papers. 
In Crowder (1994) the socalled identifiability crises in competing risks is reviewed. Its 
origins can be traced back to Bernoulli (1760) who attempted to disentangle the risks of 
dying from smallpox and other causes. Although much of this literature covers dependent 
components it is of less interest in reliability since competing risks just correspond to a 
series system. 

Hence what is of real interest is to treat the autopsy model for an arbitrary system of 
dependent components. In the present paper we consider this problem in the case where 
component states are dependent through the possible occurence of independent common 
shocks, i.e. shocks that destroy several components at once. The individual failure of a 
component is also thought of as a shock. This shock model was introduced by Boyles & 
Samaniego (1984) and some aspects of reliability analysis in such a model are considered 
in Gasemyr & Natvig (1995a). A special case is the multivariate exponential distribution 
introduced in Marshall & Olkin (1967). Using expert opinions in Bayesian prediction of 
component lifetimes in this model is treated in Gasemyr & Natvig (1995b). Our present 
work is an attempt to get as much information as possible from a failing system of depen­
dent components. This parallels and should be combined with the latter paper. 

We now present the shock model in more detail. There are n individual shocks numbered 
l = 1, · · ·, n. In addition there are p common shocks numbered n + 1, · · ·, n + p. Introduce 
(l=1,···,n+p) 

D 1 = the set of components destroyed by the lth shock 

Obviously, D 1 = { l}, l = 1, · · · , n. More generally for a set of shocks B C { 1, · · · , n + p} let 

DB = U D1 = the set of components destroyed by the set of shocks B 
kB 

Furthermore, denote the time until the lth shock by Vi, l = 1, · · ·, n + p. The variables 
Vi are assumed independent given a parameter vector f)_, having absolutely continuous 
distributions with distribution function F1(t), survival function Fz(t) = 1 - Fl(t), p.d.f. 
f1(t) and failure rate >..1(t) = !1(t)j F}(t), l = 1, · · ·, n + p. 

On the other hand introduce ( i = 1, · · · , n) 

Ei = {lliED1} = the set of shocks that destroys the ith component 
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More generally for a set of components A C E let 

EA = U Ei = the set of shocks that destroys components in the set A 
iEA 

Now let Ii be the lifetime of the ith component and T the lifetime of the system. Then 
obviously (i = 1, · · ·, n) 

Ii = min{Vi, lEEi} (1.1) 

From Barlow & Proschan (1975) it follows that for instance 

T = .max rp.in Ii, 
J=l, .. ·,r Z€Pj 

where H, · · · , Pr are the minimal path sets of the system ( E, ¢). These are minimal 
component sets each of which ensures the functioning of the system if all components in 
the set function. 

2. Main results 

We start by giving some key definitions. Remember that a (minimal) cut set, K, of the 
system (E, ¢) is a (minimal) set of components which ensures the failure of the system if 
all components in K have failed. 

Definition 1 

Let A be a cut set of the system (E, ¢) and let H C A. His a critical set for A if the 
functioning of all components in H U A c ensures the functioning of the system even if all 
components in A - H have failed, i.e. H n K i= 0 for all minimal cut sets K of the system 
(E, ¢)such that K CA. 

Since A is a cut set, obviously the failure of all components in a critical set H for A leads 
to system failure if all components in A- H have already failed. Note that a critical set 
H for A is not necessarily a minimal set. 

Definition 2 

A is a fatal set for the system (E, ¢) if and only if there exists a shock {l}E{1, · · ·, n + p} 
such that D1 is a critical set for A. In this case {l} is a critical shock for A. The set of 
critical shocks for A is denoted by C A· 

Let 
D = the set of failed components = { iEEIIi ::; T} 

Obviously, A is a fatal set if and only if P(D =A) > 0. Let 

A= {fatal sets}= {A C EIP(D =A)> 0} 

={AI,··· ,Am} 

(T, D) are the autopsy data of the system. Its distribution is given by 

GA(t) = P(T::; t,D =A) 
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with density function 
d 

9A(t) = dt GA(t) 

The latter can be considered as a likelihood function on the spaceR+ x {1, 2, · · ·, m} with 
respect to the measure 

J-L = Lebesgue measure x counting measure 

For the case of no common shocks the following result, essentially given in Meilijson (1981), 
is straightforward 

9A(t) = L II Fz(t) II Fz(t)>.j(t) (2.1) 
jECA loAcU{j} lEA-j 

The main task of this section is to generalize (2.1) to the common shock case. To help the 
reader we will all the way refer to the system in Figure 2 .1. 

Figure 2.1 Reference system subjected to 8 common shocks. 

In addition to the 11 individual shocks corresponding to the 11 components, we have 8 
common shocks. These are defined by D1 being respectively {1, 2}, {2, 3}, {1, 2, 4, 6}, { 4, 5}, 
{ 4, 10}, {8, 10}, {7, 8}, {9, 11} for l = 12, 13, 14, 15, 16, 17, 18, 19. We will consider the case 
A= {1,2,3,4,5,6,7,8,9},Ac = {10,11}. The set of critical shocks for A is CA = 
{ 4, 12, 14, 15}. 

Before proceeding further we have to explain some set manipulations. Consider a compo­
nent leE and let C be a set of shocks. Assume 

This means that the lth component cannot be destroyed by common shocks outside the 
set C. In our reference system we for instance have E9 - { 19} = { 9}. 

Consider a set of components A and a set of shocks C. Assume 

DEA-C =A 

Note that EA- Cis the set of shocks, except for the ones inC, that destroys components 
in the set A. DEA-c is the set of components destroyed by the set of shocks EA- C. If 
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DEA-c =A, it means that the components in the set A cannot be destroyed by common 
shocks, also destroying components in Ac, outside the set C. In our reference system we 
for instance have 

Now let 

DE{7,8,9}-{I7,I9} = {7, 8, 9} 

CI = EAc = set of shocks that cannot have occured before 

time t according to a first sorting level 

Let furthermore A I be a maximal set of components with respect to the following properties 

i) AI c A- U Dj 
jECA 

ii) DEAl-Cl = AI 

AI is a maximal set of components that must fail before timet according to the first sorting 
level. 

FI = EA1- ci 

BI = {lEAIIEz- CI = {l}} 
BI = Minimal sets in {B C FI- BIIDB =AI- BI} 

In our reference system we have 

ci = {1o, 11, 16, 17, 19} 

AI= {7,8, 9} 
FI = {7, 8, 9, 18} 

BI = {9} 
BI = { {18}, {7, 8}} 

The contribution to 9A(t) from the first sorting level is 

II F!(t) II Fz(t)P [ u (Vz ::; t VlEB)l 
IECl IEBl BEBl 

(2.2) 

Note that the last factor is given in a general way. In order not to derail the reader the 
corresponding computational aspects are treated in Appendix 1 focusing especially on the 
technique of recursive disjoint products inspired by Abraham (1979), Ball & Provan (1988) 
and Locks (1980, 1982). In our reference system this gives the factor 

We now turn to the second level of sorting of shocks. Let 

1-t(A) = {HI(H is a critical set for A) n (:ljECA 3 H C Dj} 

C(H) = EH- CI =set of shocks that cannot have occured before timet according 
to the second sorting level 

A(H) =A- AI U H = set of components that must fail before timet according to 
the second sorting level 
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F(H) = EA(H) - C1 U C(H) 

B(H) = {lEA(H)IEt- C1 u C(H) = {l}} 

B(H) =Minimal sets in {B c F(H)- B(H)IDB = A(H)- B(H)} 

In our reference system we have 

1i(A) = {{1,2},{1,4},{1,2,4},{1,2,6},{1,4,6},{1,2,4,6}, 

{2,4},{2,4,6},{4},{4,5},{4,6}}, 

and for instance 

0({4}) = {4, 14, 15} 

A({4}) = {1,2,3,5,6} 

F({4}) = {1,2,3,5,6,12,13} 

B({4}) = {5,6} 

8({4}) = {{12,13},{1,13},{3,12},{1,2,3}} 

The contribution to gA(t) from the second sorting level is 

L II F}(t) II Fz(t)P [ u (Vi :::; t VlEB)l 
HoH(A) loC(H) loB(H) BoB(H) 

(2.3) 

Note again the computational aspects associated with the last factor. In our reference 
system the efficient calculation of the factor corresponding to for instance B ( { 4}) is 

On the third and final level, where the critical set His given, we just have to sum up the 
failure rates of the critical shocks that can destroy all components in H. 

By combining this with (2.2) and (2.3) we end up with 

9A(t) = II F}(t) II Fz(t) p [ u (Vi :::; t VlEB)l 
lEC1 lEB1 BEB1 

X L II F}(t) II Fz(t) p [ u (Vi :::; t VlEB)l 
Ho7i(A) loC(H) loB(H) BoB(H) 

X L Aj(t) 
{jECAIHCDj} 

(2.4) can be given in a more efficient way by introducing 

£ = {L c {1, · · ·, n + p}I:3HE1i(A) 3 F(H)- B(H) = L} 
B(L) =Minimal sets in {B C LIDB = DL} 
1i(A,L) = {HE1i(A)IF(H)- B(H) = L} 

6 

(2.4) 



We then get by interchanging the order of summation 

9A(t) = II Fz(t) II Fl(t)P [ u (Vi ::; t \flEE)] 
lcC1 lcB1 BEB1 

X L p [ u (Vi ::; t \flEE)] 
Ld. BcB(L) 

(2.5) 

x L II Fz(t) II Fz(t) L Aj(t) 
Hc'H(A,L) lcC(H) lcB(H) {jcCAIHCDj} 

A further simplification of this expression is considered at the end of Appendix 1. 

Applying this on our reference system, we end up with the following expression which is 
surprisingly simple. 

9{1,2,3,4,5,6,7,s,9} ( t) = F10( t)Fn ( t)F16( t)F11( t)F19( t)Fg( t) 
x [F1s(t) + F1s(t)F7(t)Fs(t)] 
X {[F12(t)F13(t) + F12(t)F1(t)F13(t) + F13(t)F3(t)F12(t) + F12(t)F13(t)F1(t)F2(t)F3(t)] 

X F4(t)F14(t)F15(t)[F5(t)F6(t)(>..4(t) + A14(t) + )..15(t)) 
+ F6(t)F5(t)>..14(t) + F5(t)F6(t)>..15(t)] 
+ [F15( t) + F15( t)F4( t)F5( t)]F1 ( t)F2( t)F12 ( t)F13( t)F14(t)F3 (t) 
X [F6(t)(>..12(t) + )..14(t)) + F6(t)>..14(t)] 
+ [F13( t) + F13( t)F2( t)F3( t)]F1 (t)F4( t)F12( t)F14( t)F15(t)F5(t)>..14( t) 
+ F2( t)F4( t)F12( t)F13 (t)F14(t)F15(t)F3 (t)F5( t)>..14(t)} 

(2.6) 
Assuming a model where autopsy data is known to be enough for identifiability, Meilijson 
(1994) goes beyond the identifiability question and into maximum likelihood estimation of 
the parameter vector fl_ based on empirical autopsy data from a sample of several systems. 
Here a corresponding Bayesian approach is indicated. Let the prior distribution of fl_ be 
1r(fl_). Then the posterior distribution of fl_ given the autopsy data (T = t, D = A) is 
obviously 

1r(fl_jT = t, D = A) ex gA(t)1r(fl_) (2.7) 

The posterior distribution of fl_ gives through (1.1) the basis for Bayesian inference on com­
ponent lifetimes. A specific parameter may for instance be estimated by the expectation 
in its posterior marginal distribution. Taking prior knowledge into account this approach 
is especially suitable in reliability where data often are scarce and asymptotic properties 
of estimators are of less help. 

Now assume that Vi is exponentially distributed with failure rate ()1, l = 1, · · · , n + p. 
Then (T1, · · ·, Tn) has a Marshall-Olkin multivariate exponential distribution. We have 
fl_ = (01, · · ·, ()n+p)· Assume furthermore the prior distributions of ()1 to be independent 
and gamma with shape parameter a1 and scale parameter b1, l = 1, · · ·, n + p. Denote the 
corresponding p.d.f. g(01; a1, b1). For the case of no common shocks it is shown in Gasemyr 
& Natvig (1994) that 1r(fl_jT = t, D =A) is a mixture of products of gamma distributions. 
From (2.5) and (2.7) it follows that this is true also in our general case. 
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To deal with autopsy data from a sample of several systems we indicate how the updating 
works when autopsy data from a single system arrives. Assume the prior distribution of ft. 
to be given as a mixture of products of gamma distributions; i.e. 

K n+p 

1r(fl_) = L wk IT g(Oz; akz, bkz), 
k=l 1=1 

where some of the wk's may be negative. Then as in Gasemyr & Natvig (1994) it follows 
from (2.5) and (2.7) that the posterior distribution is again a mixture of products of 
gamma distributions. Hence this class of distributions, when properly defined, is the 
natural conjugate prior for ft. with respect to our multivariate exponential autopsy model. 
This seems to be a completely new generalization of the fact that the gamma distribution 
is the natural conjugate prior for the failure rate in an exponential model. 

3. A parallel system of two components subjected to a common shock 

Note that with the Bayesian approach the identifiability problem represents no obstacle. 
To illustrate this in detail we now consider a parallel system of two components subjected 
to a common shock. From the references in Section 1 it is well known that the lifetime 
distributions of the two components are unidentifiable even under independence. This is 
obvious since, under the autopsy model, one in effect observes only the system failure time, 
which has the distribution function F1(t)F2(t), from which it is impossible to single out 
F1(t) and F2(t). 

We now make the same assumptions as at the end of Section 2 by restricting to the 
Marshall-Olkin multivariate exponential distribution. ft.= (01, 02 , 03) and the prior distri­
butions of 01 are assumed independent and gamma distributed with shape parameter az 
and scale parameter b1, l = 1, 2, 3. Obviously T = max(T1 , T2) and the only fatal set is 
A= {1, 2}. Introduce 

Then 

Bi(t) ={Vi = t, Vj ~ t, 113 > t} i = 1, 2; j # i 
Bi+2 (t) ={Vi > t, Vj ~ t, 113 = t} i = 1, 2; j # i 

B5(t) ={Vi > t, V2 > t, 113 = t} 
Pi(t) = P(Bi(t)\T = t) , i = 1, 2, 3, 4, 5 

5 

{T = t} = U Bi(t), 
i=l 

where the events Bi(t), i = 1, 2, 3, 4, 5 are a.s. disjoint. The posterior distribution of ft., 
given the autopsy data, T = t, can now be written as 

5 

7r(fl_\T = t) = LPi(t)7r(fl_\Bi(t)) 
i=l 

From (2.4) noting that H( {1, 2}) = { {1 }, {2}, {1, 2} }, we get 

9{1,2}(t) = e-(01+0a)t(1- e-e2t)(OI + 83) 

+ e-(02+0a)t(1 _ e-e1t)(02 + o3 ) + e-(01+02+0a)to3 
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By applying (2. 7) and (3.2) this gives after rearranging 

7r(~IT = t) ex: [0Ie-(el+03)t(1- e-e2t) 

+ Bze-(B2+03)t(1- e-elt) + e3e-(el+03)t(1- e-e2t) 

+ 03e-(B2+03)t(1 _ e-B1t) + 83e-(B1+02+03)t) 

3 
x II bf;Of;-le-b;B; /f( ai) 

i=l 

= (ai/(bl + t))(bi/(bl + t))a1(b3/(b3 + t))a3g(Ol; a1 + 1, b1 + t)g(03; a3, b3 + t) 
X [g(Bz; az, bz)- (bz/(bz + t)t2g(Bz; az, bz + t)] 
+ (az/(bz + t))(bz/(bz + t))a2(b3/(b3 + t))a3g(Bz; a2 + 1, b2 + t)g(03; a3, b3 + t) 
X [g(01; a1, b1)- (bi/(bl + t))a1g(Ol; a1, b1 + t)] 
+ (a3j(b3 + t))(b3j(b3 + t))a3 (bi/(bl + t))a1g(03; a3 + 1, b3 + t)g(01; all b1 + t) 
X [g(Bz; az, bz)- (bz/(bz + t))a2g(Bz; az, b2 + t)] 
+ (a3j(b3 + t))(b3j(b3 + t))a3 (bz/(bz + t))a2g(03; a3 + 1, b3 + t)g(Bz; az, b2 + t) 
x [g(01; a1, b1)- (bi/(bl + t)t1g(OI; a1, b1 + t)] 
+ (a3j(b3 + t))(b3j(b3 + t))a3 (bi/(bl + t))a1(bz/(bz + t))a2 

x g(03; a3 + 1, b3 + t)g(01; a1, b1 + t)g(Oz; az, bz + t) 

From (3.1) we then get (i = 1,2;j =/= i) 

7r(~IBi(t)) = g(Oi; ai + 1, bi + t)g(03; a3, b3 + t) 
X [g(Oj; aj, bj)- (bj/(bj + t))ajg(Oj; aj, bj + t)]/[1- (bj/(bj + t))aj] 

7r(~IBHz(t)) = g(Oi; ai, bi + t)g(03; a3 + 1, b3 + t) 
X [g(Oj; aj, bj)- (bj/(bj + t)tjg(Oj; aj, bj + t)]/[1- (bj/(bj + t))aj] (3.3) 

7r(~IB5(t)) = g(OI; a1, b1 + t)g(Bz; az, bz + t)g(03; a3 + 1, b3 + t) 
5 

Pi(t) = ai(t)/ L ak(t), 
k=l 

where (i = 1, 2;j =/= i) 

Now 

Hence 

ai(t) = (adbi)(bd(bi + t))a;+l(b3j(b3 + t))a3[1- (bj/(bj + t))aj] 

ai+z(t) = (a3jb3)(bd(bi + t))a;(b3j(b3 + t))a3+1[1- (bj/(bj + t))aj] 

a5(t) = (a3jb3)(bi/(b1 + t))a1(bz/(bz + t))a2 (b3j(b3 + t))a3+1 

limpi(t) = 0 , i = 1, 2, 3, 4 limp5(t) = 1, 
t-->0 t-->0 
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and accordingly 

This is intuitively obvious since the shape parameter a3 is added by 1 corresponding to a 
common shock, whereas all scale parameters are unchanged due to zero time at test. 

It easily follows from (3.3) that (i = 1, 2, 3, 4) 

lim Ps ( t) /Pi ( t) = 0 
t-H)Q 

Assume without loss of generality that a2 > a1. As in Gasemyr & Natvig (1994) we get 
(i=2,4) 

Now since 

it follows that for a2 > a1 

By (3.1) and the expressions for 1r(fl.IBi(t)), i = 1, 3 in (3.3) the probability measure cor­
responding to 1r(01, 02, 03 IT = t) converges weakly to the product measure of the Dirac 
measures at 0, 80 (01) and 80 (03), and the measure corresponding to g(02 ; a2, b2). For the 
second individual shock this is intuitively obvious since we just know that the time until it 
occurs is less than infinity (lim(p2(t) + p4(t) + p5(t)) = 0) and hence our prior assessment 

t-+oo 
is unchanged. 

Now let a2 > a1, b2 < b1. Here the prior mean, ad b1, of 01 is less than the prior mean, 
a2/b2, of 02. Consider a vector, T, of independent system lifetimes. We shall show that 

i.e. 02 is posterior stochastically larger than 01. As a special case this is also true a priori 
and the stochastic order is preserved. The argument is completely parallel to the one in 
Gasemyr & Natvig (1994). 

Denote the likelihood function by L(fl.; T). This is obviously symmetric in 01 and 02 since 
this is the case for g{1,2}(t) given by (3.2) and since system lifetimes are independent. Define 
(i = 1,2) 

We now have 
1r( 01 2: Oo IT) - 1r( 02 2: Oo IT) ex: 

j L(fl.; T)[J(01)- J(02)]1r(01, 02, 03)d01d(}2d(}3 
0<6z<61<oo 

+ j L(fl.; T)[J(01)- J(02)]1r(01, 02, 03)d01d(}2d(}3 
0<61<6z<oo 
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By interchanging ()1 and ()2 in the last integral using the symmetry of L(fl_; T) this equals 

j L(fl_; T)[I(B1)- I(B2)][1r(Bb B2, B3)- 1r(B2, B1, B3)]dB1d()2d()3 
0<02<Ih<oo 

ex: j L(fl_; T) [I( ()1) _ I ( ()2)] ( ()1 ()2)a1-1e-co1 +02)b2 

0<02<01<00 

X [()~2-a1e-(b1-b2)01 _ ()~2-a1e-(b1-b2)e2){)~3-1e-b303d()1 d()2 d()3 < 0 

Note that the argument does not depend on the values of the parameters a3 and b3 . 

Let us now return to the case of a general prior distribution 1r(fl._). In Gasemyr & Natvig 
(1994) for the case with no common shock, assuming ()1 and ()2 to be prior independent, it 
is shown that they are posterior negatively correlated. It is demonstrated here that this is 
not necessarily the case when a common shock is added, illustrating the consequences of 
dependence in reliability. 

From (3.1) assuming B1 , B2 , ()3 to be prior independent 

2 000000 

Cov(B1,B2IT = t) = ~Pi(t) j j f[B1- E(B1IT = t)][B2- E(B2IT = t)] 
2::1 0 0 0 
]1-1 

X 7r(Bilvt = t)1r(BjiVj :::; t)7r(B3IV3 > t)d()1d()2d()3 
2 000000 

+ ~Pi+2(t) j j j [B1- E(B1IT = t)][B2- E(B2IT = t)] 
2::1 0 0 0 
Jr' 

X 7r(Bilvt > t)1r(BjiVj:::; t)7r(B3IV3 = t)d()1d()2d()3 
00 00 00 

+ P5(t) j j j [B1- E(B1IT = t)][B2- E(B2IT = t)] (3.4) 
0 0 0 

X 7r(B11Vi > t)7r(B21V2 > t)7r(B3IV3 = t)d()1d()2d()3 
2 

= LPi(t)[E(BiiVi = t)- E(BiiT = t)][E(BjiVj:::; t)- E(BjiT = t)] 
i=1 
jfi 

2 

+ LPi+2(t)[E(BiiVi > t)- E(BiiT = t)][E(BjiVj:::; t)- E(BjiT = t)] 
i=1 
#i 

By noting that (i = 1, 2;j # i) 

E(BiiT = t) = Pi(t)E(Bilvt = t) + (pj(t) + P}+2(t))E(Bilvt:::; t) 
+ (PH2(t) + P5(t))E(Bilvt > t) 

5 

LPi(t) = 1, 
i=1 
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(3.6) 



it is shown in Appendix 2 that 

Cov(81, 82IT = t) = 
- [E(81IVi:::; t)- E(81IVi = t))[E(82IV2:::; t)- E(82IV2 = t)]p1(t)p2(t) 

+ [E(81IVi = t)- E(81IVi > t)][E(82IV2:::; t)- E(82IV2 > t)]PI(t)(P4(t) + P5(t)) 

+ [E(81IVi:::; t)- E(81IVi > t))[E(82IV2 = t)- E(82IV2 > t)]p2(t)(p3(t) + P5(t)) 

- [E(81IV1:::; t)- E(81IVi > t))[E(82IV2:::; t)- E(82IV2 > t)](p1(t)p4(t) 

+ P2(t)p3(t) + p3(t)p4(t)) 

(3.7) 

Note that from Barlow & Proschan (1985) we have "under mild regularity conditions" that 
E(8iiVi) is nonincreasing in Vi, i = 1, 2, 3. 

Now specialize 1r(8i) = g(8i; ai, bi), i = 1, 2, 3. It is then shown in Appendix 2 that (3.7) 
gives 

Cov(81, 82IT = t) ex (bi/(bl + t))a1+1(b2/(b2 + t))a2+l(b3j(b3 + t)) 2a3 (ala2)/(bib~) 

X { -(bi/(bl + t))(b2/(b2 + t))[(ai/bi)t- 1 + (bi/(bl + t))a1)[(a2/b2)t- 1 + (b2/(b2 + t))a2] 

+ (a3tj(b3 + t))[bi/(bl + t) + b2/(b2 + t)- t(ai/(bl + t) + a2/(b2 + t) + a3j(b3 + t))]} 
(3.8) 

By choosing t = 1, a1 = a2 = 1, a3 = 6, b1 = b2 = b3 = 5, we get as promised 

Note that in our choice of parameters a3/b3 = 6/5, adbi = 1/5 i = 1, 2 giving a much 
higher prior mean of 83 than of 81 and 82. 
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Appendix 1 

The first part of this appendix is concerned with the computation of the set A1 • Also we 
consider partitioning of A 1 - B 1, leading to a corresponding factorization of the expression 
for 9A(t). Similar factorizations result from treating the sets A(H)- B(H) and DL in the 
same way. It turns out that both questions can be handled by focusing on minimality 
rather than maximality. 
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It is convenient to introduce some new notation. For arbitrary A' c E, C c {1, · · ·, n + p} 
define 

MA',C = the smallest set of components M containing A' such that DEM-c = M (A.1) 

Note that this is well defined since, if A' C Mi and DEM.-c = Mi, i = 1, 2, then also 
' DEM-c = M forM= M1 n M2. MA',C can easily be computed as follows: Put M 1 =A' 

and recursively Mi+l = DEM-c, i = 1, 2, · · ·. Then MA',C = Mi for the first i such that 
' Mi+1 =Mi. Now it is easily seen that 

Al = A - M u Dj,Cl (A.2) 
j<CA 

If A', C introduced before (A.1) satisfy DEA'-c =A', define 

MA',C = Minimal sets in { M C A'IDEM-c = M} (A.3) 

MA',C can easily be found by starting with an arbitrary component hEA' and forming 
M1 = M{h},c, then choosing l2EA'- M 1 etc. 

For C C {1, · · ·, n + p} and Mas in (A.3), define 

BM,c = Minimal sets in {E C {1, · · · ,n + p}- CIDB = M} (A.4) 

BM,c can be found either by inspection or by for instance the minimal path-to-minimal cut 
inversion algorithm of Shier & Whited (1985), with the minimal path sets {E1 - CllEM} 
as input. 

Now (2.2) can be factorized as follows 

P[ U (Vz :::; t \flEE)] = II P[ U (Vz :::; t \flEE)] (A.5) 

Similar factorizations of (2.3) and (2.5) corresponding to B(H) and B(L) can be done 
according to the sets in MA(H)-B(H),c1uc(H) and MnL.{I,. .. ,n+p}-L respectively. 

Next, we will consider the problem of computing an expression of the form 

P[ U (Vz :::; t \flEE)] (A.6) 
BEB 

For instance, in our reference example we need to compute (A.6) with B = B1 = { {18}, 
{7, 8} }. We want to obtain an expression that is as structurally simple as possible, keep­
ing the number of summands low. Questions concerning algorithmic implementations and 
computational complexity will not be considered. The computation is essentially an adap­
tation of the disjoint product algorithm described in Abraham (1979) and Locks (1980, 
1982). We denote by FB(t) the event that Vz :::; t for alll E E, and let E 1 , · · ·, Er be the 
sets in B. The relevant event can then be written as 

r 

U FB(t) = U [FBk(t) n( n FB;(t)c)], (A.7) 
BEB k=I l~i<k 
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where the union on the right hand side is disjoint (see e.g. Locks (1982), theorem 1). We 
want to write each set in this union, and hence the entire event, as a disjoint union of 
simple events, i.e. in the form 

v 

w = U[( n (Vi> t)) n( n (Vi::; t))J (A.8) 
i=l !EP; lEQ; 

where the sets !{, Qi satisfy (I{ n Qj) U (Pj n Qi) =I= 0, i =I= j to ensure disjointness. We 
associate with (A.8) the polynomial 

v 

f(y) = L(IT Yz)( IT Yz) (A.9) 
i=l !EP; lEQ; 

defined for (y E { 0, 1} n+p (Y = 1 - y by definition). Then multiplication of polynomials 
corresponds to intersection of events, and for disjoint events, addition corresponds to union. 
Putting Yi = I(Vi > t) we obtain 

P(W) = Ef(Y) = j(F1(t), · · ·, Fn+p(t)) (A.10) 

(extending the definition off to [0, 1]n+P). To write (A.6) in the form (A.10) note first 
that FBk(t) is represented by the polynomial I1 f}z, whereas FB;(t)c is represented by 

lEEk 

L Yi( IT Yz) (A.ll) 
jEB; lEB;,l<j 

(see Locks (1982), theorem 2). Using these building blocks, a polynomial corresponding 
to (A7) may be constructed. The resulting expression may, however, be considerably 
simplified. First, it can be seen that in the term corresponding to FBk(t) n (n1:::;i<kFB;(t)c) 
(A.ll) may be replaced by 

(A.12) 

(confer Abraham (1979), theorem 1, b- ii). Moreover, if for i 1 , i 2 < k we have Bi1 - Bk C 
Bi2 - Bk, then the term corresponding to i 2 may be dropped, since {Vi > t} for at least one 
l E Bi1 - Bk implies {Vi > t} for at least one l E Bi2 - Bk (confer the argument preceding ( 4) 
in Ball & Provan (1985)). Hence, we only need the minimal sets among the sets Bi- Bk. 
Denote the corresponding set of integers i < k by Mk. Note also that the ordering of the 
shocks in Bi- Bk can be changed arbitrarily without changing the corresponding event, 
but with a possible influence on the resulting polynomial. For i E Mk define an ordering 
1ri,k on Bi- Bk, i.e. a one-to-one function from Bi- Bk onto {1, 2, ···,lEi- Bkl}. We then 
have that (A. 7) is represented by the polynomial 

r 

fs(Y) = L(Il Yz)( IT ( L Yi( IT Yz))) (A.13) 

Combining (A.10) and (A.13) finally gives the desired expression. 

The number of summands in (A.13) is potentially as large as L:~=l TiiEMk IBi-Bkl· However, 
in practise the number of summands may be considerably smaller due to the orthogonality 
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relation YzYz = 0. For instance, (YI +Y1Y2)(y1 +YIY3) = Y1 +fJ1Y2Y3· Changing the ordering, 
we see that the same event is represented by (y2+Y2Y1)(y3+Y3Y1) = Y2Y3+Y1Y2Y3+Y1Y2 which 
illustrates the usefulness of being able to change the ordering of Bi-Bj. It is also important 
to choose a convenient ordering of Bin the outset. In particular, it may be possible to order 
the sets in Bin such a way that IBi-Bkl = 1 for all i E Mk, k = 1, 2, · · ·, r. This corresponds 
to a shelling in the sense of Ball & Provan (1985) (and to shellability of B), and leads to 
r = IBI summands in (A.13). In the reference example, with B = { {18}, {7, 8} }, we obtain 
a shelling by putting B1 = {18}, B2 = {7, 8}, resulting in the term F18 (t)+F18(t)F7(t)Fs(t). 
In general, it pays to start with cut sets with few shocks, i.e. containing many large shocks. 
A case by case inspection shows that if B is of the form BM,C (confer (A.4)) and if M has 
at most three components, then B is shellable. However, with IMI = 4, this is no longer 
true. 

Alternatively, one may use a disjoint product procedure based on minimal path sets rather 
than minimal cut sets (this is the procedure applied in the references). Examples indicate 
that shellability is then obtained more rarely. On the other hand, the number of minimal 
path sets is usually smaller, and the number of summands in the expression corresponding 
to (A.13) will therefore often be no larger. Another advantage is that it is easier to find 
the minimal path sets. In fact, the minimal path sets corresponding to the minimal cut 
sets in BM,c are simply {Ez- GllcM}. 

Finally, we show how different contributions to (2.5) can be grouped together to obtain a 
further simplification of the expression for 9A(t). Before going into details, it is worthwhile 
to give a few remarks concerning the set £. Note first that for each L E £ if Dz C DL, 
then lEL. Furthermore, due to the subtraction of B(H) in the definition of£ if iEDL, there 
exists a common shock lEL such that iEDz. It follows that L is uniquely characterized by 
Ln{n+1,···,n+p}. 

The following simplification of (2.5) is obtained by grouping together critical sets belonging 
to the same L E £ and the same critical shock. For L E £ define 

J(L) = {jECAIDj- DL is a critical set n F(Dj- DL)- B(Dj- DL) = L} 

Furthermore, for j,L such that jEJ(L) define 

1i' (j, L) = { H c Dj - DLIH is a critical set n F(H) - B(H) = L} 

1i (j, L) = Minimal sets in 'H' (j, L) 

(A.14) 

(A.15) 

(A.16) 

Clearly, H' E 1i'(j, L) if and only if H' C Dj- DL and there exists HE 'H(j, L) such that 
H C H'. Hence u n(vz>t)= u n(vz>t) 

HE1i(j,L) lEH HE1i1(j,L) lEH 

u rrn(vz > t)J nr n (Vz::; t)JJ, 
(A.17) 

HE1i1(j,L) lEH 

the last union being a disjoint representation. 

Note also that since all sets H E 'H'(j, L) by (A.15) give rise to the same F(H) n {n + 
1, · · ·, n + p }, due to the relation between F(H) and C(H) they also must give rise to the 

16 



same C (H) n { n + 1, · · · , n + p}. Moreover, this set only depends on L; i.e. is independent 
of j. Denote this common value by C(L). Furthermore, define B(j, L) = A-A1 UDL UDj. 
Now the last part of (2.5) can be expressed in terms of the minimal sets H(j, L) as follows 

L II Fz(t) II Fl(t) L Aj(t) 
HE?t(A,L) lcC(H) lcB(H) {jcCAIHCDj} 

= II Fz(t) L Aj(t) II Fl(t) L II Fz(t) II Fl(t) (A.18) 
lcC(L) jc.:J(L) lcB(j,L) HE?t1(j,L) lcH lEDj-DL-H 

= II A(t) 2:: Aj(t) II Fl(t)P[ u ncv; > t)], 
lcC(L) jc.:J(L) lcB(j,L) HE?t(j,L) lcH 

having applied (A.17). The factor in brackets can be computed by a disjoint product 
procedure based on minimal path sets. 

In our reference system we have for instance for L = 0, J(0) = 14, 1t'(14, 0) = { {1, 2, 4}, 

{1, 2, 4, 6}, {2, 4}, {2, 4, 6} }, 1t(14, 0) = {2, 4}, C(0) = {12, 13, 14, 15}, B(14, 0) = {3, 5}. 
This accounts for the last expression in (2.6). In this system H(j, L) always consists of a sin­
gle element, the other possibilities being 1t(14, {2, 3, 13}) = {1, 4}, H(j, {1, 2, 3, 12, 13}) = 
{ 4} for j = 4, 14, 15, H(j, { 4, 5, 15}) = {1, 2} for j = 12, 14. 

Appendix 2 

Here we give the details first in the deduction of (3.7) from (3.4), (3.5) and (3.6) and then 
(3.8) from (3.7). 

From (3.4) and (3.5) we get 

Cov(01, 02IT = t) 
= PI(t)[(1- PI(t))E(OIIVi = t)- (p2(t) + P4(t))E(OIIV::::; t)- (Pa(t) + P5(t))E(OIIVi > t)] 

x [(1- PI(t)- Pa(t))E(02IV2::::; t)- P2(t)E(02IV2 = t)- (p4(t) + p5(t))E(02IV2 > t)] 
+ P2(t)[(1- P2(t))E(02IV2 = t)- ((PI(t) + Pa(t))E(02IV2::::; t)- (p4(t) + P5(t))E(02IV2 > t)],~ 
X [(1- P2(t)- P4(t))E(OIIVi::::; t)- PI(t)E(OIIVi = t)- (Pa(t) + P5(t))E(OIIVi > t)] ', 

+ Pa(t)[1- Pa(t)- P5(t))E(01IVi > t)- PI(t)E(OIIVi = t)- (p2(t) + P4(t))E(OIIVi :S t)] 
x [(1- PI(t)- Pa(t))E(02IV2::::; t)- P2(t)E(02IV2 = t)- (p4(t) + P5(t))E(02IV2 > t)] 
+ P4(t)[(1- P4(t)- P5(t))E(02IV2 > t)- P2(t)E(02IV2 = t)- (PI(t) + Pa(t))E(02IV2 :S t)] 

x [(1- P2(t)- P4(t))E(OIIVi ::::; t)- PI(t)E(OIIVi = t)- (Pa(t) + P5(t))E(OIIVi > t)] 
+ P5(t)[(1- Pa(t)- P5(t))E(01IVi > t)- PI(t)E(OIIVi = t)- (p2(t) + P4(t))E(OIIVi :S t)] 

x [(1- P4(t)- P5(t))E(02IV2 > t)- P2(t)E(02IV2 = t)- (PI(t) + Pa(t))E(02IV2 :S t)] 
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After some tedious but straightforward algebra applying (3.6) this can be rewritten as 

E({JriVi = t)E(B2IV2 :S t)[1JI(t)(P2(t) + P4(t) + P5(t))] 
+ E(01IVi = t)E(B2IV2 = t)[-p1(t)p2(t)] 
+ E(01IVi = t)E(02IV2 > t)[-p1(t)(p4(t) + P5(t))] 
+ E(01IVi :S t)E(B2IV2 :S t)[-(PI(t) + p3(t))(p2(t) +p4(t))] 
+ E(01IV1 :S t)E(02IV2 = t)[p2(t)(p1(t) + P3(t) + P5(t))] 
+ E(01IVi :S t)E(B2IV2 > t)[p4(t)(p1(t) + P3(t))- P2(t)p5(t)] 
+ E(OIIVi > t)E(021V2::; t)[p3(t)(P2(t) + P4(t))- PI(t)p5(t)] 
+ E(B1IVi > t)E(B2IV2 = t)[-p2(t)(p3(t) + P5(t))] 
+ E(B1IVi > t)E(B2IV2 > t)[p5(t)(p1(t) + P2(t))- p3(t)p4(t)], 

which leads to (3.7). 

Now specialize 1r(Oi) = g(Oi; ai, bi), i = 1, 2, 3. Since 

we get 

Hence 

1r(OiiVi :S t) oc (1- e-e;t)g(Oi; ai, bi) 

1r(OiiVi = t) oc Oie-e;tg(Oi; ai, bi) 

1r(OiiVi > t) oc e-e;tg(Oi; ai, bi), 

1r(OiiVi :S t) = [g(Oi; ai, bi)- (bi/(bi + t))a;g(Oi; ai, bi + t)] 
/[1- (bi/(bi + t))a;] 
1r(OiiVi = t) = g(Oi; ai + 1, bi + t) 
1r(BiiVi > t) = g(Oi; ai, bi + t). 

E(OiiVi :S t) = (ai/bi)[1- (bi/(bi + t))a;+l]/[1- (bi/(bi + t))a;] 
E(OiiVi = t) = (ai + 1)/(bi + t) 
E(OiiVi > t) = ai/(bi + t). 

Inserting this into (3.7) applying (3.3) we get 

5 

Cov(01, B2IT = t) = (2::C~it2 

i=l 
{ -(a1a2/(b1b2))(bi/(b1 + t))a1+1(b2/(b2 + t))a2+1(b3j(b3 + t))2a3 

X [(ai/bi)(1- (bi/(bi + t))a1+1)- ((a1 + 1)/(bl + t))(1- (bi/(bi + t))a1)] 

X [(a2/b2)(1- (b2/(b2 + t))a2+1)- ((a2 + 1)/(b2 + t))(1- (b2/(b2 + t))a2 )] 

+ (ala3/(blb3))(bi/(bl + t))a1+1(b2/(b2 + t))a2 (b3j(b3 + t))2a3+1 

X [(a2/b2)(1- (b2/(b2 + t)t2+1)- (a2/(b2 + t))(1- (b2/(b2 + t))a2 )]/(bl + t) 
+ (a2a3j(b2b3))(bi/(b1 + t))a1 (b2/(b2 + t))a2+1(b3j(b3 + t))2a3+1 
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X [(ai/bi)(l- (bi/(bl + t))a1+1)- (ai/(bl + t))(l- (bi/(bl + t))a1)]/(b2 + t) 
- (a3jb3)(bi/(b1 + t))a1 (b2/(b2 + t))a2 (b3j(b3 + t))2a3+1[ai/(bl + t) + a2j(b2 + t) 
+ a3j(b3 + t)] X [(ai/bi)(l- (bi/(bl + t))a1+1)- (ai/(bl + t))(l- (bi/(bl + t))a1)] 

X [(a2/b2)(l- (b2/(b2 + t))a2+1)- (a2j(b2 + t))(l- (b2/(b2 + t))a2 )]} 

5 

= (L: ait2(bi/(bl + t) )a1 (b2/ (b2 + t))a2 (b3/ (b3 + t))2a3 

i=l 
X { -(a1a2/(b1b2))(bi/(b1 + t))(b2j(b2 + t))[(a1t- b1)/(b1(b1 + t)) + (bi/(bl + t))a1+1 /b1] 

X [( a2t- b2) / (b2(b2 + t)) + (b2/ (b2 + t) )a2+1 /b2] 
+ (a1a3/(b1b3))(bi/(b1 + t))(b3j(b3 + t))a2tj((b1 + t)b2(b2 + t)) 
+ (a2a3j(b2b3))(b2/(b2 + t))(b3j(b3 + t))a1tj((b1 + t)b1(b2 + t)) 
- (a3j(b3 + t))[ai/(bi + t) + a2/(b2 + t) + a3j(b3 + t)](a1a2t2 j(b1b2(b1 + t)(b2 + t))} 

This readily reduces to ( 3. 8). 
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