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The main purpose of this study is to test the hypothesis that, with appropriate structures, increasing
model complexity with the same model concepts would lead to an increase in the model efficiency in
simulating either runoff or internal variables. Five variants of the Hydrologiska Byråns
Vattenbalansavdelning (HBV) model, i.e. a lumped model (LWhole), a semi-distributed model (SBand),
a grid-model without routing (GRZero), a grid-model with hillslope routing (GROne), and a grid-model
with both hillslope and channel routing (GRTwo) are compared in a cold and mountainous catchment
in central southern Norway. The five models are compared with respects to (1) runoff simulation at
the catchment outlet and the interior points, and (2) simulations of internal variables, i.e. evapotranspi-
ration, snow water equivalent and groundwater depth. The results show that the models with higher
complexity can improve the runoff simulation both at the catchment outlet and the interior points.
However, there is no superiority of complex grid-models over simple grid-models in reproducing internal
variables in this study.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The fundamental work of hydrologists is to quantify relation-
ship of precipitation over a catchment area and resulting runoff.
In the last three decades, a large amount of hydrological models
have been published to describe this relationship (Singh and
Woolhiser, 2002). These models are suited to simulate runoff at
certain spatial and temporal scales (Praskievicz and Chang,
2009). Basically, the differences among the models come from
three aspects (Butts et al., 2004): (1) assumptions about factors
influencing hydrology or response functions, (2) numerical solu-
tions, and (3) spatial discretisation, such as sub-catchments or
square grids.

There has been an evident trend to develop models with high
degree of complexity (Mayr et al., 2013; Perrin et al., 2001). The
development of hydrological models has gone through three
stages, from input–output black-box models, through lumped con-
ceptual models, to physically-based and/or conceptual distributed
models. The physically-based distributed models tend to represent
physical processes by partial differential equations at a fine spatial
resolution. To develop models with high degree of physical
dependence and structural complexity is long-sighted and useful
in terms of knowledge gained about hydrological processes from
catchment studies. However, it would lead to increasing difficulty
in estimating parameters and large parameter uncertainty (Butts
et al., 2004).

Hydrologists show high interest in comparing hydrological
models of varying complexity. The conclusions are not consistent
due to many reasons, for example, the models used in the compar-
isons, data quality and catchment characteristics, etc. However, if
the models differ in the assumptions about factors influencing
hydrology or the runoff process, results of comparisons are deter-
mined by the basins used.

To focus on the model itself, we assume that the responses of
runoff to areal mean precipitation are described by the model con-
cepts, which can be described by a lumped model. The model com-
plexity exists in the way that water balance components are
presented. For example, the lumped HBV model formulates all basic
concepts of the HBV model. The semi-distributed models with ele-
vation bands or sub-catchments and the grid-distributed models
are of a higher degree of model complexity. The routing procedure,
such as the Muskingum method also adds an additional degree of
complexity, because it links the model elements to each other.

This research examines if increasing degree of model complex-
ity improves the model performance and how much. A review of
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the scientific literature did not provide a clear guidance on this
issue. In 2004, the Distributed Model Intercomparison Project
(DMIP) compared distributed and lumped versions of twelve mod-
els with radar precipitation data at a 4 km spatial resolution and
hourly temporal resolution (Smith et al., 2004). Twenty one events
in eight catchments with areas ranging from 65 to 2484 km2 were
selected in the comparative studies. This project results showed
that overall, lumped models outperformed distributed models in
terms of discharge simulation, and some distributed models
showed comparable results to lumped models in many basins
(Reed et al., 2004). The results depended on the basin’s shape, ori-
entation, soil and climatic characteristics (Butts et al., 2004; Reed
et al., 2004).

Different results are reported by other studies. Atkinson et al.
(2003) demonstrated that the best simulation of runoff was
obtained by a fully distributed model in a small catchment at an
hourly time step. Han et al. (2014) and Yan and Zhang (2014)
respectively examined effects of watershed subdivision on mod-
elling runoff. They found that with a larger number of
sub-catchments, the model gave a better performance and there
was a threshold level, beyond which no significant improvements
could be obtained with increasing number of sub-catchments.
This confirms the results by comparing two watershed subdivision
schemes by Varado et al. (2006). Michaud and Sorooshian (1994)
compared the lumped and distributed Soil Conservation Service
(CSC) models on a semi-arid catchment of 150 km2 and the results
showed that neither of the models could accurately simulate the
peak flows or runoff volumes from 24 sever thunderstorms at an
one-minute time step. Using the same model, Boyle et al. (2001)
found improvements were related to spatial distribution of model
input and streamflow routing and no additional benefits could be
obtained when the number of watersheds were more than three.

A well-known way for a better model comparison is involving
internal points and state variables in model evaluation (Lindström
et al., 1997; Uhlenbrook et al., 1999; Vaché and McDonnell,
2006). Alley (1984) was probably the first to notice that models
were similar in runoff simulation while substantial differences
existed in other variables. Furthermore, Jiang et al. (2007) found
that models differed least in discharge among simulations of dis-
charge, actual evapotranspiration and soil moisture. Varado et al.
(2006) applied a conceptual model on the Donga catchment
(Benin), and found that the model was only good at simulating run-
off, but not at reproducing groundwater table. Vaché and
McDonnell (2006) showed that, among the models they evaluated,
only the most complex model successfully reproduced both dis-
charge dynamics and residence time. The results of their research
indicate that the best objective function value in discharge are
obtained during calibration, but with sacrifice of other hydrological
variables, where the error resides. In order to achieve deliberate
conclusions, comparisons including other hydrological measure-
ments, such as evapotranspiration and groundwater should be
adopted (Bookhagen and Burbank, 2010; Lindström et al., 1997;
Wagener et al., 2001). This multi-variable comparison will not only
contribute to an improved understanding of hydrology processes,
but also provide guidance for developing hydrological models.

The aim of this paper is to test the hypothesis that, with appro-
priate way of organising, increasing complexity leads to an
increase in model efficiency of simulating either runoff or other
internal variables. A conceptual rainfall–runoff model, the HBV
model is selected and modified to five model variants of different
complexities, i.e. a lumped model (LWhole), a semi-distributed
model with ten elevation bands (SBand), a simple grid-model
(GRZero), a grid-model with hillslope routing (GROne), and a
grid-model with both hillslope routing and river channel routing
(GRTwo). The selection of the models is threefold. Firstly, LWhole
is the most widely used HBV model variant for scientific and
operational purposes globally. Secondly, SBand is currently used
in the Norwegian Water Resources and Energy Directorate (NVE),
which is responsible for flood forecasting and water resources
administration in Norway. Thirdly, three distributed models are
included in the sense of having a higher level of physical realism.
The spatial variability and how the runoff routes to the catchment
outlet are described in the three grid distributed models at various
degrees of complexity.

Lindström et al. (1997) made the first attempt to make a dis-
tributed version of the HBV model. They used a typical resolution
of 40 km2 of sub-catchments and each sub-catchment was further
divided into elevation bands. This modification significantly
improved model performance. In the late 1990s, Uhlenbrook
et al. (1999) and Krysanova et al. (1999) respectively compared
the effects of spatial distribution on runoff simulation.
Uhlenbrook et al. (1999) compared three model variants with dif-
ferent number of elevation bands and land use zone and various
runoff generation conceptualisation, on a small mountainous
catchment of 40 km2 in south western Germany. They concluded
that the models considering more spatial variability were better
than the lumped models when separately computing of the upper
zone storage for each model unit. Krysanova et al. (1999) applied
the semi-distributed HBV model of elevation bands to a large
German catchment of 96,000 km2. The model with
sub-catchments enabled better runoff simulation than without
sub-catchment division. However, Das et al. (2008) compared four
versions of the HBV model and found that semi-distributed and
semi-lumped (a lumped model for each sub-catchment) outper-
formed the distributed (1 km regular grid) and lumped model
structures. The authors suspected that the input data did not
reflect the actual spatial variability. The study by Wrede et al.
(2013) in a Swedish lowland catchment of 2000 km2 using the dis-
tributed model (250 m regular grid) also showed that the quality of
input data was a limitation factor for model performance. For mod-
elling other variables, Mayr et al. (2013) reported that involving
glacier mass balance in calibration gave a better prediction in the
glacier mass but a slightly worsened discharge prediction.
Moreover, they revealed that incorrect snow and ice simulations
did not necessarily affect the quality of the runoff simulation.
2. Study area and data

2.1. Study area

The Norsfoss catchment is located in upstream of the longest
Norwegian river, the Glomma River in central southern Norway
(Fig. 1). This catchment covers an area of 18,932 km2. The mean
altitude is 732 m above the mean sea level (m amsl) ranging from
147 to 2170 m amsl, and approximately 26% of the area is above
the potential tree level. The mean slope is 6.7� with a range from
0.0� to 73.2�. Climate varies along the river from upper mountain
regions in north to lowlands in south. Additionally, the
north-western part is characterised by lower temperature, lower
precipitation and longer snow-cover period than the lowland area.
Annual precipitation is 849 mm/year, and yearly mean air temper-
ature is �0.62 �C based on the period from 1961 to 1990 with
10.68 �C in July and �11.48 �C in January. More than 60% of the
catchment area is covered by forest and marsh, and approximately
20% is covered by bedrock. Floods are usually associated with snow
melt, heavy rainfall or their combination (L’Abée-Lund et al., 2009).
2.2. Geography data and processing

Data of elevation, slope and land covers are provided by the
Norwegian Mapping Authority, which bears nationwide



Fig. 1. Location and Digital Elevation Models (DEMs) of the Norsfoss catchment, Norway. The locations of snow pillows, groundwater stations and discharge stations are also
shown; more detailed information is given in Table 1. Note that only the discharge at the catchment outlet (the lower right corner discharge station) is used in calibration.
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responsibility for geographical information. These datasets are at a
spatial resolution of 25 m regular grid.

For elevation and slope, the original datasets are aggregated at
1 km. There are eight land cover types, i.e. lake, bog, forest, bed-
rock, heather, alpine forest, open land and glacier. Their fractions
in each 1 km grid are computed from their respective numbers of
small grids at 25 m within 1 km grid.

The drainage networks delineation is constructed in three steps.
Firstly, the DEMs at 25 m are aggregated at 100 m. The reason for
the aggregation is that there are many small lakes and bogs in
the study area. This aggregation removes these local pour points.
Secondly, flow direction data are built based on the 100 m DEMs
according to the D8 (deterministic eight-node) method. The D8
method developed by O’Callaghan and Mark (1984) assumes that
water flows to only one of the eight nearest neighbours based on
the steepest slope. Lastly, the drainage networks at a resolution
of 1 km are created by using the river Network Scaling
Algorithms (Fekete et al., 2001; Gong et al., 2009). The drainage
networks are also visually checked according to the National
River Network Database (ELVIS) (NVE, 2015) made in the year
2011, and manually modified if necessary. More details can be
found in Li et al. (2014).

Estimating the channel cross-sectional size is difficult and
essential in channel routing. In this study, 111 cross-sections are
measured from digital maps; however, these measurements can-
not be utilised without pre-processing by distributed models for
three reasons. Firstly, the digital river network sometimes does
not really match most natural rivers, which may lead to usage of
only a small number of the measured river cross-sections.
Secondly, in Norway, some lakes, such as Storsjøen, are very long
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and crossed by rivers. The widths of these long lakes are much
wider than rivers and should not be counted in the river routing.
Thirdly, in some grids, there are more than one measured
cross-sections. A simple method assuming that widths along a
river section are similar, is developed to get river width of river
grids in two steps. Firstly, the digital river network is divided into
different sections according to the Strahler system (Strahler, 1957).
Secondly the width of one river section is assigned the mean of the
widths of all river cross-sections measured in the respective local
sub-catchment.
2.3. Climate data

Daily maps of precipitation and temperature at a resolution of
1 km for mainland Norway are used in this study. These datasets
are produced by the Norwegian Meteorological Institute (met.no)
using daily observations of 24-h mean temperature and accumu-
lated precipitation measured at meteorological stations.

For temperature, daily mean observations of 150 stations are
first projected to the mean sea level by regression analysis based
upon monthly mean temperature data from 1152 stations in
Norway, Sweden, Denmark and Finland. Interpolated temperature
by the residual kriging method is readjusted to terrain elevation
using a lapse rate that varies among different seasons (Mohr,
2008).

For precipitation, observations of 630 stations are corrected for
systematic under-catch due to station’s exposure to wind. To inter-
polate precipitation, a method of triangulation (Mohr, 2008) is
used with correction for the altitude of grid point using a vertical
precipitation gradient of 10% per 100 m difference below 1000 m
amsl and a vertical precipitation gradient of 5% per 100 m differ-
ence above 1000 m amsl (Mohr, 2008; Vormoor and Skaugen,
2013). These datasets have been evaluated and used in many stud-
ies covering Norway, such as hydrology modelling (Beldring,
2002a; Li et al., 2014), glacier mass estimation (Engelhardt et al.,
2012; Engelhardt et al., 2013), permafrost evolution (Gisnås
et al., 2013) and snow depth estimation (Mohr, 2008; Vormoor
and Skaugen, 2013; Bruland et al., 2015). These studies have shown
that the datasets are generally of high quality. In the Norsfoss
catchment, there are 64 stations roughly uniformly distributed,
which means a station density of 3.4 per 1000 km2. The high den-
sity of stations ensures a good quality of the climate data in this
study.
Table 1
Types, names and locations of the observing stations. The areas (km2) of the
catchments are shown in the parentheses following the names of the discharge
stations. The elevations (in m amsl) of the snow pillows and ground piezometers are
in the parentheses following the name.

Type Name Longitude (E) Latitude (N)

Discharge Søndre Imssjøen (158) 10.6618 61.5479
Kvarstadseter (377) 10.8933 61.1785
Atnasjø (463) 10.2221 61.8519
Mistra Bru (550) 11.2419 61.7111
Knappom (1,646) 12.0471 60.6412
Elverum (15,447) 11.5607 60.8742
Norsfoss (18,933) 12.0355 60.339

Snow pillow Kvarstadseter (665) 10.8933 61.1785
Fokstugu (980) 9.2971 62.1188
Vauldalen (830) 12.0334 62.6411

Groundwater Haslemoen (169) 11.8738 60.6467
Kvarstadseter (698) 10.8837 61.1781
Gbr Vika (436) 11.7595 61.3019
Stenerseter (625) 11.8782 61.4065
Settalbekken (994) 10.0159 62.3828
Glåmos (700) 11.4609 62.6789
Abrahamsvoll (710) 11.5576 62.6897
2.4. Observations

Discharge, snow water equivalent (SWE) and groundwater
depth are used to calibrate or validate the models.

Discharge is transformed from measured stage using the
Bayesian Rating Curve Fitting method (Petersen-Øverleir et al.,
2009). Time series of daily discharge in the period from 1981 to
1990 at the Norsfoss gauging station are used in calibration and
the period 1991–2000 are used for validation.

SWE is measured by three snow pillows, which are in the
national network of Norway. The measurements of the national
snow pillows have been re-verified by extensive sampling on a
monthly basis during the winter of the two years, 1998 and 1999.

Groundwater depth is measured by seven piezometers. All the
piezometers are located in sparse vegetation areas and the mea-
sured aquifers are shallow glacier tills. The Gbr Vika and
Abrahamsvoll stations are very close to lakes. Generally the mea-
surements are of high quality; however there is a large uncertainty
in peak groundwater measurements due to manual measurement
at weekly time step (Fleig, 2013). Locations of the piezometers
are depicted in Fig. 1 and tabulated in Table 1.
3. Methodology

3.1. Model description

The HBV model concepts were initially developed for usage in
the Scandinavia in the 1970s (Bergström, 1976) and the model
has been modified into many versions (Sælthun, 1996; Beldring
et al., 2003; Ehret et al., 2008; Hailegeorgis and Alfredsen, 2015).
The model contains routines for snow accumulation and melting,
soil moisture accounting and runoff generation. The HBV model
has been applied in more than 80 countries and is currently used
as a standard tool for flood forecasting and simulating inflow to
hydropower reservoirs in many areas. In NVE, which provides flood
forecasting services for the entire Norway, the semi-distributed
HBV model with ten elevation bands (SBand) is currently used
for flood forecasting.

Bergström (1976) and Lindström et al. (1997) have explicitly
described the model algorithms and the scientific bases.
Uhlenbrook et al. (1999) further demonstrated the plausibility of
the model structure and process conceptualizations by using the
GLUE approach. Therefore, only the equations of the studied com-
ponents, namely runoff, evaporation, snow storage and groundwa-
ter are given in this paper.

Snow accumulation and melting are calculated based on tem-
perature according to Eqs. (1) and (2) (Lindström et al., 1997).
Snow is a porous media and some rain and melt water can be
retained in the pores. In the models, porosity of 8% of the snowpack
water equivalent is assumed. Melt water can be released only after
pores are filled up. Hence, SWE is the sum of snow and contained
liquid water.

SF ¼ P T < TACCT ð1Þ

SMelt ¼ SMELTR� ðT �MELTTÞ T > TACCT ð2Þ

where SF is snow fall; P is precipitation; T is air temperature; SMelt
is snow melt rate. ACCT; SMELTR and MELTT are parameters. In this
study, ACCT is fixed as zero and other parameters are calibrated.

Evaporation is calculated based on the potential evaporation
rate (PE) and available water for evaporation. PE is computed based
on a parameter for land surface and temperature. Lakes evaporate
at PE.

PE ¼ EPOT � T T > 0 ð3Þ
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where EPOT is a parameter for potential evaporation rate.
The rate of actual evaporation (AE) is a function of PE and avail-

able soil moisture (SM):

AE ¼
PE�SM
FC�FCD SM < FC � FCD

PE SM P FC � FCD

(
ð4Þ

where FC is the field capacity; FCD is a parameter that takes values
between 0 and 1. It is fixed as 1 in this study.

The infiltration is controlled by a infiltration capacity, INFMAX.
The part of the water input exceeding this parameter goes directly
to the upper zone of the groundwater storage (UZ) as well as a frac-
tion of the input water.

UZ ¼ Infe þ InSoil� SM
FC

� �BETA

ð5Þ

where Infe is the input water exceeding INFMAX. InSoil is the water
getting into the soil. BETA is a parameter describing shape of soil
moisture release curve.

Deep percolation from the upper zone to the lower zone is a
product of a soil parameter, PERC and UZ. Total runoff, Q, is sum
of the runoff from the upper zone and lower zone (Eq. (6)). This
conceptualisation is based on that runoff is mainly generated due
to a rising groundwater table and Horton overland flow rarely
occurs due to a large hydraulic conductivity of the glacial till
deposits (Beldring, 2002b). The runoff from the upper zone repre-
sents the quick flow and the runoff from the lower zone represents
the base flow.

Q ¼ KUZ � UZALFA þ KLZ � LZ ð6Þ

where LZ is storage of the lower zone; KUZ and KLZ are recession
parameters. ALFA is a parameter introduced by Lindström et al.
(1997) to handle the over-parametrisation problem. ALFA replaces
two parameters of the response function of the upper zone and
improved the model efficiency (Lindström et al., 1997). This
non-linear response reflects the rapidly decreased conductivity of
surface deposits in the Nordic countries (Beldring, 2002b). The
groundwater storage is the sum of UZ and LZ.

3.2. Five models

Five models based on the same HBV concepts are compared,
namely, LWhole, SBand, GRZero, GROne, and GRTwo. These five
models are presenting increasing levels of spatial discretisation
and process details. All the models are run at the daily time step
with the same input data.

The lumped model, LWhole, is a simple HBV model using the
areal mean precipitation and temperature over a catchment with
a uniform characteristic. All types of land covers and soil are shar-
ing the common parameter values.

The semi-distributed model with elevation bands, SBand, is the
most widely used model setting in Norway. The catchment is
divided into ten elevation bands with equal area according to the
hypsometry curve. For each zone, time series of mean precipitation
and temperature are inputs. Calibrated parameters vary from dif-
ferent type of land cover and soil. The sub-catchments share the
same elevation band division and input data but with different
weighting of each band.

For the grid-model without routing, GRZero, runoff generation
is performed in every grid. Discharge at outlet is sum of runoff
from all catchment grids. This model is of high spatial representa-
tion in forcing data and in parameter values.

For the grid-model with hillslope routing, GROne, the runoff
generation subroutine runs on the most upslope grid, and the gen-
erated runoff is added to the groundwater storage of its downslope
landscape grid. The downslope grid performs the groundwater
routine with input equal to sum of the runoff from its upslope grids
and the local net precipitation. This procedure runs from the
upstream area to the downstream area until the runoff discharges
into the river grids. Then the model runs for next time step.

For the grid-model with both hillslope routing and river flow
routing, GRTwo, runoff is summed at respective river grid and rou-
ted by the Muskingum-Cunge method between river grids. River
channel cross-sections are assumed to be rectangular. When the
Courant number is greater than one, output discharge is equal to
input discharge, which means no routing. Details of the
Muskingum-Cunge method can be seen from, e.g. Todini (2007).

Among the five models, the lumped model, LWhole is the sim-
plest. The semi-distributed model, SBand is suggested to represent
the important features of catchment, while at the same time this
model does not require high demand of data and computation.
The first grid-model, GRZero, is a large assembly of LWhole with
high spatial representation. The second grid-model, GROne
describes hillslope routing. The third grid-model, GRTwo describes
both hillslope routing and channel routing.

3.3. Parameters and calibration

Model parameters are calibrated by a model-independent
non-linear parameter estimation and optimization package called
PEST (Parameter ESTimation), which is frequently used for model
calibration in different research fields. PEST reads files of input
parameters and target output, thus calibration with any arbitrary
model can be easily set up. The algorithms are based on the imple-
mentation of the Gauss–Marquardt–Levenberg algorithm, which
combines advantages of the inverse Hessian matrix and the steep-
est gradient method to allow a fast and efficient convergence
towards to the best value of the objective function. It is the mini-
mum of a weighted least square sum of the discrepancies between
simulated and observed discharge where similar weights are
assumed. Within specified ranges of parameters, PEST approaches
to an optimised parameter set (Doherty and Johnston, 2003;
Wrede et al., 2013).

The Gauss–Marquardt–Levenberg method can efficiently find
local objective function minima (Skahill and Doherty, 2006) with
a small number of model runs. In contrast, other algorithms such
as the Shuffled Complex Evolution algorithm (Duan et al., 1992)
are much more likely to find the global objective function mini-
mum with the cost of a much greater number of model runs
(Coron et al., 2012). PEST is selected due to its good performance
for Norwegian catchments (Lawrence et al., 2009) as well its
sophistication after a long term development (Doherty, 2005).
The optimal global parameter set is verified on the basis of differ-
ent initial parameter sets.

The sensitivity and uncertainty of model parameters of the HBV
model have been widely studied in Sweden and Norway.
Bergström (1976) mapped the mean square error function of
streamflow by the trial and error method. In snow routine,
MELTT and SMELTR in Eq. (2) were sensitive and the sensitivity of
SMELTR increased with lower MELTT. In the soil moisture account-
ing routine, BETA (in Table 2) was sensitive and its sensitivity
decreased with increased FC in Eq. (4). In the dynamic response,
KUZ in Eq. (5), PERC (in Table 2) and KLZ in Eq. (6) were greatly
influenced by each other and the parameters in other routines.
Using the Monte Carlo method, Harlin and Kung (1992) demon-
strated that SMELTR and KUZ were sensitive, and BETA and KLZ
were moderate. Furthermore, Seibert (1997) found that the sensi-
tivity was hard to be described quantitatively, since the sensitivity
changes greatly with different parameter values. MELTT and KUZ
were most sensitive near the optimised value (Seibert, 1997). To
achieve good performance in streamflow, only MELTT and
SMELTR were in narrow range (Uhlenbrook et al., 1999). By similar



Table 2
Optimised values of the selected parameters. The parameters for SBand and the grid-based models are land use dependent; therefore the areal mean is given.

Group Name Meaning (unit) LWhole SBand GRZero GROne GRTwo

Evaporation EPOT Potential evaporation capacity (m/day/�C) 5.02E�03 1.31E�02 1.31E�02 8.50E�03 7.14E�03
INT MAX Interception storage (m/day) 2.91E�04 2.87E�04 2.86E�04 2.71E�04 2.32E�04

Snow MELTT Melting temperature of snow (�C) �1.98 �0.84 �0.84 0.92 0.92
SMELTR Temperature index of snow melting rate (m/day/�C) 2.27E�03 3.93E�03 3.89E�03 8.06E�03 7.91E�03

Soil FC Field capacity (m) 1.293 0.738 0.751 0.318 0.335
BETA Shape coefficient of soil moisture 0.396 1.473 1.775 16.009 15.933

Runoff KUZ Recession coefficient of the upper zone (1/day) 0.133 0.536 0.541 0.567 0.694
ALFA Non-linear drainage coefficient of the upper zone 0.976 2.392 2.293 1.379 1.364
PERC Percolation from upper zone to the lower zone 0.013 0.019 0.020 0.006 0.005
KLZ Recession coefficient of the lower zone (1/day) 0.035 0.074 0.074 0.019 0.014
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approach, Seibert (1999) found MELTT was the most constrained
parameter by the objective function. In addition to studies in
Nordic countries, Abebe et al. (2010) concluded that FC and BETA
were sensitive to volume error and KUZ and KLZ were sensitive
to high flow series in semi-humid watershed located in the
sub-tropical coastal plain of south-eastern United States.

In the Nordic countries, glacial till deposits over an imperme-
able bedrock are the main aquifers. The subsurface conditions
heavily depend on the land cover (Beldring, 2002b). To simplify,
we assume that parameters vary among different land cover
(Beldring et al., 2003; Wrede et al., 2013). To reduce the difficulty
caused by the larger number of parameters in calibration, some
parameters are tied, which means that they are simply maintaining
a constant ratio to their parent parameter, which are optimised
(Doherty, 2005). The calibrated parameters are the lake parame-
ters, land cover parameters and soil parameters for bog, forest
and alpine and KLZ for other land covers. Other parameters in
the land cover and soil groups are tied to forest.

Initial parameter values were selected on the basis of previous
best manual calibration trials. To achieve global optimised param-
eter values, we did start calibrations with different initial values
and different parameter ranges. The meaning and optimised value
of every parameter are shown in Appendix A and their areal means
are summarised in Table 2.

3.4. Evaluation criteria

The models are evaluated with respect to the comparison
between simulated and observed runoff both at the catchment out-
let and internal points, and evapotranspiration, SWE and ground-
water table are also compared among the models. These
variables are selected because they are important components of
water balance or can be validated by in situ measurements. The
relative mean error (RME), the Nash–Sutcliffe efficiency (NSE)
(Nash and Sutcliffe, 1970), the inverse Nash–Sutcliffe efficiency
(InNSE) (Pushpalatha et al., 2012) and the correlation coefficient
(R) were used as criteria for model performance.

RME ¼
Pn

i¼1ðSi � OiÞPn
i¼1Oi

� 100 ð7Þ

NSE ¼ 1�
Pn

i¼1ðSi � OiÞ2Pn
i¼1ðOi � OÞ2

ð8Þ

InNSE ¼ 1�
Pn

i¼1
1
Si
� 1

Oi

� �2

Pn
i¼1

1
Oi
� 1

O

� �2 ð9Þ

R ¼
Pn

i¼1ðSi � SÞðOi � OÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðSi � SÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðOi � OÞ2

q ð10Þ
where Oi is the observed series; Si is the simulated series; n is the
length of series; O and S are the mean of observed series and simu-
lated series. The perfect values (dimensionless) are 1 except RME
being 0.

RME is for water balance error; NSE is for match of simulations
and observations with large weight on high flow; InNSE is also for
closeness of simulations and observations with large weight on the
low flow (Pushpalatha et al., 2012). R is used in evaluating internal
variables. Therefore, combination of these four criteria can give an
appropriate evaluation of model performance.

4. Results

In this study, the model comparison is partly done according to
runoff simulation either at the catchment outlet or interior points.
The better a model is in runoff simulation, the more reliable the
model is. Additionally, the differences of model simulations in evap-
otranspiration, SWE and groundwater storage are also analysed.

4.1. Discharge estimation at the catchment outlet

Results of NSE and InNSE are shown in Fig. 2. Differences exist-
ing in LWhole, SBand and GRZero show effects of finer spatial rep-
resentation of the input data; differences existing in GRZero,
GROne and GRTwo show effects of finer spatial representation of
hydrologic processes. The figure shows that (1) The values of NSE
increase from LWhole to the fully distributed model, GRTwo. (2)
The most significant improvement occurs from LWhole to SBand
and then from GRZero to GROne. (3) In simulation of the low flow,
GROne and GRTwo are still able to give a fair estimation with rel-
atively high InNSE values whereas the InNSE values of the other
models fall below zero. (4) Implementing the Muskingum-Cunge
method does not add additional value to runoff simulation at a
daily time step in the study area as reflected by the unchanged
value of NSE and InNSE between GROne and GRTwo.

The runoff seasonality is of high concern by hydrologists for
water management. The monthly mean runoff is shown in
Fig. 3(a) and the deviations of the five models from the observed
values are shown in Fig. 3(b). It is seen that the model errors of
LWhole and SBand exhibit a stronger seasonal pattern than
GROne and GRTwo. Less water is predicted in pre-flooding seasons
and more floods are predicted to occur in high flow seasons. In con-
sequence LWhole and SBand have a tendency to amplify risks of
drought and flooding and to hint a depressing situation for water
resources. Although all five model structures have good total
RME values of less than 3%, GROne and GRTwo are more reliable
in overall evaluation.

4.2. Discharge estimation at interior points

One of big benefits of using distributed models is that they can
explicitly account for spatial variability inside a basin and have the



Fig. 2. The NSE (a) and InNSE (b) values of different spatial discretisation schemes for calibration and validation periods at the outlet. Average is the mean of the NSE values for
the calibration and the validation. In (b), the values, which are not shown, �46.12 for calibration, �13.32 for validation, �29.72 as the average of LWhole, and �1.37 for
calibration of SBand.

Fig. 3. Monthly mean runoff for the validation period at the outlet. (a) Comparison of simulations by the five models and the observations. (b) The residuals of the
simulations.

Fig. 4. The NSE values of six sub-catchments and the entire study area of five model
structures for the validation period. Average is the mean of the NSE values of
different model structures. The catchment with the largest area (18,933 km2) is the
entire study area.

Table 3
The mean value (mean) and CV of NSE on six sub-catchments and the entire study
area in the validation period.

LWhole SBand GRZero GROne GRTwo

Mean 0.363 0.536 0.543 0.564 0.576
CV 0.722 0.498 0.527 0.499 0.482
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ability to produce simulations at interior points without explicit
calibration at these points. However, by transferring the parameter
values and areal mean inputs, the lumped models can also esti-
mate runoff at interior points. Then all the models can be evaluated
at interior points; therefore we treat the performance of LWhole as
a benchmark for the assessment of the other models, because we
simply run LWhole in the sub-catchments with the parameter val-
ues calibrated at the catchment outlet and the time series of areal
mean inputs. The forcing data in the sub-catchments for LWhole
are the same as in the entire Norsfoss catchment.

There are six sub-catchments in total and results are presented
in Fig. 4 and Table 3. It is noteworthy that only the discharge of the
Norsfoss station was used in the calibration. Generally, the NSE val-
ues of all models increase with increasing catchment area. In the
sub-catchments larger than 1646 km2 (less than 10% of the area
of the Norsfoss catchment) the NSE values of all the models except
LWhole are larger than 0.6.

The mean and coefficient of variance (CV) of the NSE values of
the five models are shown in Table 3. High mean with low CV indi-
cates a good model performance. As expected, LWhole gives the
lowest efficiency among the five models. GRTwo is the best with
the largest mean NSE and the smallest CV. GROne and GRTwo are
more likely to be capable than other three models.

4.3. Internal variables

Involving other variables in model evaluation is essential to
make a breakthrough in model structure identification and process
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understanding. Simulations of evapotranspiration, SWE and
groundwater are compared either among the five models or with
observed data.

4.3.1. Evapotranspiration
It can be seen from Fig. 5 that the simulations of evapotranspi-

ration by the five models are very close. Slight differences occur
during the summer time, especially at the peaks in July. In the win-
ter time, all the simulated evapotranspiration values are zero or
close to zero. In humid area, evapotranspiration highly depends
on the available energy for evaporation and vegetation growth.
Thus evapotranspiration increases from January to July, when it
is the warmest month and biological activity is intense (Beldring
et al., 2003), and decreases from July to December. The calculated
evapotranspiration is 352 mm/year and accounts for 40% of annual
precipitation. This reflects a typical water balance situation at the
east side of high mountains in central southern Norway.
Fig. 5. Monthly mean evaportransipiration simulated by the five models for the
validation period for the entire study area.

Fig. 6. Observations of SWE by the snow pillows, Kvarstadseter (a), Fokstugu (b) and V
located. P is the daily precipitation in mm/day. SWE is the daily observation and simula
4.3.2. SWE
The SWE time series measured by three snow pillows and the

simulations of three grids where the snow pillows are located by
three grid-models are shown in Fig. 6. All the grid-models can give
reasonable pattern of snow storage both by visual inspection and
by the R values in Table 4. The models capture the time of accumu-
lation and melting. However, all the three models do not accurately
estimate the SWE amount. At the Kvarstadseter snow pillow site,
all the models compute more snow than the observations; how-
ever, the results of the models are inconsistent at the Vauldalen
snow pillow site. GRZero gives the highest R value at the three
sites.

The areal mean monthly SWE simulations are presented in
Fig. 7. It shows that the models can be roughly grouped into three
classes. LWhole is the first class; SBand and GRZero are in the sec-
ond class; and GROne and GRTwo are in the third class. There is
more SWE calculated by the models of the third class than others.

4.3.3. Groundwater
In the HBV model, groundwater is simulated as areal mean vol-

ume of groundwater storage, whereas in practice, groundwater
level is measured by piezometers. However, the storage and depth
are highly correlated. Assuming a homogeneous aquifer and hori-
zontal water table, the storage of the aquifer can be calculated by
Eq. (11).

Sa ¼ ðH � H0Þ � / ¼ H � /� H0 � / ð11Þ

where Sa is the storage of aquifer per unit area in depth; H is the
groundwater level; H0 is the reference level, which is usually
thought as the lowest groundwater level; / is the effective porosity
in relative volume.

The R between observed groundwater level and simulated
groundwater storage is used to evaluate groundwater models in
this study. The seven groundwater piezometers as presented in
Table 1 and Fig. 1 are used. Weekly observations are available for
the period from 1981 to 2000 with some missing values. In total,
there are 5702 observations. All the measured aquifers are
auldalen (c) and the simulations of SWE of the grids where the snow pillows are
tions in mm. T is the daily temperature in �C.



Table 4
The R values between snow pillow measurements and grid-model simulations.

Snow pillow GRZero GROne GRTwo

Kvarstadseter 0.8 0.68 0.68
Fokstugu 0.73 0.7 0.69
Vauldalen 0.77 0.61 0.64
Mean 0.77 0.66 0.67

Fig. 7. Monthly mean SWE by the five models for the entire study area.
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unconfined. R is calculated between the observed time series and
the simulated time series of the grid where the piezometer is
located.

Fig. 8 presents the results against the mean groundwater depth
at the piezometers sites, elevation and slope of the grids where the
piezometers are located. Firstly, all the grid-models give lower cor-
relation coefficients at the piezometers with the deepest ground-
water depth. Secondly, the patterns against elevation seem quite
complex. The correlation coefficients go up with increased eleva-
tion and then down. The highest correlation coefficients are at
approximately 600 m. Thirdly, there is an up trend against slope
with large spread. The mean of all the R is 0.53 and the values of
R of the three grid-models are comparable in magnitude.

5. Discussions

5.1. Runoff simulations

In rainfall–runoff modelling, runoff is indeed the most crucial
output. As expected, the model performance improves most from
LWhole to SBand and minor improvement occurs from the
Fig. 8. The R values between measured groundwater level
semi-distributed model, SBand to the grid distributed model,
GRZero. This confirms the previous studies by Lindström et al.
(1997), Das et al. (2008) and Wrede et al. (2013). The spatial vari-
ability in the forcing data, particularly temperature and precipita-
tion must be accounted in hydrological modelling in mountainous
and cold catchments. This is quite different from the catchment
used by Michaud and Sorooshian (1994) and the DMIP catchments
by Reed et al. (2004) and Butts et al. (2004).

The improvements both in the NSE and InNSE from GRZero to
GROne show that distributed hillslope routing is essential in runoff
modelling, especially for simulating the low flow. In the hillslope
routing, the water routes from an upstream grid to the outlet
rather than directly add to its runoff volume. This process prolongs
the response time and more water drains in the low flow seasons
than in high flow seasons. This hypothesis is confirmed by Fig. 3.
The models except GROne and GRTwo overestimate the high flow
and underestimate the low flow.

The low efficiency of channel routing is caused by the high slope
and sparse vegetation. Most runoff flows out within two days (Li
et al., 2014). It is difficult to include this fast channel response in
a daily simulation. The data error in observed discharge and aggre-
gation of precipitation and temperature (Montanari and
Baldassarre, 2013) is another possible reason.

The up trend of model efficiency with size of sub-catchments is
the same as what was reported by Varado et al. (2006). A primary
contributing factor to this may be that smaller basins have less
capacity to deal with data error either in forcing data or discharge
series. Besides, observations in small basins indeed exhibit more
variability and dynamics in responses functions (Varado et al.,
2006) than in larger basins, making accurate simulation more dif-
ficult (Reed et al., 2004). Another reason is that in this study the
models are calibrated for the outlet station, and large
sub-catchments share more common features with the one used
for calibration.

5.2. Internal variables’ simulation

Validating models on internal variables is always difficult and of
primary importance. The first reason is that most internal vari-
ables, such as soil moisture and groundwater depth are measured
at point scale. Simulations by hydrological models, even dis-
tributed models at a very fine resolution are areal mean values.
The second reason is the less satisfactory length and quality of
measurements compared to runoff data. However, this approach
is required to assess the general behaviour of hydrological models
and identification of model structures, especially in cases when
runoff simulations by different models are close.

All grid-simulations are at a regular grid of 1 km. It is the most
adopted spatial resolution in catchment hydrology studies and glo-
bal datasets, for example, Hydro1k (EROS, 1996). These results will
series and the simulated groundwater storage series.
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give insights of other researchers and will be compared to on-going
research.

5.2.1. Evapotranspiration
Evapotranspiration is a crucial term to connect a water balance

model and a land surface energy balance model (Xu et al., 2005; Xu
and Singh, 2005). The best available technology for observing evap-
otranspiration is a weighing lysimeter. However, establishing and
maintaining a lysimeter for a long time period is very costly (Xu
and Chen, 2005). Therefore, evapotranspiration is usually esti-
mated using other methods, such as the Penman-Monteith
method, reference evapotranspiration based methods, hydrological
models (water balance method) and complementary relationship
based methods (Gao et al., 2012). Recently, remote sensing data
have been gradually used to estimate actual evapotranspiration
(EI Hai EI Tahir et al., 2012; Yang et al., 2012; Corbari et al.,
August 2014). The most conceptually simple tool is the hydrologi-
cal modelling, especially when regional estimation is required (Xu
and Singh, 2005).

Although no observations of evapotranspiration are available,
the simulated patterns are considered to be reasonable. The five
models produced similar results. This can be explained from the
water balance, because all five models used the same precipitation
and discharge data and the model reproduced almost same runoff
volume. The leftover of precipitation after runoff is the evapora-
tion, if water storage of catchment does not change. Another rea-
son is that the five models used the same temperature based
method with the same areal mean temperature.

5.2.2. SWE
In Norway, almost half of the precipitation falls as snow, and it

appreciably influences the hydrological responses. The most severe
flood in southeast Norway in recent times occurred in the year
1995 and was fed from extensive snow covered high-mountain
areas (Sorteberg et al., 2001).
Table 5
Ranks in the descending order of the five most sensitive parameters for each model.
Other parameters are found insensitive.

Rank LWhole SBand GRZero GROne GRTwo

1 ALFA SMELTR EPOT ALFA ALFA
2 SMELTR EPOT SMELTR KUZ KUZ
3 EPOT ALFA ALFA EPOT EPOT
4 KLZ KLZ KLZ SMELTR SMELTR
5 MELTT FC FC MELTT FC

Fig. 9. Sensitivities of SMELTR (a) and MELTT (b). Other param
The data errors existing in the measurements by snow pillow
and in the grid temperature make the model simulation less accu-
rate than other variables. For example, at the Kvarstadseter snow
pillow site, there was a melting event on April 4th, 1998 according
to the observations (Fig. 6). Contradictorily all models responded
as an accumulation. The temperature of this grid was �7.5 �C in
April 4th, 1998. Therefore, the models are believed to function well
to the forcing data. The error may be investigated from the uncer-
tainty of forcing data and measurements, or the sub-grid variabil-
ity (Gisnås et al., 2013).

5.2.3. Groundwater
Bergström and Sandberg (1983) have shown that the HBV

model is able to model groundwater level of unconfined aquifers
after calibration with an objective function to achieve the maxi-
mum R between observed groundwater level and simulated
groundwater storage. Their research provides confidence in the
model and a benchmark in presenting our results. The values of
R were around 0.8 and higher in most cases. However, Bergström
and Sandberg (1983) used the average values of the stations at
the study catchment and closeness of simulated and observed
groundwater depth was the objective function of calibration.
Varado et al. (2006) gave an example of model efficiency of a con-
ceptual hydrological model (REW-v4.0) when it was only cali-
brated with discharge data. The model efficiency was very low
and they concluded that was caused by the lack of presentation
of the processes in the unsaturated zone.

Although our models produce lower R than the model of
Bergström and Sandberg (1983), no groundwater data are used in
calibration in our study. Additionally, the observed groundwater
depth series are individually compared to the model produced ser-
ies of the grid where they are located. If counting these differences,
our models give equivalent performance.

The HBV model is a conceptual rainfall–runoff model. Therefore,
it shows less capability in simulating groundwater levels of deeper
depth, which are less relevant to runoff peaks and total runoff vol-
ume. Additionally, the three stations with low efficiency are
located at approximately 200 m amsl, where human effects are
stronger than at other stations with higher elevations.

In cold mountainous catchments, groundwater aquifers are
recharged by rainfall and snow melt. At higher elevation places,
snow melt has large proportion. Less accuracy in snow melt pro-
duced by models than the input precipitation is a possible explana-
tion of low R at around the 1000 m height.

The trend of R against slope would be misleading. If the three
stations at the 200 m height (R of which are below 0.2) are
removed, there is no trend any more.
eters are kept in their optimised values in each model.
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5.3. Parameter analysis

Complex models are easily required to prove that their good
efficiency is not achieved by adding additional parameters and
the best solution should be supported by deliberate measurements
of hydrological processes (Vaché and McDonnell, 2006). Otherwise,
the optimised parameter values likely provide high evidence of
parameter identifiability. As shown in Table 2, the optimised val-
ues of the selected parameters are considered to be in their plausi-
ble ranges. There are interdependence between certain
parameters. MELTT and SMELTR are strongly correlated and posi-
tively associated. However, the soil parameters FC and BETA are
negatively associated.

Parameter sensitivity is difficult to quantify due to the
non-linear response of runoff to parameters and parameter inter-
actions (Seibert, 1997; Tang et al., 2007). The sensitivities are
impacted by selection of analysis method and the physical charac-
teristic of study area (Tang et al., 2007). Thereby, we define the
parameter sensitivity as the changes of NSE against the relative
changes of the parameter values. Shown in Table 5, SMELTR;ALFA
and EPOT are among the five most sensitive parameters for every
model. It can be concluded that the ranks of parameter sensitivity
for the five models are similar. For an illustrative purpose, the sen-
sitivities of a sensitive parameter (SMELTR) and a less sensitive
parameter (MELTT) are plotted in Fig. 9(a) and (b), respectively.

6. Conclusions

The aim of this paper is to test the hypothesis that with appro-
priate structures, increasing complexity would increase the model
efficiency either in runoff simulation or other internal variables.
Five variants of the HBV model, i.e. a lumped model (LWhole), a
semi-distributed model with elevation bands (SBand), a
grid-model without routing (GRZero), a grid-model with hillslope
routing (GROne), and a grid-model with both hillslope and channel
routing (GRTwo) are compared in a cold and mountainous catch-
ment in central southern Norway. The five models are compared
according to runoff simulation either at the catchment outlet or
interior points as well as internal variables, i.e. actual evapotran-
spiration, snow water equivalent and groundwater depth. The fol-
lowing conclusions are drawn from this study.
Table A1
Meanings of the parameters and the calibrated values. The MannR was only used in th
calibration. Parameters are subscripted with b for the bog, f for the forest, a for the alpine, r
LWhole for the other land and soil were the same as those for the open land.

Group Parameters Meaning Unit

Lake EPOT L Potential evaporation capacity m/da
KLAKE Rating curve constant –
NLAKE Rating curve exponent –
MannR Manning roughness coefficient –

Land INT MAXo Maximum interception storage m/da
EPOTo Potential evaporation capacity m/da
MELTTo Melting temperature of snow �C
SMELTRo Temperature index of snow melting rate m/da
MannRo Manning roughness coefficient –
INT MAXb Maximum interception storage m/da
EPOTb Potential evaporation capacity m/da
MELTTb Melting temperature of snow �C
SMELTRb Temperature index of snow melting rate m/da
MannRb Manning roughness coefficient –
INT MAXf Maximum interception storage m/da
EPOTf Potential evaporation capacity m/da
MELTTf Melting temperature of snow �C
SMELTRf Temperature index of snow melting rate m/da
MannRf Manning roughness coefficient –
According to the Nash–Sutcliffe efficiency (NSE) and the inverse
Nash–Sutcliffe efficiency (InNSE) of the outlet discharge, the rank of
model efficiency in the descending order is GRTwo, GROne,
GRZero, SBand and LWhole both in the calibration and validation
mode. Applying the parameter values calibrated at the outlet to
the six sub-catchments within the study area, GRTwo is still the
best but with less superiority than in producing the outlet dis-
charge. The NSE values increase with the areas of the
sub-catchments.

Three internal variables are compared with observations mea-
sured at several sites and among models. The areal mean actual
evapotranspiration simulations are very similar. Considerable dif-
ferences exist among areal mean monthly SWE. The R values
between the measurements by three snow pillows and
grid-simulations show that GRZero is slightly better than GROne
and GRTwo. Moreover, the three grid-models are comparable in
simulations of groundwater levels; model performances are
affected by the groundwater depth and elevation of ground
piezometers.

It is worth noting that this study is performed only in one catch-
ment. Robustness of the results needs to be tested by, for example,
performing the study in other catchments and/or applying the
models in non-stationary conditions. The latter can be done by cal-
ibrating and validating the models in different seasons or under
different climate conditions. This kind of research will be done in
the ongoing research.
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Appendix A

see Table A1.
e Muskingum-Cunge channel routing method and calibrated for each land cover in
for the rock, h for the heather, o for the open land, g for the glacier. The parameters of

LWhole SBand GRZero GROne GRTwo

y/�C 0.000001 0.000097 0.000010 0.000971 0.000980
0.006224 0.035225 0.015674 0.031472 0.066361
0.560846 1.619736 1.025064 0.512362 0.164502
– – – – 0.030000

y 0.005017 0.009845 0.009943 0.002957 0.002488
y/�C 0.000291 0.000334 0.000331 0.000196 0.000204

�1.977322 �1.399138 �1.400558 1.517349 1.542897
y/�C 0.002267 0.002491 0.002488 0.003125 0.003190

– – – – 0.050000
y – 0.000528 0.000282 0.007291 0.000733
y/�C – 0.000040 0.000036 0.000175 0.000105

– 2.313019 2.300974 �1.470627 �1.890260
y/�C – 0.008284 0.008275 0.008171 0.006826

– – – – 0.040000
y – 0.009845 0.009943 0.002957 0.002488
y/�C – 0.000334 0.000331 0.000196 0.000204

– �1.399138 �1.400558 1.517349 1.542897
y/�C – 0.002491 0.002488 0.003125 0.003190

– – – – 0.010000



Table A1 (continued)

Group Parameters Meaning Unit LWhole SBand GRZero GROne GRTwo

INT MAXa Maximum interception storage m/day – 0.000600 0.000159 0.000108 0.000100
EPOTa Potential evaporation capacity m/day/�C – 0.000267 0.000308 0.002000 0.001202
MELTTa Melting temperature of snow �C – �1.324652 �1.402145 �2.000000 �0.974982
SMELTRa Temperature index of snow melting rate m/day/�C – 0.015644 0.014929 0.100000 0.100000
MannRa Manning roughness coefficient – – – – – 0.025000
INT MAXh Maximum interception storage m/day – 0.009845 0.009943 0.002957 0.002488
EPOTh Potential evaporation capacity m/day/�C – 0.000334 0.000331 0.000196 0.000204
MELTTh Melting temperature of snow �C – �1.399138 �1.400558 1.517349 1.542897
SMELTRh Temperature index of snow melting rate m/day/�C – 0.002491 0.002488 0.003125 0.003190
MannRh Manning roughness coefficient – – – – – 0.050000
INT MAXr Maximum interception storage m/day – 0.009845 0.009943 0.002957 0.002488
EPOTr Potential evaporation capacity m/day/�C – 0.000334 0.000331 0.000196 0.000204
MELTTr Melting temperature of snow �C – �1.399138 �1.400558 1.517349 1.542897
SMELTRr Temperature index of snow melting rate m/day/�C – 0.002491 0.002488 0.003125 0.003190
MannRr Manning roughness coefficient – – – – – 0.030000
INT MAXg Maximum interception storage m/day – 0.009845 0.009943 0.002957 0.002488
EPOTg Potential evaporation capacity m/day/�C – 0.000334 0.000331 0.000196 0.000204
MELTTg Melting temperature of snow �C – �1.399138 �1.400558 1.517349 1.542897
SMELTRg Temperature index of snow melting rate m/day/�C – 0.002491 0.002488 0.003125 0.003190
MannRg Manning roughness coefficient – – – – – 0.030000

Soil FCo Field capacity m 1.292544 0.854174 0.852845 0.149419 0.170029
BETAo Shape coefficient of soil moisture – 0.395717 0.632809 0.621915 10.000000 9.905496
KUZo Recession coefficient of the upper zone 1/day 0.133252 0.031759 0.000075 1.000000 1.000000
ALFAo Non-linear drainage coefficient of the upper zone – 0.976138 2.500000 2.374286 1.208677 1.217343
PERCo Percolation from upper zone to the lower zone – 0.012520 0.022951 0.023132 0.001013 0.001000
KLZo Recession coefficient of the lower zone 1/day 0.035208 0.089434 0.089466 0.020157 0.011136
FCb Field capacity m – 0.195487 0.264188 1.300000 1.300000
BETAb Shape coefficient of soil moisture – – 6.254378 8.313165 50.000000 50.000000
KUZb Recession coefficient of the upper zone 1/day – 0.973313 0.998324 0.871973 0.770876
ALFAb Non-linear drainage coefficient of the upper zone – – 1.784086 1.796010 1.979247 1.826975
PERCb Percolation from upper zone to the lower zone – – 0.003896 0.004053 0.001000 0.001000
KLZb Recession coefficient of the lower zone 1/day – 0.007228 0.006526 0.014653 0.026939
FCf Field capacity m – 0.854174 0.852845 0.149419 0.170029
BETAf Shape coefficient of soil moisture – – 0.632809 0.621915 10.000000 9.905496
KUZf Recession coefficient of the upper zone 1/day – 0.005303 0.217543 1.000000 1.000000
ALFAf Non-linear drainage coefficient of the upper zone – – 2.500000 2.374286 1.208677 1.217343
PERCf Percolation from upper zone to the lower zone – – 0.022951 0.023132 0.001013 0.001000
KLZf Recession coefficient of the lower zone 1/day – 0.089434 0.089466 0.020157 0.011136
FCa Field capacity m – 0.444265 0.544096 0.050000 0.050000
BETAa Shape coefficient of soil moisture – – 0.538706 0.568572 10.000000 10.000000
KUZa Recession coefficient of the upper zone 1/day – 0.277815 0.322954 0.132547 0.018076
ALFAa Non-linear drainage coefficient of the upper zone – – 2.500000 2.500000 2.477734 2.500000
PERCa Percolation from upper zone to the lower zone – – 0.008084 0.007916 0.122702 0.084411
KLZa Recession coefficient of the lower zone 1/day – 0.007617 0.008469 0.022254 0.013849
FCh Field capacity m – 0.854174 0.852845 0.149419 0.170029
BETAh Shape coefficient of soil moisture – – 0.632809 0.621915 10.000000 9.905496
KUZh Recession coefficient of the upper zone 1/day – 1.000000 0.146038 1.000000 1.000000
ALFAh Non-linear drainage coefficient of the upper zone – – 2.500000 2.374286 1.208677 1.217343
PERCh Percolation from upper zone to the lower zone – – 0.022951 0.023132 0.001013 0.001000
KLZh Recession coefficient of the lower zone 1/day – 0.089434 0.089466 0.020157 0.011136
FCr Field capacity m – 0.854174 0.852845 0.149419 0.170029
BETAr Shape coefficient of soil moisture – – 0.632809 0.621915 10.000000 9.905496
KUZr Recession coefficient of the upper zone 1/day – 1.000000 0.312415 0.294833 1.000000
ALFAr non linear drainage coefficient of the upper zone – – 2.500000 2.374286 1.208677 1.217343
PERCr Percolation from upper zone to the lower zone – – 0.022951 0.023132 0.001013 0.001000
KLZr Recession coefficient of the lower zone 1/day – 0.089434 0.089466 0.020157 0.011136
FCg Field capacity m – 0.854174 0.852845 0.149419 0.170029
BETAg Shape coefficient of soil moisture – – 0.632809 0.621915 10.000000 9.905496
KUZg Recession coefficient of the upper zone 1/day – 0.466374 1.000000 0.014564 0.048685
ALFAg Non-linear drainage coefficient of the upper zone – – 2.500000 2.374286 1.208677 1.217343
PERCg Percolation from upper zone to the lower zone – – 0.022951 0.023132 0.001013 0.001000
KLZg Recession coefficient of the lower zone 1/day – 0.089434 0.089466 0.020157 0.011136
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