
Some Improvements and Applications of

Non-intrusive Polynomial Chaos

Expansions

Jonathan Feinberg

Thesis submitted for the degree of Philosophiae Doctor
Department of Mathematics
Faculty of Mathematics and Natural Sciences
University of Oslo
Date July 20, 2015



© Jonathan Feinberg, 2015

Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1657 

ISSN 1501-7710 

All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   

Cover: Hanne Baadsgaard Utigard. 
Printed in Norway: AIT Oslo AS.   

Produced in co-operation with Akademika Publishing.  
The thesis is produced by Akademika Publishing merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



Preface

This thesis is submitted in partial fulfilment of the requirements for the
degree of Philosophiae Doctor, to the Department of Mathematics, Faculty
of Mathematics and Natural Sciences, University of Oslo. All research has
been conducted at the Center for Biomedical Computing, at Simula Research
Laboratory, during the period between Febuary 2011 and May 2015. I would
like to express my gratitude to Simula and Statoil for excellent work condition
and financial support.

There are also many individuals involved that I like to thank. Firstly we
have Prof Arne Bang Huseby and Dr Stuart Clark from my advisory committee.
You have both given excellent help with all my work and this thesis would not
be possible without your expertise.

From Norwegian University of Science and Technology, I want to thank
Vinzenz Eck, Prof Leif Rune Hellevik and Prof Victorian Prot. Our
collaboration have been rewarding both in enjoyment and in academical output.

Additionally, I also want to thank Margrethe Gustavsen, Lynn Feinberg,
Steven Moffat, Yapi Donatien Achou and Karoline Hagane. You have all been
very helpful, each in your own way.

Lastly, I like to give special thanks to my advisor and mentor Prof Hans
Petter Langtangen. You have been pivotal for my reaserch thorughout my
doctorate, and your enthusiasm for the sciences and hard work is truely
inspirational.

Jonathan Feinberg

iii





Contents

1 Preface iii
List of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

2 Introduction 1
2.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Paper I: A novel method for sensitivity quantification of timing
and amplitude of pressure and flow waves in the arterial system 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Paper II: Chaospy: An Open Source Tool for Designing
Methods of Uncertainty Quantification 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 A Glimpse of Chaospy in Action . . . . . . . . . . . . . . . . . . 61
4.3 Modelling Random Variables . . . . . . . . . . . . . . . . . . . . 63
4.4 Polynomial Chaos Expansions . . . . . . . . . . . . . . . . . . . . 72
4.5 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . 82

5 Paper III: Multivariate Polynomial Chaos Expansions with
Dependent Variables 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Overview of Methods for Non-Intrusive Polynomial Chaos . . . . 97
5.3 Dependent Orthogonal Polynomials . . . . . . . . . . . . . . . . . 102
5.4 Using Forward Transforms to Improve Convergence . . . . . . . . 107
5.5 Application to Diffusion in Layered Media . . . . . . . . . . . . . 112
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



List of Papers

This thesis consists of an introduction and the following three papers:

Paper I
A Novel Method for Sensitivity Quantification of Timing and Amplitude of
Pressure and Flow Waves in the Arterial System

Published in International Journal for Numerical Methods in Biomedical Engineering,

2015. This paper is co-authored with Vinzenz Eck, Hans Petter Langtangen and Leif

Rune Hellevik.

Paper II
Chaospy: An Open Source Tool for Designing Methods of Uncertainty
Quantification

Submitted to Journal of Computational Science, 2015. This paper is co-authored

with Hans Petter Langtangen.

Paper III
Multivariate Polynomial Chaos Expansions with Dependent Variables

Submitted to SIAM Journal on Scientific Computing, 2015. This paper is co-authored

with Hans Petter Langtangen.

vi



Introduction

The fundamental idea behind modelling is to try to create a mathematical
description of some state-of-nature. Often the state-of-nature is governed by
a set of equations given by some underlying physical process. Our goal is then
to solve these equations for a quantity of interest to be able to reproduce the
state-of-nature mathematically. However, along the way various errors are often
introduced to the model. The size of those errors are then key to determining
how correct the model is. We start by discussing what these various errors are.

Solving the governing equations will for more complicated problems not be
a trivial task. There is simply not enough information to completly describe the
nature we are modelling. Because of this partial lack of knowledge, assumptions
have to be made to compensate in order to make the problem solvable. This
will inevitably create a discrepancy between the state-of-nature and the model
we use to describe it. We denote this discrepency as model selection error.

Another aspect of the problem with solving the governing equations is
that it may be too complicated to be solved analytically. Assumptions are
added for practical reasons to make it more feasible to solve the governing
equations. One approach to compensate for this, is to solve the governing
equations using a numerical solver. For most problems however, introducing
a numerical solver, will effectively replace the analytical model solution with
a numerical approximation. We denote the added discrepancy introduced by
using a numerical solver as numerical errors.

Modelling a state-of-nature often ends up being a two-fold problem. So far
we have described the part called the forward problem: We create a response
from governing equations, either analytically or through a numerical solver,
to predict the state-of-nature. However, the governing equations often have
model parameters. To be able to create values from the response, we have to
identify those parameters first. This is known as the inverse problem. We solve
the inverse problem through the use of physical measurements: We create an
objective function that quantifies the distance between the model response and
the physical measurements. We then select the model parameters that minimize
the objective function.

A common source of error when solving the inverse problem stems from
the measurements. In some cases the measurements gathered only describe the
behavior of the model indirectly. And in some cases model evaluations have
to be inferred through added assumptions. In other cases the measurement

1



equipment is inaccurate. In any case, the result is measuring errors.
As a result of the various sources of errors, it is likely that the optimal

model response created is not the correct one. Moreover, there are many
combinations of the model parameters that will result in a feasable model
response. This motivates us to abandon the deterministic assumption that each
model parameter only has one single fixed value. Instead we can assume that
the model parameters are unknown and have a probability density function.
The density function describes the relative likelihood for a random variable to
take a given value.

Given that we assume that the model parameters should have probability
density function assigned to them, the next step is to determine what those
densities should be. Determining model parameter densities can be done by
either reformulating the inverse problem to identify the densities or by eliciting
expert opinions. For insight into the probabilistic inverse problem, see the
excellent book by Idier [1]. And for insight into expert elicitation, see the
excellent book by O’Hagen et al. [2]. In this thesis however, the probability
density functions are assumed to be known.

Given that the model parameters are assumed random, it follows that
solving the governing equations will result in a random response. In other
words, there exists a probability density function that describes the model
response. With this density function available we have an approach for
estimating the uncertainty in model response. And here lies the reason for
performing uncertainty quantification: We can calculate statistical metrics for
the response. For example, we can find out how far the response will deviate
from a best estimate through the standard deviation operator, i.e. how stable
is the response. Other statistical metrics include expected value, correlation,
confidence intervals, (variance based) sensitivity to mention a few.

Problems that have random components are denoted as probabilistic. In
contrast we can denote problems that are not probabilistic as deterministic.
Most numerical solvers are constructed under a deterministic assumption and
the model parameters are assumed fixed for the problem to be solvable. To
account for uncertainty a deterministic numerical solver must be replaced with
a probabilistic one. One such approach is the non-intrusive polynomial chaos
expansion method [3]. This method is the foundation for this thesis. In the
next section the polynomial chaos expansion method will be disussed in more
detail.

2



2.1 Method Description

Let us consider a stochastic computational mechanics problem on the form

L(x, t, u,η, ξ) = 0, (2.1)

where L is a possibly non-linear differential operator, x are spatial coordinates
in a domain Ω ⊆ R

3, and t ∈ R is time. Let u(x, t;η, ξ) be the solution
of (2.1). Appropriate boundary and initial conditions are assumed. Further,
let η = (η0, . . . , ηR−1)

T ∈ R
R be all parameters known accurately without

uncertainty and in contrast let ξ = (ξ1, . . . , ξD)T ∈ R
D be the parameters which

contain uncertainty. The uncertainty in ξ can sufficiently be described through
a joint probability density function pξ, which is assumed to be known. From
this problem formulation, we define the objective to quantify the uncertainty in
the solution u, given uncertainty in ξ. More specifically, we want to compute
the statistical properties of u, or in a goal functional involving u, at various
space or time locations. A typical goal functional of interest are integrals of a
flux or stress vector at parts of the boundary, but here we shall, with no lack of
generality, assume that the interest is in the values of u itself at all space-time
locations.

Ultimately, we seek the joint probability distribution pu at all space-time
points, but this is more information than we need to digest in practice. We
therefore aim to address the following two questions: What is the expected value
and the variance of u at a space-time point, given the uncertainty of ξ? And
how accurately can we compute these statistical measures? Mathematically, we
aim to compute the response mean and variance:

E[u(x, t;η, ξ)] =

∫
RD

u(x, t;η, ξ)pξ(ξ) dξ

Var[u(x, t;η, ξ)] =

∫
RD

(u(x, t;η, ξ)− E[u(x, t;η, ξ)])
2
pξ(ξ) dξ. (2.2)

Except for trivial examples, the complexity of deriving u is high and a
numerical approach must be assumed. This implies that the deterministic
solution of (2.1) is only possible for known values of ξ. However, since ξ is
assumed uncertain and can only be described through a probability density
function, any single deterministic solution of the equation will be insufficient to
represent u. We will assume that a numerical solution is numerically costly, so
the number of such solutions should be kept low. We therefore need an approach
that properly quantifies the uncertainty of u under the constraint that (2.1) can
only be solved numerically, and only a few model evaluations are allowed.

The most popular approach to perform numerical uncertainty analysis is the
Monte Carlo method [4]. The method can be summarized as follows: Create
independent identically distributed pseudo-random samples Q = {Qk}IK whith
IK = {0, . . . ,K} from the density pξ, and calculate the mean and variance from

3



empirical measures:

E[u(x, t;η, ξ)] ≈ Ê[u(x, t;η, ξ)] =
1

K + 1

∑
k∈IK

u(x, t;η, Qk)

Var[u(x, t;η, ξ)] ≈ V̂ar[u(x, t;η, ξ)] =
1

K

∑
k∈IK

(
u(x, t;η, Qk)− Ê[u(x, t;η, ξ)]

)2

.

The method’s strengths include that it considers the simulator as a black box
and assumes nothing about the shape of u, and that it scales very well with the
number of uncertain parameters D. On the other hand, it requires a very large
number of samples to converge. The method has an error which is in the order
of magnitude of Var[u(x, t;η, ξ)] /(K+1). Since we have assumed that the cost
of running the simulator for solving (2.1) is very high, it is seldom feasible to
perform Monte Carlo integration on computational mechanics problems.

As a more efficient alternative to the Monte Carlo method, we have the
polynomial approximation method. This method will be discussed next. Let us
make the fundamental assumption that u is a smooth function of the random
input parameters ξ. Then we can effectively approximate u as a function of ξ
through a polynomial approximation:

u(x, t;η, ξ) ≈ uM (x, t; ξ) =
∑
n∈IN

cn(x, t)Φn(ξ) IN = {0, . . . , N} , (2.3)

where M is the polynomial order, N +1 is the number of evaluations, {cn}n∈IN

are coefficients, and {Φn}n∈IN are polynomials. The mean and variance can
then be calculated cheaply either analytically or by performing Monte Carlo
simulation on û as a proxy for u. At this point we must emphasize that
even though we assume u to depend smoothly on ξ, u does not need to vary
smoothly with x and t. For example, with the deterministic solution of (2.1)
for a given value of ξ can be assume to contain discontinuities. The polynomial
approximation method only require smoothness in the mapping from ξ to u.

There are several polynomial approximation methods available. Both Taylor
polynomials and Lagrange polynomials are examples. For our purpose, let us
first just assume that the polynomials {Φn}n∈IN are selected as fixed simple
monomials. An example of monomials can be found in Table 2.1.

With the polynomials known and fixed, the coefficients {cn(x, t)}n∈IN
must

be calculated in such a way that uM approximates u as well as possible. Though
this is preferably done analytically, because of the limitations in u, this has to
be estimated numerically as well:

uM (x, t; ξ) ≈ ûM (x, t; ξ) =
∑
n∈IN

ĉn(x, t)Φn(ξ), (2.4)

where each ĉn is an approximation of cn.
One all-purpose method for estimating the coefficients {cn(x, t)}n∈IN

is
the point collocation method (PCM). It is defined as follows. We first select

4



Order Index Polynomial

0 Φ0 1
1 Φ1 Φ2 ξ0 ξ1
2 Φ3 Φ4 Φ5 ξ20 ξ0ξ1 ξ21
3 Φ6 Φ7 Φ8 Φ9 ξ30 ξ20ξ1 ξ0ξ

2
1 ξ31

4 Φ10 Φ11 Φ12 Φ13 Φ14 ξ40 ξ30ξ1 ξ20ξ
2
1 ξ0ξ

3
1 ξ41

...
...

...

Table 2.1: Simple monic polynomial expansion sorted reversed and ordered
lexicographically.

collocation nodes Q = {Qk}k∈IK
. The nodes can be selected somewhat

arbitrarily, but will here be selected to be random samples drawn from pξ.
Given the samples, we evaluate the polynomials and model solver:

P (Q) =

⎡⎢⎣Φ0(Q0) · · · ΦN (Q0)
...

...
Φ0(QK) · · · ΦN (QK)

⎤⎥⎦ U(x, t,Q) =

⎡⎢⎣u(x, t;η,Q0)
...

u(x, t;η,QK)

⎤⎥⎦ .

The coefficients can be estimated using linear least squares minimization:

ĉ(x, t) = (ĉ0(x, t), . . . , ĉN (x, t))T =
(
P (Q)TP (Q)

)−1
P (Q)TU(x, t,Q).

Since u is evaluated numerically on a space-time mesh, ĉ can be calculated for
all or a subset of all mesh points. Alternatively, U may involve the values of
one or more goal functionals of u.

Let us present a simple example to demonstrate the computation of the
polynomial coefficients. We look at a decaying process in time, described by

u(t; c, I) = I exp(−ct).

Let ξ = (c, I)T be stochastically independent uncertain parameters with uniform
distributions

c ∼ Uni(0, 0.1) I ∼ Uni(8, 10).

A relevant interval for t is then [0, 10]. Let the polynomials be defined as in
Table 2.1. To determine the vector U and the matrix P , we evaluated the
simulator u and the polynomials {Φn}n∈IN respectively at K + 1 collocation
nodes {Qk}k∈IK

in the probability space spanned by the uncertain parameters
ξ = (c, I). The coefficients ĉ are thereafter computed by the linear least squares
formula. Following the suggestion of Hosder [5] we select K + 1 = 2 (N + 1).

We may compare the price-performance of the polynomial approximation
and the Monte Carlo integration (MCI) method. More precisely, we investigate

5



the integrated errors in the mean and variance,

εmean =

∫ 10

0

|E[u(x, t;η, ξ)]− E[û(x, t;η, ξ)]|

εvariance =

∫ 10

0

|Var[u(x, t;η, ξ)]−Var[û(x, t;η, ξ)]| dt,

where the exact mean and variance can be calculated analytically:

E[u(x, t;η, ξ)] = 90
1− e−0.1t

t

Var[u(x, t;η, ξ)] = 1220
1− e−0.2t

3t
−

(
90

1− e−0.1t

t

)2

.

Figure 2.1 shows the error in mean and variance as a function of the number of
samples for both Monte Carlo integration and the approximation using monic
polynomials. (Note the “the number of samples” is the number of collocation
nodes in the polynomial approximation.) Since Monte Carlo integration is a
method based on random samples, an average of 104 re-runs is used instead of
a single “unstable” Monte Carlo solution.

Figure 2.1: A comparison of the discrepancy between Monte Carlo integration
(MCI) and point collocation method using monic polynomials (monic) in mean
and variance.

The figure shows that the polynomial approximation converges much faster
than Monte Carlo integration. However, as the order of the polynomial goes
up, the convergence stops and starts to diverge. The method is not numerically
stable.

One way to increase stability of convergence, is to use a particular polynomial
approximation variant called polynomial chaos expansion. Here we exchange the

6



polynomials in Table 2.1 with polynomials orthogonal on a custom weighted
function space L2

ξ. Let L
2
ξ be defined with inner product and norm defined with

respect to the probability density pξ:

〈f, g〉 = E[f(ξ)g(ξ)] ‖h‖ξ =
√
〈h, h〉ξ.

We can then construct polynomials Φ to be orthogonal:

〈Φi,Φj〉ξ = 0 i 	= j. (2.5)

The orthogonality gives us a few beneficial properties [3]. First, a linear least
squares method using the above defined norm, leads to a diagonal linear system
that can be solved analytically:

ci(x, t) =
〈u(x, t,η, ξ),Φi(ξ)〉ξ

‖Φi(ξ)‖2ξ
.

This is nothing but the well-known formula for the Fourier coefficients of
generalized Fourier expansions of u. The formula implies that the ci values
become untangled: calculating a coefficient can be done irrespectively of the
other coefficients or the size of the expansion. Together with the assumption
that Φ0 = 1 the orthogonality of the polynomials also imply that the estimation
is simplified:

E[ûM (x, t; ξ)] = c0 Var[ûM (x, t; ξ)] =

N∑
i=1

c2i ‖Φi‖2ξ.

In practice, the orthogonality ensures numerical stability and the halt in
convergence seen in Figure 2.1 is removed. We illustrate this fact in Figure
2.2.

For a given probability density pξ we need to find the associated orthogonal
polynomials. For some standard distributions, the so-called Wiener-Askey
scheme [6] provides the relevant polynomials. If the distribution does not exist
in the Wiener-Askey scheme the expansion can be constructed analytically from
methods like Gram-Schmidt orthogonalization. From a numerical perspective,
however, any method that creates orthogonal polynomials from raw moments,
is inherently ill-posed [7]. By raw moments we mean any expected value on the
form:

E

[
ξk1
1 · · · ξkD

D

]
=

∫
RD

ξk1
1 · · · ξkD

D pξ(ξ) dξ,

where (k1, · · · , kD) are non-negative integers. Small changes in input, may in
such ill-posed problems create large changes in the computed output. Therefore,
orthogonal polynomials are in practice created from an alternative method
known as discretized Stieltjes’ method. Stieltjes’ original method in one

7



Figure 2.2: The error when approximating using monic (monic) and orthogonal
(orthogonal) polynomials.

dimension is to construct orthogonal polynomials from a three terms recurrence
(TTR) formula:

Φ−1 = 0 Φ0 = 1 Φi+1 = (ξ −Ai)Φi −BiΦi−1

where Ai and Bi are known coefficients defined

Ai =
〈ξΦi,Φi〉ξ
〈Φi,Φi〉ξ

Bi =
〈Φi,Φi〉ξ

〈Φi−1,Φi−1〉ξ
,

where B0 = 〈Φ0,Φ0〉ξ. Stieltjes’ method becomes discretized when the
coefficients are estimated numerically. To extend the method into the
multivariate case, we use a tensor product rule for combining one-dimensional
polynomial expansions. For the polynomial to maintain the orthogonallity
property, the method assumes that the random variables are stochastically
independent. This may not seem as a strong restriction in computational
mechanics as various input parameters are usually statistically independent.

With orthogonal polynomials, we can compute ci directly from the formula,
though with a numerical approximation of the integral:

ci =
〈u,Φi〉ξ
‖Φi‖2ξ

=
1

‖Φi‖2ξ

∫
RD

u(x, t;η, ξ)Φi(ξ)pξ(ξ) dξ

≈ 1

‖Φi‖2ξ

K∑
k=0

u(x, t;η,Qk)Φi(Qk)pξ(Qk)Wk. (2.6)

Here, Qk and Wk are respectively quadrature nodes and weights. The norm
‖Φi‖2ξ is often numerically difficult to calculate and is instead estimated using

8



the numerically stable recurrence coefficients:

‖Φi‖2ξ = 〈Φi,Φi〉2ξ =
〈Φi,Φi〉ξ

〈Φi−1,Φi−1〉ξ
〈Φi−1,Φi−1〉ξ

=
〈Φi,Φi〉ξ

〈Φi−1,Φi−1〉ξ
· · · 〈Φ1,Φ1〉ξ

〈Φ0,Φ0〉ξ
〈Φ0,Φ0〉ξ

= Bi · · ·B1 ·B0 =

i∏
j=0

Bj .

Figure 2.3: Comparing absolute error in aproximation when using point
collocation nodes (PCM) and pseudo-spectral projection (PSP).

Figure 2.3 compares absolute error in approximation using pseudo-spectral
projection (PSP) and our previously defined point collocation method. For the
pseudo-spectral method Gauss-Legendre quadrature was used (which is optimal
for moments of uniformly distributed variables). We can observe that in this
example PSP is superior to PCM.

Note that the only component varying with the index i in (2.6) is the
polynomial term Φi; The evaluations of u can be reused for every i, reducing
the computational cost by not needing to reevaluate u for each coefficient. Note
that our formerly described least squares approximation of ci is based on a set
of collocation nodes and no information on pξ. The analytical Fourier coefficient
formula for ci is based on a least squares method (or Galerkin projection)
involving an integral over the probability space that incorporates pξ. The latter
should therefore be more accurate than the former. However, when the integral
is approximated by a quadrature rule, we are back to using K + 1 collocation
nodes, this time governed by the choice of quadrature rule, which depends on
the probability density pξ.

9



2.2 Summary of Papers

Three journal papers represents the main research of this thesis. The over
all theme of the papers is non-intrusive polynomial chaos expansions. Paper
I applies non-intrusive polynomial chaos expansion on a 1-dimensional flow
problem modelling the arterial system in the human body. Paper II introduces
a software toolbox that allows the user to perform non-intrusive polynomial
chaos expansions. Paper III introduces a new approach in polynomial chaos
expansions that aims to broaden the class of problems where polynomial chaos
expansions are effective.

Paper I: A novel method for sensitivity quantification of
timing and amplitude of pressure and flow waves in the
arterial system

The human heart beats to keep us all alive. It is designed to pump blood
periodically through the arteries and the capillaries, transporting nutrients to
the body’s organs. The blood propagates through the arteries as a coupled
pressure and flow waves. However, on the journey the waves meet obstacles
such as bifurcations, narrowing, etc. At these locations some waves are reflected
and travel back towards the heart. We call these waves backward propagation
waves. In a young and healthy person, when the major part of the reflected
wave returns to the heart, the aortic valve is closed, causing no harm to the
heart.

As we get older, the walls of the arteries often stiffens [8, 9]. As a result
the wave speed of the blood flow increases, and the backward propagation wave
reaches the heart earlier and with a higher amplitude. If the coupled wave
reaches the heart before the valve has the chance to close, blood might enter the
left ventricle and increase the load on the heart. This increased load is associated
with high blood pressure [10] (hypertension), expansion of the ventricle [9, 11]
(ventricular hypertrophy), and various heart diseases associated with these two
conditions. Identifying the timing and the amplitude of the backward pressure
wave is therefore important for understanding the mechanism of these diseases.

In this paper we present a model to study phenomena related to stiffening
of the arterial walls. We construct a one-dimensional idealized mathematical
model of the human systemic arterial tree. Through this model we can observe
the change of amplitude and timing of the pressure wave at various key locations,
and in particular how early the backward propagation reaches the heart.

One of the major challenges in such models is that the model parameters
are uncertain in nature. This motivates solving the problem using uncertainty
quantification. Each parameter will then have a probability distribution, and
our goal is changed to finding statistical metrics instead of deterministic ones.
In practice, we address the timing and amplitudes of the wave in the form of
expected values, standard deviation and variance based sensitivity index. In
other words, we are looking for an estimate under uncertainty, the stability of

10



the solution and a metric telling us which input parameter has the largest effect
on the pressure timing and amplitude.

Solving the problem in practice, we use the Starfish software for the blood
flow simulation [12]. To handle the uncertainty, the model is coupled with
the Chaospy software [13]. Chaospy is a tailored software for performing
uncertainty quantification using polynomial chaos expansions. The problem
at hand is well suited for using polynomial chaos expansion for the following
reasons. Even though one-dimensional distributed models are considered
computationally cheap compared to other methods like the 3D fluid-structure
interaction approach [14], the computational cost is high enough to be non-
trivial. In addition, all metrics of interest can be expressed as simple functions
of raw statistical moments of the model solver. Polynomial chaos expansions
are well equipped to calculate these features.

In the paper we first outline the model and the tools for analysis before we
describe four trials. In the first trial, we compare the output of the Starfish
software, with a series of results from another established simulation model by
Reymond et al. [15]. Key pressure and flow wave patterns from Starfish software
are calculated and compared to the same patterns from the comparable model.
The results of the first trial indicate that the numerical model implemented in
Starfish performs on par with the model implemented by Reymond et al. which
was validated in clinical trials.

In the second trial we evaluate the sensitivity of the backward pressure wave
given the stiffening in different body compartments. We select 8 groups of
vessels in the arterial network and give each location a random stiffness value.
The distribution of this random value is selected based on data to represent the
change in arterial stiffness over age. We then perform uncertainty quantification
to determine which group has the most influence on the backward pressure
timing and amplitude. From the resulting calculations we are able to identify the
most sensitive location in the arterial network as the aortic arteries, followed by
ascending aorta. The effects of the other locations on the wave were negligible.

In the third trial we assess the effects of ageing by using material parameters
representative for both a young and elderly adult. With this we quantify the
change in wave pattern.

In the fourth and last trial, we follow the result of the second trial and look
at the sensitivity of the pressure wave in ascending aorta with respect to the
stiffening of the aortic arteries. We determine which of the ten aortic arteries is
the most sensitive.

Paper II: Chaospy: An Open Source Tool for Designing
Methods of Uncertainty Quantification

The number of comprehensive toolboxes for performing stochastic analysis using
non-intrusive polynomial chaos expansions are for most part limited [16], despite
the increased popularity in the method in the recent years [17]. And considering
the large number of mathematical details involved in implementing the methods,
it is useful to assist users in implementing the methods with quality software. To

11



this end, the second paper in this thesis introduces a new software toolbox called
Chaospy [13]. Chaospy aims at being a researcher’s experimental foundry within
the scope of uncertainty quantification using advanced Monte Carlo methods
and non-intrusive polynomial chaos expansions.

Chaospy is a direct competitor to the following two software packages: the
Dakota project [18] and the Opus Open Turns library [19]. The aim of the
Dakota project, and to some extent the Opus Open Turns library are all
encompassing software for doing uncertainty quantification using predefined
state-of-the-art methods. They provide these functionalities through a black-
box approach where the user’s interaction with the underlying technology is
limited to keep the interface simpler. In comparison Chaospy aims to assist
scientists; it provides several black-box functionalities, but it is designed to be
more modular. Through a compact and powerful Python interface, Chaospy
allows for a very high level of customization. Through little effort it is possible
to extend the software to interact with other software projects, like Pandas [20]
and Scikit Learn [21] or any user define software that can be interfaced through
Python.

From a technology point of view, Chaospy separates itself from Dakota
and Turns by the heavy utilization of the Rosenblatt transformation [22].
The transformation allows for detailed control over the creation of arbitrary
multivariate random variables, and is useful when generating random samples
for Monte Carlo simulation [23], and in generalized polynomial chaos
expansion [24]. In Chaospy the Rosenblatt transformation is extended to
incorporate Copulas [25].

To minimize the amount of code needed to produce useful results, a
collection of wrapper methods are used to automate various aspects of the
underlying details, and is designed to approximate any missing features if
possible. For example, if an inverse transformation is not provided by the user
when constructing a random variable, the software will use a custom Newton’s
method for minimization to estimate those values. Likewise, any raw statistical
moments are estimated using numerical integration techniques. It is therefore
possible to perform a full uncertainty analysis with custom random variables
using very little code. Note that Chaospy still provides a collection of 64 different
distributions that all are defined without using any of these approximation
methods.

Another building block in the Chaospy toolbox is the robust polynomial
class, which is used in both the expansions and the model approximation
in polynomial chaos expansion. The toolbox contains several methods for
constructing orthogonal polynomial expansions, but allows the user to user
define the polynomials. The software toolbox also provides a collection of general
tools for manipulating the polynomials. These tools include basic arithmetic
operators, variable substitution and creation of gradient functions to name a
few. In addition, the class is constructed to be compatible with Numpy, the
default toolbox for fast numerical calculation in Python [26], in terms of shaping
and indexing.

Even though Chaospy is designed for Monte Carlo simulation and non-

12



intrusive polynomial chaos expansions, the modular nature of the software
toolbox makes it usable beyond its scope. For example, when formulating
the intrusive Galerkin method [27], custom code has to be written involving
construction and manipulation of orthogonal polynomial expansions. With the
tools Chaospy provide for arithmetic and expected value operators, the process
can be greatly assisted.

One variant of polynomial chaos expansion is called pseudo-spectral
projection, which is based on numerical integration. Chaospy provides a
collection of tools for numerical integration. These methods include adaptive
cubature [28] and optimal Gaussian quadrature [29] to mention a couple. In
addition the users are free to create their own quadrature rule. Methods for
linking custom methods together is provided.

Another variant of polynomial chaos expansion is the stochastic collocation
method [30]. It is based on a linear regression fit between an orthogonal
polynomial expansion and the model samples. Chaospy provides a few methods
for this task. In addition it provides a wrapper to the Scikit-learn package that
contains a large collection of state-of-the-art linear regression methods [21]. In
addition to this, since the polynomial expansions can be manipulated directly,
it is always possible to construct user defined regression methods as needed.

Irrespectively of the method used to construct a polynomial chaos expansion,
the end result is still part of the powerful polynomial class mentioned above.
Among the tools available to manipulate polynomials there exists multiple
tools for performing stochastic analysis. These tools include mean, covariance,
skewness, Sobol indices [31] to mention a few.

Paper III: Multivariate Polynomial Chaos Expansions with
Dependent Variables

One of the major assumptions when creating a polynomial chaos expansion is
that the model solution as a function of the random model parameters is smooth.
A discontinuity in either the function itself or in its first derivative will result in
the loss of the fast convergence property that the polynomial chaos expansions
are known for. This is known as the so-called Gibbs phenomena [32].

In the third paper we introduce a new polynomial chaos expansion method
that is designed to have fast convergence for models with Gibbs phenomena.
This new method can be described as follows. First we search for auxiliary
variables, or transformations of the uncertain model parameters, that can be
used to create a re-parameterization of the model. The goal is to create a model
with a solution that is smooth as a function of these auxiliary variables in the
probability space. Given that these auxiliary variables are found, we can create
a polynomial chaos expansion with polynomials orthogonal with respect to these
variables. The resulting polynomial approximation created is then unaffected
of the Gibbs phenomena present in the original parameterization.

One challenge with the new method is that the auxiliary variables created
often are stochastically dependent. There are a few methods for addressing
stochastically dependent variables in polynomial chaos expansions [33, 22].

13



However, these methods also involve re-parameterizations and will interfere with
the smoothness property introduced by the proposed auxiliary variables. We
therefore introduce a new type of multivariate polynomial chaos expansion where
the polynomials are orthogonal on a weighted function space spanned by the
stochastically dependent auxiliary variables. This results in a polynomial chaos
expansion which maintains the smooth feature in the probability space created
by the re-parameterization.

Creating orthogonal polynomials given stochastically dependent variables
is a numerically ill-conditioned procedure [7]. To address this ill-conditioning
we introduce a new methodology for constructing orthogonal polynomial
expansions based upon the modified Cholesky decomposition method [34]. We
illustrate how well the new construction method works by showing how much
the orthogonality property holds as the polynomial order increases for a few
stochastically independent random variables. We then compare the results with
current best numerical method for creating orthogonal polynomial expansions:
the discretized Stieltjes method [35]. The comparison shows that the two
methods have comparable ability to create orthogonal polynomial expansions.

To illustrate the effectiveness of the new method, we introduce a case
study involving diffusion in a multi-material/multi-domain model. We define
the model with the following properties. Each layer’s internal property and
the boundary location between each layer are assumed to be uncertain and
probability density functions are assigned to all of them. This model contains
discontinuities in the first derivative as a result of the sharp change in material
properties in the interface between each layer. Using classical implementations
of polynomial chaos expansions, we show that the method has slow convergence
properties, illustrating the Gibbs phenomena in the model.

The existence of a discontinuity in the first derivative in the multi-
material/multi-domain model motivates the use of the new methodology. The
paper demonstrates the steps involved in applying the new methodology to
this model, including several proposals for re-parameterization and creation of
auxiliary variables. The solution for each of the proposals is then compared
to the classical polynomial chaos expansion implementation using both pseudo-
spectral projection and point collocation. The comparison shows that the new
methodology can achieve fast convergence where the classical polynomial chaos
expansions can not. ¿¿¿¿¿¿¿ 6f4c6a5127aeaa533f03814ff5d13eeb5afd78d0

2.3 Future Work

The first paper explores the application of polynomial chaos expansions used on
arterial flow system. The input is assumed to be stochastically independent. In
practice however, it is not unreasonable to assume that the input parameters are
stochstically dependent. There are two reasons for this. One, a strong predictor
for the stiffness of each bloodvessel is a person’s age. And two, the stiffness is
usually not isolated physically at a stationary location. If one blood vessel is
found to be highly stiff, it is reasonable to assume that the neighboring vessels

14



are stiff as well. In either case, this stiffness can be modelled by adding a positive
correlation between the variables. This correlation can be introduced into the
model through a Nataf [33] or Rosenblatt [22] transformation. In practice this
can be approached using generalized polynomial chaos expansions [36]. It would
be of interest to explore how large the positive correlation coefficients have to be
for respectively a person’s age and locational dependencies to have a significant
effect on the model response.

The second paper introduces Chaospy, a new software toolbox for performing
non-intrusive polynomial expansion. Since the topic of polynomial chaos
expansions is an active reasearch field [17], there are many features that would
be of interest to have included in the toolbox. Some of these features include:
support for Karhunen-Loeve expansions [37] so that stochastic processes can be
included, piecewise polynomial basis [38, 39], wavelet basis [40, 41] and multi-
element polynomial chaos expansions [42, 43], and methods for addressing the
so-called “curse of dimensionality” [44, 45, 46]. In addition, better support for
adaptive methods, like the method implemented in Dakota [18] would also be of
interest. Lastly, it is worth noting that the underlying code of Chaospy is written
in Python programming language. To be able to address higher dimensional
problems in practice, it is useful to increase the computational efficiency of the
software by implementing the code using a computationally faster language like
C or C++.

The last paper introduces a new method for addressing problems solved
with polynomial chaos expansion with discontinuities in the probability space.
Because of the discontinuities, the convergence property of the expansion is lost.
We show that the new methodology can restore the convergence property on a
one-dimensional diffusion problem. A natural next step would be to investigate
how well the method works on two- and three dimensional cases. From there, it
would be of interest to look into how well the method works on more real world
practical applications. Another research direction of interest would be to look
at the theoretical foundation of the new method. This paper demonstrates the
method in practice, but only hints at a theoretical foundation.

15





Bibliography

[1] J. Idier, Bayesian approach to inverse problems. John Wiley and Sons,
2008.

[2] A. O’Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite,
D. J. Jenkinson, J. E. Oakley, and T. Rakow, Uncertain Judgements:
Eliciting Experts’ Probabilities. London ; Hoboken, NJ: Wiley, 1 edition ed.,
Sept. 2006.

[3] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton University Press, July 2010.

[4] G. Fishman, Monte Carlo: concepts, algorithms, and applications.
Springer, 1996.

[5] S. Hosder, R. W. Walters, and M. Balch, “Efficient sampling for non-
intrusive polynomial chaos applications with multiple uncertain input
variables,” in Proceedings of the 48th Structures, Structural Dynamics, and
Materials Conference, vol. 125, (Honolulu, HI), 2007.

[6] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations,” SIAM Journal on Scientific Computing,
vol. 24, no. 2, pp. 619–644, 2003.

[7] W. Gautschi, “Construction of Gauss-Christoffel quadrature formulas,”
Mathematics of Computation, vol. 22, p. 251, Apr. 1968.

[8] A. P. Avolio, F.-Q. Deng, W.-Q. Li, Y.-F. Luo, Z.-D. Huang, L. F. Xing, and
M. F. O’rourke, “Effects of aging on arterial distensibility in populations
with high and low prevalence of hypertension: comparison between urban
and rural communities in China.,” Circulation, vol. 71, no. 2, pp. 202–210,
1985.

[9] M. F. O’Rourke, “Arterial aging: pathophysiological principles,” Vascular
Medicine, vol. 12, no. 4, pp. 329–341, 2007.

[10] K. H. Pettersen, S. M. Bugenhagen, J. Nauman, D. A. Beard, and S. W.
Omholt, “Arterial stiffening provides sufficient explanation for primary
hypertension,” PLoS computational biology, vol. 10, no. 5, p. e1003634,
2014.

17



[11] E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders
in cardiovascular disease enterprises part I: aging arteries: a set up for
vascular disease,” Circulation, vol. 107, no. 1, pp. 139–146, 2003.

[12] V. G. Eck, “Starfish: Stochastic Arterial Flow Simulations,” Aug. 2014.

[13] J. Feinberg and H. P. Langtangen, “Chaospy Software Package for
Uncertainty Quantification,” 2014. https://github.com/hplgit/chaospy.

[14] L. Formaggia, A. M. Quarteroni, and A. Veneziani, Cardiovascular
Mathematics - Modelling and simulation of the circulatory system. 1,
Springer, 1 ed., 2009.

[15] P. Reymond, F. Merenda, F. Perren, D. Rfenacht, and N. Stergiopulos,
“Validation of a one-dimensional model of the systemic arterial tree,”
American Journal of Physiology-Heart and Circulatory Physiology, vol. 297,
no. 1, pp. H208–H222, 2009.

[16] R. C. Smith, Uncertainty Quantification: Theory, Implementation, and
Applications. 1, SIAM, Dec. 2013.

[17] D. Xiu, “Fast numerical methods for stochastic computations: a review,”
Communications in computational physics, vol. 5, no. 2-4, pp. 242–272,
2009.

[18] M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F.
Wojtkiewicz, W. E. Hart, and M. P. Alleva, DAKOTA, a multilevel parallel
object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 4.1 reference
manual. Sandia National Laboratories Albuquerque, NM, 2007.

[19] G. Andrianov, S. Burriel, S. Cambier, A. Dutfoy, I. Dutka-Malen,
E. De Rocquigny, B. Sudret, P. Benjamin, R. Lebrun, and F. Mangeant,
“Open TURNS, an open source initiative to Treat Uncertainties, Risks N
Statistics in a structured industrial approach,” in Procedings ESREL2007
safety and reliability conference. Stavanger, Norway, 2007.

[20] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, 2012.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[22] M. Rosenblatt, “Remarks on a Multivariate Transformation,” Annals of
Mathematical Statistics, vol. 23, no. 3, pp. 470–472, 1952.

[23] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo
Methods, vol. 706. John Wiley & Sons, 2011.

18



[24] D. Xiu and G. E. Karniadakis, “Modeling uncertainty in flow simulations
via generalized polynomial chaos,” Journal of Computational Physics,
vol. 187, no. 1, pp. 137–167, 2003.

[25] A. J. Lee, “Generating random binary deviates having fixed marginal
distributions and specified degrees of association,” The American
Statistician, vol. 47, no. 3, pp. 209–215, 1993.

[26] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A
Structure for Efficient Numerical Computation,” Computing in Science &
Engineering, vol. 13, pp. 22–30, Mar. 2011.

[27] R. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral
approach. Courier Dover Publications, Aug. 2003.

[28] S. G. Johnson, “Cubature (Multi-dimensional integration),” 2013.

[29] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules,
vol. 23. Mathematics of Computation, 1967.

[30] S. S. Isukapalli, Uncertainty analysis of transport-transformation models.
PhD thesis, Rutgers, The State University of New Jersey, 1999.

[31] I. M. Sobol, “On sensitivity estimation for nonlinear mathematical models,”
Matematicheskoe Modelirovanie, vol. 2, no. 1, pp. 112–118, 1990.

[32] E. Hewitt and R. E. Hewitt, “The Gibbs-Wilbraham phenomenon: an
episode in Fourier analysis,” Archive for History of Exact Sciences, vol. 21,
no. 2, pp. 129–160, 1979.

[33] A. Nataf, “Dtermination des distributions de probabilites dont les marges
sont donnes,” Comptes rendus de lacademie des sciences, vol. 225, pp. 42–
43, 1962.

[34] J. Gill and G. King, “What to Do When Your Hessian is Not Invertible
– Alternatives to Model Respecification in Nonlinear Estimation,”
Sociological Methods & Research, vol. 33, no. 1, pp. 54–87, 2004.

[35] G. E. Forsythe, “Generation and use of orthogonal polynomials for data-
fitting with a digital computer,” Journal of the Society for Industrial and
Applied Mathematics, vol. 5, no. 2, p. 74, 1957.

[36] M. Eldred, C. Webster, and P. Constantine, “Evaluation of Non-Intrusive
Approaches for Wiener-Askey Generalized Polynomial Chaos,” in NDA-4:
Probabilistic Method Development, (Schaumburg), American Institute of
Aeronautics and Astronautics, Apr. 2008.

[37] M. Loeve, “Probability theory, Fourth edition,” Graduate texts in
mathematics, vol. 46, pp. 0–387, 1978.

19



[38] I. Babuka, R. Tempone, and G. E. Zouraris, “Galerkin finite element
approximations of stochastic elliptic partial differential equations,” SIAM
Journal on Numerical Analysis, pp. 800–825, 2005.

[39] C. Schwab and R. Todor, “Sparse finite elements for stochastic elliptic
problemshigher order moments,” Computing, vol. 71, no. 1, pp. 43–63,
2003.

[40] O. P. Le Matre, H. N. Najm, R. G. Ghanem, and O. M. Knio, “Multi-
resolution analysis of Wiener-type uncertainty propagation schemes,”
Journal of Computational Physics, vol. 197, no. 2, pp. 502–531, 2004.

[41] O. P. Le Matre, O. M. Knio, H. N. Najm, and R. G. Ghanem, “Uncertainty
propagation using WienerHaar expansions,” Journal of Computational
Physics, vol. 197, no. 1, pp. 28–57, 2004.

[42] X. Wan and G. E. Karniadakis, “An adaptive multi-element generalized
polynomial chaos method for stochastic differential equations,” Journal of
Computational Physics, vol. 209, no. 2, pp. 617–642, 2005.

[43] X. Wan and G. E. Karniadakis, “Multi-element generalized polynomial
chaos for arbitrary probability measures,” SIAM Journal on Scientific
Computing, vol. 28, no. 3, pp. 901–928, 2006.

[44] P. Frauenfelder, C. Schwab, and R. Todor, “Finite elements for elliptic
problems with stochastic coefficients,” Computer methods in applied
mechanics and engineering, vol. 194, no. 2, pp. 205–228, 2005.

[45] B. Ganapathysubramanian and N. Zabaras, “Sparse grid collocation
schemes for stochastic natural convection problems,” Journal of
Computational Physics, vol. 225, no. 1, pp. 652–685, 2007.

[46] F. Nobile, R. Tempone, and C. G. Webster, “An anisotropic sparse grid
stochastic collocation method for partial differential equations with random
input data,” SIAM Journal on Numerical Analysis, vol. 46, no. 5, pp. 2411–
2442, 2008.

20



I





Paper I

A novel method for sensitivity

quantification of timing and amplitude

of pressure and flow waves in the

arterial system

23





A novel method for sensitivity

quantification of timing and amplitude

of pressure and flow waves in the

arterial system

Vinzenz Eck, Jonathan Feinberg, Hans Petter Langtangen, Leif
Rune Hellevik

In the field of computational hemodynamics, sensitivity quantification of
pressure and flow wave dynamics has received little attention. This work
presents a novel study of the sensitivity of pressure wave timing and amplitude
in the arterial system with respect to arterial stiffness. Arterial pressure and
flow waves were simulated with a one-dimensional distributed wave propagation
model for compliant arterial networks. Sensitivity analysis of this model was
based on a generalized polynomial chaos expansion combined with a stochastic
collocation method. First-order statistical sensitivity indices were formulated
to assess the effect of arterial stiffening on timing and amplitude of the pressure
wave and backward propagating pressure wave (BPW) in the ascending aorta,
at the maximum pressure and inflection point in the systolic phase. Only
the stiffness of aortic arteries were found to significantly influence timing and
amplitude of the BPW, whereas other large arteries in the systemic tree showed
marginal impact. Furthermore, the ascending aorta, aortic arch, thoracic
aorta and infrarenal abdominal aorta had the largest influence on amplitude,
whereas only the thoracic aorta influenced timing. Our results showed that
the non-intrusive polynomial chaos expansion is an efficient method to compute
statistical sensitivity measures for wave propagation models. These sensitivities
provide new knowledge in the relative importance of arterial stiffness at various
locations in the arterial network. Moreover, they will significantly influence
clinical data collection and effective composition of the arterial tree, for in-silico
clinical studies.

sensitivity quantification, systemic arterial tree, wave propagation, arterial
stiffening

3.1 Introduction

This paper presents a mathematical model for studying the phenomena of aging
in the arterial system and related pathologies. The main contribution was to
embed the model in a computational framework where simulation results can
be judged within the context of significant statistical uncertainty and natural
variation in physiological input data.



With increased age, the arterial wall stiffens and as a consequence,the
pulse wave velocity rises [1, 2]. Primary hypertension [3] and left ventricular
hypertrophy [2, 4] are only some of the pathologies believed to result from
arterial stiffening. Pressure and flow at any location in the arterial tree are
composed of two waves, one propagating from the heart to the periphery
(forward) and another traveling from the periphery to the heart (backward) [5].
Arterial stiffening and rise in pulse wave velocity affect the wave propagation,
particularly timing and amplitude of the backward propagating pressure wave
(BPW). Knowledge of the impact on timing and amplitude plays a key role on
the understanding how primary hypertension and left ventricular hypertrophy
arise.

The arterial system has been investigated in many numerical simulation
studies. Commonly three deterministic numerical model types have been
employed: i) simplified lumped parameter models [6], ii) one-dimensional
distributed models [7] and iii) computationally intensive 3D fluid-structure
interaction approaches [8]. These arterial models differ in computational
effort, level of detail, and necessary input/output parameters. One-dimensional
distributed models are computational efficient and ideal to simulate wave
propagation phenomena [9, 10, 11, 12, 13, 8, 14, 15, 16].

Some researchers have studied arterial aging with deterministic arterial
models, e.g., [3, 17, 18]. The investigators [3, 17] used lumped parameter models
which do not take wave propagation effects into account [6], while [18] applied
a one-dimensional distributed model. Liang et al. [18] focused on ventricular-
arterial coupling with simulations of the major systemic arteries. They described
forward and backward waves in the ascending aorta and age-related changes.
However, they neither assessed the changes in timing and amplitude in detail
nor did they investigate the effect of increased wave reflections in the arterial
tree.

To account for uncertainty in arterial models, a stochastic simulation
approach is needed. Arterial models are commonly discretized with a finite
difference method (FDM), finite volume method (FVM) or finite element
method (FEM). In combination with stochastic methods FDM, FVM and FEM
can be referred to as: stochastic finite difference (SFDM), stochastic finite
volume (SFVM) and stochastic finite element method (SFEM), respectively.
Some of the most common numerical methods for stochastic computing
[19, 20, 21] which can be applied to FDM, FVM and FEM are: i) the
perturbation method, ii) joint diagonalization method, iii) Monte Carlo method
and its variants and iv) projection-based methods e.g., polynomial chaos
expansion. The perturbation method is computationally undemanding, but
can capture only second order moments and supports only small variations in
input and output parameters (around 10%). The joint diagonalization method
is commonly applied in the context of SFEM [20, 21] and has no limits on the
range or type of random variables. In simple cases, the algebraic stochastic
solution can be calculated. However, the computational costs are directly
related to the size of the applied stochastic system. The Monte Carlo method
is computationally demanding as its convergence rate is slow, although some

26



variants like the quasi-Monte Carlo method have an increased convergence
rate. All Monte Carlo methods can handle large numbers of random input
variables. The projection-based methods have a fast convergence rate, i.e., low
computational costs. However, the methods are somewhat restricted in the
maximum number of random input variables (around 20). The one-dimensional
model in our study is discretized with FVM and combined with a projection-
based method, namely a non-intrusive polynomial chaos expansion method. The
limitations of the polynomial chaos expansion did not affect the calculations, as
the number of stochastic input variables was manageable.

Recently, some efforts have been made to incorporate uncertainty
quantification in one-dimensional models, to account for biological variation and
measurement errors in arterial networks [22, 23, 24, 25, 26]. Most approaches for
uncertainty quantification in one-dimensional models are based on Monte Carlo
simulations [22, 23, 24] or a generalized polynomial chaos expansion method
[25, 26]. The former [25] introduced the generalized polynomial chaos method
to the domain of one-dimensional blood flow simulations. As a proof-of-concept
by means of an analytic validation, they focused mostly on a small synthetic
vascular network (with one bifurcation). The latter [26] focused on a global
sensitivity analysis of a larger arterial network. They estimated the effect of
uncertainty in most input parameters and linked the results to general potential
physiological and pathological implications. However, biological variation of
these parameters was not taken into account. An artificial variation was used
instead to determine the sensitivity of pressure and flow patterns. In particular,
to the best of our knowledge, sensitivity analysis of BPWs timing and amplitude,
based on real physiological data has not been addressed in previous work.

This paper we present a computational framework STARFiSh (S), which
combines a one-dimensional arterial wave propagation solver with a stochastic
polynomial chaos method. First the deterministic one-dimensional arterial wave
propagation solver was compared against the well established simulation model
of Reymond et al. [16] (R), which has been validated against clinical data and
reproduces physiological pressure and flow wave forms [16, 27]. Thereafter,
aortic pressure simulated with parametric uncertainty, accounting for the
biological variation in arterial stiffness, was compared to the model predictions
simulated with (R). In addition, the effects of age-related variation in arterial
stiffness on the dynamics of the BPW in the ascending aorta were assessed
with deterministic simulations. The impact on BPW timing and amplitude
was computed by a novel stochastic sensitivity analysis procedure. The new
statistical analysis can identify arteries where uncertainties play a key role in
the response data. Finally, the sensitivity of BPW timing and amplitude was
studied with respect to stiffening in: i) groups of arteries, representing parts of
the human body, and ii) individual aortic arteries.

27



3.2 Methods

Deterministic solver component

Governing equations.

The arterial system was regarded as one-dimensional in space, consisting of
straight compliant blood vessels with a circular cross section, in accordance
with the modeling framework introduced in [28]. The blood was assumed to be
a Newtonian fluid with dynamic viscosity μ and density ρ. The physical behavior
of pressure and flow waves in each vessel is governed by the principle of mass
and momentum balance combined with a constitutive law for the elasticity of
the arterial walls. Starting with the balance equations in integral form [29], the
partial differential equations were derived:

∂A

∂t
+

∂Q

∂x
= 0, (3.1a)

∂Q

∂t
+ δ

∂

∂x

(
Q2

A

)
+

A

ρ

∂P

∂x
= −2π(γ + 2)

μ

ρ

Q

A
, (3.1b)

with δ =
(γ + 2)

(γ + 1)
.

The primary variables, pressure P = P (x, t), volumetric flow rate Q = Q(x, t)
and lumen area A = A(x, t) are quantities averaged over cross sections of the
vessel segment. Moreover, δ and γ are coefficients related to the velocity profile.
The convective acceleration and viscous wall friction force (the second and
fourth term in the conservation of momentum (3.1b)), both depend on the
velocity profile in a local cross section. The local velocity profile v(x, r, t) was
approximated with a power law profile introduced by Hughes and Lubliner [30]:

v(x, r, t) = v̄(x, t)
γ + 2

γ

(
1−

( r

R

)γ)
, (3.2)

where R is the vessel radius, v̄(x, t) the mean (cross sectional) axial velocity
and γ a coefficient for velocity profile bluntness. In this study, γ = 2 was set,
resulting in a parabolic profile.

Compliant properties of the arterial wall.

Arterial blood vessels constrict and dilate due to changes in transmural pressure.
The relation between cross-sectional area A and pressure P was based on
the exponential pressure-diameter (P, d) relation established experimentally by
Hayashi et al. [31]:

P (d) = Ps e β(d/ds − 1), (3.3)

where the diameter ds and pressure Ps are values at a reference state. β is a
material parameter accounting for the arterial wall stiffness. According to the

28



suggestions of Hayashi et al. [31], Ps = 100 mmHg was chosen and ds (at Ps)
calculated from radius data presented in Table 3.1.

Based on (3.3), an expression for the compliance C was derived, which is a
measure for changes in cross-sectional area A due to actual pressure P :

C(P ) =
∂A(P )

∂P
=

2 As

β P

(
1 +

1

β
ln

(
P

Ps

) )
, (3.4)

where As is the area at reference pressure Ps = 100 mmHg. With (3.4), the
system of governing equations (3.1) was closed. The primary unknowns were
pressure P = P (x, t) and volumetric flow rate Q = Q(x, t).

The wave speed in the model is dependent on the actual P and A:

c2 =
A

ρ C
. (3.5)

An alternative expression for the wave speed as function of actual pressure was
derived by including (3.3) and (3.4) in (3.5):

c2 =
P

2ρ

(
β + ln

(
P

Ps

))
. (3.6)

Numerical solution method.

The governing equations (3.1) were posed on a network of one-dimensional
domains. Each domain modeled a part of the arterial tree as a straight vessel.
A uniform grid was applied and the system of partial differential equations were
solved with an explicit forward-backward MacCormack scheme [32], which is
second order in space and time. The explicit scheme restricted the choice of
both the global time step Δt and local grid spacing Δxi in domain i according
to the CFL stability condition Δt ≤ Δxi/ci, where ci is the local pulse wave
velocity (3.5) in domain i. The discretization parameters Δt and Δxi, were
chosen in a way that the CFL stability condition was met for all domains i in
the simulated arterial tree (55 domains) with a lower limit of five grid points
per domain. Typically, the global time step was around Δt = 0.346 ms, the
local Δxi around 0.43 mm and the total number of grid points NT around 1200.
The computational time to solve the PDE-system (3.1) once for a single domain
with 30 grid nodes was 0.138 ms on a standard desktop computer. The run-time
of a simulation with the applied arterial network took 2 1/2 min for five heart
cycles. The pressure and flow waves reached a steady state condition after the
second heart beat.

Boundary conditions.

Each vessel in the arterial tree was subject to inflow and outflow conditions. The
vessels were connected via bifurcations. At each bifurcation point, conservation
of momentum and volumetric flow were imposed.

29



At the proximal boundary of the ascending aorta (Id 1) a volumetric flow was
set as a Dirichlet boundary condition. At the distal boundaries three-element
Windkessel (WK3) models were implemented:

dP

dt
+

P − Pv

CTRc
=

Q

CTRc
(Z +Rc) + Z

dQ

dt
, (3.7)

where Pv is the venous pressure, CT the terminal compliance, Z the proximal
and Rc the distal resistance of the peripheral bed. To achieve minimal reflections
at high frequencies at the distal boundary, the proximal resistance (Z) was set
equal to vessel impedance (Zc) of the boundary vessel:

Z ≡ Zc =

√
ρ c(P )

A(P )
. (3.8)

Values for the terminal compliance CT and the total terminal resistance RT =
Rc + Z are presented in Table 3.1. Distal boundary conditions were imposed
with Riemann invariants in the same manner as proposed by [29].

Wave separation.

The BPW were extracted by means of wave separation, as suggested by
Westerhof et al. [33]. This approach is based on the linearised and in-viscid
form of the governing equations (3.1):

C
∂P

∂t
+

∂Q

∂x
= 0, (3.9a)

∂Q

∂t
+

A

ρ

∂P

∂x
= 0. (3.9b)

The pressure solutions P (t), at an arbitrary point in the system is assumed
to consist of a forward Pf = P (x − ct) and backward Pb = P (x + ct) traveling
pressure wave. The same is applicable for the volumetric flow rate Q(t):

P = Pf + Pb, Q = Qf +Qb. (3.10)

With the characteristic vessel impedance Zc = Pf/Qf = −Pb/Qb, a relation
between volumetric flow rate and the forward and backward pressure component
is stated:

Q =
Pf

Zc
− Pb

Zc
. (3.11)

Finally, the backward component of the pressure wave is deduced through
algebraic elimination of (3.10) in (3.11):

Pb =
P − ZcQ

2
. (3.12)

30



Figure 3.1: Wave splitting of the pressure wave in the ascending aorta with
linear and non-linear methods.

The vessel impedance Zc (3.8) applied in the linear wave splitting method,
was calculated with the mean of the simulated pressure over time. Non-linear
wave splitting equations can be derived, accounting for the pressure dependent
characteristic impedance [34]. A comparison of pressure wave forms, calculated
with linear and non-linear wave splitting, is presented in Figure 3.1. The linear
wave splitting method was applied because the root mean-square error between
the resulting backward waves was small (0.012).

Stochastic response modelling

The wave propagation model involves numerous input parameters that are
subject to significant uncertainty. To assess the impact of such uncertainties,
selected input parameters, in particular, the arterial stiffness, were described as
random variables.

Our wave propagation model maps these stochastic variables to one or more
response variables (e.g., BPW timing and amplitude). The goal of uncertainty
quantification is to calculate the statistical properties of such response variables.
Let z = (z1, . . . , zD) be a vector of continuous random input variables, and q a
resulting scalar random response variable. The wave propagation model implies
a mappingM between z and q: q = M(z). In practice, the mapping is computed
by selecting a range of fixed values of the random input vector and subsequent
use the deterministic wave propagation model to solve the governing equations
(3.1) for pressure P (x, t) and flow Q(x, t). Finally, the desired response q is
derived from the resulting Q and P .

Surrogate model.

The statistical properties of q can easily be computed by Monte Carlo simulation
of q = M(z), but this approach requires a very large number of samples. More
efficient methods try to replace the mapping M by a simple and cheap surrogate
model. One such successful model is based on polynomial chaos expansions [35].

31



The fundamental idea is to assume that the mapping M is smooth, such that
it can well be described by a fast-converging polynomial approximation. (Note
that the assumption of smoothness relates to the mapping of z to q in probability
space, not the smoothness of P and Q as functions of space and time.) The
polynomial approximation takes the form:

q ≈ q̂M =

Np∑
n=0

cnΦn(z), (3.13)

where M is the order of the polynomial, cn unknown (Fourier) coefficients to
be computed, Φn predefined orthogonal polynomials and Np + 1 the number of
terms related to M and the number of input variables D through the binomial
coefficient:

Np =

(
M +D

D

)
. (3.14)

Fast spectral convergence of (3.13) demands the polynomials to be orthogonal
with respect to the probability distribution of z. For the most common
distributions, specific expressions for the polynomials can be found in the
Wiener-Askey scheme [36].

The stochastic point collocation method [37] was used to calculate the
Fourier coefficients cn. The selection of collocation points in z space followed
the suggestion of Hosder et al. [38] and used K = 2 Np + 2 samples from the
Hammerslay sequence [39]. The coefficients cn were then computed by a least-
squares minimization of the deviation between (3.13) and simulated response
at collection points. Multiple response parameters require repeated use of the
least-squares procedure for each response.

Known cn, (3.13) makes analytic expressions for lower-order moments of
q, such as the expectation E [q], the variance Var [q] and standard deviation
SD =

√
Var [q] conveniently available. These statistical quantities are of most

interest in this study. Monte Carlo simulation of (3.13) can cheaply establish
the full probability density of q, if desired.

The hope is that polynomial chaos expansions converge so fast that M can
be kept low (say 2− 4), resulting in a modest number of evaluations (K) of the
wave propagation model. This number is usually orders of magnitude smaller
than what is required for a comparable accuracy of Var [q] by Monte Carlo
simulation of the underlying flow model.

Sensitivity analysis.

To quantify the impact of each uncertain parameter zi on the model response
q, a variance-based sensitivity analysis was introduced. More precisely, a first-
order sensitivity index (Si) [40] was used:

Si(zd) =
Var [E [q | zd]]

Var [q]
d = 1, . . . , D, (3.15)

32



where Var [E [q | zd]] is the variance of the expected value of the model response
given the random variable zd. That is, this quantity measures the contribution
of random parameter zd to the global variance of the model response q. The
advantage of first-order sensitivity indices is that they quantify the relative
influence of the input variable zd on a scale from 0 to 1.

Sensitivity analysis of timing and amplitude.

The sensitivity analysis was conducted for the BPW timing and amplitude in
the ascending aorta. The occurrence time and amplitude of two distinctive
points in the wave were used as model response: i) the maximum pressure
and ii) the inflection point in the systolic phase of the wave (see Figure
3.9). These points were chosen as they are distinct, convenient to evaluate,
and representative for the change in timing and amplitude (see also Figure
3.9). Both points were tracked in all deterministic simulations required for
the uncertainty quantification procedure. Based on the BPW occurrence times
and amplitudes, polynomial expansions (3.13) were calculated. Finally, first-
order sensitivity indices (3.15) were derived for the timing (SiT ) and amplitude
(SiA) of both points. To the best of our knowledge, such specific sensitivity
indices for BPW timing and amplitude have not been used before to quantify
the impact of material parameters (arterial stiffness) in a one-dimensional
simulation framework for blood flow.

Random variables.

To estimate the effect of changes in arterial wall stiffness, uncertainty was
introduced in the stiffness coefficients β of the arterial wall model (3.4). In
general, the variation of the stiffness coefficient (B) was defined as a product
of a deterministic β value and a random variable zd with a given probability
distribution, e.g., as uniformly distributed random variable:

B = zd β. (3.16)

The random variable zd reflects the relative variability of the deterministic
variable β. This implies that the same random variable zd can be applied in the
variation equation (3.16) of a group of arteries or the hole network.

Numerical simulations

Arterial tree and initial conditions.

The simulated arterial tree consisted of the largest arteries in the systemic
circuit (Figure 3.2a), which are generally said to stiffen due to aging [2]. The
geometry, distensibility and terminal boundary parameters (Table 3.1) were
taken from Reymond et al. [16], except for the terminal boundary parameters
of the carotid and vertebral arteries, which were taken from Stergiopulos et
al. [15]. The geometry and model parameters were considered as representative

33



Figure 3.2: (a) representation of the arterial tree used in this study, (b) groups
of arteries used in the non-deterministic simulations of Trial II.

Figure 3.3: Physiological volumetric flow rate imposed as Dirichlet boundary
condition at the proximal grid node of the ascending aorta (Id 1).

Figure 3.4: Estimated correlation of β30 and age from data in the ascending
aorta published by [1].

34



Figure 3.5: Estimated biological variation of β30 from data in the ascending
aorta published by [1].

of a healthy young adult from a Western population [15, 16]. Therefore, a
corresponding age of 30 was assumed and the stiffness parameters β30 (β at age
30) were calculated from distensibility Dw(Ps) = C(Ps)/As (Table 3.1). The
reference area As at pressure Ps = 100 mmHg was calculated from the average
of proximal and distal radii presented in Table 3.1. The blood was assumed to
have viscosity μ = 0.004 Pa s and density ρ = 1.050 kg/m3. At the ascending
aorta (Id 1) a physiological flow rate (Figure 3.3), found in [16], with a heart
rate of 0.8 s was imposed. All vessels were initialized with a pressure of 100
mmHg and a volumetric flow rate of 0 ml/s.

Variation of arterial stiffness.

The assumption was that the stiffness coefficients β30 of all arteries have the
same relative variation (3.16). To evaluate the random variable zd in (3.16) with
respect to age-related stiffness changes, a deterministic counterpart to (3.16) was
defined:

B = f β30, (3.17)

where f is a function describing the relative change in stiffness over age (α). The
function f was estimated from data in the ascending aorta (mean values and
standard deviations of pulse wave velocities cAv with corresponding pressure
PAv and age αAv) published by Avolio et al. [1]. First the corresponding
βAv(cAv, PAv, αAv) stiffness parameters of mean values in the published data
were calculated based on (3.6) (see Fig 3.4). Secondly, a linear least-square
regression was fitted for βAv values over age and normalized with the βAv at
age 30, which led to:

f(α) = (b α+ d) (3.18)

where b = 0.022 and d = 0.33. The change in B(α) for a given age-range α1

to α2 was expressed by stochastic means with the introduction of a uniformly
distributed random variable zd = u (as each age has the same probability):

u = U (f(α1), f(α2)) ⇒ B = u β30, (3.19)

35



where f(α1) and f(α2) are the lower and upper bounds of the uniform
distribution.

For the biological variation of β30 for a person at age 30, the stiffness
parameters βAv ± SD were additionally calculated, based on the standard
deviations of the published data [1]. After fitting two regression curves for
βAv±SD, respectively, outliers were calculated for βAv at age 30 (see Figure 3.5).
The relative biological variation for β30 was assumed to be normally distributed.
Thus, a normally distributed random variable was defined from the normalized
βAv and its outliers at age 30, and inserted into (3.16):

n = N (μ, σ) ⇒ B = n β30, (3.20)

where μ = 1.0 and σ = 0.31.

Simulation trials.

For this study, four simulations trials were conducted. The geometry and
boundary condition parameters were the same in all trials (Table 3.1). Only
the arterial stiffness β was changed in the arterial wall models (3.3) for the
different trials (overview in Table 3.2).

Trial I: Comparison of numerical models (S) and (R).

To test the predictions of our deterministic model, the simulation results were
compared to those simulated with the one-dimensional code (R) of Reymond
et al. [16]. The code (R) was first presented by Stergiopulos et al. [15], later
enhanced and validated experimentally [16] and applied in a patient-specific
investigation [27].

Our wave propagation model (S), and the code (R), have some distinct
differences. First, the numerical time discretization is different: explicit (S)
versus implicit (R). Second, (R) applies a visco-elastic constitutive law, while in
(S) the law is non-linearly elastic. Third, the velocity profile in (R) is based on
the Womersley theory, while (S) applies a power law profile. Fourth, all vessels
have the same amount of grid points (Ni = 5) in (R), whereas (S) uses least five
grid points in each vessel.

Simulations were conducted with the arterial tree geometry in Figure 3.2a
and model parameters from Table 3.1, using both codes (S) and (R), to
qualitatively compare the resulting pressure and flow waves by visual inspection.
In addition, the discrepancy between resulting pressure waves was assessed
quantitatively with a root-mean-square estimator (RMS), where PS denotes
the resulting pressure with (S) and PR the pressure obtained with the (R):

RMS(x, t) =

√(
PS − PR

PR

)2

. (3.21)

This quantity defines the discrepancy between deterministic solvers (S) and (R)
at one point in time and space. Finally, the mean value RMS and standard

36



deviation SD(RMS) of all RMS in the middle of a vessel was calculated for all
points in time of one heart cycle. A linear interpolation was used to match the
solutions of (S) and (R) in time.

The biological variation of β30 in all arteries was assessed with non-
deterministic simulations. The result was compared to simulations conducted
with (R), using the elastic and the visco-elastic model approach for the arterial
wall behavior. The same relative biological variation (3.20) with one normally
distributed random variable was applied to β30 of all arteries. Simulations for
a polynomial chaos expansion (3.13) with order M = 3 were conducted. For
comparison, an SD interval was used, reaching from E−SD to E+SD at each
point of the pressure wave.

Trial II: Sensitivity analysis with stiffening in groups of arteries.

In this trial, we estimated the sensitivity with respect to arterial stiffness in
eight groups of arteries. The 55 vessels of the simulated arterial tree were
divided into eight groups representing different parts of the body and topological
togetherness (Figure 3.2b): ascending aorta, aortic arteries, neck & shoulder
arteries, organ arteries, left/right arm and left/right leg. Even though the
ascending aorta is one of the aortic arteries, it is treated as a separate group.
This is because preliminary simulations [41] showed that changes in local
compliance can have a significant influence on local pressure and flow wave
forms. Eight random variables were defined, one for each group of arteries,
based on (3.19), adapting changes in β30 on an interval corresponding to ages
19 to 75. Thus, all stiffness parameters of one group vary with the same
relative variation variable zd, i.e., all stiffness parameters of one group are always
representative for the same age. Simulations were conducted for the polynomial
chaos expansions, ranging in order from M = 1 to M = 4, for sensitivity indices
SiT and SiA (3.15) both points and found that M = 3 gives sufficient accuracy.
The evaluation of the polynomial chaos expansion (3.13) with order M = 3
required 330 deterministic simulations.

Trial III: Deterministic aging of the aortic arteries.

Based on the findings in Trial II, this focused on the impact of the aortic arteries.
To quantify the change in BPW timing and amplitude in the ascending aorta,
two deterministic simulations were conducted. The stiffness parameters β of
the aortic arteries were set corresponding to a young adult at age 19 and an
elderly adult at age 75, based on (3.17) and (3.18). The stiffness parameters
for the remaining arteries were kept constant, as presented in Table 3.1. The
wave patterns and some characteristic points of the waves were analyzed: the
diastole (minimum pressure before the pulse), maximum pressure and inflection
point in the systolic phase of the wave.

37



Trial IV: Sensitivity analysis with stiffening in the aortic arteries.

As in Trial III, the effect of changed arterial stiffness in the ten aortic arteries
was investigated, albeit in this trial with a sensitivity analysis. Ten uniform
distributed random variables (3.19) (one for each aortic artery) were defined
with same age-interval, representing ages 19 to 75. The β parameters for the
remaining arteries were set according to Table 3.1. For the calculation of the
polynomial chaos expansion (3.13) with order M = 3, 572 collocation points
(i.e., deterministic simulations) were used. As in Trial II, the SiT and SiA

(3.15) at the inflection point and maximum pressure were evaluated.

3.3 Results

Trial I.

Qualitatively, the pressure and flow wave patterns of the simulations with
(S) and (R) matched well (Figure 3.6), especially the rising slopes to systole
(maximum) and the diastolic decay of the waves. The pressure and flow pattern
of (S) were steadier whereas (R) revealed a wavy form, especially in the decay
phase of the flow. In the volumetric flow wave pattern of vertebral (Id 6),
subclavian B (Id 32) and radial (Id 22) a second peak was observed in (S) but
not in (R). Although the pressure waves of the vertebral (Id 6) matched well,
the systolic value of volumetric flow had the highest discrepancy.

The quantified discrepancy between the simulation results in each vessel
confirmed the findings (Figure 3.7 and Table 3.3). The RMS for all arteries
close to the heart was under 3.0%. The RMS extended 4.3% only for the vessels
in the arms and legs. The periphery vessels which terminated with a WK3
model, had d particularly higher relative discrepancy than the interior vessels.
The comparison of biological variation in arterial stiffness with the different
compliance models of (R) is presented in Figure 3.8, showing the pressure in the
ascending aorta. The discrepancy between our model (S) and the visco-elastic
model in (R) is qualitatively in the same order of magnitude as the elastic
model in (R). The yellow area (E ± SD interval) in Figure 3.8 states where
the pressure will be within a standard deviation of the mean, for the defined
biological variation of the stiffness parameters. Both predictions of (R), with
the elastic and with the visco-elastic model, lay inside the yellow area.

Trial II.

The sensitivity indices (3.15) SiT and SiA are presented in Figure 3.10a for the
maximum pressure and in Figure 3.10b for the inflection point. The highest
sensitivity arose at both points in the aortic arteries group. At the maximum
pressure, the sensitivity indices were SiT = 0.37 and SiA = 0.73 and at the
inflection point SiT = 0.59 and SiA = 0.50. The ascending aorta showed
a considerable influence (i.e., highest sensitivity index) only on the timing of
the maximum pressure (SiT = 0.26). The neck and shoulder group revealed

38



Figure 3.6: Comparison of pressure and flow waves at eight significant locations
in the arterial tree at age 30 (using parameters presented in Table 3.1) simulated
with our framework (continuous lines) and the code presented by Reymond et
al. [16] (dashed lines).

39



Figure 3.7: Quantitative comparison of both simulation approaches: RMS with
SD(RMS) for all vessels in the simulated arterial tree. Unfilled dots represent
the vessels at the boundary terminated with a WK3 model.

Figure 3.8: Pressure in the ascending aorta of non-deterministic simulations
taking the biological variation of the arterial stiffness in the arterial tree into
account and in comparison with deterministic simulations of the code (R), using
different numerical material models for the arterial walls.

Figure 3.9: Pressure and BPW in the ascending aorta with stiffness parameter
corresponding to age 19 (continuous) and age 75 (dashed).

40



Figure 3.10: Timing (SiT ) and amplitude (SiA) sensitivity of pressure waves in
the ascending aorta with respect to stiffening in: groups of arteries (Trial II)
(a) and (b) and aortic arteries (Trial IV) (c)–(e).

41



marginal response, except for the amplitude of the inflection point. Beside for
the timing of the maximum pressure (SiT = 0.1), the sensitivity on the right/left
leg was negligible. Both points showed no significant sensitivity to the organ
arteries and the right/left arm.

Trial III.

The form of the pressure waves with β, corresponding to ages 19 and 75 were
similar (Figure 3.9 up). The pressure wave widened with age and the rising
slope steepened. The systole increased with ΔP = 17.19 mmHg (Table 3.4),
while the diastole decreased with ΔP = −12.75 mmHg at age 75. The variation
in timing was small for both the systole and diastole.

The BPW revealed a distinctly heightened amplitude at age 75 (Figure
3.9 down). The maximum pressure peak increased by ΔP = 10.56 mmHg,
corresponding to an increase of 66% from age 19 to 75. The occurrence time
of the maximum pressure peak remained almost constant. At the inflection
point, the amplitude changed insignificantly, but the occurrence time changed
with Δt = −0.015 s. This means, that the BPW arrives earlier at age 75; this
corresponds to 1.9% of the heartbeat. The rising slope steepened about the
same angle as the pressure wave (Δγ = 20°). The change in the diastole was
not significant.

Trial IV.

The sensitivity indices (3.15) for timing SiT and amplitude SiA of the BPW
maximum pressure, are presented in 3.10c. Stiffening in the ascending aorta
induced the largest sensitivity indices of timing (SiT = 0.86) and amplitude
(SiA = 0.46). All other vessels had no considerable sensitivity on the timing. A
low but appreciable amplitude sensitivity showed stiffening in the aortic arch B
(SA = 0.07), as well as the thoracic aorta A and B (SiA = 0.12 and SiA = 0.15).
Also, the abdominal aorta D revealed some considerable response on amplitude
(SiA = 0.12). The sensitivity with respect to all other abdominal vessels was
negligible.

SiT and SiA (3.15) of BPW inflection point are shown in Figure 3.10d. The
only evident sensitivity for amplitude revealed stiffening in the ascending aorta
(SiA = 0.29) and aortic arch A and B (SiA = 0.11 and SiA = 0.13). The
timing sensitivity was only for thoracic aorta A and B larger than SiT = 0.03.

SiT and SiA (3.15) at the maximum pressure of the pressure wave are
presented in Figure 3.10e. The indices reflected the findings of the BPW
maximum pressure point (Figure 3.10c), with timing sensitivity somewhat lower
in the ascending aorta but higher in the abdominal aorta D (SiT = 0.53).

3.4 Discussion

In this study, we have introduced a novel computational framework and
demonstrated how it can be used to quantify the sensitivity of BPW timing and

42



amplitude with respect to arterial stiffness. With this method, the BPW timing
and amplitude sensitivity in the ascending aorta was assessed with respect to
changed arterial stiffness due to aging. The sensitivity quantification showed
that the timing and amplitude had the highest sensitivity (SiT = 0.59 and
SiA = 0.73) to arterial stiffness in the aortic arteries group. The aortic arteries
are the largest and most compliant vessels in the arterial tree; thus, it may be
expected that these vessels are most influential. Furthermore, the ascending
aorta, aortic arch, thoracic aorta and abdominal aorta D were found to have
the most influence on the BPW amplitude. The thoracic aorta was mainly
influential on the timing. Deterministic simulations representing healthy adults
at ages 19 and 75 showed that the BPW amplitude increased by 66% because
of arterial stiffening.

The deterministic solution of our framework revealed quantitatively good
agreement with results obtained with code (R) from [16] and in the non-linear
high amplitude phases, the agreement of both pressure and flow patterns was
especially good. The RMS of the pressure waves of (S) and (R) was less
than 4.2% and the SD(RMS) less than 3% for most arteries. However, a
lower diastolic pressure was observed in our simulations which might result
from different material models for the arterial walls. The tibial arteries in the
legs showed a somewhat high relative discrepancy (RMS = 10-12%), which
might come from the different implementation of WK3 models. Interestingly,
the results from our solver with an elastic compliance model were in better
agreement with the visco-elastic model of (R), than the elastic model of (R)
[16]. This finding might indicate that visco-elasticity is not strictly imperative
to resemble physiological pressure and flow waves in one-dimensional simulation
models.

We compared the impact of biological variation in stiffness parameters to
both the elastic and visco-elastic compliance model of (R) (Figure 3.8). The
results revealed that the uncertainty of arterial stiffness with respect to biological
variation has at least the same impact on the prediction of one-dimensional
models as the different arterial wall models. This indicates that to succeed in
predictive modeling for real clinical applications uncertainty quantification is
needed as much as model development.

The variation in stiffness parameters was estimated from corresponding βA

parameters, calculated with the data given by [1]. These βA parameters were
higher than the β30 of the considered geometry and model data (Table 3.1).
This discrepancy arises due to higher pulse wave velocities in Asian populations
as compared to Western populations. However, the rate of change in pulse wave
velocities over age is reported to be equivalent [42].

The rate of change in stiffness over age was estimated from measurements in
the ascending aorta (Figure 3.4) and applied to all arteries in the arterial tree.
Thus, the arteries in arms and legs stiffened over age with the same rate as the
aortic arteries, which is somehow not physiological, as the peripheral arteries
were found not to stiffen as much as the aorta [1]. However, we believe that this
simplification did not influence the sensitivity analysis, as our results revealed
that the sensitivity indices were marginal with respect to stiffening in the arm

43



and leg arteries (Figure 3.10a and b).
The largest arteries in the arterial tree are stiffening with age causing

inreased aortic blood pressure. Several investigators [4, 43, 2] claim that the
stiffening actually effects the BPW timing and amplitude, which results in
an increased aortic blood pressure. Our results are in accordance with this
hypothesis (see Figure 3.9).

The contribution of the largest arteries in the arterial tree to the changes of
BPW was assessed by dividing the arterial tree into eight groups (Figure 3.2b)
and by performing an uncertainty quantification. The stiffness of the aortic
arteries group was found to be by far the most influential with respect to both
timing (SiT = 0.59) and amplitude (SiA = 0.73) (Figure 3.10c and d). The
groups of peripheral arteries such as left/right leg and left/right arm and the
organ arteries had marginal influence on the timing and amplitude, although
the rate of change in arterial stiffness was overestimated.

As the aortic arteries seemed to be the most influential arteries, the change
in pressure and BPW in the ascending aorta was quantified with deterministic
simulations, taking only stiffening in the aortic arteries into account. The
results showed remarkable changes in BPW, with an increase of 66% maximum
amplitude and earlier arrival (Figure 3.9). Steepening of systolic wave flank
could be found in both the pressure and its backward component. The diastole
of the pressure wave decreases with age, which is in agreement with findings of
others [44]. However, an alternation in wave form pattern could not be observed,
e.g., a second peak after the maximum pressure [43], leading to the conclusion
that different or additional mechanisms led to this phenomenon. The change in
BPW in timing was best described by the inflection point, whereas the change
in amplitude was best represented by the maximum pressure.

The sensitivity of the BPW to stiffening in individual aortic arteries (Figure
3.10c-e) was assessed. The amplitude was mostly affected by changes in
the ascending aorta, aortic arch, thoracic aorta and abdominal aorta D. Our
uncertainty quantification revealed that the thoracic aorta had the largest
influence on the timing, evaluated at the inflection point (Figure 3.10d). Also
the abdominal aorta D (infrarenal abdominal aorta) showed some sensitivity
to the pressure wave timing. Stiffening in the ascending aorta had a higher
influence on timing of the maximum pressure in the backward component than
on the systole in total pressure (Figure 3.10e).

Banding experiments on pigs showed that increased local stiffness of the
ascending aorta and aortic arch resulted in isolated systolic hypertension, i.e.,
increased maximum pressure [45]. BPW timing and amplitude can have a crucial
impact on the heart load. If a major part of the backward component arrives
earlier in the systole at the heart, the aortic valve is still open, and the BPW
poses a greater load to the left ventricle. The thoracic aorta and abdominal
aorta D are common locations for an aneurysm, implicating local stiffening
in this region. Even after surgery to insert a graft, the vessel wall does not
return to its original elastic state but remains stiff. Thus, the altered local
stiffening directly influences the left ventricular pressure, as the BPW timing
and amplitude is affected.

44



Due to its efficiency and straight-forward application, the stochastic model
presented in this paper (the polynomial chaos expansion) may have great
potential. However, for studies with a greater number of random variables, the
method can become less efficient and one might consider instead a quasi-Monte
Carlo or joint diagonalization method [20, 21].

In conclusion, we have compared our model against the well established
model of Reymond et al. [16] and found that the predicted pressure and flow
pattern agree well. The discrepancy of both models was in about the same
magnitude as the impact of stiffness parameter with biological variation. This
underlines the need for uncertainty quantification in the application of such wave
propagation models for clinical applications. The sensitivity of BPW timing and
amplitude with respect to arterial stiffness was successfully assessed with a novel
method for sensitivity quantificaion. Of all arterial the groups aortic arteries
had the largest influence (i.e., highest sensitivity index) on the BPW timing
and amplitude in the ascending aorta. Local changes of arterial stiffness in the
ascending aorta, aortic arch, thoracic aorta and abdominal aorta D (infrarenal),
influenced the BPW amplitude, while the other aortic arteries revealed no
significant impact. The BPW timing revealed high sensitivity to local changes
in arterial stiffness in the thoracic aorta. Furthermore, the maximum pressure
of the BPW increased by 66% from age 19 to 75 and the backward propagating
pressure wave arrived earlier at age 75.

We thank the research group of N. Stergiopulos, Laboratory of
Hemodynamics and Cardiovascular Technology (LHCT) at EPFL Lausanne,
Switzerland, for the support and access to their code.

45



Table 3.1: Geometry, distensibility, terminal resistance and compliance of the
arterial network

Proximal Distal Terminal Terminal
Vessel Name Id Length Radius Radius Distensibility Dw β30 Resistance RT Compliance CT

mm mm mm mmHg10e−3 - mmHg s m−1 ml mmHg10e−5

Aorta Arteries
Ascending Aorta 1 40 14.7 14.4 5.42 3.66
Aortic Arch A 2 20 12.55 12 4.90 4.08
Aortic Arch B 14 39 10.7 10.4 4.48 4.46
Thoracic Aorta A 18 52 10 9.45 4.26 4.69
Thoracic Aorta B 27 104 8.25 6.45 3.60 5.56
Abdominal Aorta A 28 53 6.1 6.1 3.22 6.21
Abdominal Aorta B 35 20 5.75 5.65 3.09 6.47
Abdominal Aorta C 37 20 5.9 5.9 3.16 6.33
Abdominal Aorta D 39 106 5.8 5.5 3.07 6.51
Abdominal Aorta E 41 20 5.4 5.2 2.96 6.76

Neck and Shoulder Arteries (left/right)
Brachiocephalic 3 34 10.1 9 4.22 4.74
Subclavian A 19/4 34 5.5/5.75 4.25/4.5 2.81/2.90 7.12/6.90
Common Carotid 15/5 139/94 6/6.75 3/3.5 2.68/2.93 7.46/6.83
Internal Carotid 16/12 178 2.65/2.85 2.05/2.15 1.82/1.89 10.99/10.58 104.26� 178.44�

External Carotid 17/13 41 2.35/2.5 2.15/2.25 1.77/1.83 11.30/10.93 104.26� 178.44�

Vertebral 20/6 148/149 1.85 1.4 1.46 13.7 45.08� 412.70�

Arm Arteries (left/right )
Subclavian B, 21/7 422 4.05 2.35 2.19 9.13
axillary, brachial
Radial 22/8 235 1.75/1.85 1.4/1.55 1.43/1.49 13.99/13.42 39.7 469.76
Ulnar A 23/9 67 2.15/1.85 2.15/1.7 1.72/1.53 11.63/13.07
Interosseous 24/10 79 0.9/1.05 0.9 1.03/1.08 19.42/18.42 633.8 29.42
Ulnar B 25/11 171 2.05/1.6 1.85/1.4 1.62/1.39 12.35/14.39 39.7 469.76

Organ Arteries (left/right)
Intercostals 26 80 6.3 4.75 3.04 6.58 10.5 178.44
Celiac A 29 20 3.9 3.45 2.38 8.40
Celiac B 30 20 2.6 2.45 1.90 10.53
Hepatic 31 66 2.7 2.2 1.87 10.70 27.3 683.29
Gastric 32 71 1.6 1.5 1.42 14.08 40.7 458.48
Splenic 33 63 2.1 1.95 1.66 12.05 17.4 1069.12
Superior Mesenteric 34 59 3.95 3.55 2.41 8.30 7 2667.11
Renal 36/38 32 2.6 2.6 1.93 10.36 8.5 2195.01
Inferior Mesenteric 40 50 2.35 1.6 1.64 12.20 51.7 360.53

Leg Arteries (left/right)
Common Iliac 43/42 59 3.95 3.5 2.39 8.37
External Iliac 44/50 144 3.2 3.05 2.15 9.30
Inner Iliac 45/51 50 2 2 1.65 12.12 59.7 312.55
Femoral 46/52 443 2.6 1.9 1.77 11.30
Deepfemoral 47/53 126 2 1.85 1.61 12.42 35.9 520.00
Posterior Tibial 48/54 321 1.55 1.4 1.38 14.49 35.9 520.00
Anterior Tibial 49/55 343 1.3 1.15 1.24 16.13 42 443.71
Given arterial radii and distensibility are assumed for reference pressure Ps = 100 mmHg.
All values are taken from [16], except (�) total terminal resistance RT and terminal compliance CT of carotid
arteries are taken from Stergiopulos et al. [15]
β30: arterial stiffness parameter calculated from given distensibility and the average of distal/proximal area

Table 3.2: Stiffness parameter in Trials I-IV.
trial case simulation random distribution β-values

type variables

I comparison d – – β30

biological s 1 n = N(1, 0.3) B = n β30 (3.20)
variation

II groups of s 8 u = U (f(α1), f(α2)) (3.19) B = uj β30 (3.19)

arteries α1 = 19, α2 = 75 for each group j

III deterministic d – – B = f(α) β30 (3.17)
aging for aortic arteries

others: β30

IV aortic s 11 u = U (f(α1), f(α2)) (3.19) B = ui β30 (3.19)
arteries α1 = 19, α2 = 75 for each aortic artery i

others: β30
d: deterministic, s: stochastic, N : normal distribution, U : uniform distribution
f(α): β-age relation function (3.18), β30: values presented in Table 3.1

46



Table 3.3: Statistics of the RMS and SD(RMS), showing mean and extreme
values of the artery groups in Figure 3.6 (Trial I)

RMS SD(RMS)
mean max min mean max min

arteries close to the heart 2.81 3.14 2.23 1.93 2.22 1.69
right arm 4.07 4.76 2.34 3.24 3.48 2.34
left arm 6.32 6.78 3.45 4.04 4.70 2.59
abdominal arteries 3.14 4.24 2.56 2.52 4.25 1.50
right leg 5.30 12.15 4.44 5.07 7.99 3.33
left leg 5.31 12.32 4.45 5.01 8.18 3.22

Table 3.4: Distinctive points of the pressure wave and BPW in the ascending
aorta at ages 19 and 75, presented in Figure 3.9.

systole / maximum diastole / minimum inflection point
age amplitude time amplitude time amplitude time

pressure wave 19 128.29 0.2066 75.22 0.0201 97.93 0.1048
75 145.48 0.2059 62.47 0.0187 119.64 0.1289

backward 19 20.54 0.2915 -1.84 0.0672 10.19 0.1613
pressure wave 75 31.10 0.2840 -3.69 0.0780 11.81 0.1464

47





Bibliography

[1] A. P. Avolio, F.-Q. Deng, W.-Q. Li, Y.-F. Luo, Z.-D. Huang, L. F. Xing, and
M. F. O’rourke, “Effects of aging on arterial distensibility in populations
with high and low prevalence of hypertension: comparison between urban
and rural communities in China.,” Circulation, vol. 71, no. 2, pp. 202–210,
1985.

[2] M. F. O’Rourke, “Arterial aging: pathophysiological principles,” Vascular
Medicine, vol. 12, no. 4, pp. 329–341, 2007.

[3] K. H. Pettersen, S. M. Bugenhagen, J. Nauman, D. A. Beard, and S. W.
Omholt, “Arterial stiffening provides sufficient explanation for primary
hypertension,” PLoS computational biology, vol. 10, no. 5, p. e1003634,
2014.

[4] E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders
in cardiovascular disease enterprises part I: aging arteries: a set up for
vascular disease,” Circulation, vol. 107, no. 1, pp. 139–146, 2003.

[5] P. Segers, J. Mynard, L. Taelman, S. Vermeersch, and A. Swillens, “Wave
reflection: myth or reality?,” Artery Research, vol. 6, no. 1, pp. 7–11, 2012.

[6] Y. Shi, P. Lawford, R. Hose, and others, “Review of zero-D and 1-D models
of blood flow in the cardiovascular system,” Biomed. Eng. Online, vol. 10,
no. 1, p. 33, 2011.

[7] F. N. van de Vosse and N. Stergiopulos, “Pulse wave propagation in the
arterial tree,” Annual Review of Fluid Mechanics, vol. 43, pp. 467–499,
2011.

[8] L. Formaggia, A. M. Quarteroni, and A. Veneziani, Cardiovascular
Mathematics - Modelling and simulation of the circulatory system. 1,
Springer, 1 ed., 2009.

[9] Y. Huo and G. S. Kassab, “A hybrid one-dimensional/Womersley model of
pulsatile blood flow in the entire coronary arterial tree,” American Journal
of Physiology-Heart and Circulatory Physiology, vol. 292, no. 6, pp. H2623–
H2633, 2007.

49



[10] J. J. Wang and K. H. Parker, “Wave propagation in a model of the arterial
circulation,” Journal of Biomechanics, vol. 37, no. 4, pp. 457–470, 2004.

[11] D. Bessems, M. Rutten, and F. Van De Vosse, “A wave propagation
model of blood flow in large vessels using an approximate velocity profile
function,” Journal of Fluid Mechanics, vol. 580, pp. 145–168, 2007.

[12] D. Bessems, On the propagation of pressure and flow waves through the
patient specific arterial system. PhD, Technische Universiteit Eindhoven,
Netherlands, 2007.

[13] S. J. Sherwin, V. Franke, J. Peir, and K. Parker, “One-dimensional
modelling of a vascular network in space-time variables,” Journal of
Engineering Mathematics, vol. 47, no. 3-4, pp. 217–250, 2003.

[14] L. Formaggia, F. Nobile, A. Quarteroni, and A. Veneziani, “Multiscale
modelling of the circulatory system: a preliminary analysis,” Computing
and Visualization in Science, vol. 2, no. 2-3, pp. 75–83, 1999.

[15] N. Stergiopulos, D. F. Young, and T. R. Rogge, “Computer simulation of
arterial flow with applications to arterial and aortic stenoses,” Journal of
Biomechanics, vol. 25, no. 12, pp. 1477–1488, 1992.

[16] P. Reymond, F. Merenda, F. Perren, D. Rfenacht, and N. Stergiopulos,
“Validation of a one-dimensional model of the systemic arterial tree,”
American Journal of Physiology-Heart and Circulatory Physiology, vol. 297,
no. 1, pp. H208–H222, 2009.

[17] P. Segers, N. Stergiopulos, and N. Westerhof, “Quantification of
the contribution of cardiac and arterial remodeling to hypertension,”
Hypertension, vol. 36, no. 5, pp. 760–765, 2000.

[18] F. Y. Liang, S. Takagi, R. Himeno, and H. Liu, “Biomechanical
characterization of ventriculararterial coupling during aging: a multi-scale
model study,” Journal of Biomechanics, vol. 42, no. 6, pp. 692–704, 2009.

[19] D. Xiu, “Fast numerical methods for stochastic computations: a review,”
Communications in computational physics, vol. 5, no. 2-4, pp. 242–272,
2009.

[20] C. F. Li, Y. T. Feng, and D. R. J. Owen, “Explicit solution to the stochastic
system of linear algebraic equations $( 1 A 1+ 2 A 2++ m A m) x= b$,”
Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 44,
pp. 6560–6576, 2006.

[21] C. F. Li, S. Adhikari, S. Cen, Y. T. Feng, and D. R. J. Owen, “A
joint diagonalisation approach for linear stochastic systems,” Computers
& Structures, vol. 88, no. 19, pp. 1137–1148, 2010.

50



[22] W. Huberts, C. de Jonge, W. P. M. van der Linden, M. A. Inda, K. Passera,
J. H. M. Tordoir, F. N. van de Vosse, and E. M. H. Bosboom, “A sensitivity
analysis of a personalized pulse wave propagation model for arteriovenous
fistula surgery. Part B: Identification of possible generic model parameters,”
Medical Engineering & Physics, vol. 35, no. 6, pp. 827–837, 2013.

[23] C. A. D. Leguy, E. M. H. Bosboom, H. Gelderblom, A. P. G. Hoeks,
and F. N. van de Vosse, “Estimation of distributed arterial mechanical
properties using a wave propagation model in a reverse way,” Medical
engineering & physics, vol. 32, no. 9, pp. 957–967, 2010.

[24] C. A. D. Leguy, E. M. H. Bosboom, A. S. Z. Belloum, A. P. G. Hoeks,
and F. N. van de Vosse, “Global sensitivity analysis of a wave propagation
model for arm arteries,” Medical Engineering & Physics, vol. 33, no. 8,
pp. 1008–1016, 2011.

[25] D. Xiu and S. J. Sherwin, “Parametric uncertainty analysis of pulse
wave propagation in a model of a human arterial network,” Journal of
Computational Physics, vol. 226, no. 2, pp. 1385–1407, 2007.

[26] P. Chen, A. Quarteroni, and G. Rozza, “Simulation-based uncertainty
quantification of human arterial network hemodynamics,” International
Journal for Numerical Methods in Biomedical Engineering, vol. 29, no. 6,
pp. 698–721, 2013.

[27] P. Reymond, Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos,
“Validation of a patient-specific one-dimensional model of the systemic
arterial tree,” American Journal of Physiology-Heart and Circulatory
Physiology, vol. 301, no. 3, pp. H1173–H1182, 2011.

[28] A. C. L. Barnard, W. A. Hunt, W. P. Timlake, and E. Varley, “A theory of
fluid flow in compliant tubes,” Biophysical Journal, vol. 6, no. 6, pp. 717–
724, 1966.

[29] P. R. Leinan, “Biomechanical modeling of fetal veins: The umbilical vein
and ductus venosus bifurcation,” in 8th International Fluid Dynamics in
the Oil & Gas, Metallurgical and Process Industries, Tapir academic press,
2012.

[30] T. J. R. Hughes and J. Lubliner, “On the one-dimensional theory of blood
flow in the larger vessels,” Mathematical Biosciences, vol. 18, no. 1, pp. 161–
170, 1973.

[31] K. Hayashi, H. Handa, S. Nagasawa, A. Okumura, and K. Moritake,
“Stiffness and elastic behavior of human intracranial and extracranial
arteries,” Journal of Biomechanics, vol. 13, no. 2, pp. 175–184, 1980.

[32] L. R. Hellevik, J. Vierendeels, T. Kiserud, N. Stergiopulos, F. Irgens,
E. Dick, K. Riemslagh, and P. Verdonck, “An assessment of ductus venosus

51



tapering and wave transmission from the fetal heart,” Biomechanics and
Modeling in Mechanobiology, vol. 8, no. 6, pp. 509–517, 2009.

[33] N. Westerhof, P. Sipkema, G. C. Van Den Bos, and G. Elzinga, “Forward
and backward waves in the arterial system,” Cardiovascular Research,
vol. 6, no. 6, pp. 648–656, 1972.

[34] F. Pythoud, Analysis of wave reflections in the arterial systems. PhD
thesis, Ecole Polytechnique Federale de Lausanne, 1996.

[35] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton University Press, July 2010.

[36] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations,” SIAM Journal on Scientific Computing,
vol. 24, no. 2, pp. 619–644, 2003.

[37] S. S. Isukapalli, Uncertainty analysis of transport-transformation models.
PhD thesis, Rutgers, The State University of New Jersey, 1999.

[38] S. Hosder, R. W. Walters, and M. Balch, “Efficient sampling for non-
intrusive polynomial chaos applications with multiple uncertain input
variables,” in Proceedings of the 48th Structures, Structural Dynamics, and
Materials Conference, vol. 125, (Honolulu, HI), 2007.

[39] J. M. Hammersley, “Monte Carlo methods for solving multivariable
problems,” Annals of the New York Academy of Sciences, vol. 86, no. 3,
pp. 844–874, 1960.

[40] I. M. Sobol, “On sensitivity estimation for nonlinear mathematical models,”
Matematicheskoe Modelirovanie, vol. 2, no. 1, pp. 112–118, 1990.

[41] V. G. Eck, J. Feinberg, H. P. Langtangen, and L. R. Hellevik, “Assessment
of Statistical Variability in material parameters for 1D wave propagation
in arterial networks,” in Proceedings of the 3rd International Conference
on Computational
Mathematical Biomedical Engineering, 2013.

[42] A. P. Avolio, S.-G. Chen, R.-P. Wang, C.-L. Zhang, M.-F. Li, and M. F.
O’Rourke, “Effects of aging on changing arterial compliance and left
ventricular load in a northern Chinese urban community.,” Circulation,
vol. 68, no. 1, pp. 50–58, 1983.

[43] M. F. ORourke and W. W. Nichols, “Aortic diameter, aortic stiffness,
and wave reflection increase with age and isolated systolic hypertension,”
Hypertension, vol. 45, no. 4, pp. 652–658, 2005.

[44] S. S. Franklin, W. Gustin, N. D. Wong, M. G. Larson, M. A. Weber, W. B.
Kannel, and D. Levy, “Hemodynamic patterns of age-related changes in
blood pressure The Framingham Heart Study,” Circulation, vol. 96, no. 1,
pp. 308–315, 1997.

52



[45] C. V. Ioannou, D. R. Morel, A. N. Katsamouris, S. Katranitsa, I. Startchik,
A. Kalangos, N. Westerhof, and N. Stergiopulos, “Left ventricular
hypertrophy induced by reduced aortic compliance,” Journal of Vascular
Research, vol. 46, no. 5, pp. 417–425, 2009.

53





II





Paper II

Chaospy: An Open Source Tool for

Designing Methods of Uncertainty

Quantification

57





Chaospy: An Open Source Tool for

Designing Methods of Uncertainty

Quantification

Jonathan Feinberg, Hans Petter Langtangen

The paper describes the philosophy, design, functionality, and usage of the
Python software toolbox Chaospy for performing uncertainty quantification
via polynomial chaos expansions and Monte Carlo simulation. The paper
compares Chaospy to similar packages and demonstrates a stronger focus on
defining reusable software building blocks that can easily be assembled to
construct new, tailored algorithms for uncertainty quantification. For example,
a Chaospy user can in a few lines of high-level computer code define custom
distributions, polynomials, integration rules, sampling schemes, and statistical
metrics for uncertainty analysis. In addition, the software introduces some
novel methodological advances, like a framework for computing Rosenblatt
transformations and a new approach for creating polynomial chaos expansions
with dependent stochastic variables.

4.1 Introduction

We consider a computational science problem in space x and time t where the
aim is to quantify the uncertainty in some response Y , computed by a forward
model f , which depends on uncertain input parameters Q:

Y = f(x, t,Q). (4.1)

We treat Q as a vector of model parameters, and Y is normally computed as
some grid function in space and time. The uncertainty in this problem stems
from the parameters Q, which are assumed to have a known joint probability
density function pQ. The challenge is that we want to quantify the uncertainty
in Y , but nothing is known about its density pY . The goal is then to either
build the density pY or relevant descriptive properties of Y using the density
pQ and the forward model f . For all practical purposes this must be done by a
numerical procedure.

In this paper, we focus on two approaches to numerically quantify
uncertainty: Monte Carlo simulation and non-intrusive global polynomial chaos
expansions. For a review of the former, there is a very useful book by Rubinstein,
Reuven and Kroese [1], while for the latter, we refer to the excellent book by
Xiu [2]. Note that other methods for performing uncertainty quantification also
exist, such as perturbation methods, moment equations, and operator based



methods. These methods are all discussed in [2], but are less general and less
widely applicable than the two addressed in this paper.

The number of toolboxes available to perform Monte Carlo simulation is
vastly larger than the number of toolboxes for non-intrusive polynomial chaos
expansion. As far as the authors know, there are only a few viable options for
the latter class of methods: The Dakota Project (referred to as Dakota) [3], the
Opus Open Turns library (referred to as Turns) [4], Uncertenty Quantification
Toolkit [5], and MIT Uncertenty Quantification Library [6]. In this paper we
will focus on the former two: Dakota and Turns. Both packages consist of
libraries with extensive sets of tools, where Monte Carlo simulation and non-
intrusive polynomial chaos expansion are just two tools available among several
others.

It is worth noting that both Dakota and Turns can be used from two
perspectives: as a user and as a developer. Both packages are open source
projects with comprehensive developer manuals. As such, they both allow
anyone to extend the software with any functionality one sees fit. However,
these extension features are not targeting the common user and require a deeper
understanding of both coding practice and the underlying design of the library.
In our opinion, the threshold for a common user to extend the library is normally
out of reach. Consequently, we are in this paper only considering Dakota and
Turns from the point of view of the common user.

Dakota requires the forward model f to be wrapped in a stand-alone
callable executable. The common approach is then to link this executable
to the analysis software through a configuration file. The technical steps are
somewhat cumbersome, but has their advantage in that already built and
installed simulation software can be used without writing a line of code.

Alternative to this direct approach is to interact with an application
programming interface (API). This approach requires the user to know how
to program in the supported languages, but this also has clear benefits as an
interface through a programming language allows for a deeper level of integration
between the user’s model and the UQ tools. Also, exposing the software’s
internal components through an API allows a higher detailed control over the
tools and how they can be combined in statistical algorithms. This feature is
attractive to scientists who would like the possibility to experiment with new
or non-standard methods in ways not thought of before. This approach is used
by the Turns software (using the languages Python or R) and is supported in
Dakota through a library mode (using C++).

For example, consider bootstrapping [7], a popular method for measuring
the stability of any parameter estimation. Neither Dakota nor Turns support
bootstrapping directly. However, since Turns exposes some of the inner
components to the user, a programmer can combine these to implement a custom
bootstrapping technique.

This paper describes a new, third alternative open source software
package called Chaospy [8]. Like Dakota and Turns, it is a toolbox for
analysing uncertainty using advanced Monte Carlo simulation and non-intrusive
polynomial chaos expansions. However, unlike the others, it aims to assist

60



scientists in constructing tailored statistical methods by combining a lot of
fundamental and advanced building blocks. Chaospy builds upon the same
philosophy as Turns in that it offers flexibility to the user, but takes it
significantly further. In Chaospy, it is possible to gain detailed control
and add user defined functionality to all of the following: random variable
generation, polynomial construction, sampling schemes, numerical integration
rules, response evaluation, and point collocation. The software is designed from
the ground up in Python to be modular and easy to experiment with. The
number of lines of code to achieve a full uncertainty analysis is amazingly low.
It is also very easy to compare a range of methods in a given problem. Standard
statistical methods are easily accessible through a few lines of R or Pandas [9]
code, and one may think of Chaospy as a tool similar to R or Pandas, just
tailored to polynomial chaos expansion and Monte Carlo simulation.

Although Chaospy is designed with a large focus on modularity, flexibility,
and customization, the toolbox comes with a wide range of pre-defined
statistical methods. Within the scope of Monte Carlo sampling and non-
intrusive polynomial chaos expansion, Chaospy has a competitive collection of
methods, comparable to both Dakota and Turns. It also offers some novel
features regarding statistical methods, first and foremostly a flexible framework
for defining and handling input distributions, including dependent stochastic
variables. Detailed comparisons of features in the three packages appear
throughout the paper.

The paper is structured as follows. We start in Section 4.2 with
a quick demonstration of how the software can be used to perform
uncertainty quantification in a simple physical problem. Section 4.3 addresses
probability distributions and the theory relevant to perform Monte Carlo
simulation. Section 4.4 concerns non-intrusive polynomial chaos expansions,
while conclusions and topics for further work appear in Section 4.5.

4.2 A Glimpse of Chaospy in Action

To demonstrate how Chaospy is used to solve an uncertainty quantification
problem, we consider a simple physical example of (scaled) exponential decay
with an uncertain, piecewise constant coefficient:

u′(x) = −c(x)u(x), u(0) = u0, c(x) =

⎧⎨⎩ c0, x < 0.5
c1, 0.5 ≤ x < 0.7
c2, x ≥ 0.7

(4.2)

Such a model arises in many contexts, but we may here think of u(x) as the
porosity at depth x in geological layers and ci as a (scaled) compaction constant
in layer number i. For simplicity, we consider only three layers with three
uncertain constants c0, c1, and c2.

The model can easily be evaluated by solving the differential equation
problem, here by a 2nd-order Runge-Kutta method on a mesh x, coded in

61



Python as:

def model(x, u0, c0, c1, c2):
def c(x):

if x < 0.5: return c0
elif 0.5 <= x < 0.7: return c1
else: return c2

N = len(x)
u = np.zeros(N)

u[0] = u0
for n in xrange(N-1):

dx = x[n+1] - x[n]
K1 = -dx*u[n]*c(x[n])
K2 = -dx*u[n] + K1/2*c(x[n]+dx/2)
u[n+1] = u[n] + K1 + K2

return u

Alternatively, the model can be implemented in some external software in
another programming language. This software can either be run as a stand-
alone application, where the Python function model runs the application and
communicates with it through input and output files, or the model function
can communicate with the external software through function calls if a Python
wrapper has been made for the software (there are numerous technologies
available for creating Python wrappers for C, C++, and Fortran software).

The Chaospy package may be loaded by

import chaospy as cp

Each of the uncertain parameters must be assigned a probability density, and
we assume that c0, c1, and c2 are stochastically independent:

c0 = cp.Normal(0.5, 0.15)
c1 = cp.Uniform(0.5, 2.5)
c2 = cp.Uniform(0.03, 0.07)
# Joint probability distribution
distribution = cp.J(c0, c1, c2)

The sample points (c0, c1, c2) in probability space, where the model is to be
evaluated, can be chosen in many ways. Here we specify a third-order Gaussian
Quadrature scheme tailored to the joint distribution:

nodes, weights = cp.generate_quadrature(
order=3, domain=distribution, rule="Gaussian")

The next step is to evaluate the computational model at these sample points
(object nodes):

x = np.linspace(0, 1, 101)
samples = [model(x, u0, node[0], node[1], node[2])

for node in nodes.T]

62



Now, samples contains a list of arrays, each array containing u values at the
101 x values for one combination (c0, c1, c2) of the input parameters.

To create a polynomial chaos expansion, we must generate orthogonal
polynomials corresponding to the joint distribution. We choose polynomials
of the same order as specified in the quadrature rule, computed by the widely
used three-term recurrence relation (ttr):

polynomials = cp.orth_ttr(order=3, dist=distribution)

To create an approximate solver (or surrogate model), we join the polynomial
chaos expansion, the quadrature nodes and weights, and the model samples:

model_approx = cp.fit_quadrature(
polynomials, nodes, weights, samples)

The model_approx object can now cheaply evaluate the model at a point
(c0, c1, c2) in probability space for all x points in the x array. Built-in tools
can be used to derive statistical information about the model response:

mean = cp.E(model_approx, distribution)
deviation = cp.Std(model_approx, distribution)

The mean and deviation objects are arrays containing the mean value and
standard deviation at each point in x. A graphical illustration is shown in
Figure 4.1.

The accuracy of the estimation is comparable to what Dakota and Turns
can provide. Figure 4.2 shows that the estimation error in the three software
toolboxes are almost indistinguishable. The error is calculated as the absolute
difference between the true value and the estimated value integrated over the
depth x:

εE =

∫ 1

0

|E(u)− E(uapprox)| dx εV =

∫ 1

0

|V(u)− V(uapprox)| dx

Both the point collocation method and the pseudo-spectral projection method
are included. The former is calculated using two times the random collocation
nodes as the number of polynomials, and the latter using Gaussian quadrature
integration with quadrature order equal to polynomial order. Note that Turns
does not support pseudo-spectral projection, and is therefore only compared
using point collocation.

4.3 Modelling Random Variables

Rosenblatt Transformation

Numerical methods for uncertainty quantification need to generate pseudo-
random realizations

{Qk}k∈IK IK = {1, . . . ,K},

63



Figure 4.1: Solution of a simple stochastic differential equation with uncertain
coefficients.

from the density pQ. Each Q ∈ {Qk}k∈IK is multivariate with the number of
dimensions D > 1. Generating realizations from a given density pQ is often
non-trivial, at least when D is large. A very common assumption made in
uncertainty quantification is that each dimension in Q consists of stochastically
independent components. Stochastic independence allows for a joint sampling
scheme to be reduced to a series of univariate samplings, drastically reducing
the complexity of generating a sample Q.

Unfortunately, the assumption of independence does not always hold in
practice. We have examples from many research fields where stochastic
dependence must be assumed, including modelling of climate [10], iron-ore
minerals [11], finance [12], and ion channel densities in detailed neuroscience
models [13]. There also exists examples where introducing dependent
random variables is beneficial for the modelling process, even though the
original input was stochastically independent [14]. In any cases, modelling
of stochastically dependent variables are required to perform uncertainty
quantification adequately. A strong feature of Chaospy is its support for
stochastic dependence.

All random samples are in Chaospy generated using Rosenblatt
transformations TQ [15]. It allows for a random variable U , generated uniformly

64



Figure 4.2: The error in estimates of the mean and variance, computed
by Dakota, Turns, and Chaospy using point collocation and pseudo-spectral
projection, is almost identical.

on a unit hypercube [0, 1]D, to be transformed into Q = T−1
Q (U), which behaves

as if it were drawn from the density pQ. It is easy to generate pseudo-random
samples from a uniform distribution, and the Rosenblatt transformation can
then be used as a method for generating samples from arbitrary densities.

The Rosenblatt transformation can be derived as follows. Consider a
probability decomposition, for example for a bivariate random variable Q =
(Q0, Q1):

pQ0,Q1(q0, q1) = pQ0(q0)pQ1|Q0
(q1 | q0), (4.3)

were pQ0 is an marginal density function, and pQ1|Q0
is a conditional density.

For the multivariate case, the density decomposition will have the form

pQ(q) =
D−1∏
d=0

pQ′
d
(q′d), (4.4)

where

Q′
d = Qd | Q0, . . . , Qd−1 q′d = qd | q0, . . . , qd−1 (4.5)

denotes that Qd and qd are dependent on all components with lower indices. A
forward Rosenblatt transformation can then be defined as

TQ(q) = (FQ′
0
(q′0), . . . , FQ′

D−1
(q′D−1)), (4.6)

where FQ′
d
is the cumulative distribution function:

FQ′
d
(q′d) =

∫ qd

−∞
pQ′

d
(r | q0, . . . , qd−1) dr. (4.7)

65



This transformation is bijective, so it is always possible to define the inverse
Rosenblatt transformation T−1

Q in a similar fashion.

Numerical Estimation of Inverse Rosenblatt Transforma-
tions

To implement the Rosenblatt transformation in practice, we need to identify the
inverse transform T−1

Q . Unfortunately, TQ is often non-linear without a closed-
form formula, making analytical calculations of the transformation’s inverse
difficult. In the scenario where we do not have a symbolic representation of the
inverse transformation, a numerical scheme has to be employed. To the authors’
knowledge, there are no standards for defining such a numerical scheme. The
following paragraphs therefore describe our proposed method for calculating the
inverse transformation numerically.

The problem of calculating the inverse transformation T−1
Q can, by

decomposing the definition of the forward Rosenblatt transformation in (4.6),
be reformulated as

F−1
Q′

d
(u | q0, . . . , qd−1) =

{
r : FQ′

d
(r | q0, . . . , qd−1) = u

}
d = 0, . . . , D − 1.

In other words, the challenge of calculating the inverse transformation can be
reformulated as a series of one dimensional root-finding problems. In Chaospy,
these roots are found by employing a Newton-Raphson scheme. However,
to ensure convergence, the scheme is coupled with a bisection method. The
bisection method is applicable here since the problem is one-dimensional and
the functions of interest are by definition monotone. When the Newton-Raphson
method fails to converge at an increment, a bisection step gives the Newton-
Raphson a new start location away from the previous location. This algorithm
ensures fast and reliable convergence towards the root.

The Newton-Raphson-bisection hybrid method is implemented as follows.
The initial values are the lower and upper bounds [lo0, up0]. If pQ′

d
is unbound,

the interval is selected such that it approximately covers the density. For
example for a standard normal random variable, which is unbound, the interval
[−7.5, 7.5] will approximately cover the whole density with an error about 10−14.
The algorithm starts with a Newton-Raphson increment, using the initial value
r0 = (up0 − lo0)u+ lo0:

rk+1 = rk − FQ′
d
(rk | q0, . . . , qd−1)− u

pQ′
d
(rk | q0, . . . , qd−1)

, (4.8)

where the density pQ′
d
can be approximated using finite differences. If the new

value does not fall in the interval [lok, upk], this proposed value is rejected, and
is instead replaced with a bisection increment:

rk+1 =
upk + lok

2
. (4.9)

66



In either case, the bounds are updated according to

(lok+1, upk+1) =

{
(lok, rk+1) FQ′

d
(rk+1 | q0, . . . , qd−1) > u

(rk+1, upk) FQ′
d
(rk+1 | q0, . . . , qd−1) < u

(4.10)

The algorithm repeats the steps in (4.8), (4.9) and (4.10), until the residual
|FQ′

d
(rk | q0, . . . , qd−1)− u| is sufficiently small.

The described algorithm overcomes one of the challenges of implementing
Rosenblatt transformations in practice: how to calculate the inverse
transformation. Another challenge is how to construct a transformation in the
first place. This is the topic of the next section.

Constructing Distributions

The backbone of distributions in Chaospy is the Rosenblatt transformation TQ.
The method, as described in the previous section, assumes that pQ is known to
be able to perform the transformation and its inverse. In practice, however, we
first need to construct pQ, before the transformation can be used. This can be
a challenging task, but in Chaospy a lot of effort has been put into constructing
novel tools for making the process as flexible and painless as possible. In
essence, users can create their own custom multivariate distributions using a
new methodology as described next.

Following the definition in (4.6), each Rosenblatt transformation consists of
a collection of conditional distributions. We express all conditionality through
distribution parameters. For example, the location parameter of a normal
distribution can be set to be uniformly distributed, say on [−1, 1]. The following
interactive Python code defines a normal variable with a normally distributed
mean:

>>> uniform = cp.Uniform(lo=-1, up=1)
>>> normal = cp.Normal(mu=uniform, sigma=0.1)

We now have two stochastic variables, uniform and normal, whose joint
bivariate distribution can be constructed through the cp.J function:

>>> joint = cp.J(uniform, normal)

The software will, from this minimal formulation, try to sort out the
dependency ordering and construct the full Rosenblatt transformation. The
only requirement is that a decomposition as in (4.4) is in fact possible. The
result is a fully functioning forward and inverse Rosenblatt transformation. The
following code evaluates the forward transformation (the density) at (1, 0.9), the
inverse transformation at (0.4, 0.6), and draws a random sample from the joint
distribution:

67



>>> print joint.fwd([1, 0.9])
[ 1. 0.15865525]
>>> print joint.inv([0.4, 0.6])
[-0.2 -0.17466529]
>>> print joint.sample()
[-0.05992158 -0.07456064]

Distributions in higher dimensions are trivially obtained by including more
arguments to the cp.J function.

As an alternative to the explicit formulation of dependency through
distribution parameters, it is also possible to construct dependencies implicitly
through arithmetic operators. For example, it is possible to recreate the example
above using addition of stochastic variables instead of letting a distribution
parameter be stochastic. More precisely, we have a uniform variable on [−1, 1]
and a normally distributed variable with location at x = 0. Adding the uniform
variable to the normal variable creates a new normal variable with stochastic
location:

>>> uniform = Uniform(lo=-1, up=1)
>>> normal0 = Normal(mu=0, scale=0.1)
>>> normal = normal0 + uniform
>>> joint = J(uniform, normal)

As before, the software automatically sorts the dependency ordering from the
context. Here, since the uniform variable is present as first argument, the
software recognises the second argument as a normal distribution, conditioned
on the uniform distribution, and not the other way around.

Another favorable feature in Chaospy is that multiple transformations can
be stacked on top of each other. For example, consider the example of a
multivariate log-normal random variable Q with three dependent components.
(Let us ignore for a moment the fact that Chaospy already offers such a
distribution.) Trying to decompose this distribution is a very cumbersome task if
performed manually. However, this process can be drastically simplified through
variable transformations, for which Chaospy has strong support. A log-normal
distribution, for example, can be expressed as

Q = eZL+b,

where Z are standard normal variables, and L and b are predefined matrix and
vector, respectively. To implement this particular transformation, we only have
to write

>>> Z = cp.J(cp.Normal(0,1), cp.Normal(0,1), cp.Normal(0,1))
>>> Q = e**(Z*L + b)

The resulting distribution is fully functional multivariate log-normal, assuming
L and b are properly defined.

One obvious prerequisite for using univariate distributions to create
conditionals and multivariate distributions, is the availability of univariate

68



distributions. Since the univariate distribution is the fundamental building
block, Chaospy offers a large collection of 64 univariate distributions. They
are all listed in Table 4.1. The list also shows that Dakota’s support is limited
to 11 distributions, and Turns has a collection of 26 distributions.

Distribution D T C Distribution D T C
Alpha n n y Anglit n n y
Arcsinus n n y Beta y y y
Brandford n n y Burr n y y
Cauchy n n y Chi n y y
Chi-Square n y y Double Gamma n n y
Double Weibull n n y Epanechnikov n y y
Erlang n n y Exponential y y y
Exponential Power n n y Exponential Weibull n n y
Birnbaum-Sanders n n y Fisher-Snedecor n y y
Fisk/Log-Logistic n n y Folded Cauchy n n y
Folded Normal n n y Frechet y n y
Gamma y y y Gen. Exponential n n y
Gen. Extreme Value n n y Gen. Gamma n n y
Gen. Half-Logistic n n y Gilbrat n n y
Truncated Gumbel n n y Gumbel y y y
Hypergeometric Secant n n y Inverse-Normal n y n
Kumaraswamy n n y Laplace n y y
Levy n n y Log-Gamma n n y
Log-Laplace n n y Log-Normal y y y
Log-Uniform y y y Logistic n y y
Lomax n n y Maxwell n n y
Mielke’s Beta-Kappa n n y Nakagami n n y
Non-Central Chi-Squared n y y Non-Central Student-T n y y
Non-central F n n y Normal y y y
Pareto (First kind) n n y Power Log-Normal n n y
Power Normal n n y Raised Cosine n n y
Rayleigh n y y Reciprocal n n y
Rice n y n Right-skewed Gumbel n n y
Student-T n y y Trapezoidal n y n
Triangle y y y Truncated Exponential n n y
Truncated Normal n y y Tukey-Lamdba n n y
Uniform y y y Wald n n y
Weibull y y y Wigner n n y
Wrapped Cauchy n n y Zipf-Mandelbrot n y n

Table 4.1: List of supported continuous distributions in software. The titles ’D’,
’T’ and ’C’ represents Dakota, Turns and Chaospy respectively. The elements
’y’ and ’n’ represent the answers ’yes’ and ’no’ indicating if the distribution is
supported or not.

69



The Chaospy software supports in addition custom distributions through the
function cp.constructor. To illustrate its use, consider the simple example of
a uniform random variable on the interval [lo, up]. The minimal input to create
such a distribution is

>>> Uniform = cp.constructor(
... cdf=lambda self,x,lo,up: (x-lo)/(up-lo),
... bnd=lambda self,x,lo,up: (lo,up) )
>>> uniform = Uniform(lo=-1, up=1)

Here, the two provided arguments are a cumulative distribution function (cdf),
and a boundary interval function (bnd), respectively. The cp.constructor

function also takes several optional arguments to provide extra functionality.
For example, the inverse of the cumulative distribution function – the point
percentile function – can be provided through the ppf keyword. If this function
is not provided, the software will automatically approximate it using the method
described in Section 4.3.

Copulas

Dakota and Turns do not support the Rosenblatt transformation applied
to multivariate distributions with dependencies. Instead, the two packages
model dependencies using copulas [16]. A copula consists of stochastically
independent multivariate distributions made dependent using a parameterized
function g. Since the Rosenblatt transformation is general purpose, it is possible
to construct any copula directly. However, this can quickly become a very
cumbersome task since each copula must be decomposed individually for each
combination of independent distributions and parameterization of g. To simplify
the user’s efforts, Chaospy has dedicated constructors that can reformulate a
copula coupling into a Rosenblatt transformation. This is done following the
work of Lee [17] and approximated using finite differences. The implementation
is based of the software toolbox RoseDist [18]. In practice, this approach allow
copulas to be defined in a Rosenblatt transformation setting. For example, to
construct a bivariate normal distribution with a Clayton copula in Chaospy, we
do the following:

>>> joint = cp.J(cp.Normal(0,1), cp.Normal(0,1))
>>> clayton = cp.Clayton(joint, theta=2)

A list of supported copulas are listed in Table 4.2. It shows that Turns supports
7 methods, Chaospy 6, while Dakota offers 1 method.

Variance Reduction Techniques

As noted in the beginning of Section 4.3, by generating samples {Qk}k∈IK and
evaluating the response function f , it is possible to draw inference upon Y
without knowledge about pY , through Monte Carlo simulation. Unfortunately,

70



Supported Copulas Dakota Turns Chaospy
Ali-Mikhail-Haq no yes yes
Clayton no yes yes
Farlie-Gumbel-Morgenstein no yes no
Frank no yes yes
Gumbel no yes yes
Joe no no yes
Minimum no yes no
Normal/Nataf yes yes yes

Table 4.2: The list of supported copulas in the various software packages.

the number of samples K to achieve reasonable accuracy can often be very
high, so if f is assumed to be computationally expensive, the number of
samples needed frequently make Monte Carlo simulation infeasible for practical
applications. As a way to mitigate this problem, it is possible to modify
{Qk}k∈IK from traditional pseudo-random samples, so that the accuracy
increases. Schemes that select non-traditional samples for {Qk}k∈IK to increase
accuracy are known as variance reduction techniques. A list of such techniques
are presented in Table 4.3, and it shows that Dakota, Turns and Chaospy
support 4, 7, and 7 variance reduction techniques, respectively.

One of the more popular variance reduction technique is the quasi-Monte
Carlo scheme [1]. The method consists of selecting the samples {Qk}k∈IK to
be a low-discrepancy sequence instead of pseudo-random samples. The idea is
that samples placed with a given distance from each other increase the coverage
over the sample space, requiring fewer samples to reach a given accuracy. For
example, if standard Monte Carlo requires 106 samples for a given accuracy,
quasi-Monte Carlo can often get away with only 103. Note that this would
break some of the statistical properties of the samples [19].

Most of the theory on quasi-Monte Carlo methods focuses on generating
samples on the unit hypercube [0, 1]N . The option to generate samples directly
on to other distributions exists, but is often very limited. To the authors’
knowledge, the only viable method for including most quasi-Monte Carlo
methods into the vast majority of non-standard probability distributions, is
through the Rosenblatt transformation. Since Chaospy is built around the
Rosenblatt transformation, it has the novel feature of supporting quasi-Monte
Carlo methods for all probability distributions. Turns and Dakota only support
Rosenblatt transformations for independent variables and the Normal copula.

Sometimes the quasi-Monte Carlo method is infeasible because the forward
model is too computationally costly. The next section describes polynomial
chaos expansions, which often require far fewer samples than the quasi-Monte
Carlo method for the same amount of accuracy.

71



Quasi-Monte Carlo Scheme Dakota Turns Chaospy
Faure sequence [20] no yes no
Halton sequence [21] yes yes yes
Hammersley sequence [22] yes yes yes
Haselgrove sequence [23] no yes no
Korobov latice [24] no no yes
Niederreiter sequence [25] no yes no
Sobol sequence [26] no yes yes

Other Methods Dakota Turns Chaospy
Antithetic variables [1] no no yes
Importance sampling [1] yes yes yes
Latin Hypercube sampling [27] yes limited yes

Table 4.3: The different sampling schemes available.

4.4 Polynomial Chaos Expansions

Polynomial chaos expansions represent a collection of methods that can be
considered a subset of polynomial approximation methods, but particularly
designed for uncertainty quantification. A general polynomial approximation
can be defined as

f̂(x, t,Q) =
∑
n∈IN

cn(x, t)Φn(Q) IN = {0, . . . , N}, (4.11)

where {cn}n∈IN are coefficients (often known as Fourier coefficients) and

{Φn}n∈IN are polynomials. If f̂ is a good approximation of f , it is possible to

either infer statistical properties of f̂ analytically or through cheap numerical
computations where f̂ is used as a surrogate for f .

A polynomial chaos expansion is defined as a polynomial approximation, as
in (4.11), where the polynomials {Φn}n∈IN are orthogonal on a custom weighted
function space LQ:

〈Φn,Φm〉 = E[Φn(Q)Φm(Q)] =

∫
· · ·

∫
Φn(q)Φm(q)pQ(q) dq = 0 n 	= m.

(4.12)

As a side note, it is worth noting that in parallel with polynomial chaos
expansions, there also exists an alternative collocation method based on
multivariate Lagrange polynomials [28]. This method is supported by Dakota
and Chaospy, but not Turns.

To generate a polynomial chaos expansion, we must first calculate the
polynomials {Φn}n∈IN such that the orthogonality property in (4.12) is satisfied.
This will be the topic of Section 4.4 In Section 4.4 we show how to estimate the
coefficients {cn}n∈IN . Last, in Section 4.4, tools used to quantify uncertainty
in polynomial chaos expansions will be discussed.

72



Orthogonal Polynomials Construction

From (4.12) it follows that the orthogonality property is not in general
transferable between distributions, since a new set of polynomials has to
be constructed for each pQ. The easiest approach to construct orthogonal
polynomials is to identify the probability density pQ in the so-called Askey-
Wilson scheme [29]. The polynomials can then be picked from a list, or be
built from analytical components. The continuous distributions supported
in the scheme include the standard normal, gamma, beta, and uniform
distributions respectively through the Hermite, Laguerre, Jacobi, and Legendre
polynomial expansion. All the three mentioned software toolboxes support these
expansions. RIP: Note about Stieltjes-Wigert/Lognormal variables

Moving beyond the standard collection of the Askey-Wilson scheme, it
is possible to create custom orthogonal polynomials, both analytically and
numerically. Unfortunately, most methods involving finite precision arithmetics
are ill-posed, making a numerical approach quite a challenge [30]. This section
explores the various approaches for constructing polynomial expansions. A full
list of methods is found in Table 4.4. It shows that Dakota, Turns and Chaospy
support 4, 3 and 5 orthogonalisation methods, respectively.

Orthogonalization Method Dakota Turns Chaospy
Askey-Wilson Scheme [29] yes yes yes

Bertran recursion [31] no no yes
Cholesky Decomposition [14] no no yes

Discretized Stieltjes [32] yes no yes
Modified Chebyshev [32] yes yes no

Modified Gram-Schmidt [32] yes yes yes

Table 4.4: Methods for generating expansions of orthogonal polynomials.

Looking beyond an analytical approach, the most popular method for
constructing orthogonal polynomials is the discretized Stieltjes procedure [33].
As far as the authors know, it is the only truly numerically stable method for
orthogonal polynomial construction. It is based upon one-dimensional recursion
coefficients that are estimated using numerical integration. Unfortunately, the
method is only applicable in the multivariate case if the components of pQ are
stochastically independent.

Generalized Polynomial Chaos Expansions One approach to model
densities with stochastically dependent components numerically, is to
reformulate the uncertainty problem as a set of independent components
through generalised polynomial chaos expansion [34]. As described in detail
in Section 4.3, a Rosenblatt transformation allows for the mapping between any
domain and the unit hypercube [0, 1]D. With a double transformation we can

73



reformulate the response function f as

f(x, t,Q) = f(x, t, T−1
Q (TR(R))) ≈ f̂(x, t,R) =

∑
n∈IN

cn(x, t)Φn(R),

where R is any random variable drawn from pR, which for simplicity is chosen
to consists of independent components. Also, {Φn}n∈IN is constructed to be
orthogonal with respect to LR, not LQ. In any case, R is either selected
from the Askey-Wilson scheme, or calculated using the discretized Stieltjes
procedure. We remark that the accuracy of the approximation deteriorate if the
transformation composition T−1

Q ◦ TR is not smooth [34]. Dakota, Turns, and
Chaospy all support generalized polynomial chaos expansions for independent
stochastic variables and the Normal/Nataf copula listed in Table 4.2. Since
Chaospy has the Rosenblatt transformation underlying the computational
framework, generalized polynomial chaos expansions are in fact available for
all densities.

The Direct Multivariate Approach Given that both the density pQ
has stochastically dependent components, and the transformation composition
T−1
Q ◦ TR is not smooth, it is still possible to generate orthogonal polynomials

numerically. As noted above, most methods are numerically unstable, and
the accuracy in the orthogonality can deteriorate with polynomial order,
but the methods can still be useful [14]. In Table 4.4, only Chaospy’s
implementation of Bertran’s recursion method [31], Cholesky decomposition
[35] and modified Gram-Schmidt orthogonalization [32] support construction of
orthogonal polynomials for multivariate dependent densities directly.

Custom Polynomial Expansions In the most extreme cases, an automated
numerical method is insufficient. Instead, a polynomial expansion has to be
constructed manually. User-defined expansions can be created conveniently, as
demonstrated in the next example involving a second-order Hermite polynomial
expansion, orthogonal with respect to the normal density [29]:

{Φn}n∈I6
=

{
1, Q0, Q1, Q

2
0 − 1, Q0Q1, Q

2
1 − 1

}
The relevant Chaospy code for creating this polynomial expansion looks like

>>> q0, q1 = cp.variable(2)
>>> phi = cp.Poly([1, q0, q1, q0**2-1, q0*q1, q1**2-1])
>>> print phi
[1, q0, q1, q0^2-1, q0q1, -1+q1^2]

Chaospy contains a collection of tools to manipulate and create polynomials,
see Table 4.5.

One thing worth noting is that polynomial chaos expansions suffers from
the curse of dimensionality: The number of terms grows exponentially with the
number of dimensions [36]. As a result, Chaospy does not support neither high

74



Function Description
all Test all coefficients for non-zero
any Test any coefficients for non-zero
around Round to a given decimal
asfloat Set coefficients type as float
asint Set coefficient type as int
basis Create monomial basis
cumprod Cumulative product
cumsum Cumulative sum
cutoff Truncate polynomial order
decompose Convert from series to sequence
diag Construct or extract diagonal
differential Differential operator
dot Dot-product
flatten Flatten an array
gradient Gradient (or Jacobian) operator
hessian Hessian operator
inner Inner product
mean Average
order Extract polynomial order
outer Outer product
prod Product
repeat Repeat polynomials
reshape Reshape axes
roll Roll polynomials
rollaxis Roll axis
rolldim Roll the dimension
std Empirical standard deviation
substitute Variable substitution
sum Sum along an axis
swapaxes Interchange two axes
swapdim Swap the dimensions
trace Sum along the diagonal
transpose Transpose the coefficients
tril Extract lower triangle of coefficients
tricu Extract cross-diagonal upper triangle
var Empirical variance
variable Simple polynomial constructor

Table 4.5: List of tools for creating and manipulating polynomials.

dimensional nor infinite dimensional problems (random fields). One approach
to address such problems with polynomial chaos expansion is to first reduce the
number of dimension through techniques like Karhunen-Loeve expansions [37].

75



If software implementations of such methods can be provided, the user can easily
extend Chaospy to high and infinite dimensional problems.

Chaospy includes operators such as the expectation operator E. This is
a helpful tool to ensure that the constructed polynomials are orthogonal, as
defined in (4.12). To verify that two elements in phi are indeed orthogonal
under the standard bivariate normal distribution, one writes

>>> dist = cp.J(cp.Normal(0,1), cp.Normal(0,1))
>>> print cp.E(phi[3]*phi[5], dist)
0.0

More details of operators used to perform uncertainty analysis are given in
Section 4.4.

Calculating Coefficients

There are several methodologies for estimating the coefficients {cn}n∈IN ,
typically categorized either as non-intrusive or intrusive, where non-intrusive
means that the computational procedures only requires evaluation of f (i.e.,
software for f can be reused as a black box). Intrusive methods need to
incorporate information about the underlying forward model in the computation
of the coefficients. In case of forward models based on differential equations, one
performs a Galerkin formulation for the coefficients in probability space, leading
effectively to a D-dimensional differential equation problem in this space [38].
Back et al. [39] demonstrated that the computational cost of such an intrusive
Galerkin method in some cases was higher than some non-intrusive methods.
None of the three toolboxes discussed in this paper have support for intrusive
methods.

Within the realm of non-intrusive methods, there are in principle two
viable methodologies available: pseudo-spectral projection [40] and the point
collocation method [41]. The former applies a numerical integration scheme
to estimate Fourier coefficients, while the latter solves a linear system arising
from a statistical regression formulation. Dakota and Chaospy support both
methodologies, while Turns only supports point collocation. We shall now
discuss the practical, generic implementation of these two methods in Chaospy.

Integration Methods

The pseudo-spectral projection method is based on a standard least squares
minimization in the weighted function space LQ. Since the polynomials are
orthogonal in this space, the associated linear system is diagonal, which allows
a closed-form expression for the Fourier coefficients. The expression involves
high-dimensional integrals in LQ. Numerical integration is then required,

76



cn =
E[YΦn]

E[Φ2
n]

=
1

E[Φ2
n]

∫
· · ·

∫
pQ(q)f(x, t, q)Φn(q) dq (4.13)

≈ 1

E[Φ2
n]

∑
k∈IK

wkpQ(qk)f(x, t, qk)Φn(qk) IK = {0, . . . ,K − 1},

where wk are weights and qk nodes in a quadrature scheme. Note that f is only
evaluated for the nodes qk, and these evaluations can be made once. Thereafter,
one can experiment with the polynomial order since any cn depends on the same
evaluations of f .

Table 4.6 shows the various quadrature schemes offered by Dakota and
Chaospy (recall that Turns does not support pseudo-spectral projection). All
techniques for generating nodes and weights in Chaospy are available through
the cp.generate_quadrature function. Suppose we want to generate optimal
Gaussian quadrature nodes for the normal distribution. We then write

>>> nodes, weights = cp.generate_quadrature(
... 3, cp.Normal(0, 1), rule="Gaussian")
>>> print nodes
[[-2.33441422 -0.74196378 0.74196378 2.33441422]]
>>> print weights
[ 0.04587585 0.45412415 0.45412415 0.04587585]

Node and Weight Generators Dakota Turns Chaospy
Clenshaw-Curtis quadrature [42] yes no yes
Cubature rules [43] yes no no
Gauss-Legendre quadrature [44] yes no yes
Gauss-Patterson quadrature [45] yes no yes
Genz-Keister quadrature [46] yes no yes
Leja quadrature [47] no no yes
Monte Carlo integration [1] yes no yes
Optimal Gaussian quadrature [44] yes no yes

Table 4.6: Various numerical integration strategies implemented in the three
software toolboxes.

Most quadrature schemes are designed for univariate problems. To extend a
univariate scheme to the multivariate case, integration rules along each axis can
be combined using a tensor product. Unfortunately, such a product suffers from
the curse of dimensionality and becomes a very costly integration procedure for
large D. In higher-dimensional problems one can replace the full tensor product
by a Smolyak sparse grid [48]. The method works by taking multiple lower order
tensor product rules and joining them together. If the rule is nested, i.e., the
same samples found at a low order are also included at higher order, the number

77



of evaluations can be further reduced. Another feature is to add anisotropy
such that some dimensions are sampled more than others [49]. In addition to
the tensor product rules, there are a few native multivariate cubature rules that
allow for low order multivariate integration [43]. Both Dakota and Chaospy also
support the Smolyak sparse grid and anisotropy.

Chaospy has support for construction of custom integration rules defined
by the user. The cp.rule_generator function can be used to join a list of
univariate rules using tensor grid or Smolyak sparse grid. For example, consider
the trapezoid rule:

>>> def trapezoid(n):
... X = np.linspace(0, 1, n+1)
... W = np.ones(n+1)/n
... W[0] *= 0.5; W[-1] *= 0.5
... return X, W
...
>>> nodes, weights = trapezoid(2)
>>> print nodes
[ 0. 0.5 1. ]
>>> print weights
[ 0.25 0.5 0.25]

The cp.rule_generator function takes positional arguments, each representing
a univariate rule. To generate a rule for the multivariate case, with the same
one-dimensional rule along two axes, we do the following:

>>> mvtrapezoid = cp.rule_generator(trapezoid, trapezoid)
>>> nodes, weights = mvtrapezoid(2, sparse=True)
>>> print nodes
[[ 0. 0.5 1. 0. 0. 1. ]
[ 0. 0. 0. 0.5 1. 1. ]]

>>> print weights
[ 0. 0.25 0.125 0.25 0.125 0.25 ]

Software for constructing and executing a general-purpose integration
scheme is useful for several computational components in uncertainty
quantification. For example, in Section 4.4 when constructing orthogonal
polynomials using raw statistical moments, or calculating discretized Stieltjes’
recurrence coefficients, numerical integration is relevant. Like the ppf function
noted in Section 4.3, the moments and recurrence coefficients can be added
directly into each distribution. However, when these are not available, Chaospy
will automatically estimate missing information by quadrature rules, using the
cp.generate_quadrature function described above.

To compute the Fourier coefficients and the polynomial chaos expansion,
we use the cp.fit_quadrature function. It takes four arguments: the set of
orthogonal polynomials, quadrature nodes, quadrature weights, and the user’s
function for evaluating the forward model (to be executed at the quadrature
nodes). Note that in the case of the discretized Stieltjes method discussed in
Section 4.4, the nominator E

[
Φ2

n

]
in (4.13) can be calculated more accurately

using recurrence coefficients [32]. Special numerical features like this can be
added by including optional arguments in cp.fit_quadrature.

78



Point Collocation

The other non-intrusive approach to estimate the coefficients {ck}k∈IK is the
point collocation method. One way of formulating the method is to require
the polynomial expansion to equal the model evaluations at a set of collocation
nodes {qk}k∈IK , resulting in an over-determined set of linear equations for the
Fourier coefficients:

⎡⎢⎣ Φ0(q0) · · · ΦN (q0)
...

...
Φ0(qK−1) · · · ΦN (qK−1)

⎤⎥⎦
⎡⎢⎣ c0

...
cN

⎤⎥⎦ =

⎡⎢⎣ f(q0)
...

f(qK−1)

⎤⎥⎦ , (4.14)

Unlike pseudo spectral projection, the locations of the collocation nodes are
not required to follow any integration rule. Hosder [41] showed that the
solution using Hammersley samples from quasi-Monte Carlo samples resulted in
more stable results than using conventional pseudo-random samples. In other
words, well placed collocation nodes might increase the accuracy. In Chaospy
these collocation nodes can be selected from integration rules or from pseudo-
random samples from Monte Carlo simulation, as discussed in Section 4.3. In
addition, the software accepts user defined strategies for choosing the sampling
points. Turns also allows for user-defined points, while Dakota has its predefined
strategies.

The obvious way to solve the over-determined system in (4.14) is to use
least squares minimization, which resembles the standard statistical linear
regression approach of fitting a polynomial to a set of data points. However,
from a numerical point of view, this might not be the best strategy. If the
numerical stability of the solution is low, it might be prudent to use Tikhonov
regularization [50], or if the problem is so large that the number of coefficients is
very high, it might be useful to force some of the coefficients to be zero through
least angle regression [51]. Being able to run and compare alternative methods is
important in many problems to see if numerical stability is a potential problem.
Table 4.7 lists the regression methods offered by Dakota, Turns, and Chaospy.

Generating a polynomial chaos expansion using linear regression is done
using Chaospy’s cp.fit_regression function. It takes the same arguments as
cp.fit_quadrature, except that quadrature weights are omitted, and optional
arguments define the rule used to optimize (4.14).

Model Evaluations

Irrespectively of the method used to estimate the coefficients ck, the user is
left with the job to evaluate the forward model (response function) f , which is
normally by far the most computing-intensive part in uncertainty quantification.
Chaospy does not impose any restriction on the simulation code used to compute
the forward model. The only requirement is that the user can provide an array
of values of f at the quadrature or collocation nodes. Chaospy users will usually
wrap any complex simulation code for f in a Python function f(q), where q is

79



Regression Schemes Dakota Turns Chaospy
Basis Pursuit [52] yes no no
Bayesian Auto. Relevance Determination [53] no no yes
Bayesian ridge [54] no no yes
Elastic Net [55] yes no yes
Forward Stagewise [56] no yes no
Least Absolute Shrinkage & Selection [51] yes yes yes
Least Angle & Shrinkage with AIC/BIC [57] no no yes
Least Squares Minimization yes yes yes
Orthogonal matching pursuit [58] yes no yes
Singular Value Decomposition no yes no
Tikhonov Regularization [50] no no yes

Table 4.7: List of supported regression methods for estimating Fourier
coefficients

a node in probability space (i.e., q contains values of the uncertain parameters
in the problem). For example, for pseudo-spectral projection, samples of f can
be created as

samples = [f(node) for node in nodes.T]

or perhaps done in parallel if f is time consuming to evaluate:

import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
samples = pool.map(f, nodes.T)

The evaluation of all the f values can also be done in parallel with MPI in
a distributed way on a cluster using the Python module like mpi4py. Both
Dakota and Turns support parallel evaluation of f values, but the feature is
embeded into the code, potentially limiting the customization options of the
parallelization.

Extension of polynomial expansions

There is much literature that extends on the theory of polynomial chaos
expansion [36]. For example, Isukapalli showed that the accuracy of a
polynomial expansion could be increased by using partial derivatives of the
model response [59]. This theory is only directly supported by Dakota. In
Turns and Chaospy the support is indirect by allowing the user to add the
feature manually.

To be able to incorporate partial derivatives of the response, the partial
derivative of the polynomial expansion must be available as well. In both
Turns and Chaospy, the derivative of a polynomial can be generated easily.
This derivative can then be added to the expansion, allowing us to incorporate

80



Isukapalli’s theory in practice. This is just an example on how manipulation of
the polynomial expansions and model approximations can overcome the lack of
support for a particular feature from the literature.

To be able to support many current and possible future extensions of
polynomial chaos, a large collection of tools for manipulating polynomials must
be available. In Dakota, no such tools exist from a user perspective. In Turns,
there is support for some arithmetic operators in addition to the derivative. In
Chaospy, however, the polynomial generated for the model response is of the
same type as the polynomials generated in Sections 4.4 and 4.4, and the rich
set of manipulations of polynomials is then available for f̂ as well.

Beyond the analytical tools for statistical analysis of f̂ , either from the
toolbox or custom ones by the user, there are many statistical metrics
that cannot easily be expressed as simple closed-form formulas. Such
metrics include confidence intervals, sensitivity indices, p-values in hypothesis
testing, to mention a few. In those scenarios, it makes sense to perform a
secondary uncertainty analysis through Monte Carlo simulation. Evaluating
the approximation f̂ is normally computationally much cheaper than evaluating
the full forward model f , thus allowing a large number of Monte Carlo samples
within a cheap computational budget. This type of secondary simulations are
done automatically in the background in Dakota and Turns, while Chaospy does
not feature automated tools for secondary Monte Carlo simulation. Instead,
Chaospy allows for simple and computationally cheap generation of pseudo-
random samples, as described in Section 4.3, such that the user can easily put
together a tailored Monte Carlo simulation to meet the needs at hand. Within
a few lines of Python code, the samples can be analyzed with the standard
Numpy and the Scipy libraries [60] or with more specialized statistical libraries
like Pandas [9], Scikit-learn [61], Scikit-statsmodel [62], and Python’s interface
to the rich R environment for statistical computing. For example, for the specific
f̂ function illustrated above, the following code computes a 90 percent confidence
interval, based on 105 pseudo-random samples and Numpy’s functionality for
finding percentiles in discrete data:

>>> q_samples = cp.Normal(0,1).sample(10**5)
>>> samples = f_approx(*q_samples)
>>> p05, p95 = np.percentile(samples, [5, 95], axis=-1)
>>> print p05[:3]
[ 1. 1.0000004 1.0000016]
>>> print p95[:3]
[ 1. 1.00038886 1.00155544]

Since the type of statistical analysis of f̂ often strongly depends on the
physical problem at hand, we believe that the ability to quickly compose custom
solutions by putting together basic building blocks is very useful in uncertainty
quantification. This is yet another example of the need for a package with a
strong focus on easy customization.

81



Descriptive Tools

The last step in uncertainty quantification based on polynomial chaos
expansions is to quantify the uncertainty. In polynomial chaos expansion this
is done by using the uncertainty in the model approximation f approx as a
substiute for the uncertainty in the model f . For the most popular statistical
metrics, like mean, variance, correlation, a polynomial chaos expansion allows
for analytical analysis, which is easy to calculate and has high accuracy. This
property is reflected in all the three toolboxes. To calculate the expected value,
variance and correlation of a simple (here univariate) polynomial approximation
f_approx, with a normally distributed ξ0 variable, we can with Chaospy write

>>> f_approx = fit_quadrature(orth, nodes, weights, samples)
>>> print f_approx
[q0, q0^2, q0^3]
>>> dist = Normal(0,1)
>>> print E(f_approx, dist)
[ 0. 1. 0.]
>>> print Var(f_approx, dist)
[ 1. 2. 15.]
>>> print Corr(f_approx, dist)
[[ 1. 0. 0.77459667]
[ 0. 1. 0. ]
[ 0.77459667 0. 1. ]]

A list of supported analytical metrics is listed in Table 4.8.

Method Dakota Turns Chaospy
Covariance/Correlation yes yes yes
Expected value yes yes yes
Conditional expectation no no yes
Kurtosis yes yes yes
Sensitivity index yes yes yes
Skewness yes yes yes
Variance yes yes yes

Table 4.8: List of common statistical operators that can be used for analytical
evaluation of polynomials.

4.5 Conclusion and Further Work

Until now there have only been a few real software alternatives for implementing
non-intrusive polynomial chaos expansions. Two of the more popular
implementations, Dakota and Turns, are both high-quality software that can be
applied to a large array of problems. The present paper has introduced a new
alternative: Chaospy. Its aim is to be an experimental foundry for scientists.
Besides featuring a vast library of state-of-the-art tools, Chaospy allows for a

82



high degree of customization in a user-friendly way. Within a few lines of high-
level Python code, the user can play around with custom distributions, custom
polynomials, custom integration schemes, custom sampling schemes, and custom
statistical analysis of the result. Throughout the text we have compared the
built-in functionality of the three packages, and Chaospy do very well in this
comparison, which is summarized in table 4.9. But the primary advantage of
the package is the strong emphasis on offering well-designed software building
blocks, with a high abstraction level, that can easily be combined to create
tailored uncertainty quantification algorithms for new problems.

Although the primary aim of the software is to construct polynomial chaos
expansions, the software is also a state-of-the-art toolbox for performing Monte
Carlo simulation, either directly on the forward model or in combination
with polynomial chaos expansions. Variance reduction techniques are included
to speed up the convergence, and because Chaospy is based on Rosenblatt
transformations, efficient quasi-Monte Carlo sampling is available for any
distribution. Another novel feature of Chaospy is the ability to handle
stochastically dependent input variables through a new mathematical technique.

Feature Dakota Turns Chaospy
Distributions 11 26 64
Copulas 1 7 6
Sampling schemes 4 7.5 7
Orthogonal polynomial schemes 4 3 5
Numerical integration strategies 7 0 7
Regression methods 5 4 8
Analytical metrics 6 6 7

Table 4.9: A summary of the various features in Dakota, Turns and Chaospy.

Acknowledgement

The work is supported by funding from Statoil ASA through the Simula School
of Research and Innovation, and by a Center of Excellence grant from the
Research Council of Norway through the Center for Biomedical Computing.

Thanks also go to Vinzenz Gregor Eck, Stuart Clark, Karoline Hagane,
Samwell Tarly, and a random distribution of unnamed bug fixers for their
contributions.

83





Bibliography

[1] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method. Wiley-Interscience, 2 ed., Dec. 2007.

[2] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton University Press, July 2010.

[3] M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F.
Wojtkiewicz, W. E. Hart, and M. P. Alleva, DAKOTA, a multilevel parallel
object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 4.1 reference
manual. Sandia National Laboratories Albuquerque, NM, 2007.

[4] G. Andrianov, S. Burriel, S. Cambier, A. Dutfoy, I. Dutka-Malen,
E. De Rocquigny, B. Sudret, P. Benjamin, R. Lebrun, and F. Mangeant,
“Open TURNS, an open source initiative to Treat Uncertainties, Risks N
Statistics in a structured industrial approach,” in Procedings ESREL2007
safety and reliability conference. Stavanger, Norway, 2007.

[5] B. J. Debusschere, H. N. Najm, P. P. Pbay, O. M. Knio, R. G. Ghanem,
and O. P. Le Matre, “Numerical challenges in the use of polynomial
chaos representations for stochastic processes,” SIAM Journal on Scientific
Computing, vol. 26, no. 2, pp. 698–719, 2004.

[6] P. R. Conrad and Y. M. Marzouk, “Adaptive Smolyak pseudospectral
approximations,” SIAM Journal on Scientific Computing, vol. 35, no. 6,
pp. A2643–A2670, 2013.

[7] B. Efron, “Bootstrap methods: another look at the jackknife,” Annals of
Statistics, pp. 1–26, 1979.

[8] J. Feinberg and H. P. Langtangen, “Chaospy Software Package for
Uncertainty Quantification,” 2014. https://github.com/hplgit/chaospy.

[9] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, 2012.

[10] P. Laux, G. Jackel, R. M. Tingem, and H. Kunstmann, “Impact of climate
change on agricultural productivity under rainfed conditions in CameroonA

85



method to improve attainable crop yields by planting date adaptations,”
Agricultural and Forest Meteorology, vol. 150, no. 9, pp. 1258–1271, 2010.

[11] R. C. Boardman and J. E. Vanna, “A review of the application of copulas
to improve modelling of non-bigaussian bivariate relationships (with an
example using geological data),” in International Congress on Modelling
and Simulation, 2011.

[12] J. Dobric and F. Schmid, “A goodness of fit test for copulas based on
Rosenblatt’s transformation,” Computational Statistics & Data Analysis,
vol. 51, no. 9, pp. 4633–4642, 2007.

[13] P. Achard and E. De Schutter, “Complex parameter landscape for a
complex neuron model,” PLoS Computational Biology, vol. 2, July 2006.

[14] J. Feinberg and H. P. Langtangen, “Multivariate Polynomial Chaos
with Dependent Variables,” 2015. Unbublished journal article URL:
http://bit.ly/1Bkp72S.

[15] M. Rosenblatt, “Remarks on a Multivariate Transformation,” Annals of
Mathematical Statistics, vol. 23, no. 3, pp. 470–472, 1952.

[16] R. B. Nelsen, An introduction to copulas. Springer, 1999.

[17] A. J. Lee, “Generating random binary deviates having fixed marginal
distributions and specified degrees of association,” The American
Statistician, vol. 47, no. 3, pp. 209–215, 1993.

[18] J. Feinberg and S. Clark, “RoseDist: Generalized Tool for Simulating
with Non-Standard Probability Distributions,” in International Congress
on Modelling and Simulation (J. Piantadosi, R. S. Anderssen, and
J. Boland, eds.), (Adelaide, Australia), pp. 367–372, Dec. 2013.
http://www.mssanz.org.au/modsim2013/A7/feinberg.pdf.

[19] S. Tezuka, Uniform random numbers: Theory and practice. Kluwer
Academic Publishers Boston, 1995.

[20] S. Galanti and A. Jung, “Low-discrepancy sequences: Monte Carlo
simulation of option prices,” Journal of Derivatives, vol. 5, no. 1, pp. 63–83,
1997.

[21] J. H. Halton, “On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals,” Numerische Mathematik, vol. 2,
no. 1, pp. 84–90, 1960.

[22] J. M. Hammersley, “Monte Carlo methods for solving multivariable
problems,” Annals of the New York Academy of Sciences, vol. 86, no. 3,
pp. 844–874, 1960.

[23] C. B. Haselgrove, “A method for numerical integration,” Mathematics of
Computation, pp. 323–337, 1961.

86



[24] N. M. Korobov, “The approximate calculation of multiple integrals using
number theoretic methods,” Doklady Academii Nauk SSSR, vol. 115,
pp. 1062–1065, 1957.

[25] H. Niederreiter, “Point sets and sequences with small discrepancy,”
Monatshefte fur Mathematik, vol. 104, no. 4, pp. 273–337, 1987.

[26] I. M. Sobol, “On the distribution of points in a cube and the
approximate evaluation of integrals,” USSR Computational Mathematics
and Mathematical Physics, vol. 7, no. 4, pp. 86–112, 1967.

[27] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[28] D. Xiu and J. S. Hesthaven, “High-order collocation methods for differential
equations with random inputs,” SIAM Journal on Scientific Computing,
vol. 27, p. 1118, 2005.

[29] R. Askey and J. A. Wilson, Some basic hypergeometric orthogonal
polynomials that generalize Jacobi polynomials. Amer Mathematical
Society, 1985.

[30] W. Gautschi, “Construction of Gauss-Christoffel quadrature formulas,”
Mathematics of Computation, vol. 22, p. 251, Apr. 1968.

[31] M. Bertran, “Note on Orthogonal Polynomials in v-Variables,” SIAM
Journal on Mathematical Analysis, vol. 6, no. 2, pp. 250–257, 1975.

[32] W. Gautschi, Orthogonal Polynomials: Computation and Approximation.
Oxford University Press, USA, June 2004.

[33] T. J. Stieltjes, “Quelques recherches sur la thorie des quadratures dites
mcaniques,” Ann. Sci. cole Norm. Sup. (3), vol. 1, pp. 409–426, 1884.

[34] D. Xiu, D. Lucor, C. H. Su, and G. E. Karniadakis, “Stochastic modeling
of flow-structure interactions using generalized polynomial chaos,” Journal
of Fluids Engineering, vol. 124, p. 51, 2002.

[35] J. Feinberg and H. P. Langtangen, “Uncertainty Quantification of Diffusion
in Layered Media by a New Method Based on Polynomial Chaos
Expansion,” in Seventh National Conference on Computational Mechanics
MekIT’13 (H. I. Andersson and B. Skallerud, eds.), (Norwegian University
of Science and Technology), Akademika Publishing, May 2013.

[36] D. Xiu, “Fast numerical methods for stochastic computations: a review,”
Communications in computational physics, vol. 5, no. 2-4, pp. 242–272,
2009.

87



[37] S. Sakamoto and R. Ghanem, “Polynomial chaos decomposition for the
simulation of non-Gaussian nonstationary stochastic processes,” Journal
of Engineering Mechanics, vol. 128, no. 2, pp. 190–201, 2002.

[38] R. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral
approach. Courier Dover Publications, Aug. 2003.

[39] J. Back, F. Nobile, L. Tamellini, and R. Tempone, “Stochastic spectral
Galerkin and collocation methods for PDEs with random coefficients: a
numerical comparison,” in Spectral and High Order Methods for Partial
Differential Equations, pp. 43–62, Springer, 2011.

[40] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods:
Theory and Applications. Society for Industrial and Applied Mathematics,
1977.

[41] S. Hosder, R. W. Walters, and M. Balch, “Efficient sampling for non-
intrusive polynomial chaos applications with multiple uncertain input
variables,” in Proceedings of the 48th Structures, Structural Dynamics, and
Materials Conference, vol. 125, (Honolulu, HI), 2007.

[42] C. W. Clenshaw and A. R. Curtis, “A method for numerical integration on
an automatic computer,” Numerische Mathematik, vol. 2, no. 1, pp. 197–
205, 1960.

[43] A. H. Stroud, Approximate calculation of multiple integrals, vol. 431.
Prentice-Hall Englewood Cliffs, NJ, 1971.

[44] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules,
vol. 23. Mathematics of Computation, 1967.

[45] T. Patterson, “The optimum addition of points to quadrature formulae,”
Mathematics of Computation, vol. 22, no. 104, pp. 847–856, 1968.

[46] A. Genz and B. Keister, “Fully Symmetric Interpolatory Rules for
Multiple Integrals over Infinite Regions,” Journal of Computational Applied
Mathematics, vol. 72, 1996.

[47] A. Naraya and J. Jakeman, “Adaptive Leja sparse
grid construction for stochastic collocation and high-
dimensional approximation,” arXiv e-print, 2014.
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/1404.5663v1.pdf.

[48] S. A. Smolyak, “Quadrature and interpolation formulas for tensor products
of certain classes of functions,” in Doklady Akademii Nauk SSSR, vol. 4,
p. 123, 1963.

[49] J. Burkardt, “The “combining coefficient” for anisotropic sparse grids,”
tech. rep., Virginia Tech. 125, 2009.

88



[50] R. M. Rifkin and R. A. Lippert, “Notes on regularized least squares,”
Journal of Linear Algebra, vol. 18, pp. 281–288, June 2009.

[51] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[52] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, 1998.

[53] D. P. Wipf and S. S. Nagarajan, “A new view of automatic relevance
determination,” in Advances in Neural Information Processing Systems,
pp. 1625–1632, 2007.

[54] D. J. C. MacKay, “Bayesian interpolation,” Neural computation, vol. 4,
no. 3, pp. 415–447, 1992.

[55] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[56] T. Hastie, J. Taylor, R. Tibshirani, and G. Walther, “Forward stagewise
regression and the monotone lasso,” Electronic Journal of Statistics, vol. 1,
pp. 1–29, 2007.

[57] H. Zou, T. Hastie, and R. Tibshirani, “On the degrees of freedom of the
lasso,” Annals of Statistics, vol. 35, no. 5, pp. 2173–2192, 2007.

[58] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no. 12,
pp. 3397–3415, 1993.

[59] S. S. Isukapalli, Uncertainty analysis of transport-transformation models.
PhD thesis, Rutgers, The State University of New Jersey, 1999.

[60] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open source scientific tools
for Python,” AIP Publishing, 2001. URL: http://scipy.org/.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[62] S. Seabold and J. Perktold, “Statsmodels: econometric and statistical
modeling with Python,” in Proceedings of the 9th Python in Science
Conference, pp. 57–61, 2010.

89





III




	Blank Page
	Blank Page
	Blank Page


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




