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ABSTRACT

LOCAL COMPARISON OF EXPERIMENTS
by

Erik N, Torgersen

University of Oslo

In this paper we generalizes most of the results in Torgersen,
E.N. [Local comparison of experimentswhen the parameter set is one
dimensional, Statistical Research Report no 4, 1972 from Depart-
ment of Mathematics, University of Oslo. Abstract to appear in
Ann, Math. Statist.] to the case of a finite dimensional parameter

set.
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1.1

1. Introduction

In this paper most of the results in "Local comparison of ex-
periments when the parameter set is one dimensional", Statistical
Research Report no 4, 1972 - from here on denoted by LC1 - are
generalized to the case of a finite dimensional parameter set @ .
The paper is organized so that section i ; i = 2,3,4,5,6 ; here
generalizes section i in LC1. We refer to section 1 in LCY for
an introduction to the type of problems treated in this paper.
Occasionally the general case may be reduced to the one dimensional
case by considering directional derivatives, i.e. linear combinat-
ions of partial derivatives.

Local comparison will here - as it was in LC1 - be expressed in
terms of pseudo experiments; i.e. "experiments" where the basic
measures are not required to be probability measures. The results
on pseudo experiments which was given in LC1 are not sufficient for
our needs here. Appendix B in LC1 is therefor extended and included
as an appendix to this paper.

Differentiable experiments are defined in section 2. It is
shown that products of differentiable experiments are differenti-
able and that sub experiments of differentiable experiments are
differentiable.

The derivative in 6° € ® of a differentiable experiment con-
sists essentially of the probability distribution in 6° together
with all its partial derivatives in 8° . Simple necessary and
sufficient conditions on a pseudo experiment for being a derivative
are given in section 3. It is shown how derivatives may be identi-
fied with probability distributions on R@ with expectation

(Oy4045,0) « This representation converts products into convolutions.
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Differentiated deficiencies and distances are treated in sections
4 and 5. The asymptotic factorization criterion for sufficiency in
LC1 is generalized and various convergence - and compactness Cri-
terions are given.

The local information in products of a large number of uniformly
uninformative experiments would be the object of a central limit
theorem. We have not formulated such a theorem here but it will be
clear from proposition %.,3, example 4.2 and theorem 5.1 that it re-
duces to the central limit theorem in the case of central variables
with uniformly bounded first order absolute moments.

The statistical motivation for the theory developed so far is
given in section 6. Let 9 be the e-difenciency within an €

€

It is shown that

sphere around 6° for the norm X A Elxe\ .
0

b./2¢ converges as € - O to the "differentiated" deficiency ©
introduced in section 4. The conditional expectation criterions for
sufficiency are generalized.

The list of references should be considered as the combined
reference list for LC1 and this paper. We have kept the numbering

from ILC1.




2. The differentiability conditions,.

A1l experiments considered in this paper have - unless otherwise
stated - a parameter set © , which is a sub set of R having an
interior point 6° . We shall say that é§==((x,J}0;Pe :t 9 €0)

is differntiable in eo if there are finite measures

1 J P o e P . so that *)
9 ,1 9 92 e ’r

r <
lim ||P,-P - T (8.-69)P _ |I/lle=8°|] = ©
o, © 8% i=1 T 1T e%i

-z(ei-eg)P o when 6 4 8° we see that

Writing T =P -P
0 6 "0, 3 6%, 1

0,6

the differentiability condition for E% may be rewritten as:

is differentiable in 6° if and only if there are finite
measures f ’ f ,...,f and I ; 8% 0 so that
0°,1 8%,2 8%, 6°,0 ©
T .
lim |I' ||l =0 and P.=P + % (6,-87)P + lle-o _|IT
0-6° 8%,8 5 g0 i=1( 1703) 0,1 07 8590
Iy Il 3 6 €® are - by the inequality:
0 506
0 , T o .
lle-e~Il I, g2+ T loes-05| 1P || - automatically bounded.
= & i 0 .
6,6 i=1 0,1 :
The measures P o 5 1 = 1,204 are determined by 2% since
g 51
P - P
; 90+hvi 6© .
il % - P o 'H -0 a h-=>0

07,1

21) (i) (rg
Whel‘e Vl = 0,0,.-.,1,-¢.0,0 . If is dlffel’el’ltiable and I

*) If v = (v1,...,vr) € RY then |v|| = (v1 +...+vr2)
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is a proper sub set of {1,2,e4.,r}, then the experiment obtained

from P, : 6 € @ by putting 6; = 6 5 1 € I is also differenti-

ablehand the partial derivative in (eg 3 1€ I) weret. ej is

P o + The differentiability of 2% in o° implies the differ-
0 5]
o . P £y
entiability of the experiment (X, ,Pe. (e,m) € ® X R”) in any
t

point (8°,m) ;3 n € RY .

Suppose now that there is a measure P so that each measure
Pe - with 08 restricted to some neighbourhood of 8° - has a

density fe weTet. M . The following conditions are - together -

sufficient for differentiability in eo .

(i) fy(x) is, for each x € x , differntiable in 6 (i.e.
the partial derivatives exist and are continuous).

Denote by £, i(x) the partial derivative of 6§ ~> fe(x)
’

WeleTte el .

(ii) Jsgp‘%e,i(x)lp(dx)-<oo

Demonstration:
Define? PO (A) = ['fo (X)P.(dX) 9 AEJA’, i=1,...,r .
0%1 5 8%
Then ”i o “ < GO i= 1,2--.1' and
9,1

r .
- % (85-05)P o lI/lle - 6°l

o = Fo T 4L 0%, 1
\ . _

S 156 - 2 6 - 2 462 o @ Viasxloy - 6]
. T on .. .

= J‘i§1(ei"ei)(fe*,i(X)) - %, G)I/maxlog - ]|

* *
where 6 =0 (x) is on the line segment joining 6° and o .
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Hence:

I' .
 (8;-65)F  I/lle-0°ll <

NPe - P
i=1] B ,1

eO

% fsup{\%_ _(x) - f °
i

o ()| 2 118-e°ll < lle-0°Iljn(ax > 0 as 8- 8
0,1 8,1

by the dominated convergence criterion. These conditions are in

g 1is of the form c(e)h9 where c(8)

does not depend on x and h, satisfies (i) and (ii).

particular satisfied when f

Example 2.1 (Exponential family).

Suppose the density £ 0g Pe Wers.te | may be written in

8

the form Ee-Ti(X)

£,(x) = c(e)el

for all 6 Dbelonging to some neighbourhood of 0 .

26T, (x)
Then he(x) = et satisfies (i) and (ii). It follows that
is differntiable and that

; 26, T, (x) 6, T, (x)
ci(e)el - + c(e)Ti(x)el

ap /du = f o (x)
8,1 o ,1

i

f (T."‘E T-) .
eO 1 eO i

Propositions 2.2 and 2.3 below state, respectively, that pro-
ducts of differentiable experiment and sub experiments of differenti=-

able experiments are differentiable.
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Proposition 2.2
Let %j_ = (Xi’(ﬂ/i:Pe(i) 36 €0), 1 =1,.0.,n be differenti-

. n *
able in 6° . Then I %i is Qifferentiable in 6° and *)
i=
1im(n 28 - 208y
h-0 1 ¢ +hvj 4]
= P(1)x...xP(n‘1) x ) 4 4b (1)x...xP(n_1) x p{n)
6° 6° 6%, 3 0%, = @° ®
Proof: Very similar to that of proposition 2,1 in.LC1 O

Proposition 2.3

Let é: (o) 3 P, ¢ 6 € 8) be differentiable in 6° and let
5’)&) be a sub o-algebra ofﬁ" , and let Pe‘;b denote the restriction

of Pe to CJ?) « Then (x,Sb; Pe.)—b: 0 € ®) is differentiable in

6° and

1im(P -P Y/h = P
h-o 60+hvj,c;5 Gos‘?;b Bosj,gb

where P 5:5 is the restriction of P o to S;b

6°j, 0,3

Proof: Very similar to that of proposition 2.2 in LC1 D

Proposition 2.3 is a particular case of:

*) v. is the j-th unit vector in RY , i.e. v (i) =1 or O

as i=3 or i#J .
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Proposition 2.4

r & >% ana % is qifferentiable in 6° then 3 is
(2)

differentiable in 06° .

Proofs Write 2% = (x4 )2y 2 0 € @) and
o~
fog ((QQ,SE), Q ¢ 0 €©) . It follows from proposition 2.3 in

LC1 that || Q -Q )h - Q | =0 as h =0, By the
o o o .
8 +hvj 3 8 »J
testing criterion (theorem 10 in [15]) we have:
1By - P, - z(ei-eg)(P o -P O)/hll > same expression in
0 ¢ +hv:.L 8

Qe 16 €O, h=>0 yields:

Oy1 . . .
HPe -P - Z(ei-ei)P o |l 2 same expression in Qe : 9 €@ . [

¢ 0,1

Corollary 2.5

A product of experiments is differentiable in 0° if and only

each factor is differentiable in 8° .
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%. Basic properties of the derivative.

We define the derivative of a differentiable (in 8°) experi-

ment %= ()(,J%/,IPe : 0 €®) as the pseudo experiment

3

r

% definition J}P ]-? , .
90 ('X’ ’ eos 90’15-00’Peo’

¥* L]
where ) P o II.J.m(Pe +hv —P J/h 3 1 = 1,2¢0eT &

9 ,1 h-»o0 ~o o

The next proposition tells us that the rule ér\-—> c’*;ee is monotonic
o)

WeTste > where > is short for "being more informative than"

Proposition %.1

tet = (Gul), (2, : 0 €0)) ana @F_u/g D, : 6 € 8))

be differentiable in 6, » Then ée provided g >T .
O(k) (x)

In particular ée ~ "Sze when %~’%:
o o)

Remark. We have always &, g %, and by theorem B.2.7 in the
o . 0

appendix %eo 5 (3;60 <=> %eo ~ ’;’-e .

c .
Proof: Suppose > 5’ . Write P = lJ.m(Pe sy ~F )/h  and
(1';) 8 ,i hwo Yo
Q = 1im(Q Q. )/h . Put s, =dP _ /4P _ and
60,1 h-o eo+hvl % 1 eo,l 6©

*) vy denotes = troughout this paper - the i-th unit vector in

Rr;i.e. Vj(j)=1 or 0 as j=1i or J#1i.
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ti Rr+1 » We must show that

= dQ O//dQe . Let ¢ € wk on
8,1 o}

J.‘lj(Jl?S"" ssr)dPeo §J¢(1’t,oo.,tr)dQe .

o]

T ' T+
Write ¢(x) = max I a;.x. 3} X € R
1sigk j=o %79

Then f¢(1,s,...,sr)drb
(0]

J[m?X(aio + 21 i3 J)]dP )

i}

r
|V(a, + T a.. I
i 1o =1 ij GO,J

]

lim [|V[a;  + 2 a; (P +hv ;=P )/h]H
h»o0 i j=1 %

It suffices therefor to show that the expression after the "lim"
is > the same expression in Qe ¢t 9 €0 ., This - however - is an
immediate consequence of the sub linear function criterion (theorem
2 in [15] or theorem B.2,1 in the appendix). (.

The derivatives are characterized in

Theorem 3.2

A pseudo experiment Ei)— ((X,J}),ﬂ, Oyreees0, ) is the deriva-
tive in 8 of some differentiable experiment E% , if and only if,
01(x)=...=or(x) =0 and Tw is a probability measure dominating
04305500050, « If s0, then ((x,J4),n,o1,...,or) is the deriva-
tive in 0° of the experiment 8%= ((x,f?),Pe : 6 €0) where

8% ¢ 8° ana

Im + £(0,-65 )0, |/lim + =(0;-05)a;ll 5 6 €0
1 1

Furthermore these conditions imply that

m + 2(0;-83)a3ll = 1)/llo=6%ll > 0 s 6~ 6" .
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Remark: P9 is well defined since |im + £(6.-6%)o.l> 1 .
folity 2 PR NS o R

Proof: We may - without loss of generality - assume that 6% =0 .
The conditions are obviously necessary so suppose 01(x)=...=0r(x)=0
and that m 1is a probability measure dominating OyreeesOyp o

Put s; = do,/dm . Then
lw + o580l = 1 = |1 + Zoys; lem - 1
- J(1 + Zeisi)+dn + J(1 + Zeisi)—dn - J(1 + zeisi)'
. J(1 + 50,8, ) dn - 1 = j(1 + 2048, )dm + 2](1 + £6,;8;) dm - 1

= Zf(1 + T6;8;)7dm £ 2 j (1 + Zlo;[ls;lam

A

2 f {1+ (Elei\)mgxlsi|}dn
Z|o; |max|s; |>1 *

<4 2oy J mgx |s; |dm .
mﬁx\si\>(21911)—1

Hence:

(lIlm + Ze 0,0l = 1)/2le; 1 » 0 as x| =0

and this is equivalent with the last statement. Clearly PO =1 .

It remains to show that HP6 -1 - ZeiciH/HeH -0 as ||8|]] » 0 .

We get successively:
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_ 4 |m+Ze o, |
nm1ﬂwym4mfﬂl=nen1uﬂﬁm}i - =380, |l
|m+20 .0, |
-1
< liell HTHT-IEG—;E%_TF - ln+ZOiCi|“
o™ 1l meme o, | - m - 20,04
1

= o™ lim+zZe 10,11 - )

i"1 T+ eici
+ 2llol™ 1 (mezo40,)71

ol ™ [lim+ge o1 = 17 + . loli™ [lim+Zo 041l = 1]

]

]

2H9H—1[Hﬂ+29iciﬂ -1]~->0 as |oll » 0 J

The pseudo experiment ((x,J*),n1o,...,cr) where
01(x)=...=02(x) =0 and w is a probability measure dominating

Oyseess0, will be written QQH,O where o denotes (01,... cr) .

The standard representation of E?n - is also derivative.
9
If s; = doi/dn $ i =1,2...r then the standard representation is

-1 -1 . = -1
s.,8 where S = n((1+2[si\) , si(1+2|si\) 3 1= 1y000,T)

1 ’ i=1,...,r)-1 H i=1,...1’.

and 8, = o, ((1+2]s; )7, s, (1+2]s; )7

A closely associated characteristic is the standard measure

r
S=8_ + ¥ |8
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L where

1

Alternatively we may - since S and s
s = (s1,...,sr) - determines each other, use ms ' as a charac-

teristic. The measure ms | will occasionally be denoted by

Fﬂ,c .

Let - for each 1 = 1,2,e00,T = G . be the measure on R
m:0,1
whose Radon Nikodym derivative is the i-th coordinate function

Xr—> X5 It will follow from proposition 3.4 that
r
((R*, Borel class), Fﬂ,o’Gﬂ,c,1”"’Gﬁ,o,r)

is a derivative.

Furthermore - since X > Xi is a version of dGﬂ,O,i/dFﬂ,o -

this derivative is equivalent with — It may be checked that
?
FTr . is, and may be any probability distribution on R® such that
b

JXiFn’G(dx) =0, 1=1,0es ' « We will occasionally write Feo,é

.

instead of Fn,o when qgn’o = é%o « One pleasant property of
this characteristic is:

Proposition 3.3
Let éf , %%2,..., ?%n be differentiable in eo e Then:

Feo,ril g, = Feo,%1 P, & e, gn

where (*) means convolution.

Proof: The proof is very similar to that of proposition 3.3 in

LC1. 1
The fact that the standard representation Oi‘S?TTO as well as
9
r . . . .
((R*, Borel class), Fﬁ,c’Gn,c,1"“’Gﬁ,c,r) are derivatives is a

consequence of
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Proposition 3.4
1 g - ((%’%)’“’V‘l""’\’r) gcgﬂ,c then @ is also a deri-

vative,.

Proof: If suffices to show that each pseudo dichotomy
((4,55)31,v,) 5 1 = 1,2,000,7 s & derivative and this is a con-

sequence proposition 3.4 in ILC1, |




4.1

4. Comparison of derivatives.

In this - and the next section - derivatives will be written

C%Dﬂ JOyruenr0, = (X, ), ’01""’0r) with or without affixes.

The following notations relative to the derivative %Z
T 901,.oo,0r

= ((x ,{¥),m 10 re0050,) will be used:

o
H

e

S the standard measure of qgﬂ PR

o))
H

e

o (01""’°r)

5
[0}
H

Si=doi/dﬂ;i=192 ...,I‘.

o
Hh

s e

(81,...,Sr)

N(E) %Sg Hn+€1c1+...+§rcrn H (§1,...,§r) € RY
v et {(Jédﬂ,Jédc1,...,‘r6dcr) 10 <5 < 1)

¢G§bg§£ f¢(1,s1,...,sr)dn where ¢ is a sub linear function

on Rr+1

Affixes on %?,ﬂ,01,...,0r, c,ﬂ?,/&,s1,...,sr, s, ¥, Nand V ;
when these are referring to the same derivative will be of the same
- type.
For two derivatives S),é§ we will - for each k = 2,3,¢0. =
write:

6k(@,‘8) def 4o smallest /2 so that 3 is (0,6,...,€)

deficient w.r.t. d§ for k-decision problems

and Ak(@ 9@V) 'g'e_i;max(ék(gs?')s ék(@’%)) .



4.2

~Y

The smallest €/2 so that <%; is (0,€,64.,€) deficient wer.t. 4
will be denoted by 6(?,@) and we shall write A(% ,Qg) =

max(g(@ ’(g), 6(@9@)> .

It follows directly from the definition that:

ék q é and Ak q A as k -»oo
0 563y (3,9) £4)(8,%) <o
6(1{)(9 ,@) § 6(k)(©3cg) + 6(1{)(@’@)

L d .

A2,A3,... and A are pseudo metrics.

) £ 2 S(x)

and A(k) < 2 A(k)

It follows directly from the definition that A(k)=G <=> A(k)=0
and it is a consequence of theorem B.2.7 in the appéndix that

Az,...,A, Az,...,A induces the same equivalence "relations",

Trivially A1(g,6§) = 51(§,§) = 0 for any pair (c?f?) of
derivatives.
A A r+1
Let Y(Yk) denote the set of sub linear functions on R
(which are a maximum of k linear functionals) satisfying
¢(ei)‘= w(-ei) 3 1 =1,2 +es,r where ei(j) =10r0 as j =1

or j #1i.
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Proposition 4.1

Compact expressions for the quantities

8oy By by Bosesssdy B, b and A ave
6,(3,9%) - sgp[(E(w-xv(g)).(*)/(wzlgim
2,(2,9) = sgp[lﬁ(a*)-N(g)|/<1+mgix>]
25,(3, %) - E%L&(g)-N(g))(*)/z\gin
24,(%,%) - zzgu'if(g)-m) /218, 1]

00y (8, %) = s LG@-v @Y T v(e) 10 £y € )

A,““)(%’% sup iw(@)-mv(‘?)l/éoxv(ei) t 0 £y € iy

25(1{)(‘9,@) sup{(w@)-v@»@)/ié\y(;ei):q,e/q}m; iaq,(ei) > 0}

21 (8,8) = s @11/ B 4Ceri € Sy 4(s;) > 0]

Upper bounds for 62 is provided by: For any # > O:

6,(2,%) < maxilg—;iéz(cg,cév)A(glg‘J)([m?K\gi| z %7 I

*) When the symbol "(+)" appears in one of these formulas, then it

may either be deleted or be replaced by "+".
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Proof 1°: The formulas with "(+)" replaced by "+" follows directly

B.2.1 in the_ appendix.
from theorem / . fhat "(+)" may be deleted in the formulas for

6(1{)’ 62 and 6(1() follows from the last statement in theorem
3e2 o

2%: et £|g;| > % + Then:

slsy| > F 0 + 3le D)

so that:

1 (w(e)-n(e)* ‘I+uN -N
2 x]g; T+2 18,

It follows from the proof of theorem %.2 that

1-,3-;&52(@ 2 .

A

(M(g)-1)/z|g; )| <4 J max [5; | dF <4 f max |5, | 4% when
. i i :

mg.x'lgi Iz(z 8, | )~ max \gi \zn-1
i i
il g n .
Hence?
+ 2 ,
15 (N‘%-Elﬁg)) g% Nz F;:l <4 J m?-x\si|d?'r' when EZl8,| gn .
max |5 |>71,—1
i tF
£

Example 4.2 Let us compare the derivatives

% - ((x,H), o 1,...,cy ) with "the minimum informative" deri-

vative @ = ((\(,LQ’), Ty OsneesO) &
Clearly @> @ « By proposition 3.1:

~ E.C,
Az(gycg)gl-!:—:rgjllenoill as |g;] »

Hence

85(8,3) 2 max oyl
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Let ¢ € { satisfy: Zy(e;) >0 . Then
i

‘lf(@)'\llcg) = J(¢(1’s1,-cussr)-‘l’(1 ’O’nonyo))aﬂ

[/ ne iy ]
N ™MB

»
5‘]i§1¢<éi)lsi!'dﬂ> = 1w(ei)llciu < (2 y(ey)Imaxlloyll

i=1 i

1

By proposition 4.1 again: 2A(%',q§) < max HoiH o It follows that:
i

2,(8.8) = 20, (8, B)=.o=0(8, B) = 283, %) = max lioyll
1

V 1is a compact convex subset of the cube:

[0,11 x I Hio;ll/2, llo;li/2] « It is symmetric about (%,0,...,0)
1

and the only points with first coordinates O or 1 are the points
(0y0y5644,0) and (1,0,c00 0) « V determines R up to equivalence
since (i): N does and (ii): the support function of V and N
determines each other,

C% is (eo,€1,...,€r) deficient weTr.t. Cg if and only if
€. 6. o i Q KXy .
V+1[-1/2, "i/2] 2 V. In particular ©6(%,0) is the smallest
i

€ so that
V+1 [~e/2, €/2] 27V .
i

Similarily 25(%,8) is the smallest € so that

r ~J
Vv + {0} x 1 [-e/2, /2] 27V,
i=1 B

F determines N through the formula:
N(5,sueer5,) = jn+§§ixi [F(ax) 5 (85,04+,8,) € B" .

Comparison by testing problems may be reduced to the case =1 3

i.e. the case of pseudo dichotomies hy:
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Proposition 4.2

~J

R is (eo,e1,...,er) deficient w.r.t. B , for testing pro-
blems, if and only if (Tr,Zl;ioi) is (eo,zlgi]ei) deficient werst.
(T,28,5;) for all § € R .

In particular:

5(% , @) is the smallest ¢ so that (m,28,0,) is
(e,ex|g;|) deficient wer.t. (7,56,0,) for all & € R' .
and:

26(%,@) is the smallest € so that (n,zgici) is

(0,e|g;|) deficient w.r.t. (W,55,0,) for all E € R .

Proof: It follows from the testing criterion for comparison of

o

pseudo experiments that CQ is 60,61,...,€r deficient wer.t, c@
-~ r
if and only if N(g) > N(g) - @O + I l§i|€i) . The criterions
- i=1

follows by comparing this criterion for the case r =1 with the

case of a general r . ]

Corollary 4.3

59 G )
. qg‘ _ Ty nE.0. s 2E.0.
(8% = 0w T

A few criterions for ">" are listed in:
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Proposition 4.4

Let Xk Dbe one of the numbers 2;3,¢e« + The following con-

ditions on the pair (% ,Cg) of derivatives are equivalent:

1) @ E%
(ii) ék(%,@) =0

(iii) q;(“&)gw@) for any function ¢ on RF r+1  which is a

maximum of k linear functiomnals.

(iv) J‘cde > de’f" for any function ¢ on RY which is a

maximum of k linear functionse.

(v) (for k = 2) N> ¥
(vi) (for k = 2) vo ¥

Proof: (i) <=> (ii): Follows from &, < 26, and the definition

of 61{ .
(1) <= (iii): Follows from the sub linear function criterion.

(iii) <= (iv): A function ¢ has the properties described in

(iv) if and only if it is of the form (x1,...,xr),-> ¢(1,X1,...,xr)
where { has the properties described in (iii).

It follows from the considerations above that v <=> (vi) and

that v <=> (i), when k = 2 , O

Corollary 4.5

The following conditions on the pair (%,%V) of derivatives

are equivalent:
(1) 9
5 (

29
(ii) 9 CQ) =
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RI'+1

(iii) q;((g) > y(®@) for any sub linear function ¢ on

(iv) Jcde > Jcpd? for any convex function @ on RETI

(v) There exists a dilatation D (i.e. D is a randomization

such that J‘yD(dy |x) = x) so that F =FD .

~Y

Remark: If r)Z is a Borel subset of a Polish space and L/‘} is the

class of Borel sub sets of 'f(’ then - by the randomization criterion -

each of these conditions are equivalent with:
(vi) There is a randomization M from (x,J‘\’) to (x,#) so that

~ ~ .
ﬂM=T[ and GiM=0i;l=1,.-.,I'.

Proof of the corollary: (i) <= (ii) <= (iii) <= (iv) <= (v)

follows from proposition 4.4 and theorem 2 in Strassen's paper [12].

Let o Dbe convex on R* . Then there are constant aij so that

p(x) = lim/} max (a . + a 'X1+"‘+arjxr) = l;l.m/} ¢n(1,x,... xr)

n 1<i<n °J 13
where
xbn(xo,x1 seee ,xr) = 1:2?21 (aojxo+a1 7Xq*es .+arjxr) . 7

Pinally we give the factorization criterion for sufficiency

Proposition 4.6

~J

Let %= ((x,ﬁ),n,c1,...,cr) be & derivative and let R be
the sub derivative ((x,%),ﬂgcﬂy...,cr%) where $2 is a sub
g-algebra of t/‘]’ and the subscript S% indicates restriction to 53.

Then (8 ~§ if and only if s may be specified 53 measurable.

Proof: It follows from proposition 4,12 in ILC] that the condition

is necessary. Suppose s 1is Szmeasurable. Then

s; = dciss/dﬂgb so that F = ‘in% (s) =o(_ﬂ(s) =F , O
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5. Convergence of derivatives.

The notational system in this section will be the same as in

section 4. A few convergence criterions are listed in:

Theorem 5.1

*
The following conditions ) on the derivatives o/ ; B = 1,2;+00

and %D are equivalent

(1)  1lim A(% 2Ly =0

n->0

(ii) 1lim A((@ q&) =0

n->c0

(111) 1im a,(}.,9) = o

n->c

(iv) 1im A (% (Q ) =

n->co

(v) lim A(S ,8) =0
-0

(vi)  lim [A(E,F) + lJZ;JI |%; [(Fy~F)(ax) |] =
n->00 1=

(vii) 1im N, (e) = N(E) ; & € RF .
n->o

% . . k
) If p, v are finite non negative measures on some space R

then A(u,v) is the smallest number h > O so that:

k k k
p( I J-eo,x;-h[)-h g v( 1 J-0,x,[) g u( 0 ]-o0,x;+h[+h ;
=1 i=1 i=1

(X,],...,Xk) E Rk

Convergence for the metric A 1is weak convergence in the sence
that A(un,p) -» 0 if and only if pn(f) - u(f) when f is

continuons and bounded.
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Remark, We have not listed the criterions which follows directly
from the right hand sides of the distance formulas in proposition 4.1.

By this theorem and proposition 4.1 the convergence in (vii)

implies that Nn(g)/2|§i| - N(g)/Zlgil as n - , uniformly in

E #0 . Clearly the "2" in (iii) and (iv) may be replaced by any

K = 34,000 |

Proof of the theorem:

(i) = (iv) : Follows from the inequality b, g4

(iv) = (iii): " noon " A,

A
N
[

(v) <=> (iii) <=> (ii): PFollows from theorem B.2.13 in the appen-
dix
(v) => (vi): Suppose Sn(h) - S(h) when h is continuous and

bounded on R+ « Let g Dbe continuous and bounded on RT .

Then Jngn = Jg(x1/xo,...,xr/xo)sn (ax)

’O

i

= Jxog(x1/xo,...,Xr/xo)Sn(dx) = Jh(xo,x1,...,xr)sn(dr) where

B(xg,%yseee %) = minfx ,11g(*1/x 5000, r/x)) or =0 as x>0

r+1

or Xo < O« Then h is continuous and bounded on R~ so that

fngn = |nas - Jhds = jng . Tt follows that A(F_,F) - O.

By the formula for 4 in proposition 4.1 we get for
r . r ‘
¢(xo,x1,...,xr) = 'Z1lxil that j_z1|xi|Fn(dx) = ¢(‘§n) e»w(g?)
i= i=

= 2 . .
JE
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(vi) => (v): Suppose (vi) holds. Let g be continuous and bounded

R;‘+‘l

on . Then - since (x1,... Xr) -

((1+ 7 s 177 x, € z lx; )77 (1+ = x5 1)77)( B I=; 1)
g 1+ ¥ X, X 1+ T |X. es e 3 X 1+ = |X., 1+ X.

e I e A i=1 *
is uniformly integrable w.T.t. F1,F2,... : Jgdsn =

r _ T - ' T _ T
fg<<1+i§1lxil> 1,x1<1+i§1lxi\> 1,...,xr<1+i§11xi\> 1><1+i§1\xil)ﬂh¢bo

]mﬁ+§mwrﬂxm+§mqrt””xu+§m¢rwm+§m¢m@a
i=1 t LU SRR P i=1 *

= [eas

(ii) => (i). Suppose (ii). Then - as we have seen - (iii), (v)
and (vi) hold. ILet L, denote the Prohorov distance between F/
and F for the metric ; (x,y) "> mex |x,-y; |+ By theorem 11 in

i
 Strassen's paper [12] there is for each n - a probability distri-

bution Qn on R x R with marginals Fn and F such that

Q, (D)) €L, where D = {(x,y): max|x;-y;| 2L} + TLet ¢ € v .
i

Then |¢(§£)-¢5%)l = \J¢(1,xj,...,xr)Fn(dx)—j¢(1,xv...,xr)F(dx)\ =

‘I[¢(1:X1’---yxr)'¢(1’y1"00:yr>]Qn(d(x’Y))l g

IEW(ei)lXi-yilQn(d(x,y))g _§1¢(9i)Jm?x\xi—yilQn(d(x,y)) =
i=

T u(ey) | max|x -y 10 (aGe,y)) + T y(e,)| mex|x;-y, 1 (ae,y)) <
i=1 G 1%1 i i=1 D

n

.g w(ei)[Ln + ( m§X|Xi—Yi‘Qn(d(X,y))] .
i=1 Bn i
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By proposition 4.1 25(@n,@ ) < L, + JP max \xi—yilQn(d(Xsy)) .
D 1

n
By (vi): L, ~» 0. It follows that Q,Q,,... are relatively

compact and that Qn(Dn) >0, (x,y)~> max]xi-yi] is uniformly
i
integrable since it is dominated by (X,¥) ~> Z|x,| + Z|y;| and
i i

the latter is uniformly integrable. Hence -~ by uniform absolute
continuity - A(CQH,CQ) -0 .
(vi) = (vii): follows directly from proposition 4.1

(vii) => (vi). Suppose Nn(g) - N(g) for all € .

Then | |1+x, |F, (ax) » | |14x; |P(ax) ji = 1,2...r
Hence: limsup}lxian(dx) < limsupj(1+|1+xil)3n(dx)
n n
= 1 + lin| |14x, [F(ax) <o ; i = 1,2...7 .
. i

It follows that F1,F are conditionally compact.

2,‘00
Let §, # 0 . Then:

j[§O+§1x1+...+§rxr|Fn(dx) =l€O[Nh(go/§O,..; gr/go) -
|§O|N(g1/€o,...,gr/§o) = Il§0+§1x1+...+§rxr|F(dx) . Hence:
limiupf[§1x1+...+§rxr\Fn(dx) < li%fupj[|§o\+\§O+§1x1+...+€rxrlEn¢mJ]
= |§o|+I|§o+§1x1+...+§rxr|F(dx) . §, - 0 yields:
li?fupf|§1x1+...+§rxran(dx) < J|§1x1+...+§rxrlF(dx)
Similarily:

1im§nfj |65 o 0o 4B 3 | By (@) 2 [T18,48,% #0046 x |- 8, | I, (dx)
= J|go+g1x1‘+...+§rxrlF(dx)-lgol . §,~ 0 yields:

liminij\§1x1+...+§rxr\Fn(dx) > I\§1x1+...+§rxr|F(dx)
n
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It follows that ﬁ§o+§1x1+...+§rxr|Fn(dx) > ﬁ§0+§1x1+...+§rxr{F(dx)

for all (§O,§1,... Er) € Rr+1 « Consider =r constants a1,...,ar .

Then J|§-(a1x1+...+arxr)\Fn(dx) - Xlg'(a1x1+"'+arxr)lF(dX)

By theorem 5.1 in LC1:
A((FnGn),(F,G)) - 0 where

a6 _
n/dF, |, = a,x,+...+a x = 4G/dF .

11

By the same theorem _

&-E'n(a1x1+. . o+ar}£r) - CLF(8-1X1+. L] .+arXr)

where X1""’Xr are the coordinate functions on RY e It follows -

that A(En,F) - 0 . Hence - since .Jlxian(dx) - leilF(dx) :

. T -
i=1,200.r ~ A (F,F) +A1Ji§1|xi|Fn(dr)-- Ji§1|xi|F(dx)| 50 .
l
When does a sequence Cg1, C82,... converge? A necessary and
sufficient condition is given in:

Proposition 5.2

®
A sequence an'; n =1,2,s0e O0f derivatives is A& convergent

if an only if 1lim N_(§) exists for all & € R® and
nco 1

i | - . =1 = .
i BRI T =

Proof: The conditions are - by theorem 5.1 - and theorem 3,2 -

necessary. Suppose now that M(E) = lim Nn(g) exists for all
n->00o

E € RY and that 1im 884=1 - 0 . It follows from theorem

zlg; |50 2151




5.6

5.1 that it suffices to show that M is the N function N of
some derivativecg; . Let & # 0 . Then:

J18+8 42, #a e et x |E, (@x) = |8, 0 (51/5 ,000,52/8 )

> 16, 1M(31/5_,000,51/8,) o« Hence:
1imsupJ|§1X1+...+§rxr|Fn(dx) < limsupj[\gol+‘§O+§1x1+...+§rxr|]%0bd
n n

= |8, 1415, 1M(®1/5 ,00s Sr/g ) <o, It follows that F_ ;

n = 1,2ess are conditionally compact, We may therefore - without
loss of generality assume that A(Fn,F) -0 .
Similarily:

Liiinfj\§1x1+...+grxr|Fn(dx) 2 =18, 1+ 18, 151/, v S2/E.)

Hence: 1imsupa E.X,+ese+E_x_|F (dx)-liminf“lg X,+ese+E_x_| P (dx)
n Jl 1™ T r‘ n n J 1™ T r‘ n

< 15,1,
It follows by letting §_ - O - that = 0

W(go’§1""’§r>= limjl§o+§1x1+...+€rxran(dx) exists for all
(§0’§1”"’§r) e ’**1 , Pix r numbers 8118500058,

r

Then - for any number & - :
Jlg-a1x1-...-arxr|Fn(dx) - W(g,-a1,...,-ar) and
W(gﬁ-a.«l seee ,“ar)" lg l
= [M(-a1/l§|a..., - r/l%l)-1]I(-a1/|§|)+...+(- r/|§l)|2|ail -0
as || » o, Let the measures G,on=1,2,.. and G be

_ . ] N
determined by: LdGn/anJ = LdG/dFJ = Za;X; o By proposition 5.3
x X




5.7

in 1,01 the derivative (Fn,Gn) ;n=1,2... converges as n - ,

In particular x> |Z a;x;| is uniformly integrable w.r.t.
i

Fz,olo . I't fOllOWS that

(8ya,500052,) € RE*1 | This imply that J”xiF(dx) =0 3 i=1,00.,r

e ’ Hence F represents a
derivative ) ana M(g) = lIilm I\1+Z§ixi[Fn(dx) = I|1+Z€ixilF(dx) =

N(g) . By theorem 5.1 A(qn,@ )= 0 . (]

Corollary 5.3

The pseudo metrics A2,A3,... and A are all complete. It
may - however - happen that a A divergent sequence @1, {gz,...
is & convergent to a pseudo experiment CQ which is not a deri-

vative.

Proof: Let @VCQZ... be a sequence of derivatives such that
AZ(@m,@n) -0 as m, n~-»o, By proposition 4.1:
Nm(g)-Nn(g) -0 as m, n->o for all § , Hence

M(g) = lim Nn(g) exists (finite) for all & € R* . By proposition
n-co

N (8)-1 N, (§)-1

4,1 agains - -0 as m, n - ; uniformly in
® TTET T RS ’ ’ 7

N_(g)-1
n M -1 .
E #0 « It follows that —ng—l—r— - —é%g?‘- as n > © uniformly

in € # 0 . Hence by theorem 3.2, Mz §'1 - 0 as Zlgil - 0, so
i
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that - by proposition 5.2 - A(@ Q)5 0. Tt follows that

A AB"" and A are all complete. An example proving the last
statement is readily furnished by example 5.4 in ILC1. ™
Some compactness criterions are listed in:

Theorem 5.4

The following conditions on the set {@t : t € T} of deriva-

tives are equivalent:

(i) {@t t t € §§ is A conditionally compact.
(ii) {Cgt t:t€ M is A conditionally compact.

N, (5)-1
(iii) sup—z-l-g—‘—-eo as Zig | -

(iv) x ~—> leil is uniformly integrabel w.r.t. {Ft : t € T},
i

Proof: (i) <= (ii): Follows from theorem 5.1
(ii) => (iv) . Suppose (iv) does not hold. Then there is

an N >0 so that

n = 1,2,0.! .

A 1)

sup J | |F (ax) > n
Zlx; [>n
It follows that for each n = 1,2,..« there is a tn € T so that:
J £lx; |Fy (ax) >m .

z x4 ]>n o

By theorem 5.1 , no subsequence of %t ) @tz,... is O convergent.
1

(iv) = (i). Suppose (iv) holds. Then {Ft : t € T} is

conditionally A compact and (i) follows from theorem 5.1.
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We have, so far, shown that (i) <= (ii) <= (iv).
(1) => (iii). Suppose (iii) does not hold:

Then there is a sequence g(n) y = 1,2..4 in RY and a number

(1) Nt(é(n>)-1

a >0 so that Z|§. ~> 0 and sup >0 30 = 1,2¢00

~ 155 (n)

1 t Zlgi l
It follows (n)

Nt (g )'1
that for each n there is a tn so that n| ) >Q .
zlg:" 7|

By the last part of theorem 3.2 and proposition 4.1, no sub sequ-

ence of C%t1,6§t syeee 1S A convergent.
2

(iii) = (iv): S Ny (8)1 0 z|g; ] » 0O
111 = iv)s uppose sSup -> as . - .
% Elgi{ i 7

Let a1,a2,...,ar be fixed., Then:
J\n-a1x1—...—arxr|Ft(dx)— lﬂ‘ = lﬂ‘[Nt('a1/n’°--s"ar/n)"1] =

a a 2i -1 %
= (W (-F1/my.ee,=-"2/m)-1](2 - ﬁ-‘] .Z1lai\ >0 as |n| »;
1=
uniformly in t € T . Let G, be the measure determined by:

¢/aF, | = sa;x, . By theorem 5.6 in IC1 the set {(Fy,G;);t € T]

of derivatives is conditionally compact. In particular
x ~> |Za,x;| is uniformly integrable w.r.t. F, i t ¢ T , This

being true for all (a1,...,ar) € RF imply that leil is uniform-
i

ly integrable w.rst, F, ¢ t € T . -

The particular case of asymptotic 4 sufficiency is treated in:
Theorem 5.5

Let %n = ((Xn, ‘Mn)’nn’01n;0‘2n,-onycr’n) s N = 1,2;.0. be a

sequence of derivatives. For each n let §5n be a sub o-algebra
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of(ﬁpn and 1etc%Il be the sub derivative
((xn,q%h),nn,on1,...,cnr) where - by abuse of notations -

Ty20pq2eees0, are the restrictions of My 20pnq2e*e10pn to qgn .

Finally let, for each n, én1’8n2""’énr be the measures on J}n

determined by:

S

n
A .o
dcni/dﬂn = Eﬁn[ddni/dﬂn] s 1 1,oou,r

A ) )
Then %@n gg;((xn,J}h),ﬂn,Gn1,...,onr) are all derivatives and

Cﬁn.“'cgn.; n = 1,2’000 .

Suppose CQII ;0 =1,2... are conditionally compact. Then
C@ ni?B= 1,2.4+ are also conditionally compact and the following

conditions are equivalent:
3
(1) lim A(@n,cgn) =0
n->c0

(ii) lim “Oni - éni“ =0 H i = 1,200or
n->00

(iii) ;LlixgoA(Fn,Fn) =0

Proof: Let - for each n - En denote expectation w.r.t. ™,

A
o ‘ . X . .
1 qgn is a derivative since éni <m ;i=1,2,0e0,r and

é‘ni(x) =0 3 i=1,200er « It follows from proposition 4.6 that
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2° Suppose ;Qn s n =1,2... are conditionally compact. By

proposition 5.8 in LC1, the derivatives ((x, k)sMy»0,4) 3

n =1,2.+. are conditionally compact for each i . Hence

ES}n

a)

Spi 3 n=1,2... are uniformly integrable w.r.t. T,

By theorem 5.4 this - for 1 = 1,2...r - implies that q?n

are conditionally compact.

o]
!

= 1,2-..

= 1,2-.0

30 Suppose now that Q2n s n=1,2... are conditionally compact:

(i) = (ii) : follows from proposition 5.8 in LC1
| « Then

CoN e (s _ A
(ii) = (i) : Put € m?x “Gni o

3.8 =088 <<, 0.

(i) <=> (iii): Follows - by conditional compactness - from

ni

]

theorem 5.1 . |
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6, Local comparison of experiments.

We proceed as in section 6 in LC{1, connecting the theory of
derivatives with the statistical theory of information.

It was noted in L01 that some results *) was only proved under
the assumption that some of the measurable spaces involved, were
Borel sub sets of Polish spaces. We shall not use such assumptions
here and it will be shown in theorem 6.5 that - with the exception
of proposition 4.11, proposition 6.5 and theorem 6.6 - all other
results are proved without using assumptions of this type.

A few notational conventions are: ZExperiments will usually be
written %=((X,J4/), (Pe, :t 0 € 0)) with or without affixes. If

(‘%= ((x, ), P, : 8 € ®) then the derivative in 0° will - if

it exists - be written:

é 0 ‘-"(('X.;(p’)’P O’i o "'-’.P 0 )

8,1 ° 07,r

The restriction ((x,J}) (P $1 0 €O )) of %% , will be written
% . Afflxes on (% ’X’J} P @,P ’é 9..0,% .
®O 5© 60,1 eo,r will, when

when these are referring to the same experiment, be of the same

‘t:yTe.
If % and % are both differentiable in 0° then we will

write:

g % ) definition é(k (g g %

O(k) 6°

*) These results were listed as: proposition 4.11, theorem 6.1,
theorem 6.2, corollary 6.3, proposition 6.5 and theorem 6.6.
Corollary 6.4 - whose proof depends on theorem 6.2 - were, by an

oversight omitted from this list.
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and
&

A ] (&,%) definition A(k)(éeo’ éeo)

» (k)

If ¢ isclose to 6° and %is differentiable in 6° then

Ib is approximately affine in 6 . Hence deficiencies on a sub set

o

@O 'close" to @ should be approximately equal to deficiencies

on the convex hull (@o) of ®O . Inequalities implying results

in this direction are given in:
~Y

Proposition 6.1. Iet & and § be differentisble in 6° and

consider the expansions:

P =P + 2(9.-99)% + |le-0°|L
0 p® i 1 177g0 5 0°,8
and
~ ~ Of'!J ON
P, =P + 32(0.-0])P + |lo=0"||IT
8 "0 i1 1740 5 8°,0

Then any sub set @O of ©® , whose convex hull (®O) c e, satis-

fies = provided éi) is dominated - the inequalities:
0

6(k)(g®os %(90) < 6(1{)(%(@0)’ %<®O> <

~

. o
& (k)¢ é®o, g@)o) + 2 distance (@,0 )[supllf‘eo’ell + suplll‘eo,ell]

where both sup's are taken over <(@,) .

If both %@ and g(@ are dominated then & - in these
o) o)
inequalities may be replaced throughout with & .
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Proof. (ii) follows directly from (i). Hence it suffices - since

8 & and ®, ¢ <®O> to prove that

6k(g<®o>:%<®o>) < tk + Zd[SU-P“PeO’O” + suP“reo,e“]

_ Y . 0
where t, = 61{(8@0'%@()) and d = distance (@O,e ) « Let

2,...,Gk in ® and non

!
6 € (@O) . Then there are points 6 ,6 o

k
negative members Cy2Cpreee,Cy SO that 6 = X c¢.0 and

k
1 = X c. « Hence

i=1 1
Ye.P . =P 4+ z(e.-e9)i + Zc.HGj-GOHP
J gd 0° 1717991 59 6°,09
so that:
P -5c.P . = |6=0°|T . -c.|l69=0°|T
O 579 gd 6%, j 9 6°,09
Hence:

IP.-zc.P .|l < ll6=6°llsupliT _ ||+d suplT _ || <2d sup|T . | .
O 5 dgd = 0%,0 0%,0 = 0°,0

Similarily:

IBg-Zc P .l < 24 suplT .

J g9 0,0

Let P be a randomization from (x,d) to {1,...,k} . By

appendix
theorem B.3.4 in the/there is a randomization p from (x,%?) to

{1,2,... kf so that:

I12,e-B 01l < t, 5 0 € ©°
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Let 06 € (®O) and write 6 - as above - as a convex combination
k 3 5 X

c:0 of points B ,eee,0 in ®_ . Then:
j=1" °

“P ol < -Sc.P . P .)o-(2c.P .)p

IPgp-Bypll < 1By ECJPGJH+H(ZCJPGJ)Q (ZCJPea)p“

+H20jP9j—P9H < 2d[supHT60 eIl+sup|ll‘eo G“]+2Cjtk =2d [ ]+ % .
H b D

The condition of dominans does not matter very much since it

is = for small neighbourhoods ~ "approximately" implied by differ-

entiability. Using the construction in section 3 we get:

Proposition 6,2

~J

Let & and & be aifferentiable in 6° . Consider the

expansions:

P =P +5(8.-09)P _  +[le-0°|T
0 0o i i “i eo’i Oo’e

O L]
|P o*§(91‘91>P

i |12 o+2(05-00)® o 17 =

0°,1 0 0,1

=P +5(0.-02)P . +ll0-0°|IA
00 1 L 1705 0,0

~ ~ 2 ~
P =P +%(9.-0°)P +lo=-0°|IT
O g0 I L1760 0°,6

, =

~ ~ ~ 2
P _+2(0.-03)P | 1P +z(0,-09)P
0 i 1 1 eO . 0] i 1 1 ) ,i

0 s 1 0

~ A ~
=P +2(0.-02)P +|]0=-0 || A
6O 1 1 Oo,i (0] OO’e
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Then any sub set ©  of @ , whose convex hull (®o> co,

satisfies the inequalities:

5(k)(g@0» g(@o) < 5(1{)(%(@0)’ %<@o>)

) 0
< b(k)( g%,g@)o) + 2 distance (®O,0 )[supllAeo’e-I‘eo’O[H

I+ suplT _ I
s 0 0,0

+ supllA o
6

where all sup's are taken over (®o> . & may - in these inequ-
alities - be replaced throughout by A provided 2 distance

(®O,O°)[supll7\f o =T o I+ supl|lh o I+ suplT II7 is added to
0 ,0 0 ,¢€ 0 ,0 6 ,0

the expression after the last <.

-~

Proof: Write Q, = |P O+Z(0i-e§z)13 o P O+Z(ei—9g)P o I and
0,1 0 j

0 s 1 6,1

.(g; ((X’J'}'),Qe $0€0). Then g o ='.f?. o and %\'—is dominated.
0 6

Write d = distance (@_,0°) . Then:

6k(g<®o>’g<@o>) s 0l 8oy 9¢ay) + (T qo 3 Gee,») S

N— o -~ ~
A(é(@)o)’ 5 <®o>> + 61«:( 5’®Os 8®O) + ’Zd[suplll\eo,01|+sup|ll"eo

A

] <
3]

?

< 2d{#suplls , -T

6,0 0,0 0,0 0y

~ (gt
I+suplin o lveuplll o 1]+ o (5 oy ) +
0] 0

lo d

5 (g , g ) <% (% G )+ 2d[supl|lA -r Il + supllp I
k ®O ®o = "k ®o @o OO,O 00,0 90,9

+

+ sup|ll” | II]
050
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The last statement follows by a symmetry argument.

Corollary 6.3.

et & and & be differentiable in 0° . Then:

(1) [6(k>(£<®O>,Cg<®o>)—6(k)(g@o,g®o)][distance (@0,00)]-1 - 0

wiformly in (k) as distance (8°,8.) = O
iy | 3 : 0y=1
(11) [A(k>(%<@o>’g<®o>) A(k>(%®o’g®o)][d15tance (@0’0 )] 0

uniformly in (k) as distance (®O,Oo) -0

Proof: Follows immediately from proposition 6.2. N

Corollary 6.4.

Let g and % be differentiable in 0° and let "lim" be

short for "limit as distance (@O,OO) - 0" . Then:
. . 2 . -1 . .
(i) 1im ® (5 % Y[distance (@ _,0°)] exists if and
(k) (8,27 ©<8, 0

only if lim 6(k)(8@ , 6o aistance (8,,0°)]17" exists and if so
0] 0

then these limits are equal.
. : . -1 A X
(ii) 1lim 2 (% g )[distance (®_,6°)] exists if and
(k) <o 2’ “Ce 0

[d

only if lim A(k)(g® ,53(9 )[distance (@o,eo)]"1 exists and if so
o 0

then these limits are equal.

Proof: This is a direct consequence of corollary 6.3. i1
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Theorem 6.5

Theorem 6.1 in LC1, theorem 6.2 in LC1, corollary 6.3 in LC1
and corollary 6.4 in LC1 hold without any assumptions on the

structures of the involved sample spaces.

Proof:

(i) Proof of theorem 6.1 in LCG1. Write 6, for

6(%590‘6’00‘*6}’%ieo‘e’eo"ei) and write & for 690(5,5) .

If suffices = by corollary 6.4 in this paper - to show that

8 /oe » © « We will - to this end - apply theorem 6.11 (v) in LC1.

By theorem 15 in [15]:
Be(a+6€/2)+6€/2 2 B.(a) 5 o € [0,1]

where B_(a) (F.(a)) is the power of the most powerful level a
€ €

test for testing P, _. against P, (P against P

) .
0 0 Op*e

+€ -€
9O

By theorem 6.11 (v) in LC1 this may be written:
b /pe Z Bla)-Bla)+o, 5 o € [0,1]

where o, 20 as € - 0, wniformly in a . (We use the obvious

fact that &, -0 as ¢ = 0) It follows that

. ~ + .
Liming 8 /e 2 sup(Bla)-6())" = o

By theorem 15 in U5].there is an a, € [0,1-65/%] satisfying

Belagtde o)+d, /5 = Belay) .
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Using theorem 6.11 (v) again this may be written:
6e/2€ = Eé(ae)'pe(ae)+°e

Hence

66/26 g 6+Oe

so that

limsup © < é
=0 e/2e =

Altogether we have shown that 6€/2€ - & . Theorem 6.1 in LC1

follows now from corollary 6.4 in this paper.

(ii) Proof of theorem 6.2 in ILCY. The proof is very similar to

that in (i).
(iii) Corollary 6.3 in LC1 follows from (i) and (ii) above.

(iv) Proof of corollary 6.4 in LC1. If 31,..., %n are dominated

then the proof may be based on theorem 6.2 in LC1 as explained
there, This may - in the general case - be applied to dominated

»~

eXpel‘imen'tS seenmy SU.Ch that 6(8-, -) = O ; i = 1,2’000,11 .
1 n i i

If %i = ((xi,ﬂ/i)(}?éfL> ; 8 € ®)) then we may take

-~

G i

B pgH (00, BT () (00 B0

Il

((xisﬁi)(ﬁéi) 3 0 €0)) where

Then %éi) = Péi) and iéi) = ééi)
o] o} o] o)

so that 1 Péi) =11 Péi) and
i o) i o)
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LH Pél)J = lﬂ Pél)J . Hence
i 0=0, “i =0

AuP,,n1%,) =0 . It follows that:

a 0
8(1%,,1%;) = 81 8,,1%,) < ze(ii,?g = 26(%1, YO. o0

Generalizing theorem 6.1 to the »r dimensional case we get:

Theorem 6.6

Let G and & be differentiable in @° . Denote by w,

the convex set: {g : zlej-eg\ < €} + The set of extreme points of

We will be denoted by extw, ; i.e.

o} o o} o} o
extwe = {0 -€v,|,0 +EV Oo-evz,e +€v2,...,6 -evr,e +€vr}

1,

Then - uniformly in (k) -

i_l_;%l 6(1«:)(%%’ (gwe)/% = ]éi'g 6(1()(%6}(1:{:06’ %extwe)/ze""

and

llm A(k)( 8&) 9 8 )/26 = 1im A(k)( gextwe’ é'eextwe )/?6:

€0
i, (&B

0, (k)

Proof: If suffices (by corollary 6.3) to show that

lim &y ./2e =6 | (g,é) uniformly in Xk = 2,3,... @8 € 20
’ 0",k

wheXe 6k,€ = 61{( %E‘the’ gex—twe) . Fix a k € 1293 cee } and
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appendix
choose a number mn >0 ., There is, by proposition B.3.6 in the /

for each permissible € a sub algebra g?; of # having at most

k

2 sets satisfying:

(and

6(%extwe’ %extwe | 50) 2 E)k,e"'r'

~J

where |GY indicates restriction to $b. By theorem B.3.5 in the

appendix >~
- since gb is finite - there is a randomization M from

(x; ) to (;, Sg) so that:

oy

P M=P |55and max||P , M-P
¢] 0 1 0,1 0,

1% = 2590(%, %14y

Expand Pe and PO around 6° as follows:

P =P +35(0.-02)P + |lo-0°T
0 6° 1717904 0°,0
and
;e - P ot z(oi-—og)? o  * He-oOII; o
) i 0 ,i 0,6
Thens

P M-P | = 5(0.-6°)[P . M3 00Ol [T M-T
o Fo 159 17030l 0°,1 eo,ilgb] : 0°,0 o°

|55
s 0

Hence - provided 0 € w, @

12,1, |5h <e2b (B, &) Dresuplit | 14T 1]
0] we C 50 0 50

It follows that:

nJ

6(5‘3“%, %extwe 158)/2¢ < 6eo,k+%83)§[“ro°,o“+”I‘9°,g“]

where é = é ('é, %) .
eo’k eo,k
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Hence:

6k,e/2€ <6+ sup[ ] + n/2e
0,k We

n} O yields

(§) 6k’e/2e

HA

<‘c§,§> + 3oupl ]

Let § € ¥ (R°*1) (i.e. § is a maximum of k linear functio-

nals on R°*1 ana P(1,000e0) = $(=1,00000)500e,3(0sane,1) =

¥(0yeaey-1) )s Put - for each point (X1,y1,x2,y2,...,xr,yr) e R%T -

: 41Xy VX, YooX Y,.—X
1 1 ™1 2 2 r T
we(X1,y1,X2,y2,---9Xr,yr) ¢( » Toe - TDe 90--:“53—-) .

2r

Then ¢ € Yk on R and

Yq7%4 Yp~%p

]E.:% €cp€(x1,y1,...,Xr,yr) = lp(os—'z_,con, )

Put By = @ (=1,000.0)+0. (1,00000)+00etp (0,.00,=1)+¢_(0,000,1)

Then limeT, = 2[§(0,1,4440)+4(0,0,1,004,0)+0ue+y(0,40.1)]
e~0

By the remark after theorem B.2.71 in the appendix:

/26 > [@(P ,;
- Q-O)CP(P P LI P
0° ey 0 +€v1’ —€v1’ OO+€v1’ ’ 6o_evr’

P )1/ex
90+€Vr €

P +P P -P P -7
= [w( OO+€Vj 90-€v1 eo+€v4 OO—GVj eo+evr Oo—evr)
2 9 2€ y [ N 9 2€

P +P P -P P -P
eo+€v Oo-ev

Lo, 2 L)/ ez,
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~ & hd e
S LB LB )=u(® LR ,ee,® )]
6% 0°,1 0%, 0% 69,1 0%,

[20(0,1,¢000)+00e+2y(0,440.,1)] as € -0 .

Proposition 4.1:

(§8)  liminf o /2 3 b

e-0 °

6,k

Let # >0 Dbe given. Choose a ko 2 2 so that

& 2 6 -% where 6O=6o(%,%).
0 ,ko 0 0 §
By (§§) there is a €, >0 so that:
& /2€ > 5 -% when € < ¢€
ko,e = 90’ko = 0
Let € §€o and kgko « Then:
6, /2 > b /2@25 —?LZE) -2nzé -2n1
k’€1 = koie,- = eo’k = 00 = eo’k

Finally choose e, € ]O,eo[ so small that

6}{,6/26 > 600 k—2n when k <k, and e <e, . Then € < ¢,
b
imply 61{ E:/2@:--6 o > -2n for all k . Uniform convergence fol-
’ 0 ’k e
lows now from this and (§). J

Corollary 6.7

Let 81:°--s(én and ?1""’/§n be differentiable in eo .
Then?

o oy z.1%) géco’(k)( 5.5,

)

and
000" ZRERE 0,00 R
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Proof: If % 1,...,%

theorem /in the appendix. The general case now follows as in part

n are dominated then the proof follows from

(iv) of the proof of theorem 6.5, (M

The next result implies that conditional expectations evalu-

ated at ©'s close to 6° can not vary to much.,

Proposition 6.8

Let (%= ((x,\ﬁ}'),(]?O :t 0 € @) be differentiable in 0° .

Let QJ be a sub o-algebra of J} , X a bounded random variable
Sy

and EO X a bounded version. Then:
@

5L,

qh o
sup By |Eg X-Eeo X|/lle-6" |l <eo
0
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Proof: Let -1 <h <1 be 53 measurable. Then:

q), o sH
th(Eo X-EOO X) = E, (hEO X)—EO (hEGO X) =
Sy ) , b
= E (hX-hE . X) = E (hX-hE , X) + | (hX-hE _ X)a(Py-P ) =
0 8 0 0 0
QY 5 .
= |-~ X)a(®.-P ) = |h(X-E _ X)a[=(6:-09)P _ +lle-0°IT . ]
J‘ o0 0 OO j 00 1l 1l 00’i 00,9
= 200.-09)|n@E-8 " x)aP . +0-0°|n@E-8 -7 x)ar
it lj 0° 0,1 J 0° 0°,0
< 210,69 |max h(X-E X)aPp +l|9-o°|lIIhIHIX—E55 XIHT |
i 1 L i J OO Oo,i O0 00,0
< \rllo=0 il o[1%-E Eb Xllmax||P _ [l+llo-o®NlnllIX-E" XIUT I
0 i 07,1 0 0,0
Hence
55 9} ¢ . |
By B, %E . X|/lo=0°ll £ IX-E°, Xi[maxl® | IWz +IF , 1] <o .
0 0 i 9,1 0,6 0
A sufficiency may be characterized by conditional expectations

0O

as follows
Theorem 6, 9
Let %= ((x,ﬁr),P6 : 0 € ®)) be differentiable in 0

°© and

let 5?) be a sub o-algebra of ‘ﬂ’ e Let g be the experiment

% = ((X,S—b), POS?) : 0 €0®) where - for each o - POS% is the
restriction of By to Sb. Then :
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(i) Suppose & 0(2, é) =0 . Let X be a bounded random vari-

0
able in é and E% X a bounded version of this conditional
0
expectation. Then:
5

eO

$o
lim Eo |E,;” X-E o~ X|/llo-0°ll =0 as @ »0°
0-0 0

(ii) Let \ﬁPO be a basis for JQ’ which is closed under finite
intersections. Suppose that to each A € ﬂr’o there is a$3 measur-

5b
. . A0y _
able function Y, so that lim B |B = (4)-Y,|/lic-6"ll =0 . Then

0->0
b (8.8 -0,

Proof: (i): Let X and E o X Dbeas in (i) and suppose

A 0 L.
A 0(%, %) =0 . By proposition 4.6 s definition ;3 , /aP
B

6%,1 0°,i o

may be chosen 63) measurable. Let -1 <h <1 be S:S measurable.

As in the proof of proposition 6.9 we get:

th[ﬁEBX-ESE X) = z(ei-og)Jh(X-ng X)s dP

0 0 0°%,i o°
5) 55
+ 10-0° | h(X-E Y X)ar = lo-e°|l|h(X-E ~ X)ar
I 0° 0°,0 j 0° 0%,0
o P
< llo-o lllIX-E J XIIIIT |l » In particular:
8 0%,0

.
E, ‘EGS?JX-E?> X|/||0-0°il -0 as o~ 0°.

O

(ii): If suffices - by proposition 4.6 - to show that

s ,  =4dP /aP o, Mmay be specified 5:5 measurable for each
0,1 e ,1 0

1 =1,2,¢0e,r « Let A€ ur‘}’o and suppose YA is 53 measurable

and satisfies:



S5

éigoEe\Po (4)-Y, |/llo-6°ll = 0 . Then

lim E |PS (A)-YA]/[h\ -0 as h=0

o] o]
h-0 © +hvi 6 +hvl

6.16

one
It follows now from the/dimensional case - i.e., proposition 6.17
in LC1 - that s o may be specified S5 measurable. B
6,1

Let P be a probability distribution on RT .

For any pair

(0,0) where 6 € R and o € Jo,o[" let Q _ denote the pro-
b

bability distribution of (oi+ini 3 i=1,2 «oor) when P is

the probability distribution of (Ui

€ RY}

[
D

P, =Q . The the experiment iQO,o

0,1

-

with the experiment {P(O

7..090' )
1/01 r/or

change may be carried out in the parameter space.

differentiable parameter transformations obey the
differentiation:

Proposition 6.10

$ i =1,2,.0e5T) o Put

is equivalent

0 € R*} , i.e. the scale

In general

chain rule for

Let no € Wxgle and let y Dbe a function from fq to ® which

is differentiable in 7° and maps 1n° om ¢° .

0 —
éf is differentiable in 0° and put ¥ = ((X,J¥)

where Q,n = PY(T]) s M E ﬂ‘ .

T o)
Then '% is differentiable in and:

Q =P _ Diyi(n)
n’, 10%19d " °

where Dj indicates partial - derivative w.r.t.

Suppose also that
Qp t M€ ”P ’
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B.1 Introduction

In [7] Le Cam introduced the notion of e-deficiency of one
experiment relative to another. This generalized the concept of
"being more informative" which was introduced by Bohnenblust,
Shapley, and Sherman and may be found in Blackwell [1]. "Being
more informative for k-decision problems" was introduced by
Blackwell in [2]. The hybrid of "e-deficiency for k-decision
problems" was considered by the author in [15].

An experiment will here be defined as a pair Ef: ((x, ) ,
(Pe:e €@)) where (X,J¥) is a measurable space and (Peze €0)
is a family of probability measures on (X,(¥) . The set ® —-

the parameter set of 8} -- will be assumed fixed, but arbitrary.

o~
Definition. ILet % = ((x, ) , (Pe:e€®)) and ¥ = ((13,53;) ,
(Qe:e €@)) be two experiments with the same parameter set @ and

let 8 - be a non-negative function on @ (and let k>2 be

e
an integer).

[ N

Then we shall say that é% is e-deficient relative to ¥

(for k-decision problems*) if to each decision space¥*¥ (D,é/)

J o Cf . k

where ¢/ is finite (where contains 2 sets), every bounded
loss-function*** (p,d) N We(d) on ©® x D and every risk func-

tion r obtainable in(g: there is a risk function r' obtain-

able in E% so that

r'(e) < r(9) + eeHWeH, 5 €9 where HWGH = supd!We(d)I;G €0

* Yhen k = 2: testing problems.

**i.e., a measurable space,

LR
It is always to be understood that 4 - We(d) is
measureable for each 6 . '
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Tet = (06M) , (Rgrece)) ama F= (4, D), (a,:0¢e)

be two experiments such that:

(i) Pe:96® is dominated

(ii) ’\3 is a Borel-sub set of a Polish space and Sb is the class

of Borel sub sets of /\3 .

It follows from theorem 3 in Le Cam's paper [7] that g is
e-deficient w.r.t. (:(T if and only if there is a randomization M
from (x,¥) to (/\9,5’,5) so that [lP-Qufl < es; 8€h . (An al-
ternative proof of this result is given in section 3)

Many of the results on comparison of experiments generalizes
without difficulties to situations where the basic measures are
only required to be finite. (Here as elsewhere in this paper a
measure may be "non negative", "non positive" or neither. The
notion of a signed measure will not be used.)

As an example of a situation where such "experiments" natur-
ally enter consider two experiments g = ({(x,J¥); MpaiB € ®) and
’:g-'z ((13,5'2)), vy 6 €®) , a decision space (D,g), a loss function
W and two functions a and Vb on ©® , Then we may ask: does
there to any risk function s obtainable in (S‘ correspond a risk
function r obtainable in é so that I'(e)_<_ae s(e)+be||WeH :
ge@ ?2 It turns out - under regularity conditions - that a
necessary and sufficient condition is the existence of a randomi-
zation M from (x,fd) to (/‘c/),%) so that [Pg-a, Qull <Dbg;
6€€@ . Considering 6 - ae r(g) as a "risk function" relative
to the "experiment" ((g,%), (aaQe; pEB®)) we see that this is
essentially the criterion of theorem 3 in Le Cam's paper [7].

In this paper measures which are not probability measures

are derived from probability measures by differentiation.
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A pseudo experiment % will here be defined as a pair

‘?% = ((x, ), gz € @) where@%%” is a measurable space and
Wa:8 €@ is a family of finite measures on (x, /%) . We will
stretch the usual terminology and call (x,J}) the sample space
of 25 and @ the parameter set of éf . A pseudo experiment
with a two point parameter set will be called a pseudo dichotomy.
An experiment (A dichotomy), Ef, is a pseudo experiment (dicho-
tomy ) é% = ((x,J}), Hg:b € ®) where the measures Up:8 €@ are
probability measures.

Some of the results on pseudo experiments are quite straight
forward generalizations of those in [15]. This is, in particular,
the case for most of the results included in this appendix. Other
results, however, do not have the generalizations which may appear
natural. As an example we mention the result (proved in [15])
that two experiments are equivalent provided they are equivalent
for testing problems. We shall see in the next section that equi-
valence for testing problems does not - in general - imply equi-
valence for pseudo experiments.

The definition of e-deficiency is extended as follows:

Definition. Let éf: ((x,d), (ug:6€0)) and
— )
5= ((44,§5), va38 €0)) be pseudo experiments with the same

parameter set © and let ¢€,;6€® be a function from © to
[0,09], We shall say that é? is e-deficient w.r.t.(gF (for k-
decision problems if to each measurable space (D,éf) where
#ctf< 20 (where w&” = Zk), to each family W,:6€@ of measurable
functions on D , and each randomization ¢ from (QJ,Sg) to
(D,é/) there is a randomization o from (x,J@) to (D,éf) S0

that
Wopng < Woovg +e,[lWoll; s €o .
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If Ef is O-deficient relative to {g: (for k-decision pro-
blems) then we shall say that % is more informative than ¥

o~
(for k-decision problems) and write this é > X gi_?( ) .

o
1t ézr‘} (%z"—?) and @ z(é ($>@& ) then we shall
o k k
say that % and 5‘ are equivalent (for k-decision problems) and
2 O~
write this 5 ~ l\f ( ~ & ) . By proposition 8 in [15] and
o N
by weak compactness g 5 5 <=> é fg% <=>,,,<=> @e~'§
o~
provided 2 and 5‘ are dominated experiments.
The greatest lower bound of all constants e such that ée

-
is e-deficient relative to 5' for k-decision problems will be

o~ ~

denoted by Gk(g,;‘;) and max [61«:(6&’& )s 61{(%,5) will be
denoted by Ak(%ﬁ}) .

The greatest lower bound of all constants € such that g

O o~
is e-deficient relative to % will be denoted by 6(8, 5) and
> ~

max [é(g,‘s ), 8(5 ,é’)] will be denoted by A( 3,3’) .

Proposition B.1.1 Let g: ((x,U%), (ue:e €0®)) and
(§”-= ((/3,83), (vezﬂ €08)) be two pseudo experiments, and let e

be a non negative function on 6 . Then Ef is e-deficient

W.r,T. /S‘\ for k decision problems provided g is € deficient
w.r.t. (‘f:\‘ for k+1 decision problems., If gis e-deficient
w.r.,t. 2} for k decision problems, then e, > !ue(x)- Ve(ﬁ},)[ .
é is 6 M= !ue(x) “’e(/‘?)! deficient w.r.t. f; for 1 decision
problems and is 8 - ”Hg”*’“\’g” deficient w.r.t. (%V for

k - decision problems for k = 1,2,,.. .

Proof: Suppose % is e-deficient w.r.t. (; for k+1 decision
problems. Put D = {1,2,...,kt and Dy,q = {1,2,...,k+1}, Let
We:e €@ be a family of functions on D, and let o be a random-

ization from (/9,%) to D, . Extend We to Dy, ¢ by writing



B.1.5

We(k+1) = We(k) . By assumption there is a randomization p

from (x,(ﬂ—) to Dk+1 so that

ugpWy < vao Wy +e ”W i

e-deficiency for k-decision problems follows now since _ueEWQ =
ugp W, where o(klx) = p(klx) +o(k+1]|x); x € x and p(k'|x) =
p(k'|x); k' <k, x € x .

Co~—
Suppose % is e-defingent w.r,t. Y for k-decision pro-

blems. Inserting W, =1 and W, = -1 in the inequalities ap-

¥

pearing in the definitions of e-deficiency we get; respectively
g 2 ue(x)- v@(fv}z) and ey > v (/\3) -u (x) Let (D, é’f) be any
measurable space and let o and p be randomizations to (D, j)
from: respectively; (x,l})’) and (/g S3) Finally let &Wplg be
any family of (real valued) measureable functions on (D, g“f)

Then:

Mg P Wy = vgoWo+ugoWy=vyoW <y, cWe+(HueH +Hve!|) "WGH

If Cg ; (? and 5 are pseudo experiments
then:

o (i, f <o (8. F) 46,58 k= 1,2,
Ak(g,f)gak(g 5)+Jk( c‘f) s k= 1,2,...,
0 (G 0) = 0 E8) =0 Ck= 1,20,
(&5 = Ak(‘?,§>

k = 1,290009

-eo

s (2. T (8.5 as k -,
(&5 TS &) as koo,
(8.9 <68, T)+0( 54,



and

n(€,9)
5 ( 5%)
12,5
0 (£ G)

52,5)

IA

fA(g }\)+A(/%\ 5) 9

?3%
(7,%)
(‘9"”

6+5) = suplug()- vy (P 1,

sup(fugll + lIvglh)

T



B.2 Finite parameter space

All pseudo experiments considered in this section are assumed
to have the same finite parameter space 0 , (Dk,éfk); k=1,2,..
will denote the decision space where D = {1,...,k} and <§/k
is the class of subsets of D, . If éf:: ((x,J}),(ue:e€®)) and
¥ 1s asub linear function on R® then the integral
J-r\l;(due/dgfuel; ee@)d%{qu will be denoted by ﬂ;(%) . If

%§= ((x;J¥),(uQ:9€(E)) and ug(A) = ffedT ; A E(ﬁ}; € @ for some
non negative measure T on %} then ¢(% ) = j¢(fe§9€5@)dT for

any sub linear function ¢ on R® .

et &= (60D, (ugroe®) ana T = (WD), (vg:0¢0))

be two pseudo experiments, and let e be a function from © to
[0,9]

The basic result on e-deficiency is:

Theorem B.2.1

The following conditions are all equivalent:

e

(i) égkis c-deficient w.r.t. J for k-decision problems

(ii) To each randomization ¢ from (qg,gb) to (Dk,éfg) ,

and to each family We:e €0 of real valued functions on

D, corresponds a randomization p from (X,J}) to

k
(Dk,é%;) so that:
Wi Hw b,
‘SEuepWQ < zeveoﬂe+§ee|!ve,{

(iii) To each randomization ¢ from (/% 953) to (Dk,<?i)
corresponds a randomization p from (x,d}? to (Dk’ Qi)
so that:

lugp = vgoll < ey 5 8 €@




B.2.2

. . -
(iv)™ W(E%) > v (% )-geelnax{w(-ee),¢(ee)} for any sub linear
function ¥ on R® which is the meximum of k homogen-

uous linear functions.

(\/
Remark If A1(g, $) = 0 then (iv) is equivalent with:

(iv') w(%ﬁ) > w(?;3 -%’%%@(e9)4-¢(-ee)) for any sub linear

e

function ¥ on R~ which is the maximum of k homogenous

linear functions.

Demonstration: Clearly (iv') implies (iv) and (iv) for

X N W(X)"%'%(W(ee)— L!;(ee))xe impliea (iv') for ¢ .

Note that the set of sub linear functions ¢ which satisfies

(iv') is a cone.

Proof of the theorem:

Suppose (ii) holds and let ¢ be a randomization from

maximum min & (u,oWa=v,oW,-e, |[lW,||] <0 .
Wg”We!!f‘I;GE(@ p e e e e e 9 9

It follows by weak compactness, - since g is affine in p and
concave in W - that maximum and minimum may be interchanged -
i.e. p may be chosen independently of W ., This implies

”UeP'VSU” S €p; G€€ .

Hence (ii) => (iii). It follows - since (iii) => (i) ==> (ii)
is trivial - that (i) <=> (ii) <=> (iii). Interchanging W

with -W din (ii) we get:

> max Ty, 0, - T eei,!we!g

max Zu,pW -
o 6 9 9 5 6 8 8 73

*¥) for each 9 € & we define the vector ey Dby:
ee(e') =1 or O as B8' =8 or B8' £68.
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and this is (iv) for ¢: x A~ maxz W, (d)x, .
a8 6 )% ]
An immediate consequence is:

Corollary B.2.2

™~
éfis c-deficient w.r.t. > if and only if w(éf) >

$(?F)-%eaamax{w(ee),w(ee)} for any sub linear function § on r® |

Remark

N
If A1(?%,5-) = 0 then the inequality in corollary B.2.2

may be replaced by:

1(5) 2 4(5) -2z eq (hkeg) +4(ey))

Corollary B.2.3
Suppose AM%,?) = 0 . Then éis c-deficient W.r.t:};

for 2 decision problems if and only if

for any a € R™ .

Proof:
Tt suffices, in (iv') to comsider functions ¢ of the form
x - lgaexel . .
Theorem B.2.4
O
Suppose @ = {1,2},uq > O,vy > 0 and that A1(Ef,§ ) =0.

T G
Then is ec-deficient w.r.t. 7 if and only if is e-de-

ficient w.r.t. ?F- for 2 decision problems,

Proof:

(4
Suppose ég is e-deficient w.r.t. %;’ for 2 decision problems,
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Let 8.1,...,231{,‘01,...,bk be 2k constants and consider
v:x - max{a,x,+b.X,5; i =1,...,k} . By rearranging we may

assume that there is a s so that
6(1,%x,) = max{ai+biX2; i=1,2,...,8} where

the representation on the right is minimal in the sense that for
each i < s there is & Xy > 0O so that ai+bix2 >
max{a.+b.X,5 j # i, 1 £ j <s} . Then the numbers bysboseeesh

J J
are all distinct and we may without loss of generality - assume

5]

that b1<b2<...<b . It follows that 84 >85> ... > 8 and
S
+
that ¢(x) = or > 84X+ byX, +l,__2(a X +biXp=a, 4 1 2) as
x1 >0 or x = -e ,-e, . Put ¥(x) = 81Xy + b X, +

+, ®

Then - by the remark after theorem B.2.1
HE) = T8 2 T T -tpe, (Fleg) + T-ey)) =

H(E) =BT ey (1leg) +5(-eg)) 2 ¥(5) ~22af(eg)ri(-eg)) -

Definitions

A standard pseudo experiment is a pseudo experiment of the

form ((X,S3), (S :9€EB)) where K = {x: x € RE

and S‘lxe| =11} ,
Sg is the class of Borel sub sets of K and x M- X, is - for
each 6 - a version of dSe/d% !Sel

A finite non negative measure on K will® be called a stan-
dard measure.

If é = ((x)g’\«‘ ),(ue:eé ®)) is a pseudo experiment then the

standard pseudo experiment of g is the standard pseudo experi-

¥) If A is some Borel sub set of a Polish space then "a measure
on A" is - if not otherwice stated - synonymus with "a measure
on the class of Borel sub sets of A",
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ment A

G = (£,D),(54:8 o))

where - for each 6§ - Se is the measure on K induced by the

map : x - [due/d‘i uglly 3 8€@ from (x,ﬂ(,ue) to K . The

standard measure of the pseudo experiment Eg—-((st}) (ng:0€8@))

is the standard measure induced by the map :x - [due// Z|ue‘]
8

5ce from (X,J&,g!ueg) to K .

x 3

The standard measure of the standard pseudo experiment
((K,§%),(se:e €@)) is the measure glse‘ and a standard pseudo
experiment is determined by its standard measure. Any standard
measure is the standard measure of a standard pseudo experiment,
The standard measure of a pseudo experiment 25 i;\also the stan-
dard measure of its standard pseudo experiment %i‘. Clearly

N A
z= % and A( g,%) = 0 for any pseudo experiment é .

AA
.
Theorem B.2.5 A(Zf,@?) = 0 <=> 2?: § .
Proof:
<= 1is clear so suppose ?5 £y . We may without

loss of generality assume that 2% and %; are standard pseudo
experiments with - respectively - standard measures S and T .
Let V be the set of all functions on K which are of the form
¥q= ¢2 where L and Yo are sub linear functions on R® . It
is easily seen that V 1is a vector lattice coutaining the con-
stants. [If ., ¥, are real numbers then |y -i,|=2 maxfyy,i}
- (¥4+¥,) - thus |f| €V when f€eV] . It follows from the formu-

2

la f2 = max 2a(f-a)+a“ +that the closure V of V for uniform
a

convergence is an algebra which obviously distinguish points in K.
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Hence-by the Stone-Weierstrass approximation theorem - V = C(K) .
Cleatly S(f) = T(f) for any f € V. It follows that S(f)=T(f)

when f € C(K) i.e. S =T, N

Example B.2.6

Suppose € = {1,2} Define standard probability measures

S and T on X Dby:
S({(~%,~3) We=g =T({($,4)1)/2 =

T({(—1,0)}) = T({(Os"‘l)}) °

s({(0,1)1) = s({(1,0)1)

et &= () (ugup)) and G- ((4,55),(vysvp))  be
pseudo experiments with, respectively, standard measures S and
T . Then:
ui () = vimg) =03 1i=1,2
and

jlax1+bx2!S(dx) = !a!/44—!b|/4-+!a+b|/4 = J[ax1+bx2|T(dx)

. ~
It follows that 132(((';.g ,(S\‘") =0 . g and § are, however,

not equivalent since:

1}
v

Jmax{x1,x2,0}s(dx)
and
1
T
so that A3(%s?) b 53(85(?) Z% .

Jmax{x1,x2,O}T(dx)

]

It follows that equivalence for testing problems does not -
even for pseudo dichotomies - imply equivalence. This demonstra-
tes that

(i)  the statement obtained from theorem B.2.4 by deleting the

conditions wuq >0 , vy 20 1is wrong.
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and
(ii) A in theorem B.2.5 can not - even if we restrict ourselves

to pseudo dichotomies - be replaced by Dy .

If we restrict ourselves to experiments, however, then the
conditions My > 0, vy > O in theorem B,2.4 become superfluous
and it was shown in [15] that A, equivalence for experiments

implied A equivalence,
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The fact that A2 equivalence for experiments implies

equivalence is a particular case of:

Theorem B.2.7
Let é = ((x)ﬂ’), Ma:® € 9) and [?: ((/g,ﬂ), Vgi8 € 0)

be two pseudo experiments.

Suppose there are points 8 61 in ® so that :

o’
(1) uy 20
(ii) ueo >> u, when 9 #£ 04

Then A(g,%) = 0 provided Az(g,(é\') =0

Proof:

2 A

Let (G = (S,:0 € 8) and = (T,:0 € ®) be the standard

pseudo experiments of - respectively Ef and 37 Then S = ZlT |
are, respectively, the standard measures of éf and ;§— Clearly
(i) and (ii) hold for ?;‘ and 5 Suppose Az(g ) = O.

A A
Then Ag(g,?) = 0, We must show that ,?) = 0. By assump-
tion:

(§) I(Zaexe)+ S(ax) = J(Zaexe)+ T(dx) ; a € r®

Taking - respectively - the right hand and the left hand partial

derivative w.r.t. 8y we get:

same expression in T

(§8) [xgs(ax) + [x,* s(ax)
Zaexe>o Zaexe=o

(§§§) Ixes(dx) + jxe- S(dx) = same'expression in T

Eaexe>0 Zaexez 0
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By A, equivalence:

IXG— T(dx) = Ixe- S(dx) = 0. Hence Ty 2z 0.

(o} o 0]

Subtraction of (§§§) from (§§) yields:

[ 1xg] s(ax) = [Ixg] 2(ax)
2a9x6=0 Zaexe=0

In particular

J [xel T(dx) = j [xel S(dx) = 0 when 8 # 84
Xy =0 Xg =0
o 0

It follows that T, >> T
eo 2]

when 8 # 8, -

By (§%):

S, (¢ a,(x,/x, ) > a, = same expression in T
% e#eg B0, %

for all a € R®, It follows that x A xo/Xq 5 0 £ 8,
(0]

has the same distribution under Se as under Te s i.e.
o} o}

S, =T, . Hence S and T are equal on f{x:x, > 0} ,
0 % %0

and we have seen that
Xy =0 a.e. S+ T on {x:x, = 0} when 0 #£ 8,
o]

It follows that the restrictions of § and T to ({x:xy = 0}

0
are consentrated on the two point set {v,w} where Vg = Wg = 0

when 6 £6, and v, = -w, = 1. Now
1 91 91

S({v}) + s8({w}) = S(xy = 0) = [s]| - S(xg > 0)
0

= (by As equivalence) |7 - T(xe > 0) = T({v} + T({w})
0
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and
S({v} - s({w)) = [ %o, S(ax) = | xg, S(ax) - [ %g, s(ax)
Xg =0 Xg >0
o) o)
= (by A, equivalence) Jxe1 T(dx) - I X, T(dx)
Xq >0
)

T({v}) + T({w}).

It follows that S({v}) = T({v}) and S({w}) = T({w}).

Example B.2.8.

Let Mgs Hqs Moy Vg Vqs Vo be given by the matrix:

1 2 3 4
Mo 0 0 0 1
DRI e
H2 % o) —21‘: 0
Vo 0] 0 0 1
1 1
Then : [lau, + amy + asus|l = aj| + laqu, + 2ok, ||
= lagl + llajvy + avsoll = llagvy + aqvy + ayv,ll
and ui(x) = vi(x) sy 1 =0,1,2. It follows

that A2((u0,u1,u2), (vo,v1,v2)) = 0. By example B.2.6, how~
ever A3((HO,H1,L«12), (VO,\)1,V2)) 2 A3((U-1 yUn2)9 (V1;V2)) >0 .

This show that assumption (ii) can not be deleted in proposition B2.7,
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Another situation in which it is permissible to conclude
A equivalence from A2 equivalence 1is the case of ordered pseudo

experiments. This is the content of:

Theorem B.2,.9
Let g and rg'— be pseudo experiments. Then A(g,'% ) =0

if and only if 6(%,%“) = Az(é,’g) = 0.

Proof:
The "only if" is obvious so suppose 6(%2,’;) = Az(g ,? )= 0.
Let S and T ©be the standard measures of, respectively, ég and?;
. By b, equivalence [ydS = [4aT when ¥ € ¥,. Let ¢ € ¥,
1€v¥y and b 20. Then oy = Ovlvby € ¥ and o =1 € ¥, ,
Hence:

[ (o) /08 = (o5 - [0 as)/b 2 (Jopar - [p am)/o

[ (0=, /par.

b L 0 yields:

v

(t) [ v*as 2 [ y*ar
150 120

The derivation of (§§) and (§§§) in the proof of theorem B.2.7

holds without changes. By subtracting (§§§) from (§§) we get:

(H) | Ixgl sax) = [ 1z 2(ax)
1=0 1=0

Substituting lxel for ¢ in (1) we get:

J }Xel S(dx) 2 I |X9| T(dx)
1=0 1=<0
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Hence - by (++) :

(*) ] 1zl s(ax) > | 1x] m(ax)
1<0 1<0

Replacement of 1 with -1 yields

(%%) J |xel S(dax) > I lxe| T(dx).
1>0 1>0

By 04, equivalence the sum, J !xel S(dx), of the left hand
sides of (++), (*) and (**) are equal to the sum, J lxel T(dx),
of the right hand sides of the same inequalities., It follows
that the inequalities in (*) and (*¥) may be replaced by equali-

ties, i.e.

I |xel ds = I |Xel dT for any 6 € ® and any 1 € Y,.
1<0 1<0

Combining this with (4}) we find that:

[ 1xg) as = [ |x,] ar for any 8 €@ and any 1€ ¥,.
1=0 10

Substituting xe+ and Xe_ in () we get:

J X9+ ds 2 I xe+ aT

150 1=0

and
j X4 ds 2 f Xq aT.
1=0 120

Hence - since the sum of the left hand sides equals the sum of

the right hand sides:

se+(1§o) = TG+(1§O)
(o] 0
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and se‘(lso) = Te°(1§0) for any 6 _ € ®.
0 0 : °

It follows that for any a € R®:

same expression in T

1

Se+ (% ae(xe/xe ) £ -2, )

o B%BO o o
and
S.- (£ a,(x,/%x, ) 2 -a, ) = same expression in T.
60 6%9 670 90 90

0

. -1
Hence - since x, = (xe/xe 1+ = |xe/ke |1 on
o e%eo o
{x:x

6

-1
>0 3 x €K} and x, = (x,/x, )[-1 + 2 |x./x, |]
o ’ 3] &) 90 9#9 8 Gg

o
on {x:x, <0 3 x €K} -

%

s,¥-nr1rt* anda s.,”=17,".
(0] 9O eO

It follows that Se = Te for any eo € 9. [j

Somewhat surprisingly A3 equivalence will always imply

A equivalence,

%% o~
Theorem B.2.10. Let and %‘ be speudo experiments, Then
A( %,?) = 0 if and only if Aﬁ%,‘?) = 0.

Proof:

We use the notations of the proof of theorem B.2.9.
If ¢ € ¥, then g € Y3' Hence (1) holds with "2" replaced
by "=" i,e.:
[y as=[ " ar
120 150
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Substituting x and =X for | we get:
% %

Se+ (120) = Te+ (120)
(0] (o]

]

and se' (120) Te' (120).
(0] (0]

The final argument is the same as in the proof of theorem B.2.9.

[

Here is the factorization criterion for A sufficiency:

Theorem B.2.11.

Let %é = ((x,J}),(ue: € ®)) be a pseudo experiment
and let §5 be a sub o-algebra of J;’. Denote by ?; the
pseudo experiment C§.= ((X’SB))’(uBS}; 8 € ®)) where the sub-
script Ss indicates restriction to g5 . The following condi-

tions are equivalent:

1) 8(2,%5) =0

(ii) due/d b luel may - for each 8 - be specified
3]

Sblneasurable.

In order to prove the theorem we need:

Proposition B.2.10.

Let X Dbe an integrable random variable on a probability
space (¥x,& ,P) and let §5 be a sub o-algebra of(,/ﬁL » Then
5%

E|X| = E|E™X| if and only if there exist a % neasurable

random variable Y so that:
Y| =1 a.s P

XY

il
g
[
w
+d
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Proof:

Suppose the eondition hold. Then

E|E§5k| = EIESBYlX\l = ElYE§B|X|| = EE6$|X|

the converse, suppose E|X| = EIESBX\. Then E[Ef?Xl-—|EaaX|]= 0

so that EV|X| = \ESBX\ a.s , i.e. E§5X+ + ES&X- =

<, b -
|E7x" - 5’ X"| a.s. Put Y=1 on ESBX =0 and Y = -1

= E|X|]. To prove

on E X > 0. Then

[xap =] EﬁbX' @ =0 =] Efbx+ ap = [ x* ap. It
Y=1 Y=1 Yom1 Y=m1

follows that X 2 0 a.s on [Y =1] and that X £0 a.s
on Y = -1. 1

Proof of theorem B.,2.11: (ii) => (i) is clear.

Suppose A(z ;;7 = 0. We may, without loss of generality,

assume o = % lugll > 0. Tet E denote expectation w.r.t.

m=c Zlugl. We must show that f

Il

8 due/dn may be specified

GH measurable., Note that % 4] = c 5 a.s .

By A equivalence S = T where S and T are, respectively
the standard measures of 2? and g; . Let h be bounded
measurable on R®. Then ‘

o

h(f

-1
Jnteg: e € 0)am = [eMnleaus/az lugl 3 6 € )ax lugl

n

= c"1h(cx9: 0 € ®)dS = Ic-1h(cxe: 9 € m)AT

= Je(nle augq /a5 lugg | 5 & € 8)az lugql.

Hence legl = d'“ess'd“és
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and %lgel dg Iueggl/dngb .

By A, equivalence
2

E’ge! = Elfei'
It follows from proposition B.2.12 that |fe[ = hefe
where he is SB measurable and Ihe! = 1. Hence
D 3 % %
g‘ge' = %IEQ fel = %‘Ee he'fe“ = §|h9|E9 lfe‘ = EE lfe‘ =
LSS 59

glfel =E ¢ = c.
Hence %‘HGGB' = cm so that:
[n(zy: 0 € @)am = [n(gg: o € @)an.
In particular c{jfe) =X_(Eg5fe).

By proposition 5.7 in L € 1 f9 = E fe 2.5 .

g

Various convergence criterions are listed in:

Theorem B.2.1%.

Let (‘f, ’ g.], g;, be pseudo experiments with respecti-
vely, standard measures S, S1, 82,... . Then * the following

conditions are equivalent:

*) If u and v are finite measures on R®  then the Levy
distance A(u,v) is defined as inf{h:h > 0 and
w(nl = o9 x-hl) - h = v(g] -0, x,[) = u(g] - @, Xp+h[)+hj
X € R@}. A convergence is the same as weak* convergence on
(R@) i.e..A(un;u) = 0 if and only if un(f) -+ u(f) when f is

bounded and continuous.
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(i) lim A( 21‘1’ i) = 0
n-co
(1) 1w a5, %) = 0

(iii) 1lim A(Sn,S) = 0.
n—oo

If 2% satisfies (i) and (ii) in theorem B.2.7 then
lim A(gn,%) = 0 if and only if 1lim Az(cén: (&) = 0, This
n-oo n=0o

hold also when either g n 2 % for all n or Zn < % for all n.

Proof.
1°. Suppose A(Sn,S) - 0, Let & Dbe the class of restrictions

y/K where W € ¥ satisfies

g max{w(-ee), w(ee)} é 10

Then & is a compact subset of CG(K ) and S,y n=1,2,...

are - since supHSnH < o - uniformly equicontinuous on 3. By
n

Ascoli's theorem: 1%m Sn(m), uniformly in ¢. A convergence

follows now from corollary B.2.2,.

2°.  Suppose A3<gn,5> = 0. Then [8 || = [Is|l. It follows
that Sn; n=1,2 ... 1is conditionally A compact. A conver-

gence follows now from 1° and theorem B.2.10.

30, The last statements follows easily from theorem B.2,7

and theorem B.2.9. {3

Corollary B.2.14.

The pseudometrics Ay, Boyeooy O are complete,

Proof:

Let d denote one of the pseudometrics Bos A3""’ A.
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Consider a sequence g1, gg,... such that d(ém’ %n) - 0 as
m,n = co, Let Sn be the standard measure of %n. Then

Is = 1Is,ll =0 as myn - oo so that sgpﬂsnﬂ <o, It follows
that there is a sub sequence S _, and a S so that A(Sn,,S) -0.
Then - by theorem B.2,13 - d(gn, %) - 0. The proof for A,

is trivial. B

Corollary B,2,15.

Let A(k) denote one of the pseudometrics A2, AB""’ A.
A family 245 = ((xt,&t) Mgyt 8 € @) 3 t € T of pseudo experi-
ments is A(k) conditionally compact if and only if

sup||u <co B €9,
solhgsl < o0

Proof:

Follows directly from theorem B.2.13. D

Generalizing theorem B .2,11. to the asymptotic case we get:

Theorem B.2.16.
Let én = ((Xnyvq’n°, Mpyr® €0) 5 n=1,2,... be a sequence

of pseudo experiments. For each n, let S.Sn be a sub o algebra

of J}n’ and let &—n denote the restriction of gn to SZ)n.

Let m, 3 0= 1,2... be any probability measure on ‘An such
that %‘Huenunn = gluenl . Expectations w.nt m, will be written
E_.

n
The measure on Ua‘n whose Radon Nikodym derivative w.r.t

D .
. n .
m, is E; [duen/drrn] will be denoted by v

*

on
Put ‘;'n = ((Xn"pn)’ Gen 3 6 € @, Finally the standard measures

of gn and (;n will be denoted by, respectively, S and Tn.

n
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Then A(g'n’ ?n) = O ; n = 1,2,0.00
g, & o 5,5
Suppose 19 Dyeee arE conditionally compact. Then 19 D900

are conditionally compact and the follwing conditions are equi-

valent:
. 25,
(1) um o a6, ) =0
(ii) iﬁ§> Az(éfn, n)
(iii) 1lim.. A(Sn, Tn) =0

n-co

(iv) lim |u,. -9, ll=0 3 6 € ®
Hn IRon = Vonl ;

L
(@)

-

(v 1 A Ll san s 0 e 0), J(ab, /a8 € 0)]

n-oo

Remark.

It will follow from theorem .B. 3,10 that (i) - provided

2 ¢

1
i 13 ;3 = 0 3 8, € .
(i) n}énc A(gn’ewez- , n,81,62) ’ 919 2 e

Dsess aTE conditionally compact - is equivalent with:

Proof of the theorem:

0 _ _ .
1°. Put £y = duen/dnn and gy = dven/dnn where v, 1is
the restriction of ;@n-u>§51 and m, - by abuse of notations -

53

3 . - — n -
is the restriction of T to n* Then 8on = En fen =

dsen/dnn, |fen] = dluenl/dﬂn and % |fen| = 3 lug ll a.s. m,.

"2 -~
Let B, € . Then 3, (B) = g 8oy = Von(By)-
n

-
By theorem B.2.11, A( %n,?n) = 0 3 n="1T,25e00

20, Suppose 6?1, 8%2,... are conditionally compact., Then -

<
by corollary B.2.15 = sgp“venﬂ < sgpuuenﬂ < o . By the same
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corollary ; %F}, %tz,... are conditionally compact. (i) <=>
(ii) <=> (iii) follows from theorem B.2.13. (iv) <=> (v) follows
by applying proposition 5,7 in LC 1 to linear combinations of
densities. (iv) => (i) follows from part 1°. It remains to

show that (iii) => (v). Suppose (iii) holds. Then - as we have
seen -~ (ii) and (i) hold. We may - without loss of generality
assume A(gn,{é) - 0 and A(g‘-n,g) - 0 where (é has standard
measure S. We have ﬂn(lgenl > M) < HvenH/M < HuenH/M and

v

ma(lfenl 2 M) S [lug I/M. It follows that we may - without loss of

generality - assume that J:n (f,) = P and that J:n (g,) = Q
n n

where fn = fe,n y 6 € 8 and g = ge,n 3y 6 € ., We must show

that P = Q. Let Y € ¢y. Then

[var = Lin [viean = lim [vas_ = Jeas
= Lin [yar_ = Lin [¥(ean, = [uaq.

Suppose ||S|| > 0 and let h € C(R®)., Then

[nar = 11w [n(z)amy
= 1m [nfloug/agugn) Sl @ € 8Ja% fugy] /s,
= lim fh(erSnH; 6 €9)as /ls |l = Jh(xeusn;eéi®dS/HSH.
Hence P = J (X|s]l) when J (X) = s/||s|. In particular
P(Z 1%l = [I8]l = 1, where X (x) =x5; 6 €8, x¢ r®,

A2 convergence imply:

En|f9n| - Entgenl - 0; 6 €0 .
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It follows that

%n

EplE % ‘fen‘ - % ‘gen|‘

En(E nze: ‘fenl —29: ‘gen‘)

=% Eplfonl - 5 Eplegnl = O -

Hence - since X |£o,1 = s, a.s. T -

% Igenl - |Isl} ;5 m» It follows that

1;(31X9|> = 1%m'0£ﬂngnf1(§!xe'):

l%m A:ﬂn(glgenl) = the one point distribution

in ||s||, so that Q(%‘Xel = |s|h) = 1.

~

Put P = JLP(X/HSH) and Q = J[Q(X/HSH). Then P and Q are

standard (probability)measures and

j¢d§

[¥(x/Ishp(ax) = lIs|~" [yae

~

Isi™" [vaa = fe(x/lIslDae = [vaQ. mence B =

so that P = Q .

If |Is|| = 0, then % Ifenl - 0; m,, and §|gen| - 05 m,

so that P = Q = the one point distribution in 0 € R, 0
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B.3 General parameter space

Problems on infinite parameter spaces may occasionally be

reduced to problems on finite parameter spaces by:

Proposition B.3.1

Let & = (GIF),(ug:8€0) and &= (M, D), (vg:0 €0))

where §ue|:e €& 1is dominated, Let ¢ be a non-negative func-

Lgpy
tion on @ . Then E% is e-deficient w.r.t. § (for k-decision
problems) if and only if ((x,ﬁL),(ueze €F)) is (ee:e €F) de-
ficient w.r.t. ((/g,gb),(ve:e €F)) (for k-decision problems)

for all finite non-empty sub sets F of 6 .

Proof:
The condition is clearly sufficient so suppose that the con-
dition holds, It suffices to do the proof in the case of k-de-
cision problems., ILet D be a k-point set and let (;/ be the
class of all sub sets of D ., Let o Dbe a randomization from
(QQ,SB) to (D,é{) . By assumption there is for each finite non-

o
empty sub set F of @ a randomization o~ from (x,J}) to

(D,J) so that
F N °
luge™ = vgoll < eg 5 BEF .

Let T be any probability measure dominating |ug|:0€@ .

By weak compactness there is a sub set pF' and a p so that

pF' - o weakly [L1(x,J¥,n)] . It follows that

lugo = vgoll < egi0e@ . O

We proved in fact a little more and this is the content of

the next theoren.
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Theorem B.3.2
Tet G = (611, (prece) ama T (M, B)s(vgr0€0)

where ueze €8 is dominated., Let ¢ be a non-negative function

on @ , let #D=k and let (5/ be the class of all sub sets of

D.
Then Eg is e-deficient w.r.t. i;. for k-decision problems

if and only if to each randomization o from (/g,gb) to (D,53
there is a randomization p from (x,J#) to (D,é/) so that:

Huep = VGOH = €93 2e@ .

The next proposition tells us -- in the case of experiments
-- that certain decision spaces are abundant for comparision by

operational characteristics.

Proposition B.3.3
Tet = (0, (ugioee) ana T= (Y, D), (vg:0€0)

be two pseudo experiments and let 8§ = €q be a non-negative

function on @ . Denote by T +the collection of decision spaces
(D,é() having the following property:
To each randomization o from (ﬁ;,§3) to (D,éf) there
is a randomization ¢ from (x,d@) to (D,éf) so that
l - I < .
Juep Vol < €43 beo ,
Then )
(1) £ (0,d) isin T enda gc S, ¢ then (S, fn S,)
is in T .,
l
(i1) If (D,é/) is in T and (D',é/ ) is a measurable space

such that there exists a bimeasurable bijection D - D

/
then (D',é/ ) dis in T .




B.3.4

each randomization ¢ from (Ag ,95) to (D,éf) , there is a
randomization p from (x, &) to (D,gf) so that

lugo- vgoll < g3 6€0Q .
If the condition is satisfied and at least one of the mea-~

sures v,0 # 0 , then p may be chosen so that MgP is - for

each 6 - in the band generated by vSO: gce .

Proof:
The condition is clearly sufficient, so suppose éf is e-

deficient w.r.t. q?’. By proposition B.3.3 we may - without loss
of generality - assume that D is compact metric. Let m Dbe a
probability measure on (x,j») which is equivalent with (h&”:QG@)
and let /36 be a countable dense sub set of C(D). such that: r
rational, f,g e'g(==> r,If|,f+g and =rf Glg( . [We may put

ﬁx; _ﬁ U, where U  1is a dense countable sub set of C(D) and

i=o
U1,U2,... are defined recursively by:

+ ] e
Uipq = {r1f1+-r2f2+-r34-f3, f1,f2,f3€EUi, ry,r, and ry are

rationals}]. Let {d1,d2,... 1 be dense in D. Put D =

{d1,d2,...,dk? , and let 5/? be the class of all subsets of Dy .
For each k define fk: D-D as follows: Let d € D, Consi-
der the k numbers: distance (d,d4),..., distance (d,dk) . Let
i Dbe the unique integer among {1,...,k} such that:

distance (d,d4),..., distance (d’di-1) > distance (d,di) <

distance (d’di+1)’ distance (d,di+2),..., distance (d,dk) .
Define fk(d) =,di . Clearly fk is measurable. Let o be a
randomization from (Q9,§3) to (D,Ef) . Define the randomiza-

tion o, from (:43,5%) to (Dk’ ka) by
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o (+1y) = o(+|y)e}
k = Yitx o
By theorem B.3.2 there is a randomization p, from (x,J}) to

(:Dk9 jk) SO that:

k
Por each f ¢ W, i§1pk(di§-)f(di); k =1,2,... has a weakly
CD1(35,J¥,H)) convergent sub sequence. By a diagonal process

(or by Tychonoff's theorem) we may obtain a sub sequence Pyen S0

1

k
that Z1ok,\d] )f(d ) converges weakly to a function o(f]-.)
for each f ¢ t%. p may be modified so that:
o(£l)+p(el+); £,8 € I
ro(f]+) £ el
1

o(f+gi-)
o(rf]-)
p(1]+)
o(£]+) 03 £e, £>0.

i

there is for each x € ¥ - abprobability
o(£lx) 5 £ € H.

Since p(f]x) is measureable for each f elg%, o defines a ran-
domization from (x,JW) to (D,éf) . Let £ € @@.

Then:

By continuity

measure p(-|x) on éf so that p(f]x)

|[£augB) - [ealvgo) 11 [£a(ug3) - % 2(a,) (ugoye ) (@) +

(goy ) (82(8;) = T (vgoy,)(ae(a) | +

“ L".l.”x"
sy

[N
-

II [V]PT' [lnal=y

NORSBICHE(CS )-jfd(v o)l .

Since, Huepk - veoku < €43 B €@, the second term to the right

of <is < eeﬁfu . Since distance (d,fk(d)) = distance (d,{dq,..
..,dk})¢0 and D is compact - distance (d,fk(d))¢() uniformly
in 4 . Hence - since f is uniformly continuous - [|fef, -f| -0.

The last term may be written
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I Mx

T £(d,) (vgoy, ) (@) = (202, )a(vgo) .
1

It follows that the last term - O .
The first term to the right of < which may be written

|[r]ecayotaart-) - i§1f(di)pk.(dil-)1du8!

tends - by weak convergence - to O ,

It follows that

”“65 - \)eO!! = 89; bew ,

Let us - finally - return to the general case and suppose
p is a randomization such that Hpep -vgo || S ey; 8 €O . Let
T be a probability measure on (D937) which is equivalent with
HgPs g €® and let for each finite measure x on 5{ s ' Dbe the
projection of # on the band generated by VOt pPeE® . Let m
be a probability measure in the band generated by VO Bed ,
Then the map o: #n = «n'+ [#(D)=-»'(D)]mr maps L4(7t) into
L,(tp) . The restriction of ¢ to L,(7) may be represented by
a randomization ¢ from (Dgéf) t0 (D,éﬁ) . It follows that
lugow=vgoll = (uge =vyo)ell < fluge ~veoll < ey and ugoe is in

the band generated by Va3 bed . []

Corollary B.3.5
tet & = (CLM)i(ugeece) and T ((4,3),(vp:0€0))

be two psemdo experiments where (lue{:e €®) is dominated and4g

is a Borel sub set of a Polish space and §5 is the class of Borel
sub sets of ﬂg/. Let ¢ Dbe 2 non-negative function on @ .,
Then:
C\_.
(1) éf is e-deficient w.r.t., ¥ if and only if there is a
randomization M from (X;J*) to (Qﬁ,é}) so that:

lugh = voll < eq; €@
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If the condition is satisfied and v, £Z 0 for at least
one § , then M may be chosen so that Mol is - for

each 6 - in the band generated by Vgt ped® .

(i1) E% is e-deficient w.r.t. 2; if and only if to each
decision space (D,é/) and to each randomization o
from (/% ,55)  to (D,éf) there is a randomization p
from  (x,/¥) to (D,d) so thats

!!Uep - \)90” f_ ees 6€0

Remark.

It ue:e €® and 20 €@ are probability measures then

v
8
(i) is a direct consequence of theorem 3 in LeCam's paper [7].

Proof of the Corollary.

A~
1° Suppose %% is e-deficient w.r.t., ¥ . Consider the
decision space (D,éf) = (AQ,G}) and the identity map o from
ﬂé toﬂg . By theorem 7 there is a randomization M from (Xﬂﬁh

to ({\é,%) so that
lught = voll < eg; 6€0
The last statement in (i) follows from the last statement in

theorem B.3.4.

2° Assume there is a randomization M from (x,f}) to
(AQ,Q%) so that llu M - veH S €eq; 0€O . Let (D,E() be any
decision space and o a randomization from (ﬂg,g%) to (D,gf).
Then:
lugho - vgoll < eq: o€ . [

The next proposition generalized Corollary 6 in [15].
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Proposition B.3.6

tet G = (M) (ugioeo) and T (4, B),(v5:8€0)

be two pseudo experiments and let 06 =~ €q be a non-negative

function on ® ., Suppose (Iuele €@) is dominated. Then z is
o~
e-deficient w.r.,t. ¥ for k-decision problems if and only ifé

is e-deficient w.r.t. each experiment ((f\g ,é\'b/),(uellp%g:e €0))

lod

where @D [ Sfl.) and #g}f ok |

Proof:

1°  Suppose g is e-deficient w.r.t, (g: for k-decision
problems and that ?5 is a sub algebra of 90 containing at most
oK gsets. Clearly % is e-deficient w.r.t. CE = ((%,@);
(Qel%:e €®)) for k-decision problems., Consider the decision
‘space (Ag,";‘,)) and let o be the identity map from (A#, %) to
( ,%i)) . By theoremBj34 there is a randomization p from (%,U[}‘)

to (/\9,%) so that:
Huep - (velg"_})o!! S eq:0€@
. ~ 11\'
or - since (vezgs)o=ve;%;ee®- :
ltgp = vgl STl < egs 0 €0 .

By corollary B.3.5 this implies that 5 is e-deficient w.r,t.
N

5.

2° Suppose g is e-deficient w.r.t., each experiment

[2°4 n
((%,S—b),(vel QL:0€®)) . We may - without loss of generality -
assume # @ < o ., The proposition now follows from theorem B.2.1

in section 2 in the same way as corollary 6 in [15] followed from

theorem 2 in [15].
R
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([

r &5

then 6(% ,AS:) =0 . More generally 5(% ,%) =0 provided there
~ 5 - &

are pseudo experiments g and ¥ so that A(g, %)_ = A(‘5, 5)=

(2
and 5 is a sub pseudo experiment of % . We will now prove a

is a sub pseudo experiment of a pseudo experiment &f

o

result in the opposite direction.

Theorem B.3.7
Tt G = (o )ngio € ) ama T = (M, B)vg10 € ) ve

two pseudo experiments. Suppose % is dominated, that is a

Borel sub set of a Polish space and that S’b is the class of Borel
sub sets of /\3 « Then 6(% ,rg) = 0 if and only if there are

~J o~

pseudo experiments % and '§ such that A( é, g) = A(lg, ’§) =0
R— ~o ~J ~J
and § is a sub pseudo experiment of % . If so, then g and ?

may be chosen so that:
Z - (x X’é,ﬁ’ % 9) 3 Ng16 € 8) ,

5 C
is the restriction of % to &.X 62) ’ )\e has - for each ¢ -

~J

marginals, respectively, Mg and Vo In particular (/:)/X;L is

sufficient in & ; i.e. the Testriction of @& to (¥x &L is o

equivalent with % .

Proof:
It suffices to prove the "only if" so suppose 6(%%,%;) =0 ,
By corollary B.%.5 there is a randomization M from (X,J;? to

(M,S%) so that pM=v_ ; 0 €@. Then A, may be defined by:
6 0 0

N (& x B) = | M(Blx)u, (ax)
A

The proof is now completed by checking that the last statements hold

with this choice of Aot €0 . O
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Theorem B.2.7 and theorem B.3.,1 yield:
Theorem B.3.8

two pseudo experiments.
®

Let g = ((x,ﬁ\’),pe:e € ©) and q;= ((’\Z),gs),veze € ®) be
Suppose that there are points
so that:

90901 in
(i) u

(ii) Heo >> b, when 0 # 0,

men a(5,5) =0 provided 8,(3.5)=0.

Theorem B.2.10 and theorem B.3.1 yield:
Thorem B.3.9

Let g and FS'\

be two pseudo experiments. Then A(g’,?) =0
provided AB(%,?) =0 and g is dominated *)

The usual criterions for sufficiency follows from:
Theorem B.3.10

Let g = ((x,'ﬂ’),peze € ®) be a dominated experiment and let

(\
S?) be a sub ¢ algebra of M . Denote by § +the restriction of‘é
to % « Let c

be a non negative function on @ with countable
support such that m = zo(e)llpon is a probability measure
0

*) A pseudo experiment é = ((X,JJ')»(HO

(0 € ®)) will be called
dominated if there is a probability measure m on Lﬁ/ so that
o> \pol 3 0 €0,
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*) ; 0 € ® 4 Then the following conditions are

dominating G‘ ;

|1

- equivalent:

(1) A(%,hsf) =0

(ii) dpe/dn may - for each 6 - be specified 9% measurable

(iii) A(éewez’?ewez) =0 when o, # 0,

Proof:
(ii) = (i) = (iii) is straight forward so it remains to prove
that (iii) => (ii). Suppose (iii) and let 6, € @ . By theorem

B.2411 there is for each 0§ a 65 measurable version h0 of

duoo/d[luoo‘+luelj . Then |hy| = d[peol/d[[peol+lpel] so that
by, I[hy=0] =0 . h, may, and will, be chosen so that |hg| <1 .
0]

Put N

]

U{[he=0] ; c(0) >0} « Then XN EQ)and Iy |(W) =0 .
o)

Put £ = [Ze(6)(1-|hy )|y |1 T on O W where % is over

{6:0(0).> Ol « Put £f=0 on N . Then f is 55 measurable.

Let g Dbe a non negative éz)'measurable function. Then:

| gam = 5c(0) | ealu, | =zelo) | &i=|ng 1) hg I "hg 1l g 1+ kg |
6N GN ¥ 6N b

= Zc(0) j g(i=lng |) 1oy |ty | = j gZC(o)(1—lhe|)|h0|'1d|u0 | .
e ° @y ©

*) It is well known that a function c¢ with these properties

existse.
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Tt follows that am/dluy | = £c(0)(1-|ng[)|ny|™ on QW .
0
Hence - since m~ |y, | on (N - dlpe |/dm = £ on BN .
0 0
It follows that dlpe |/dm = £ on X so that dpe /am = sgn he £,
0 0 0

and this specification is 55 measurable. 0

Corollary B.3.11

Let (é and (g be pseudo experiments such that 6(g,%") =0
and % is dominated. Then A(%,%’) = 0 provided

A = )
(301,02’%61,02) O when @, # 0,

Proof :
It follows from theorem B.3.1 that we may, without loss of
generality, assume that ® is finite. We may then - again without
loss of generality - assume that é and (g are standard pseudo
experiments. The corollary follows now from theorem B.3.1 and

theorem B.3.10. D

Let éi = ((xi,\A’i); Mgy 5 6 € ®) , i = 1,+se,n be n pseudo

experiments. Their product % is then defined as
% = (x>, H ), I, 50 €0)
it AT T iy
g n
and this pseudo experiment will be written as = Céi or
i=1

é = %135...:( gn . Obviously 1l gi is dominated provided each
i

gi is dominated.

The next theorem on product pseudo experiments generalizes

corollary 4 in [15].
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Theorem B.3.12

Let % = ((x; ﬁ( ) s Mgy 3 0 € 8), 5 —((% 55), Vo330 € 8);

J = 1,240 be 2n pseudo experiments and let 61, 2""’611 be

n non negative functions on ©® . Suppose 83. is ej deficient

WeIleto %— . (for k decision problems); J = 1,eee,n and that
%1,loosén are dominated,

Then H%.
j J

on—>Z €.(0) I i, Il 1 v, ;i
309 gy Oy O

deficient wer.t. H?j (for k decision problems).
J

Proof:
We may - by theorem B.%.1 - assume that © is finite. Put
17 gl“ei‘ » Vi = Dlvgs Ly w=Iuy , vo= vy, £y = dugy/du; and
0 1 i
8y 1 = dv i/d\)i « Define for each i = 1,2,...,n a pseudo experi-
H
ment ﬁj by
g- - 1.5, I %“
l<J
Then éfo=£1?5i ,éﬁn=ggi and for any ¢ € Y :
~ n
w(ﬂéi)—w(né‘i) =z w(‘éj)-w(‘éj_,,) .
i i j=1

Suppose each gj is c-:j deficient w.r,. T, g\j for k decision

problems and that ¢y € ‘fk « Then:
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v = Ju(er @0 g . 5 0€0)al 1 px1y,)
J i< i>j i<y *i>j

= [‘w( ® £,.8® g @ f _)dp.1d( 0 p.X I v,)

e ® ® @ ®
2 J[J“’(Kjfei 15501 89373V

g ej(e)igj 1£q5 Iigj lgg; Imexiy(ey ), ¥(-e )] ]d(igjuixigjvi)

I

W5 ) - 2 e5(0) 1 lhugyll T vyl

i<j i>3
Hence
(I G )-u(LT.) > -2 % e.(0) U Il I liv, .|l
i%l N BN 0SS = R 0




Re1

References.

(1]
(2]
(3]

(4]
(5]

[é]
(7]

(el

(9]

[10]

(12]

(13]

Blackwell, D. (1951). Comparison of experiments. Proc. Second
Berkeley Sympos. math. Statist. Probab. 93-102.

Blackwell, D. (1953). Equivalent comparisons of experiments.
.AIlIl. Ma-tho Statisto 2_4;9 265-42720

Boll, C. (1955). Comparison of experiments in the infinite case.
Ph.D. thesis Stanford University.

Héjek and SYadk (1967). Theory of rank tests. Academic Press
and Academia Publishing house of the Czechoslovak
academy of sciences.

Heyer (1969). Ersch8pfheit und Invarianz beim Vergleich von
Experimenten. Z, Wahrscheinlichkeitstheorie verw.
Geb. 12, 21-55.

Ibragimov, J.A. (1956). On the composition of unimodal distri-
butions (Russian). Teoriya veroyatnostey 1. 283-288.

LeCam (1964). Sufficiency and approximate sufficiency. Ann.
Math. Statist. 35, 1419-1455.

LeCam (1968). Theorie asymptotique de la decision statistique.
Seminaire de mathematique supérieures. Les presses
de 1'université de Montréal.

LeCam (1971). Limits of experiments. Sixth Berkeley Sympos-
ium on mathematical statistics and probability.

Lehmann, E.L. (1959). Testing statistical hypotheses. New York,
Wiley.

Scheffé, H. (1947). A usefull convergence theorem for proba-
bility distributions. Ann. Math. Statist. 18,
434-438,

Strassen, V. (1965). The existence of probability measures
with given marginals. Ann., Math. Statist. 36, 423-439.

Torgersen, E.N. (1965), Minimalsufficiency of the order
statistic in the case of translation and scale para-
meters. Skandinavisk Aktuarietidskrift, 16-21.




[14]

[15]

[16]

LC1

R.2

Torgersen, E.N. (1969). On e-comparison of experiments. Un-
published manuscript. Abstract. Ann. Math. Statist.
(1969) 40, 2219.

Torgersen, E.N. (1970). Comparison of experiments when the
parameter space is finite. Z. Wahrscheinlichkeits-

theorie verw. Geb. 16, 219-149.

Torgersen, E.N. (To appear in the Annals of Math. Statist,
approximately October (1972)).

Comparison of translation experiments.

Torgersen, E.N. (1972). ILocal comparison of experiments when
the parameter set is one dimensional. Statistical
Research Report no. 4, 1972 from Institute of Mathe-

matics, University of Oslo.




