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ABSTRACT 

LOCAL COMPARISON OF EXPERIMENTS 

by 

Erik N. Torgersen 

University of Oslo 

In this paper we generalizes most of the results in Torgersen, 

E.N. [Local comparison of experimentswhenthe parameter set is one 

dimensional. Statistical Research Report no 4, 1972 from Depart­

ment of Mathematics, University of Oslo. Abstract to appear in 

Ann. Math. Statist.] to the case of a finite dimensional parameter 

set. 
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1 • 1 

1. In traduction 

In this paper most of the results in "Local comparison of ex­

periments when the parameter set is one dimensional", Statistical 

Research Report no 4, 1972 - from here on denoted by LC1 - are 

generalized to the case of a finite dimensional parameter set ® • 

The paper is organized so that section i ; i = 2,3,4,5,6 ; here 

generalizes section i in LC1. We refer to section 1 in LC1 for 

an introduction to the type of problems treated in this paper. 

Occasionally the general case may be reduced to the one dimensional 

case by considering directional derivatives, i.e. linear combinat­

ions of partial derivatives. 

Local comparison will here - as it was in LC1 - be expressed in 

terms of pseudo experiments; i.e. "experiments" where the basic 

measures are not required to be probability measures. The results 

on pseudo experiments which was given in LC1 are not sufficient for 

our needs here. Appendix B in LC1 is therefor extended and included 

as an appendix to this paper, 

Differentiable experiments are defined in section 2. It is 

shown that products of differentiable experiments are differenti­

able and that sub experiments of differentiable experiments are 

differentiable. 

The derivative in 8° E ® of a differentiable experiment con­

sists essentially of the probability distribution in 8° together 

with all its partial derivatives in 8° • Simple necessary and 

sufficient conditions on a pseudo experiment for being a derivative 

are given in section 3. It is shown how derivatives may be identi­

fied 1tli th probability distributions on REJ with expectation 

(0, ••• ,0) • This representation converts products into convolutions. 
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Differentiated deficiencies and distances are treated in sections 

4 and 5. The asymptotic factorization criterion for sufficiency in 

LC1 is generalized and various convergence - and compactness cri­

terions are given. 

The local information in products of a large number of uniformly 

uninformative experiments would be the object of a central limit 

theorem. We have not formulated such a theorem here but it will be 

clear from proposition 3.3, example 4.2 and theorem 5.1 that it re­

duces to the central limit theorem in the case of central variables 

with uniformly bounded first order absolute moments. 

The statistical motivation for the theory developed so far is 

given in section 6. Let be be the e-difenciency within an e 

sphere around 8° for the norm x~ ~\x8 \. It is shown that 
e 

• 
be/2e converges as e ~ 0 to the "differentiated" deficiency b 

introduced in section 4. The conditional expectation criterions for 

sufficiency are generalized. 

The list of references should be considered as the combined 

reference list for LC1 and this paper. We have kept the numbering 

from LC1. 



2.1 

2. The differentiability conditions. 

All experiments considered in this paper have - unless otherwise 

stated - a parameter set @ , which is a sub set of Rr having an 

interior point 8°. We shall say that g = ((x,/Jr;;P8 : e E l9) 

is differntiable in e0 

• • • 
p 'Po , ••• 
e0 ,1 e ,2 

p 0 
e ,r 

if there are finite measures 

so that ~) 

r o ' o 
lim IIP8-P 0 - L: ( e . -e. )P II Ill e-e II ""' o 
e~e 0 e i=1 1 1 e0 ,i 

o • e 
Writing r 0 = P8-P6 -~(ei-ei)P 0 . when e I= e we see that 

e ,e o 1 e ,1 

the differentiability condition for ~ may be rewritten as: 

~ is differentiable in 8 ° if and only if there are finite 
• • • 

measures P , P 0 , ••• ,P 0 and r ; el= e0 so that 
8°,1 e ,2 e ,r e0 ,e . 

r • 
lim III' II = o and P8= P + 2:: (e. -8 ~ )P + Jle-e 0 III'8 8 
8~8° 8°,8 e0 i=1 1 1 e0 ,i .o' 

11r 0 II ; 8 E @ are - by the inequality: 
e , 8 

r • 
lie -8 °11 11r II ~ 2 + 2:: !e. -a~ I liP 0 .II - automatically bounded. 

e 0 , e i=1 1 1 e , 1 

The measures 

p 0 
I e +hvi 

II 

• p 
eo . 

,1 

- p 
eo 

; i = 1 , 2 ••• r are determined by g since 

• 
- p ll ~ 0 as h ~ 0 

eo . ,1 

where vi = 
~1) (i) (r~ o,o, ••• ,1, ••• o,o • If t is differentiable and 

*) If then II vii 

I 
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is a proper sub set of {1,2, ••• ,rl, then the experiment obtained 

from Pe .. e E e by putting 0 • i E I is also differenti-.. 8. = 8. , 
1 1 

able and the partial derivative in (e ~ . i rf. I) w.r.t. e . is 
~ ' J • 

~ eo p • The differentiability of in implies the differ-
80 . 

'J 

entiability of the experiment (x,Jr,P8: (e,~) E s x Rt) in any 

point (e 0 ,~) ; ~ E Rt. 

Suppose now that there is a measure 1-.l so that each measure 

P8 - with 8 restricted to some neighbourhood of e0 - has a 

density f 8 w.r.t. 1-.l • The following conditions are - together -

sufficient for differentiability in eo • 

(i) f 8 (x) is, for each x Ex, differntiable in e (i.e. 

the partial derivatives exist and are continuous) • 
• 

Denote by _f8 ,i(x) the partial derivative of 8~> f 8 (x) 

w.r.t. 

Demonstration: 

e . • 
~ 

Define: P 0 . (A)= J:f 0 ~X)IJ.(dx) , A E /Jr, i == 1,.,,r. 
e ,~ A e ,i · 

• 
Then liP 0 II <co i = 1 ,2 ••• r and 

e , i 

IIP9 - P 
eo 

.-, r . • .. 
= J 1.~1 (ai-e~)(f8 * _(x))- f 0 _(x))l/mc;crlei- e~l 

~= ,~ e ,~ 1 

e* e*(x) where = is on the line segment joining and e • 



2.3 

Hence: 

~: Jsup{ It __ Cx)- :f o _Cx)\: 118-8°11;? 118-8°\lh..L(dx)-7 o as e -7 e0 

J. 8,J. 8 ,J. 

by the dominated convergence criterion. These conditions are in 

particular satisfied when f 8 is of the form c(S)h8 where c(e) 

does not depend on x and h8 satisfies (i) and (ii). 

Example 2.1 (Exponential family). 

Suppose the density f 8 og P8 w.r.t. ~ may be written in 

the form :2:8. T. (x) . J. J. 
£ 8 (x) = c(e )eJ. 

for all e belonging to some neighbourhood of 8° • 

:2:8. T. (x) . J. J. 
Then h8(x) = eJ. satisfies (i) and (ii). It follows that 

~ is differntiable and that 

• • 
dP 0 ./d~ = f 0 . (x) 

e ,1. e ,1. 

= f (T.-E T.) • 
eo J. eo J. 

:2:8. T. (x) . J. J. 
+ c(e)Ti(x)eJ. 

Propositions 2.2 and 2.3 below state, respectively, that pro­

ducts of differentiable experiment and sub experiments of differenti­

able experiments are differentiaole. 



Proposition 2.2 
cg,. fl. (i) 

Let Cli = (xi,o~i'Pe ; e E e), i:::; 1, ••• ,n be differenti-

able in e0 • Then ~ ~- is differentiable in e0 and *) 
. 1 l l::S 

= p(1 )x xP(n- 1 ) X p(n) + +P (1 )x XP(n-1 ) x p(n) 
o ••• o o . ••• o . ••• o e e e e ,J e ,J . e o 

Proof: Very similar to that of proposition 2.1 in.LC1 [J 

!Toposition 2.3 

Let (% = (x,Jt ; P8 : 8 E e) be differentiable in and let 

s8 be a sub a-algebra of Jcy ' and let P8 Sb denote the restriction 

(x,~; P8 )~: 8 E e) is differentiable in of Pe 

e0 and 

to S'J . Then 

.. 
lim(P 0 -P 0 )/h = P 0 . c~ 
h~o 8 +hv . ,Sb e ,Sb e ' J ' ")c) 

J 
• • 

where Po. ,~ is the restriction of p 

8 J '~ eo . 
'J 

to s~ 

Proof: Very similar to that of proposition 2 .. 2 in LC1 0 

Proposition 2.3 is a particular case of: 

*) v. 
J 

is the j-th unit vector in Rr , i.e. 

as i = j or i ~ j • 

v. (i) = 1 
J 

or 0 
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Proposition 2.4 

I.f ~ ·~ r;=- and 'G is differentiable in e 0 then 1 is 
(2) 

differentiable in e0 • 

Proof: Write S ::;: ( ('X. ,f.\. ) , P 8 : 8 E tEl) and 

~ = ((~,)'1), Q8 : 8 E tEl) • It follows from proposition 2.3 in 

LC1 that - Q )/h -
eo 

• 
Q 0 II -7 o 
e 'j 

as h -7 0 • 

testing criterion (theorem 10 in [15]) we have: 

IIP8 - P 0 
8 

L:(ei-e~)(P 0 -P 0 )/hll ~ same expression in 
e +hv. e 

l 

Q8 : e E ® • h -7 o yields: 

By the 

IIP8 - P80 L:(ei-e~)P 0 .11 ~same expression in Q8 e E GJ • 0 
8 'l 

Corollary 2.5 

A product of experiments is differentiable in e0 if and only 

each factor is differentiable in e0 • 



3. Basic properties of the derivatiYe. 

We define the derivative of a differentiable (in e0 ) experi­

ment ~ = (x.,Jt ,P8 : e E @) as the pseudo experiment 

• where *) P 0 . = lim(Pe +hvi-Pe )/h; i = 1,2 ••• r. 
9 , ~ h~o . o o 

The next proposition tells us that the rule ~~>ee is monotonic 
0 

w.r.t. >where > is short for "being more informative than" = = 

Proposition 3.1 

Let 'G= ((x.,~),(Pe : 

be differentiable in eo • 

• 
In particular r;:-e 

0 

9 E e) ) and ~ = ( ( ~, Sj) , ( Q8 : e E e) ) 

Then ~ 8 ~ ~ provided G ~ ~ . 
o (k) eo (k) 

~-.rc . when (? ·- 7 

Remark. We have always te 1 f 9 and by theorem B.2.7 in the 
0 . 0 

appendix ~ e ('J ~ <;:::> ~e ""' ~e • 
o 2 8o o o 

• 
Proof: Suppose 6 ~ ~ . 

(k) 
Write P = lim(P9 +h .-Pe )/h and 

e0 ,i h~o o v~ o · 

*) 

• 
Put si = dP 0 _/dP 0 and 

e , ~ e 

v. denotes ~ troughout this paper - the i-th unit vector in 
~ 

Rr ; i. e. v j ( j ) = 1 o~·, 0 as j = i or j /: i • 



ti = dQ 0 ( dQ8 • Let $ E $k on Rr+1 • We must show that 
e , J. o 

J$(1,s, .... ,sr)dP6 ~ JwC1,t, ••• ,tr)dQ8 • 
0 0 

Write 
r 

,,, ( ) "' • x E Rr + 1 'I' x = max '-' a . . x . , 
1~~ j=o J.J J 

r 
= f (max (a . + z.; a . . a . ) J dP8 

u i J_ 0 j -1 J. J J 0 

r 
= lim IIV[a. + z.: a .. (P8 +hv .-P8 )/h]ll 
h~o i 10 j=1 J.J o J o 

It suffices therefor to show that the expression after the "lim" 

is > the same expression in Q8 : 8 E @ • This - however - is an 

immediate consequence of the sub linear function criterion (theorem 

2 ~ [15] or theorem B.2~~ in the appendix). D 

The derivatives are characterized in 

Theorem 3.2 

A pseudo experiment~= ((x,/.t),n,a1 , ••• ,ar) is the deriva­

tive in 9° of some differentiable experiment g , if and only if, 

a1 (x)= ••• =ar(x) = 0 and n is a probability measure dominating 

a 1 ,a2 , ••• ,ar. If so, then ((x,J\-),n,a1 , ••• ,ar) is the deriva­

tive in 8 ° of the experiment (5" = ( (x,Jcr) ,P8 : e E @) where 

8° E 9° and 

0) . 0 P6= In + z.:(e. -8. a. 1/lln + z.:(e 1-e. )a -II ; 8 E e • 
• J_ J. J. . J_ J_ 
l J_ 

Furthermore these conditions imply that 

( lin + z.: ( e . - 8 ? ) cr . II - 1 ) I 118 - 8 ° II -7 o as 8 -? e 0 • 
• J_ J_ J_ 

J_ 



Remark: P8 is well defined since llrr + L:(e.-e~)cr.\\> 1 • 
. l l l ::: 
l 

Proof: We may - without loss of generality - assume that 0 
8 = 0 • 

The conditions are obviously necessary so suppose cr 1 (x)= ••• =crr(x)=O 

and that rr is a probability measure dominating cr 1 , ••• ,crr. 

Put s. = dcr./drr • 
l l 

Then 

llrr + L:eisill - 1 ::: J \1 + L:eisi \drr - 1 

= J<1 + L:eisi)+dn + J<1 + L:eisi)-dn - J<1 + Eeisi)-

= 2J (1 + r:eisi)-dn ~ 2 J (1 + L: lei \lsi \dn 
L:e . s. <-1 

J. l 

Hence: 

and this is equivalent with the last statement. Clearly P0 = n • 

It remains to show that IIP0 - n - L:eicrili/IIOII ~ 0 as !loll ~ 0 • 

We get successively: 



1 ln+Ee .cr. I 
< llell- II 1 1 I +Ee cr Ill = llrr+Ee .cr .11 - rr i i 

l l 

+ llell- 1 lllrr+L::e.cr.!- rr- L::e.cr-11 
. l l l l 
l 

= 11811-1 llrr+L::e.cr.ll(1- 1 ) 
1 1 llrr+E8 . cr. II 

l l 

0 

The pseudo experiment ((x,flr),rr1cr, ••• ,crr) where 

cr 1 (x)= ••• =cr2 (x) = 0 and rr is a probability measure dominating 

cr1 , ••• ,crr will be written ~n,cr where cr denotes (cr 1 , ••• or) • 

The standard representation of ~TI is also derivative. ,cr 

= dcri/drr ; i = 1,2 ••• r then the standard representation is 

where S0 = rr((1+L::\si\)-1 , si(1+L::\si\)-1 ; i == 1, ••• ,r)-1 

A closely associated characteristic is the standard measure 

s = s + 
0 



Alternatively we may- since S and ns-1 -where 

s = (s1 , ••• ,sr)- determines each other, use ns-1 as a charac­

teristic. The measure ns-1 will occasionally be denoted by 

Let - for each i ~ 1,2, ••• ,r- G . be the measure on ~ 
TT,o,~ 

whose Radon Nikodym derivative is the i-th coordinate function 

x r-> x. • It will follow from proposition 3.4 that 
~ 

((Rr, Borel class), Fn,o'Gn,o, 1 , ••• ,Gn,o,r) 

is a derivative. 

is a version of dGTT,o,i/dFTT,o -

CfS . It may be checked that 

Furthermore - since > x. 
~ 

X 

this derivative is equivalent with 
TT,O 

F n,o is, and may be any probability distribution on Rr such that 

We will occasionally write Fe ,~ 
0 

• 

instead of F n,o when ~ 
TT,O = ~ • 

0 

One pleasant property of 

this characteristic is: 

Proposition 3.3 

Let C:1 , '?; 2 , ••• , 'G n be differentiable in • Then: 

F e.g = F r..& * F <£ * ... *F & 
8 o'~ 0i 8o' 01 eo' 02 eo' 0n 

~ 

where (*) means convolution. 

Proof: The proof is very similar to that of proposition 3.3 in 

LC1.. 0 

~~e fact that the standard representation of 1? as well as 
TT,O 

((Rr, Borel class), F G · G ) are derivatives is a n,o' n,o,1'•••' rr,o,r 

consequence of 



Proposition 3.4 

If qj' = ( (~ , ~) •1-l• v1,. •• , vr) ;;; '8 TT ,a then 1!{ is also a deri­

vative. 

Proof: If suffices to show that each pseudo dichotomy 

((~,)b),~,vi) ; i = 1,2, ••• ,r is a derivative and this is a con-

sequence proposition 3.4 in l,JC1. 0 



4. Comparison of derivatives. 

In this - and the next section - derivatives will be written 

with or without affixes. 

The following notations relative to the derivative ~TT 0 · " 
' 1'"""'"'r 

= ((x , J}r),rr ,a 1 , ••• ,crr) will be used: 

S def the standard measure of '8TT 01 ••• ar 

a~ (a1, ••• ,or) 

def d I d · 1 2 si= cr i rr; 1 = , ••• ,r • 

N(s) def llrr+s 1o1+ ••• +srarll ; Cs1 , ••• ,sr) E Rr 

v def { cJ odrr,Joda1 ' ••• ,J odor) : 0 ~ 0 ~ 11 

where $ is a sub linear function 

on 

Affixes on '8,rr,o1 , ••• ,crr' o,~,Jr,s 1 , ••• ,sr' s, F, Nand V; 

when these are referring to the same derivative will be of the same 

type. 

For two derivatives~ ,cB' we will- for each k = 2,3, ••• -

write: 

bk ( '8, ~) def the smallest e/2 so that ~ is (0, e, ••• , e) 

deficient w.r.t. ~ for k-decision problems 

and bk ( ~ , f) ~ max ( bk ( ~ , c() , bk ( ~ , '8 ) ) . 



('J 

The smallest e/2 so that ~ is (O,e, ••• ,e) deficientw.r.t. Yf 
will be denoted by 6 ( ~, c§') and we shall write A (<g , ~) = 

max ( b ( 'R , ~) , o ( <§ , C9 ) ) • 
It follows directly from the definition that: 

bk 1 6 and Ak ~ ~ as k ~ co 

('J ('J 

o ~ 6 (k) c ~ , qs) ~ A (k) < <g , cg ) <co 

0 (k) ( ~ ,et;l ) = 0 

6 (k) ( ~ ' ~) ;;; 6 (k) ( '9 ' cg) + 0 (k) ( <f, ~) 
• • 
r:.. 2 ,A3 ,... and ~ are pseudo metrics • 

• 
and A(k) ~ 2 ~(k) 

• 
It follows directly from the definition that A(k)~) <~ A(k)=O 

and it is a consequence of theorem B.2.7 in the-appehdj.x that 
• • 

~2 , ••• ,~, n2 , ••• ,~ induces the same equivalence "relations", 

Trivially /'::,.1 ( 2 ,'8) = A1 (~'<f) = 0 for any pair cCfl ,cf) of 

derivatives. 
1\ 1\ 

Let ~(~k) denote the set of sub linear functions on Rr+1 

(which are a maximum of k linear functionals) satisfying 

w(ei) = *(--ei) ; i = 1,2 ••• ,r where 

or j 1: i • 

e.(j) = 1 or 0 as j = i 
~ 



Proposition 4.1 

Compact expressions fo~ the quantities 

r..J "' 

A2( ~ ''S) = sup[ \N(~)-N(s) I/(1+L: lsi I)] 
s 

2b 2 C<B, t') = sup[(;(s)-N(s))(+)/L:\s 1-\] 

~~ 

2A2 (cg ,c{) =sup[ I;Cs)-N(s) \/L:\s-1] 
~FO 1 

6(k)(~,cg') =sup!($(~)-$~))(+)/.~ $(ei): 0 F $ E ~(k)t 
J.=O 

2;,(k)(C)J .~) = sup{(~<'Bl-t~l'~+);i~1 v(ei):~E~(k)l i!1$(e) > 0\ 

2,; (k) ( '!? , cg') = sup ! \$ ~H ~) \I i~l 'I ( ei) :'I E ~ (k) ; i~l $ ( ei) > 0 I 

• 
Upper bounds for 62 is provided by: For any ~ > 0: 

6 2 ( cg , cg) ~ max l 1 ~~ 6J <g , cf) , 4 ( y I; ) ( [m~ I; i I ~ ~ -1 J ) l 
l. l. 

*) When the symbol 11 (+) 11 appears in one of these formulas, then it 

may either be deleted or be replaced by 11 +11 • 



Proof 1°: The formulas with "(+)" replaced by 11 +11 follows directly 
. B.2.1 in the appendix. 

from theorem I, . ~~at " ( +)" may be deleted in the formulas for 
• • 

62, o(k)' 62 and o(k) follows from the last statement in theorem 

3.2 • 

so that: 

It follows from the proof of theorem 3.2 that 

dn when 

Hence: 

0 

Example 4.2 Let us compare the derivatives 

~ = ( (X , dt•), n, a1 , ••• ,ar) with "the minimum informative" deri-
,-...J r..J f'J r-..J 

vative c:g = ((x, t/}), rr, o, ••• ,o). 
rv 

Clearly cg:;;;; cg • By proposition 3.1 : 

Hence 
rv 

A2 ( cg ,CS) ~max llaill • 
i 



Let $ E ~ satisfy: ~ljl(e i) > 0 • Then 
l. 

rv 

$(~)-$~) = J<w(1,s1 , ... ,sr)-$(1,0, ••• ,o))a'f'l' 

J, r r r 
~ _L: ljl(ei)\si\·drr. = _L: 1jl(ei)lloill ~ (_L: 1jl(ei))ma.xlloill 

1.=1 1.=1 1.=1 i 

By proposition 4.1 again: 2A ( cg , cf) < max !lo .11 • It follows that: = . l. 
l. 

A 2 ( ~ , ~) = 2 A 2 ( ~ , '%') = ••• =A ( <fS , 1') = 2 A ( cg , q) = max II o iII • 
i 

V is a compact convex subset of the cube: 

[0,1] x IT E-!loill/2, lloi!i/2]. It is symmetric about (-!,o, ••• ,o) 
i 

and the only points with first coordinates 0 or 1 are the points 

(o,o, ••• ,O) and (1,0,~a• 0) • V determines~ up to equivalence 

since (i): N does and (ii): the support function of V and N 

determines each other, 

'3 is (€ 0 ,e1 , ••• ,er) deficient w.r.t. ~ if and only if 

V + n [-ei/2, ~i/2] ~ ~. In particular o(~ ,qs) is the smallest 
i 

e so that 

V + rr [-e/2, e/2] ~ V. 
i 

• rv 

Similarily 26 ( g , cg ) is the smallest € so that 

r rv 

v + jol x rr [-e/2, e/2] ~ v • 
i=1 

F determines N through the formula: 

Comparison by testing problems may be reduced to the case r = 1 ; 

i.e. the case of pseudo dichotomies qy: 



Proposition 4.2 

q is deficient w.r.t. 9f , for testing pro-

blems, if and only if (n,~~iai) is (e 0 ,~l~i!ei) deficient w.r.t. 

(;,~~.~.) for all s ERr. 
l l 

In particular: 

o (<(, , q) is the s:q1allest 

(e,ei:\~i!) deficient w.r.t. 

and; 

2b (q, ,Cf) is the smallest 

co, e~ I si I) deficient w.r.t. 

so that 

c'TI,~sicri) 

(n,~!f;.a.) 
l l 

for all S E 

e so that ( TI, ~S ·a· ) 
l l 

Cn, ~s .0'.) 
l l 

for all s E 

is 

Rr • 

is 

Rr • 

Proof: It follows from the testing criterion for comparison of 
,..... 

deficient w.r. t. cg pseudo experiments that ~ 

if and only if N(s) ~ N(s) The criterions 

follows by comparing this criterion for the case r = 1 with the 

case of a general r • 0 

Corollary 4.3 

A few criterions for 11> 11 are listed in: 
1{ 



Proposition 4.4 

Let k be one of the numbers 2,3, ••• • The following con-

ditions on the pair (~,~) of derivatives are equivalent: 

(i) ~":?!cf 
IC 

( ii) 6k ( <& 'cf) = 0 

(iii) for any function 

maximum of k linear functionals. 

on which is a 

(iv) JcpdF ~ J cpdF for any function cp on Rr which is a 

maximum of k linear functions. 

(v) (for k = 2) 

(vi) (for k = 2) "' v~v 

• 
Proof: (i) ~ (ii): Follows from ok ~ 2ok and the definition 

• 
of ok • 

(i) <=.> (iii): Follows from the sub linear function criterion. 

(iii) ~ (iv): A function cp has the properties described in 

(iv) if and only if it is of the form (x1 , ••• ,xr) r--> $(1 ,x1 , ••• ,xr) 

where * has the properties described in (iii). 

It follows from the considerations above that v <=> (vi) and 

that v ~ (i), when k = 2 • [] 

Corollary 4.5 

The following conditions on the pair ( cg ,Cf) of derivatives 

are equivalent: 
,....... 

(i) <g~~ 

( ii) 6 ( ~ 'cf) = 0 



-- ---------

4.8 

"' 
(iii) $(~) ~ $~) for any sub linear function w on Rr+1 • 

(iv) J~dF ~ s~dF for any convex function ~ on n!+1 

(v) There exists a dilatation D (i.e. D is a randomization 

such that JyD(dy\x) i x) so that "' F = FD • 

Remark: If x is a Bo:rel sub set of a Polish space and ~ is the 

"' class of Borel sub sets of x then - by the randomization criterion -

each of these conditions are equivalent with: 

(vi) There is a randomization M from (x,Jt) to 
"' "' 

(x, Jt) so that 

nM = TT and "' a. M = a. ; i = 1 , ••• ,r . 
~ ~ 

Proof of the corollary: (i) ~> (ii) ~> (iii) <=> (iv) ~> (v) 

follows from proposition 4.4 and theorem 2 in Strassen's paper ~2]. 

L t b Rr • Th th t t th t e ~ e convex on en ere are cons an aij so a 

~(x) = 1;m ~ 1~~ (a0 j + a1jx1+ ••• +arjxr) = 1;m ~ wn(1,x, ••• xr) 
-c.J:r 

where 

0 

Finally we give the factorization criterion for sufficiency 

Proposition 4.6 

Let <% = ((x,Jf),n,a1 , ••• ,ar) be a derivative and let <i be 

the sub derivative ((x,S1),nS"3a1l'8"•• ,ar~~ where )1 is a sub 

a-algebra of Jt and the subscript s'b indicates restriction to )'?l. 
Then 'B ,.__,cg if and only if s may be specified S'i; measurable. 

Proof: It follows from proposition 4.12 in LC1 that the condition 

is necessary. Suppose s is S~measurable. Then 

= F • 0 



5. Convergence of derivatives. 

The notational system in this section will be the same as in 

section 4. A few convergence criterions are listed in: 

Theorem 5.1 

The following conditions*) on the derivatives ~n; n = 1,2, ••• 

and ~ are equivalent 

(i) lim ~(cg ,~ ) = 0 
n-?oo n 

(ii) lim A(<g ,46 ) = 0 
n-?c:x:> n 

(iii) 

(iv) lim ~2 ( ~ ,~ ) = 0 
n-?oo n 

(v) 

(vi) 

(vii) lim N (s) = N(s) ; g E Rr • 
n-?CO n 

*) k If ~' ~ are finite non negative measures on some space R 

then A(~,~) is the smallest number h ~ 0 so that: 

k k k 
~( n ]-oo,x.-h[)-h ::::~< n ]-c:o,x.[) :::;:~( rr ]-c:o,x.+h(+h; 

"1 ]_ - "1 ]_- "1 ]_ J.= J.= J.= 

(x1 , ••• ,xk) E Rk 

Convergence for the metric A is weak convergence in the sence 

that /\(1-ln'~) -? 0 if and only if 1-ln(f) -? !-l(f) when f is 

contim101ts and bounded. 
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Remark. We have not listed the criterions which follows directly 

from the right hand sides of the distance formulas in proposition 4.1. 

By this theorem and proposition 4.1 the convergence in (vii) 

implies that Nn (~ )/L: Is i I ~ N(s )/L: Is i l as n ~co , uniformly in 

s F- 0 • Clearly the "2" in (iii) and (iv) may be replaced by any 

k = 3,4, •••• 

Proof of the theorem: 

• • 
(i) => (iv) • Follows from the inequality A2 <A • = 

I 

(iv) => (iii): If II It II A2 ~ 2A2 

(v) ~> (iii) <=> (ii): Follows from theorem B.2.13 in the appen­
dix 

(v) => (vi): Suppose Sn(h) ~ S(h) when h is continuous and 

bounded on E!+1 • Let g be continuous and bounded on Rr • 

where 

h(x0 ,x1 , ••• Xr) = minlx0 ,1lg(x1/x0 , ••• ,xr/x0 ) or= 0 as x 0 > 0 

or x < 0 • Then h is continuous and bounded on Rr+1 so that 
0 = 

JgdFn = JhdSn ~ J hdS = J gdF • It follows that A(Fn, F) ~ 0. 

By the formula for ~ in proposition 4.1 we get for 

= ~ lxi I that j. ~ !xi IFn (dx) = 
i=1 J.=1 

w c c:g ) ~ w cC8 ) 
n 

J
, r 

= L: \x. \F(dx) • 
' . 1 l. l.= 



(vi) => (v): Suppose (vi) holds. Let g be continuous and bounded 

on Rr+1 • Then- since (x1 , ••• xr) ~ 

r 1 r 1 r 1 r 
g((1+.~ \xil)- ,x 1 (1+.~ lxi\)- , ••• ,xr(1+.~ lxil)- )(1+.~ lxil) 

1.=1 1.=1 1.=1 1.=1 

is uniformly integrable w.r.t. F1,F2, ••• : JgdSn = 

J, r _1 r _1 r _1 . r 
~ g((1+ ~ lx. I) ,x1 (1+ 2:: lx. I) , ••• ,x (1+ ~ lxi I) )(1+ ~ \xi l)F(dx) 

i=1 1 i=1 1 r i=1 i=1 

= JgdS 

(ii) => (i). Suppose (ii). Then- as we have seen- (iii), (v) 

and (vi) hold. Let Ln denote the Prohorov distance between Fn 

and F for the metric; (x,y)~ m~\xi-yi\• By theorem 11 in 
1. 

Strassen's paper [12] there is for each n - a probability distri-

bution Qn on Rr X Rr with marginals Fn and F such that 

Qn(Dn) ~ Ln where Dn = l(x,y): m~\xi-Yil:;;; Lnl • Let ~ E ~. 
1. 

Then \~(~)-~~)l = u~(1,x1 , ••• ,xr)Fn(dx)-s~(1,xt,.••,~)F(dx)\ = 

lj'[$(1 ,x1 , ••• ,xr)-~(1 ,y1 , ••• ,yr)]Qn(d(x,y)) I ~ 

J ~~ (ei) \xi -y i \Q, (d (x,y)) ~ i~1 ~ (e) J mf' \xi -y i \Q,_ (d(x,y)) ~ 

i~1 ~ (ei) [L, + J m~\xi -y i \Q, (d (x,y))] • 

Dn 



2A ( <g ,cg ) ~ L + Jr max \x. -y. I Qn (d (x ,y)) • n -n,. ~ ~ 
D ~ 

n 

By proposition 4.1: 

By (vi): Ln ~ 0. It follows that Q1 ,Q2, ••• are relatively 

compact and that o (Dn) -? 0 • (x,y) r-> max Jxi -y. J is uniformly 
"""n i ~ 

integrable since it is dominated by (x,y) r-> ~!xi! + ~Jy. I and 
~ i ~ 

the latter is uniformly integrable. Hence - by uniform absolute 

continuity - A(~ n ,<13 ) -? 0 • 

(vi) ~ (vii): follows directly from proposition 4.1 

(vii) => (vi). Suppose Nn(s) -? N(g) for all s . 

Then J l1+xi \Fn(dx) -? J \1+xi \F(dx) j i = 1 ,2 ••• r 

Hence: limsup Jixi \Fn (dx) ~ limsup J ( 1 + \1 +xi\ )Fn (dx) 
n n 

= 1 + limj. \1+x. \F(dx) <CP; i = 1 ,2 ••• r • 
n ~ 

It follows that F1 ,F2 , ••• are conditionally compact. 

Let ~ 0 ~ 0 • Then: 

J ls 0 +s 1x1+ ••• +srxr1Fn(dx) =\s 0 \Nn(So/g 0 , ••• sr/s 0 ) -7 

I s 0 \N(S1 /s 0 , ••• , Sr/s 0 ) = J I s0 +s 1x1 + ••• +srxr \F(dx) • Hence: 

limsupJ \s1x1 + ••• +srxr \Fn (dx) ~ limsup J [I s 0 I+ I s 0 +s 1x1 + ••• +srxr \Fn (dx)] 
n n 

= \s 0 \+J\s 0 +s1x1+ ••• +srxr\F(dx) • s 0 -7 o yields: 

li~upJ \s1x1+ ••• +t:;rxr1Fn(dx) ~ J \s 1x1+ ••• +srxr\F(dx) 

Similarily: 

lim;nfJ I s1x1 + ••• +srxr \Fn (dx) ~ I [I So +s1x1 + ••• +srxr 1-1 So\ ]Fn (dx) 

=I \s 0 +s 1x1+ ••• +srxr \F(dx)- \s 0 I . s0 -7 o yields: 

liminfJ\s1x1+ ••• +srxr1Fn(dx) ~ J \s 1x1+ ••• +srxr\F(dx) 
n 



It follows that j~ 0 +s 1 x 1 + ••• +srxr1Fn(dx) ~ Ji~ 0+s 1 x1 + ••• +srxr1F(dx) 

( ) r+1 for all ~ 0 ,s 1 , ••• sr E R • Consider r constants a1 , ••• ,ar. 

Then J ls-(a1x1+ ••• +arxr) IFn(dx) ~ J ls-(a1x1+ ••• +arxr) IF(dx) 

By theorem 5.1 iri LC1: 

A((FnGn),(F,G)) ~ 0 where 

By the same theorem 

~n (a1x1 +. • .+ar~) ~ c(F(a1X1 + ••• +arxr) 

where x1 , ••• ,Xr are the coordinate functions on Rr. It follows 

that A(Fn,F) ~ 0. Hence- since .JixiiFn(dx) ~ J lxiiF(dx) ; 

i = 1 ,2 ••• r - An(Fn,F) + · \J. ~ lx-IFn(dr) ·- j' ~ lx-IF(dx) I ~ 0 • 
"1 1. "1 1. 1.= 1.= 

0 

When does a sequence cg 1 , ~2 , ••• converge? A necessary and 

sufficient condition is given in: 

Proposition 5.2 

A sequence qn ; n = 1 ,2,... of derivatives is 

if an only if lim N (s) exists for all s E Rr and 
n~oo n 

lim [lim N (s)-1 ][L: Is. I ]-1 = o • 
L:\sil~ n~oo n 1. 

• 
A convergent 

Proof: The conditions are -by theorem 5.1 - and theorem 3.2-

necessary. Suppose now that M(g) =lim Nn(s) exists for all 
n--Too 

s E Rr and that lim ~ = 0 • It follows from theorem 
L:\~il~ ~ 
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5.1 that it suffices to show that M is the N function N of 

some derivativeC?f • Let s0 I= 0 , Then: 

Jls 0 +s 1x1+ ••• +srxr1Fn(dx) = ls 0 \Nn(s1ls 0 , ••• ,srls 0 ) 

~ I s 0 I M ( ~ 1 Is 0 , ••• , S 1 Is 0 ) • Hence : 

It follows that F • n , 

n = 1, 2... are conditionally compact. \'le may therefore - without 

loss of generality assume that A(Fn,F) ~ 0 • 

Similarily: 

L~infJ ls1x1+ ••• +srxr1Fn(dx) ~ -lso\+\so\M(S1Iso'""' srlso) 

Hence: lim~upJ I s1x1 + ••• +srxr !Fn (dx)-lim~nfJ I s1x1 + ••• +srxr I pn (dx) 

It follows by letting s 0 ~ 0 - that ~ ls 0 I· 

. r . 
W(s 0 ,s1 , ••• ,sr)= l~J \s 0 +s 1x1+ •• ,+srxr1Fn(dx) exists for all 

( ) r+1 s 0 ,s1 , ••• ,gr E R • Fix r numbers a1,a2 , ••• ,ar. 

Then - for any number s : 
Jls-a1x1- ••• -arxr1Fn(dx) ~ W(~,-a1 , ••• ,-ar) and 

W(s,-a1 , ••• ,-ar)-ls I 

as Is I~ oo. Let the measures G11 , n = 1,2 ••• and G be 

determined by: ldGnldFnJ = ldGidFJ == L:aixi. By proposition 5.3 
X X 



in LC1 the derivative (Fn,Gn) ; n = 1 ,2... converges as n ~ oo • 

In particular X0-> \~ aixij is uniformly integrable w.r.t. 
~ 

• It follows that 

Jl~-a1 x1 - ••• -arxrlFn(dx) ~ J l~-a1 x 1 - ••• -arxr1F(dx) for all points 

(g,a1 , ••• ,ar) E Rr+1 • This imply that JxiF(dx) = 0 ; i = 1, ••• ,r . 

. , . Hence F represents a 

derivativeSC and M(s) = l*m J\1+L~ixi1Fn(dx) = JI1+Lsixi\F(dx) = 

N(g) • By theorem 5.1 A(cgn'~ ) ~ 0 • l 1 

Corollary 5.3 

• • 
The pseudo metrics A2 ,A3, ••• and A are all complete. It 

may - however - happen that a 6 divergent sequence cg1, cg2 , ••• 

is A convergent to a pseudo experiment ~ which is not a deri-

vative. 

Proof: Let ~1 ,~2 ••• be a sequence of derivatives such that 

A2 CCSm' qn) ~ 0 as m, n ~ oo. By proposition 4.1: 

Nm(~)-Nn(s)~o as m,n~oo forall ~.Hence 

M(g) = lim N (g) exists (finite) for all s E Rr • B,y proposition 
n-?co n 

4.1 again: 
Nm Cs )-1 

L lsi I - as m, n ~co ; uniformly in 

s ~ 0 • It follows that n ~ co uniformly 

in s # 0 • Hence by theorem 3.2, ~ ~ 0 as Llsil ~ 0 , so 
i 
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that- by proposition 5.2- A(~ ,~) ~ 0 • It follows that n . .. 
A2 ,A3 , ••• and A are all complete. An example proving the last 

statement is readily furnished by example 5.4 in LC1. D 

Some compactness criterions are listed in: 

2."he or em 5 • 4 

The following conditions on the set !cgt 

tives are equivalent: 

t E Tl of deriva-

! <g t 
• 

(i) t E 
l is b. conditionally compact. : fl 

(ii) !C£ t • t E Tl is b. conditionally compact. • 

(iii) sup 
Nt(s)-1 

~ 0 as L:ls-1 ~o 
t ~lsi I . J. 

J. 
J. 

(iv) X .-> L: I X . I 
i J. 

is uniformly integrabel w.r.t. {Ft t E Tl. 

Proof: (i) ~ (ii): Follows from theorem 5.1 

(ii) => (iv) Suppose (iv) does not hold. Then there is 

an ~ > 0 so that 

sup J L:\xiiFt(dx) > ~; n = 1,2, •••• 
t L:\xil>n 

It follows that for each n = 1,2, ••• there is a tn E T so that: 

J L:jxi!Ft (dx) > ~ • 
L:\xil>n n 

By theorem 5.1 , no subsequence of ~t , 9t , • • • is b. convergent. 
1 2 

(iv) => (i). Suppose (iv) holds. Then {Ft : t E T! is 

conditionally A compact and (i) follows from theorem 5.1. 



We have, so far, shown that (i) ~ (ii) ~> (iv). 

(i) => (iii). Suppose (iii) does not hold: 

Then there is a sequence S(n) , n = 1,2 ••• in Rr and a number 

a. > 0 so that and sup 
t 

Nt(s(n))-1 

z: I sin) I 
>a. ;n=1,2 •••• 

It follows 

that for each n there is a tn so that 

N (s(n))-1 
tn 

____;:z:;;;..._l s-~ n--) -1 - > a • 
. J. 
J. 

By the last part of theorem 3.2 and proposition 4.1, no sub sequ-

ence of cgt '~t , ••• 
1 2 

(iii) => (iv): Suppose 

• 
is ~ convergent. 

Nt(s)-1 
sup l: IS ; l ~ 0 

t i -
as z:ls·l ~o. . J. 

J. 

Jl11-a1x1- ••• -arxr1Ft(dx)-l111 = \11I[Nt(-a1/T), ••• ,-ar/T))-1] = 

= [Nt(-a1/T), ••• ,-ar/T))-1][Z:I- ~iiJ- 1 .~ \ail~ 0 as 1111 -?CO; 

J.=1 
uniformly in t E T • Let Gt be the measure determined by: 

dGt/dFtlx = Z:aixi • By theorem 5.6 in LC1 the set {(Ft,Gt);t E T} 

of derivatives is conditionally compact. In particular 

X r-> \Z:aixi I is uniformly integrable w.r.t. Ft • t E T This • • 

being true for all (a1 , ••• ,ar) E Rr imply that ~lxil 
J. 

is uniform-

ly integrable w.r.t. Ft . t E T • Ll • 

• 
The particular case of asymptotic A sufficiency is treated in: 

Theorem 5.5 

Let cgn = ((xn,Jtn)'TTn,cr1n,cr 2n''""'crr,n); n = 1,2, ••• be a 

sequence of derivatives. For each n let s&n be a sub a-algebra 
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ofJ} n 
"" 

and let~ n be the sub derivative 

are the restrictions of to ~n • 

Finally let, for each be the measures on Jrn 
determined by: 

Sbn 
d~ni/dnn = Enn[dcrni/dnn] ; i = 1, ••• ,r 

Then ~n def((xn,Jfn)'nn'~n1 , ••• ,~nr) are all derivatives and 

~ "" d) • n = 1 2 • '-'6n On ' ' •••• 

Suppose cg n ; n = 1,2 ••• are conditionally compact. Then 

;n=1,2 ••• are also conditionally compact and the following 

conditions are equivalent: 

(i) lim~(~ ,<{ ) = 0 
n~ n n 

(ii) lim II o . - ~ . !I = o ; i = 1 , 2 ••• r 
n~c:o n~ n~ 

(iii) lim A(Fn,Fn) = 0 
n~ 

Proof; 
/\ 

CSn 

Let - for each n - E denote expectation w.r.t. 
n 

is a derivative since "a ~ --"·< n • · 1 2 n~- n , ~ = , , ••• ~r and 

&ni (x) = 0 ; i = 1 ,2 ••• r • It follov-rs from proposition 4.6 that 
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2° Suppose ~n; n = 1,2 ••• are conditionally compact. By 

proposition 5.8 in LC1, the derivatives ((Xn, ~),nn,crni) ; 

n = 1,2 ••• are conditionally compact for each i. Hence 

Sbn 
E sni ; n = 1,2 ••• are uniformly integrable w.r.t. Tin; n = 1,2 ••• 

By theorem 5.4 this- for i = 1,2 ••• r- implies that ~n ; n = 1,2 ••• 

are conditionally compact. 

Suppose now that ~ n ; n = 1 ,2 .••• are conditionally compact: 

(i) ~ (ii) follows from proposition 5.8 in 

(ii) => (i) : Put e = max llcrn. _(jn .11 • Then n . ~ ~ 
~ 

= A(cgn,cgn) ~en~ 0 • 

LC1 

(i) <:;::> (iii): Follows - by conditional compactness - from 

theorem 5.1 • 0 
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6. Local comparison of experiments. 

We proceed as in section 6 in LC1 , connecting the theory of 

derivatives with the statistical theory of information. 

It was noted in LC1 that some results *) was only proved under 

the assumption that some of the measurable spaces involved, were 

Borel sub sets of Polish spaces. We shall not use such assumptions 

here and it will be shown in theorem 6.5 that -with the exception 

of proposition 4.11, proposition 6.5 and theorem 6.6- all other 

results are proved without using assumptions of this type. 

A few notational conventions are: Experiments will usually be 

written (% =((x,J'4t ), (P8 : e E e)) with or without affixes. If 

g= ((x,~), P8 : 8 E e) then the derivative in 8° will- if 

it exists - be written: 

~ o =((x,A'),P o'P o ,.~.,Po ) 
e e e ,1 o ,r 

The restriction ((x,JY),(P8 : e E e0 )) of~ , will be written 

on 'f9 'x, ~' P e 'e' P o' P o ' • • • 'P o will, when 
8 e ,1 8 ,r 

lEe 
0 

• Affixes 

when these are referring to the same experiment, be of the same 

ty-pe. 

If are both differentiable in then we will 

write: 

*)These results were listed as: proposition 4.11, theorem 6.1, 

theorem 6.2, corollary 6.3, proposition 6.5 and theorem 6.6. 

Corollary 6.4 - whose proof depends on theorem 6.2 - were, by an 

oversight omitted from this list. 
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and 

A 0 ( ~, i) definition A ( ci d: ) 
8 , (k) (k) 0 8o' G8o 

If 8 is close to and ~ is differentiable in then 

Po is approximately affme in 8 • Hence deficiencies on a sub set 

eo "close" to 80 should be approximately equal to deficiencies 

on the convex hull (El > of El Inequalities implying results 
0 0 

in this direction are given in: 

Proposition 6.1. Let t and i be differentiable in 8° and 

consider the expansions: 

and 
~ ~ ~ ~ 

P8 == P + ~(e.-e?)P + ll8-e 0 11r 
8° i 1 1 8°,i 8°,0 

of El , whose convex hull (El ) c El , satis­
o = Then any sub set El 0 

fies - provided cffEl 
0 

is dominated the inequalities: 

where both sup's are taken over (El 0 ) • 

If both ~e 
0 

inequalities may 

and dt are dominated then &e 
0 

be replaced throughout with A • 

6 - in these 



6.3 

Proof. (ii) follows directly from (i). Hence it suffices - since 

and @ c (@ > 
0 :;: 0 

to prove that 

"' 
where tk :;: ok( ~@ , ~@ ) and d :;: distance (e0 ,e 0 ) • Let 

0 0 

Then there are points ' 2 k 8 ,8 , ••• ,o in e 
0 

negative members 

k 
1 = 2: c .• Hence 

. 1 ~ 
~= 

so that: 

Hence: 

Similarily: 

c 1 'c2' • • • 'ck so that 
k . 

8 = 2: c.8~ 
. 1 ~ ~:;: 

and 

and non 

Let p be a randomization from (x, J¥) to 
appendix 

theorem B.3.4 in the7there is a randomization p 

!1, ••• ,kl. By 

from (x,Jt) to 

!1,2, ••• kl so that: 



Let e E (8 0 ) and write e - as above - as a convex combination 

k . 
L: c.oJ 

j=1 J 
of points 

f k e , ••• , e in e . 
0 

Then: 

"" f'J +IIL:c .P .-P8 II ~ 2d[supljr ll+supllr II ]+L:c. tk = 2d [ 
J eJ - e0 ,e e0 ,e J p 

The condition of dominans does not matter very much since it 

is - for small neighbourhoods - "approximately" implied by differ­

entiability. Using the construction in section 3 we get: 

Proposition 6.2 

Let ~ and ~ be differentiable in 8° • Consider the 

expansions: 

\P +L:(e .-o?)P I liP +L:(e .-o?)P 11-1 = 
eo . J. J. 80 . eo . J. J. eo . 

J. ,J. J. ,J. 

f".J ~ f'J 

= P 0 +L:(oi-o~)P 0 . +IIO-o 0 IIA 0 
0 0 ,J. 8 ,o 
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Then any sub set ®0 of ® , whose convex hull 

satisfies the inequalities: 

(® ) <.:: @ ' 0 

+ sup II 1\ 0 II + supllr 0 II] 
o ,o e ,e 

where all sup's are taken over (®0 ) • & may - in these inequ­

alities - be replaced throughout by A provided 2 distance 

(e 0 ,o 0 )[supiiA 0 -r 0 II + suplll\ II + sup.l!r 0 II] is added to 
8 ,El 0 ,e 8°,8 0 ,e 

the expression after the last ~ • 

Proof: Write 

1"= ( (X, Jf) , Q8 : 0 E ®) • Then ~ 0 = ~ 0 and 
0 0 

o-
~ is dominated. 

~ ~ ~ ~ 

~A(G(e )'~(® >) + ok( ~® ,~9 ) + 2d[suplil\ 0 ll+supiii' 0 II]~ 
o o o o e ,o o ,e 

~ t:'>-

~ 2d[tsupll A 0 -r 0 ll+supll 1\ 0 ll+supllr 0 II] + ok( f 9 , ~® ) + 
o ,e o ,8 e ,e e ,e o o 

+ ok( ~® , ~® ) ~ ok( ~®' ff9 ) + 2d[suplll\ 0 -f' 0 II + suplll\ 0 II 
o o o o o ,o o ,o e ,8 

+ supllr 0 II] 
0 , 0 
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The last statement follovrs by a symmetry argument. 

Corollary 6.3. 

'"" 
Let g and ~ be differentiable in 8° • Then: 

(i) [o(k)(~(e )'t'(e >)-6(k)(~ 8 ,g8 )][distance (e 0 ,oJ]-1 -? o 
0 0 . 0 0 

uniformly in (k) as distance (e0 ,e 0 )-? 0 

(ii) [b.(k)(~(e )'c£(e ))-A(k)(~8 ,!8 )][distance (e0 ,o 0 )]-1 -? o 
0 0 0 0 

uniformly in (k) as distance 

Proof: Follows immediately from proposition 6.2. 0 

Corollary 6.4. 

Let ~ and ~ be differentiable in 0 ° and let "lim" be 

short for "limit as distance Then: 

'"" 
only if lim 6 (k) ( ~e '~ e ) [distance 

0 0 

(eo,eo)]-1 exists and if so 

then these limits are e~ual. 

(ii) lim b.(k)(~(e )' g(e ))[distance 
0 0 

(eo,eo)]-1 exists if and 

('J 

only if lim A(k) ( ~e , ~e )[distance (eo,eo)]-1 exists and if so 
0 0 

then these limits are equal. 

Proof: This is a direct consequence o:f corollary 6.3. [1. 
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Theorem 6.5 

Theorem 6.1 in 101, theorem 6.2 in L01, corollary 6.3 in L01 

and corollary 6.4 in 101 hold without any assumptions on the 

structures of the involved sample spaces. 

Proof: 

(i) Proof of theorem 6.1 in 101. Write 6£ for 

6( ~{e -e:,o +e:l' ~ te -e:,e +e:l) and write 
0 0 0 0 

If suffices - by corollary 6.4 in this paper - to show that 
• 

6e:/2e: ~ b • We will- to this end- apply theorem 6.11 (v) in 101. 

By theorem 15 in [15]: 

~e(~+be:;2 )+6e:/ 2 ~ ~e:(a) ; ~ E [0,1] 

where ~e:(~) (~e:(~)) is the power of the most powerful level a 

test for testing ~8 -e: against P8 +£ (P8 -e: 
0 0 0 

By theorem 6.11 (v) in 101. this may be written: 

where oe: ~ 0 as e: ~ 0 , uniformly in a • (We use the obvious 

fact that 6e: ~ 0 as e ~ 0) It follows that 

rv + • 
liminf '6e:/2e: ~ sup(~(~)-~(a)) = 6 
e:~o ~ 

By theorem 15 in [15] there is an a.e: E [0~1-be./2 ] satisfying 

~e:<~e:+6e:/2)+6e:/2 = ~e:<a.e:) • 
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Using theorem 6.11 (v) again this may be written: 

Hence 

so that 

• 

• 
Altogether we have shown that 6e/2e ~ 6 • Theorem 6.1 in LC!, 

follows now from corollary 6.4 in this paper. 

(ii) Proof of theorem 6. 2 in LC1,. The proof is very similar to 

that in (i). 

(iii) Corollary 6.3 in LC1 follows from (i) and (ii) above. 

(iv) Proof of corollary 6.4 in LC1. If ~ 1 , ••• , ~n are dominated 

then the proof may be based on theorem 6.2 in LC1 as explained 

ther~ This may - in the general case 

experiments ~ 1 , ••• , ~n such that 

a (i) If (? . = ( ('x.. ~ tftr. )( P8 ; 8 E 8 ) ) 
J. J. J. 

• 
Then p(i) = p(i) and p(i) = p(i) 

eo eo eo eo 

so that n p(i) = n p(i) and 
i eo i 80 

- be applied to dominated 

6 ( cg. , ~. ) = 0 ; i = 1 , 2, ••• ,n • 
J. bJ. 

then we may take 



• 
~ 

LII pCirJ 
i 8 8=8 

0 

• Hence 

~ A ~ ~ ~ & ~ 
o(rr .,rr~.) = o(n~.,n~.) <l:o(~., 1.) = l:o(0., .) • \] 

~ ~ 1 ~ = ~ ~ ~ ~ 

Generalizing theorem 6.1 to the r dimensional case we get: 

Theorem 6.6 

Let ~ and ~ be differentiable in e0 • Denote by w 
€ 

the convex set: !e : l:\0 .-o~l < e} • The set of extreme points of 
J J 

we will be denoted by extwe ; i.e. 

Then - uniformly in (k) -

lim 0 (k)(~ w '~w )/2e =lim 0 (k)(~ extw '~extw )/2£= 
e~o e e e~ e e 

• f'V 

= 0 0 ) ( ~, g) 
8 '(k 

and 

Proof: If suffices (by corollary 6.3) to show that 

lim o1 ""/2£ = 6 (g,g) uniformly in k = 2,3, ••• as· e-+ 0 c,.. oo,k 

Fix a k E 12,3 • • • and 
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appendix 
choose a number ~ > 0 • There is, by proposition B.3~6 in the'/ 

rv "-' 

for each permissible e a sub algebra S'b of A- having at most 

2k sets satisfying: 

6 C ~extw '~ extw ISS) ~ 6k, e-'q 
E; E; 

I"V 

where I S::, indicates restriction to <;:) • By theorem B. 3. 5 in the 
appendix rv 

7 - since S"b is finite - there is a randomization M from 
rv rv 

(x, J¥) to (x, )!>) so that: 

"' 
Expand Fe and Fo around eo as follows: 

Fo 
0 • 

II o-o 0 lll' = F + z:(o.-o.)F + 
eo J_ J_ o0 ,i 0°,8 

and 
rv "' 0 ,(, 

,...., 

Fe = F + z:(o.-o.)F + lle-o 0 llf 
80 • J_ J_ 00 . 

8 ° '8 J_ . ,l 

Then: 

Hence - provided o E we : 

rv ,...,._, • r..J ,.-....) f'J 

IIFaM-Fo \~II ~€268 ct, G I S1)+esupli!I' 0 ll+III' 0 Ill 
0 WE; 0 , 0 0 , 0 

It follows that: 

r-.J t'J • f'J 

o (~extw '~ extw I )b)/2e ~ b o +isup[llr' o ll+llr o II] 
e e e ,k we e ,o e ,e 

where 



Hence: 

fl~O 

(§) 

yields 

ok' e/ 2 r:: ~ 5 o k ( ~ ' g) e , 
+ !sup[ ] 

w e: 

6.11 

Let wE ;k(Rr+1 ) (i.e, w is a maximum of k linear functio­

nals on R!+1 and $(1,0 ••• 0) = w(-1,0 ••• 0), ••• ,$(0, ••• ,1) = 

$(0, ••• ,-1) ). Put - for each point (x1 ,y1 ,x2 ,y2 , ••• ,xr,yr) E R2r-

Then cp E 'Yk on and 

Then lime:I:e: = 2[w(0,1, ••• o)+w(o,o,1, •.•• ,o)+ ••• +$(0, ••• 1)] 
E:-?0 

By the remark after theorem B.2.1 in the appendix: 

p o -P 
0 +E:v1 8°-e:v1 

p 0 ) ]/ E:l:;e: 
8 +E:V 

. . . ' 

r 

r-J rv 

p o -P o 
8 +E:Vr 0 -E:Vr) 

2e: 

2e: ' • • • ' 



"' & ~ • " 
-7 [$(1' o'P o , ••• ,:Po )-$(P o'p o , ••• ,Po )} 

e e ,1 o ,r e e ,1 e ,r 

[2$(0,1, ••• 0)+ ••• +2$(0, ••• ,1)] as E ~ 0. 

Proposition 4.1: 

• 
(§§) liminf Ok E/2E > 6 

E~ ' = 8°,k 

Let ft > 0 be given. Choose a k 0 ~ 2 so that 

• • rv .. 
= 6 0(~' ~) 6 ~ 0 -fl. where 6 • 

e0 ,k 
0 

00 00 0 

By (§§) there is a E >0 so that: 
0 

• 
&k E/2E > 6 -n when E < E = e0 k = 0 o' 

' 0 

Let E < E and k ~ k 0 • Then: = 0 

• • • 
6k,E(2E ~ 6k E/2G > 0 -it > 6 -211. > 6 -211. 

o0 k 00 = 8° ,k o' .. 
' 0 

Finally choose E1 E ]0, E0 [ so small that 

• 
6k, E/2E ~ o 0 k-2rt when k ~ k 0 and E ~ E1 o Then E ~ Ej 

0 ' • 
imply ck E/2E-6 ~ -211. for all k • Uniform convergence fol-

' 0° ,k 

lows now from this and ( §). 0 

Corollary 6.7 

Let ~ 1 , ••• , ~n and ~1 , ••• , 1:' n be differentiable in 0 ° . 
Then: 

b 0 (II ~1.· , II ~1.· ) <l.t ( ~. , ~. ) 
8 ' (k) = 0 ° , (k) 1. 1. 

and 

A 0 ( II ~ 1." ' II ~1.. ) < ~A ( ~ . ,'~. ) 
0 ' (k) = 0 °' (k) 1. 1. 
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Proof: If ~ 1, ••• , ~n are dominated then the proof follows from 
B.3.12 

theorem/in the appendix. The general case now follows as in part 

(iv) of the proof of theorem 6.5. 0 

The next result implies that conditional expectations evalu­

ated at e's close to e0 can not vary to much. 

Proposition 6. 8 

Let&= ((x,Jl.),(P0 : 8 E e)) be differentiable in 8°. 

Let ~ be a sub a-algebra of Ji.- , X a bounded random variable 

and Es~ x 
00 

a bounded version. Then: 

(~ s1 
sup E8 \E8 X-E 0 X 1/lle-e 0 11 < ro 

G 8 
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Proof: Let -1 ~ h ~ 1 be S/; measurable. Then: 

')!, ~ 9.> s'b 
E0h(E0 X-E 0 X) = E0(hE0 X)-E0 (hE 0 X) = 

0 8 

s1 s'b . SD 
= E0 (hX-hE 0 X) = E 0 (hX-hE 0 X) + J (hX-hE 0 

0 8 0 8 
X)d(P -P ) = 0 0 

() 

J c,1J • j' s~ 
= ~(oi-0~) h(X-E 0 X)dP 0 .+II0-0°11 h(X-E 0 X)dT' 0 

~ 0 0 ,~ 0 0 ,o 

J> 5b • ~ 
~ ~joi-o~1m~ h(X-E 0 X)dP 0 .+llo-o 0 llllhiiiiX-E 0 XIIIIT' 0 II 

~ ~ 0 0 ,~ 0 0 ,o 

Hence 

~ s~ )~ . 1 
E0 \E8 X-E 0 X 1/lle-o 0 11 ~ IIX-E 0 XII [maxiiP II'Vr +llf 0 II] <co • 

o o i o0 ,i o ,e 0 

• 
A 0 sufficiency may be characterized by conditional expectations 

0 

as follows 

Theorem 6, 9 

Let c; = ((x,Jq_,),Pr. : 0 E e)) be differentiable in 0° and 
v 

let S1 be a sub a-algebra of A . Let ~ be the experiment 

~ = ((x,)~), P0 )~ : 0 E e) where- for each o - P0 )~ is the 

restriction of P 0 to Sb • Then ; 



( i ) Suppose A 0 ( ~ , ~) 
~ e sj 

able in G and E X 
eo 

expectation. Then: 

6.15 

= 0 • Let X be a bounded random vari-

a bounded version of this conditional 

0 
El ~ 8 . 

(ii) Let Uf 0 

intersections. 

be a basis for Jtr which is closed under finite 

Suppose that to each A E Jr there is a2> measur-
S6 ° 

YA so that lim0 E0 \P8 (A)-YA\/IJ0-8°11 = 0 • Then 
o~e 

able function 

= 0 • 

Proof: (i): Let 
s?:; 

X and E 0 X be 
0 

as in (i) and suppose 

~ 0 (t,~) =0. By proposition 4.6 s definition dP /dP 
o0 ,i o0 ,i e0 0 

may be chosen Sb measurable. Let -1 ~ h ~ 1 be )~ measurable. 

As in the proo£ of proposition 6.9 we get: 

In particular: 

(ii): If suffices - by proposition 4.6 - to show that 

s = dP / dP may be specified S~ measurable for each 
G0 ,i EJ 0 ,i 0° 

i = 1,2, ••• ,r. Let and suppose Y A is S3 measurable 

and satisfies: 
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S'b 
lim0 E0 \P0 (A)-Y A \/llo-o 0 11 = o • Then 
8~ 

s~ 
limE 0 \P 0 (A)-YAJ/\h\ ~ 0 as h ~ 0 
h~O 0 +hv. 0 +hv. 

~ ~ 

one 
It follows now from the/dimensional case - i.e. proposition 6.17 

in LC1 - that s eo . 
,~ 

may be specified 5b measurable. [] 

Let P be a probability distribution on Rr • For any pair 

(o, a) where 8 E Rr and a E ]0 ,co[r let Q8 , a denote the pro-

bability distribution of (e.+a.U. ; i = 
~ ~ ~ 

1,2 ••• r) when p is 

the probability distribution of (Ui ; i = 1,2, ••• ,r). Put 

Po :;: Q0,1 The the experiment lQo,a • 0 E Rrl is equivalent • • 

with the experiment {P ) 
. 0 E ~~ i.e. the scale 

(o1/a , ••• ,or/a 
, 

1 r 
change may be carried out in the parameter space. In general 

differentiable parameter transformations obey the chain rule for 

differentiation: 

Proposition 6.1 0 

Let '!l0 E ~ ~ Rs and let y be a function from "1 to @ which 

is differentiable in '!l0 and maps 'llo on o0 • Suppose also that 

g is differentiable in 8° and put ~ = ((x,J.r),Q11 : 'll E '"'l) , 
where 

()-

Then ·~ is differentiable in 'llo and: . . . 
Q o . = ~p D.y~('ll ) 

'll ,J i 0°,i J 0 

where D. 
J 

indicates partial derivative w.r.t. 
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B.1 Introduction 

In [7] Le Cam introduced the notion of e-deficiency of one 

experiment relative to another. This generalized the concept of 

"being more informative" which was introduced by Bohnenblust 9 

Shapley, and Sherman and may be found in Blackwell (1]. "Being 

more informative for k-decision problems" was introduced by 

Blackwell in [2]. The hybrid of "e-deficiency fork-decision 

problems" was considered by the author in [15]. 

An experiment will here be defined as a pair (;= ((x,~) , 

(P 9:e E8)) where (x,Jr) is a measurable space and (P 9:e E8) 

is a family of probability measures on (xjJt) . The set e --

the parameter set of~ will be assumed fixed, but arbitrary. 

Definition. 

( Q e ~ 9 E e)) be two experiments with the same par arne ter set ® and 

let e .... s e be a non-negative function on ® 

an integer) • 

Then we shall say that g is e-deficient 

(for k-decision problems*) if to each decision 

(and let k> 2 

relative to 1=" 
space** (D,/) 

be 

where c( is finite (where ~ contains 2k sets), every bounded 

loss-function*** (A,d) ~ w8 (d) on ex D and every risk func­

tion r obtainable in 1: there is a risk function r' obtain­

able in (5 so that 

r' (e) ,:: r ( q) + e 8 IIW 8!1 , 9 E e where !IW 9 II = supd 1 W 9 (d) I ; e E ® 

* vVhen k = 2: testing problems. 

**· bl 1.e., a measura e space. 

* ** It is always to be understood that d .... w9(d) is 
measureable for each 9 • 
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Let 

be two experiments such that~ 

(i) P8:eEe is dominated 

(ii) ~ is a Borel-sub set of a Polish space and S1 is the class 

of Borel sub sets of ~ • 

It follows from theorem 3 in Le Cam's paper [7] that ~is 
0-

e:-deficient w.r. t. ~- if and only if there is a randomization M 

from (x, ~) to (~, S"J) so that !IP9wr-Q 9!! ,::: e: 8 ; 9 E A • (An al­

ternative proof of this result is given in section 3.) 

Many of the results on comparison of experiments generalizes 

without difficulties to situations where the basic measures are 

only required to be finite. (Here as elsewhere in this paper a 

measure may be "non negative", 11 non positive" or neither. The 

notion of a signed measure vvill not be used.) 

As an example of a situation where such "experiments" natur­

ally enter consider two experiments ;§ = ( ( x ,~); 1-le: e E e) and 

1' = ( ( ~ '')1)' Ve: e E e) } a decision space (IJ, I) 9 a loss function 

W and two functions a and b on e . Then we may ask: does 

there to any risk function s obtainable in ~ correspond a risk 

function r obtainable in (§ so that r( 8) .::: ae s (e) +be IIW e II 

e E ® ? It turns out - under regularity conditions - that a 

necessary and sufficient condition is the existence of a randomi-

zation M from (x,li) to (~ ' S1) so that IIPif1-ae Qell ~be; 

9 E e • Considering e ..... a 
8 

r(e) as a "risk function" relative 

to the "experiment" ((~,)~), (a 8Q9; e EB)) we see that this is 

essentially the criterion of theorem 3 in Le Cam's paper [7]. 

In this paper measures which are not probability measures 

are derived from probability measures by differentiation. 
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A pseudo experiment G will here be defined as a pair 

G = ( ( x~ ~), u 8 : 9 E e) where~tA) is a measurable space and 

~-t 9 : 9 E e is a family of finite measures on ( x, lo/) • We will 

stretch the usual terminology and call (x,Jt) the sample space 

of ~ and e the parameter set of g . A pseudo experiment 

with a two point parameter set will be called a pseudo dichotomy. 

An experiment (A dichotomy), ~, is a pseudo experiment (dicho­

tomy) ~ = ((x,Jc¥), ~-t 8 :e E e) where the measures ~-tA:El E e are 

probability measures. 

Some of the results on pseudo experiments are quite straight 

forward generalizations of those in D5]. This is, in particular, 

the case for most of the results included in this appendix. Other 

results, however, do not have the generalizations which may appear 

natural. As an example we mention the result (proved in D5]) 

that two experiments are equivalent provided they are equivalent 

for testing problems. We shall see in the next section that equi­

valence for testing problems does not - in general - imply equi-

valence for pseudo experiments. 

The definition of e:-deficiency is extended as f-ollows: 

Definition. Let 
('>. 

5- = ( ( fiJ, S'1), \) 9: A E e)) be pseudo experiments with the same 

parameter set and let 

[ 0 ,co]. We shall say that 

e: ; 9 E 8 be a function from 8 

i! is e:-deficient w.r. t. 1= 
to 

(for k-

decision problems if to each measurable space (D,t/) where 

# (;/ < ::o (where 1i !/ = 2k), to each family W 8: 9 E e of measurable 

functions on D , and each randomization a from (~ , SJ) to 

(D,~) there is a randomization p from (x,~) to (D,C{) so 

that 
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If c; is 0-deficient relative to ~ (for k-decision pro-

) c& '1::'" blems then we shall say that 0 is more informative than -:r 

( for k-decision problems) and write this G ~ 1= ( · /f·/r ) . 
k 

If G 2: ~ ( ~ ~ '".5= ) and ~ ~ ~ ( ~ > ~ ) then we shall 
~ ~k k 

say that ~ and ~~ are equivalent (for k-decision problems) and 

write this ~ - ~ ( ~ k ~ ) . By proposition 8 in [15] and 

by weak compactness c;: ~ ~ <=> ~ "'~ <=> ••• <=> G-~ 
2 3 

provided G; and )r are dominated experiments. 

The greatest lower bound of all constants e such that ~ 
is rc:-

e-deficient relative to J for k-decision problems will be 

denoted by 

denoted by 

6k(~,~) and max [5k(ff~S':), 6k(~,G) will be 

llk( ~ '~) • 

e such that G 
is by 6 ( g , ~ ) and 

ll( t,~) . 

The greatest lower bound of all constants 
()... 

e-deficient relative to 5- will be denoted 

max will be denoted by 

Proposition B.1.1 

~ = ( ( ":1, S'b), ( v 9 : A E 9)) be two pseudo experiments, and let e 

be a non negative function on 9 • Then e is e-deficient 

w.r.t. ~for k decision problems provided Gf is e deficient 

w.r.t. ~ for k+1 decision problems. If cr is e-deficient 

w.r.t. ~ for k decision problems, then e 9 ~ lu 8(x)- v 9 (j'}) I. 

c; is e r-_. !1-l 9 ( x) - v 9 CAj-) l deficient w. r. t. ·j:- for 1 decision 

problems and '& is e _. ll11el1 + llv9 1l deficient w.r.t. ~ for 

k- decision proble~_!.:?.E_k = 1 2 2,... • 

Proof: Suppose {! is €-deficient w.r. t. ~ for k+1 decision 

problems. Put Dk = [1,2poqk} and Dk+1 = [ 1 '2' ••• 'k+ 1 }. Let 

w • e .:::: e '8" ~ 
be a family of functions on D, and let fJ be a random-

.t( 

ization from (~, q) to Dk • Extend we to Dk+1 by writing 
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w9(k+1) = w9(k) • By assumption there is a randomization 

from (x,Jt) to Dk+ 1 so that 

-p 

e:-deficiency for k-decision problems follows now since ~ 9 pW 8 = 

~ 8 p W9 where p(k!x) = p(k!x) + p(k+1jx); x E X and p(k' lx) = 

p(k' !x); k' ~ k, X E X • 

Suppose ~ is e-definment <1::" vv-.r.t. "'J for k-decision pro-

blems. Inserting Wq = 1 and W A = -1 in the inequalities ap-,, 

pearing in the definitions of e:-deficiency we get; respectively 

e 8 2: !-! 8CxJ- v 8("f) and e: 9 > v 8(":t)- u 8(x) • Let (D,:/) 

measurable space and let cr and p be randomizations to 

from: respectively; (x,~) and (~,),b) • Finally let ~w 8\ be 

any family of (real valued) measureable functions on (D, :f) • 
Then: 

1-1 e P we = v e cr we + l.l e P w 8 - v 8 cr w 9 < v 9 cr we +(II 1-lell +live II) llw ell • 

0 

If ~ , 1:' and d are pseudo experiments 

then: 

okc6; Cff < ok( g,1-) + ok( ~,~) k = 1,2, ••• , -
L\k( ~ 9 ~) < 6k ( ~ 9 ~ ) + L\k ( } 9 ~ ) k = 1,2, ••• , -
6k(c;,~) = L\k( ~' f:) = 0 k = 1,2, ••• , 

6k( ~ 'rs:-) = L\k(~,~) k = 1,2, ••• , 

ok(~/~) '~ ( ~ ,~~) as k ->(X), 
~ 

L\k( g, 1;) 'f 6( g, t) as k ->CD, 

6(~,~) ~ 6(~,~)+6('5-;~) ' 



and 

6 ( t ' cJ ) .:: 6 ( * ' J:") + 6 ( ~ ' ~ ) ' 

o(G,~) = 6(~,~) = o, 

L\ ( ~ ' ~) ;:: Li ( ~' ~ ) 

o1 c ~, CCj ) = 61 c ~, T) = s~p I~ 9 c x) - v 8 c~ I , 

B. 1. 6 
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B.2 Finite parameter space 

All pseudo experiments considered in this section are assumed 

to have the same finite paramGter space e. (Dk,~k); k = 1,2, •• 

will denote the decision space where Dk = [1, ••• ,k} and (/ k 

is the class of subsets of Dk. If G= ((x,J:r),(u 9:eEe)) and 

is a sub linear function on e R then the integral 

by we~) • If Jw(d~ 9/d~!u 8 1; 8 E e)d ~ !~ 0 ! will be denoted 

G = ( ( x ~ J¥), ( u A: ~E 6) ) and ~ 9 (A) = J f 8d -r 

non negative measure -r on Jcl.. then ljl ( ~ ) = 

A EJ4,;9E@ for some 

for 
r 
j¢(f9 ; e E e)d-r 

,,, R@ • any sub linear function ~ on -

Let g- = ((x,Jt), (~ 9 : e E e)) and ~ = ((~,5:>),(v 9 :eEe )) 
be two pseudo experiments, and let e be a function from 9 to 

[0 p:)] • 

The basic result on e:-deficiency is: 

Theorem B.2.1 

The following conditions are all equivalent: 

(i) g is e:-deficient w.r.t. for k-decision problems 

(ii) To each randomization cr from CAj,S'"b) to (Dk,t5/k) , 

and to each family W 9: e E 9 of real valued functions on 

Dk corresponds a randomization p from (x,Jr) to 

(Dk, ~) so that: 

~u 9 pW 8 .:: ~ v9 crw 8 + ~ e 8 i!W81! • 

(iii) To each randomization a from (~ ,Sj) to (Dk' ~) 
corresponds a randomization p from (x,Jf) to (Dk, d() 

so that: 
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(iv)* w( ~) .::: II!(~)-~ e:e max{\jl(-ee) ,\jl(ee) J for any sub linear 

function w on R8 which is the maximum of k homogen-

uous linear functions. 

Remark If 6 1 (~,~) = 0 then (iv) is equivalent with: 

( i v' ) w (?! ) .?: w ( ?') - ~ ~e:8(t~~ ( e 9 ) + 1Jr ( -e 8 )) for any sub linear 

function 1l.r on R8 which is the maximum of k homogenous 
linear functions. 

Demonstration: Clearly (iv') implies (iv) and (iv) for 

x f'- w ( x) - t ~ ( II! ( e 8 ) - w ( e 8 ) ) x 8 imp 1 i e a ( i v ' ) for w • 

Note that the set of sub linear functions 1jl which satisfies 

(iv') is a cone. 

Proof of the theorem: 

Suppose (ii) holds and let :; be a randomization from 

(~,')1) to (Dk,/Jk) • Then: 

_ maximum min L: [f.1 8pW 8-v 8crW 8-e: 8 11W 811J < 0 • 
W:llw8!!,::1;eEe P e · 

It follows by weak compactness, - since ~ is affine in p 
8 

concave in W that maximum and minimum may be interchanged 

i.e. p may be chosen independently of W . This implies 

ll!..t 8P-v 8crl! .:: e: 8 ; e E e . 

and 

Hence ( ii) => (iii). It follows - since (iii) => ( i) => ( ii) 

is trivial - that (i) <=> (ii) <=> (iii). 

with -W in (ii) we 

max ~f.lePW9 > -p 

for each 9 E t3 

e 8 ( 8' ) = 1 or 

get: 

max ~ v edltv a - ~ e: e \lw e !i o e v e ,, ·' 

we define the vector e 8 
o as e' = e or e' I e 

Interchanging w 

by: 
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0 
An immediate consequence is: 

Corollary B.2.2 

~is e:-deficient w.r.t. ~ if and only if 1jr(.{!);:: 

~('}')- ~ e: 9 max(*(e 8),1J!(e 8)} for any sub linear function 1jr on R9 • 

Remark 

If 61 ( ~, f?;) = 0 then the inequality in corollary B. 2. 2 

may be replaced by: 

¢ ( ~) ~ w ( ~) -t ~ e: 8 ( 1J! (-e 8 ) + 1J! ( e 8 )) 

Corollary B.2.3 

Suppose 6 1 ( ~,!) = 0 Then ~ is e-deficient w.r. t~ 
for 2 decision problems if and only if 

ll~aeJ.le!! ~ l!~aeve\1-~e:elae! 

for any a E R8 • 

Proof: 

It suffices, in (iv') to consider functions $ of the form 

Theorem B.2.4 

Suppose 8 = (1,2},~1 ~ o,v1 ~ 0 and that 
c-

Then c; is e:-deficient w.r.t. :.S. if and only 

ficient w.r.t. ~ for 2 decision problems. 

Proof: 

0 

61<G',1-) 
if G is 

= 0 . 

e:-de-

Suppose 
cg 
G is e:-deficient w.r.t~ ~ for 2 decision problems. 



$: x - max[aix1 +bix2; i = 1, •• .,k} 

assume that there is a s so that 

B.2.4 

By rearranging we may 

~ ( 1 , x2 ) = max [ ai + b i x2 ; i = 1 , 2 , ••• , s } where 

the representation on the right is minimal in the sense that for 

each i < s there is a X0 > 0 
c::... 

so that a. + b .x2 > 
J. J. 

max(aj + bjx2 ; j I i, 1 < j .:::: s} • Then the numbers b1 ,b2 , ••• ,bs 

are all distinct and we may without loss of generality- assume 

and 

as 

Then- by the remark after theorem B.2.1 

1~((;) = $'(~) ~ ~(~)-t~e 9 (~(e 8 )+~(-e 8 )) = 

wet·)-~~ e 8 (1vCe 9) + ~(-e 9 )) ~ o/C1") -t~~(~Ce 8 )+w(-e 9 )) • 

0 
Definitions 

A standard pseudo experiment is 

form ((K, <)J),(S 8 ~ 9 E9 )) where K = 
S:b is the class of Borel sub sets of 

each e- a version of dSf11d~ !s8!. 

a pseudo experiment of the 

[x~ x ERe and ~lx 9 ! = 1} , 

K and X ~- x 8 is - for 

A finite non negative measure on K will* be called a stan-

dard measure. 

If G = ( Cx}¥ ) 'Cue~ e E e)) is a pseudo experiment then the 

standard pseudo experiment of ~ is the standard pseudo experi-

*) If A is some Borel sub set of a Polish space then "a measure 
on A" is - if not otherwice stated - synonymus with "a measure 
on the class of Borel sub sets of A". 
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ment A 

G = ((K,S'1),(s 9:e EEl)) 

where for each 8 - se is the measure on K induced by the 

map : x ... [d~-t~/d ~ ll-le I Jx ; 9 E 8 from (X, Jt ~ 1-1 e) to K • The 

standard measure of the pseudo experiment G= ((x,Jr),(!-1 8 :eEe)) 
I is the standard measure induced by the map : x ... [ du 9;d ~ I w. 9! ]x ; 

8 E@ from (x,J\t,~!w. 9 !) to K • 

The standard measure of the standard pseudo experiment 

is the measure LISA! e . and a standard pseudo 

experiment is determined by its standard measure. Any standard 

measure is the standard measure of a standard pseudo experiment. 

The standard measure of a pseudo experiment ~ is also the stan­
" 

dard measure of its standard pseudo experiment g. 
! = ~ and 6 ( t', ~ ) = 0 for any pseudo experiment 

Clearly 

~-

Theorem B.2.5 

Proof: 

<= is clear so suppose 6 ( t, t) = 0 • We may without 

loss of generality assume that ~ and ~ are standard pseudo 

experiments with - respectively - standard measures S and T • 

Let V be the set of all functions on K which are of the form 

w 1 -\~ 2 where ~ 1 and ljr 2 are sub linear functions on R8 • It 

is easily seen that V is a vector lattice coutaining the con­

stants. [If 11r 1 , 1!r 2 are real numbers then lw 1-w 2 ! = 2 max{~1 ,1j12 } 

- (\~ 1 +¢ 2 )- thus It! EV when fEV]. It follows from the formu­

la t 2 = max 2a(f-a) + a2 that the closure V of V for uniform 
a 

convergence is an algebra which obviously diStinguish points in K • 
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-Hence-byibe Stone-Weierstrass approximation theorem - V = C(K) • 

Clearly S(f) = T(f) for any f E V. It follows that S(f)=T(f) 

when f E C(K) i.e. S = T • 

Example B.2.6 

Suppose 8 = (1,2} 

S and T on K by: 

Define standard probability measures 

s ( ( ( 0' 1)}) = s ( ( ( 1 9 0) 1) = s ( [ ( -L -t) })/2= ~ = T ( [ ( L t)}) /2 = 

T([(-1,0)}) = T(((0,-1)1) . 

0 

Let G = ( ( X 7 ~) , ( 1-1 1 , 1-1 2 ) ) and ~ = ( ( I~ , )'1 ) , ( v 1 , v 2 ) ) be 

pseudo experiments with, respectively, standard measures S and 

T • Then: 

~.(~) = v.(t\A.) = 0; i = 1,2 
l l (} 

and 

J!ax1+bx2 1s(dx) = !al/4+ !bl/4+ la+bl/4 = Jlax1+bx2 !T(dx) 

It follows that b. 2 ( t , ~) = 0 • ~ and ~ are, however, 

not equivalent since: 

and 

..l.. 
2 

Jmax(x1 ,x2 ,o}T(dx) = ~ 

so that t~ 3 ( (;, ~) ~ o3 ( g, ~) ~ ~ • 

It follows that equivalence for testing problems does not -

even for pseudo dichotomies - imply equivalence. This demonstra-

tes that 

(i) the statement obtained from theorem B.2.4 by deleting the 

conditions u1 ~ 0 , v1 ~ 0 is wrong. 
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~d 

(ii) ~ in theorem B.2.5 can not - even if we restrict ourselves 

to pseudo dichotomies - be replaced by ~ 2 • 

If we restrict ourselves to experiments, however, then the 

conditions ~ 1 ~ 0 j ~ 1 > 0 in theorem B.2.4 become superfluous 

and it was shown in ~~ that ~2 equivalence for experiments 

implied ~ equivalence. 
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The fact that ~ 2 equivalence for experiments implies 

equivalence is a particular case of: 

Theorem B.2.7 

Let G= ( ( x)}) , 1-1 9 : e E 'ED) and ~= ((~,53), \1 9:9 E S) 

be two pseudo experiments. 

Suppose there are points eo, 91 in ® so that 

(i) ~-'a ~ 0 
0 

(ii) l-1a >> ~-'e when 9 I 9 1 
0 

Then ~( t,§') = 0 provided 62( ;§, ~) = 0 . 

Proof~ 

Let ~ = ( s8 : 8 E ~) and t = ( T9 : 9 E §) be the standard 

pseudo experiments of - respectively ~· and ~. Then S = ~IT 9 1 
are, respectively, the standard measures of (ff and £- . Clearly 

(i) and (ii) hold for ~ and #. Suppose r::, 2 (t,~) = 0. 
"i\ ~" 

Then ~2 ( t, ~) = 0. We must show that 6( G-, ~) = 0. By assump-: 

tion: 

Taking - respectively - the right hand and the left hand partial 

derivative w.r.t. ae we get: 

(§§) J xe:S( dx) + Jx9+ S(dx) = same expression in T 

l:a9xe>O l:a8x 8=o 

(§§§) Jx9S(dx) + Jx9- S(dx) = same expression in T 

l:a9x8>o l:a9x8= o 



By 62 equivalence: 

Jx9- T(dx) = Jx8- S(dx) = 0. Hence T9 ~ o. 
0 0 0 

Subtraction of (§§§) from (§§) yields: 

In particular 

I lxel T(dx) = s I xe \ S(dx) = 0 when e I e1 ' 
xff =0 

0 
xe =0 

0 

It follows that T >> 'T1 when e I e1 . 
eo ~a 

By ( § §): 

sa (r: ae(xA/xe ) > ae = same expression in T 
o ele 0 · o 0 

for all a E R@ 
• It follows that X fl..- X /x e e0 

; e I 80 

has the same distribution under se as under Te . i.e. 
' 0 0 

s9 = T8 • Hence S and T are equal on (x:x9 > 0) , 
0 0 @ 

and we have seen that 

xe = 0 a.e. s + T on (x:xe = 0) when e I 91 • 
0 

It follows that the restrictions of S and T to (x:x9 = 0} 
0 

are consentrated on the two point set [v,w) where v8 = w9 = 0 

when e I e1 and ve = - we = 1 • Now 
1 1 

S((v}) +S([w))= S(x9 = o) = Us\\ - S(x9 > 0) 
0 0 

= (by 62 equivalence) \IT\\ - T(x8 > o) = T([v} + T ( (w) ) 
0 
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and 
S([v] - S((w}) = s xe 1 S(dx) = s xe S(dx) - J xe1 S(dx) 

xe =0 
1 xe >0 

0 0 

= (by ~1 equivalence) Jx9 T(dx) - J xe 1 T(dx) 
1 xe >0 

0 

= T((v}) + T((w}). 

It follows that S((v}) = T((v}) and S((w}) = T((w}). 

Example B.2.8. 

Let IJO' IJ.1' IJ2' vo, \) 1 , \)2 be given by the matrix: 

1 2 3 4 

Uo 0 0 0 1 

0 1 1 0 IJ.1 4 -4 
1 0 --it 0 \.L2 4 

\)0 0 0 0 1 

0 1 1 0 \11 -4 4 
1 0 1 0 \)2 -4 4 

Then : llao!J.o + a1u 1 + a21J211 = laol + \la1 !..!1 + a21J 2\1 

= lao I + tla1v1 + a2v21l = I lao \1 o + a 1v1 + a2v2ll 

and \.Li(x) = vi(x) ; i = 0,1,2. It follows 

This show that assumption (ii) can not be deleted in proposition R~~ 
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Another situation in which it is permissible to conclude 

6 equivalence from 62 equivalence is the case of ordered pseudo 

experiments. This is the content of: 

Theorem B.2.9 

Let ~ and ~ be pseudo experiments. Then b( g ,~) = 0 

if and only if 6 ( ~, ~) = 6 2 ( t , ~) = 0. 

Proof: 

The "only if" is obvious so suppose o(g ,~) = 6 2 (~ ,~)= 0. 

Let S and T be the standard measures of, respectively, ~and~ 

1 E '1'. 1 

Hence: 

By 6 2 equivalence 

and b ~ 0. Then 

s~dS = J~rdT when 1j.r E '1' 2• Let 1lf E '1', 

~b = Ovlvbw E '1' and ~ 0 = 1+ E '1' 2 • 

s(~b-~ 0 )/bdS = (s~bdS- s~ 0dS)/b ~ (J~bdT- J~ 0dT)/b 

= s (cpb ~o )/bdT. 

b ~ 0 yields: 

Ct) J w+ds ~ J w+dT 
1~0 1~0 

The derivation of (§§) and (§§§) in the proof of theorem B.2.7 

holds without changes. By subtracting (§§§) from (§§) we get: 

Ctt) s !x9 1 S(dx) = J !x9 \ T(dx) 
1=0 1=0 

Substituting lx9 1 for • in (fl we get: 

J lx8 l S(dx) ~ J lx9 1 T(dx) 
1&0 1~0 
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Hence - by <tt) : 

(*) J \x8 1 S(dx) > J lx9 1 T(dx) 
1<0 1<0 

Replacement of 1 with -1 yields 

(**) J lx8 1 S(dx) > J jx8 1 T(dx). 
1>0 1>0 

By 62 equivalence the sum, J lx8 1 S(dx), of the left hand 

sides of <tt), (*) and (**) are equal to the sum, J lx6 1 T(dx), 

of the right hand sides of the same inequalities. It follows 

that the inequalities in (*) and (**) may be replaced by equali-

ties, i.e. 

J lx8 1 dS = J lx91 dT for any e E e and any 1 E ~ 1 • 
1<0 1<0 

Combining this with (ft) we find that: 

J lx6 1 dS = J lx9 1 dT for any e E e and any 1 E ~ 1 • 
1~0 1~0 

Substituting and in Ct) we get: 

J x 9+ dS ~ s x8+ dT 
1~0 l:fO 

and 

J x 8-as ~ J x 8-dT. 
1~0 1~0 

Hence - since the sum of the left hand sides equals the sum of 

the right hand sides: 
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and s 9 -(l~o) = T 9 -(l~O) 
0 0 

for any 90 E ®. 

It follows that for any a E R9 : 

and 

on (x : x9 < 0 ; x E K} -
0 

s + = T + and se- = Te-· 
6:0 eo 0 0 

It follows that se = T9 for any 9 E 8. 
D 0 

0 0 

Somewhat surprisingly ~3 equivalence will always imply 

~ equivalence. 

Theorem B.2.10. Let ~ and 
~ 

~ be speudo experiments. Then 

Proof: 

We use the notations of the proof of theorem B.2.9. 

If 11r E '1' 1 then cpb E '1:' 3 • Hence (t) holds with n>n replaced 

by "-" i.e.: 

s W+ dS = s ¢+ dT 

1~0 1;o 
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Substituting xe and -x for w we get: 
0 eo 

s + 
eo 

(1~0) = T + 
eo 

(1:?0) 

and s -
eo 

(1~0) = T -
eo 

( 1;o). 

The final argument is the same as in the proof of theorem B.2.9. 

Here is the factorization criterion for ~ sufficiency: 

Theorem B.2.11. 

Let ~ = ((x,~),(l.le: e E SJ)) be a pseudo experiment 

and let S~ be a sub a-algebra of Jt . Denote by ~ the 
0... 

0 

pseudo experiment 5 = ( ( x, ~)),Cue S2J; 9 E @)) where the sub-

script S1> indicates restriction to S") • The following condi-

tions are equivalent: 

(ii) due/d!: l!Jel may- for each 9 -be specified 
e 

S'J measurable. 

In order to prove the theorem we need: 

Proposition B.2.10. 

Let X be an integrable random variable on a probability 

space (x,Jo/ ,P) and let ~be a sub a-algebra of~ • Then 

EIXI = E\E~XI if and only if there exist a s'b measurable 

random variable Y so that: 

I Yl = 1 a.s p 

XY = lXI a.s P 
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Proof: 

Suppose the eondition hold. Then 

E\E)~XI = EIE~Y\X\1 = EIYE):,IXI I= EE~~IX\ = E\XI. To prove 

the converse, suppose E\XI = E\E')bX\. Then E[ e:ixl- \E ~XI]= 0 

)~I I \ 'J'"b I · s~+ ~-so that E X = E X a.s , ~.e. E X + E X = 

I ~1_, + 'J~ -, S1 -E X - E X a.s. Put Y = 1 on E X = 0 and Y = -1 

'5h -on E X > 0. Then 

Sj ~'b J x- dP = I E x- dP = o = I E x+ dP = I x+ dP. It 

Y=1 Y=1 Y=-1 Y=-1 

follows that X~ 0 a.s on [Y = 1] and that X~ 0 a.s 

on Y = -1. 0 

Proof of theorem B.2.11: (ii) => (i) is clear. 

Suppose 6(~ ,~) = 0. We may, without loss of generality, 

assume o = ~ llu 8 \l > 0. Let E denote expectation w.r.t. 

rr = c-1 ~lu 9 1. We must show that f 8 = d~J 9 /drr may be specified 
9 

$b measurable. Note that ~ [f9 1 = c ; a.s rr. 

By 6 equivalence S = T where S and T are, respectively 

the standard measures of ~ and ~ • Let h be bounded 

measurable on R9 • Then 

Now 

Jh(f9 : e E e)drr = Jc- 1 h(cdu 8/d~ 1~ 9 \ ; e E e)d~ \u 91 

= Ic-1h(cx9 : 9 E 9)dS = Jc-1h(cx9 : 9 E ~)dT 

ge = dua~3 /drrf.,:; 

Hence \ g 9 I = d 1~-t 9 )':> I d rr ~':) 
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and 

By 62 equivalence 

It follows from proposition B.2.12 that lf9 l = h 9f 9 

Hence ~ I ~ e S'11 = err 

lh8 ! = 1. Hence 

'Jb 
= ~lh8 \E 9 lt8 \ = 

so that: 

Jh(f9 : e E B)dn = Jh(g9 : e E 9)drr. 

In particular 

By proposition 5.7 in t C 1 

Various convergence criterions are listed in: 

Theorem B.2.13. 

I] 

Let ~, , ~1 , ~, .•• be pseudo experiments with respecti-

vely, standard measures Then * the following 

conditions are equivalent: 

*) If ~ and v are finite measures on R8 then the Levy 

distance A(~,v) is defined as inf[h: h > 0 and 

~(II] - oo, x 8-h[) - h ~ \J(~] - oo, x 9[) ~ ~(~] - oo, x 9 + h[ )+ h; 

x E R9 }. A convergence is the same as weak* convergence on 

(R®) i.e. A (~J,n,!-1) = 0 if and only if IJ.n(f) ... u(f) when f is 

bounded and continuous. 
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(i) 

(ii) 

(iii) 

lim 11 ( G , t) = o 
n-o,:) n 

lim t. 3 ( ~ n, t ) = 0 
n'"'O:) 

lim 1\.(Sn,S) = 0. 
n-co 

If {! satisfies ( i) and ( ii) in theorem B. 2. 7 then 

lim ~( ~ n, ~ ) = 0 if and only if lim ~ 2 ( ~n' f,) = 0. This 
n-co n-rco 

hold also when either ~ n ~ ~ for all n or tn ~ 15 for all n. 

Proof. 

1°. Suppose 1\.(Sn,S) ~ 0. Let i be the class of restrictions 

w/K where 1~ E If satisfies 

Then Q is a compact subset of C(K) and Sn; n = 1,2, ••• 

are - since sup!ls 1\ < oo - uniformly equicontinuous on 2. By 
n n 

Ascoli's theorem: l~m Sn(~), uniformly in ~· ~convergence 

follows now from corollary B.2.2. 

that s . 
n' n = 1,2 ••• is conditionally fl. compact. fl. conver-

gence follows now from 1° and theorem B.2.10. 

3°. The last statements follows easily from theorem B.2.7 

and theorem B.2.9. 
0 

Corollary B.2.14. 

The pseudometrics t.1 , ~ 2 , ••• , 6 are complete. 

Proof: 

Let d denote one of the pseudometrics 6 2 , t. 3, ••• , t.. 
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Consider a sequence ~ 1 , ~2 ,... such that d( cG m, ~n) ... 0 

m,n ... (X). Let Sn be the standard measure of Gn· Then 

as 

!ISm\1- I!Snll ... 0 as m,n ... co so that sgpi!Sn\1 <co. It follows 

that there is a sub sequence Sn, and a S so that A(Srr1 S) -o. 
Then- by theorem B.2.13 - d(~n' ~) ... 0. The proof for b1 

is trivial. [} 

Corollary I} • 2.15. 

Let ~(k) denote one of the pseudometrics ~ 2 , ~3 , ••• , ~. 

A family tt == ( (xt' Jtt) ; 1-Let: e E ®) ; t E T of pseudo experi-

ments is ~(k) conditionally compact if and only if 

s~p 1!1-1 8 t II < co ; e E e . 

Proof: 

Follows directly from theorem B.2.13. 

Generalizing theorem B .2.11. to the asymptotic case we get: 

Theorem B.2.16. 

Let ~n = ((xn,Jrn; 1-Len'e E e) ; n == 1,2, ••• be a sequence 

of pseudo experiments. For each n, let )3n be a sub cr algebra 

of Jl.-n' and let ~ n denote the restriction of ~ n to S'J> n. 

Let Tin n == 1,2 ••• be any probability measure on Jtn such 

that Expectations w.~t will be written 

whose Radon Nikodym derivative w.r.t 

will be denoted by 

Put <fn == ( (x11 , J} n), ~en ; 8 E a. Finally the standard measures 

of G n and~ n will be denoted by, respectively, S11 and T11 • 
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Then t:. ( t n, ~ n) = 0 ; n = 1 , 2, e ••• 

Suppose ~ 1 , ~ 2 ,... are conditionally compact. ~ Then 1 , 

are conditionally compact and the follwing conditions are equi­

valent: 

(i) 

(ii) 

(iii) 

(iv) 

lim t:,( ~ & ) = 0 n' n n-co 

lim- t:.2(Gn,&-n) = 0 
n-co 

lim 
n~ 

111-Len - .V en II = o ; e E e 

(v) lim 
n-co 

A[J.Cdi-Len/dnn; e E e), £ca.V 9 n/d~-Ln; e E ®)] = o .. 

Remark. 

It will follow from theorem .B. 3.10 that (i) -provided 

i 1 , ~2 , ••• are conditionally compact- is equivalent with: 

( i I ) 

Proof of the theorem: 

1°. Put fen= duen/dnn and is 

the restriction of 1-Len to )1 and nn - by abuse of notations -

to $3 n. is the restriction of 
S3 

Then gen = En n fen = 

and i \fenl = i nuenU a.s. TTn· 

Let Bn E ~n· Then ~en(Bn) = i g9ndnn = v9n(Bn). 
n . 

By theorem B .. 2.11, t:.( ~n' ~ n) = 0 ; n= 1,2, ••• 

2°. Suppose (! 1 , (; 2 , ••• are conditionally compact. Then -

I 
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are conditionally compact. (i) <=> 

(ii) <=> (iii) follows from theorem B.2.13. (iv) <=> (v) follows 

by applying proposition 5, 7 in t C 1 to linear combinations of 

densities. (iv) => (i) follows from part 1°. It remains to 

show that (iii) => (v). Suppose (iii) holds. Then- as we have 

seen - (ii) and (i) hold. We may - without loss of generality 

assume !5.( ~ n' ~) ... 0 and !5.( ~n' ~) - 0 where ~ has standard 

measure s. We have TTn(lgenl ~ M) ~ llvenll/M ~ ll!Jenll/M and 

TTn(lfenl ~ M) ~ \1~.-Lenll/M. It follows that we may- without loss of 

generality - assume that J: (fn) ... P and that Jl (gn) ... Q 
TTn TTn 

where 

that 

fn=fe,n 

P = Q. Let 

; 8 E e and gn = ge,n ; 9 E @. We must show 

'!' E 1jr. Then 

JwdP = lim J$(f )dTT = lim JwdS = Jwds n n n n n 

= lim s~dTn = lim J$(g )dTT = JwdQ. 
n n n n 

Suppose Hsll > o and let hE C(RIHJ)~ Then 

JhdP = l~m Jh(fn)dTTn 

= l~m Jh~dllen/d~!Jen)\lSn\l; 9 E ® ]d~ flolenl/\ISn\1 

= l~m Jh(x9\1Sn\\; 9 E 14))dSn/I\Sn\l = Jh(x8 \lS\1;8E®dS/\1S\I. 

Hence p = [ cxns \\) when £ex) = s/1\s\\. In particular 

P(I: !X9! = l\S\l = 1, where x9(x) = x9 e ® ; E 9, x E R • 
9 

62 convergence imply: 

Enlfanl - Enlganl - 0; 9 E 9 . 



It follows that 

E IE~n L: 
n e lfenl 

S1 
E (E n L: I f9n1 n 8 

= ~ Enlfenl - L: 
9 

- L: I genii = 
9 

- L: I gen I ) = 
9 

Enlgenl .... 0 • 

a.s. TI -n 
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=lim d[ (~lg9 I)= the one point distribution 
n rrn B n 

in \IS\1, so that Q(~lx9 j = \\S\1) = 1. 

Put P = clp(X/\\S\\) and Q = £Q(X/\1SI\). 
,... ,... 

Then P and Q are 

standard (probability)measures and 

J w dP = J ~ c x/ H s I\) P c dx) = II s 11-1 J w dP 

= 1\SI\-1 J 1(1dQ = jw (x/1\s\l)dQ = J wdQ~ ,... "" 
Hence P = Q 

so that P = Q • 

and L:lg9 I .... 0; A n 

so that P = Q = the one point distribution in 0 E R9 • D 
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B.3 General paramete~~~ 

Problems on infinite parameter spaces may occasionally be 

reduced to problems on finite parameter spaces by: 

Proposition B.3.1 

Let (! = (x,J'4-),(u 8:e E®)) and ):-= ((Aj, S!J),(v 8:e EB)) 

where ! ll e I : e E e 

tion on 8 • Then 

is dominated, Let e be a non-negative func-

~ is c:-e-deficient w.r.t. J (for k-decision 

problems) if and only if ((x,~ )~(!J. 9 :e EF)) is (e 8:e EF) de­

ficient w.r.t. ((~ ,~ ),(v 9 :e EF)) (fork-decision problems) 

for all finite non-empty sub sets F of 8 • 

Proof: 

The condition is clearly sufficient so suppose that the con-

dition holds. It suffices to do the proof in the case of k-de­

cision problems. Let D be a k-point set and let rJ' be the 

class of all sub sets of D . Let cr be a randomization from 

to (D,~ ) • 

empty sub set 

(D~d) so that 

F of 

By assumption there is for each finite non-

8 a randomization pF from (x,Jt) to 

Let rr be any probability measure dominating I u 9 1: 9 E e . 
F' By weak compactness there is a sub set p and a p so that 

F' ~. 
p _, p weakly [ I.J1 (X, v'.Y, rr)] • It follows that 

0 

We proved in fact a little more and this is the content of 

the next theorem. 
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Theorem B.3.2 

Let ~ = ( ( x , !f) , ( ~ 9 : e E e) ) and t = ( ( ~ , )1,) ; ( v 8 : e E e) ) 

where ~e: 9 E 8 is dominated. Let e: be a non-negative function 

on 8 let # D = k and let ()' be the class of all sub sets of 

D • 

Then ~ is e:-deficient w.r,t. for k-decision problems 

if and only if to each randomization cr from (~,<;b) to (D,1) 

there is a randomization p from (x,J}) to ( D , tf ) so that : 

The next proposition tells us -- in the case of experiments 

that certain decision spaces are abundant for comparision by 

operational characteristics. 

Proposition B.3.~ 

Let ~ = ( ( x , flr) , ( ~ 9 : e E e) ) and ~ = ( ( ~ , 51) , ( v 9 : e E e) ) 

be two pseudo experiments and let 9 ... e: e be a non-negative 

function on 8 • Denote by T the collection of decision spaces 

(D,j') having the following property: 

To each randomization cr from (~ ,Sb) to (D, /) there 

is a randomization p from (x,Jt) to (D,f) so that 

!I u p - v all < e: ; · · e e · - e e E e . 

Then; 

(i) If (D,i) is in T and ¢ c s E~ then (So, in So) 
0 

is in T . 
J 

(ii) If (D,/) is in T and (D'' I ) is a measurable space 

such that there exists a bimeasurable bijection D ... D' 

then (D', 1') is in T 
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each randomization cr from (~ , ~) to (D, tJ) , there is a 

randomization p from (x,J}) to (D,df) so that 

If the condition is satisfied and at least one of the mea-

sures v9cr I 0 , then p may be chosen so that ~eP is - for 

each e - in the band generated by V cr• e r:: tp e. -'a. 

Proof: 

The condition is clearly sufficient, so suppose Gr is €­

deficient w.r.t. ~. By proposition B.3.3 we may - without loss 

of generality - assume that D is compact metric. Let rr be a 

probability measure on (x,Jf) which is equivalent with C!~-t 9 !:9Er0) 

and let ~ be a countable dense sub set of C(D). such that: r 

rational, f,g E df => r, !fl ,f+g and rf E 'Je. [We may put 

~= dJ u u. 
i=O l 

where is a dense countable sub set of 

u1 ,u2 , •.• are defined recursively by: 

C(D) and 

Ui+1 = [r1f 1 +r2f 2 +r3 +f;: f 1 ,f2 ,f3 Eui; r 1,r2 and r 3 are 

rationals l]. Let {d 1 , d2 P.. } be dense in D. Put Dk = 

[d1 ,d2 , .•. ,dk1 , and let ~k be the class of all subsets of Dk. 

For each k define fk: D ~ D as follows: Let d E D • Consi­

der the k numbers: distance (d,d1), ••• , distance (d,dk) Let 

i be the unique integer among [1, ••• ,k} such that: 

distance (d,d1 ), ... , distance (d,di_1) >distance (d,di) < 

distance (d,di+1), distance (d,di+2 ), ••• , distance (d,dk) • 

Define fk(d) = d. . Clearly 
l fk is measurable. Let cr be a 

randomization from ( f\j, S1) to (D,cf) . Define the randomiza-

tion crk from (I~ J )'1) to (Dk' ik) by: 
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By theorem B.3.2 there is a randomization pk from (x,Jf) to 

(Dk' ;/k) so that: 

k 
For each f E Jt, 2: ok(d.!·)f(d.),· k = 1.2 .•.• i= 1' 1' 1 ' ' 

has a weakly 

(L1 ( ~, A, n)) convergent sub sequence. By a diagonal process 

(or by Tychonoff's theorem) we may obtain a sub sequence pk" so 

k' 
that .r pk,(dj·)f(d.) converges weakly to a function p(fl·) , 

1=1 1 
for each f E dt. p may be modified so that: 

p ( f+g! • ) = p(f!·)+p(gl·); f,g E "Jf,~ 

p(rf!·) = rp(f!·) f E ~t 

p(1l·) = 1 

P c f I · ) > 0 f E Je, f > 0 -
By continuity- there is for each X E X - a probability 

measure P'C·Ix) on ! so that p(f!x) = p(f!x) f E 'de. 
Since p(f!x) is measureable for each f ~.v -E l.h p defines a ran-

domization from (x,#) to (D, d) • Let f E "Jt. 
Then: 

J ~ r k 
I fd(!-l 8P)- jfd(\.~ 8 cr) 1~1Jfd(~J 9 o) -i~ 1 f(di)(l-lePkt)(d~l + 

k k 
I r: c !.! 9 p k , ) c d .)f c d . ) - r: c v 8 a, , ) c d .)f c d . ) 1 + 
i=1 1 1 i=1 K l 1 

I . ~ ( \) A crk ' ) ( d . ) f ( d . ) - sf d ( \) e a ) I • 1=1 ~ 1 1 

Since, !!f.lePk- 'v19crkll ~ e: 9; 8 E8, the second term to the right 

Of < 1· s < ~ !! f II _ _ "'e·: 1, • Since distance (d,fk(d)) =distance (d,{d1 , •• 

• • ,dk})to and D is compact- distance (d,fk(d)).t,. 0 uniformly 

in d • Hence - since f is uniformly continuous - !!fofk- fll ... 0. 

The last term may be vrritten 
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~ f(d.)(v 8ak,)(d.)= J(fof,_,)d(v 9a) • 
i= 1 1 1 .r ... 

It follows that the last term ~ 0 . 

The first term to the right of <which may be written 

!JCJf(d')p(dd'!·)- ~ f(d.)pk,(d.!·)]d!JAI 
i=1 1 1 ~ 

tends - by weak convergence - to 0 • 

It follows that 

Let us - finally - return to the general case and suppose 

p is a randomization such that !!PeP v 9a 11 ~ e: 8 ; e E 9 • Let 

T be a probability measure on (:0~ rJ) which is equivalent with 

fleP; e E ® and let for each finite measure on cJ , x.' be the 

projection of x. on the band generated by v 8a: 8 E 9 • Let rr 

be a probability measure in the band generated by v 9a: e E 9 • 

Then the map cp: x. .... x.' + [K(:O)- K' (D)]rr maps L1(T) into 

L 1 (T~) • The restriction of ~ 

a randomization cp from (D 9i ) 
to L1 (T) may be represented by 

to (D,1) • It follows that 

l!llePC9- v 8a!l = ![(!-1 9P- v8a)cp!! ,S i!fleP -veal! < e: 9 

the band genera ted by v e a; 8 E ,9 • 

Corollary B.3.5 

and is in 

0 

Let~= ((x,Jo/);(f.l 9 :9E9)) and 1= ((~,(b),(v 8 :9E9)) 
be two pseudo experiments where (I f-Le!: 8 E 8) is dominated and.Af 

is a Borel sub set of a Polish space and ~ is the class of Borel 

sub sets of ~· Let be a non-negative function on @) • 

Then: 

(i) (5 is CL e:-deficient w.r.t. 7 if and only if there is a 

randomization M from (x,J4-') to (~ ,S~) so that: 

II f.l eM - v 8 11 ,:: e 8 ; e E e 
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If the condition is satisfied and ve f 0 for at least 

one 9 
' 

then M may be chosen so that !-!eM is - for 

each 9 - in the band generated by v 9: e E e . 
(ii) ~is e:-deficient w.r.t. ~ if and only if to each 

decision space (n,1) and to each randomization a 

from <~, S1) to (D, cf) there is a randomization p 

from (x,.!Jt) to (D,cf) so that: 

Remark. 

If ~e: e E e and v8: 8 E e are :probability measures then 

(i) is a direct consequence of theorem 3 in LeCam's paper [7]. 

Proof of the Corollary. 

Suppose ~ is e:-deficient w or. t. ~ o Consider the 

decision space (D,5f) = (~,)b) and the identity map a from 

:rv1 from (x,Jn 

1 0 

By theorem 7 there is a randomization 

so that 

The last statement in (i) follows from the last statement in 

theorem B.3.4. 

20 Assume there is a randomization M from ( x,J.t) to 

(~ ,C;,1>) so that !I!-! 8M - veil.::: e:e; e E e . Let (D, if) be any 

decision space and a a randomization from U'j., S1) to (D, 1). 
Then: 

The next proposition generalized Corollary 6 in ~5]. 
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Proposition B.3.6 

Let G = ( ( x, If) 9 ( ~ 9 : 9 E e) ) and ~ = ( ( ~ , 9., ) 9 ( v 8 : 9 E e) ) 

be two pseudo experiments and let e 

function on e • Suppose ( I ~e I e E e) 

€-deficient w.r.t. ~ for k-decision 

is e-deficient w.r.t. each experiment 
~ 

where ~ = s~ and # s-1~ 2k . 

Proof~ 

~ e8 be a non-negative 

is dominated. Then (1, is 

problems if _and only if~ 
((~ ,~),(~ 9 1S~:e Ee)) 

1 o Suppose 

problems and that 

2k sets. Clearly 

~ is ,..... 
51 is 

e-deficient w.r.t. ~ for k-decision 

a sub algebra of )1:> containing at most 

(3 is e-deficient w.r.t. 

(Q 8 !Sb:e E e)) for k-decision problems. Consider the decision 
~ 

space. ("a,~J) and let a be the identity map from 

( ~ ,~) :.._ By theoremB.3.4 there is a randomization p 

to ( ~9 9.J) so that: 
,..., 

!l~ 8 P- (v 8 1~)al! _:: e9 :9 Ee 

~ 1\; 

or - since ( \) e I~) cr = \) el ~ : 9 E e 

l!~-t 9 P- v8 1 ~!l ~ e 9 ; e E e. 

(~, ~) to 

from ( lt/,Jr) 

By corollary B.3.5 this implies that t is e-deficient w.r.t. 

~. 
2° Suppose (; is e-deficient w.r.t. each experiment 
t"v 1'\, 

CCA.J,S1L(v 8 1 S~:9 E e)) We may- without loss of generality-

assume #@ < oo. The proposition now follows from theorem B.2.1 

in section 2 in the same way as corollary 6 in ~5] followed from 

the or em 2 in [15] • 
0 



If ';:- is a sub pseudo experiment of a pseudo experiment ~ 
then o (G , ~) = 0 • More generally o(~ , ~) = 0 provided there 

~ ,...., cg{i A-~ 

are pseudo experiments 0 and '"r so that b. ( 0, <?) = A ( "5-, ~ )= 0 
"' ,...., 

and ~ is a sub pseudo experiment of ~ • We will now prove a 

result in the opposite direction. 

Theorem B.3.7 

Let ~ = (( x, J.\- ) , J.l 9 : e E ®) and CS: = (( ~ , Q, ) , v a : e E ®) be 

two pseudo experiments. Suppose ~ is dominated, that ~ is a 

Borel sub set of a Polish space and that )~ is the class of Borel 

if and only if there are sub sets of ~ • Th,:n 6 ( ~ :.._ 'fJ ) = 0 

pseudo experiments ~ and ~ such that b. ( ~' ~) = b. ( r~' ~) = 0 
f'L ,...., 

and f:i is a sub pseudo experiment of ~ • 
,...., 

If so, then ~ and 

may be chosen so that: 

®) , 

is the 

't = ((x X ~,J:r X )'"!J) I ve E 

restriction of ~ to &. x S'1 , A.8 has - for each e 

and v0 , In particular J} x d...J is 

restriction of ~ to J'4- x ~ is b. 

marginals, respecti.:vely, ~8 ,...., 

sufficient in G ; i. e • the 

equivalent ·with g . 

Proof: 

It suffices to prove the "only if" so suppose o(rG,~) =0. 

By corollary B.3.5 there is a randomization M from (x,~ to 

so that ~ M = v8 ; e E s • 
8 

Then 

A.8 (A X B) = s M(B\x)~8 (dx) 
A 

may be defined by: 

The proof is now completed by checking that the last statements hold 

with this choice of A.8 :e E ® • 0 



Theorem B.2.7 and theorem B.3.1 yield: 

Theorem B.).8 

Let~= ((x,.fc¥),1J.0 :o E e) and r;- = ((~,s'1),v0 :o E e) be 

two pseudo experiments. Suppose that there are points 00 ,0 1 in 

e so that: 

(i) 1-le 
0 

> 0 

(ii) l-lo >> 1-lo when o ~ o1 
0 

Theorem B.2.10 and theorem B.3.1 yield: 

Thorem B.3.9 

Let 

provided 

t and 1'" be 

~3( g.'~) = 0 

two pseudo experiments. 

and g is dominated *) 

The usual criterions for sufficiency follows from: 

Theorem B.3.10 

Let ~ = ( (x,J:\') ,!J.8 :e E e) 

S-:) be a sub cr algebra of J;f • 
be a dominated experiment and let 

Denote by ~ the restriction of 'f; 
to ~ • Let c be a non negative frulCtion on e with countable 

support such that rr = t:;c (e) IIIJ.0 11 is a probability measure 
0 

*)A pseudo experiment ~ = ((x,J4.-),(!J.0 :o E ®)) will be called 

dominated if there is a probability measure TI on ~so that 



dominating *) 1~ 8 I ; e E e • Then the following conditions are 

equivalent: 

(ii) d~Q/dTT may - for each 8 - be specified s~ measurable 

(iii) A(~ 8 8 ,~8 0 ) = 0 when e1 ! e2 
1' 2 1' 2 

Proof: 

(ii) ~ (i) ~ (iii) is straight forward so it remains to prove 

that (iii) => (ii). Suppose (iii) and let 80 E ® • By theorem 

B. 2.11 there is for each G a Sb measurable version h 0 of 

d~ 0 /d[ 1~ 0 \+ 1~ 8 1] • Then \h8 1 = d 1~ 8 l/d[ l~e l+ 1~ 8 I] so that 
0 0 0 0 

l~o \[h0 =0] = 0 • h 8 may, and will, be chosen so that \h8 l ~ 1 • 
0 

Put N = u{[h8=0J ; c(o) > Ol • Then N ES~ and l~o I (N) = o • 
0 

Put f = [L:c (8) ( 1-lho \) [h0 1-1 ]-1 on & N where L: is over 

{e:c(O) > 0} • Put f = 0 on N • Then f is ~ measurable. 

Let g be a non negative S1 ·measurable function. Then: 

J gdTT = L:c(o) J gd 1~ 8 I = z::c(e) J g(1-\h0 \) \h0 \-1\he \d[ \1-l%\+ l~el] 
~N GN GN 

= L:c(o) J g(1-\h0 \)lh0 \- 1 dl~e I= J gL:c(o)(1-\h8 1)1h0 1- 1 dl~o I. 
GN ° GN ° 

*) It is well known that a function c with these properties 

exists. 



It follows that dn/d\~8 1 = ~c(o)(1-jh8 \)jh8 1-1 on G N. 
0 

Hence - since n rv \f-le I on G N - d \f-le \/dn = f on g N • 
0 0 

It follows that d\f-le \/dn = f on x so that df..l8 /drr = sgn h8 f , 
0 0 0 

and this specification is s~ measurable. 0 

Corollary B.3.11 

Let G and ~ be pseudo experiments such that 6( ~ ,~) = 0 

and ~· is domina ted. Then A(~ , ~) = 0 provided 

1::. ( g e 1 ' 02 ' ~ 8 1 ' EJ 2 ) = 0 when 81 1: 8 2 

Proof: 

It follows from theorem B.3.1 that we may, without loss of 

generality, assume that ® is finite. We may then - again without 

loss of generality - assume that {§ and ~ are standard pseudo 

experiments. The corollary follows now from theorem B.3.1 and 

theorem B.3.10. 0 

Let {1i = ((xi,vQ,-i); f-lei; e E e), i = 1p •• ,n be n pseudo 

experiments. Their product ~ is then defined as 

(t = ( il (X. , J+ . ) , Df..l8 ; 8 E ®) 
J_• J_ J_ • • 

J_ l. 

and this pseudo experiment will be written as ~ = ~ (J. 
. 1 J_ l.= 

or 

~ = (;1x ••• x ~n • Obviously Il (!. 
J_ 

is dominated provided each 
i 

g i is dominated. 

The next theorem on product pseudo experiments generalizes 

corollary 4 in [1~. 



Theorem B.3.12 

Let G j = ((x.,Jt .) , 1-1- . ; e E e), ~. =((~ ., ~.),v0 .;e E e); 
J J eJ J OJ J J 

j = 1,2, ••• ,n be 2n pseudo experiments and let e1 ,e2 , ••• ,en be 

n non negative functions on e • Suppose ~ j is ej deficient 

w.r.t. ~ . (for k decision problems); j = 1, ••• ,n and that 

G 1 , ••• , ~n are dominated. 

Then ng. 
. J 
J 

is 

e~ ~ ej (e) .<n .111-1- 0 ,illi.>. n .11v 8iil 
J ~ J J 

deficient w.r.t. 11 ~. (for k decision problems). 
j J 

Proof: 

We may- by theorem B.3.1 - assume that e is finite. Put 

' 
ll = nu. 
r- . ' ~ 

~ 

v = Ilv. 
i ~ 

f 8 . = d!J.C\./d!J.. 
~ CJ~ ~ 

and 

gO,i = dv 0i/dvi. Define for each i = 1,2, ••• ,n a pseudo experi­

ment ~ j by 

~. = 
J 

Then ~ = TI ~. , ~ = n g. and for any $ E '1' : o . ~ n . ~ 
~ l 

~ < ~ c;i ) -w < ~ ~ i ) = . ~ $ < ~ j ) - * C <c1 j -1 ) • 
l l J=1 

SUl)pose each g j is E: • 
J 

deficient w.r.t. 

problems and that ~ E 'l'k • Then: 

~. 
J 

for k decision 



~ ( ~.) = j' ~ ( ® f 8 . ® ® g8 . ; e E e )d ( n 1-l· >( n v; ) 
J i<j ~ i>j ~ i~j ~ i>j ~ 

= -

= J [j' ~ ( ® f 8 . ® ® g 8 . ® f 8 . ) d\-l . ]d ( ll 1-l· X Il V; ) 
i<j ~ i>j ~ J J i<j ~ i>j ~ 

Hence 

0 
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