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ABSTRACT

LOCAL COMPARISON OF EXPERIMENTS WHEN THE PARAMETER SET IS
ONE DIMENSIONAT.

by

Erik N. Torgersen

University of Oslo

This paper treats comparison of experiments within infinitesi-
mal neighbourhoods of a fixed point 65 in the parameter set. If

6€ is the deficiency in LeCam [Ann. Math. Statist. 35 (1964),

1419-1455] within [e _-¢, 6 _+€] , then 6./2¢ » &6 as ¢ » 0

provided strong derivatives exists. Related to é is a pseudo
metric A . é is a "deficiency" between pseudo experiments i.e.
"experiments" where the basic measures are not necessarily probabil-
ity measures. Some known results on experiments are extended to
pseudo experiments. Various characterizations, deficiencies and
pseudo distances for the relevant pseudo experiments are considered.
Particularily interesting representations are: probability distri-
butions with expectation zero (this representation converts products
to convolutions), concave functions describing the relationship
between size and slope for testing "o = eo" against "o > eo" s

and strongly unimodal distributions. Conditional expectation - and

factorization criterions for sufficiency are given.
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1.1

1. Introduction,

This paper treats local comparison of experiments.

An experiment will here be defined as a pair
Eﬁ = ((x,), (Ib:e € ©)) where (x,#) is a measurable space and
Pe:e € ® 1is a family of probability measures on Ml. If
%% = ((x,}), (P 26 € ©)) then (x,Y¥) 1is the sample space ofég
and © is the parameter set of‘ég .

"Tocal" refers to restrictions to small neighbourhoods of a
fixed point 8, in the parameter set ©® . The emphasize in this
paper will be on one dimensional parameter sets, and it will be
assumed - unless otherwise stated - that the parameter set ©® is a
set of real numbers.

This paper is based on results in Blackwell [1] and [2], in
LeCam [ 7 ] and in Torgersen [15] LeCam extended the concept of
"being more informative", treated by Blackwell in [1] and [2], to
the concept of e-definiency and introduced a definiency & and a
distance & . It turned out, however, that the set up in [7] was
not quite general enough to cover the situations encountered in
this paper. For reasons, to be explaned below, we needed a theory
for "experiments" where the basic measures are not necessarily
probability measures. Such "experiments" will be called pseudo
experiments and we refer to appendix B for complete definitioms.

A theory for pseudo experiments had, with another motivation,
been attempted in [14]. Some of the results in [14] are,together
with a few add:tional results ,included with proofs, in appendix B.

Pseudo experiments appears in connection with local comparison as

follows.
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Consider two experiments % and q; , each having the same

k-dimensional parameter set © . Let eo be an interior point of

@ and let 66 be the deficiency of Zﬁ's restriction to the
o~
€-ball with center 0, with respect to the same restriction.af%.

Then, under differentiability conditions, 66/26 tends to a limit

é as € = 0. The number & maY be interpreted as the local

deficiency of 2% W.r.T, %: in the point eo « & can - in general -

not be a deficiency since it may be arbitrarily large while ordinary

deficiencies are in [0,2]. It may be shown, however, that & is a

o

deficiency of one pseudo experiment G we>.t. another pseudo
0

experiment g?e « If k=1 then the pseudo experiment a%
o o

consists of two parts, the distribution of the observations when

0=0, and the derivative, in 6, of this distribution. (The role

of the "derivatives" ge resembles somewhat that of mass and
o)

momentum in mechanics.) The experiment 256 will - when k=1 -
o)
be called the derivative of ésin 60 .
A symptotic local comparison is treated by LeCam in [8]..
Our approach is - in the asymptotic case - different from that in
[ 8 ] While LeCam considered infinitesimal neighbourhoods of any
point 6 € ® we restrict ourselves to infinitesimal neighbourhoods
of one fixed point eo € ®, We do not try to put the pieces to-
gether in order to get global results. Section 7 is a exception
since the class of experiments treated there have the property that
"local"™ comparisons coinsides with "everywhere local" comparison.
It will be seen from appendix B that the existence of various
randomizations (a precise definition is given at the end of this

section) are only proved under the assumption that some measurable
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spaces are Borel subsets of Polish spaces. This assumption is -
when it is used - explicitely stated in the appendixes. In the
text, however, the assumption is not explicitely stated. The only
results whose proofs requires such an assumption are propositions
2¢35, 341, 3.4, 411, 6.5, theorems 6.1, 6.2, 6.6 and corollary 6.3.
It is, however, shown in appendix C that proposition 2.3, 3.1 and
3.4 have -~ slightly more complicated - proofs which does not depend
on any assumption of this type. The same is true for proposition
4,11 provided it is reformulated so that condition (iii) is deleted.

Section by section the content of this paper is as follows.

The basic differentiability conditions are introduced in
section 2. Experiments satisfying them will be called differenti-
able. Sufficient conditions for differentiability may - with a
little rewording - be taken from II. 4.8 in Hdjek abd Siadk [ 4].

It is shown that products of differentiable experiments are differ-
entiable and that sub experiments of differentiable experiments are
differentiable.

The concept of a derivative of an experiment is introduced in
section 3. We discuss which ordered pairs of finite measures are
derivatives and it is shown that the obvious necessary conditions
are also sufficient. A few characterizations of the derivative are
considered. It is - particular - shown that a derivative may, up
to equivalence, be characterized by a probability measure having
expectation zero. The probability measure is, essentially, a version
of the derivative . This representation converts products into

convolutions. We have in this paper, however, not considered central

limit problems.
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Some basic properties of derivatives are derived in section 4.
It is shown how a derivative may be represented by, either a convex
function on J]-oo,e2[ or a concave function on [0,1]. The last
representation is, essentially, a version of the derivative. It
describes the relationship between size and slope in ey for power
functions of tests for testing "6 = 6," against "o > 8,"» The
collection of derivatives is a "lattice" for the ordering "being
more informative", and maxima are represented by pointwise maxi-
ma of convex functions while minima  are represented by point-
wise minima  of the concave functions. We consider two types of
deficiencies = é and ©§ - and their related pseudometrics A and
A . O and A are - mathematically - natural extensions of &
and 4 in LeCam's paper [ 7 J. bois - up to the multiplicative
factor 4 - the sup norm distance between the convex functions, and
it is exactly equal to the sup norm distance between the concave
functions. Various criterions for "being more informative" in the
é sence are given. In particular we derive the factorization
criterion for sufficiency for these deficiencies., A few simple
conditions for symmetry are given at the end of this section.

Convergence properties of the pseudo metrics *) A and A, on
the collection of derivatives are studied in scction 5. 4 and A
are topologically equivalent. A does, however, generate a larger

: .
uniformity than A. Convergence criterions and compactness

criterions are given in terms of the various representations.

*) A is, in this paper, used both as a pseudo metric on the col-
Jection of derivatives and as a pseudo metric on the collection of
experiments. Which interpretation is the correct one - at any particu-
lar appearance - should be clear from the text.
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It is shown that A is complete while & is not. Using essenti-
ally the approach in [15]'we obtain criterions for asymptotic suffi-
ciency. A convergence onterion for random variables, of independent
interest, is derived and applied to the problem of asymptotic
sufficiency.

The theory in section 2-5 is, in section 6, connected with the
statistical theory of information. It is shown that the deficiency
within [6,-¢, 6 +¢] divided by 2¢ tends to the © deficiency

between the derivatives in 90 as € » 0, It follows that the A&

distance within [6_-¢, 6 +¢] divided by 2¢ tends to the A
distance between thu derivatives. It is shown that the "differenti-

ated" distance A (and deficiency 5) is determined by restrictions

to the two point sets {6 -€¢, 6_+e} ; € >0 ; i.e. to dichotomies.

o)
Similar results are proved for the one sided intervals [6 -¢, 6]
and [8,, 6, +¢]. Inequalities for products of experiment - similar
to those in remark 3 after corollary 4 in [15 ] - are derived for

é and A « It is shown how é may be expressed by local compari-
son of operational characteristics. The theory developed so far is
compared with the theory of locally most powerful tests. Some well
known facts on locally most powerful tests are - for the sake of
completeness - included. We show how the deficiency é and the
distance A may be expressed in terms of locally most powerful
testss We generalize slightly - in an example ~ some of the theory
in II.4.11 in H{jék and Siddk [ 4] in order to illustrate that 5

is not fine enough to distinguish experiments such that the differ-
ences in local behaviouxs aresmall of the second order. t is shown

how local comparison may be expressed in terms of powers of most

powerful tests for a simple hypotheses against a simple alternative.
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Necessary and sufficient conditions for local (i.e. A) sufficiency
in terms of conditional expectations are given. The final results
in section 6 are concerned with a change of parameter - in particu-

lar of scale change.

The case of differentiable translation experiments on the real
line is treated in section 7. This particular case turns out to be
not so particular since any differentiable experiment - which is
not A equivalent with a minimum information experiment - is &
equivalent with a strongly unimodal translation experiment. The
strongly unimodal distribution is unique up to 4 equivalence, i.e.
up to a shift. This result is based on a theorem of Ibragimov [ 6 ].
The first part of section 7 treats a particular class of functions.
These functions are obtained by integrating the ¢ functions in
Hijek and $idék "4] srd they arc, essentially, versions of the deriva-
tive. It is shown that the & distance of LeCam is topologically
equivalent with the A distance provided we restrict attention to
strongly unimodal distributions. Convergence is then iumplied by
weak shift convergence of distributions and implies uniform shift
convergence of densities. A simple sufficient condition for A

convergence within the class of all differentiable translation ex-

periments is given.
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Three appendixes - A, B and C are included after section 7.
Appendix A summarizes - without proofs - some of the results
on translation experiments in [ 16 ].
Appendix B is a self contained introduction to some basic re-
sults on comparison of pseudo experiments.
The purpose of appendix C is - asg explained above - to point out
the results whose prcofs depends on assumptions stating that some

of the measurable spaces involved are Borel sub sets of Polish

Spaces.

Probabilities and more generally, measures are occasionally
computed as follows!

Let (%x,0#) be a measurable space, % a sub (& -algebra of S ,
P a probability measure on \ﬂ( and M a finite measure on‘/‘]’
which is dominated by P . Denote by P)z’ and “s‘,b the restrictions
of, respectively, P and un %o S?; « Then:

S

dug/d]?ﬁ = Ep (dp./aP)
so that

u(B) = fEi_%(dp/dP)dP ; BeSh
B

A randomization (Markov hernel) from a measurable space x,\A’)
to a measurable space(%@) o will here be defined as a map
(x,B)~—> ((Blx) from xx‘):_)) to [0,1] such that p(Ble) 1is
measurable for each B € Sﬂb and p(e°|x) is a probability measure
for each x € X » Let p be a randomization from (x,«/:)') to
(/g ,5%), let u be a finite measure on d}' and let g be a bounded
measurable function on 'y o« Then we may define a finite measure
Bp ¢ B> J‘u(dx)p(B\x) , on Shand a bounded measurable function

X s> Ip(dylx)g(y), on Lﬂ' « It is not difficult to see

T
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that *) (kp)(g) =p(pg) and this number will therefor be written
upg. Finally randomizations may be composed as follows: Let p

be a randomization from (x44) to 09 ,53) and let o be a
randomization from (/\9, 82 to (;‘1,;). Then the composite, po, is
the randomization: (x, C) ~> Jo(Cly)p(dy!x) from (Y,W&) 1o

(4 D).

*) If (X,J‘]' ;i) 1is a measure space and f is a function on 2R
then the integral of f w.r.t. p may be written: u(f), J‘fdp,
Jf(x)p(d}:) or Jp(dx)f(x).
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2. The differentiability conditions.

All experiments considered in this paper have - unless
otherwlse stated - a parameter set 0O, which is a.sub set of
]-=, +o[ having an interior point 8,. We shall say that the
experiment §§= (X,JQ; Pe: 6e 0) 1is differentiable in e if
(P -Py )/(e -0 ) converges strongly as 6 - 6,. More precisely:

égis differentiable in 6, if and only if there 1s a finite
*)

measure Pe so that

Lim | (Pg=F )/(8-0,) - P |

6+60

Writing Tg .o = (Pe—PSO)/(e;fo) -Pg, wWe see that the

differentiability condition for O may be rewritten as
55 is differentiable in eo if and only if there are finite
measures Tg_,g: 6€6, so that lim "%@” = 0 and
60 ,

Py = P90 + (e-eo)Peo+ (e-eo)reo’e; e 0

”Feo,e"5 6 €0

are - by the inequality: [e-eolureo’el <2+ le-eolnPeo" -

automatically bounded.

>
uJ
*) A measure on a c-algebré“of sets 1s here defined as a real

valued oc-additive function on J}’. The term, signed measure,

"wlll not be used.
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Before proceeding let us demonstrate that - together -

conditions (i) - (iv) below assures the strong convergence of

(Pa‘ﬁ%b/(e‘eo) as 0 > 0_.

(1) There e€xlst a positive number ¢ and a positive measure
U so that Pe is defined and dominated by (i.e.: has

densities w.r.t.) u when le-eol < c.

(11) There are real valued densitiles
£q = dPQ/du : e-o | < c

so that the maps © A5 f,(x) from [eo-c, 6,*c] to

[-~, +«] are - for u almost all x - absolutely continuous.

(1i1) For u almost all x 1l1im (fe(x)-fe (x))/(e-e ) exists.
e+eo o 0
(1) 1n [IF00lucex) = [I£ @ lu@x) <
e+eo 0

where dots indicate differentiation w.r.t. eQ

These conditions, as well as the demonstration below, are

adapted from II.4.8 in H&jek and Siddk [ 4]
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Demonstration:
Let N €\ﬂ¥ be a common exceptional -null set for (ii) and

(111). By (11) the map (x,8) N> £ (x) from OGN x [6,-c,8%c ]
is joilntly measurable in (x,6). It follows that the map

. "~
(x,0 il;qfe(x) Eii limsup n(fe+l/n(x)—fe(x)) is jointly measurable

L > o© .

u

on (?N x 6 -Cs 0t [« By (ii) fe(x) fe(x) for almost (Lebesgue)

all 8 in [eo-c,eo+c] , for all x € (3 N.

For any 6€ [eo-c,eo+c]we have:

*)

£6(x)-£g, (x) )
[' e[ . ft(x)dt|u(dx)
< >

1
e_eo 'u(dX) = f Ie-_eol
o’

3 19-8,1 Legl o>
o)

(by Fubini) TE%EW f $(t)dt
® <0,6>

?t(x)|dt}u(dx)

A

where ¢(6)

[Ife(x)lu(dk) : |6-60| <e

By (iv) ¢(e) ~» ¢(eo) as 6 > 8 .

Hence TEZ%_T I ¢(t)dt > ¢(8 ) as © > 0

o '
<8 10>

0

%) <a,b> = [a,b jor [b,aj as a<b or a2x>hb.
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It follows that

£q(x)-fy (x)
0
limsup 55 p(dx)

6-+0 o] /
o

A

(1A
lfe(X)lu(dx)
(0]

i flfeo(x)lu(dx) <w .

By Scheffe's convergence theorem [11]

11m “(fem - feo(x)f//(e—eo> - %eo<x)|u(dx> = 0

00
0
That is:
11mH(P -p )/(e-e ) - P " = 0
66 5] 60 0 Go
o
where ée (A) = [fe (x)u(dax) ; A€£fl .
) o —
A

Example (Translation experiments)
Let f be an absolutely continuous probability density on

such that flf'(x) ufdx) < «;, and let P be the probability

measure with density f. The translation experiment Q’P is

defined by

< -

éf) = ((J-oo,+w[,«/4 ) s Py: 8 € R)
where J¢ is the Borel class and

Po(A) = P(A-8) 3 pel geo .

R
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‘Then fe(x) = f(x-0), fe(x) = -f'(x-9) and it may be

checked that (i) - (iv) are satisfied. Furthermore:

ée (8) = P (A-8) = [ £ '(x-0 )dx ;3 aef, oenr
A

The proposition below implies that products of such

experiments are differentiable.

Proposition 2.1.

Let %1 = (Xi, i’Pe,i; e ﬁ 9); i-= 1’2,ooo’n
&
be differentiable in 6, Then I Gy is also differentiable
1=1

in eo and

lim " (E Pe,i -]IPeo’i)/ (9-90) - (Pe 1 X eo00 X Peo’n_l)(Pe ’n

6+60 i i o? 0
+ P X ooo xé X P +
60,1 eo,n-l eo,n
4+ oo + F X ooe X P . xP =0
8,51 6, sn-1 eo,n)"
Proof: This is Just the formula for the derivative of a producg

and its proof follows from the decomposition :

IP -IP =IP - IP x P
g 8,17y Te 1T e T el Te ,n
+ IP x P - I P P x P
i<n 6,1 "0,,n 1<n-1 0,1 6,on=1 6,,n
+ I P x P X seo X P -IP . 17
4<p 851 78,2 6,5 1 951 —
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The next proposition implies that sub experiments of
products of the translation experiments in the previous

example are differentiable.

Proposition 2.2.
Let éf: (x4, Pgi O € @) be differentiable in 8,

and let ig be a sub o-algebra ofJ@ » and let P953 denote
the restriction of P, to S3. Then ((X,%), P633: 6€ 0)
i1s differentiable in 6  and

1im | (PGSB-PGOQ )/ (6-6 ) - f’eosz | = o

e+eo
where Peéﬁ» is the restriction of Peo = %ig (Pe‘PeoZ/Qe‘eo)
to §2 . °
Proof': The proof follows from the fact that the restriction

of a measure y to a sub o-algebra has smaller total variation

than . [

More generally we have:

Proposition 2.3.

) ™ ‘ 12}
Irf 5 ;“-ﬂ'and » 1s differentlable then J 1s also

differentiable.

Proof'. Write g: (X,z/q')-, Pe: 6 E€0) and
- )
= ((,59), Bglt; 6. € 0) where M is a randomi-

zation from (X,Jq) to (?,8)-
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Then - by the continuity of M
%yg (PgM - PeoM)/(e-eo) = '%iré’ (Pe-Peo)/ 6-6 ]M.
) o (=3

As a corollary of propositions 2.2 and 2.3 we get :

Corollary 2.4.

The product experiment of a finite family of experiments

is differentiable in eo 1f and only if all factor experiments

are differentiable 1in eo.
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3. Basic properties of the derivative.

We define the derivative of a differentiable experiment

éf = ((X,J}); Py: 6€0) as the pseudo dichotomy

( @% definifion ((y 4) Py sPy ) where
o o o
(3.1 o (8) = lm (Pe(A)-Peo(A)\)/(G-BO)

The next proposition tells us that the rule éf n—> %;e
0

i1s monotonic w.r.t. > where > is short for "being more

informative than" .

Proposition 3.1.
Let g= ((X,tﬂ), (Pg; 6€ 8)) and ?= ((/‘3,33),
(Qg; 6€0)) be differentiable in 6 . Then ée > ?
. 0

8
0
provided g ;3}. In particularA ge ~ Sg when é’~ ’%’ .
0 o

Proof: The proof is an immediate consequence of the randomi-

I

zation criterion.

Which pseudo dichotomies are of the form ge ? It follows
L] ° O
from (3.1) that Pe (X) = 0 and that Pe >> Pe . The theorem

0 0 0
below asserts that these conditions are - together - characteristic

properties.
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Theorem 3.2.
A pseudo dichotomy ((X,Ui)n,c) is the derivative in

6, of some experiment éf, if and only if o(X) = 0 and
m 1is a probabllity measure dominating o. If so, then
((X,V;)ﬂ,c) 1s the derivative in 6 = of the experiment

((Xﬂ#),Pw 8 €0) where *)
Py = |m+(0-8 )0/ [Im+(6-0 )oll; e €0
Furthermore, these conditions imply that

(3.2) 1im || (v+(0-6 )q||/(6-6_) = 0
e+e°l © 9”/ °

and

(3.3) lin (lm+ (o-8 doll-1)f(6-6 ) = 0 .

Remark. P, is well defined since Hw+(e-eo)o"g=n(x)+(e-eo)o(x)= 1.

Proof: It remains to show

P, = w, 1lim ||(P,-P )/(e-e)-ou:o

GO 2 0+0 0 90 0
0

and that (3.2) and (3.3) hold when 7 1s a probability measure

dominating ¢ and o(X) = 0. By substitution, P, =7 and we

0
may without loss of generality, assume that 60 = 0.

Let s be a version of do/ dr. We get - when 6 # 0 -

successively :

*) If u is a finite measure then |u| = pv(-np).



and

Hence

(3.4)

and

(3.5)

(3.6)

and

3.3

|| (m+80) 7| = [|1+es|d'rr < 1+|es|dm < 2]e]| [ |s|dm
bs<-1 |es 2] Isl25

I (g y)/6=0l = | (|7+ea]/lim+ec]l-m/o-l|

A

H(|n+eo|-nb/e-oﬂ-+H(|n+ec|//"n+eoﬂ -ﬂl/b-(|ﬂ+90|—ﬂ»/9“

A

u|n+eo|-<n+eo>||+<un+eon-1>]|e|

- /
2||(m+00) 7| + 2||(n+ec)'||]/ |e]

1/16])

fiv

l(m+e0) 7| < 2]6] [o](]s]

(e~ ) /6-0]l < 8lal(ls| 2 1/l6])

v

In proving (3.5) we used the first of the identitles :

| w400l =2|| (n+60)”[| + 1 = 2||(m+60) T ||- 1
(3.6) follows from the equations :

[n+ec] = |[(n+eo) ||+ || (1+00) 7]

1 = (n+60)(X) = || (m+6a) T || =[l(m+60) 7]
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The proof may be completed by noting that (3.4) and (3.5)
imply - since o is finite - (3.2) and %iréloll(Pe-Peo)/ee-eo)-cﬂ =0,
while (3.3) follows from (3.2) and (3.6). [

The pseudo dichotomy ((x,d})n,o) where w 1s a probability

measure dominating o and o(X) = 0, will be denoted by Sgi G*
3

The standard representation of qgi o is of the form
3

S,,8,° where S, = w(1/(1+|s]), s/(1+|s]|))~! ana
]

S, = o(1/(1+|s]), s/(l+|s|))-l. Here s 1is a version of do/dm.

A closely assoclated characteristic 1s the standard measure

S=8 + |8 ]|.
1 2

Alternatively we may - since S and 7s™!  determines each

other - use ﬂS—l as a characteristic. The measure ns'l will
occasionally be denoted by Fﬂ c*
E
Let G be the measure whose Radon Nikodym derivative

T ,0
w.r.t. F 5 1s the ildentity function x"~—x. It will follow

3

from proposition 3.4 that

((] ~,+=[, Borel class), F )

m,0° Gn,o
is a derivative.

Furthermore - since x™>x is a version of

dGﬂ,O// T,0 Fn,o’Gn,o n Cg;,c equivalent It may

be checked that Fﬂ . is, and may be any probability distribution

3

on ]-w,+w[ having expectation 0. We will, occasionally, write
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F instead of F“’o when fg;,o =2éeo. One pleasant

0
[E)
property of this characteristic is

Proposition 3.3.

éfl, é?l,v--,éf; be differentiable in eo, Then :

F =F * I ¥ oeo ¥ F v
6o’Ji[gfL eo’é‘el 90,(f2 eo’gn

where % means convolution.

Proof': It suffices to consider the case of two experiments

O~
5 ((x,h), Py: 6 € 0) ana 5=((g,g),cze:eee>.

Suppose éf and 5’ are differentiable in 60. Using proposition

2.1 we get

~=o£ (d[P xé+l;XQo]d[P xQ])
fx} 6 X9 6,7 “6, "8, e 6, 0,

0 (o]

=OC (I®dq /dQ +dp, JaP. ®1)
Py X Qq 0,/ 8, 0 0,

o o °

oE (ap /dP )akogQ (4Q, faq. )
Peo O eo 60 eo/ eo

:g' ) ' 'j-—

Feo ”é * Fe0
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The fact that

(({(x,,%x,): %, > 0, x, + [x,|] = 1}, Borel class) S,,S,) and

((J-=,+=[, Borel class), F ) both are

G
3
T,0° mW,0

derivatives, is a consequence of :

Proposition 3.4.

If C§2 ((Q?EQS),H,V):; iyn G ° ((x,%l)n,o) then S? is

3

also a derivative.

#M and
fc(dx)M(glx) =
(o(dx)M(B [x) = 0 when wu( B) =

Proof: Let M be a randomization such that u

v = gM. Then u 1s a probabllity measure, v(é})
a(x) = 0 and v([3)
Ir(dx)M(le ) = 0.

O
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by, Comparison of derivatives.

In this - and the next section - derivatives will be written

;g;,c = ((x,d@),n,c) with or without affixes. The following

notations relative to the derivative S?; c ° ((X,dﬁﬁ,ﬂ,o) will

’

be used:

s definition do/dm

p definition -1
d lon
U(E) efinition Nem-c]; £€] -, +f
v definitlon (rsqn, fédo): 0 < & < 1}

definition

B(a) sup{y: (a,y)€ V}; ae [0,1]

Affixes on 5?,H,G,X§}*ﬁ,F,U,V and B; when these are

referring to the same derivative ' will be of the same type.

For two derivatives %? and <§ we will write:

6(@,?) definition the smallest €/2 guch that Cg is (0,€)
- deficient w.r.t. E? .

AP, %) definition .. 5@ %), 62 ,9)

It follows directly from the deflnitions that
05&(?,?) < @,
5(8,8) = o,
508,8) <s(8,8) + 68,0,
8 is a pseudo metric,

§ < 28

A

and A< 24,



e

o~

L,2

Let - ((x,/A),m,0) and [ = ((X,¥),7,0) be two
derivatives. Then - since 7# and ; both are probability
measures and o(X) = ;(i) - A, ( ?, ?) = 0, and general comparison
is equivalent with comparison for testingproblems. It follows
that 9? is (e,,e,) deficlent w.r.t. SE if and only if

~ -~
laam+az0] 2 laim+az0] - ei]as| - ez]az]; ai,az €]-=,+=]

or equivalently that:
(4.1) U(E) 2 U(E) - e1]E] - €23 € J-w ¥
In particular

(4.2) 52,2 = Slglp(a(i) - U(E))V(l+ el

so that
.3 88,9 - sgp[lf:(a) - uE) ) fas lzl]
Similarily:

.y 58 )= suwpuee) - U(&)))’z
£

so that

(4.5) A(%,?) = sgpl’:l(i) - U(€)|/2

It follows directly from (4.3) that U determines E? up to

equivalence. We shall later describe the class of possible U's.

Two simple lower bound for 6 and A (and therefore for
28 and 2A) follows by inserting & = 0 in (4.2) and (4.3). We

get:
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w6y 8y > 50 - ol
and

o a®@.F) > 15 - el

The weak compactness theorem implies that V 1s closed -
and it 1s easlily seen that V 1s a compact and convex sub set
of [0,1] x J-=,t=[. Moreover (0,0)€V and - since (1- 6)

is a test function when &8 1is - it is symmetric about (2,0).

As an example consider the case where ae]o,l[ and b > 0
are given numbers and F assigns mass l-a 1in (-bh/(l-a)
and mass a in b/a. Then V is the reglon bounded by the

parallelogram with corners (0,0), (a,b), (1,0) and (l-a,-b).

'?Jﬁdo

V 1is - by symmetry - determined by
vt ggg;gfi--;;—gg{(X,Z>7): (x,y)€ V&y > 0}. The negative part {(x,y):

(x,y)€V & y < 0} is the reflection of vt w.r.t. the point (3,0).
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If fédnr = 0 then 6 = 0 a.e. and - since w >> o~
Iadc = 0. It follows that (0,0) is the only point in V with
first coordinate = 0 and that (1,0) is the only point in V
wlth first coordinate = 1. The second coordinate y of a point
(x,y) eV 1is bounded by Ho&/2 in numerical value and 6= I_ ,
give the point (w(s > Ozuob/2). If o =0, then V is the ?&ne
segment {(a,0): 0 < @ < 1}. V determines E? up to equivalence

sirce U does and
U(E) = 2H(E,-1)-E 3 £ €], 4]
where H 1s the support function of V.

It follows - since B obviously determines V - that §> is,
up to equivalence, determined by 8. Furthermore B 1s concave

and B(0+) = B(0) = B(1-) = B(1) = O.

Conversely, let B be any concave function on [0,1] such
that B(0) = B(0+) = R(1-) = B8(1) = 0. Then B 1s absolutely
continuous with a Hahn set of the form [0,0 ] where o €]0,1[
i1s a point where B8 obtalins i1ts maximum. The measure whose
distribution function 1s B will - by abuse of notations - also
be denoted by B8. Let A denote Lebesgue measure restricted to

the Borel class on [0,1]. Then
(([0,1], Borel class), A,B)

is a derivative, and we wlll now show that the same procedure

applied to this derivative will give us B8 back again, i.e.:

sup([GdB : 0< 8 <1; Iad)\ = a) = B(a); a&[0,1].
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We may - since this i1s trivial when ‘@ =0 of o =1 - assume

ae]0,1[, Let & be an arbitrary test functlon such that

IédA = 0. Then we have:
1

[[0,q108 - [oat = g(l[o,a] - 8)(8'-8"(a))aX .

The integrand on the right hand side is - by the concavity of B8 =
non negative whenever it is defined. It follows that
I[O,a]dB 2 [édB and -~ since [I[O,a]dx = o -,sup([GdB:_O L8 <13
84X =a ) = [I[O’a]ds = B(a).

We have proved

Theorem 4.1.

B characterizes the derivative up to equivalence and B8 1s
and may be any concave function on [0,1] such that B(0+) =
B(0) = 0 = B8(1) = B(1-~).

If B has these propertles; then any derivative corresponding

to B 1s equivalent with
(([0,1], Borel class), A, B)

The correspondence between V and B ylelds :

Corollary 4.2,

V characterizes the derivative up to equivalence and V is
and may be any compact convex set contained in the strip
[0,1] X ]-w,+w[, containing (0,0) but no other point (0,y), and

which is symmetric w.r.t. (%,0).



Corollary U4.3.

A set of derivatives having the property that any derlvative

has a version in the set, is a lattice for the ordering > If
g and C§ are 1n the set, then ?{\? is represented by
min(B,g).

Let us now see how comparison of the derivatives may be
expressed in terms of the B-s., Let H and ﬁ be the support
functlions of V and G respectively. The criterion for (e;,€2)
deficiency may now be written
H+H>H

A

where is the support function: (a,,a;) ~ (|a1|51+|a2|ez)/2

[ }/2 e,/z] x l—EZz 2,6, 2]. Hence

Proposition 4.4.

o~

%? is (e;,e2) deficient w.r.t. S if and only if

V o+ [—el 2,e1/ 2] x [—52/2,62/2} oV

In terms of the B-s, this may be formulated as:

Proposition 4.5.

3? is (€,,e,) deflcient w.r.t. 3? if and only if

sup{R(x): xe[g—el/Z, a+el/2]} > E(a) - 82/2; ae [0,1].

~

Proof: 1° Suppose cg is (e;,e2) deficient w.r.t. ? R
and let a€ [0,1]. By proposition 4.4 - since (a,B(a))EV -
there 1s a point (x,,Xx2)€V such that |a-x,]| < 81/2 and

|8(a) - x2| < epf2. Hence

sup{B(x): xe[a -81/2, a+81'2'} 2 B(x,) 2 x2 2 B(a) - €,/2.
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2 Suppose sup{B(x): xe[a - 61/2, a + €,/2]}
> E(a) - e,/2; ac¢[0,1], and consider a point (z,,z,)€ V where
z2 > 0. There is, by assumpticn, a Xx; 1n [21 -e,/2, Zz,+ 51/2]
so that g(x ) > g(zl) - 32/2 >z, - 52/2. Put x, =
min(g(x,), 2, + 52/2). Then - since 0 < X, < B(x) - , (X,,x,)EV
and clearly xze:[?z - 52/2, z, + 32/21. Hence (2,,2,)€V +
[T 51/2, 51/2] x [; €,/2, ez/b]. By symmetry this extends to any

(zy,z2)e V and (e1,e2) deficiency follows from proposition 4.4,

|

Corollary 4.6.
6(@’,§') is the smallest €

0 such that

Itv

sup{B(x): |x-a| < e/2} E(a) - €/2; ae.[O,l].

v

Corollary 4.7.
58,9
ana 2(%,%)

sup(B(a) - B(a))’

sgpl'é(a) - ()] ..

By corollary (4.7), A(%fjg ) 1is simply the sup norm distance

between B and B.

The next proposition tells us how to get U and 8 from F.

Proposition 4.8.

F determines B8 and U through the formulas:

a
B(a) = [F'l(l—p)dp; ae [0,1]
(0]
and u(g) = 2 T F(x)dx - & = 2 { (1-F(x))dx + &; ge:]-w,+mL,

- 00
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Proof: lO Proof of the formula for B:

For each Borel sub set B of [0,1] write T(B) =
{ F'l(l-p)dp. Then (A,T) defines a derivative with U
B

function given by:

1 1
f - -

e~ fer-tl = | jeF e lap = | e-F ) [ap
o) (o)

- [ls-xiF<dx) - (E).

It follows that (A,t) has the same g function as g).

Keep o €[0,1] fixed and write 6§ (p) =0 or 1, as p < a
a. Hence B(a) 2 [6 dr. If [8dX = o

or p > a. Then f&adx
and 0 <68 <1, then: [6 dr - fodt = [(8_(p) - 6(p))(F™1(1-p)
- F71(1-0))dp 2 0. It follows that 8, 1s optimal; di.e.

Ba) = f6,d1 = | FTL(1-p)ap.
o

2© Proof of the formulas for U: 1In the same way as we

got (3.6) we get:
U(E) = 2 (gm-0)" ) - ¢
H(En-c)+u may - using the representation

((] == ,+=[ ,Borel class);F,G) where G(B) = [ xF(dx); B € Borel class,
B

- be written :

| Cnmo)* | = [CE=x)*Flax) = [P(ax).

- 00

This proves the first "= ", and the last "=" follows from
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the identity:

£ + 7(1-F(x)dx = ? F(x)dx; e [-=,+=] ., [
3 o

Here 1s the promised description of the set of possible U-s.

Proposition 4.9.

The function U assoclated with the derivative @ has the

following properties :

U,: U 1s convex

U,: lim [U(E)+E] = éim[U(g) -¢]= 0

Ermco

Conversely: any function U from [-=,+®[ to J-«,+e[

which satisfies U; and U, corresponds to a derivative % .

Proof: 1° Suppose U 1s the U function associated with(g;.
Then U; follows directly from the definition, while U, is a

consequence of proposition 4.8.

2° Let U be a function from J-w,+w[ to ]-w,+«f
satisfying U; and Uz, and let T denote the function
£ ~—> [U(E) + E,‘.]/2. Then U; and U, may be rewritten -

respectively - as:

Ty: T 1is convex

T,: 1lim T(E) = lim[T(E) - £] = oO.

E+ w0 Ero
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Consider numbers £; < &2 and n > 0. By Ti:

T(Ez-n)-T(Er—T‘I);T(Ez)-T(E1);T(Ez“‘n)-'l'(gl"‘ﬂ)‘—'(ﬁz-gl)+[T(€zv+fl)-(€z+ﬂ)]

-{T(E1+ﬂ)-(51+n)] .
n +> ® together with T, glve:

($) 0 < T(g2) - T(E;) < E2-E1.

It follows that T 1s absolutely continuous on filnite
intervals. By the Radon Nlkodym theorem there is a real valued

function F so that
. €2
(§§) T(E,) - T(&,) = f F(x)dx; &, &2 €]"°°,"'°°L'

£y
Here we may - and shall - by (§) - assume that 0 < F < 1. The
complement of the set {&: T'(Z) = F(£)} has Lebesgue measure
zero and F 1s - by T: - monotonlically increasing on
{g: T'(¢) = F(§)}. It follows that we may choose a Radon Nikodym
derivative F which is monotonically increasing on ]-e«,+wf.

Finally F may be modified on a countable set so that the final

version 1s monotonically increasing and left continuous.

£1 » == in (§§) give (using T»)

g
(§§§) T(E) = [ F(x)dx ; Ee |-,

-0

The convergence of this integral implies 1lim F(x) = 0.

K> =00

Similarily £, = & and §&; = 0 in (§§) yiela:

2
T(g) - T(0) = [ F(x)dx
o}
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or T(0) - T(E) + & = } (1-F(x))dx
o

£ > (using T;) give:

(§§§%) T(0) = [ (1-F(x))ax,
o

and the convergence of this integral implies 1lim F(x) = 1.
X

Altogether we have now shown that F 1s a probability
distribution function. (§§§) with & = 0 and (§§§§) yield

[x'F(ax) = T(0) = [x"F(ax).

It follows that [xF(dx) 0. For each Borel set B writes

G(B) = é xF(dx). Then gg): ((]-=,+=[, Borel class) F,G) 1is a
derivative and the corresponding U function is - by proposition
4.8:

g N> Zi F(x)dx - § = 2T(g) - & = U(§) . |

Corallary 4.10.

Suppose %> and 9§ belong to a set of derivatives containing

at least one version of any derivative. Then -~ provided g) and

g

R is in this set - Evg has max(U,U) as U function.

The ordering " 3);%3" for pseudo dichotomles is defined
as " &( S):g) = 0 ". By the definition of 8, @ ;? implies
§(% ,@") = 0. Conversely, &( 8,?‘;) = 0, implies - since 28§ > § -
g:;ﬁ? . This and other criterions for " > " are listed in
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Proposition 4.11.

The following conditions on the pair (c? ,? ) of

depivatives are equivalent:

(1) § 2%
(11) 3(9,8) = o
(i11) There exists a randomization M from (X;AL) to
(i,dﬁ) so that M = & and oM = o.
(1v) U ;5
(v) \ 53;
(vi) B > E
(vii) ? F(x)dx > ? ﬁ(x)dx 5 E ¢ ]-m,+w[
& ~c0
(viil) T 1-F(x)dx > ? (1-§(x)dx ; £ € ]-m,+m[
3 €
(ix) [ ¢aF > ftbdg for any convex ¢.
(x) There exists a dilatation D (i.e. D 1is a
randomization such that [yD(dy|x) % x)
so that F = g‘D.
Proof': We have already shown (i) <=> (ii). (1) <=> (ii1)

follows from the randomization criterion. (i) <=> (iv) follows

from (4.2).

(1) <= (vi)

(1v) <=

(1) <=> (v) follows from proposition 4.4.

follows from corollary 4.7 and

(vii) <=> (viii) 1is a consequence of proposition

4,8. Altogether we have now shown :

(1) <= (ii) <=> seee <=> (viii).
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Suppose (i). Then -~ by the sub linear function criterion -
J¥(1,x)F(ax) > fw(l,x)g(dx) for any sub linear function ¥ on
] -o,+=[?, This implies - since any convex function ¢ is of
the form l%mfwn(l,x) where wn; n=1,2,*+ are sub linear
- (ix). Conversely (ix), with ¢'s of the special type x M Y(1,x)

where ¢ 1is sub linear, implies (i). Finally (ix) <=> (x) 1is a

consequence of theorem 2 in Strassen's paper [12]. !

The equivalence " @ ~gE " for pseudo dichotomies 1is defined
as " A(% fé ) = 0 ". By proposition 4.11, g,,gf if and only 1if
5(§.ﬁ§) = 0. The particular case of sufficiency is treated in
the next proposition. It wlll be shown that the factorization
criterion is valid for derivatives. The argumentation 1s

essentially that of example 9 in [15].

Proposition 4.,12.

~

Let ¥ = ((X,4A),m,0) be a derivative and let 8 be the sub
derivative ((X,é}),qﬁ »q, ) where $3 is a sub o algebra of A
and the subscript ¢} indicates restriction to 53 .

Then ?”? if and only if do/dm has a $3 measurable

version.

Proof: On the probability space (x,/@,n) consider the variables

s (= do/dm) and Egs. Let Be S3. Then ]ES‘)’sdn = [ sdm =
B B

o(B) = o. (B). It follows that Egss is a version of do_ /dm_ .
3 S s3

~

Hence-by the discussion in section 3 - 8 ~% if and only if
JkSIﬂ) = ci(Eszslw), and this - by the argumentation in example 9

53
in [15]- 1s the case i1f and only if s = E s a.s . ]
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If ®= ((X,(,Q»),'n,o) is a derivative, then

definition
? ((X,@z),w,ac) is also a derivative. A few simple

——

properties of the correspcndence Lﬂ N @ are listed in:

Proposition 4.13.

1y B =9
(11) U(g) = U(-8) 3 Ee]-w,=[
(111) B(a) = B(1l-0) ; ac [0,1]

(iv) V= {(x,y): (1-x,y) eV}

@
"

(v) - 8

(vi)  F: J(x1do =m®
v 53,9 - 5F,.%,)

and ;(C.?l,(gz) = ;(tfg—l,@:)
(viii) 6(%1,@2) = (?%—1'—%—:)

ana a9, = 2(9,,D,)

Proof: Follows directly from the definition. l:]
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A dertvative &) will be called symmetric if A3 9 ) = o.

Corollary 4.14., The following conditions are equivalent:

(1) | Q? is symmetric
e Q2

(ii1) U 1s an even function

(iv) g 1s symmetric about 32

(v) V is symmetric about the line "x = 3"

(vi) F 1s symmetric about 0.

Proof:  Straight forward. ]
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5 Convergence of derilvatives.

The notatlonal system 1n this section will be the same as

in section 4,

Theorem 5.1,

The following conditions on the derivatives QD

and (53 are equlvalent:

(1)
(11)
(i11)

(1v)
(v)
(vi)

(vii)*)

Remark.

1im 5(911,(9)
n->o
1im 4(D_, )

In->cc

lim 8, (a) = B(a);
n-+ o

1im B,(a) = B(a);
n->o

1lim Un(E) = U(E);
n-ro

lim U (&) = U(&);
n-o

0

lim A(Fn,F) =

n-+

A few convergence criterions are listed in:

), no= 1,200

uniformly in o€ [0,1]

a e [0,1]

uniformly in &€ | ~o +oo[
E €], 4]

and X & x 1s uniformly integrable
werst. Fjono= 1,2,000.

It follows from proposition 4.8 that (v) may be written,

(v?) 1im

n+o
or

(v**) 1lim

n->c

j [Fn(x)-F(x):

-0

e

£ [Fn(x)—F(x)

-

dax

dx

03 uniformly in £€ ] -w +o[

0; _n___

*) A 1s the Levy diagonal distance.
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while (vi) may be written

(vit) lim ?[Fn(x)-F(x)]dx = 0, ge]_oo,.m[
n+o® o

or

(vi'") iig é[ﬁn(x)-F(x)]dx = 03 — e

An alternative way of writing (vii) is:

(viit) lim [A(Fn,F) + '!lxan(dX) - !leF(dx)']:o,

n-—+>eo

Proof of the theorem:

(1) <=> (i1i): Follows from corollary 4.7.

(1) <=> (v) : This is a consequence of (4.5).

(111) <= (iv) : = is trivial, so suppose 1lim Bn(a) B(a),aé,[o,{]

n->e

Let us show that B8 n=1,2,* are equicontinuous in 1.

n?
Let € > 0 be given. By the continuity of B8 1in 1, there 1s a

a € [3,1], so that B(a ) < €. Hence - since Bn(ae) > B(a) -
there 1s a positive integer n_ so that Bn(ae) <€ when n 2n_.
Let o0& [:ae,l] and suppose n 2> n_. Here 1s a picture of the

situation:

(aey%::::/,/(u,Bn(a))




The line through (0,0) and (ao,e) must - by concavity - intersect
the vertical through (a,0) in a point (a,y) where y > B (a)

(If otherwise, then Bn(ae) > g). Hence

Bn(a) <y = (e/ae)a < 2e

In the same way - or by a symmetry argument - we may show
that Bn; n = 1,2,se¢ are equlcontinuous in 0. It follows - by
concavity - that Bn; n = 1,2,¢¢¢ are equicontinuous on [b,I].

Moreover - since B8 n=1,2,+++ are uniformly bounded on a set

n?’
[0’0"]“[0"":1] where 0 < a'<a" <1 - Bn: n=1,2,¢+ are

(by concavity again) uniformly bounded.

(i11) follows .now from Ascoli's theorem.
(1) <=> (11): => follows from the inequality A < é&. Suppose
lim A(@n,@) for each o€ [0,1] -
n-»-w

(2.8 /2;

0. By corollary 4.6 there is

a sequence X 3 n = 1,2,+s+ s0 that |x -al <
n=1,2,¢¢¢ and
B(xn) 2 Bn(a) - 6( 8, ?1’1)/2 5 n = 1,2,

Hence
1im sup B_(a) < B(a); ae [0,1]
n->o n -
It follows - as above - that Bn;r1= 1,2,°°+ are equlcontinuous.
Using corollary 4.6 - the other way round - we see that there is,
for each ae [0,1], a sequence y ;3 n = 1,2,-ec so0 that

Iyn'al h 6(%1&3%)/2, n = 1,2,e¢¢ » and

Bn(yn) > B(a) - G(S?n,i?)/2; n=1,2,°0°,
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By equicontinuity

Bn(yn) - Bn(oc) + 0
Hence

liminfg (a) 2 B(a)
.n

Altogether we have shown (iv) and we already know that
(1v) => (1i1) = (1).

(v) <=> (vi): => is trivial so suppose 1lim U (&) = U(E);
n-+rw

gé]_m’+oo[, E
By proposition 4.8; 7 F (x)dx = [ F(x)dx; E€]-w,+=[.

- 00 - OO

g
Let &, by such that fo F(x)ax > 0, and choose a n_  so that

- 00

?0 Fn(x)dx >0 when n> no. Define the distribution functilons

- Qo

Mno, Mno+1, and M by
& o 5 _
M (E) = [[ Fn(x)dx] [j Fn(x)de:; Eéj-oo,go_l’
M (E) =1 ; tele s
go
M(E) = [f_F(x)dx [I F(x)dx]; ge]-=,¢ ],
and
M(E) =1 ; ge € [

Then Mn: n>n, and M are continuous probability distri-

bution functions and 1lim M (&) = M(E);E €] -,

n-+e

Tt follows that the convergence 1s uniform in £&. Hence
? F_(x)ax - % F(x)dx ; uniformly in geﬁ]—w,g;]

l1.e. lim U_(§) = Uu(g) ; uniformly in gel-w,go].

n-+x




5.5

Similarily it may be shown that 1lim Un(g) = U(E);

)

uniformly in &€ [£,,*[ when [ (1-F(x)dx > 0.
€1

(vi) <= (vi1): <= is clear since U (&) = [|g-x|F (dx)

and U(E) = [|]g-x|F(dx). Suppose (vi). Then flxIFn(dx) =
U (0) + U(0) = [1x|F(dax). It follows that F o, n=1,2,0¢" are

conditionally compact. Suppose A(Fnk,Fo) +0 as k + o,

E2 €2 €
By (vi) - [ PFp(x)ax » [ F(x)dx as k » =, Hence [ F(x)dx =
£, €1 €1 €,

/ Fo(x)dx when £&;,£; € ]-w,m[, so that F = Fo‘ I follows that
€1 }

A(F ,F) + 0 and - since [|x|F (dx) » [[x|F(ax) - x A x is

uniformly integrable w.r.t. Fn; n=1,2,°°+, Ij

It follows from theorem 4.1 that any continuous pointwise

limit of B - s corresponds to a derivative. The set of possible
functions U 1s, however, not a closed sub set of ¢(]-»,+=[)

with the topology of pointwilse convergence.

Example 5.2.

Define for each n = 1,2,¢°¢; Un by

U (&) = max{[(l-%)|£|+1],|5|}; EE ] -, e[,

By proposition 4.9, Un represents a derivation. The continuous
function & M 1im Un(g) = |g]+1 does not, however, satisfy the
n=»c

criterions in prbposition 4,9, - and therefore does not correspond

to any derivative.
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This difference in behaviour of the B8's and the U's is

more apparent than real, since we have

Proposition 5.3.

The following conditions on a sequence (%2n;r1= 1,2, of

derivatives are equivalent:

(1) There exists a derivative g; so that 1im A( @;,3?) = 0.

n-=>w

(11)  1im B (a) exists for all a€ [0,1] and the function

n-+>o

o ™ 1im B_(a) is continuous in 0 and 1.
nteo D

(1i1) 1lim U,(E) exists for all £€ |-=,+=[ and the function from
n-w
[-©,+®] to [0,»[ which maps -» and « into 0 and any

finite £ into 1im Un(E) - |&|, 1s continuous on [yw,+w].

n-+eo

Proof (1) <= (ii): Suppose B(a) = limBn(a) exists and that B8

n-+

is continuous in 0 and 1. By theorem 4.1, B corresponds to a

derivative (? , and by theorem 5.1, A( gn,(?) ~ 0,

(1) => (i1): Suppose 1lim A(gn,g) = 0. By theorem 5.1

n-+x©

lim Bn(a) = B(a); a& [O,l] and B is - by theorem 4.1 - absolutely

n-»o

continuous on [0,1].

(1) <= (iii): Suppose U(E) = lim Un(E) exists for any §

n+«e

in ]'”»*“[, and that %iT [ucg) - |&]] = 0. By proposition 4.9,
E|»




5.7

U corresponds to a derivative 99 and by theorem 5.1 1lim A(E?n,i?)=q.

n->e
(1) => (4i1): Suppose 1lim A(%n,%)) = 0. By theorem 5.1
n-+o

lim U _(§) = U(E); E€|-o,+o[ and - by proposition 4.9 -

N~

1im [U(z) - IEIJ = 0. 1
[ €[>

It will occasionally be convenient to work with sets of
experiments and related sets. We will - in such situations - always

assume that we are working within a well defined set containing

representations of any given experiment.

By theorem 5.1, A and A are topologlcally equivalent.

A does, however, generate a larger uniformity than A.

Example 5.4,
Let s€ ]0,1[ and t € |0,o[, Define By y @s the

B-function whose graph consists of the line segment from (0,0) to
(s,t) and the line segment from (s,t) to (1,0). Define Es,t as
the B-function whose graph consists of the line segment from (0,0)
to (s%3t), the line segment from (s?,t) to (s,t) and the line

segment from (s,t) to (1,0). Here 1s a figure of the situation:

TAl
o
fes,t
ti-. . 5
i
~ ‘./-—,‘ ] ~
Bs,t ' : 8s,t
. ]
. |
! |
! t
i ]
A T + © >

w
[}
]
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Simple calculations - using corollaries 4.6 and 4.7 - yield

A( ?s,t’egs,t)

2ts(l-s)/(t+s)

and

~

a( s,t? Cgs,t)

t(1-s)

It follows that A( (gs t,%s ¢) = 0 whenever s > 0. Nothing
3 >

can, however, be interferred from "s » 0" on the behaviour of

A( @s,t’%s,t)’

Corollary 4.7 implies that A 1s complete. It may, however,
easlly happen that a sequence of derivatives converges in the A

distance to a pseudo dichotomy which is not a derivative.

Example 5.5.
Define - for each s€]0,1[ - the derivative ?S by the

matrix:
XS: 0,1
%i : L 5,1-8
o4t 1, -1

and define the pseudo dichotomy éf by the matrix:

X : 0,1
m: 0,1
c: 1, -1

9.8 0. &
Then 1im A( o ) = 0. is, however, not a derivative.
s=+0
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By example 5.5 the set of derivatives 1s not A-closed as
a sub set of the set of all pseudo dichotomies, It follows that

A restricted to the set of derivatives is not complete,

A and A determine - since they are topologically
equivalent - the same class of (conditionally) compact sets, Some

compactness criterions are listed in:

Theorem 5.6.

The following conditions on the set {?t: te€T} of
derivatives are equivalent.

(1) {(gt: teT} 1s A conditionally compact
(i1) {<%%: teT}l 1is A conditionally compact
(111) {Bt : t€T} 1s equicontinuous in 0 and 1

(iv) %1m [ﬁt(g)- |£|] = 0; uniformly in teT.

€|+oo

(v) X » X 1s uniformly integrable w.r.t. Ft: t€e T,

Remark.
It follows from proposition 4.8 that (iv) may be written

€
(iv') 1im f F (x)dx = 0; uniformly in te&T,

E-)-_oo -0

and

lim [ (1-F (x))dx = 0; uniformly in te€T,
g-)oo E .
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Proof of the theorem:

(i) <=> (11) : follows directly from theorem 5.1
(1) => (1i1i) : follows from theorem 5.1 and Ascoli's theorem
(1) <= (14i1) : Equicontinuity in 0 and 1 implies - by

concavity - equicontinuity on Eb,l]. Equicontinuity and concavity

imply - since B,(0) = B, (1) = 0, t€T - that sup sup B _(a) < =,
t : t £ o t

(1) follows now from Ascoli's theorem.
(1) => (iv) : follows from proposition 4.9, theorem 5.1 and

Ascoli's theoren.

(iv) => (1) : Suppose 1lim {?t(ﬁ) - |Er]= 0, uniformly in teT.

| €]+

Let € > 0. Then there is a k > 0 so that [E| >k =
'Ut(g) < |E] + €. Hence

A

sup[0,(6) = [£1] = 0,000 < 20, () + 20000 gk ¢ e
so that

sup sup [Ut(g) - |£|J < ®,
t g

Let he€ [0,e] and let & be any real number. Choose

numbers §&; and §, so that &, > k,§ and &, < -k,E. By convexity:
-3¢ < [U,(Ea)+8a]-[U, (Ex-n)+Ea-h] b = U (E2) -0, (Ba-b) <

U, (€ +h)-U (E) < U (E1+h)-U, (E1) = [Ut(eﬁh)-(sﬁh)J-[Ut(el)-El|+h_<__3€-

It follows that Ut; teT 1is uniformly equicontinuous from the

right on J-=,+o[, Similarily - or by a symmetry argument -
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U: t€éT 1s uniformly equicontinuous from the left on BRI

Define for each t in T W_ as the map from [-=,+=] to [0,
which maps -» and « into 0O and a finite & into Ut(E)-IEI.

Then wt:-tetr is uniformly equicontinuous and uniformly bounded

on [;w,+W1. (i) now follows from Ascoli's theorem, proposition 5.3

and theorem 5.1.

(1) <=>(v) : Follows directly from theorem 5.1, il

In order to generalize proposition 4.12 to the asymptotic

case, we need the following result:

Proposition 5.7.

For each n, n = 1,2,000, let Xn be a real random variable

on a probability space (xn,gﬂh,Pn). Denote expectation w.r.t. P_

by E . Let - for each n - §3n be a sub o algebra of o@h.
Suppose Xn; n = 1,2,+¢¢, are uniformly integrable (i.e.

lim sup E _|X | I = 0)., Then

csw n U >

1]
o

)
1am AC Lx ), S )

I

if and only if

Ny

n n|=o.

lim Enlxn - E
n->o

Proof:
The "if" is trivial, so let us suppose that

1im A( £(Xn)’ a[(Eann)) = 0. We may - by the relative compactness
n->x©
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of (Xn); n=1,2,°++, assume that there 1s a random variable

Z on some probability space so that :

1im AC S ), $(2)) =
n-*>x

Hence:
lim AC L (E “x) {2 =
n->
1° Suppose Xn >03n=1,2,ees, It suffices - since

(Xn-E an); n=1,2,s+¢, are uniformly integrable - to show that

(Xn-E an) + 0. Suppose first that we have shown

Pn ;

Choose numbers € > 0 and c¢ > 0., Then:

$

P (|X - E nX|>e)

n
z Pn(rlﬁf‘1 »fé Sn X (/K + /é | );e]ﬁh(/X;WEnSz’nxn)_g_c-)
S Ny o ; -
NI LTV R AR N (€ w0 SR O b

P (/T + xé.nggnxn) 2¢) + B (|/X] - /én 3nxn| > e/c)
< sup E, (VX + /B *n X Ye + P (VK '~ VE ~ "X |

A

fiv

e/c)

Hence

53 [ S3n /
lim sup Pn(IXn - B anl > €) < sgp En(/X;‘+ E X )/e

n-+o

/53
¢ + = give - since sup En(/ﬁn‘+ E nxn) < ® -
n

3n
lim P (|X - B xnl. >€) = 0.

N>




It follows that we wilill be through if we can show that

VX1 - VE San > 0.
n n nop
n

Now:

L »dv

/e Py s [om.

By uniform integrability:

and

EnJXn'+ EVT
and
E n
En/én X, > E/Z
Write

By Jensen's inequality Yn >0 aﬁ.Pn;

n n
Hence
Yh ; 0
n
so that

oC(gnSz’nﬁc;) »§um.

Yn=»/En‘ ”xn -EBn

n=1,2,00¢,

5.13



By uniform integrability agailn

Ean + EZ
and

En(En%n/X_r?) > > EZ
Hence g}

En(/xgi' Engbn/xg)z = Ep¥n - En(En n/xng >0
so that SB

/i;,' Fn n/K;? ; 0

It follows - since Yn + 0 that

Pn
VX - ¢£ Ny 5 0.
n n np
n

2° Let us return to the general case.

5.14

clearly J (x1) » {(z*) eana O[((En%nxnf) 284zt vy

uniform Iintegrability

+ Bn, .+
EpXp = Ep(By X))+ 0
or
gn + an +
En[En X' - (B "X ) ] >0
n.+ Ssn +
By Jensen's inequality: E "X 2> (En X ) 3 n=1,2,00e,
Hence En Xn - (Eh an) ; 0
n

so that ‘,C(En53 nX;) +£(Z+)
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It now follows from 1

+ gbn +

X -E X | +0

Enl n n n

Similarily - or by a symmetry argument -
B -
E|X"-E x| +0
n''n n n
Hence
9
E|X -E_ "X | +o. 0
n''n n n

Proposition 4.12 may be generalized to the asymptotic case

as follows:

Proposition 5.8.

Let C?n = ((Xn,;AL),ﬂn,on); n = 1,2,s¢s, be a sequence of
derivatives. For each n, let §5n be a sub ¢ algebra of cﬁh
and let ??n denote the sub derivative ((xn,gan),nnq n) Where
- by abuse of notations - L and o, are the restrictions of T

A

and o to Ssn' Finally let, for each n, o, be the measure on

uqh given by

dqd% =g%wng%).

definition A
Then @n m((xn’ uqn) ,‘"’n’o‘n)" n = 1’2’oo. , are

A
derivatives and @n ~ (?)n', ns=1,2,°¢°,
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Suppose (gn; n=1,2,ese, are relatively compact. Then

~

%?n, n = 1,2,eee¢, are also relatively compact and the following

conditions are equivalent:

~

1 11mk (¥ ,8 ) = 0

(1) Lin n® 9q

(11)  1imflo_ - o] = ©
n

(111) lin A(iﬂn(donldwn),o{;n(g "(do lam ))) = 0

m
n n

Remark.

(1ii) may also be written:

(ii') 1im E_|s_ - E s_| = 0 where - as usual - s_ = do_|dm_.
yois S L. n n'"'n

3

ETT nlsn is the Random Nikodym derivative of the restriction

n 55
of on to S%n, w.r.t. the restriction of T to ne It follows

that (i1i) may be written

' = - - F o
(111') 1im A(Fn,Fn) 0 where - for each n , and F_ are

Nn-»>o
the "F distribution" corresponding,respectively, to i?n and <Y .

Proof of the theorem.

Let - for each n - En denote expectation w.r.t. T
1 %, 1s a derivative since o, << m, and o (X ) =EE "s =
a5 . *
Es, = 0,(X,) = 0. By proposition 4.125 @ ~ ((x,, $),m, ,0, ) where
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*
% 1s the restriction of % to Saq Let BnE- SZn Then :

* _ . _ n _ _
9, (Bn) = cn(Bn) = EnIBhEn 8, = En‘ Iann = on(Bn). Hence

((Xn’%h)’"n’cn*) - ((xn’gn)’“n’on) ) §n'

2° Suppose an; n=1,2,°¢°, are relatively compact. Then

~

L

- by theorem 5.6, and since B < B 3 n = 1,2,0¢¢ - cgn; n=1,2,00,

are also relatively compact.

3° Suppose @n; n=1,2,°*, are relatively compact.

(1) = (1ii) : We may - by relative compactness - assume that

88 _,9) » 0, so that A(an,?) > 0. By theorem 5.1, A(F_,F) + 0
and A(:ﬁ"n,F) + 0, Hence A(Fn,‘:'-"n) + 0. |
(i1i) = (1) : We may - by relative compactness - assume that

A( gn,@) + 0 and A(?n,@) 0. By theorem 5.1, A(Fn,F) + 0
and A(F_,F) » 0. Hence A(F,F) g A(FF) + A(F,F ) + A(F_,F) » 0
so that F = E' It follows that S)-. ? . Hence ;(?n’%n) + 0.

(11) <=> (1ii1) : Follows - since s 3 n = 1,2,°++, are (by theorem

5.6) uniformly integrable w.r.t. Ty 0= 1,2,¢¢ - from proposition

5.8. 7




6.1

6 Local comparison of experiments.

*

We assoclated in section 3 a derivative éf;o with any
experimen;,which was differentiable in 60. A mathematical theory
for the &erivatives was outlined in sections 3-5. The purpose of
this section 1s to connect the theory in sections 3-5 with the

statistical theory of information.

Before proceeding, a few notational conventions. Experiments
will usually be written é¥= ((x,d@), Pe:eee) with or without
affixes. It shall be assumed - unless otherwise stated - that our
experiments are differentiable in 6 . If éf; ((X,d@),Pe:GG:O),
then the derivative in 6 = will be written é;o = ((X,JP)Peo,éeo).

The restriction, ((x,J}), Pe:ee.ol) of éf, wlll be written

éfel. In agreement with the notations in section 4 and section 5
we define :
5 definition dﬁ ap

) eo Bo

definition -1

P, s

0 6 8
o) o "o

F

v, (g) definition lepg By Il; £€]-w,=]
o 0] 0

definition r
Veo SeLILiIOR {(fsdpy, fadpeo): 0 <& <1}

Beo(a) = sup {y: (a,y)fveo}; a€ [0,1]}

Affixes on éf, X,Ja; Pe, o, Pe s Pe > Sg 5 Fg Ue > Vg »
o) o o ) o o
and Be s WwWlll - when these are referring to the same experiment -
0
be of the same type.
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A

For two experiments g and (g we will write

5, (6,%) definitlon 5% T
(o) o O

b, (£,%) definitdon jo %
o (o} (e}

We shall now give two theorems which show that Se is -
0

as the notation indicates - a sort of derivative of the deficiency §.

Theorem 6.1.

-~

Let & and @ both be differentiable in 6_. Then *):

lim & g é% V@e
0 ( [6,-€;6 +e] >~ [6 -c,0 +e]

= 1im §( & & )/2e
£+0 {6,-€,0 +e} > ® {8 -€,6 +e}

=8, (6, 8)

Proof: We saw in section 2 that - in a sufficiently small

neighbourhood of 0,~we have the expansions

P

Pe + (G-GO)P9 + (9-60)1"e 6

0
o 0 0?

and

+ (8-6 )P + (6-9 );
o ) 60 0 90,9

Po = Py
where sup|T + T < 1 + T =0 .
elTe ol +liTg oll < = ana Limlirg i+lir, ol

*¥) {a,b,°*+} 1s the set whose elements are a,b,ses .
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~

(1): Let M be any randomization mapping Peo on Peo, and

let 0 < |9-60| < €. Then:

P M-P l=llp, M+(8-6 )P, M#(8-8 )T M-P ~(8-6 )P -(6-6 ); |
) 8 0, 0" 6, 077 0,,6 6, ) 60 o eO’d

|e-eo| I](Pe M-P, ) + (T, ’eM-—I'e ,e)”
0 (o] (o] (0]

[ ] & ~
cli?g 1ep Il +esuptlty o +ITy oll: 0 < Jo-g | < )

A

by the randomization criterion for comparison of

G ana & d by the definiti
[6,-e,0,+e] =" é [6,-€,6 +e] > 20 PV ¥he d€ on

of 390(5 ,%):

§( g[eo_e’eo+8]’ 2[90—6,904'8] )/ 2e £ Geo(g ,g) + a,

where 1lima_= 0 .
€
e+0

Hence:

limsup G(gi:eo_e’eo_,_el, gl'-eo_e,eo+€1)/2€ < 660(5’2)'

e+0

(i1) By the testing criterion for comparison we have - for

sufficiently small e€:

§(& ) = sup [II(l-k)P AP
{60-5,60+e} )E%GO-E,GO+5} 0<rel 0 *e’ eo-eH

-||(1-2)P -AP ||]= supﬂl(l-zx)? +eP_ +(1-A)el +Ael I
60+e eo-e 0<)< 60 60 60,60+e 60,90—8

-l (1-20)Py +eP_ +(1-A)el o+

e+AeI’
0 o] o?

]
80s97¢"J

= sup BI(I-ZA)PG +ePeo|| -||(1-2x)Pe

teP, lﬂ+eb
0<i<l o €

(o) (0]
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h b <t +{ir +IT +||T
where | el : eo’eo+e|l | eo’eo"e”, ; 60,90+e” . eo’eo-EII

It follows that lim bE = 0 and :
>0

liminf 6( & 2 )/29.
€40 {eo-e,eo+e}’ {6 -€,0 +e}

= liminf sup [II((l—QA)/e)Pe +Pg |-l (1-22) /e P, +Pg ||] 2
e+0 0<A<l o} o] o] 0

Let & Dbe any real number and choose € > 0 so small

that [0 -€,0 +e] C @ and € ' > |E|. It follows that

1+Ee
2

€]0,1[ and therefore is a possible value of XA. Hence:

1iminf 6( Gc.ieo_eseo.l.e},g {eo_e’eo+e})/2€

e+0
hd @EPG -Py I-1&74 -Py Ill/z = [Ue () - U, (&)]/ 2
o) ) 0 0 0 o}
and - since deficlencles are non negative

lil-l;lgnf 6( 8{eo_e’eo+e}9é{eo-e,eo+e})/2e ;S‘gp[ueo(g)‘er(E)] /2

= 58 (g’g)'
o]
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(i11) We get successively :

(5,5) < (by (11))

1i£%nf 6(2{6 -€,0 +e}’g {6 -¢,6 +e}) /2 £ 2

(since {6 -e,6 +e}C[® -€,6 +€])

1iminf 6( g['ﬁo-s,eo+e__| )g Leo"e,eo"'el)/ 2 € é

e+0

&
Hmsup &( ge -€,8 +€]? Gﬂeo-e,eo+e:[) /2 es (by (1))

- e>0
s, (&.8).
(o]

It follows that these 1lnequalities are all equalities. Hence

limsu G(Z (vg )/255
>0 p {6 -€,0 +e}5 {6 -€,0 +e} =

(since {0 -¢,8 +el=[6 -€,0 +e])

11 8 2 =
mSUp (g[eo-e,eo+e]’g[eo-e,0°+e])/ €

e*0

~

11.12%nf 8( g{@ o= €6 +e}’g{eo-e,9o+€}) /2 =

and this completes the proof. =1
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Instead of averaglng over the interval [0 -e,6 +e]

- as we did in theorem 6.1 - we might as well use "one sided"

intervals [6 -€,0 ] or [6 ,0 +€].

Theorem 6,2.

g and g both be differentiable in E)o. Then:

3 /
1im &( g 0 5c, o] z o, €,eo,| )/e 1img( g{eo'e’eo}" g{go_e,eo})/ €

e+0 e->0

= ;6 (gs g)s
(0]

and
iirg o g[eoaoo"'e]’ g£80:60+e]) . i-j;lg ( é 009o*€}? g{eo’eo+€})/€
o, (6,60

Proof: By the norm criterlon for test deficilency:

8 & g ) = sun[ U, 1B 7, 4o *neg I/ 2+1nl]
{6,,0,+e}> @106 ,0 +e} n L0 e 0 b te 0

~ [} + L4
= sup[ (I (1+n)By +ep, Il - | @rmIpy +erg 1)*/14]n]| + ca
n 0 0 0 0 - €

where lim a_ = 0. Inserting £ = -(l+n)/e we get:
e+0

§( & , 4 /e = supl (U (8) - Uo(£))F/ (14| 1HeE {]+a
{6,,0 +el %{ao,oo+e} / £ [ E & / | 1+ek] |
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ILet «x > 0. Then we may choose a £o>0 so that

[Ug(ﬁ) S (6 [ué(a - lel] - [Ué,(m - 15]

when [g]| > g,+ Hence

[(Ug () - Uy (" (asl1veg]) - <Ug<s> - Ug <ix
when |g| > &

Next, choose €, > 0 so small that l—ego > 0 and
IET;’IO[IUS (€) - Ué‘ (&) 550/(2-2550): < K

when ¢ < e . It follows that

|(Ug(£) -Ué(g))+/(1+]1+e£l)—(Ug <%|<

for all &; provided € £ €," Hence

[s¢ &0 re10E 00 ve0) < - a0 (- Ugm)*/z:;%K ‘a

Lol

when e < e . This implies that:

Him 6(g{e ,0 +e}’8{6 00+e«§§)/e - 6eo(g’Z ).

e>0

To prove the last statement it suffices to show that:

limsup&(@ro, z |/e<6 (gg)

€0
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Consider any € > O such that [0_,8 +€]

) o+€J‘i 0. By the randomiza-
tion criterion there is a randomization N

so that
“NEPG
o

- P 8( ¢
60".; ( g{ﬂo,eo+€}’g {00,90+e})
and

lIN Py te T PeO+J| 29

g )
{6, 0 ¢} ¢ {0, 0, €}
To any 0¢ [0

0,50, %€] there is a AGG'LQ,l] so that
e = 0O * Age = (1-)\9)8o + Ae(eo+ €).
Consider the accuracy of the approximation (1-X )P + ePe +é of
Pe = Pe +(6-60)P6 +(0-Go)1‘e 0° We get:
o o} o?
-(l A )P ePe +€ = Pe +(6-60)Pe +(G—60)I'6 ,e-(l-AO)P -
0 0 o) )
AP, =2 e P, =X €T = (6-0 )T +A el .
070, 0 6, 0 0,,0 %e o 60,6 67 08,,0,%¢
Hence (by this and the analoguous expansion of P,.) :
1N _Py-Poll = Il (1-2)N_P, +A N _P. , +(6-6 )N T, ’0+A0eN€Fe [0 +e
) o o 0
-(1-2 )P ePe +€-(e-oo)reo,o-xoer

|l o<
eo,0+e” =
(l'%HINaPG

~

P, ||+ A IN_P -P | + ea
o 00 ol e Go+e 6 +e

depend on ©

where a
€

and 1l1lim a

e+0

does not
= 0. It follows that
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-~ ~ )
INPg-Pgll < 6 ( 8{eo,eoﬂ:} g{eo,eow} toeag

Hence

8( y i I /e < § ja+a

Z[eo,ec+e1=% |_eo,eo+e_|) = (g{eo,eom}’%{eo,eon})/ €

so that

limsup 6( g 8 )/e <

e+0 P [eo’eo+€]’ [—60’60+€] ’/ -

lim (& | ) = 8, ( ).

£20 {0,,0 +e}’ Z{00,60+e} 0, g’ g

The first statement follows from the last by a symmetry
argument. ' J

Remark. Theoremsb.l and 6.2 imply that local comparison bas=d

upon 66 is asymptotically equivalent with d-comparison of

0
"statistical" dichotomies.

Corollary 6.3.

Let g an both be differentiable in 60. Then:

a &
]2 8[eo-e,eo+eﬁ /26 Zelii;rgA( E{eo-e,eow}’ 8{eo-s:,eo+e})/2€

- (&&

(o]

1imA( g
e+0 [eo'e’eo+€

~

001’5

- /
Eeo'e’eo]) = .;I:.il;rgA( g{eo"e’eo}’g{eo"e’eo})/e

-4, (8,6

(o]

‘limA( g

e~+0 Leo"e’
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and

& £ %
11imA( g[00’60+€],g[60,90+€])/e = limA((a{eo’eo+;}, %{eo,eo_‘,e})/e

e~+0 e+0

b, (5.8
0

Corollary 6.4,

N
Let Egi’ 1=1,¢¢+,n and :§i’ izl,e*+,n be differentiable

in Go. Then:

and

o\
Proof: By proposition 2.1; IT 1 and IT 5& are both

differentiable in 00. The last statement follows easily from
the first and the first statement is - by theorem 6.2 - a con-

sequence of the corresponding result for ¢§. The inequality -

6(11251,113?1) < T8¢ Zi,'§;) - follows directly from corollary 4
in section 2 in [15] and remark 2 in sectlion 1 in the same paper. [:]

In order to interpret 66 (5,%) in terms of operational
o
characteristics, note first that for any randomization M from
(X, M to (x,#) such that P, M= B,  we have:
0 0
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lim (P M- P)/(e -0 ) =
e+eo

We have almost proved:

Proposition 6.5.

(3 2 -

in limIIP M-P ||/|e-eO|
O

~

= ®

Proof: Since 1im ||P9M-P||/ |o-0 |
A 0+0, 6

when Py M £ Py , we may
o) 0
restrict our atterition to randomizations M such that Pe M= Pe .
) o)
The proposition now follows directly from the definition.

We are now ready to describe 66 (ré,(‘s) in terms of D
o)
operational characteristics:

Theorem 6.6,

Let (T,éf) be a decislion space and let ¢ be any decision
procedure from g to (T,J')

Then there 1s a decision procedure
c from 3 to (T,é{) so that
(5)  1mougllpgo-rool/lo-0,] < 2aoo<é’,g>_
o)

It may, however, be no o

from © to (1,0) so that

(§§) 1:é§3upllPeofPeoll/IO-eol < 26%(3,5)
(o]
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Proof: Let M be chosen so that PeM-PeH/IO-GOI >28, (&,8&).
o .

~

Then - by proposition 6.5 - o = 0 oM satisfies (§). Consider
now (X,V?) as a decision space and let o Dbe the 1dentity'

~

function. It follows from proposition 6.5 that no o satisfies
(§§). ]

Consider now the problem of finding tests maximizing or
minimizing under side conditions, the slope of the power function
in 00. Let Zf be differentiable in eo and let aOEE]O,l[ be
a polnt where B attains its maximum. No%*e first that the distri-
bution function B+, of the measure B+, which vanishes at 0
is glven by: |

B(a) when o

fia
Q

8 (a) = B(min(a,a )) =
max B(e) " a > o

Similarily the distribution function B~ , of the measure B8,

which vanishes at 1 1s glven by:

A
Q

-max BR(a) when g
a

B (a) = - B(max(a,a )) =
1 -8(a) " a>a

The connection between these functions and the slope problem

is descrilbed in

Proposition 6.7,

The maximal slope at 6, among slze o tests for "0=60"
against "9>oo" is B(a).
The maximal slope at 80 among tests with level of signifi-

cance o for "e:eo" against "e>60" is B+(a).
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The minimal slope at Go among size o tests for
"e=eo" against "6<60“ is =B(l-a).
The minimal slope at eo among tests with level of

significance o for "e=60" against "e<eo" is B (1l-a).

Proof: We choose - since the verificatlons are very similar -

to prove the last statement. The minimal slope is the number:
min{y: (x,y) €V & x < a} = - max{-y: (1-x,-y)€ V & 1l-x > 1-a}

= -max{y: (x,y)e V & x > 1-a} = B (l-a). ]

We summarize here - for the sake of completeness - a few
simple and essentially known facts on local properties of tests
for "0=0_ " against "e>60". A level o test & will be
called locally most powerfull (LMP) if to any other level a

test 6 there corresponds a eg > 0 so that

§ will be called uniformly locally most powerfull (ULMP) if
62 may be chosen so that 1t does not depend on the particular
level o test E. Trivially any ULMP level o test 1s a LMP
level o test and any LMP level o test has size ao and
maximizes the slope at Oo among all size o tests. We may

also define the properties LMP and ULMP w.r.t. a specified class

of tests.




Let
seen that a test & has size o

among all tests of size

(1)

¢ be any l-a fractile of Feo .

6.14
*)
It 1is easily

and maximizes the slope at 60

o if and only if :

on [sg >c|
)

I 4t vl h
[Seo>dJ Y [560= ] where

)
0
(11) [ 8aP, = Py (s=c) - (1-a)
8p,=C 0 °
(111) § =0 a.s P, on [s; <c].
(o] (o]
In particular test of the form
y€[o0,1]

tests having the given size.

If we require our test to be a.s P, , 8

then (1) - (ii1)

determines - up to Pe

and d€ {+#,+=] maximizes the slope at ©  among all

measurable,
o 0

equivalence - §. This

o
is no restriction when PGO(SOO=°) = 0. It may be checked -

when

provided Peo >> Py 0>0O

which maximizes the slope among all size

all measurable o tests.

Sgo
then such a test is a LMP level
"sg,2d" 1s - provided Py >> Py
level Pg,(sg,2d) test.

If X 1s finite and \ﬁ% is

for the probabilility measure

p < P(]-=,x]).

- that a measurable test

SOO
o ‘tests is LMP w.r.t.
If - moreover - Peo(seo=c) = 0,
a test. Any test of the form

when 0¢ L@o,eo-FG] - a LMP

the class of all sub sets then

An element apE [-=,+©] 15 called p-(p€|0,1]) - fractile

P oon R if P(J-=,x [) <
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there is a € > 0 so that [_dPe/dPeojxl > [_dPe/dPeo]x2 when
sp,(x1) > seo(xz) and 6€ 16 _,6 +e]. In this case the test
"sg,2d" - where d 1is a constant in [-»,»] - 1s a LMP level

Pg,(sp,2d) test for testing "6=6 " against 6€]6 _,8 +e].

Example 6.8 (Rank tests). This example 1s modelled after the

» v ,
theory in II.4.8 in Hajek and Sidak [4 ]

Consider an experiment Eﬁ of the form 2§= ((]—w,w[n, Borel

class), Pg:0 €0) such that:

(1) Po({(x1,°00,x )2 X1,°**,X  are all different}) = 1; 0e @

(11) Peo 1s symmetric, i.e. [h(xﬂl,-0-,xﬂn)Peo(d(xl,-eo,xn))
= !hciPeo for any permutation m of {l,¢*+,n} and

any bounded measurable function h on ]-w,+wfn

(ii1) 2515 differentiable in 90.

For each 1€ {l,¢+°,n} and each (xl,---,xn) in ]-w,+w[n
the rank ry of Xy in (X1,°“,Xn) is the number of subscripts
J such that X £ Xgo T = (rf,---,rn) is a permuation of

{1,2,¢22,n} provided Xp5°°°,X  are all different.

The order statistlc ,ord, 1s the function
x n->(ord,(x), ord,(x),°+*,ord (x)) where ord,(x) g ord,(x) g -
ee < ordn(x) are X;,*°°,X, arranged in increasing order. If
there are no repetitions in (xl,---,xn) then xi.=ordri(x)(x) :

i =1,¢ce,n, It is easily seen that r and ord are independent
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under Pe .
o]

For each permutation 7 of {1,2,e+*n} write

a(n) = E Sq (ord“(l)(x),-'-,ord (X)) .
o

0 m(n)

(0]

Then a(r) 1s - under P, - a version of Egosﬁo‘ It follows
that there is a € > 0 soothat any test of the form a(r) > d
or a(r) >d 1s ULMP among all rank tests with, respectively,
level Py (a(r) 2 d) and Py (a(r) > d). If each Pp, 15 2

product measure P61 X eeo X POn’ then - by proposition 2.1 -

n : j
a(m) = 1§1ai("(1)) where a4(J) = Eeo[éPob’i/dPeo’i]ordJ '

Note that it may - as in the two sample problems - happen
that there are 1's such that Pe,i does not depend on €. The
corresponding random variables may then - by the "principle" of
sufficlency - be excluded from the sample. No damage 1s done by
that, since all information 1s stored in the remaining variables.
The ranks, of the remaining variables, w.r.t. the non deleted
varlables, however, may contain no information at all. We are
only pointing out the - perhaps trivial - fact, that ranks computed
within a sufficient set of variables may be worthless. The ranks
of the sufficient variables may - on the other hand - be "locally

rank sufficient". This example generalizes somewhat the theory

in II. 4.8 1n [y ].




6.17

The set of possible levels of tests of the form "sg >d"
may not contain numbers suffilciently close to some preassigned
level. It may happen that this set is {0,1}. This 1s the case
if and only if B8 = 0. All experiments with B8 = 0 are, of course,
equlvalent in the A sense. A more carefull analysls based upon
derivatilves of higher order reveals that their behaviour in small
neighbourhoods of eo may vary much. In particular "the local
behaviour" may be very different from that of a trivial experiment
where Pg does not depend on 6. We shall see that B = 0 does
not exclude the possibility of a large collection of ULMP tests.

A convenient way to express this possibility 1s to use the
lexicographic ordering 1%1 in [—w,+é]n corresponding to the
coordinate wise ordering >. More preclsely: xl%xy if and only
if either x =y or there is a2 J so that Xy = xj when 1 < jJ
g > ¥4. The ordering 1%& is a total ordering of [-w=,+®]",

If x 2 y and x # y then we will write x > Ve
lex lex

and X

Proposition 6.9. Consider an experiment

A= ((x,H), P, 1 o€ [eo,eo+e[,'1e q)such that

(§) Py does not depend on n. This measure will be
O’
denoted by Py .
0

(§%) There are r > 1 finite measures
(1) (2) (r)
Poo » Peo ,'°°,Peo so that
lim [B, - P, - T (6-0 )ip(i)n/ (6-6 ) =0 ,
6>0, 0" 8 gz 0 9 0

- uniformly in n.

(§§§) X 4s finite and Jq’ is the class of all sub sets of X.
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For each 1 = l,*ce,r and each xé€X put séi)(x) =
0

P(i)(x)/P (x) or = as Py (x) >0 or Pg, (x) = 0. Let

to denote the map x n> (s(l)(x) vee s(r)(x)) fromr X to

[-=,=]".  urite e’n(x)/Peo(x) = if Py (x)

Then there is a € > 0 so that Pe,n(XZ)/PGO(x2)>P6,n{x‘y%egkﬂ

when t, (x,) > t, (x1) and 6€7]¢ _,06 +e]. Any test of the form
% lex %o oo

"te =>= d"
olex

where d 1s a constant in [—w,é]r is a UMP level P6 (te > d)
o o

test for testing "o =eo" against "6€]eo,eo+e]"

Proof. 1°. Define - for each 0> 6, - we n(x) by the expansion
2

Py (x) = By (x) + z<ee) Pell(x) + (0-0) vy (X)),

o) =1 o

In order to prove the first statement it suffices to show that to
each pair (x,,x,)€ XxX such that t, (x,) > ty (x,),
o lex 0

PG (xz) > 0 and Pe (xl) > 0 there 1s an € > 0 so that
0 0

(X )/P (x,) > Py (x )/ 6, (x,) when 6 <6 < 6 te. Let

be the smallest index such that séj)(xz) > séj)(xl). Then we have;
0 o)




6.19

x J
[Po,n(xz)/Poo(xz) - Pe,n(xl)/Peo(al )]/(e-eo)
= Séj)(xz) - séi)(xl) + v(o,n)
0

where  v(o,n) = [ [s{Mx,) - s (x;)] (00 )t
J<i<r 0 0

+ [we’n(xz)/ Pec(xz) —we’n(xl)/Peo(Xl)] (e—eo)r-J

By (§%)

sup|v(®,n)| + 0 as 0 + 0
n

Choose € > O so small that

sup|v(0,n)| < Séj)(xz) - séd)(xl) when o6€]o_,0 +e]
n 0 o}

Then Pe’n(xz)/Peo(xz) > Pe’n(xl)/Peo(xl) when 0€ Jo_,6 +e].

2°. We may - without loss of generality - assume that

S
(o

let x e X maximize Py n(x)/Pe (x) subject to the condition
5
0

d =t, (x) for some x in X. Let Bé]eo,eo+e], neé 4? and

"q = tev(x)". Then

0
to (x) 2 4 when Pe’n(x)/Peo(x) > Pe,n(xo)/Peo(xo)

and

b, 00 < @ wnen ()R () < Pe’n(xo)/Peo(xo).

It follows now from Neyman Pearson lemma that the test "te

is UMP for testing "0-6 " against "6€]0 ,0 +e]".
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Example 6.10. (Rank test for independence). This example is

modelled after the theory in II. 4,11 in Hijek and Sidék [4].

Conslder an experiment "% of the form

A n k -
A= (> & J-=,«[,Borel class), Qy 3 ©F€ ][, M M)
j=1 1i=1 =
such that
(1) There are non atomic probability measures
Py 1,35 0 €]-w,0f, i=1,0%¢,k, J=1,e++,n so that
(11) Po,i,j does not depend on J. We will write Py

instead of PO,i,j'

(i2) There are finite measures Pij so that

?éiISIi(Pe,i’J - 2y)f 0-pyy Il = 0, uniformly in Me M.
The measure ) O pP,xp, ,x II P,xP_,xIIP
l1<h<v<k i<h 17h,J h<ikv 1 Vsd i>v 1
will be denoted by Vj.
(1,) P (3) 1s measurable in 6.
6,1,d
(11) C/% is a collection of probabllity measure on ]—w,m[

so that t m—> t2?2 4is uniformly integrable w.r.t.M% .

1r M€ UM then uy and cMz denotes, respectively,

the expectation In M and the variance in M.

n k
iii = where = [ II M(dt).
- We will - since SO,M,j and QO,M do not depend on M
and J - write SO and QO instead of, respectively,

So,m,y # So,m
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'eznmy be obtained by observing real random variables

Xij; 1 = 1,0k, J=l,c°e,n such that:
(%) There are random varlables Tx""’Tn so that the
+ LI .
k+1l dimensional random vectors (Xxj’ XzJ’ ij’ TJ)
are stochastically independent. T1,"‘,Tn may not be
observable.
(%) le, ij,---, ij are conditionally independent given TJ.
(k%) P is a conditional distribution of Xij given TJ.

eTJ,i,J

(e sk ) T1,°-~,Tn are independently and identically distributed,

each Tj having the distribution M.

The joint distribution of X,,, 1z1,°+¢,k, j=l,*++,n 1is -

under (%), (%x), (¥¥k) and (Jr%%x) - Qe e

n k
Let x4y, 1=l,¢++,k, j=1,-.-,n be a point in II I ]~ ]

J=1 1=1"
such that xiJl # xijz when Jj, # J,. For each i - i=1,2,¢+¢,k =
the vector (Xif"‘f’xi’n) will be written x,. The rank of X5

w.r.t. x,, and the j-th order statistlc w.r.t. x, will be written,

respectively, rij and ordij. The symbol 0y may - in this

example - represent any quantity which converges to 0 as 6 =+ 0

uniformly in M. Finally put sij = dPij/dPi and aij(z) =
E s,,(ord (X. )). We shall now show that there is an € > 0 so
13 1,0 %1

that any test of the form

n

" ) > constant "

b 1;h§V;k ahj(rhj>avj(rvj
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is UMP among all rank tests for testing

"o =0" against " 0 <0 < e " at the level

n

Q (]

° =1 l<h§v<k *nJ ) > constant)

(rhj)avj(rvj

If P does not depend on Jj, then we may write Sy and

1J

ai(z) instead of, respectlvely, sij and aij(z). Using the

formula (zy,)2? = zy,? + 2 I y,y. we see that these tests are -
J J hgv h7y X

in this particular case - precisely the tests of the form:

n k
"le(hzlah(rhj))2 > constant "

Note that Xi =l,°*°*,k, Jj=l,°**,n are - since

go 1°
n n k
Q = :E[SO = IT ]:IPi - stochastically independent when 6 = 0.

° j=1 3=1 1=1

Let U denote the probablility measure IP M(dt).
0t ,1,]

6,1,J
Put re,i,j = (Pe,i,J - Pi)/e-PiJ or 0 as 6 #0 or 6 = 0. Thus:

P = P, + 6P, + OT
6,1,J 1 1 0,1,J

and

P

Pi + etP + 6tT

0t 1,3 13 ot ,1,J

Integration w.r.t. M gives:

UG,i;J = Pi + GuMPij + e[tret,i,jM(dt) .
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Hence - since ]tret,i,JM(dt) = 0, -
U . = P
T%,0,0 7 TH

+ 0p 2 QI P, x P x m P
Mps14en 2 B 45p 71

+ 2..2
6 UM Vj
%
+ 1P x[tr M(at)x [ P
hZ1 i<h I 6t,h,J i>h
+ 020

[
Similarily - using that Jtret 5 jM(dt) = 04 and
3 3

[+2 - _ .
ft Fet,i,jM(dt) = 0 we get:
Sem,y ° k!
+ 0y Z IPixP,x IP
Mh 1 i<h hJ i>h 1
+ ez[ItZM(dt)JVJ
)
+ 0 mP [tP M(dt) x TP
h=1 i<h i 0t,hJ i>h 1
2
+ 6 oe
It follows that:
= + 24 2
Sg M, g Ue 1,3 G Oy Vj + 0 g
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Hence - since Ue,i,j = Py + 09(1) - we get:

. n -
Ue,i,J + 62{0M2 ) [;n (n Pi)]xvjx[;II (HPi)J}+92°e

Q
e,M J:l '<J i R L '>j i

In
J 1
Restricting the measures to the algebra generated by the

vector of ranks r = (rij’ i=l,ec°,k,j=1,°°+,n) we get:

7

n
(=o, = .-.]_+2 2 0 0
Qe’M r=r") Qo(r ro) 6 {cM le l;hZVékahJ(r hj)avj(r vj)}+92°e

[I'he [,j 'H<j (liPi)] X Vj X [,j 13(?1)] measure of [r=r'°l may be

found by first considering the QO measure of the same set and

then using that

(X s i=l,2,9°"k“ :1,2,-0‘: [N
H ’j o) 1;h§vgksh5(xhj_)SVJ‘(th,) s a
version of d{{ I (mp )}xv x| I (HP.'W} aqQ .
Lyreg 1 1517 >3 1 l{] %

Using the independence of ranks and order statistics unless Ho,

as in example 6.7, we get:

{[§'<J (IiIPi)JX V,j X [J{[>j (EPi)_ } .I'E[‘:roj /QO [:r=roj

- 0 o
= 1;b§v5k ahj(rhj)avj(rvj)‘ }

The B-function of the restricted experiment is obviously the

O-function on [O,l]. By proposition 6.8, however, there is a
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n
€ >0 so that any test of the form " a, .(r,.)a_.(r_.)
J=1 1<h<vex B RITVITTV]
n
> constant" is a UMP level a, ,(r, Ja_,(r.,)> constant)
- QO(J£1 l§h§v<k ny (FnfPvg (Fyy) 2 oO0 }

test.

Let 2% = ((x,d¥),Pe: 0€ ©) be differentiable in 6 . The
power of any slope maximlzing test of size a for testing "o-= eo"
against "6 > eo" is approximately a+(0—00)8(a) when . 6 1s close
to eo. We may therefore expect that the maximum power -

Bo o +€(a)- among all level o tests for testing "e:eo" against
020

"0=00+e" is - for small € > 0 - approximately o +eB(a). This
and other approximations are treated in the next theorem. We use

the notation B8, | (a) for the maximum power at 6, among all

152

level a tests for testing "6=6," against "0=6,". It is easily

seen that Be1 0, and Bez 0, are connected through the identity:
L] H]

_ = 1eg: _a (o)
Be“ez(l Bezsel(a)) 1-a3 asd B91992 )

Theorem 6.11.
Denote by o, any quantity which converges to 0 as € + O,

uniformly in o€ [0,1]. Then we have:

(1) 8 (a)

6 .0 +e at+t ep(a) *+ € o
0’7o

(a)

0

(11) a + ep(l-a) + €o_

Beo+E,e
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iii = + 1- +
(111) Beo’eo_e(a) o + eB(l-a) €0,
(1v) By —e.0 (@) = o+ eBla) + eo_
o 270
(v) By —e.p +e(®) = o + 2eBla) + eo_
o o0
(vi) Be +e 0 _e(“) = o + 2ef(l-a) + €0,
o 30

Proof: Write Pe = Peo (O-@O)Peo + (O'GO)POO,G‘

(1) Let & be any size o test. Then

Py +o(8) = o + €B, (&) + eI,

0 (8)
0 0 0’60 €

Hence |p (8) - (a+ €P00(5))| < el Peo’00+€"

+€
eO

so that |Be +€(a)’- (a +eB(a))]| g e"reo,eo-beﬂ

o’Oo

(ii) Write Be +e. 0 (a) = a +ef(l-a) + ev_(a). We must show
otes 0, €

that ve(a) = o_. Let & be a size o test such that Pe (8) =
' 0

Be +€,e (a)o Then Be +€(a) - 0 = (Pe +€_Pe )(6) = oe'
o] 0 0 0 o

Put a_ = 1-Beo’eo+e(o) and let a€ Lp,ae]. Then:

l‘a = Beo,eo+e(l-seo+e’eo(a)) = (by (i)) 1-Beo+€,eo(a) +

eB(l-Beo+e,eo(a))+eo€=1-a-ee(l-a)-evéa)+36(1-a+o€)+eo€. Solving w.r.t.
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ve we get: v_(o) = B(l-oto. )-B(l-a)*o. = o..

It follows from (i) that:

a, = 1_Beo’eo+€(o) = l-eo_. Let a€>[ae,1].

Then: 1= Beo+€’60(a) = a + ef(l-a) + eva(a)
i.e.: v (a) = (1-a)/e + B(o) - B(1-a)
Hence: |v€(a)| < (1-a€)/e + sup{|B(a,) - B(a,)]|: |az=a1|< eo }=o_

(1i1): The proof is very similar to that for (i).

(iv): The proof is very similar to that for (ii).
(v) We have for any test §:
P (8) - 2P, (8) + P (8) = (T (8) - T _.(8)).
eo+e 6y 6,-€ 60,60+e 60,90 €

If § 1is a size o test, then this may be written:
Peo+e(6) = 2Peo(6) - o + €0, .

Hence - by (iv):
= 2Beo_€’eo(u) - o+ eo_ = q+ 2eB(a) + €0,

Beo-s,eo+e(°°)

(vi) The proof is very similar to that for (v). 1
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Corollary 6.12. ~ bo§_~§.q1fferentiable
Let g'-‘ ((X,VQ‘),PG: 8ee)) and Z: ((X,yH,p eeg))\‘

~ 9
8,02 (a) (Be“ez(a)) the maximum power

in g (g) among all level o tests for testing "0=6, " against

in 6 . Denote by B

"6=0,". Then:

(1) 1im sup(ge o +c(@) = By +€(cx))"‘/e: = &, ((Cf,é)

e+*0 o o o 0% o 0

-~ + b4 ~

(11) Lim sup(By ye0 (%) = 8o se 0, (@) fe = seoq‘f,g)
(111)  1im sup(s (@) - 8 @)/e =5, (Z,2)

>0 a eo,eo-e eo,eo-s / 0, gag
(1v) lim zaup(f‘a'e e (@) =By _. g (a))+/e = 8, (g,g)

e+0 a o ?0 o ?o 0

. ~ + ° Y,

() 1 sup(8, Lo e (@) - By e o e(0))2¢ = 8 (€, %)
(v1) 1in sup(By o o (@) = By e o e(@))}/2¢ = 8 (&, %)

e*0 a o o o ? o 0

A
Remark: Let 9= ((x,#),2,,p,) ana = ((x,A),F,,F,) be
two dichotomies. Let, for each a €[0,1], v(a) (v(a)) be
the maximum power in g (C‘é) of any level o test for "P,"
against "P," ("5 " agalnst "Pz"). Then 2sup(Y(a) - v’
1s the smallest number n such that @ is (0,n) deficient
w.r.t, Cg « This is a particular case of the "error of the
first - and error of the second" criterion for comparison of

dichotomies given in [15].
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Corollary 6.13.

With the same notations as in corollary 6.12 we have:

(1) 'é_i*lg sup | Beo,eo,,e(a) - Eeo,eo+€(a)l/e = ’;eo(g’z)
(11) tirg szp |600+e,60(°‘) - Eeo+€’e (a)l/e = ;eo(g, z)
(111) i.ixg sgp |Beo’eo_€(a) - geo,eo_e(a)l/e = 890(3, 2)
) tfg Sgp IBeo'e’eo(a) i geo"e.’eo(m)l/E ) geo(g’z)
(v) éirg s;lp IBGO-e,90+e(°‘) - geo_e,eo+e(a)|/23 = ;eo( 8,2)
(vi) i_{lg sup lBeo+e,eo-e(°‘) - EGO,,e,eo_e(a)l/Ee = l.\eo(g’,g)

Example 6.14.  Suppose P, does not depend on 8, i.e. &? is
a minimum information experiment. Then g, o , (a) = a, a¢ [0,1]
0*’o : -

so that:

Sq (2,%) = lim sup(B, g +€(a)-u)/€ = lim|p, ,.-P, ||/2e=||Pe ||/2
o) o e+0 o o 0.

e>0 o o’
It follows that ||Pe || measures how far our experiment
o o)
is away - in the 60 sense - from the "no information" experiment.
)

This follows also directly from corollary 4.7.
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It is not surprislng that conditional expectations under ©
is - when © 1is small - close to the corresponding conditional
expectations under 60; We shall need the following result in

thils direction.

Proposition 6.15.

Let Zf = ((X,%a), P,: 8€ 8) be differentiable in 6 = and

let g& be a sub o algebra of J& . Let X be a bounded random

variable and choose a bounded wversion Ee$3 X. Then:
63 G} 0
sup E,|(E, X - E X)/(e-e )| < e,
0 e 6 60 0
Proof: et -1 <h <1l bea measurable function. Then
3 . 3 %
th(EO X - EO X) = Ee(h E0 X) - EG(h E0 X)
o} o
g3 52 Y
' = EB(Ee hi) - Ee(h E60 X) = Eth - EehEOO X
2 3o

= Eg(hX - hEg ° X) = By (bX - hEg  X) +

, [ Q 53

(hX - hEg- X)d(Py - P, ) = Eg hX - Eg Eg hX +
0 0 o o O .

&
[nex - 2,° mace, - )
0

+ I(hX - hE;;b X)a(Py - Py )
0 ]

o]

< s§p|x<x) - [Eeo ij]H(Pe - PGO)/(G-BO)II lo-o ] .

Hence

<% / Q-
E.|E, X - E X| [le-e | < sup|X(x) - |E X
ol B o, Xl [le-s ] 5 supl [50. ),

x suplp, - P, || /le-e | <= .
o -6 0, 0 J
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Le Cam has shown ([7 ]) that - under regularity conditions -
sufficiency for his distance A 1s equivalent with "conditional

expectation" sufficiency. The next two propositions treats this

problem for the Ae distance. To simplify the writing we intro-
o o

duce the unpronounciable notion of Ae sufficiency. Let
)
g= ((X,/), Py: 6€0) be differentiable in 6,, let 53 ve a

sub o algebra of (A—, and let éf,f ((X,Sg), Pe%: 0€0) where
&

Pes& - for each © - is the restriction of Pe to S&. Propo-
sition 2.2 implies that éfsg 1s differentiable in GO. We will

sufficient if and only if Ae ( 2?3,55) = 0,
0 o

write that S5 1is B,

Proposition 6.16.

Let é?: ((X,J}), Pg: 0€0) be differentiable in 6, and

let S% be a Ay sufficient sub o algebra ofl/; . Let X be a
0
bounded random variable 1n 5 and choose a bounded version EO X.
)

Then:
; .
lim EGIE% X - Eegg' xl/lo-e | =0
0+0 & o] °
o)
Proof: Let =1 < h < 1 be Sg measurable. It follows from

the proof of proposition 6.15 that
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3 S3 r 55 |
Eeh(Ee X - Eeo x)/(e- eo) = Jh(x - Eeo X)d(PO - Peo)/(e-eo)

. S ] .
X)dP, +Ih(X-Ee:% X)a|(P,-Pg )/(o-eo)-P0 ]
(¢} (o] - (o] [o]

fh(x-Eeo

Sd

53 .
Bq h(X-Eg X)seo+[h(X-Eeo x)d[(PO -Peo%/(e-eo) - Peo]

-,

(by proposition 4.12) Ih(X-EGO X)d[(Pe’PeO%/(e‘eo) - Peo-

s;p]X(x)-[#eo ng|u(Pe-Peo)/(e-eo) - Peo" .

A

Hence
EH;%XE%D(69)< lﬂ)bﬁgﬂl
ol %o ~Ho, /l -0 = s;P x)=1"e, M
x || (Py=P, )/(0-0 )=P, ||+ 0 as 0 + o_. ]
0 (0]

Proposition 6.16 tells us that conditional expectations given

a A sufficient sub ¢ algebra does not depend too much on

%

0 when © is small. We will now - using proposition 6.6 - give

a converse of this result.

Proposition 6.17.

Let Ef = ((X,&), Py 0 € 0) be differentiable in 6, and

let 63 be a sub o algebra of (/)’ Let (/{)16 be a m-system (i.e.

AN A, € W’o when A,,A, € ‘/‘}'o) generating 7

Then Sz) is A6 sufficient provided there
)
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corresponds to any A € \/\LO a measurable YA so that

SO
lim Eg|P, (A) - Y.l /le-6 ] =0 .

6*6

Proof: Let Ae\ﬂ'— We may assume that 0 < Y, < 1. By

assumption: 1lim E |P§’b (A) - Y | 0, and by proposition 6.15:
lim E IP s:'L'(A)-P(,):‘7 (A)] = 0 where Po, is specified such that

0+0, %
0 < Peo (A) £ 1, It follows that:

N
EOOIP % (8)-, |
0

0 (A)-YAI = 1lim E,4|P,

o} B+6

so that

(A) = Y, a.s. P,
o A %
U = - - -

sing the notation PGO,G (Pe PGO)/(g eo) P00 we get

S3
-y i [(2 (a)-1,) /(om0 Dar, = éigof(IA—YAb/(e—eo)dPe

e‘[YAdPe '(e’eo)fYAdPe

o)

1im [[I +(0-0 )[ +(e-e )II ar
9+OO A o o 0 A eo’

- (e-eo)fYAdre e]//Qe-eo)
o2

9 S% .
=1 I.dP. - v 0= dp. -(6- d
ei’é‘on A% IPG (1), +(0-0 )[1 Py ~(6=0 )f SERC Poo‘
+(e-eo)IIAdre -(e 0 , Y dr L//(e -0 )
o’ o’
i . 55
g [t Jri o fscnper,

(since 1lim [II‘ e||=0) [ I dP -I ?) (A)dP ;l
0~ O o
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Hence

[1,00 =ng§ maeg ;3 e, peSd

0

so that

édp = I(ES3> §)dPpP
I 00 90 00

for any test function ¢. It follows that the maximal slope at

] for tests of slze o for "e=eo" against "e>00" is attained

L

by Sﬁb measurable tests. Ae sufficiency follows now from pro-
o

position 6.7. E]

Let GEs be ;e sufflcient for UQ*, and let & be any test
for - say - "G=00" Oagainst "e>90". Then any verslon of Eegs S
which is a test function, is "differentilably" as good as & in
infinitesimal neighbourhoods of 0,5 1.e. it has the same size and

the same slope as 6,

If S% is any sub ¢ algebra of then - by proposition 4,12 -
S’é is sufficient if and only if dP, |dPe is almost
0
(Pg ) g%nwasurable. It follows that any sub o algebra §5CMbAL

induced by a version of dPeoldPeo is minimal Ae sufficient.,
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Example 6,18,

Suppose X1:"’:Xn are independent identically distributed

random variables, each having the density f(x-6); J{i]-w,w[
with respect to Lebesgue measure. We will assume that f 1s
absolutely continuous on finite intervals and that ﬁ(f1(x)|dx < o«

By the example in section 2, thils experiment 1s differentiable in

eo for any OO.

It was shown in [13] that the order statistic is minimal

sufficient when f is meromorfic and the set of zeros (or the

set of poles) satisfies a mild boundedness condition. Locally,

however, (i.e. in the Ae sense) considerable compression may
o (]
be obtained since ? f'(Xi-OO)/f(Xi-eo) is AO minimal sufficient.

i=1 o}

Finally some remarks on the effect of a change of parameter,
and in particular of scale change. Let P bLe a probability
distribution on R7. A localization model {Qe’o: 6€]-=,o,0 > 0}
may be defined by putting Qq  (B) = P(B-(6,+-+,0))/a). Suppose o
is known. Then our experiment {Qe’o: 6&]-=,=[} 1s equivalent
wilth the experiment Pe/o: 66'1-w,w[L It follows that the scale
change may be carried out in the parameter space. The local

comparison of experiments {Qe - 8&:] w,w[} for different values
3

of o may therefore be based on the following result.

Proposition 6.19.

Let §= (X, '\/‘)',PG: 0 €0) be differentiable in 0 and write
(o) _ . (o) . , :
g = (x,J},Pe/c. ® 00). Then gg = ((X,(/Q)(PO,PO/O))
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so that
B(G) = B/o when ¢ > O
and
B(G)(p) = - B(l-pl/g when o < 0
Proof: This is a particular case of the next proposition.

1

Proposition 6.20.
Let 2§= ((X, ), Pyt ©&0) be differentiable in 6  and

let ¥ be a function from a subset ﬁqof ]-W,WE: to ©. Suppose

Y 1s differentiable in ngf“ and that y(no) = eo. Then

%g = ((X,J}),PY(n): nefﬁ) 1s differentiable in n  and

éé’no = ((X,-ﬁ’),Pe , Y'(“O)Pe )
(o] (o]
so that
= t !
B Y (no)Be when vy (no) >0
e} (o]
and
By (P) = - Y'(n )8y (1-p); p [0,I] when y'(n)) £0
(o} 0
Proof': 1im |P - P I//(n-n ) = y'(n )§
_— men YN y(n,) 0 CHC

(o}

and P = P
Y(no) 0,




Te Local comparison of translation experiments.

Let G be a probability measure on ]- «,c0[. For any
8 € ]-oo,©[ the 6 tramslate Gy of G is the distribution of
X +6 when X has the distribution G. The experiment defined by
G, : 0 €8 =]-om[ will be denoted by &4+ Experiments of the
form ‘@p‘G will be called translation experiments. Comparison of
these experiments have been treated by Boll [3], LeCam [ 9 ],
Heyer [5], the author [16] and others. Some relevant results in [16)

are given in appendix A,

We will in this section study & (and A) comparison of
differentiable translation experiments and our first task is to
describe the probability measures G for which 2§G is differenti-
able., It is not necessary to specify the points 6o at which éfG

is  differentiable since we have the following easily proved result.

Theorem 7.1,

é}G is differentiable in all points 6 if and only if 55G

is differentiable at some point 6.

Proof: Straight forward. E]

Henceforth we will write "differentiable" instead of "differ-
entiable in 60". The differentiable translation experiments are

described in:
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Theorem T7.2.

éfG is differentiable if and only if G has a absolutely

continuous density* g such that

(e o]

J; lg' (x) |dx <o .
-

Remark 1,

The almost everywhere existence of the derivative g'(x) is

implied by the absolﬁte continuity of g.

Remark 2.

A continuous density g is necessarily unique. If éﬁG is

differentiable then g will -~ unless otherwise stated - denote.the

(absolute) continuous density of G.

Proof of the theorem: The "if" part was (essentially taken from

Hajek and Sidak [4]) treated in the example in section 2, Suppose

now that EG is differentiable and put G = lim (Ge-G)/B. The
g-0

existence of this limit imply the continuity of the map GA%;GG.
If follows that éG is dominated and it is known (A proof is
given in [16]) that this occur if and only if G is absolutely

[ ]
continuous. Hence G 1is absolutely continuous.

*"Absolute continuity" and "density" are - if not otherwise

stated - always w.r.t. Lebesgue measure.




T+3

For any x we get*:

lim [G(]- oo, x-8[) - G(]- oo, x[)]/6

8->0

X
= Lin [Gg(]- o x[) - G,(}- o x[)V/6 = G(]-o0, x[) = | (a&/au)an.

g->0 -0

It follows that g: X ~s -G]- oo, x[ is a density for G having
the required properties. ]

In the following éﬁ will denote the set of all probability
measures G such that 8 @ 1is differentiable. The continuous

density of G Eﬁ will be denoted by g. If affixes are used on

G then corresponding affixes will be used on g. For any probabili-

ty distribution H on ]- oo, o and each p € [0,1] we put

H'(p) = inf {x: B }-o,x[ > p} ana Hy'(p) = inf |x:H]- oo, x[ >pi.
Then [H"JI (p),s H;1 (p)] consists precisely of the

p fractiles of H i.e. the elements x € [- oo, ] such that

H ]-o,x[ <p <H J- o,x]. In particular B 1(0) = - and

Hy'(1) =0,

To each G ezg we will associate the function Yg from
[0,1] defined by:
ve(®) = g6 (@) 5 p € [0,1].
The functions Yo ¢ G Eg will play an important part in our

investigations. We will first - and almost without statistical

motivation - study some properties of these functions.

i wil in this section be reserved for Lebesgue measure. The

restriction of p to[0,1] will be denoted by X
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Note first that g(x) = g(G'1(p)) for any p fractile X.

Further properties of these functions are listed in:

Proposition 7.3

(i) YG,gO’

G(xz)
ap/vg(p) = w(lx,,x,n[g>0])vwhen x, < x,
G(x1)
72 -1 -1
and | ap/vg(p) = (67 (p,), 67 (p,)1 0 [g > 01) when
Py

O<p1§p2<1

(ii) Y; 1is absolutely continuous and

]

v4(p) = g'(67(9))/8(67 (p)) a.e Lebesgue.

(i1i) v4(0) = v.(1) = O.

1-€
Remark. By (i) Yo > 0 a.e Lebesgue and I dp/YG(p) < when

0 <e < 2, ¢

Proof: (i) TLet X, < X,. Then the sets {p: G(x1) <p < G(xz)}

and {p: X, € G'1(p) < XZ} are | equivalent. Hence:
G(X1)

| apivg®) = [T 2 1€ @) /el (2)) 1ap
G(x1) 1772

- [*2[1/et)16(ax) = wllx,.x,] e > O
X
1

The last formula in (i) follows by substituting x, = G'1(p1) and

_ =1
x, = G (pz).
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(1) | le' e e /ee™ @)ap = [[le’ (x) |/e(x)Jo(ax)
= J lg'(x) |ax <o

Absolute continuty follows now from:

-t
| et @ @)/ee™ (@) lap = vg(1) 5+ € [0,1].

0
(111) v4(0) = g(671(0)) = g(- =) =0
ve(1) = g(631(1)) = g(@) = o, L

Proposition 7.4.

If G1 € ﬁ and G'2 is a translate of G1, then G2 GQL? and

]

Proof: Straight forward

The last proposition tells us that the map G ng Ye does not
distinguish between translates of the same distribution. Here is
an example of two distributions in 5{ having identical vy funct-

ions, which are not translates of each other.

Example 7.5.

The density g4 of G1 is given by the triangles:

(-,1) ke, (3,1)

\
\ %
1
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The density 85 of G2 is obtained from 81 by splitting

the triangles as follows:
-3,1) 8o 2,1)

Y

=1 0 1 2
It is easily checked that

(é Ji when p € [O,%]

e

Yo (P) = vgq (P) = { o
1 2 \k 5 ,\/P"%‘\ nopoe [%’%]
e v oredn

(By symmetry ' (p) = Ya (1-p). It suffices therefore to consider
i i

p € [0,%3)).

G2, however, is obviously not a translate of G1.

A miniresult on the uniqueness problem is:

Proposition 7.6.

Let G1, G2 € é? and suppose YG1 = YG2 « Then

{e (x) = g, (x) >0} = {G,(x) 2 g,(x) >0}

Proof: Let g1(x) >0 and put p = G1(X). Then p € ]0,1[ and

X = Gq1(p). Put X = G51(p). Then gz(g) = YG2(p) = YG1(P)

= g1(x) >0 and G2(§) =p = G1(x). This proves ¢ and 2

follows by symmetry. ]
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The next proposition is an imediate consequence of proposition

7.3 part (i).

Proposition 7.7.

Let G,, G, € j and suppose ¥y =Y « Let Ic ]-— 00,CO [
1 2 G1 G2 =
be an interval such that

(1) (gy> 0}n I=[g,> 0] n I a.e Lebesgue.

(ii) There is a x, € I so that G1(Xo)==G2(XO)

Then G1(x)==G2(x) when x € I.

Proof: By proposition 7.3 we have for any x € I:
JG1 (X)

& ey 60T ) = senleoxg hulxg x) 0 g > O
1Y%

G (x) -1
= sgn(x-xo)p([xo,x] ﬂ[g2>O])= J dP/gz(Gz (r))

GZ(XO)
Hence G1(x) = Gz(x) when x €I 0
Corollary 7.8,
Let G, G, Eﬁ and a € J-oo© [, Then G, (x) = Gz(x-—a) :

x € J-oo,00[ if and only if

(1) Yo =¥
G TGy

(ii) {xs g1(x) >0} = {x: g2(x-a) >0 |

(iii) There is a x, € ]- oo,00[ so that G1(xo) = Gz(xo-a).
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Proof: 1°"Only if". Suppose G1(x) = Gz(x-a); x € ]=oo,@[ .
Then (ii) and (iii) follows imediately, and (i) follows from

proposition 7.4.

2% nifw, Suppose (i), (ii), (iii) hold. Then (i) and (ii) in

proposition 7.7 hold with G2 replaced by* G2 * 6a and

I= ]"’ oo,oo[ D

Proposition 7.9.

Let G Eg. Then a subset V of ]-o5,©[ is a topological

component of [g > 0] if and only if V is of the form
V= 16" (0), & (a)l

where 0 <p <q <1, YG(p) = YG(q) =0 and YG(r) > 0 when

r € Jp,q[ « The numbers p and q are determined by V.

Proof: Straight forward. [J

We are now ready to give a complete answer to the uniqueness

problem.

Theorem 7,10,

> € 53 and let zﬁg, and éf; denote =~ respectively - the
1 2

class of topological components of [g1 > 0] and the class of

Let G1, G

topological components of [g2 > 0J]. Then Yo, =Yg if and only
1 2
if there is a correspondence (1-1 and onto), <->, between é;h

and 2%2 so that:

*) d_ is the one point distribution in a.

a
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(1) 1 V,, V, 65:}1, W, W, eé’z,

V, <> W, and V, <> W, then *

1

W, < W2 provided V1 < V2

1

(ii) There is a map V~> ty from iga to
1

J- o[ so that V <> W imply
W=1V+t; and g(y) =g,y ~ty); y € W.

If conditions (i) and (ii) are satisfied then Gz(y) = G1(y-tv)
when y € W <> V . In particular GZ(W> = G1(V) when W <>V ,

Remark:

Condition (i) is simply the condition that <~> is order
preserving, and the content of (ii) is that the restriction of G,
to W 1is a translate of the restriction of G1 to V when
V <> W. It follows from part 1° of the proof that W = ]Ggl(p),
;" () if 67 H(D), 6;'(q)[ = V <> W and the conditions are

satisfied.

Prof 1°. Suppose g,(6] (p))= g,(6; (p)); p € 10,1[ .

Tt V- 16100 6@ e by maper W= J5ke), 6L

Then g, (Gox(p)) = g, (67x(0)) = 0 = g,(677(q)) = g,(65"(q)) amd
gz(G51(r)) = g1(G;1(r)) >0 when p<7r<gq. It follows from

proposition 7.9 that W € éz « It is easily seen that we have
2

*) If A and B are sub sets of ]— o, then "A < B" means

that a <b when a € A and b € B.
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established a correspondence, <>, between Z%. and <§z which
1 2

is 1-1, onto, and order preserving. Furthermore G1(V)=G2(W)=q-p
when V = ]G}l(p), F;1(q)[ and W <>V . Let
g;av ]gf@»e{%@[&>h@@»e;mm=we&;.

Choose a point Xq € Vo Then - since G2 is continuous and strict-

ly increasing on W - there is a y_  in ]Ggl(p), G51(q)[ . Put

t = e S The "only if" will be proved if we can show that:

|

Goa(p) = GT4(p)+s

-1 =1
G, (q) = G (p)+t
and that G1(y—t) = Gz(y) when y € W.

Let y € [yo, min {G51(q), G;1(q)+ti]. Then - by proposition T.3 *

G, (y)
ds/g, (651 (s)) = y-y,
G, (¥,)
G, (y-t) G, (y-1t)
and | as/gy(63'(9)) = [ as/ey (67" (s)) = y-tox, = ¥y, -
G, (y,) G, (x,)

Hence Gz(y) = G1(y-t) when y  £7¥ < min{G51(q), G;1(q)+t}.

Suppose G51(q) < G;1(q)+t . Then:

a-G, (¥) =0, ([¥4, 63 ' (@) D=6, ([x, 65" (a)+t1)<E, ([x,,67" (0) 1)=a-G, (x,)
Similarily &,'(g) > G1_1(q)+t imply:

a-6, (7, )=G, ([7,55 @5 1 (2) 1>, ([, 6,671 (@)+11)=C, ([x,,6] " (0) D=a-6, (x,)
It follows that G (q) = 6,7 (q)+t and that G,(y) = ¢, (y-t)

when y € [yO,GE1(q)]. In the same way we may show that

-1 - -
Gox (p) = G1*1(p)+t and that Gz(y) = G1(y-t) when y € [Gzl(p),yo].
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2% Suppose (i) and (ii) hold. Iet V € KG and W e@z be such
2

1

that V <~> W. Then G2(W) = Jg2(y)dy = j g1(y-tv)dy =
w V+tV
- |g,(x)ax = 6, (V). Let g; 57 = 16710), &M@ <> W and let
i

y € We Then
Gz(y) = Z{GZ(W') T W€ fg’iz and W' < Wl + Gz(w n J=o,y[)
= Z{G1 (V') : V' € é/G and V' < V| + j g_](z—tv)dz
1 wn J-eo,y [
= 2{G1(v') : Vo€ Z; and V' <V} + J g4 (x)dx
1 Vﬂ]4x5y—tv[

We have so far proved the last two statements. Let r € 10,1[
be such that g1(G'1'1(r))> 0. [This is true for almost (Lebesgue)
all r € 10,1[.] Then G;1(r) € V for some

V = ]G}l(p), G-1-1(q)[ G/;Zf Put W = V+#ty. Then Gﬂ (x)+ty € W

and G, (67" (r)+ty) = 6, (677 (r)) = r so that G (r)+ty = G, ()

]

and  g,(651(r)) = g,(67 1 (x)+ty) = g, (677 (x)). O

Which functions are of the form Ye with G Eéf? The next
theorem provides the answer to that question.‘ The construction in
the "if" part of the proof is essentially that in the proof of
lemma f in I 2.4 in H4jek and Siddk [ 4 ].




Theorem 7.11.

Iet y be a function from [0,1] to [0,0[ Then there is a

G € 8% so that vy = Yo if and only if:
(i) y 4is absolutely continuous

1-¢
(ii) J dp/y(p) <© when 0 <€ < %
€

(1i1) v(0) =y(1) =0

Suppose p, € ]0,1[ and that vy satisfies (i), (ii) and (iii).
Then there is one and only one G Eéﬁ so that G(0) = p, satisfying
Yo =Y
and having the property there is an interval I so that [g > 0]

is equivalent (Lebesgue) with T.

Remark.,

1O Let ¥ ©be a continuous function on [0,1] such that

v(0) =vy(1) =0 and let G eé?. Then Y, =Y if and only if G
satisfies the differential equation g = y(G). Demonstration:
Suppose g(x) = y(G(x)) ; x € J-©,©[, Let p € 10,1[ and put
y(G(x) = v(p).

1O

x=6"(p). Ten vy(p) = gx)

2°  Suppose Yo = Yo Let g(x) >0 and put p = G(x). Then
X = G_1(p) so that g(x) = YG(p) = y(p) = v(G(x)), It follows -
by continuity - thaj g(x) = y(G(x)) when x € [g>0]. ILet
P R
X E@-[g > 0] =G~[g > 0]s Then g(y) =0 for all y in some

interval Jx-€, x+€[. On this interval G i8 a constant p and

we may assume that O <p <1 (if otherwise thenr:g(x)=0=y(G(x)).
The interval [G'1(p), G;1(p)] is not - since it contains JIx-€,

x+8[ - degenerate. Hence g(x) =0 = g(G’1(p)) = y(p) = v(G(x)).
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Proof of the theorem: 1° Suppose y satisfies (i), (ii) and

(iii)s PFor each p € [0,1] put ¥(p) = dep/y(p). Then Y is
Py

continuous, strictly increasing and finite on J0,1[. It follows
that to each x € J¥(0), ¥(1)[ there corresponds one and only one
number G(x) € ]0,1[ so that

Y(G(x)) =x .

Extend - if necessary - G to - oo, - by writing G(x)=0
when x < ¥(0) and writing G(x) =1 when x 3z ¥(1). It is
easily seen that G is a continuous distribution function on
]- c©,o[ which is strictly increasing on J¥(0), ¥(1)[. G(O) = P,

since Y(po) = 0,

Put g = y(G). Then g 4is continuous and non negative on

]- o, [. Furthermore g(x) =0 when x <¥(0) or x> ¥(1).

X
Let x be any mumber in J¥(0), ¥(1)[. Then | g(y)ay
x G(x)
=] verNay = [ ye@uay) = | v()(ue")(ap). e measure
¥(0) 0<G<G(x) 0

pG-1 is clearly non atomic on ]0,1[ and for 0<a<b<1:

w61 ([a,0]) = u(ix: a £ 6(x) < b}) = u([¥(a), ¥(d)]) = ¥(b) - ¥(a)

.b
= J dp/y(p). Hence

> x G(x)
| etmay = | v@) ap/v (o) = 6(x).
s )

It follows that G is absolutely continuous with density g. This
in turn imply - since g i1s the composite ¥y o G where ¥y is
absolutely continuous and G 1is an absolutely continuous distri-

bution function - that g is absolutely continuous on finite
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intervals. Let N be a Borel sub set of 10,1[ having Lebesgue
measure O, Then (pG'1)(N) = u(¥[N]) = 0 since Y is absolutely
continuous on any interval [e,1-¢] where O <€ <%, By (ii)

y >0 a.e. pon J0,1[. It follows that g(x) = y(G(x))> 0

a.e. on J¥(0), ¥(1)[. Similarily y'(G(x)) exist a.e. on

J¥(0), ¥(1)[ so that g'(x) = y'(6(x))g(x) a.e. on J¥(0), ¥(1)[.

¥(1) ¥(1)
Hence Jm\g'(x) ldx= J ly' (G(x)) |g(x)ax= Jf ly'(G) |G
~C0 ¥ (o) ¥ (o)

1
= j ly'(p)|dp <cc . This proves that G € 23 and substitut-

ing &(xY =pe€ J0,1[ in g(x) = y(a(x)) yielas g(¢" ' (p)) = y(p).

Hence vy = s

Let G, ej be such that @, (0) = P,» 8 >0 is almost
(Lebesgue) equal to the interval ]ko, 1{1[, and satisfying vy = v,
| 1
Jdlearly O € ]ko, k1[. By proposition 7.3 we have - for 1 >p > p_-

1) = 671 ()67 (@) = w671 (@,), 671 (@)= | Tan/v (o)
pO

= w67 (py)s 67 (@)= 671 (0)-67"(p,) = 671 (p). Similarily
¢ (p) = G1-1 (p) when p € ]0,p [+ It follows that G = Gy

Altogether we have proved the last statement and the "if" part
of the first statement. The proof is completed by noting that the
"only if" part of the first statement follows from proposition 7.3.

]
.

Let G € ﬁ « - The derivative of the experiment é’G may be

represented as the ordered pair (G, G). It was shown in the proof

of theorem 7.2 that g(x) = - G ]-oo,x[ so that d(.}/dp = -g',




T.15

Adapting the notations of chapter 6 we write:

r, 98t d(-e/e)
Uy (e) 48T fige-Gll = [ |zeve’ lans & € I- oo,
and Bole) 38 sup {G(8) 1 0 g6 <1, 6(8) =al; a € [0,1]

The derivatives \.g(}_‘ » 8, € ]- o,0[ are - since trans-
0
)

lates of the same distribution are A equivalent - & egivalent.

It follows that no ambiguity should arise by deleting the subscript

eo on Fg, UG and BG.

Rewriting the expression for UG we get:

Ug(e) = | [e+g'/elean = | le+e’ (x)/e(x) |6(ax) = | Jg+vylar
- .

Now Yo is the distribution function of the measure which assigns
mass yg(q) - YG(p) to [p,q] when O <p <q £ 1. This measure
will - by abuse of notations - also be written Yo The measure
Y is absolutely continuous wer.t. A. The pair (n ) YG)
defines a derivative and the U function for this derivative maps

E into |IEM+y,ll = J\§+yé|dx. We have proved:

Theorem 7.12.

.

The pair (A \—YG), considered as a derivative, is A equiva-
] e
lent with g5. If G1, G, 62% then:

A(G1, G2) =0 = ‘f'G1 = YG2 => A(G,I, G2) = 0
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Remark,

Neither of these arrows can be reversed. An example where

Yo =Yg and A(G1, G1) > 0 is provided by example 7.5. We

1 2

shall later show that G1 and G2 easily may be chosen so that

A(G1, G2) = 0 and YG1 # YG2 .

Which derivatives § [i.e. which concave functions [ on
[0,1] with p(0) = (1) = 0] are of the form P, for some
G Ezg? We begin the study of this problem with the negative result:

Theorem 7,13,

Bg # 0 for all G Eéﬁ, ie€o BG(p) >0 when p € ]0,1[ and

¢ ed.

Proof: Suppose BG = 0., Then G =0 and this would imply that
Ge would be independent of © and this an impossibility for count-

ably additive probability measures G. I

The situation described in theorem 7.13 is, however, the only

exception since we have:

Theorem 7.14e.

Let B # 0 be a derivative. Then the differential equation

G' = B(1-G)
has a solution G € ég such that
BG =f

The class of all non constant solutions of this differential

equation is precisely the class of translates of G.
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Proof: Conditions (i), (ii) and (iii) of theorem 7.11 are satisfied

by the map vy : p ~> B(1-p). Let P, € 10,1 and put

P
¥(p) = J dp/g(1-p) 3 p € [0,1]). It was shown in the proof of

b
theorem ;.11 that there is a G 6%5 with Yo =Y satisfying
¥(a(x)) =x 3 x € J¥(0), ¥(1)[ . Let x € J¢¥(0), ¥(1)[ and put
p = G(x). Then G '(p) =x so that g(x) = ve(p) = g(1-p)
= B(1-6(x)). Trivially g(x) = 6(1-G(x)) when x ¢ J¥(0), ¥Y(1)[ .

By theorem 7.12:

1 1
Ug(8) = | le+ydlar = | |g=6' (1-p) lap= | |&-8" (p) |dp

o} 0

Hence - by theorem 4.1 - BG =0 .

Let H be any nonconstant solution of the differential equ-
ation., It is easily seen that any translate of H is also a
solution.

Clearly H is continuous)monotonically increasing and the
range is a subinterval of [0,1]. Suppose H < C < 1. There is,

so that H(xo) >0, Let x>3x_ . Then:

by assumption, a Xx o

0
0 <1-C < 1-H(x) £ 1-H(x,) < 1. It follows that there is a k >0
so that H'(x) = p(1-H(x)) >k when x 32 x,. Hence

12 H(x)-H(xo) > k(x-xo) when x z x, and this is a contradiction
since k(x-x_ ) -> as x ->c . It follows that H(®) = 1.
Similarily H(- o) = 0. It follows, since H is continuous, that

we may - wihout loss of generality - assume that H is a distri-

bution function such that H(0) = P, -
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Put t_ = inf {x ¢ H(x) >0} and t, = sup {x ¢+ H(x) < 1}.

Then t, <0 <t Consider the map x ~-> ¥(H(x)) from ]to,t1[

to J-oo,[ . ;he derivative is x ~> ¥'(H(x))H'(x) =

= [p(1-BEx)) T 'p(1-H(x)) =1 an it meps O into ¥(H(0)) = ¥(p )=0.
Hence ¥(H(x)) =x when x € ]t ,t,[ « Tet x ¢yt , . Then

H(x) { O so that x = ¥(H(x)) ¢ ¥(0). Hence t, = ¥(0). Similarily

t, = ¥(1). It follows that H = G. ]

The distribution functions G satisfying G' = B(1-G) are -
by theorem 7.14 - in éﬁ and have the further property that
pr> g(6"1(p)) = (1-p) is concave on 10,1[ . Let<§fo be the
class of probavility distributions G having a continuous density
g so that pea-> g(G~'(p)) is concave on 10,1[ .« Clearly éfo

is invariant under translations. Our first result on o is:

Proposition 7.15.

If G¢€ 550 then

1im g(6¢™ " (p)) = 1im g(6¢" " (p)) =0 .
p->0 p->1

Proof: Put T(p) = g(G—1(p)) when p € J0,1[ « Then T >0

a.e. Lebesgue on 10,1[ so that 7(p) 20 for all p € 10,1[ .
Clearly 7(0+) and 17(1-) exist. By concavity 7(p) > 7(1-)p ;

p € 10,1 5 i.e g(6™ (@) 2 7(1-)p ; p € 10,1[ . Inserting

p = 6(x) we get g(x) = g(671(6(x)) 3 7(1-)6(x) when G(x) € 10,1[.
Suppose first that G(x) <1 for all x . Then

liminf g(x) 2 7(1-) and this is only possible when T(1-) = O.
X=> OO
Suppose next that x = inf {x ¢ G(x) =1} <o© . Then g(XO) = 1(1-).




If 7(1-) > 0 +then - by continuity g > O in a neighbourhood of
X G 1is - necessarily - < 1 on this neighbourhood and this
contradicts the assumption on x . It follows that T(1=-) = 0.

Similarity T(0+) = O. 0

As the notation éi indicates we have:

Proposition 7.16.

Jc &

Proof: Let G Eégo. By proposition 7.15 pa-> g(G-1(p)) is
concave on [0, . Put B(1-p) = g™ (p)) when p € [0,1] .
Then f is a derivative and G'(x) = p(1-G(x)). The proposition

follows now from theorem T7.14. (o}

Proposition 7.17.

To any derivative 8 # O corresponds a & Eéf; so that

BG = Bs G is unique up to a translation. If G Eéi; then

Be(p) = &(¢™1(1-p))

Proof: The first statement follows from theorem T.14. Let G € éi

and put B(p) = g(G—1(1-p)); p € [0,1]. Then p is a derivative
and [ # O. By theorem T7.14 by = # and this proves the last
statement. Suppose G1 Eéﬁo and that BG’“ Bs As we have seen
6(p) = g(G"1(1-p)) or equivalently
g(x) = p(1-a(x))

By theorem 7.14 again this determines G up to a translation. LJ

Proposition 7.17 tells us that any derivative B # O is the
derivative of an experiment éfé with G Eéﬁi and that G is

(restricted to éfo) unique up to & equivalence.
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Proposition 7.18.

Let G 6&30 o Then

b
| -151(6(x))ax = 1og g(b)-Llog g(a)
a

when a,b € Jinfix:G(x) > 0}, sup{x:G(x) < 1}{[

In particular log g 1is concave on this interval.

Proof: Put k_ = inf{x:¢(x) > 0}, k, = sup {x:6(x) < 1} and
B(p) = g(G_1(1-p)); p € [0,1], g is absolutely continuous. Hence
log g is absolutely continuous in any interval [ko+e, k1-e] where

€ >0, Now g(x) =p8(1-G(x)) and B(a) = BG(a) = JGF81(1-p)dp.
0

It follows that p'(a) = F_1(1-a) when 1-a is a point of continu-
ity for the map pr—> Fy (p). TLet C = {p: 0<p<1 and Fy
is discontinuous in p}e. Then C is countable and g'(a)

= F51(1'“) when 1-0 € C. G 1is strictly increasing - and there-
for 1-1 = on ]ko, k1[ . Now g'(x) = -Fa1(G(x))g(X) when

x € Jk, k1[ and 1-G(x) ¢ C. It folows that d/Xmog g(x)

= -FG-1(G(X)) for any x € ]ko, k1[ with at most a countable set

of exceptions. |

Theorem 7+.19.

The distribution function G EgiD if and only if G has a
continuous density g such that [g > 0) is an interval on which

log g is concave,
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Proof: The "only if" follows from proposition 7.18. Suppose G

is a distribution function having a continuous density g such

that g > 0 1is an interval on which log g is concave., Put

t, = inf{x:g(x) > 0}, ty = supix:ig(x) >0} and 1(x) = log g(x)

when x € Jt,, t,[ « Then [g>0]=1t,, t,0 . Let

x, € ]to, t1[ be such that g(xo) = sup g(x)s Then 1 - and conse-
guently g - is monotonically increasing on ]to, xo] and monotoni-

cally decreasing on [x_, t,[ . It follows that lim g(x)
xX=>1
0

= 1im g(x) = 0 and that g'(x) exist for almost (Lebesgue)
x=->t
]

all x. Put N = {x: g'(x) does not exist.}]. Then u(N) = 0.
Now d/dpG-1(p) = |:g((}"1(p)]-1 s P € 10,1 « PFurthermore

d/dxlog g(x) = g'(x) when x € ]to, t1[—N. Hence d/dpg(G'—1(p))
= g'(G"1(p))/g(G—1(p)) when G-1(p) € ]ko, k1[-N. ¢~ is abso-
lutely continuous on compact subintervals of J0,1[ and g(x)=el(x)
is absolutely continuous on compact subintervals of ]to, t1[ .

It follows - since G | is increasing on ]0,1[ - that

P > g(G"1(p)) is absolutely continuous on compact sub intervals

of 10,1[ . Hence, since d/dpg(G_1(p)) is monotonically decreasing
bn the set 10,1[ - (W) , p:r> g(G-1(p)) is concave on ]0,1[.
It follows that G Eéﬁo . O

A probability distribution G on |- oo, is called unimodal
if there is a number a (not necessarily unique) so that G is
convex on |-, al and concave on Ja,*[ . If G is unimodal
and G is convex on |- oo, a[ and concave on Ja,o[ then the
left hand derivative (DlG)(X) and the right hand derivative
(D.G)(x) exists for all x and they are finite when x # a. The
set, Jg, of points x such that (DlG)(X) > 0 and (DrG)(x) > 0
is an interval of G probability 1 . Any point x € JG is a point

of increase for G,
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Proposition 7.20.

If Geﬁo then G is unimodail..

Proof: We use the notations of the proof of theorem 7.19. It was
shown there that g is monotonically increasing on |- OO,XO[ and
monotonically decreasing on Jx_,[ . It follows that G is

pr—

convex on ]-oo,x [ and concave on Jx ,[ . |

A probability distribution G is called strongly unimodsal if '
the convolution G % H is unimodal whenever the probability distri-
bution H 1is unimodal. Any strongly unimodal probability distri-
bution is unimodal. It has been shown by Ibragimov [ 6 ] that a
non atomic unimodal distribution function is strongly uhimodal if
and only if x> log G*(x) is concave on the interval
Jo = {xs (DlG)(x) and (DrG)(x) > 0}. Here e may denote any
function such that - for each x - G (x) is either the left hand
derivative (D;G)(x) or the right hand derivative (D,G)(x).

We will use this to prove

Theorem 7.21.

Let G Dbe a non atomic probability distribution and let
£(x) be a function from ]- oo,©[ such that f(x) is - for each

x - an accumulation point for [G(x+h)-G(x)]/h as h -> 0.

Then G eéfo if and only if G is strongly unimodal and ]

is a continuous function from J-o,[ +to ]-oco,o[ ,
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Proof: 1° Suppose G € %i). Then (DlG)(x) = (DrG)(x) = G'(x) =
= g(x) for all x and J, is the interval [g > 0]. Strong

unimodality follows now from Ibragimov's criterion and theorem 7.19.

2° Suppose G 1is strongly unimodal, nonatomic, and that
€ is continuous. ILet a be a number so that G is convex on
]- «,a[ and concave on Ja,[ , It is easily seen that this -
since G({a}) =0 - imply that G is absolutely continuous.
A density g > O for G may now be specified so that g is mono-
tonically increasing on - oo,a[ and monotonically decreasing on
Ja,=[ . Then (DlG)(X) = g(x-) and (DrG)(x) = g(x+) for all x.
By the continuit of ﬁ and the piecewilise monotonicity of g we get
g(x) = 8(x) when x # a, and we may modify - if necessary - g 8o
that g(a) = 8(a). It follows that G has a continuous density
g and that JGr = [g > 0]. Hence - by Ibragimov's criterion and

theorem 7.19 - G eéfo. J

Corollary T7.22.

G eéﬁo if and only if G 1is strongly unimodal and has a

continuous density.

Let us next consider the problem of symmetry. If G is any
probability distribution on - o, [ then the distribution of
-X when X has the distribution G will be denoted by G .

It is easily seen that G =G, G € 5 <=> § € ﬁ and that

Geﬁo <=>§ego,
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Proposition 7.23.

Let G be absolutely continuous. Then A(&g, zfﬁ) =0 if
and only if G is symmetric. In particular EéG is symmetric
provided G is symmetric and G eéﬁ. On the other hand G is
symmetric provided G Eéﬁo and ng is symmetric.

Proof: The first statement is an immediate consequence of the
convolution criterion for & comparison of translation experiments.
This and the fact "Z\(% o ‘% 'G'> = 0" implies the next statement.
Finally suppose G eéﬁo and that 2% G is symmetric. Then - by
corollary 4.4 - BG(p) = g(G—1(1-p)) = g(G‘1(p)). Simple calculat-
ions show that Bg(p) = §(§-1(1-p))= g(G—1(p)) = BG(p). By theorem
7.14 @ is a translate of G i.e. G is symmetric. i

We include here - for the sake of completeness - a few facts
(it is essentially example 1 in chapter 8 in Lehmann [10]) on mono-

tone likelihood ratios of translation families,

Suppose G € §L and let 91 < 62. Then
gez(x)/ge1(x) = 0, exp~-[log g(—e1+x)-log g(-92+x)], and < as

X € [ge1 >0]n [gee =0], x € [gez >0]n [ge1 > 0] and

X € [g61 =0]n [gez > 0]. It follows - by concavity - that G62

has monotonically increasing likelihood ratio w.r.t. Ge when
1

6, > 6. Hence the test I -1 is a UMP test for testing
’ [G (1"'@)900[,

b < 0O against 6 > 0, provided o > O, The power function of this

test is

6 —>1 - 66" 1 (1-a)-6)
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and the derivative in O of this function is g(G '(1-a)), as it,
by proposition 7.17, should be. Conversely suppose the probability
distribution G has a continuous density g and that Ge has

2

monotonically increasing likelihood ratio w.r.t. Ge when
1

92 > 91 « Then &g /ge is monotonically increasing on
2 1

[ge1 >0]u [gez > 0], Let g(a) >0, g(b) >0 and a <b. Put
x =0, x' = (b-2)/2, 6 = -(a+b)/2 and 6' = -a, Then x < x'
and 0 < 0'. Hence
g(a)/e((a+b)/2) = g(x-6')/g(x-8) < g(x'-0")/g(x'-8) =
= g(a+b)/2)/g(b).
Hence g((a+b)/2) > 0 and
% log g(a) + % log g(b) < log g(%(a+b))
It follows that [g > 0] is an interval and that log g is concave
on [g > 0]. By theorem 7.19°% -G Eéﬁo .

Example 7.24. (Normal distribution)

Let G =& where ¢ is the normal (0,1) distribution.
Write ¢ = &', Then: @' (x)/p(x) =-x ; x € ]- =, so that
¢ €G, and Fy =@, U@(g) = J\g-x\d@ and Bé(p) = w(@'1(1-p)) ;

p € [0,1].

Example 7.25. (Triangular distribution)

Let G be the distribution whose density g is given by:
G(x) = (1-1x])* 3 x € J- oo,
Then G Eégo and G is symmetric about O. It suffices therefor
to calculate F,(x) for x 2 0, Uy(g) for € 3 0 and Bu(p) for
p <% Now -g'(x)/g(x) = —(“l+x)'1 or = (1—X)-1 as x € ]-1,0[ or
x € J0,1[ + It follows that
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FG(X) = " lX < 1
1
1= == "rox > R
%2 =
U.() 2 when |&]| <1
g) = -
¢ gl + lg1™! wnen lglz 1,

and Bgy(p) =2 min{p,1-p} ; p € [0,1]

Example 7.26. (Logistic distribution)

Put G(x) =[1+e™ ] ;x€ )~ .
-x —x2
Then Geﬁo, G is symmetric and g(x) =e “[1+e™ "]
-1
x € ]- o, so that -g'(x)/g(x) = 2e™*(1+e™X) -1 x € }- oo, @[

Hence

Ba(p) = -g' (671 (1-p))/g(6™"(1-p)) = 2p-1 ; p € [0,1] so that
Be(@) = p(1-p) 5 p € [0,1]
and

Folx) = Miy ¢ BA(y) s xl) = (1+x)/2 when |[x| £1 i.e. Fq
is the inform distribution on [-1,1]
Finally

g (\%\ when |5| 2 1

Ug(8) = 2 | Fy(x)ax-§ =
-co 1£1+§2)/2 when |g&]| < 1.

Let us compare this experiment with the experiment 3 treated
in example 7.24. |
We get: Bg(1-2(x)) - Bg(1-2(x)) = o(x) - 2(x)(1-2(x)) »
The derivative of this function is Y (x)p(x) where
y(x) = 28(x)-x-1 so that
() = 29(x)-1 < & -1 <0
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It follows that B@(p) - BG(p) has maximum 1/V§ﬁ - 1/4 for
p = 1/2 and minimum = O at p = 0,1, It follows that

(B ) =0 ana 8( &y 8) =&, &) = 1/yz - 1/, -

Example 7.27. (Double exponential).

Let G be given by the density g(x) = %e'lx‘; X € ]-oo,c0f,
Then g(G~1(1-p)) = min |p,1-p}. It follows that
Be(®) =min {p,1-p} ; p € [0,1]
Now F, = éi(ﬁé) so that

Fo(l=11) = Po(11}) = 1/,
Hence

UG(g) = max (1:‘§D .

Examples T7.24-T7.27 were all concerned with strongly unimodal

distributions. Any experiment Eig, however, is A equivalent with

G. is = up to a shift =~

some experiment %?G with GO € o o

datermined by G. gf G 1s given then G, may be found by
solving the differential equation Gg = BG(1-GO). If G,Gégo
then G, is (and mey be any) a shift of G. On the other hand -
if G is not strongly unimodal - then we have a situation where

%é} ) = O, This proves the last assertion

YG*YGO while A(({}G1) ]

made in the remark after theorem T7.12.

Example 7.28. (Examples 7.5 and T7.25 continued)

Simple calculations yield
Pe. (p) = BGz(p) = sup{-| 8(x)e] (x)ax:|o(x)g, (x)ax = p} = [Bmin{p,1-p]-

By proposition 6,19 and example 7.25: BG = BG = BG where G3 is
1 2 3

the triangular distribution with density:

g5(x) = [1-|x]/2]"/2 :+ =z € }-oo
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The pseudo metric A defines a pseudo metric - which by abuse

of the notations, also will be written A4 - on cho by:

. . ) 3/
def .
A<G'17G'2) = A( éG_1’ éGZ) s G'1s G'2 € \‘Jo

Any differentiable experiment (or derivative) with B # 0 is
Lg  equivalent with an experiment %%G where G € gi is deter-
o

o)
mined up to a shift. In particular; any differentiable experiment

based on n observations is Ae equivalent with an experiment

o)
2%} which is based on one observation.
o

We shall now consider convergence for the pseudo metric A on
g@. It will turn out that A on éﬁo is topologically equivalent
with A on.éﬁo. Various convergence‘criterions will be derived
and as a biproduct we will get a result relating the convergence of
densities to the convergence of the probability measures determined

by the densities,.

Proposition 7.29.

| Let G, G1, Gos ees Eéﬁo and let p, € 10,1[ . Suppose
G(0) = Gn(O) =p, s n=1,2... and that

lim A(Gn,G) =0
= CO

Then

lim sup |g, (x)-g(x)| =0
n->ce x

In particular

lim ||G =G| = O.
n»co 1
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D D

Proof: Write ¥ (p) = f ap/By (1-p) and ¥(p) = J ap/B(1-p).
Py . Po

By assumption

: »0 so that | 1-p) » /B (1=
Sup \BGn(p) Ba(p) | so tha /BGn( p) » /By(1-p)

uniformly on any interval [€,1-¢] where ¢ > O. It follows that

Yn(p) > ¥(p) wuniformly on any of these intervals, In particulars

limsup ¥ (0) < ¥(0) < ¥(1) £ liminf ¥ (1)
n n

Let x € J¥(0),¥(1)[ and consider a sub sequence G, 3 k=1,2...
k
so that G (x) » T as k->o, Then ¥ (0) <x<¥ (1) for n
Iy n n
sufficiently larges If T =0 then G (x) <y where y € ]0,1[
i
for i sufficiently large and then:

x oty (6 () 5 %, () when %, (0) <x <% (1)
1 1 1 1 1

Hence x < ¥(y) for y >0 so that x < ¥(0); i.e. a contradiction.

If 7 =1 then G (x) >y where y € 0,1 for i sufficiently
i

large, and then:

x =ty (G )z ¥, () wnen ¥, (0) <x <y, (1),

Hence x > ¥(y) for y <1 so that x > ¥(1) i.e. another contra-

diction., It follows that O < T <1 and then O < G, (x) <1 for
i

i sufficiently large so that x = Yn_(Gh (x) = ¥(71), i.es x = ¥(1),
i i

Hence 1T = G(x). By a standard compactness argument Gh(x) - G(x)

when x € J¥(0),¥(1)[ . This, however, imply that Gn(x) - G(x)

for any x € J-o,[ , In particular G, - G weakly. Hence -

since G is continuous - sup |G (x)-G(x)| > O so that
X

gn(x) = Bn(1-Gn(x)) » B(1-G(x))= g(x) uniformly in x. The last
statement follows from Scheffés convergence theorem, []

Dropping the condition Gn(O) = G(0) =%, n =1,2,4s. we get:
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Proposition 7.30.

Let G, Ggy Gy ees € éfo and suppose lim A(Gn,G) = 0, Then

n-=>0co
there is a sequence 61, 62,... in ©® so that

lim sup ]gn(x—en)-g(x)[ = 0., In particular 1lim A(Gn,G) = 0.
n->co X n—)w

Proof: (hoose T, Mys..andnso that Gn1(0) = Gn2(0)=...= Gn(0)=_pO

where p_ € ]0,1[ . By proposition 7.29
sup |g, (x-n,)-g(x-n)| » O
X
so that
sup |g,(x-6,)-g(x)| > O
X

where 8. =N =3 N =1,2 eeae L

n
A result on the converse direction is:

Proposition 7.31.

Let G, Gy» Gyyues € 25() and suppose lim suplgn(x)—g(x)\ = 0,
n->xce x

Then

lim 2(¢_,G) =0
n->o n

Proof: Trivially: sup |G (x)-G(x)| » O. TLet p € ]0,1[ . Then
X
Gn(G£1(p)}-G(G£1(p)) >0 i.e. G(G'(p)) »p so that

6. (p) » ¢ (p). Hence g (6] (p)) »> (¢ (p)) p € 10,1[ i.e.
g (®) » By(p) when p € [0,1] .
n
The result now follows from theorem 5.1 (iv). ™

Combining these results we get the convergence criterion:
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Theorem 7.32.

Let G, Gy, Gyeeo eiﬁo « Then A(Gn,G) » 0 if and only if

there is a Sequence en s n = 1,20 in ® so that

sup |g, (x-0,)-g(x)| ~» O
X

If so, then A(Gn,G) -0

We shall need the following result:
Proposition 7.33.

Let G € f;'i o and let I =[a , a,] be the closed sub inter-
val of ]0,1[ where P, obtains its maximum. Put

k, = inf{x: g(x) > 0} and k, = supix: g(x) > 0} . Then:

-1 1
k, <G (1=ay) €6 (1=a,) <Xk, ,
g is strictly increasing on [kO,G-1(1—a1)] ,

g = max BG(p) = max g(x) on [G-1(1—a1), G'1(1-a0)] and g 1is
D X

strictly decreasing on [G-1(1—ao), k1] .

Proof: The inequalities are abvious and the three last statements

is a consequence of the differential equation g = ﬁG(1—G) [

It is often difficult to obtain non trivial convergence
statements on densities on the basis of weak convergence of the
probability measures. If the probability measures are in égc),

however, then quite strong condusions may be drawn.
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Proposition 7.3%4.

Let G, G,, G, ees € (ﬁ and suppose 1lim G _(x) = G(x) when
1 2 o] noco B

X € ]-oo,0[ , Then lim sup [gn(x)-g(x)l = 0, provided
n->ee x

max gn(x) = gn(O), n>1,2 ..o and max g(x) > g(0). In particular
X b4
gp» 1 = 1,2 «o« are uniformly equicontinuous on |- o, [ ,

Proof: Put k = inf {x: g.n(x) > 0} ,

1]

il

k

n1 sup {x: gn(x) > o} ,

kO

]

inf {x: g(x) > 0}

and  k, = sup {x: g(x) > 0}

Let x € ]ko,k1[ . Then G (x) € ]0,1[ for n sufficiently large,

and then kno <x < kn1' Hence limninf kno <£x < linrllsup kn‘l .

The arbitrariness of x in ]ko,k1[ impl ies
limsup kno < ko < k‘l < liminf k

n n

Let 0<x, Then for 0<e <x:

n1

G [x-e,x] 2 eg,(x)
so that
1, g(x) as € -0

limsup gn(x) < E[-X'Z’X
n

Hence 1limsup gn(x) < g(x)
n

On the other hand:
G [x,x+e[ < g (x)e
so that

liminf gn(x) > E[Z&%"ﬁ[ - g(x)
n

Hence liminf gn(x) > g(x). Note that this argument holds for
n

x = 0 also.
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It follows that:

lim gn(x) = g(x) when x>0 and liminf gn(O) > g(0).
n n

In the same way we may show that lim gn(x) = g(x) when x <O.
n

Let 0 <e < 2€ < k1. Then - for n sufficiently large -

2¢ <k By theorem 7.19 log gn(e) = log gn(%.0+%-e) >

in*
> #log gn(O) + %log gn(Ze), or equivalently:

log g, (0) g 2log g, (¢)-log g,(2¢) - for n sufficiently large.
Hence:

log limsup gn(O) < [2log g(€)-log g(2e)] » log g(0) as € - O.
n
It follows that gn(x) »g(x) 3 x € J-oo0f ,

Uniform convergence follows now from the fact that if

F, F,, F are probability distributions on ]~ o,e[ such

2, e e o
that Fn 2 F weakly and F is continuous, then

sup \Fn(x)-F(x)l - 0 . The uniform convergence g - g, in turnm,
x

implies uniform equicontinuity of the sequence 811 Bos eee o |

We shall now show that the conditions on the maxima is abundant.

Theorem 7.35.

Let G, G1, G2, ess Dbe strongly unimodal distributions with

continuous densities g, 81r Bpr eve o Then

limsup [gn(x)-g(x)l = 0 provided G, » G weakly
n x
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Proof: Let gn(an) > gn(x) ; X € J-oo,o[ . Then a 3 n o= 1,24,
is bounded and we may - without loss of generality - assume that
a, > a . Then g(a) 2 g(x) ; x¢€ J-oo,0[ ., It follows that

G, *9o_ . 3 n=1,2... and G*20d__ satisfies the conditions
n
in proposition 7.34. Hence sup \gn(x-an)—g(x—a)[ » 0 , By uni-
x
form equicontinuity sup lgn(x-an)-gn(x—a)[ - 0, so that
X

sup |g, (x-a)-g(x-a) | = sup |, (x)-g(x)| » O 0
X X

Example 7.3%6,

Let G € éﬁo be symmetrice Then g is even. Let

Rps 0 = 1,2, .beany sequence of non negative numbers such that

"n/n » 0 and liminf n, >0 (Example: n, = constant e nY where
n
y € [0,1[ and constant > 0). Put e, = J g(x)dx+(2/n)g(1/n)+nn/n.

n|x|>1

Then Cn is the area of shaded region of this figure:

SN

NN

N

Define - for each n - a probability density = 8n by

() g(x)/C, when |x| 3z 1/n
g, (x) =
’ [8(1/n)+%n-nnnlxl]/0n when |x| <1/n
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Let Gn be the distribution with density gne Then G, is unimo-

dal and symmetric, @, is differentiable and:
n

g'(x)/c, when |x|>1/n
gh(x) = {
-nx_sgn x/C, when 0 < |x| <1/n
It follows that:
g,(0) = (g(1/n)+ )/C

+C0

| lepeolax = ' | g () |axvac] Ty

-0 n |x|>1
and it is easily seen that:

lim C_ = 1
n n ’

lim gn(x) = g(x) whem x #0 ,
n

liminf gn(O) = g(0) + liminf Ky > g(0) ,
n n

and
+00

liminf I lg) (x) |ax = Ilg'(x)ldx + 2 liminf n > J|g!(x)‘dx

n -QO

By Scheffé's convergence theorem: UGn-GH -» 0., In particular
G, » G weakly. The conclusion in theorem 7.35 (or proposition
7.34) is, however, not valid here since gn(O) —> g(0), It follows
that the condition Gn € 50, n= 1,2 ... (even when G € :90) in
theorem 7.35 (or proposition 7.34) can not be replaced by the

condition that Gn ;s 0= 1,2,.es are unimodal,

By the convergence criterion for translation experiments [16]

we have A(gh,G) - 0. We do not, however, have A(Gn,G) -» 0 since

Ilgﬁ(x)ldx —+> flg'(x)\dx .




7.36

We will now show that the metrics A and & are topologically

equivalent on ﬁo .

Theorem T.37.

Let G, Gy Gpy oo Eéﬁ . Then 1lim A(Gn:G) =0 if and only
1 o) 11500

if lim A(Gn,G) >0 .
n-»>o0

Proof: The "only if follows from'" theorem 7.32 and the "if"

follows from theorem 7.3%5 and theorem 7.32. .

Finally we give a necessary condition for convergence which is

valid without any condition on unimodality.

Theorem 7.38.

Let Zi} s n=1,2... and égG be differentiable and suppose
n

g, > &' a.e. Lebesgue. Then

1im &(Gh,e) =0
n->oo

provided

limsup j!gﬁ(x)ldx < J\g‘(x)ldx
n->co

Remark Conversely; A(Gn,G) => =~ by theorem 5.1 (vi) - that
J\gﬂ(x)\dx > Jlg(x)ldx.

Proof of the theorem: By Scheffe's convergencg theorem:
| len(x)-gx) ax » 0. Hence ||, (x)-g(x)| = || (g} (t)-g" (+))at| <

-0

Jlgg(t)-g'(t)ldt > 0, so that
oo co

U (8) = | leg, (x)+el () lax > | [ga(x)+e (x) |ax = Uy(5) .

- 00 -0

[

Convergence now follows from theorem 5.1 (vi).
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Appendix A. Comparison of translation experiments.

A translation experiment will here be defined as an experiment
E%P = ((X,JN)(PB: @ € 8)) where X is a second countable locally
compact topological group with Borel class J¥ y ® =%, P is a

probability measure on gﬁ? and
%u)=PufU;Ae@,ee®

Clearly é%P is uniquely defined by P. g will always denote

a right Haar measure on (X,J¥).

It will frequently be assumed that P is absolutely continuous

i.e. that P << u, This assumption is equivalent with each of the

following conditions:
(D1) %ﬁé is dominated

(D (Py: 6 € ©) ~

5)

(D 8 r—> PS(A) is continuous for each A € Uﬂ¥

3)
(D4) 6 ~—> P, 1is strongly continuous

We summarize here some results form [16] on the comparison of

translation experiments for LeCam's deficiency ©& and distance &

(7]

Theorem A.1.

Let P and Q be probability measures on (x,J@) and let
€ >0 be a constant.

(i) If there is a probability measure M on d} so that

M*2-ql<e  then (& 5Q) <e

(ii) SupposeabM(x) has an invariant mean and that P << {.
Then 6(E%P,2?Q) < ¢ if and only if there is a probabili-
ty measure M <Cn J}’so that |[M * P - Q|| < €.

*¥) M(x) is the space of bounded measurable functions on X .




Corollary A,.2.

6(5P, éQ> < ibr}lf IM * P - Q] and "=" holds if P << yu and

M(x) has an invariant mean.

Theorem A,3.

Let P and Q be probability measures on {(x,J¥) and
€ >0 a constant. Then there exists a probability measure M so
that

M * P - Qll <e¢
if and only if

jfdQ < sup| £(xy)P(ay) + elifll , £ € O(x).
X

We introduce now the notations:

5(P,Q)

i

inf|[M*P-Qll = minN*P-Ql|
M M

Il

sup (inf|f(xy)P(dy) - inf|f(xy)Q(day))
Ifl<t x X

i

sup (inf|f(xy)P(dy) - Q(£))
IHfll<1 x

A(P’Q) 6(P9Q)V6(Q’P) =

= sup |inf[£(xy)P(dy) - inf|f(xy)Q(ay) |
il x x

Then &(P,Q) = &( ZP, gQ) (a(P,Q) = A( 2",&2)) provided

P is (P and Q are) absolutely continuous.

Theorem A.4,

Let P be absolutely continuous. Then A(Pn,P) - if and

only if there exist elements 2y az,...in X so that “6an*Pn_P“ - 0,

Theorem A.5.
Suppose A(BmPn) -0 as m,n »o, Then there is a P so that

A(Rn,P) = 0.
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B.1 Introduction

In (7] Le Cam introduced the notion of e-deficiency of one
experiment relative to another, This generalized the concept of
"being more informative" which was introduced by Bohnenblust,
Shapley, and Sherman and may be found in Blackwell [1]. "Being
more informative for k-decision problems" was introduced by
Blackwell in [2]. The hybrid of "e-deficiency for k-decision
problems" was considered by the author in [15].

An experiment will here be defined as a pair zf= ((x,ﬁ}) R
(Peze €@)) where (x,Jf¥) is a measurable space and (Pe:e €0)
is a family of probability measures on (X,¥) . The set @ --

the parameter set of 8% -- will be assumed fixed, but arbitrary.

O~
Definition. Let g = ((x, ) , (PG:BE(@)) and 5 = ((/9,533) ,
(Qeze €0@)) be two experiments with the same parameter set ©® and

let 6 = ¢, be a non-negative function on @ (and let k>2 be

S)
an integer),

[gp 5

Then we shall say that Z% is e-deficient relative to 3

(for k-decision problems*) if to each decision space*¥ (D,S{)
where 5/ is finite (where 6/ contains 2k sets), every bounded
loss-function*** (§,d) N We(d) on ©® x D and every risk func-

tion T obtainable in > there is a risk function ' obtain-

able in E% so that

r1(8) <x(9) + egllWyll, 8€® where Wl = supy|Wy(a)];06¢€@

* Yhen k = 2: testing problems.

*K .
i.e., a measurable space,

* %%
It is always to be understood that 4 - We(d) is
measureable for each 6 ,
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Tet G= (06M) , (2giece)) ama §= (4, D), (3,:0¢0)

be two experiments such that:

(1) Py:0€0@ is dominated
(ii) /é is a Borel-sub set of a Polish space and Sb is the class

of Borel sub sets of Ag R

It follows from theorem 3 in Le Cam's paper [7] that g is
O~
e-deficient w.r.t. 5‘ if and only if there is a randomization M

from  (x,¥) to (/\j,gb) so that |PM-Q,] < eg; 8€n . (An al-
ternative proof of this result is given in section 3)

Many of the results on comparison of experiments generalizes
without difficulties to situations where the basic measures are
only required to be finite, (Here as elsewhere in this paper a
measure may be "non negative", "non positive" or neither. The
notion of a signed measure will not be used.)

As an example of a situation where such "experiments" natur-
ally enter consider two experiments g = ((x,J¥); Maif € @) and

’3:= ((’g,%), veze €e) , & decision space (D,f), a loss function
W and two functions a and b on @ . Then we may ask: does
there to any risk function s obtainable in (g correspond a risk
function r obtainable in é so that r(8)<a, s(e)+be||WeH ;
peE®@ 2 It turns out - under regularity conditions - that a
necessary and sufficient condition is the existence of a randomi-
zation M from (x,) to (/‘j,%) so that [[Pgl-a, Qull <Dy
PeE® . Considering 6 =~ a, r(6) as a "risk function" relative
to the "experiment" ((g,ﬁg), (aeQQ; 0 E€®)) we see that this is
essentially the criterion of theorem 3 in Le Cam's paper [7].

In this paper measures which are not probability measures

are derived from probability measures by differentiation.
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A pseudo experiment % will here be defined as a pair
% = ((x, ), Wg:f € @) where(}fllﬁ}) is a measurable space and
Ug:0 €@ is a family of finite measures on (x, /%) . We will
stretch the usual terminology and call (x,ﬁ') the sample space
of 2 and @ the parameter set of g . A pseudo experiment
with a two point parameter set will be called a pseudo dichotomy.
An experiment (A dichotomy), g , 1s a pseudo experiment (dicho-
tomy ) % = ((x, ¥, Hgt® € ®) where the measures Wa:8 €O are
probability measures,

Some of the results on pseudo experiments are quite straight
forward generalizations of those in [15]. This is, in particular,
the case for most of the results included in this appendix., Other
results, however, do not have the generalizations which may appear
natural, As an example we mention the result (proved in [15])
that two experiments are equivalent provided they are equivalent
for testing problems. We shall see in the next section that equi-
valence for testing problems does not - in general - imply equi-

valence for pseudo experiments,

The definition of e-deficiency is extended as follows:

Definition. ILet g: (O3, (ugze €0)) and
— e
§ - ((%,%), v,:8 €0)) be pseudo experiments with the same

parameter set @ and let e€,;6 €@ be a function from @ to
[0,00], We shall say that gg is e-deficient w.r.t. (3: (for k-
decision problems if to each measurable space (D,cf) where
#éf< o (where #é/ = 2k), to each family W,:0€® of measureble
functions on D , and each randomization ¢ from (/3,5‘3) to

(D,y) there is a randomization p from (x,/ﬂ)‘) to (D,Q‘f) 80

that
Wopng < Weovy +e,llWolls 6 €0 .
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If g is O-deficient relative to %: (for k-decision pro-
blems) then we shall say that % is more informative than >

o~
(for k-decision problems) and write this g > e gz?’ ) .
k

o~

If 52? (g%'%:) and @ 3_% ( &Eg ) then we shall

say that % and (? are equivalent (for k-decision problems) and
z ~
write this éf ~ @F ( = $ ) . By proposition 8 in [15] and
. N\
by weak compactness g 5 §F <=> g g‘% <=>,, . <=> ée ~'}):
[gra

provided é and & are dominated experiments.

The greatest lower bound of all constants e such that a?

[\
is e-deficient relative to 5 for k-decision problems will be

denoted by Gk(g’%\) and max [ék(g,?), ak(?,g) will be
denoted by Ak( é,?) .

The greatest lower bound of all constants € such that g
is e-deficient relative to ?—’ will be denoted by G(g,?) and
max [5(8,%\), 6(?,&?)] will be denoted by A( 3,?) .

Proposition B.1.1 Let g: ((x, %), (ueze €®)) and

(S-’= ((/y,“{é), (veze €08)) be two pseudo experiments, and let ¢
be a non negative function on 6 . Then (f is e-deficient
w.r.t. /S'\ for k decision problems provided épis ¢ deficient
w.r.t. (5\'. for k+1 decision problems, If gis e-deficient
w.r,t, ’?j: for k decision problems, then ey > !ue(x)— ve(ﬁ;,)[ .
é is § M- !ue(x) —\)8(/\}/)} deficient w.r.t. ’; for 1 decision
problems and Lé is 8 = lugl+llvyll aeficient w.r.t. (§' for

k - decision problems for k = 1,2,... .

Proof: Suppose % is e-deficient w.,r.t, (S: for k+1 decision
problems. Put D = {1,2,04.,k1 and Dyiq = {1,2,...,k+1}, Let
We:e £8 Dbe a family of functions on ZDI, and let o be a random-

izgtion from (’9,%) to D, . Extend W, %o Dy , by writing
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We(k+1) = We(k) . By assumption there is a randomization »p

from (x,J}) to Dy .4 so that
HGEWG < VQOVWG'*GGHWGH

e-deficiency for k-decision problems follows now since ueﬁ\Ne =
ugp W, where o(klx) = p(klx) +0o(k+1]x); x € x and op(k'|x) =
p(k'|x); k' <k, x € X .

-

Suppose 8% is e-defingent w.r,*t. ¥ for k-decision pro-
blems. Inserting W, = 1 and W_q = -1 in the inequalities ap-
pearing in the definitions of e-deficiency we get; respectively
€y 2 ue(x)-ve@?a and e, > vevw)-ue(x) . Let (D,éf) be any
measurable space and let o and p be randomizations to (D,éf)
from: respectively; (x,J}) and Og,5$) . Finally 1let &Weg be
any family of (real valued) measureable functions on (D,ér) .
Then:

Mg P Wy = vy oW+ oWy =v oW, < \)ecwe+(nue§l+!lve|!)||We|| .

If % , (? and 5 are pseudo experiments

then:

o (2, f <o (. F)146 (T8 k= 1,2,...,
w(60F) <0 (8505, D k= 1,2,
ak(é,g)::ak(g,g):o s k= 1,2,...,

D (&) = 0 (T

6 (2,3 T (85)  as k-,
0 (&) T (8T as k-oo,
(6. 9) <65, 5)+8( 5%,

b
i

= 19290‘-9




IA

A(é 3'\)+A(r§\ 5) ;

«(6.6) -
(%,%)
<%?,’57> = suplug(x) - v,

sup(lugl + gl -

.10




B.2 Finite parameter space

All pseudo experiments considered in this section are assumed
to have the same finite parameter space @ , (Dk,Z{k); k=1,2,..
will denote the decision space where Dy = {1,...,1{}‘ and O(/k
is the class of subsets of D . If G - ((X,Jr}f),(_uezee ®)) and
¥ 1s asub linear function on R® then the integral
Jr\l;(due/dg%uel; ee@)d% !ug! will be denoted by w((é) . If
%: ((x;ﬂv),(ugzee €)) and =ue(A) = Jrfed'r s A EJ};OE@ for some
non negative measure T on (,Q' then q,(é) = I‘y(fe;eé&i)dfr for

any sub linear function ¢ on R@ .

et &= (L), (ugrece) aa T= (R, (vyi0e0))

be two pseudo experiments, and let e be a function from © to
[O,m] L]

The basic result on e-deficiency is:

Theorem B.2,1

The following conditions are all equivalent:
(@
(1) is e¢-deficient w.r.t. 5 for k-decision problems

(ii) To each randomization ¢ from (/lg,S'?-)) to (Dk,aﬂk) ,
and to each family We:e €@ of real valued functions on
corresponds a randomization p from (xA,x/‘)’) to

Dy
(D, &) so that:

A7) 7|
)eluepWe < Ze\’e oale+§egl!\'eg| .

(iii) To each randomization ¢ from (/\3,63) to (Dk’ f;)
corresponds a randomization o from (x,ﬂ/) to (Dk’ %{)

so that:

“ugp—veoﬂ Seg; 0€0
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; ' -
(iv)* 1&(%) > (%) _gee max{w(-ee),‘y(ee)} for any sub linear
function Vv on R® which is the maximum of k homogen-

uous linear functions.

(\.«
Remark  1f M%, $) = 0 then (iv) is equivalent with:

(iv') w(%) > 1]!((5'\) -%%ee@(ee)+ t(-ey)) for any sub linear

function v on Rg which is the maximum of k homogenous
linear functions.

Demonstration: Clearly (iv') implies (iv) and (iv) for
XM y(x) -3 % (w(ee) - d;(ee))xG impliea (iv') for ¢ .
Note that the set of sub linear functions ¢ which satisfies

(iv') is a cone.

Proof of the theorem:

Suppose (ii) holds and let o Dbe a randomization from
(’3’ S}) tO (Dk, Jk) . Then:

maximum min & [u,pW,=v,aW,-e llW, 0|1 <0 .
W [[Woli<tseee o 6 © & 00 68

It follows by weak compactness, - since g is affine in p and
concave in W - that maximum and minimum may be interchanged -

i.e. p may be chosen independently of W , This implies
luge-vgoll < €45 0 €6 .

Hence (ii) => (iii). It follows - since (iii) => (i) => (ii)
is trivial - that (i) <=> (ii) <=> (iii)., Interchanging W
with -W din (ii) we get:

max Tu,pW, > maxTy, o, - Se, l|W,!l
ax ZugpWy 2 maX By, - %eg|Wy!

*) for each 9 € @ we define the vector ey by:
eG(e')=1 or 0O as 8' =8 or &' £ 0.,
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and this is (iv) for ¢: x A~ maxsW,.(d)x,. .
dee()e ]
An immediate consequence is:

Corollary B.2,2
.=
é?is c-deficient w.,r.t. > if and only if w(éf) >

&(?F)-E(aemax[w(ee),w(ee)} for any sub linear function § on r® .

Remark

o~
If A1(€%,5') = 0 then the inequality in corollary B.2.2

may be replaced by:

HG) 2 1(5) 37 e, (vkey) +4(eg))

L

Corollary B.2.3
Suppose A.](g,’;) =0 . Then %is e-deficient W.r.t:z;

for 2 decision problems if and only if

i -
Hgae UQH z a!gae Ve” gee laeg

for any a € R® .

Proof:
It suffices, in (iv') to consider functions ¢ of the form
x - lgaexel . -

Theorem B.2.4
-
Suppose @ = {1,2},,u1 > 0y;vy 20 and that A1(§f,5 ) =0 .

o~
Then Ef is e-deficient w.r.t. ¥ if and only if gi is e-de-

ficient w.r.t. 2;- for 2 decision problems.

Proof:

<
Suppose ég is e-deficient w.,r.t. %;. for 2 decision problems,
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Let a1""’ak’b1"“’bk be 2k constants and consider
Fex = max{aix1 +bsX5;5 1 = 1,...,k} . By rearranging we may

assume that there is a s so that
6(1,%5) = max{ai+bix2; i=1,2,...,s} where

the representation on the right is minimal in the sense that for
each i < s +there is a Xy > O so that a.+b.x, >

- i i™2
max{aj+bjx2; i #£1i, 1 < j <s} . Then the numbers bysboyees, by
are all distinct and we may without loss of generality - assume

that b1<b2<...<b . It follovvs that a1>a2>...>a and

that ¢(x) = or > a4Xq + byX, +1: (a. x1+le2—al 1%70 1::2 as
xy 20 or x=-e,,-e, . Put V(x) = a4Xy + X, +

S

(a sXq+b X 5-ay x1-bi_1x2)+; x ¢ R® .

i-1

Then - by the remark after theorem B,.2,1
1E) = T8 2 T(F) -25 e, (Tleg) + Tey)) =

H(F) -2 Teg (1leg) +¥(-eg)) 2 ¥(5) ~42aft(eg)rul-2y)) . -

Definitions

A standard pseudo experiment is a pseudo experiment of the
form ((K,S}),(S4: 6€@)) where K= {x: x€R® and Tlxgl =13,
3 is the class of Borel sub sets of K and x A- X, is - for
each 6 - a version of dSe/d% ISel

A finite non negative measure on K will" be called a stan-

dard measure.

If é = ((X}; ),(uezeé @)) 1is a pseudo experiment then the

standard pseudo experiment of g is the standard pseudo experi-

*¥) If A is some Borel sub set of a Polish space then "a measure
on A" is - if not otherwice stated - synonymus with "a measure
on the class of Borel sub sets of A",
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ment A

G = (£,D),(5,:8 ¢0))

where - for each 8 - Se is the measure on K induced by the
map : x - [due/izluel] ; o€ from (x,/,uy) to K . The
standard measure of the pseudo experiment 25—-((x J}) (ue b €6))
/

is the standard measure induced by the map :x - [duef

5¢ee from (X,J},g!ueg) to K .

%'Ue!jx ’

The standard measure of the standard pseudo experiment
(CK,Q%),(SB:H €@)) is the measure glsel and a standard pseudo
experiment is determined by its standard measure. Any standard
measure is the standard measure of a standard pseudo experiment.
The standard measure of a pseudo experiment éf igﬂalso the stan-
dard measure of its/§tandard pseudo experiment %ﬁ. Clearly

QA
Z - % and Al g,(é) = 0 for any pseudo experiment 5 .

AA
Theorem B.2.5 A(Zf,??) = 0 <=> 2§= %?'

Proof:

<= 1is clear so suppose A(?ﬁ,%F) = 0 . We may without

loss of generality assume that Z% and ?;- are standard pseudo
experiments with - respectively - standard measures S and T .
Iet V be the set of all functions on K which are of the form
Yq= 9o where U, and Yo are sub linear functions on R® . It
is easily seen that V 1s a vector lattice coutaining the con-
stants, [If W,, ¥, are real numbers then |y,-¥,]=2 maxfl,i}
- (¥4+¥,) - thus [f| €V when £€V3] . It follows from the formu-

la f2 = max 2a(f-a)4—a2 that the closure V of V for uniform
a

convergence is an algebra which obviously distinguish points in XK.
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Hence-by the Stone-Weierstrass approximation theorem - V= C(K) .

Clearly S(f) = T(f) for any f € V , It follows that S(f)=7(f)

- =

when f € C(K) i.e. S

Example B.2,.6

Suppose € = {1,2} Define standard probability measures

S and T on K Dby:

1

S({(=%,-4) We=g =T1({(£,1)1)/2 =

o({(-1,0)}) = ({(0,-1)1}) .

S({(O91)}) = S({(‘l,O)‘!)

et = (G, (upup)) and  T= ((4,5),(vy,vp)) be
pseudo experiments with, respectively, standard measures S and
T . Then:
43 (F) = vy (M) =05 4= 1,2
and

Jlax1+bx2|8(dx) = Ia|/4-+!bl/4-+[a+b|/4 = Jlax1+bx2|T(dx)

. ~
It follows that Az(g ,(S\:) =0 . é and § are, however,

not equivalent since:

ol

Jmax{x1,x2,0}s(dx)

1l

and

]

1
T

so that 8,05, T) 2 55(2,%) 2 5.

Jmax{x1,x2,O}T(dx)

It follows that equivalence for testing problems does not -
even for pseudo dichotomies - imply equivalence, This demonstra-
tes that

(1) the statement obtained from theorem B.2.4 by deleting the

conditions U, > 0, Ve 2 0O is wrong.




B,2,T7

and

(ii) A din theorem B.2.5 can not - even if we restrict ourselves

to pseudo dichotomies - be replaced by Dy

If we restrict ourselves to experiments, however, then the
conditions w4 >0 , vy > 0 in theorem B,2.4 become superfluous
and it was shown in [15] that A2 equivalence for experiments

implied A equivalence,
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B.3 General parameter space

Problems on infinite parameter spaces may occasionally be

reduced to problems on finite parameter spaces by:

Proposition B.3.1

Let & = (x,4),(uy:0€0)) and 'S“:((Aj,gb),(ve:ee@))

where ;uel:e €@ dis dominated., Let € be a non-negative func-

L
tion on ® . Then 2% is e-deficient w.r.t. § (for k-decision
problems) if and only if ((x,ﬁL),(ueze €F)) is (ee:e €F) de-
ficient w.r.t. ((/2,§b),(ve:e €F)) (for k-decision problems)

for all finite non-empty sub sets P of © ,

Proof:

The condition is clearly sufficient so suppose that the con-
dition holds. It suffices to do the proof in the case of k-de-
cision problems, Let D be a k-point set and let 5/ be the
class of all sub sets of D, Let o be a randomization from
(QQ,SB) to (D,é{) . By assumption there is for each finite non-

empty sub set F of @ a randomization pF from (x,J)) to

(D,J) so that
lugo® = vgall S eq 5 8€T .

Let ™ Dbe any probability measure dominating lue|:665® .

By weak compactness there is a sub set pF' and a p so that

pF' - p weakly [L1(x,J¥,n)] . It follows that
l - | > ®
luge veoll S egz0ece@ . ]
We proved in fact a little more and this is the content of

the next theorem.
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Theorem B.3.2
Let @ = ((x,{¥),(uy:0 €6)) and T (M, D (vgrece))

where ueze €® 1is dominated, Let ¢ be a non-negative function

on ®, let #D=k and let (§/ be the class of all sub sets of

D .
Then Eg is e-deficient w.r,%t. 1;. for k-decision problems

if and only if to each randomization ¢ from (/g,éb) to (D,53
there is a randomization p from (x,J&) to (D,é/) so that:

ﬂuep - vpoll < g3 6€0 .

The next proposition tells us -- in the case of experiments
-~ that certain decision spaces are abundant for comparision by

operational characteristics,

Proposition B.3.3
et 6= (6, (ugi0€0) ana S= (Y, D), (vgr0e0)

be two pseudo experiments and let 6 = €y be a non-negative

function on @ . Denote by T +the collection of decision spaces

(D,é{) having the following property:
To each randomization o from (4;,93) to (D,éf) there

is a randomization o from (x,d@) to (D,ﬂy) so that

|| - l < °

i“.-lep Vec!; il ee’ Bed .
Then ;

(1) ¢ 0,J) isin T eand gc s ¢ then (S, fn S,)
is in T .
l

(ii) If (D,éf) is in T and (D',S/ ) is a measurable space

such that there exists a bimeasurable bijection D = D'

y
then (D',é/ ) dis in T .
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Proof:
(ii) is clear, so suppose (D,c“f) isin T and g c S, Eé{.
Let T be a probability measure on (So, fﬂ So) . Define
. . v
a randomization y: (D, ) - (SO, jﬂ So) by:

v(s]a)

Ig(d); aes, se(fn S,

v(sla) = ©(s) 5 ags, , sedns, .

Iet V be any probability measure on (D,cf ) such that V(S )=1.
Let S € In S, . Then: (Vy)(8) = [ v(s]-)av = [ vy(s|.)av=v(s).
‘ S

It follows that 7Vy is the restriction of V +to 90 S0 . Define
a randomization Y from (So,zyﬂ_ SO) to (D,(f) by:

v(sla) = 14(a); sed d €8,

Then

des and for any

() (s1a) = 15(a); s€ Fns,, aes,

probability measure W on So N ﬂ; :

(WY)(8) = _fs I W = W(SnS ); Se¢ f
o

Let o0 be any randomization from (/\3, 63) to (SO,Soﬂ g7) . By
assumption there is a randomization p from (X,kA’) to (D,f)
so that:

luge = vgo¥ll < e4;5 0€@ .
Hence ”pep - vecﬂ S €3 8€0 . ]

Theorem B.3.4
Suppose (|ue!:6 €®) is dominated. Then g: ((x,d%;(ue:%@))
is e-deficient w.r.t. ?= ((g,ﬁ?}); (ve:B €@)) if and only if ;

to each decision space (D,f) where D is a Borel sub set of a

Polish space and J is the class of Borel sub sets of D and to
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each randomization o from (/lg,%) to (D,éf) , there is a
randomization p from (x,J}) to (D,éf) so that

”uep- \)eO'” < €43 e .
If the condition is satisfied and at least one of the mea-

sures v,0 #Z 0 , then p may be chosen so that Wgp is - for

each 6 - in the band generated by veo: 6€0O .

Proof:
The condition is clearly sufficient, so suppose é{ is e-
deficient w.r.t. q;'. By proposition B.3.3 we may - without loss
of generality - assume that D 1is compact metric., Let m be a
probability measure on (x,j}) which is equivalent with (!uelzeec»
and let ,36 be a countable dense sub set of C(D) such that: r
rational, f,g ng(==> r,If|,f+g and rf 613( . [We may put

ﬁK; .ﬁ U. where Uo is a dense countable sub set of C(D) and

. 1=0
' U45Up,... are defined recursively by:

U = {I‘1f1+r2f2+1’3+f;3 f1,f29f36Ui; I‘1,I'2 and I'3 are

i+1
rationalst]. Let {d;,d55... 1 be dense in D. Put Dy, =

{d1,d2,...,dk? , and let gfk be the class of all subsets of D,.
For each k define fk: D-D as follows: Let d € D . Consi-
der the k numbers: distance (d4,d4),..., distance (d,dk) . Let
i be the unique integer among {1,...,k} such that:

distance (d,d1),..., distance (d,di_1) > distance (d,di) <

distance (d’di+1)’ distance (d,d; 5),..., distance (d,d;,) .
Define fk(d) = d; . Clearly f; is measurable. Let o Dbe a
randomization from (Qg,gz) to (D,E{) . Define the randomiza-

tion o, from (/‘9,5'?;) to (Dk’ ka) by
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-1
ck(' ly) = O(' !y)fk o
By theorem B.3.2 there is a randomization p, from (x,J/¥) o

(Dk’ ‘fk) so that:

’E!U@pk - ‘-’gokl‘ f. €e; 6 €0 .

k
For each f € 40, i§1pk(di§o)f(di); k=1,2,... has a weakly
(T4 ( Y, A’,n)) convergent sub sequence., By a diagonal process

(or by Tychonoff's theorem) we may obtain a sub sequence Pyn 8O
k?

that _21pk,(d|-)f(di) converges weakly to a function o(f].) ,
1=

for each f ¢ 'ﬁ, p may be modified so that:

o(£]-)+o(gl+); £,8 € 9l

ro(£]+) £ e
1

o(f+gl-)
p(rf!l-)
p(1]+)
o(f]+) >0 fé%,fzo.

1l

By continuity - there is for each X € X =- a .probability
measure p(-[x) on 5 so that p(f|x) = p(flx) ; £ e}“}(’
Since p(flx) is measureable for each f € “J{}, o defines a ran-
domization from (x,.ﬂ’) to (D,g) . Let f € ’\o@

Then:
k

| Jra(ugh) - J2a(vgo) <] Jratugs) - T 2(a;) (ugpys) (a9l +

1=
k
Z

1=

(g )(@92(a) = 5 (v ) (ae(ay) | +
iia(veck,)(di)f(di) -_[fd(veo)Q .

Since, ”“epk - \)eokl} < €43 B €@ , the second term to the right

of < is < eefﬁfl! . Since distance (d,f,(d)) = distance (d,{dq,..
..,dk})J/O and D is compact - distance (d,fk(d))\l,o uniformly
in d , Hence - since f is uniformly continuous - |!f°fk-f|| -0,

The last term may be written
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-

208 (vgry ) (8 = [(£28,)a(vg0)

It follows that the last term = 0 .

The first term to the right of < which may be written
k
Jtfeanetaarts) = B 203y (a51+)Jau,]

tends - by weak convergence - to O ,

It follows that

lugp - vaoll < eps 8€0@ .

Let us - finally - return to the general case and suppose
o is a randomization such that Huep - vgo || < eq; 8 €O . Tet
T be a probability measure on (D,37) which is equivalent with
HgPs B €E® and let for each finite measure x on éf ,4' Dbe the
projection of x on the band generated by Vg0t pPeE® ., Let m
be a probability measure in the band generated by VgO: ped .
Then the map o: n = u'+ [#(D)-«'(D)]mr maps L4(7) into
Ly(te) . The restriction of ¢ +to I,(7) may be represented by
a randomization ¢ from (Iuéf) to (D,gf) . It follows that
lugpw = vgoll = U(uge =vyo)ell < fluge =vyoll < ey and uype is in

the band generated by VO3 BB ., []

Corollary B.3.5
tet & = (0LM)3(ugiece)) ana F= ((H4,3),(vg:0€0))

be two psemdo experiments where (lue{;e €®) is dominated andﬁj

is a Borel sub set of a Polish space and §5 is the class of Borel

sub sets of ﬁg/. Let € ©be a non-negative function on @ .,

C'\..
(1) éf is e-deficient w.,r.t., ¥ if and only if there is a
randomization M from (x,J@O to (Qj,é}) so that:

luglt - voll < eg5 0 ce
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If the condition is satisfied and v, #Z 0 for at least
one 8 , then M may be chosen so that ueM is - for

each 8 - in the band generated by Vgt DeEO .

(ii) E% is e-deficient w.r.t. g; if and only if to each
decision space (D,éf) and to each randomization o
from (M,%%) to (D,éf) there is a randomization o
from (x,J}) to (D,éf) so that:

luge = vgoll < ey 8 €@

Remark.

If ue:e €® and ve:e€E® are probability measures then

(i) is a direct consequence of theorem 3 in Le€am's paper [7].

Proof of the Corollary.

P~
1° Suppose is e-deficient w.r.t., ¥ . Consider the

decision space (D,éf) = (AQ,SB) and the identity map o from
toﬂg . By theorem 7 there is a randomization M from (X»ﬁh

to ({\3,%) so that
HUQM - Vg” = €p5 6e€o
The last statement in (i) follows from the last statement in
theorem B.3.4.
2°  Assume there is a randomization M from (x,%?) to
(,19,«;5) so that luM - vpll < ep5 6€0 . TLet (D,Qﬂ) be any
decision space and o a randomization from (ﬂé,g%) to (D,;f).
Then:
lugio = vpoll < e,z 6€0 . ]

The next proposition generalized Corollary 6 in [15].




B03-8

Proposition B.3.6

Tet &= (6 (ugie @) and T = (4, %), (vgr0€0)

be two pseudo experiments and let 6 - €q be a non-negative

function on @ . Suppose (l,ue]6€®) is dominated. Then (_% is
e-deficient w.r,t. (‘.‘? for k-decision problems if and only ifé

is e-deficient w.r.t. each experiment ((/\g ,9’\?;),(“9!6?;:9 €0))

N

where Q“DS S’b and #Gh< ok |

Proof:

1°  Suppose é is e-deficient w.r.t,. (IJ: for k-decision
problems and that ﬁs-:z) is a sub algebra of 90 containing at most
oK sets. Clearly % is e-deficient w,r.t. f = ((/g,,%);
(Qe!'fs:e € ®)) for k-decision problems. Consider the decision
‘space (/\3,’5",3) and let o be the identity map from (ﬂ#, %)  to
( ,,‘;S,j) . By theoremB34 there is a randomization p from (%,VQ’)

to (/\9,%) so that:
”Uep - (Ve!%)c!t =< Gete €0
~n ‘N
or - since (ve}%)c = vgiSh:8 €@ -
lugo = vgl Sl < g5 060 .

By corollary B.3.5 this implies that é is e-deficient w.r.,t.
o~ .

5.

2° Suppose g is e-deficient w.r,t. each experiment

1054
((/lﬁ,‘;}),(ve! ﬁ,:ee ®)) . We may - without loss of generality -
assume # @ < oo , The proposition now follows from theorem B.2.1

in section 2 in the same way as corollary 6 in [15] followed from

theorem 2 in [15].
H




Appendix C

Arguments depending on an assumption stating
that some of the measurable spaces involved

are Borel sub sets of Polish spaces.




Appendix C Arguments depending on an assumption stating that

some of the measurable spaces involved are Borel sub sets of

Polish spaces.

The only results whose proofs depend on such assumptions are:

Proposition 2.3 Page 2.6
" 3.1 3.1
" 3.4 3.6
n 4,11 4,12
Theorem 6.1 6.2
" 6.2 6.6
Corollary 6.3 6.9
Proposition 6.5 6.11
Theorenm 6.6 6.11

We shall now show how these assumptions may be avoided in

proposition 2.3, proposition 3,1 and in proposition 3.4.

Proof of proposition 2.3

Let 8, be any sequence in @-—{eo} such that o, - 68, .

o
By the testing criterion - corollary B,2.3 -
Qy -Q Qy -Q P, =P, P, -P
“ _Bm em _ en eO” < ”; em e _ el’l eO” .
0, - 8, 6,-8, ~ " 8,- 86, 0,- 8,

The right hand side of this inequality tends - since ég is dif-

ferentiable in 90 - to zero as m,n = <,
Qy - Q
en eo 1

It follows that y o=
6, - 0

5 ees is a Cauchy
o)

sequence, D




Proof of proposition 3.1

Let a and b be real numbers, By corollary B.2.3:

Py - Py Q- Qq
la ——=+10 Py || = la ——=+1b Q|
5 - eo 0 8- 60 0

B - eo yields:

la P, +b P, | > lla 4, +b Q, |
% % ~ ® 901'

(\...
so that-by corollary B.2.3 again - é% > §b

0 0 []

Proof of proposition 3.4
By assumption 61(§?,€Q” G) = 0 so that-using the formula
9
for 6, din B.1 - u((\é) =n(¥%) =1 and v(/‘g) = H(x) = 0 .

Hence - by corollary B.2.3 - |lau+bv| < |lanm+ bH|| for all real

numbers a and b . a=1 and b =0 yields |ull <lnf =1.

On the other hand lull > u(/M) = 1 so that |jull =1 . It follows
1= n(M) = [u™l -l so that [[u7fl =0,

that [u¥]+ fu”ll = !
Hence u is a probability measure and it remains to show that

u >>v ., Decompose v = vy+v, where vy >>pu and v, Llu .

Then:
How = vl + ol = lgu = vl <l[gm =0
so that
(§) Uyl < tlhem=oll= [glT-[llgu=-vyll-18]3
Put g = dv;/du . Then we may write

e = vy ll= el = NCsu=v) T +l(8u=-v)7II - gl
Hew = v ) = e =v) T +2) (2n = vy )7l - g
@u—vﬂ(%)+2ﬂ€-gYﬂu-!ﬂ

g-vi(M)+2] (g-8)du-|g]
YRS
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2I(g-§ﬁu—wﬂ%& when & > 0
= { 8&>% _
2J(g—€ﬁu-w(%)+2§ when § < 0
g>5
g - v1(ﬂ30-+a§ when § > 0 where a, = 0 as § =@
2f3du - J gdu + 28 u(g <8) - v1(/\9,) when § <0
g5
- v1(qg)+-a§ when & > 0
v1(ﬁ%) + bg when & <0 where b, = 0 as § =-

Similarily - using that m >> o - we get:

lim [lgll-o]l-]E] =01 = 0
RIRES

§ oo in (§) yields [lv,ll < v1(%}) while € --oc0 in (§) yields
v, | 5-—v1(qg) . Hence v1(ﬁ9) =0 = llv,ll so that v <<y . 0

The missing assumption in proposition 4.11, theorem 6.1,
theorem 6,2, proposition 6.5 and theorem 6.6 is: ¥ is aBorel sub
set of a Polish space and Ji is the class of Borel sub sets of ¥.
This assumption may be avoided in proposition 4.11 by dropping
condition (iii).

Pinally the proof of corollary 6.3 requires not only this

assumption but also the same assumption on (X9J¥) .
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