STATISTICAL RESEARCH REPORT No 2
Institute of Mathematios 1971
University of Oslo

In a multiple hypotheses testing problem involving q different alternative hypotheses if the null hypothesis is rejected, the form of the tests maximizing minimum power over certain alternatives is derived. The result is used on the slippage problem for means and variances of nomal populations, test for a change in a parameter occuring at an un= known time point, the threemecision problem, and two slippace problems for discrete distribution. In the latter case, attention is restricted to unbiased tests. In the case of the slippage problems the regularity assumptions which seem to have been imposed in earlier works on this sub= ject are not required. For example in the slippage problem for the means of nomal populations, it is not required that the number of observations from each population should be equal. The form of the tests is rather complicated.

1. Introduction

Paulson [12] was the first to prove an optimality property of a test for a slippage problem involving means of normel populations. The optimality property was maximizing the minimu power over certain alternatives. Paulson's technique was later used to find optimal tests for other slippage problems, see e.g. [4] for references. The results, however, were not completely general. In the problem with normal means; for exarple, it seemed to be necessary to have an equal number of observations from each population to be able to prove the optimelity property. Recently, Hall and Kudo [6] and Hall. Kudo and Yeh [7] used an other criterion, symnetry
in power, but elso their results depend upon the same kind of symmetry as Paulson's.

Pfanzagl [13] assumed that the various alternatives had certain known probabilities, and using that he found tests which maximized the average power over various alternatives with respect to the given probabilities. Pfanzagl's results did not depend upon the kind of regularity assumption as used in [12].

In the present paper we will find tests which are optimal in the sense of Paulson but without requiring the regularity assumptions of the earlier papers. The results apply, however, not only to slippage problems, the general setting (see (2.1)) is any problem where one has to choose between a finite number of disjoint alternative hypotheses when the null hypothesis is rejected.

2. Statement of the problem

Let X be a random variable with distribution function P_{θ} where P_{θ} belongs to a class $\left\{P_{\theta}: \theta \varepsilon \Omega\right\}$ of distribution functions. Consider the hypothesis testing problem
(2.1) $H: ~ \theta \varepsilon \Omega_{0}$ against $K_{1}: \theta \varepsilon \Omega_{1}$ or $K_{2}: \theta \varepsilon \Omega_{2}$ or ... or $K_{q}: \theta \varepsilon \Omega_{q}$:
where $\Omega_{0}, \Omega_{1}, \ldots, \Omega_{q}$ ere disjoint subsets of $\Omega_{\text {. We define } a \text { test of }}$ (2.1) to consist of q elements $\left(\Psi_{1}(x), \ldots, \psi_{q}(x)\right)$ where the $\Psi_{i}(x), i=1, \ldots, q_{\text {, }}$ are ordinary test functions and
(2.2) $\quad \sum_{i=1}^{q} \Psi_{i}(x) \leq 1$

If x is observed, we reject H with probability $\sum_{i=1}^{q} \psi_{i}(x)$, and accept the
altemative K_{i} with probability $\Psi_{i}(x), i=1, \ldots q$. Only one of the alternam tives $K_{\perp} \ldots{ }_{\mathrm{L}} \mathrm{K}_{\mathrm{q}}$ is accepted. If H is not rejected, our conclusion is $\theta e \Omega$. not $\theta \varepsilon \Omega_{0}$. A test is colled a level α test if
(2.3) $\sup _{\theta \varepsilon \Omega_{0}} \sum_{i=1}^{q} E_{\theta} \Psi_{i}(X) \leq \alpha$

Let
$(2.4) \quad \beta\left(\theta_{i} \Psi_{i}\right)=E_{\theta} \Psi_{i}(X)$
$i=1, \ldots, q$

We define the power function of a test to be the vector $\left(\beta\left(\theta_{,} \Psi_{1}\right), \ldots\right.$, shall
$\beta\left(\theta_{0} \psi_{q}\right)$). Wefay that a test $\left(\phi_{1}, \ldots, \phi_{q}\right)$ is more powerful than a test $\left(\Psi_{1} \ldots, \Psi_{q}\right)$ if $\beta\left(\theta_{i} \varphi_{i}\right) \geq \beta\left(\theta_{i} \Psi_{i}\right), \theta \varepsilon \Omega_{i}, i=1, \ldots q_{1}$. We would like to find a level a test such that $\beta\left(\theta_{,} \psi_{i}\right)$ is 1 arge when $\theta e \Omega_{i}, i=1, \ldots, q$.
3. Tests that maximize minimum average power and minimum power

If we try to find a test which, subject to (2.3), maximizes $E_{\theta} \psi_{i}(X)$, $\theta \varepsilon \Omega_{j}$, for a particulor i, it would cenerally lead to small values of $E_{\theta}{ }^{\psi}{ }_{j}(X), \theta \varepsilon \Omega j$ when $j \neq i$.

We will therefore try to find tests which maximize the average power over the q alternatives, or maximize minimum power over the q olternatives. Denote the class of tests satisfying (2.2) and (2.3) by $S(\alpha)$. Let ω_{i} be a subset of $\Omega_{i}, i=1, \ldots, q$.

A test $\phi \varepsilon S(\alpha)$ satisfying $\min \left(\inf _{\theta \varepsilon \omega_{1}} E_{\theta} \phi_{1}(X), \ldots \inf ^{\theta \varepsilon \omega_{q}} E_{\theta} \phi_{q}(X)\right)=\sup _{\Psi_{\varepsilon S}(\alpha)} \min$ $\left.\underset{\theta \varepsilon \omega_{1}}{\left(\inf E_{Q} \psi(X)\right.} \ldots \inf _{\theta \in \omega_{Q}} E_{Q} \psi_{q}(X)\right)$, we call a test maximizing the minimum power over $\omega_{1} \ldots \ldots, \omega_{q}$. A test $\phi \varepsilon S(\alpha)$ satisfying
$\theta_{1} \varepsilon \omega_{1} \ldots \inf _{q} \varepsilon \theta_{q} \sum_{i=1}^{q} E_{\theta_{i}} \phi_{i}(X)=\sup _{\Psi \varepsilon S(\alpha)} \inf _{1} \varepsilon \omega_{1} \ldots \theta_{q} \varepsilon \omega_{q} \sum_{i=1}^{q} E_{\theta_{i}} \Psi_{i}(X)$ we
call a test maximizing the minimum averace power over w onobw ${ }^{W}$
In the following $f_{0} f_{1} \ldots f_{q}$ will be $q+1$ real-valued functions, integrable with respect to a σ minite measure μ on a Euclidean space.

The followine theorem will be helpful when determining tests that maximize minimum power.

Theorem 1. Consider the problem to maximize

(3.1) $\quad \underline{\min }\left(\int \Psi_{1} f_{1} d \mu_{, \ldots,} \int_{q} f_{q} d \mu\right)_{s}$

Where $\Psi_{1} \ldots \Psi_{q}$ are test functions satisfying (2.2) and
(3.2) $\int\left(\sum_{i=1}^{q} \Psi_{i}\right) f_{0} d \mu=c$

Suppose that there exist constants $k_{1} \ldots \operatorname{lol}^{k}$ with $\sum_{i=1}^{q} k_{i}>0$ and tests $\phi_{1} \ldots \phi_{\mathrm{q}}$ such thet

$$
\phi_{i}(x)=\left\{\begin{array}{l}
1 \text { when } k_{i} f_{i}(x)>f_{0}(x) \text { and } k_{i} f_{i}(x)>\max _{j \neq i} k_{j} f_{j}(x) \tag{3.3}\\
0 \text { when } k_{i} f_{i}(x)<f_{0}(x)
\end{array}\right.
$$

$$
\left\{i: k_{i} f_{i}(x)=\sum_{j} \max _{j} f_{j}(x)\right\}{ }_{i}(x)=1 \text { when } \max _{j} k_{j} f_{j}(x)>\hat{I}_{0}(x)
$$

and
(3.4) $\quad \int \phi_{1} f_{1} d \mu=\ldots=\int \phi_{q} £_{q} d \mu$

Then $\phi_{1}, \ldots, \phi_{q}$ maximize (3.1) subject to (2.2) and (3.2).

Proof. That there exists a set of test functions maximizing (3.1) is easily seen by using the weak compactness theorem for test functions $(\sec [9]$ p. 354).

We will first show that there also exists a test satisfying (3,4) which maximizes (3.1). Let ($\Psi_{1}, \ldots, \Psi_{q}$) maximize (3.1) and suppose that
(3.4) is not satisfied. Then let β_{1} and β_{2} be defined by

$$
\beta_{1}=\min _{i} \int \Psi_{i} f_{i} d \mu<\max _{i} \int \Psi_{i} f_{i} d \mu=\beta_{2}
$$

Let $I_{1}=\left\{i: \int \Psi_{i} f_{i} d \mu=\beta_{1}\right\}$ and $I_{2}=\left\{i_{i} \int \Psi_{i} f_{i} d \mu=\beta_{2}\right\}$. Let $\beta_{1}<\delta<\beta_{2}$ and let n be the number of elements in I_{1}. Define new tests by

$$
\begin{array}{rlrl}
\Psi_{i}{ }^{*} & =\Psi_{i}+n^{-1}\left(1-\delta / \beta_{2}\right) \sum_{i \varepsilon I_{2}} \Psi_{i} & & i \varepsilon I_{1} \\
(3.5) & & i \varepsilon I_{2} \\
\Psi_{i}^{*} & =\left(\delta / \beta_{2}\right) \Psi_{i} & & i \notin I_{1} \cup I_{2}
\end{array}
$$

We heve $\sum_{i=1}^{q} \Psi_{i}=\sum_{i=1}^{q} \Psi_{i}^{*}$, hence $\left(\Psi_{1}{ }^{*} \ldots \Psi_{q}^{*}\right)$ also satisfies (2.2) and (3.2). Furthermore

$$
\begin{aligned}
\int \Psi_{i}{ }^{*}{ }_{f_{i}} d \mu & =\beta_{1}+n^{-I}\left(I-\delta / \beta_{2}\right) \int\left(\sum_{j \varepsilon I_{2}}{ }_{\psi}\right) f_{i} d \mu \geq \beta_{1} & & i \varepsilon I_{1} \\
(3.6) \int \Psi_{i}{ }^{*}{ }_{f} d \mu & =\left(\delta / \beta_{2}\right) \int \Psi_{i} f_{i} d \mu=\delta>\beta_{1} & & i \varepsilon I_{2} \\
\int \Psi_{i}{ }^{*}{ }_{f}{ }_{i} d \mu & =\int \Psi_{i} f_{i} d \mu>\beta_{1} & & i \varepsilon I_{1} \cup I_{2}
\end{aligned}
$$

Since ($\Psi_{1} \ldots \ldots \Psi_{q}$) maximizes (3.1) we must have equality sien for at least one index $i_{,} i_{0}$ say, in the first equation of (3.6). Hence
(3.7) $\quad \int\left(\sum_{j \in I_{2}}{ }^{\psi}{ }_{j}\right) f_{i_{0}} d \mu=0$

Define new tests by

$$
\begin{array}{ll}
\Psi_{i_{0}}^{* *}=\Psi_{i_{0}}+\left(1-\beta_{1} / \beta_{2}\right) \sum_{j \varepsilon I_{2}}{ }^{\Psi} j & \\
\Psi_{i}^{* *}=\left(\beta_{1} / \beta_{2}\right) \Psi_{i} & i \varepsilon I_{2} \\
\Psi_{i}^{* *}=\Psi_{i} & \text { otherwise }
\end{array}
$$

It is easily seen that $\left(\Psi_{1}{ }^{* *}, \ldots, \Psi_{q}^{* *}\right)$ satisfies (2.2) and (3.2). By (3.7) it is also found that $\int \Psi_{i}{ }^{* *_{f}} f_{i} d \mu=\beta_{1}, \quad i \varepsilon I_{1} U I_{2}$. If ($\Psi_{1}{ }^{* *}, \ldots, \psi_{q}^{* *}$) does not satisfy (3.4), we may proceed as above using $I_{1} \cup I_{2}$ as I_{1}, and so
on until we end up with tests satisfying (3.4) with all the integrals equal to β_{1}.

Now return to the proof of the theorem. Let ($\Psi_{1}, \ldots, \Psi_{q}$) be a test maximizine (3.1) and satisfying (2.2), (3.2) and (3.4). (As shown above this is no restriction.) Since both ($\psi_{1} \ldots \ldots, \phi_{q}$) and ($\Psi_{1}, \ldots, \Psi_{q}$) satisfy (3.4) we have

$$
\left(\sum_{i=1}^{q} k_{i}\right) \int \phi_{1} f_{1} d \mu=\int\left(\sum_{i=1}^{q} k_{i} \phi_{i} f_{i}\right) d \mu
$$

and

$$
\left(\sum_{i=1}^{q} k_{i}\right) \int \Psi_{1} f_{1} d \mu=\int\left(\sum_{i=1}^{q} k_{i} \Psi_{i} f_{i}\right) d \mu
$$

Hence
(3.8) $\quad\left(\sum_{i=1}^{q} k_{i}\right)\left(\int \phi_{1} f_{1} d \mu-\int \Psi_{1} f_{1} d \mu\right)=$

$$
=\int\left(\sum_{i=1}^{q}\left(\phi_{i}-\Psi_{i}\right)\left(k_{i} f_{i}-f_{0}\right)\right) d \mu_{0}
$$

Look at the integrand
(3.9) $\quad \sum_{i=1}^{q}\left(\phi_{i}(x)-\psi_{i}(x)\right)\left(k_{i} f_{i}(x)-f_{0}(x)\right)$

If $\max _{i} k_{i} f_{i}(x)>f_{0}(x)$ the integrand is equal to
$k_{t} f_{t}(x)-f_{0}(x)-\sum_{i=1}^{q} \Psi_{i}(x)\left(k_{i} f_{i}(x)-f_{0}(x)\right)$
$\geq k_{t} f_{t}(x)-f_{0}(x)-\sum_{i=1}^{q} \Psi_{i}(x)\left(k_{t} f_{t}(x)-f_{0}(x)\right)=\left(k_{t} f_{t}-f_{0}(x)\right)\left(1-\sum_{i=1}^{q} \Psi_{i}(x)\right) \geq 0$,
where t is an index such that $k_{t} f_{t}(x)=\max _{i} k_{i} f_{i}(x)$. If $\max k_{i} f_{i}(x)$
$<f_{0}(x)$, then the integrand is $-\sum_{i=1}^{q} \Psi_{i}(x)\left(k_{i} f_{i}(x)-f_{0}(x)\right) \stackrel{i}{\geqq} 0$, since then $k_{i} f_{i}(x)-f_{0}(x)<0$ for all i_{0} If $\max _{i} k_{i} f_{i}(x)=f_{0}(x)$, then the integrand is $-{ }_{\left\{i: k_{i} f_{i}(x)<f_{0}(x)\right\}} \Psi_{i}(x)\left(k_{i} f_{i}(x)-f_{0}(x)\right) \geq 0$. Hence the integrand is
always non-negative, and (3.8) is greater or equal to 0 . Since $\sum_{i=1}^{q} k_{i}>0$ and $\int \phi_{i}(x) f_{i}(x) d \mu(x)$ does not depend upon i, the theorem is proved.

In the examples to follow it will not always be obvious that there exist tests satisfying (3.2), (3.3) and (3.4). The next theorem gives conditions for existence of such tests.

Theorem 2. In addition to the assumptions of Theorem 1, let $f_{i} \geq 0, i=0, \ldots, q_{i} 0<c<\int f_{0} d \mu$ and

$$
\begin{equation*}
\int_{A} f_{i} d \mu=0 \Rightarrow \int_{A} f_{j} d \mu=0 \quad j \neq i \tag{3.10}
\end{equation*}
$$

If a test maximizes (3.1) subject to (2.2) and (3.2), then it is of the form (3.3) with $\sum_{i=1}^{q} k_{i}>0$ and satisfies (3.4).

Proof. Let $I V$ be the set of a.ll points
$\left(\int \Psi_{1} f_{1} d \mu_{3} \ldots \ldots \int \Psi_{q}{ }^{f} q^{d} \mu_{0} \int\left(\Psi_{1}+\ldots+\Psi_{Q}\right) f_{0} d \mu\right) . N$ is closed and convex. (Compare [9] p. 83.) Let ($u_{1}, \ldots, u_{q \times 1}$) denote a general point in N_{0} For fixed $u_{q+1}=c$, there exists a point $\left(a_{1}, \ldots, a_{q}, c\right) \varepsilon N$ such that min $\left(a_{1}, \ldots, a_{q}\right)$ is equal to

$$
\left(u_{1} \sup _{\left.u_{q}, 0,\right)_{\varepsilon \mathbb{N}}} \min \left(u_{1}, \ldots, u_{q}\right)_{0}\right.
$$

Because of the condition (3.10), we must have $a_{1}=\ldots=a_{q}$. Furthermore $\left(a_{1}, \ldots, a_{g}, c\right)$ is a boundary point of N. Let

$$
\sum_{i=1}^{q+1} k_{i} u_{i}=\sum_{i=1}^{q} k_{i} a_{i}+k_{q+1}^{c}
$$

be a hyperplane through this point such that all points in \mathbb{N} are on the same side of the hyperplane.

Let M be the set of all points $\left(\int \Psi_{1} f_{1} d \mu_{0} \ldots . \quad \int \Psi_{q} f_{q} d \mu\right)$ where $\left(\Psi_{1}, \ldots, \Psi_{q}\right)$ varies over all test functions satisfying (2.2)。 M is closed
and convex, and using the fact $0<c<\int f_{0} d \mu$ we see that (a_{1}, \ldots, a_{q}) is inner point of M.

Let a^{*} and $a^{* *}$ be the minimum and maximum last coordinate, respectively, of points in \mathbb{N} for fixed first q coordinates ($a_{1} \ldots \ldots, a_{q}$). We must have $a^{*}=c$, since $a^{*}<c$ would imply that $\min \left(a_{1}, \ldots, a_{q}\right)<\left(u_{1}, \ldots, u_{q}, c\right) \varepsilon \mathbb{N}$ $\min \left(u_{1}, \ldots, u_{q}\right)$ 。

Suppose first $c<a^{* *}$. Then $\left(a_{1} \ldots \ldots a_{g}\left(c+a^{* *}\right) / 2\right)$ is on inner point of \mathbb{N}. It then follows that k_{q+1} 中 0 in the equation of the hyperplane, since $k_{q+1}=0$ would imply that ($a_{1}, \ldots a_{q}\left(c+a^{* *}\right) / 2$) is on the hyperplane. Teking $k_{q+1}=-1$ the equation of the hyperplane is
$\sum_{i=1}^{q} k_{i} u_{i}-u_{q+1}=\sum_{i=1}{ }^{q} k_{i} a_{i}-c$, and
(3.11) $\quad \sum_{i=1}^{q} k_{i} u_{i}-u_{q+1} \leq \sum_{i=1}^{q} k_{i} a_{i}-c$
when $\left(u_{1}, \ldots, u_{q+1}\right) \varepsilon N$. Hence for all test functions $\left(\Psi_{1}, \ldots, \Psi_{q}\right)$ we have
(3.12) $\int \sum_{i=1}^{q} \Psi_{i}\left(k_{i} f_{i}-f_{0}\right) d \mu \leq \int \sum_{i=1}^{q} \Psi_{i}^{*}\left(k_{i} f_{i}-f_{0}\right) d \mu$
where $\left(\psi_{1}{ }^{*}, \ldots, \Psi_{q}{ }^{*}\right)$ is a test function givine the point $\left(a_{1}, \ldots, a_{q}: 0\right)$. Define ($\phi_{1}, \ldots, \phi_{q}$) as in (3.3). Then as in the argument after (3.9)

$$
\sum_{i=1}^{q}\left(\phi_{i}-\psi_{i}\right)\left(k_{i} f_{i}-f_{0}\right) \geq 0
$$

But by (3.12) with $\phi_{1}, \ldots, \phi_{q}$ is $\Psi_{1} \ldots \ldots \psi_{q}$

$$
\int \sum_{i=1}^{q}\left(\phi_{i}-\Psi_{i}^{*}\right)\left(k_{i} \mathbf{f}_{i}-\tilde{f}_{0}\right) d \mu \leq 0
$$

Hence

$$
\sum_{i=1}^{q}\left(\phi_{i}-\Psi_{i}^{*}\right)\left(k_{i} f_{i}-f_{0}\right)=0 \quad \text { a.e. } \mu_{0}
$$

It then follows that $\left(\Psi_{1}{ }^{*} \ldots \Psi_{q}^{*}\right)$ is defined in the same way as
$\left(\phi_{1} \omega_{0} \phi_{q}\right)$ a.e. μ_{0}
If $a^{*}=c=a^{* *}$ we find by en argument similar to $|9|$ p. 86 , that N is on the hyperplane

$$
u_{q+1}=\sum_{i=1}{ }_{i} k_{i} u_{i} .
$$

Hence $\int\left(\sum_{i=1}^{q} \Psi_{i}\right) f_{0} d \mu=\sum_{i=1}^{q} \int k_{i} \psi_{i} f_{i} d \mu$,
or

$$
\sum_{i=1}^{q} \int \psi\left(k_{i} f_{i}-x_{0}\right) d \mu=0
$$

 tests are trivially of the form (3.3) ace. μ_{0}

Clearly, we must have all $c_{i}>0$, otherwise the corresponding test would have power 0 . This completes the proof.

In Pfanzagl [13] p. 39 is given the form of the tests which maximize

$$
\sum_{i=1}^{q} \int \psi_{i} f_{i} d \mu
$$

emone tests satisfying (3.2). They are of the form (3.3) with $k_{1}=\cdots=k_{q}=k$ and where k is determined so that (3.2) is satisfied.

The following corollary to Theorems 1 and 2 gives a condition under which the test maximizing $\sum_{i=1}^{q} \int \Psi_{i} f_{i} d \mu$ and $\min \left(\int \Psi_{1} f_{1} d \mu_{1} \ldots \int_{q} \Psi_{q} q^{d \mu}\right)$ coincide.

Corollary: Let $\left(\phi_{1}, \ldots, \phi_{q}\right)$ be of the form (3.3) with $k_{1}=\ldots, k_{q}>0$, and hence maximizes $\sum_{i=1}^{q} \int \Psi_{i} f_{i} d \mu$ subject to (2.2) and (3.2). If $\int \phi_{1} f_{1} d \mu=\ldots=\int \phi_{q} f_{q} d \mu_{\mu}$ then $\left(\phi_{1}, \ldots, \phi_{q}\right)$ also mexinizes min $\left(\int \Psi_{1} f_{1} d \mu, \ldots, \int \Psi_{q} f_{q} d \mu\right)$ subject to (2.2) and (3.2).

Proof. Follows trivially from theorem 1 since ($\phi_{1}, \ldots, \phi_{q}$) is of the form (3.3) and satisfies (3.4).

The followine lemma, the proof of which is obvious, will be used when we determine tests maximizing minimum power.

Lemme: Suppose that there exist a test $\phi=\left(\phi_{1} \ldots \ldots \phi_{q}\right) \in S(\alpha)$ such that (I) there exist points $\theta_{1}^{*}, \ldots, \theta_{q}^{*}$ where $\theta_{i}{ }^{*} \varepsilon_{\omega_{i}}, i=I_{q} \ldots, q_{\theta}$ such that ϕ maximizes $\frac{\min }{}\left(E_{\Theta_{1}} * \Psi_{1}(X)_{0} \ldots E_{\Theta_{q}}{ }_{q} \Psi_{q}(X)\right.$) (II) $\inf _{\theta \varepsilon \omega_{i}} E_{\theta} \phi_{i}(X)=E_{\theta_{i}} \psi_{i}(X), i=1_{8} \ldots \theta_{0}$ Then ϕ maximizes

4. Application to some simple problems without nuisence parameters.

A. The slippage problem for normal means.

Let $X_{i, j}$ be independent $N\left(\mu_{i}, I\right), i=I_{1} \ldots, q_{0} j=I_{1} \ldots, n_{i}$ 。 Consider the problem
$H: \mu_{1}=\ldots=\mu_{q}=0$ against $K_{i}: \mu_{1}=\ldots=\mu_{i-1}=\mu_{i} \Delta \Delta=\mu_{i+1}=\ldots=\mu_{q}=0 \quad i=1, \ldots, q_{i}$ where $\Delta>0$. This problem seems to be due to Mosteller [10]. Paulson [12] found the test maximizing the minimum power over altematives $\Delta \geq \Delta_{1}$, in the case when $n_{1}=\ldots=n_{q}$. Pfanzagl [13] found the test maximizing the average power over the same alternatives for general $n_{1} \ldots \ldots, n_{q}$. We will now in the general case derive the test maximizing the minimum power over the alternatives ω_{i} defined by $\mu_{j}=0, j \neq i, \mu_{i} \geq \Delta_{i}, i=1, \ldots, q_{0}$.

Let f_{0} be the density of the observations under H_{i} and let f_{i} be the density under K_{i} with $\Delta=\Delta_{i}$ 。 The ratio f_{i} / f_{0} is then
(4.1) $\quad \exp \left(\Delta_{i} n_{i} x_{i} e^{-\frac{3}{2}} n_{i} \Delta_{i}{ }^{2}\right)$
where $x_{i}=\sum_{j=1}^{n_{i}} x_{i j} / n_{i}$. Multiplying (4, I) with k_{i} and taking the logarithm we get
(4.2) $\quad \Delta_{i} n_{i} x_{i}=\frac{1}{2} n_{i} \Delta_{i}^{2}+c_{i}$
where $c_{i}=\log k_{i} \cdot$ Denote (4.2) by v_{i}. According to Theorems I and 2 we shall have
(4.3) $\phi_{i}(x)=\begin{aligned} & 1 \text { when } v_{i}>0 \text { and } v_{i}>v_{j} \text { i击 } \\ & 0 \text { otherwise }\end{aligned}$
where $c_{1} \ldots \ldots c_{q}$ are determained so that
(4.4) $\quad P_{0}\left(\max _{i} V_{i}>0\right)=0$,
and
(4.5) $P_{i}\left(V_{i}>0\right.$ and $\left.V_{i}>\max _{j \neq i} V_{j}\right)$
is independent of i_{1} where P_{i} denotes that the probabilities are calculated with respect to the density $f_{i}, i=0, \ldots g$. This will give the test maximizing the minimum power over altematives with $\Delta=\Delta_{i}$ when we consider the alternative K_{i}. It is easily seen that the elements of the power function is strictly increasing in Δ, hence by the Lemma the test maximizes the minimum power over the alternatives $\omega_{1} \ldots \ldots, \omega_{q}$ 。

In eeneral, it is very difficult to determine the constants c_{1}, \ldots, c_{q} such that (4.4) and (4.5) are satisfied. In some special cases, however, it is only one constant c to determine. If $n_{1}=\cdots=n_{q}$ and $\Delta_{1}=0=\Delta_{q}$, then $c_{1}=00=c_{q}$. If the $\left\{n_{i}\right\}$ are not all equal it might be natural to consider alternatives of the form $\Delta_{i}=\gamma n_{i}{ }^{-\frac{1}{2}}$, since our "best" estimate of Δ_{i} is x_{i}. with variance $n_{i}{ }^{-\frac{1}{2}}$. In that case we will also find that we have $c_{1}=\ldots=c_{q}$, so there is only one constant c to determine.
B. Test for a chance in a parameter occurring at an unknow time point.

Let $X_{1} \ldots \ldots, X_{q}$ be independent $\mathbb{N}\left(\mu_{i}, I\right)$. Consider the hypothesis (4.6) $\quad H: \mu_{1}=\ldots=\mu_{q}=0$ against $K_{i}: \mu_{1}=\ldots=\mu_{q-i}=0, \mu_{q-i+1}=\ldots=\mu_{q}>0 \quad i=1, \ldots p q_{1}$ For the oricin of this problem see Page [11]. Tests of H against the alternative " H is not true" have been proposed in [1]. [2]. [8]. Pfanzagl |13| found the test of (4.6) meximizing average power over elternatives with $\mu_{q-i+1}=\ldots=\mu_{q} \geq \Delta \quad i=1, \ldots, q$.

Consider now the olternatives ω_{i} defined by $\mu_{q-i+1}=\ldots=\mu_{q} \geqq \Delta_{i}$. Let f_{0} be the density when H is true and let f_{i} be the density under K_{i} when $\mu_{q-i+1}=\ldots=\mu_{q}=\Delta_{i}$.

The expression correspondine to (4.2) is in this case
(4.7) $\quad \Delta_{i} S_{i}-\frac{1}{2} i \Delta_{i}{ }^{2}+c_{i}$
where $s_{i}=\sum_{j=q-i+1}^{q} X_{i}$. From this we can find a test similar to (4.3) with conditions as in (4.4) and (4.5). It will be q constants c_{1}, \ldots, c_{q} to determine.

Arguing as in $A_{\text {, }}$ we might consider alternatives with $\Delta_{i}=i^{-\frac{1}{2}} \gamma_{0}$ Then (4.7) is proportional to

where $c_{i}^{\prime}=-\frac{1}{2}+c_{i} / \gamma$. Even in this case there will be q constants to detemine to find the test maximizinc minimum power. To find the test maximizing average power we put $c_{1}{ }^{\prime}={ }_{=}^{c}{ }_{q}{ }^{\prime}=c^{\prime}$. Then it is only one constant to determine, and if we reject H we accept the alternatives with the largest $i^{-\frac{1}{2}} S_{i}$. This is contrary to traditional cumulative sum tests (see e.g. [3]) where one accepts the altematives with the largest S_{i}. The quantity $i^{-\frac{1}{2}} S_{i}$ is more stable then S_{i} since $\operatorname{Var}\left(i^{-\frac{1}{2}} S_{i}\right)=1$ while $\operatorname{Var} S_{i}=i$.

It is easy to see that if a hypothesis testing problem of the form (2.1) is invariant under a group G of transformations, and G satisfies the conditions of the Huntmstein theorem (see [9] p. 336), then there exists an invariant test maximizing minimum power.
A. The slippage problem for normal means. Let $X_{i j}$ be independent $N\left(\mu_{i}, \sigma^{2}\right), i=1, \ldots, a_{i} j=1, \ldots, n_{i}$. Consider the problem
$H: \mu_{i}=\ldots=\mu_{q}$ against $K_{i}: \mu_{1}=\ldots=\mu_{i=1}=\mu_{i}-\Delta_{i} \sigma=\mu_{i+1}=\ldots=\mu_{q} \quad i=1, \ldots, q$ where $\Delta_{j}>0$. This problem is invariant under translations and change of scale, a maximal invariant beine $\left(T_{1}, \ldots, T_{q u}\right)$ where

$$
T_{i}=\frac{X_{i}-\bar{X}}{S} \frac{n_{i}}{(n-q)^{\frac{1}{2}}}
$$

$$
i=1, \ldots, q
$$

where $X_{i,}$ and n is defined as in Section $4, \bar{X}=\sum_{i=1}^{q} n_{i} X_{i} / n$ and $S^{2}=\sum_{i=1}^{q} \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{i}\right)^{2} /(n-q)$. We have $\sum_{i=1}^{q} T_{i}=0$. The joint density of the $T_{i}-s$ under the alternative K_{i} with $\Delta=\Delta_{i}$ is (see [13] p 26).
(5.1) $\quad f_{i}=C\left(1+\sum_{j=1}^{q} t_{j}^{2} / n_{j}\right)^{-(n-1) / 2} \exp \left(-\frac{1}{2} n_{i}\left(1-n_{i} / n\right) \Delta_{i}{ }^{2}\right)$

$$
I\left(t_{i} \Delta_{i} /\left(1+\sum_{j=1}^{q} t_{j}^{2} / n_{j}\right)^{\frac{1}{2}}\right) \quad i=1, \ldots, q
$$

where C is a constant and

$$
I(\tau)=\int_{0}^{\infty} \exp \left(\tau x^{\frac{1}{2}}-x / 2\right) x^{(n-3) / 2} d x
$$

The density f_{0} under H is obtained from (5.1) by puttine $\Delta_{i}=0$. Hence the ratio f_{i} / f_{0} is
$(5.2) f_{i} / f_{0}=\exp \left(-\frac{1}{2} n_{i}\left(I-n_{i} / n\right) \Delta_{i}{ }^{2}\right) I\left(t_{i} \Delta_{i} /\left(1+\sum_{j=1}^{q} t_{j}^{2 / n}\right)^{\frac{1}{2}}\right) I(0)^{-1}$.

It is seen that it will in ceneral be very complicated to determine the test maximizinc minimun power. A simplification occurs if we argue as in

Section $4 A$ and choose $\Delta_{i}=\gamma /\left(n_{i}\left(I-n_{i} / n\right)\right)^{\frac{1}{2}}$ since the best estimate of $\Delta_{i} \sigma$ is $X_{i} \odot \sum_{j \neq i} n_{j} X_{j} /\left(n_{-n_{j}}\right)$ with variance $\left(n_{i}\left(1-n_{i} / n\right)\right)^{-1}$. Using this Δ_{i} in (5.2) we get

$$
f_{i} / f_{0}=\exp \left(-\frac{1}{2} \gamma\right) I\left(t_{i} \gamma /\left(\left(1+\sum_{j=1}^{q} t_{j}^{2} / n_{j}\right)\left(n_{i}\left(1-n_{i} / n\right)\right)^{\frac{1}{2}}\right) I(0)^{-1}\right.
$$

Hence $k_{i} f_{i}>f_{0}$ is equivalent to (5.3) $\frac{t_{i}}{\left(n_{i}\left(1-n_{i} / n\right)\right)^{\frac{1}{2}}\left(1+\sum_{j=1}^{q} t_{j}{ }^{2 / n_{j}}\right)^{\frac{1}{2}}}-c_{i}>0$
where c_{i} is a new constant. Furthermore $k_{i} f_{i}>k_{v} f_{\nu}$ is equivelent to (5.4) $\frac{t_{i}}{\left(n_{i}\left(1-n_{i}\right)\right)^{\frac{1}{2}}\left(1+\sum_{j=1}^{q} t_{j}{ }_{j} n_{j}\right)^{\frac{1}{2}}}-\frac{t_{\nu}}{\left(n_{v}\left(1-n_{v} / n\right)\right)^{\frac{T}{2}}\left(1+\sum_{j}=1{ }_{j} t_{j}{ }^{2} / n_{j}\right)^{\frac{1}{2}}}-c_{i}+c_{\nu}>0$

To determine c_{1}, \ldots, c_{q} so that the test defined by (3.3) (and now obtained from (5.3) and (5.4)) satisfies (3.4) is, of course, numerically very difficult.

B. The slippage problen for normal variances.

Let $X_{i j}$ be independent $\mathbb{N}\left(\mu_{i}, \sigma_{i}{ }^{2}\right), i=1, \ldots, q, j=1, \ldots, n_{i}$, and consider the problem

$$
H: \sigma_{1}^{2}=\ldots=\sigma_{q}^{2} \text { against } K_{i}: \sigma_{1}^{2}=\ldots=\sigma_{i=1}^{2}=\sigma_{i}^{2} / \Delta_{i}=\sigma_{i+1}^{2}=\ldots=\sigma_{q}^{2} \quad i=1, \ldots, q
$$

where $\Delta_{i}>I_{\text {。 }}$
The test maximizing minimum power over alternatives $\Delta>\perp$ in the case $n_{1}=\ldots=n_{q}$ was found by Truax [14]. Pfanzagl [13] found the test maxinizing average power over the some alternatives in the general case. Using invariance under translations and change of scale, we find that a maximal invariant is $\left(\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{q}-1}\right)$ where

$$
v_{i}=\frac{n_{i}-1}{n-q} \frac{s_{i}^{2}}{s^{2}} \quad i=1, \ldots \ldots q,
$$

and where $s_{i}^{2}=\sum_{j=1}^{n_{i}}\left(X_{i j}-x_{i}\right)^{2} /\left(n_{i}-1\right)$
and $S^{2}=\sum_{i=1}^{q}\left(n_{i}-1\right) S_{i}^{2} /(n-q)$. We have $\sum_{i=1}^{q} V_{i}=1$. Let f_{i} be the density of the maximal invariant under K_{i} with $\Delta=\Delta_{i}$ and f_{0} the density under H_{0} Then using Pfanzogl's results ([13] pp. 30-31) we finc that $k_{i} f_{i} / f_{0}$ is equivalent to

$$
v_{i}\left(1-\Delta_{i}^{-1}\right)-c_{i}>0
$$

and $k_{i} f_{i}>k_{\nu} f_{\nu}$ is equivalent to

$$
v_{i}\left(1-\Delta_{i}^{-1}\right)-v_{v}\left(1-\Delta_{v}^{-1}\right)-c_{i}+c_{v}>0,
$$

where $c_{1} \ldots{ }^{\prime} c_{q}$ are new constents.
If we heve $n_{1}=\ldots=n_{q}$ and choose $\Delta_{1}=\ldots=\Delta_{q}$, it turns out thet $c_{1}=\ldots=c_{q}$ and we are beck to Truax's [14] result.

6. The three-decisions problem.

Consider the one-parameter exponential family

$$
C(\theta) e^{\theta T(x)_{h}(x)_{s}}
$$

and let the problem be

$$
H: \theta=\theta_{0} \text { ageinst } K_{1}: \theta<\theta_{0} \text { or } K_{2}: \theta>\theta_{0}
$$

Let $\omega_{1}=\left\{\theta: \theta \leq \theta_{1}<\theta_{0}\right\}$ and $\omega_{2}=\left\{\theta: \theta \geq \theta_{2}>\theta_{0}\right\}$ where θ_{1} and θ_{2} are given values of θ, and let us find the test maximizing minimum power over ω_{1} and ω_{2}. Choosing the density when $\theta=\theta_{i}$ as f_{i}, $i=0,1,2$, we find that the test maximizing minimum power over ω_{1} and ω_{2} is as follows:

$$
\phi_{1}(x)=\begin{aligned}
& 1 \text { when } T(x)<c_{1} \\
& \gamma_{1} \text { when } T(x)=c_{1} \\
& 0 \text { when } T(x)>c_{1}
\end{aligned}
$$

and

$$
\phi_{2}(x) \quad \begin{array}{lll}
1 & \text { when } & T(x)>c_{2} \\
\gamma_{2} & \text { when } & T(x)=c_{2} \\
0 & \text { when } & T(x)<c_{2}
\end{array}
$$

Here $c_{1}, c_{2}, \gamma_{1}, \gamma_{2}$ are determined so that

$$
P_{\theta_{0}}\left(\mathbb{T}(X)<c_{1}\right)+P_{\theta_{0}}\left(\mathbb{T}(X)>c_{2}\right)+\sum_{i=1}^{2} \gamma_{i} P_{\theta_{0}}\left(T(X)=c_{i}\right)=\alpha
$$

and

$$
P_{\theta_{1}}\left(\mathbb{T}(X)<c_{1}\right)+\gamma_{1} P_{\theta_{1}}\left(T(X)=c_{1}\right)=P_{\theta_{2}}\left(T(X)>c_{2}\right)+\gamma_{2} P_{\theta_{2}}\left(T(X)=c_{2}\right) .
$$

An example. Let $X_{1} \ldots \ldots, X_{n}$ be independent $\mathbb{N}\left(0, \sigma^{2}\right)$ and consider the problem

$$
H: \sigma=\sigma_{0} \text { against } K_{1}: \sigma<\sigma_{0} \text { or } K_{2}: \sigma>\sigma_{0} \text { - }
$$

We cet

$$
\phi_{1}(x)=1 \quad \text { when } \quad \sum_{i=1}^{n} x_{i}^{2}<k_{1}
$$

and

$$
\phi_{2}(x)=1 \quad \text { when } \quad \sum_{i=1}^{n} x_{i}^{2}>k_{2}
$$

The constants k_{1} and k_{2} are determined by

$$
F_{n}\left(k_{1} / \sigma_{0}^{2}\right)+1-F_{n}\left(k_{2} / \sigma_{0}^{2}\right)=\alpha
$$

and

$$
F_{n}\left(k_{1} / \sigma_{1}^{2}\right)=1-F_{n}\left(k_{2} / \sigma_{2}^{2}\right),
$$

where F_{n} is the cumulative chi-square distribution with n degrees of freedom. This test is different both from the unbiased test of H and the test maximizing minimum power in the traditionol sense (see Lehmann [9] p. 332).

7. Use of unbiasedness.

We will coll a test $\left(\psi_{1}, \ldots, \psi_{q}\right)$ of (2.1) unbiased if
$\sup _{\Omega_{0}} E_{\theta} \Psi_{i}(X) \leq \inf _{\Omega_{i}} E_{\theta} \Psi_{i}(X) \quad i=I_{0 \ldots \ldots, q}$.
Let $\Omega_{i 0}$ be the set of common accumulation points of Ω_{0} and Ω_{i}. If the power function of any test is continuous in θ_{9} then unbiasedness implies

$$
E_{\theta} \psi_{i}(X)=\alpha_{i}, \theta \varepsilon \Omega_{i 0}, \quad i=1, \ldots, q_{s}
$$

where α_{i} is some constant. Furthemore, if T is a complete and sufficient stetistics relative to $\Omega_{00}=\bigcap_{i=1}^{q} \Omega_{i 0}$ then (7.1) is equivalent to
$\mathbb{F}_{\theta}\left(\Psi_{i}(x) \mid t\right)=\alpha_{i} \quad a_{0} e_{0}, \theta \varepsilon \Omega_{00} \quad i=1_{1} \ldots, q_{0}$.
Let $\theta_{i} \in \Omega_{i}, i=1, \ldots, q_{,}$and let $\left(\phi_{1}, \ldots, \phi_{q}\right)$ be the test which maximizes $\sum_{i=1}^{q} \mathbb{E}_{0 i}\left(\Psi_{i}(X) \mid t\right)$ among tests satisfying (2.2) and $\sum_{i=1}{ }^{q} E_{\theta}\left(\Psi_{i}(X) \mid t\right)=\alpha_{0} \quad 0 \varepsilon \Omega_{00^{\circ}}$. We can find this $\left(\phi_{1}, \ldots . \phi_{q}\right)$ by the methods of Section 3. It is easily seen that if ($\phi_{1} \ldots \ldots \phi_{q}$) is unbiased, then it maximizes the average power over the altematives $\theta_{1}, \ldots, \theta_{q}$ among unbiased tests.

If, in addition, it turns out that $E_{\theta_{1}} \phi_{1}(X)=\ldots=E_{\theta_{q}} \phi_{q}(X)$, the test also maximizes the minimum power over $\theta_{1} \ldots \ldots \theta_{q}$ among unbiased tests.

A. The slippage problem for the Poisson distribution.

Let $X_{1} \ldots \ldots, X_{q_{G}}$ be independent with Poisson distributions

$$
P\left[x_{j}=x_{j}\right]=\frac{\left(\mu_{j}\right)^{x_{j}}}{x_{j}!} e^{-\mu_{j}} \quad j=I_{1} \ldots, q
$$

Consider the problem
$H: \mu_{j} p_{j} \mu$ against $K_{i}: \mu_{i}=\gamma_{i} p_{i} \mu \quad \mu_{j}=\frac{1-\gamma_{i} p_{i}}{1-p_{i}} p_{j} \mu \quad j \neq i$ where $p_{1} \ldots, p_{q}$ are known constents with $\sum_{j=1}^{q} p_{j}=1$, and and $\gamma_{i}>1$ are
unknown parameters. (See Doornbos and Prince [5].) The joint distribution under H is

$$
\frac{\prod_{j=1}^{q} p_{j}^{x_{j}}}{\prod_{j=1}^{q} x_{j}} \mu^{\sum_{j=1}^{q} x_{j}} e^{-\mu}
$$

Hence $T=\sum_{j=1}^{q} X_{j}$ is sufficient and complete. The conditional distributions given T under H and K_{i} are, respectively,

$$
\frac{\pi_{j=1}^{q} p_{j}{ }^{x_{j}}}{\pi_{j=1}^{q} x_{j}}
$$

and

$$
\frac{\pi_{j=1}^{q} p_{j}^{x_{j}}}{\pi_{j=1}^{q} x_{j} b}\left(\frac{1-\gamma_{i} p_{i}}{1-p_{i}}\right)^{t}\left(\frac{\gamma_{i}-\gamma_{i} p_{i}}{1-\gamma_{i} p_{i}}\right)^{x_{i}} \quad \text {. }
$$

The test maximizing the average power over alternatives with $\gamma=\gamma_{i}{ }^{*}$ is of the form, accept K_{i} if

$$
\left.x_{i} \log \left(\left(\gamma_{i}^{*}-\gamma_{i}^{*} p_{i}\right) / 1-\gamma_{i}^{*} p_{i}\right)\right)-t \log \left(\left(1-\gamma_{i}^{*} p_{i}\right) /\left(1-p_{i}\right)\right)>k_{t}
$$

and

$$
\begin{aligned}
& x_{i} \log \left(\left(\gamma_{i}^{*}-\gamma_{i}^{*} p_{i}\right) /\left(1-\gamma_{i}^{*} p_{i}\right)\right)-t \log \left(\left(1-\gamma_{i}^{*} p_{i}\right) /\left(1-p_{i}\right)\right) \\
& >x_{j} \log \left(\left(\gamma_{j}^{*}-\gamma_{j}^{*} p_{j}\right) /\left(1-\gamma_{j}^{*} p_{j}\right)\right)-t \log \left(\left(1-\gamma_{j}^{*} p_{j}\right) /\left(1-p_{j}\right)\right) \quad j \neq i .
\end{aligned}
$$

Here K_{t} is determined so that the conditional probability of rejecting H is $\alpha_{\text {. }}$

If $p_{1}=\ldots=p_{q}=1 / q$ and $\gamma_{1}^{*}=\ldots=\gamma_{q}^{*}$, the test is, accept K_{i} if $x_{i}>k_{t}$ and $x_{i}>x_{j}, j \neq i$. Because of the syrametry of the situation the powers are equal at the alternatives K_{i} with $\gamma_{i}=\gamma^{*}$ and $\mu_{i}=\mu^{*}$ for any γ^{*} and μ^{*}. It is easily seen by an orgument similar to Lehmann [9] p142 that the power function is increasing in γ_{i} and μ_{i}. Hence the test
maximizes both the minimum and average power over altematives $\omega_{j}=\left\{\left(\mu_{i}, \gamma_{i}\right): \mu_{i} \geq \mu^{*}, \gamma_{i} \geq \gamma^{*}\right\}$ for any μ^{*} and γ^{*}.
B. The slippage problem for the binomial distribution.

Let $X_{1} \ldots X_{q}$ be independently distributed with binomial distributions $P\left[X_{i}=x_{i}\right]=\binom{n_{i}}{x_{i}} p_{i}^{x_{i}\left(1-p_{i}\right)^{n_{i}-x_{i}} \quad i=1, \ldots, q .}$

Let $\theta_{i}=p_{i} /\left(1-p_{i}\right)_{1} \quad i=1, \ldots, q_{i}$ and consider the problem

$$
H: \theta_{1}=\ldots=\theta_{q} \text { against } K_{i}: \theta_{1}=\ldots=\theta_{i=1}=\gamma_{i} \theta_{i}=\theta_{i+1}=\ldots=\theta_{q} \quad i=1, \cdots, q
$$

where $\gamma<1$. The joint distribution of $X_{1} \ldots X_{q}$ under K_{f}

$$
\left(\pi_{j=1}^{q}\binom{n_{j}}{x_{j}}\right) \theta^{\sum \sum_{j=1}^{q} j(1-\theta)} \gamma_{j}^{-N} x_{i}^{-x_{i}}\left((1-\theta) /\left(1=\theta / \gamma_{j}\right)\right)^{n_{i}}
$$

where $N=\sum_{j=1}^{q} n_{j}$, The conational distribution given $T=\sum_{j=1}^{q} X_{j}$ which is sufficient and complete under H, is of the form

$$
\left(\Pi_{j=1}^{G}\binom{n_{j}}{x_{j}}\right) C\left(t, n_{i}, \theta_{i} \gamma_{i}\right) \gamma_{i}=x_{i}
$$

Hence the test maximizing the average power over alternatives $\gamma_{i}=\gamma_{i}{ }^{*}$, $i=1, \ldots, q_{i} \theta=\theta^{*}$, will be of the form $\phi_{i}(x)=1$ when $x_{i}>$ constant and $C\left(t, n_{i}, \theta^{*}, \gamma_{i}^{*}\right) \gamma_{i}^{*-x_{i}}=\max _{j} C\left(t, n_{j}, \theta^{*}, \gamma_{j}^{*}\right) \gamma_{j}^{*-x_{j}}$. In the case $n_{1}=\ldots=n_{q}$ and $\gamma_{1}{ }^{*}=\ldots=\gamma_{q}{ }^{*}$ this reduces to $x_{i}>$ constant and $x_{i}=\max _{j} x_{j}$. The constent is determined so that the conditional probability of rejecting H given T is equal to α. The power of the test depends upon θ and γ. It is a decreasing function of γ for fixed θ, hence it maximizes the minimum power and minimun average power over alternatives $\omega_{j}=\left\{(\theta, \gamma): \theta=\theta^{*}, \gamma \leqslant \gamma^{*}\right\}$ $i=1, \ldots, q^{\prime}$ for eny θ^{*} and γ^{*}.

Boherk 7.I. In Doornbos [4] is shown an optimum property of some slippece tests for discrete distributions where optimality is defined relative to the conditional distribution given the sufficient and complete statistics. In this paper optimality for the conditional distribution is used as an intermediate step to derive optimality for the unconditional distribution. As we have seen the fact that a test maximizes average power in the conditional distribution also carries over to the unconditional distribution. An interesting question is whether this is, in general, the case for the test maximizing minimum power. My conjecture is that this is not always so.

Remark 7.2. One might think that for example for the problem in A it would be a stroncer statement to state that the test maximizes the minimum over all olternatives with $\gamma \geq 1$. The minimun power over $\gamma \geq 1$ is, however $=\alpha$ for eny unbiased test. (See Lehnann [9]). Hence the result in A is stronger.

Remark 7.3. In $[6]$ and $[7]$ is discussed a class of tests colled symetric in power for slippage problems; and most powerful tests are derived in the case when the probability distribution has certain symmetric properties. In the cases studied in this paper where the probobility distribution satisfies these symmetric properties, the test maximizing minimum power will be the same as the most powerful test which is symmetric in power.
[1] Bhattacharyye, G.K. and Johnson, R.A. (1968), Nonparametric tests for shift at unknown tine point. Ann. Math. Statist. 39 1731-1743.
[2] Chernoft, H. and Zacks, S. (1964). Estimatinc the current mean of a normal distribution which is subjected to changes in time. Ann. Math. Statist. 35 999-1018.
[3] van Dobben de Bruyn, C.S. (1968). Cumulative Sum Tests: Theory and Practice. Griffin's Statistical Monographs \& Courses No. 24, Hafner, New York.
[4] Doornbos, R. (1966). Slippace Tests. Mathematical Centre Tracts No. 15, Mathematisch Centrum, Amsterdam.
[5] Doornbos, R, and Prince, H.J. (1958). On slippage tests. II. Slippage tests for discrete varietes. Indagationes Mathematicae 20 47-55.
[6] Hall, I.J. and Kudô, A. (1968). On slippage tests - (I) A generalization of Neyman-Pearson's lenma. Ann. Math. Statist. 39 1693-1699.
[7] Hail, I.J., Kudô, A. and Yeh, N. (1968). On slippage tests - (II) Similar slippage tests. Ann. Math. Statist. 39 2029-2037.
[8] Kander, Z. and Zacirs; S. (1966). Test procedures for possible chonges in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37 1196-1210.
[9] Lehmann, E.L. (1959). Testing Statistical Hypotheses. Wiley, New York.
[10] Mosteller, F. (1.948). A k-sample slippage test for an extreme population. Ann. Math. Statist. 19 58-65.
[11] Page, E.S. (1955). A test for a change in a parameter occurring at an unknown point. Biometrika 42 523-526.
[12] Paulson, E. (1952). An optimum solution to the k-somple slippage problem for the nomal distribution. Arn. Math. Statist. 23 610-616.
[13] Pfanzegl, J. (1959). Ein kombiniertes Test und KlessifikationsProblem. Metrika $\underset{\sim}{2}$ 11-45.
[14] Truax, D.R. (1953). An optimum solution slippage test for the variances of k normal distributions. Ann. Math. Statist. 24 669-674.

