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ABSTRACT

In o multiple hypotheses testing problem involving q different
alternative hypotheses if the null hypothesis is rejected, the form of
the tests maximizing minimum power over certain alternatives is derived.
The result is used on the slippage problem for means and variances of
normel populations, test for o change in a paremeter occuring at an un=
known time point, the three-decision problem, and two slippage problems
for discrete distribution., In the latter case, attention is restricted to
unbiased tests. In the case of the slippage problems the regularity
assumptions which secem to have been imposed in earlier works on this sub=
ject, ere not required, For example in the slippage problem for the means
of normal populetions, it is not required that the number of observations
from each populetion should be equal. The form of the tests is rather

compliceted,

1. Introduction

Paulson [i2] was the first to prove an optimality property of a test
for a slippage problem involving means of normel populations. The opti-
melity property weas meximizing the minimum power over certain alternatives.
Paulson's technique was later used to find optimal tests for other slippage
problems, see €.g« [ﬁ] for references., The results, however, were not
completely general, In the problem with normel means, for exemple, it
seemed to be necessary to heve an equal number of observations from each
population to be able to prove the optimelity property. Recently, Hall

and Kudd [6] and Hall, Kudé and Yeh |7] used an other criterion, symmetry
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in power, but elsc their results depend upon the same kind of symmetry as
Paulson's,

Pfanzagl [13] assumed that the various alternatives had certain known
probabilities, and using that he found tests which maximized the average
power over various alternatives with vrespect to the given probabilities,
Pfanzagl's results did not depend upon the kind of regulerity assumption as
used in [12].

In the present paper we will find tests which are optimal in the
sense of Paulson but without requiring the regularity assumptions of the
earlier papers. The results apply, however, not only to slippage problems,
the genersl setting (see (2.1)) is any problem where one has to choose
between a finite number of disjoint alternative hypotheses when the null

hypothesis is rejected.

2. Stotement of the problem

Let X be & random varisble with distribution funection P@ where PG
belongs to0 & class {Pe: e} of distribution functions, Consider the

hypothesis testing problenm
(2,1) H: eeao oegainst K, : OeR, or K,: Oef, or suo or Kq: Oenq,

where Qpy Qypeey Qq are disjoint subsets of @, We define a test of
(241) to consist of q elements (Wl(x)...g,wq(x)) vhere the ¥,(x), i=1,404sq,

are ordinary test functionsg and

(22) L, Ev.(x) 51

If x is observed, we reject H with probability zigiwi(x), end accept the
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alternative Ki with probebility Wi(x), i=l,e0450. Only one of the alterna-
tives Kl"°"Kq is accepted, If H is not rejected,our conclusion is Oef,
not GeQ,. A test is called a level o test if
qQ <
(2,3)  sup J LEV.(X) o
OeQO

Let
(Zeu) B(G'Wi> = ngi(X) i=l,...,q

We define the power function of o test to be the vector (B8(0,Y ),...,
shall

B(@,Wq)). wgﬁgay that a test (¢1,...,¢q) is more powerful than a test

(ngogo,wq) if B(@,¢i) Z B(O,Wi), @GQi. i=l.ooo’q- We would like to find

a level o test such that B(O,Wi) is large vhen OeQ;y 1=1yeesyqs

3s Tests that moximize minimum average

power and minirmm power

If we try to find a test which, subject to (2.3), maximizes Eewi(x),
e, for a perticular i, it would generally lead to small values of
EOWJ(X), @enj when jFi.

We will therefore try to find tests which meximize the average power
over the q alternatives, or maximize minimum power over the ¢ alternatives,
Denote the class of tests satisfying (2.2) and (2,3) fy S(a), Let w; be
& subset of Q, i=1ly0009Q

A test ¢eS{a) satisfying min (inf E 001 (X)g0e0y inf gt (X))=sup min

Oew, @swq e yeS(a)

(inf E W(X)...., inf E ¥ (X)), we call a test maximizing the minimum
@ew Oswq

power OVEL Uypusegl e A test ¢eS{o) satisfying

inf lEl 6, ¢1(X) = sup inf 2121 B@ Y. (X) we
Olewl,...,@qewq veS(a) @leml,...,eqamq
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call & test wmaximizing the minimum average power over wl.....w%.

In the following fo,fl,...,fq will be g+l real-valued functions,
integrable with respect to a o=finite measure p on a Euclidean space,
The following theorem will be helpful when determining tests that

meximize minimum power,

Theorem L., Consider the problem to maximize

by

(3.1) ggg(jwlfldu....,qufqdu),

where wl,..,,wq are test functions satisfying (2.2) and

(3.2)  [(f 2w )eam=c

+ 3 q
Suppose _that there exist constants k,gssepk with Zi=lki >0 and

tests ¢l...a,¢q such that

1l wvhen k.f.(x)>f (x) and k.f.(x)>max k.f.(x
o) - (£ (1)>2 (%) ll()j+i33()
* 0 when kifi(x)<f0(x)

(343)
¢i(x) = 1 when max k.f.(x)>fo(x)
{isk,f, (x)=max k.f,(x)} ;3 99
AR P I
J
and

(3.4)  [o,fam = 4us = [o,E 0m
- Ihen ¢yyeeeyd, meximize (3.1) subject to (2,2) and (3.2),

Proof, That there exists a set of test functions maximizing (3.1)

is easily seen by using the weeak compactness theorem for test functions
(see [9] po 354),
We will first show that there also exists o test satisfying (3.4)

which maximizes (3.1). Let (Wl,...,Wq) maximize (3.1) and suppose that
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(3.4) is not satisfied. Then let B, end B, be defined by
B, = mzn fWifidu < mgx fwifidu =8,

Let I, = {isfv,f.du =g} and I, = {i:fv,f.du =8,}. Let g, < § < 6,

and let n be the number of elements in Il' Define new tests by

— “l .
v." =¥, +n(1-8/8,)) Zielz 7 iel,
* _ .
(3.5) ¥, = (s/8,)y, iel,
*‘ »
v, o= Wi 1¢Iﬂ112

* * # . s
We have ), Ly, =} ¢ ¥; » hence (¥ seensty ) elso satisfies (2,2) and (3.2).

i=1%1i T li=1
Furthermore,
* _ =l N .
fwi fidu = Bl +n (l—S/BZ)I(EJEIZWj)fidu 2 Bl 1eI1
(3.6) *soap = (8/8)[v.€.ap = iel
3:6) [y, £ an = (8/8,) [ F a0 = 6 > 8y 1edy
* eI, Ul
e, f.au = fwifidu > B, ieI,VI,

Since (wl...,.wq) meximizes (3.1) we must have equality sign for at least

one index i, i, say, in the first equation of (3.6). Hence

0

(3.7) I(Ejelzwj)fiodu =0

Define new tests by

Wi:* =Yyt A8 /8) e ¥y

v, " = (s,/8,)y, iel,

Wi** = Wi otherwise.,
He

. . oK .
It is easily seen that (¥ ,...,‘i’Cl ) satisfies (2.,2) and (3.2), By

1
. . L2 3 . e L2 3
(3.7) it is also found that fwi £idu=8, iel WL, If (¥, peeos?y )

does not satisfy (3.4), we may proceed as above using I,ul, es I,, and so
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on until we end up with tests satisfying (3.4) with all the integrals equal
to Bl‘

Now return to the proof of the theorem. Let (wl,...,wq) be a test
meximizing (3.1) end sotisfying (2,2), (3.2) and (3.4). (As shown above
this is no restriction.) Since both (¢1,...,¢q) and (Wl,...,Wq) satisfy

(3.,4) we have

(L k) e fraw = [(J, 2k 0.8, )an

and

(2 "l i jwlfld“ = f z glklwlfl du

Hence

(3.8) (L, 2 k)(fo, £ an-fy £ an) =

= [ (0,3 (o5, ) (y 88 ) Jan,
Look at the integrand
(309) I3 (0, (0)=-v, ()] (ke 2 () =2 (x))

If max kif.(x) > £,(x) the integrand is equal to

i
k£ (%) - £ x) (k7 () = £4(x))

Tt z =l 1

£,(x) = £0(x) = L v () k2, ()=£(x)) = (i £,-,(x)) (-], o () 2

where t is an 1ndex such that ktft(x) = max kifi(x). If mox kifi(x)

. . q > :
< £,(x), then the integrand is - Zi=lwi(x)(kifi(x)-f0(x)) 2 0, since then
kifi(x) - fo(x) <0 for all i. If max kifi(x) = fo(x), then the integrand

i
is = Y Wi(x)(kifi(x)-fo(x)) 2 0., Hence the integrand is
{i:kifi(x)<f0(x)}
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always non-negative, and (3.8) is preater or equal to 0. Since
q . .
zi=lki >0 and f¢i(x)fi(x)du(x) does not depend upon i, the theorem is
proved.
In the exemples to follow it will not elways be obvious thot there
cxist tests satisfying (3.2), (3.3) ond (3.4)s The next theorem gives

conditions for existence of such tests.

Theorem 2, In addition tc the assumptions of Theorem 1, let

fi 2 O' i=0'nougq. 0 <¢cx ffodu and

(3.10) ifidu = 0 =>£fjdu =0 S

If o test wmaximizes (3.1) subjeet to (2.2) and (3,2), then it is of the

form (3,3) with Zigiki > 0 and satisfies (3.4).

Proofs Let N be the set of all points

ointicini ]
(fwlfldu,...,qufqdu,f(wl+...+Wq)f0du). N is closed and convex. (Compare
[9] pe 83¢) Let (ul,...,uq+1) denote a general point in N, For fixed
Ugea = O there exists a point (al....,aq,c)eN such that min (al,....aq)

is equal to

sup min (ul,...,u )o
(ul,...,uq,c)eN 4

Because of the condition (3.10), we must hove B =00 e=2, . Furthermore

(ngoo-.aq’C) is & boundary pOint of Ny Let

qt+l =
Loy = Liopkey * ke

be a hyperpleane through this point such that all points in N are on the
same side of the hyperplane.

Let M be the set of all points (fwlfldu"“’!wqfqd“) where

(Wl,...,wq) varies over all test functions satisfying (2.2), M is closed
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and convex, and using the faet 0 < ¢ < ffodu we see that (a ,...,aq) is

1

inner point of M.
* Wk . . . .
Let a end a  be the minimum and maximum last coordinate, regpec=-

tively, of points in N for fixed first g coordinetes (al....,aq). We must

# #* . .
have & = ¢, since a < cwmﬂ&imﬂytmmrmn(a“.u,a)< sup
4 u u_sc)eN
1!"" q’

mih (ul,...,u )0

q

Suppose first ¢ < o¥¥,

Then (al,..,,aq, (c+&¥)/2) ie on inner point

of No It then follows thot kq&l £ 0 in the equation of the hyperplene,

. . # .
since kq}l = 0 would imply that (al,...,aq,(c+a *)/2) is on the hyperplane.
Teking kq&l = =1 the equation of the hyperplane is

q‘ - = q' -

=13 =Yg = Lympksey - o end

q e q -
(3.11) ), e Y Uy S )is ke, =c
when (ul""'uq+1)€N‘ Hence for all test functions (Wl,...,wa) we have

(3012)  [hE v (eoro-rg)ausf]. k £,-F,)an

* ¥, . . .
where (wl .a..,wq ) is o test function giving the p01nt(a1,...,aq,c).

Define (¢1,...,¢q)as in (3.,3). Then as in the argument after (3.9)
2 1 (0¥, (kifi-fo) 20

But by (3.12) with ¢1,...,¢q is wl,...,wq
J1;5 (o,-v, ( £.=fp)au &

Hence

d ooy s)=0
Liop (6=¥, ) (k£ =F ) = 0 aseaus

" . . .
It then follows that (¥, ,..,,Wq*) is defined in the same way as
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(¢’1.000.¢q) BeCole

# * . ' . s
Ifa =¢c=a * we find by an argument similar to |9| ps 86, that N

is on the hyperplane
=V Q
Voep = Liogki¥e

Hence I(Ziglwi)fodu = Xiglfkivifidu ,

or % [v(k.r.-f))an = 0

for oll wl,....wq. Thet implies ko f. = £ @ecily i=lgee0sqs Hence all

0
tests are trivially of the form (3.3) aiesle

Clearly, we must have all c; > 0, otherwise the corresponding test
would heve power 0, This completes the proof.

In Pranzegl [13] p. 39 is piven the form of the tests which maximize

AR

emong tests satisfying (3.2). They are of the form (3.3) with k1=o--=kq =k
end where k is determined so that (3.,2) is satisfied,
The following corollary to Theorems 1 and 2 gives a condition under
which the test maximizing J.% [v.f.du ond min ([¥ £ dugees,[¥ £ au)
i=1/ "i7i 171 Tytg
coincides

Corollary. Let (¢1,...,¢q) be of the form (3.3) with k1=...=kq>0,

and hence maximizes Ziglfwifidu subject to (2.2) end (3.2)., If

f¢1fldu=...=f¢qfngggen (¢1,...,¢q) also meximizes min (fwlfldu,...,qufqdu)

subject to (2.2) end (3.2).

Proof. Follows trivially from Theorem 1 since (¢1,...,¢q) is of the

form (343) and setisfies (3.L),
The following lerma, the proof of which is obvious, will be used when

we determine tests meximizing minimum power,
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Lemme, Suppose that there exist a test ¢ = (¢1,....¢q) e S(o) such

that (I) there exist points 91*‘...,eq*, where @i* €w; s i=lyeeeyq, sUCh

that ¢ maximizes min (Ey #¥) (X)yeo0sBy #wq(x)). (11)
1 q
inf Ey¢;(X) = By o, (X),i=lys00qe Then ¢ maximizes

Bew., 1
Wi

min (inf Eewl( )peesginf Eo¥ (X)) among tests YeS(a).
eeml @ewq

4¢ Application to some simple problems

without nuisance parameters,

[I— " 58 e s e i pey chorastn wit

L. The slippage problem for normal meens.

Let Xij be independent N(ui,l), i=l,4..,q.j=l,&..,nia Consider the

problem

Ht ul—..t—u =20 ggainst K th =o0e=uy 1" lAA—u 1 ;..=uq=0 i=lgee0,Q)

4

where A > 0. Thig problem seems to be due to Mosteller ElQ]. Paulson [12]
found the test maximizing the minimum power over alternatives 4 2 A, in
the case when n1=...=nq, Pfanzagl [13] found the test meximizing the
average power over the same alternatives for general nl....,nq. We will
now in the genersl case derive the test meximizing the minimum power over
the alternatives w, defined by H5=0s J¥i, Mi2Ay i=lyeuesq

Let f, be the density of the observetions under H, end let f, be

the density under K, with A=b;. The rotio fi/f0 is then
(bel) exP(Ainixi°§niAi )

vhere x, , /n o Multiplying (4el) with k, end taking the logarithm

Za=l ij

we get
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(4.2) A.n.x. = In.A %+ ¢,
i1 i%1 i

vhere c, = log k,.Denote (4Le2) Dy Vs According to Theorems 1 and 2 we
shall have

1 when V, > 0 and V, > V, i}
(53) ¢,(x) = ’

0 otherwise
where cl....,.a::(l are determined S0 that

(bok) Po(max Vi>0) = a,
i .

and

(4,5) P.(V,>0 and V.>mox V,)
1 p 1 j+i J

is independent of 1, where P, denotes that the probebilities are calculated
with respect to the density £ i=0y4509qs This will give the test maximiz-
ing the minimum power over alternetives with A = Ai when we consider the
alternative Ki. It is easily seen that the elements of the power function
is strictly increasing in A, hence by the Lemma the test maximizes the
minimum power over the alternatives WysesssWye

In generel, it is very difficult to determine the constants cl,...,cq

such that (4,4) ond (4,5) are satisfied., In some special cases, however,

it is only one constant ¢ to determine., If n = eee = nq end A, =°°=iAq,

then ¢, =coe= cq. If the {ni} are not a2ll equal it might be natural to

1
consider alternatives of the formiAi = yn, ¢, since our "best" estimate of

1
Ai is xi‘with variance ni-z. In that case we will also find that we have

C) = ses = Coy SO there is only one constant c to determine,

1
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B. Test for a change in a parameter occurring at an unknown time point,

Let Xl""’xq be independent N(ui,l). Consider the hypothesis

(4.6) H:u1=...=uq=0 against Ki:ul=°°.=pq_i=0, uq_i+l=...=uq>0 i=lgeeoyQa

For the origin of this problem see Page [;1]. Tests of H against the
alternative "H is not true" have been proposed in [1], [2], [8]. Pranzegl
|13] found the test of (4.6) maximizing average power over slternatives

with H =ooo=uq2A i=l.oon.Qo

Q=i+l
1 2 ) i = =u 2A.

Consider now the alternatives wi defined by uq—i+l vee uqu1°

Let fo be the density when H is true and let fi be the density under Ki

Seee=l = A

when uq—i+l q i

The expression corresponding to (4.2) is in this case
_lip 2
(M.T) Aisi glAi + Ci

where 8, = ). %. _ X.. From this we cen find a test similar to (4,3) with
1 J=Q=1+1 "1

conditions as in (4.4) and (4,5), It will be ¢ constants Cpgseesc, O

determine.

Arguing as in A, we might consider alternatives with Ai = i~ %y,

Then (4.7) is proportional to

(1,8) 15 mc,

where ci' = - 3+ ci/y° Even in this case there will be ¢ constants to
determine to find the test meximizing minimum power, To find the test
neximizing average power we put e, '= =cq'=c'. Then it is only one
constant to determine, and if we reject H we accept the alternatives with
the largest i_% S.s+ This is contrary to traditional cumulative sum tests

i
(see esgo [3])where one eaccepts the alternatives with the largest S:s The

. -

- 1
quantity i 28:.L is more stable than 8; since Var (i 2Si) = 1 while

Var S. = i,
1
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5 Use of invariance.

L]

It is easy to see that if & hypothesis testing problem of the form
(241) is invariant under a group G of transformations, and G setisfies the
conditions of the Hunt-Stein theorem (see [9] p. 336), then there exists an
inverient test meximizing minimum power.

A, The slippage problem for normal means, Let X.. be independent

N(ui,oz), i=lyeeesQs §=lyeseyn; e Consider the problem
Hw1=“°=uq aga:.ns‘t K, ‘Lll "o }Jl 1= U.-A- =} i+l=oun=uq ir‘l.ooogq
where Ai > 0, This problem is invariant wnder trenslations end change of

scole, & maximal invarient being (Tl""’Tq~l) vhere

XX n
I 1 .
Ti~"'s"—'( )Jé l-—l,ooo,q
Ne=g

where X. ,end n is defined as in Bection b, X = Siani/n and

= ). —123=1(X" Xijz/(n-q)o We have 2131 T, = 0, The joint density of

the T,-s under the alternative K, with A = A, is (see [13] p 26),
- @, o2g y=m=1)/2 4 o 2
(5.1) £, C(1+2J.___l’oj /nj) exp(=in, (1-n,/n)4,?)

WD ERTWL i=1,00000

_lJ

where C is a constant and

-]

I(t) = fexp(Tx%—X/2) x
0

(n-3)/26Lx

The density f; under H is obtained from (5.1) by putting A = 0, Hence
i

the ratio f,/f is
1
(5:2) £,/ =exp(~in, (1-n, /n)b, )I(tiAi/(qu:ltj /a$)#)1(0)7

It is seen that it will in general be very complicated to determine the

test meximizing minimum power, A simplification occurs if we argue as in
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1
Section 4 A, and choose A, = y/(ni(l-ni/n))2 since the best estimate of

. : . . -], . R
o is X, - J; nJXJ /(n-nJ) with variance (ni(l-ni/n)) « Using this Ai
n (5.2) we get

£,/8, = exp(—%y)l(tiy/((1+Ejgltj2/nj)(ni(l-—ni/n))%)I(O)'l

Hence kifi > £, is equivalent to

t.
(ni(l-ni/n l+2 /nj)
vhere ey is & new constant. Furthermore kifi > kva is equivelent to
ti tv
(Soh) - ':2[ % —Ci+C\J>O

(n; (1-n,))* (l+Z tj9nj)§ (n, (1 /n))2(14] & 6.2/n,)

To determine Claeeusc, SO that the test defined by (3.3) (end now obteined
from (5.3) and (5.4)) satisfies (3.4) is, of course, numerically very
difficulte

B. The slippage problem for normal variances,

Let Xij be independent N(ui,ciz), i=lgeee sy j=l...u,ni. and cone-

sider ‘the problem

20 oy 2 o 2my,.20.2. 502 /A, 20,2 =, 0020 2 i=leees
Hio, %=44s =0, against K, 10, %=.04=0, 70 ol/A =0T 3 Tyeeesd

where Ai > Lo
The test meximizing minimum power over alternatives 4 > 1 in the

case n =...=nq was found by Truex Llh}. Pfanzogl [13] found the test

1

meximizing average power over the same alternatives in the general case.

Using inveriance under transletions and change of scale, we find

that o maximal invariant is (Vl"°°’vq l) where
n,=1 8,*
V., = s i=l'ano,q_.

i n—q g2
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n.
2 2V My v V2 /(n o
and where Si Zj: (Xij Xi) /(ni 1)

2 - V.2 - 2/ (ne : Dy = :
and 8% = ), % (n,=1)8,%/(n-q)s We have 21=1Vi 1. Let £, be the density of
the maximel inveriant under Ki with A = A, end £, the density under H.
Then using Pfanzegl's results ([13] pp.30-31) we find that Kifi/fo is

equivalent to

-1
vi(l-Ai )

= c, >0
i
k‘. s .
and 1f1 > kva is equivalent to

=1 -1
. L. TAWN - V L - . +
v, (1=8,77) =V (1-477) = e + 0 > 0y
vhere °1""’°q are new constants.
If we have n,=.,..=n_ and choose A.=.,e=A0 , it turns out that CyTees=C
1 Q 1 qQ qa

end we are back to Truax's [1l] result.

6. The three-decisions problem.

Consider the one-parameter exponential fomily

eeT(x)h(

¢(e) X) s

and let the problem be
H:G=60 ageinst K1:G<OO or K2:®>Oo

Let w, = {®:®$61<OO} and w, = {01020,>0,} where 0, and 0, are giveﬁ
velues of O, and let us find the test maximizing minimum power over N
and W,. Choosing the density when 0 = 6, as f., i=0,1,2, we find that the
test maximizing minimum pover over w, and w, is as follows:
1 when T(x)<c,
¢,(x) = 'y, when T(x)=c,

0 vwhen T(x)>c1
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and

1  when T(x)>c2

¢2(x) Y, When T(x)=c2

0 when T(x)<ec,
Here ey Cyp Yy» Yp 0T determined so that
2 = =
P, (T(X)<e;) + B (2(x)>e)) + L32171Pp (T(X)=e;) = o
and

Py (T(X)<c1) + YIPOI(T(X)=01) = PGZ(T(X)>02) + YZPOZ(T(X) =c,),

1
An example, Let xl....,xh be independent N(O,cz) and consider the problem

Hio=o

0 against Klzo<oo or K2:0>co .
We get
¢.(x) =1 when V.2 x2<k
1 i=1"1 1
and
¢, (x) =1 when Box 25k
2 i=171 2

The constents k, and k, are determined by
2 - 2y =
F (k /0y%) +1 Fn(kz/oo ) = «a
and
2y = 2
Fn(kl/c1 ) =1 = Fn(k2/02 )s
where F is the cumulative chi=square distribution with n degrees of free-

doms This test is different both from the unbiased test of H and the test

neximizing minimum power in the troditionel sense (see Lehmenn {9] pe 332)s
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T« Use of unbiasedness.

We will call a test (wl,...,wq) of (2,1) unbiased if

sup E

¥, (X) S inf E
N
Q0

\yi(X) i'-:l..co.QO
Qi

0 0]

Let Q.. be the set of common accumulation points of @, and Qe If the

power function of any test is continuous in ©, then unbiasedness implies
(Te1) Eewi(x) = 0y Oefl; i=lyse09Qy

vhere o, is some cohstants Furthermore, if T is & complete and sufficient

q
stetistics relative to Q,, = (’\Qio, then (7.l) is equivalent ‘to
i=1

Ee(wi(X)|t) = Oﬁi De€eyp @EQOO i=l.ooo,q,o
Let 0,e0,y i=ly000,q, and let (¢1....,¢C) be the test which maximizes
" .

ZigiEoi(Wi(X)It) among tests satisfying (2.2) and

a5
LimiBo

of SBection 3, It is easily seen that if (¢1""’¢q) is unbiesed, then it

(Wi(X)lt) = o, ©eQ . We cen find this (¢1,....¢q) by the methods

meximizes the aversge power over the olternatives 61,...,0q among unbiased
testss
If, in addition, it turns out that EO.¢1(X)=...=EO ¢q(x), the test

1 a
elso meximizes the minimum power over 91....,6q among unbicsed tests,

A. The slippage problem for the Poisson distribution,

Let Xl,...,Xq be independent with Poisson distributions
W X
(w,)" 9y,

P[Xj=xj] = _h e J J=Llgenasq
J

Consider the problen
ley.p.

» - l l * ]
Hiug=p,u ogainst K th,=y;p;u W, = T, B3 Jfi

. q
where PysesesP, ore known constents with 2j=lpj=l' and and y; > 1 are



-19 -

wnknown poremeters. (See Doornbos end Prince [5]4) The joint distribus-

tion under H is

=
o
Lie)
»
Cre
[ e ]
| o

Hence T = ngixj is sufficient and complete, The conditional distribu~

tions given T under H and K, are, respectively,
X

n,4 D 9

A L el

q
oy

t!
X4
d

and

Mooy Ds ¢ 1 L=Y3Ps [0175-Y; Dy |3y

T ., _
IIj=l xjo 1 pi

i .

1=Y3P;

The test maximizing the average power over alternatives with

* .
Y =y; 1is of the form, accept Ki if

X, log((vf-yfpi)/l-vzpi))- t los((l-Y:bi)/(l-pi)J >k,

and
* ¥ * *
x, log((v;~v;p;)/(1~v;p;)) = t log((1~v;p,)/(1~p;))
* * ¥ * ‘L
> . sy 1)y Ll 2{) o - t l l“ 2{) e l" . []
xg log((v; Y33/ (2 YJPJ)) og (( Y3/ Pa))° Jti

Here K is determined so that the conditional probability of rejecting H
is o

* *
If Pi=eee=p_ = 1/q and y.=se.=y_, the test is, accept K, if
1 q 1 q 1
x, >k, end x. > xd, j¥i. Because of the symmetry of the situation the
. . *
powers are equal at the alternatives Ki with Yy = y* end y, = U for any

* # . .
y and u . It is easily seen by an argument similar to Lehmenn [9] p 1hk2

that the power function is increasing in Y; and M Hence the test



neximizes both the minimum and average power over alternatives

‘ S ¥ * *
. = <gYs )8 . 2 4 1Y
wy = {(ugeyy)e wg 2w, vy 2y} for any w andy

B. The slippage problem for the binomial distribution.

Let Xl,...,Xq be independently distributed with binomial distributions

-1 X

n' X0 e e .
P[X;=x;] = [ l] p; H(aep T =l
1

Let 0, = pi/(l-pi), i=l,s4s5q, and consider the problem

H:@1=ooa=@q against Ki:@l=ooo=9i_l='yi@i=ei+l=coo= q 1=1l,00°,9

where ¥ < 1. The joint distribution of Xl....,Xq under Ki

q4
n. 2._ X.. —N -x-
S I B A L A PPN - - ni
S K] ICRRICO N AR (ROVERSA]
where N = nglnj' The conditional distribution given T = ngixj, vhich is
sufficient and complete under H, is of the form

Q¢ [ng 3 =X
Hﬁ=l(x§] O(tam; 0603 )7

Hence the test maximizing the average power over alternatives Y; T s

i=ly.ee3Qy O = O*, will be of the form ¢i(x) = 1 when X, > constant and

Clton, 0%y, MY ™L = max  O(t,n.,0%y™ )y¥ 3. In the case n,=...mn
L 11 f J J 1 q
and yl*ﬁ...=yq* this reduces to X, > constent and X, = mex Xj' The constant

dJ
is determined so that the conditional probebility of rejecting H given T

is equal to o. The power of the test depends upon 0 and y. It is a
decreosing function of y for fixed 0, hence it maximizes the minimum power
I . * *

and minimum aversge power over alternatives w, = {(0,y):10=0 4 vy }

. * %
1=lyae0yQy for any © and vy .
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Renark 7.l.In Doornbos [h] is shown an optimum property of some
slippage tests for discrete distributions where optimality is defined
relative to the conditional distribution given the sufficient ond complete
statisties, In this paper optimelity for the conditional distribution
is used as an intermediate step to derive optimality for the unconditional
distribution, As we have secen +the fact that a test maiimizes average
power in the conditionsl distridbution also carries over to the uncondi=-
tiénal distribution, An intervesting question is whether this is, in
general, the case for the test maximizing minimum power, My conjecture is

that this is not always so.

Remerk T.2., One might think that for exemple for the problem in A

it would be & stronger statement to state that the test maximizes the
minimm over all alternatives with vy 2 1 . The minimum power over vy 2 1
is, however, = o for eny unbiased test, (See Lehmenn [9]).

Hence the result in A is stronger,

Remaxrk To3, In [6] and ['7] is discussed a class of tests called
symnetric in power for slippege problems, and most powerful tests are
derived in the case when the probebility distribution has certain symmetri;
propertiess In the cases studied in this paper where the probability
distribution satisfies these symmetric properties, the test maximizing
minimm power will be the some as the most powerful test which is symmetric

in power,
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