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A B S T R A C T 

Consider independent and normally distributed random 

variables x 1 ~ ••• ,Xn such that 0 < Var Xi= a2 i = 

1, ••. ,k and E(X1, ••• ,Xn)' =A'S where A' is a known 

n x k matrix and S = (s 1 , ••• ,Sk)' is an unknown column 

matrix. [The prime denotes transposition]. The cases of 
2 known and totally unknown a are considered simultane-

ously. Denote the experiment obtained by observing 

x1 9 ••• 9 xn by ~A • Let A and B be matrices of, res-

pectively, dimensions y k and k Then, if 2 
nA nB X . (j 

is known, (if 2 is unknown) ~A is more informative a 

than ~ if and only if AA'- BB' is non negative de-

finit (and n A ~ nB + rank ( AA ' - J3B 1 ) ) . 
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1. Introduction. 

A notion of "being more informative" for experiments was 

introduced by Bohnenblust, Shapley and Sherman and may be found 

in Blackwell C 1]. We will write '$' ~ f:' if the experiment ~ 

is more informative than the expe~iment .~ 

Consider now independent and normally distributed random 

variables x1 , ••• ,Xn such that 2 0 < Var X. = a 
J. 

i = 1 , ••• ,n 

and E(X1 , ••• ,Xn)' =A'S where A' is a known n x k matrix 

and S = (s 1 , ••• ,Sk)' is an unknovm column matrix. [The prime 

denotes transposition]. We shall simultaneously treat the cases 
2 of known and totally unknown a The experiment obtained by 

observing X will be denoted by 

The purpose of this paper is to present a simple criterion 
LIZ 4.-t for the informational inequality 9 6 A ,2:. hB , when A and B are 

matrices with the same number of rows. 

Our point of departure was the following result of C. Boll 

[2] 

Let j = 1 '2' ••• and c > 0 be given constants and con-

sider the experiment ~ ~f..-- c 9 j 

ables z and w such that 

of observing independent random vari­

Z is N( C, (1+c)a2 ) distributed and 

It is assumed that ( and cr2 > 0 w; 2 is 2 distributed. a xj 

are totally unknown. Then Boll proved that ~ . > ~ if and c, J - f~o,k 

only if, c > 0 and j ~ k+1 , or, c = 0 and j ~ k . Boll 

proved this as an application of a general result, proved in [2], 

which roughly states that 11 .2:. 11 within "invariant pairs" of exper­

iments may- provided certain conditions are satisfied- be based 

on invariant kernels. We include - since reduction by invariance 

is used here too - a reference to the exposition in section 2 in 

Torgersen [3]. 
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2. Comparison of "reduced" linear normal models. 

We shall in this section treat simultaneously the case of 

knovvn and unknown variance a2 In the first case our parameter 

set 0 is ]- CD, ::n [k for some positive integer k • In the 

last case e = ]- ::n, ::n [k x ]0, oo [ for some non negative integer 

k . 

Consider two experiments 
r..,.;-· /?-

G and '}- defined as follows g 

j; is the experiment obtained by observing k+p independent 

normally distributed random variables x1 , ••• ,Xk+p such that 
2 var X. = a 

l 

EX. = 0 ; i = k+ 1 , ••• , k+p 
l 

~is the experiment obtained by observing l+q independent 

normally distributed random variables Y1 , ••• ,Yl+q such that 

Y. 2 var = a 
l 

i = 1, ••• ,l+q, EYi = ci$i; i = 1, ••• ,1 and 

EY. = 0 ' 
l ' 

i = 1+1, ••• ,l+q. 

Here c 1 , ••• ,c1 are lmo~n constants and we shall assume that 

k > 1 
' 

p and q are given non negative integers. The unknown 

parameter is Cs1, ••• ,sk) when 2 is known and it is ( s 1 ' •• a 

2 2 If 2 then by suf-• • ' Pk' a ) when a is unknoW11. a is known -
ficiency- xk+1'"""'xk+p may be deleted from 

•• , Yl+q may be deleted from g::_. If a2 is 

(t' and 
0 

unknown then - by 

sufficiency- Xk+1 , ••• ,Xk+p may be replaced 
2 2 

by S = Xk+ 1 +.o. +Xk+p 
2 2 

and yl+1'"""'yl+q by T = yl+1+ ••• +Yl+q • In order to avoid 

trivialities we will assume that 1 > 1 when is known and 

that k+p, l+q 1" when 2 is unknown. assume > a -
If 1 ' 1 ' k 1 1 and 2 is unknown then Boll p > q > = = a - -

[2] has sho'IJI..n that .~;..· > 1:: if and only if either p > q and 
b - ~ -

!c 1 I = 1 or p ~ q+1 and !c 1 I < 1 • Bolls criterion genera-
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lizes as follows~ 

Proposition 2.1 If cr 2 is lmown then ?f. > ~if and only 

if I c.! < 1 
l' 

i = 1 ~ ••• ,1 . 
If 2 is unknown then ~ r if and only if lei! < 1 (J > -

i = 1 ~ •.• ~ 1 and p > q + #[i 0 1 < i < 19 I c. I < 1 1 - . - - J..• 
. 

Remark~ The "invariance" part of the proof below is very similar 

to that of Boll and the proof might - as Boll did - have been com-

pleted by considering Laplace transforms. We will here, however, 

replace the "Laplace transform" part of the proof by a comparison 

of unbiased estimators of 2 
(J 

_ _, 

Proof of the propositiong Let ~ denote the experiment obtained 

from t by deleting xi : 1 < i < k • Clearly G .?:: 'j: => ~ > r­
and that the converse holds may be seen by letting the additive 

group Rk-l act as follows: 

(x1'" •. ,xk+p) .... (x1, ... ~xl,xl+1+gl+1'"""'xk+gk,xk+1' · • • ,xk+p) 

u ~ 
and (Y1 , ••• ,Yl+q) .... (Y1 , ••• ,Yl+q) • Obviously 0 and Y- are 

both invariant under this group and any invariant kernel from ~ 
1'7'-

to JL does not depend on x1+19 ••• ,Xk. It follows that we may-

without loss of generality- assume that 1 = k • 

Consider now first the case of knovm variance 2 
(J Let 

c. I o • 
1. 

Then the m~vu estimator of 8. 
'1. 

in ~ is X. while 
l 

the UMVU estimator for s. 
l 

('?'­in }~ 

these estimators are, respectively, 

/.?:. F~ =>lei!_:: 1 ; i = 1, ••. ,k. 

is Yi/ci The variances of 
2 2 

a and a / 2 • Hence c. 
l 

Conversely - assume -
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!ci! ~ 1 ; i = 1, .•• ,k. Let z1 , ••• ,zk be independently and 

normally distributed random variables such that~ (z 1 , ••• ,Zk) is 

(X 1 , ••• ~ Xk) , EZ i = 0 ; i and var Z .. = 
l 

independent of 

(1-c~)cr2 ; i = 
l 

Then z. + 
l 

c.X. 
l l 

has the same distri-

bution as Y1, ... ,Yk. 

Suppose next that 0 2 is unknown and that ~ > tj:' . By 

the result proved above: 1 c. 1 ~ 1 , i = 1, ... ,k 
l 

We will demon-

strate that P _> q + t£ i : 1 _< i < k, 1 c. 1 < 1 1 . 
- l' 

Let G be the group of transformations of e of the form~ 

(S1, ••• ,sk9cr2) ~ (g1+gB1, ••• ,gk+g~k'g2cr2) 

where and 

then we let it move 

g are constants. If k = (g 19 ••• ,gk,g) E G 

(X 1 , ••• 9Xk,S) to (g1+gX1 , ••• ,gk+gXk,g2S) 

and (Y1 , ••• ,Yk,T) to 

checked that ~ and !f: 

2 (g1+gY1 9 ••• ,gk+gYk 9g T) • It may then be 

are both invariant under G . Moreover -

since G has an invariant mean - we may restrict attention to 

invariant kernels (see section 2 in [3]). It follows that we may 

assume that (X1 p •• ,Xk,S) , (Y1 , •• .,Yk 9T) has a joint distribu­

tion where the conditional distribution, M, of (Y190 •• ,YkliT) 

given (X1 , .•• ,Xk,S) satisfies 

( * ) M ( B 1 y • • • )(Ilk X B I X X s ) = 
1 9 """ 9 k' 

Suppose first that p = 0 . Then - since 0 2 is not estimable in 

By inserting g . = X . - gX . ; i = 1 , • • • 9 k 
l l l 

in the 

identity (*) we get: 

p ( y 1 E B 1 9 • • • ' yk E Bk I X X ) 1 ' ••• 9 k 

= P(Y1 E g(B1-c 1X1 ) + c1X1 , ••• ,Yk E g(Bk-ckXk) + ckXklx1 , ••• ,xk) 

= P(~(Y 1 -c 1 x 1 ) + c 1X1 E B1, ••• 9-k(Yk-ckXk) + ckXk EBklx1 , ••• ,xk) 



- 5 -

It follows - by letting g _. en - that the conditional distribu­

tion of (Y1 , .•• ,Yk) given x1 , ••• ,Xk is the one point distri-

bution in (c 1x1 , ..• ,ckXk) 

i = 1, ••• ,k. Hence a2 = 

i.e. vve 

varY. = 
J_ 

may 

2 c. l 

as well 

var X. l = 

assume Y.=c.X.; 
J_ J_ J_ 

2 2 that c.a so 
J_ 

2 
c. = 1 ; i = 1, .•• ,k. This proves 

l 
the desired unequality when 

p = 0 . 

Suppose next that p .:::. 1 and put ; i=1, ••. ,k 

and U = ~. It follows from(*) that (u1 , ••• ,uk,U) is indepen­

dent of (X1 , ••• ,Xk,S) • Writing Y. = c.X. +[s ..... u. we see that 
l l J_ J_ 

Js-Tui is N(O, (1-c~)a2 ) distributed. Furthermore~ 

k 
~ it.c.X. k 't .~s u 

J. -1 J J J l - · 11 J. ) E·· e itS U Ee- (IIEe J -
j=1 

i"-1 

k it. c .X. it.\) S U. E i tSU 
=(IlEe JJJEe J J) •. e 

j=1 

k it.Y. •tm 
= ( IIEe J J).Eel 1 

j=1 

k it.Y. 'tT 
= E C II e J J • e 2 ] 

j=1 
k it.c.X. k it./S'u. itGU 

= E ( IT e J J J ) E ( II e J J ) D e 
j=1 j=1 

It follows that Js-, u 1 , • • • Js U , su are independent. Hence~ 
2 

-2 sui _ " 2 , ' 
a [ ~ 2+0U] bas a -~ distribution with q + #[i~ 1 cl. i <1} 

i·lc-1<11-cl. ·· 
g ' l~ 

degrees of freedom. This yield an unbiased randomized estimator 

of 2 a based on S with variance 

Hence - since the UMVU estimator based on S has variance 

p- 12a4 - p > q + #[i: I c. l < 1} • 
- ' l 

Finally suppose a2 is lmknown, that lei! < 1 ; i = 1, ••• ,k 

and that p ~ CJ.+#[i: lei! <1}. VVrite [i: lei! <1} = [i 1, ••. ,im}. 

Then "/:.:- may be constructed on the basis of x1 , ••. ,Xk+p by 
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putting: 

Y2. = c.X. if !c. I = 1 ~ l l l 

Y. = c . x . + J1-=-~~ xk 
lr lr lr · lr +r 

and 

j = 1 , ••. 9 q • Hence 

3. Comparison of linear normal models. 

For each given nA x k matrix A' let 
:.P 
6:~ be the experi-

ment obtained by observing nA independent and normally distri­

buted random variables such that: Var X. = 0 2 ; i = 1 9 .,.~k and 
l 

E(X1 ~ ••• 9 Xk)' = A' ( s1 9 ••• 9 8k)' • The parameter set 8 is ]-oo,oo[k 

if 0 2 is known and it is ]-009co[kx ]O,oo[ if 0 2 is unknown. 

The basic criterion for 11 being more informative" within this class 

of experiments is: 

Theorem 3. 1 Let A' and B' be given matrices of, respective1y 9 

dimension nA x k and nB x k • 

If 0 2 is known then: 

~A~ ~B <=> AA' > BB' 

If a2 is unknown then: 

Lt > Cj' <=> AA' > BB' (;A- •. JB and nA > nB + rank(AA '-BB 1 ) 
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Proof~ Let I denote the k X k identity 

considered as the experiment of observing a 

matrix. ~ may be 

N(A'S~cr2 I) distri-

buted k x 1 column matrix X while ~, may be considered as the 
{_~ 

experiment of observing a N(B'S 9 cr 2 I) distributied k x 1 col-

umn matrix Y . 

(i) AA' = I and BB' = 6 9 a diagonal matrix. 

Then 8 = AX and !jx- A I s'l 2 are independent variables 

which 9 together, constitutes a sufficient statistic 

8 is N(B 9 cr 2I) distributed and IIX-A'sl! 2/cr2 is 

distributed. 
Let [i1, ••• 9 irank:B 1 = [i~ 6i/O} <e 

and let 8* be any solution of the normal equations in 6B. 

Then ,{6-~ B t 
r r 

r = 1 9 ••• rank B and are inde-

pendent random variables which 9 together 9 constitute a suffi-

cient statistic in <Z B • ) 6i 
I r 

buted 9 r = 1, ••. ~rankB 9 while 

2 si ,cr ) distri-
r -2 

has a ).. dis-

tribution with nB- rank B degrees of freedom. 

We are now within the framework of proposition 2.1 and 

the proof is - in this case completed - by noting that AA' > 

BB' if and only if I 6ir I _:: 1 9 r = 1 9 ••• 9 rank B and that 

rank(AA 1 - BB 1 ) = k- rank B + # [ ~ 6i /1} . 
r 

( ii) rank A = k • 

By a well known result on simultanous reduction of two 

quandratic forms there is a (non singular) k x k matrix F 

so that 

and 
F 1 BB 1 F = I 

Put A= F'A and B = F'B It is easily seen - by reparame-
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trization - that 

<=> 

The theorem follows - in this case - since ~A and 

tisfies the condition in (i) and since AA' > BB 1 <==> AA' > BB' 

and rank(AA> - BB 1 ) = rank(AA 1 - BB 1 ) • 

(iij) The general case. 

If C{ ce 
! ''A > ~ B ...... - - (7 

then- by the estimability criterion for 

linear functions of 8 - row[B'] ~ row[A 1 ] • Suppose now that 

AA 1 > BB' and that xl row[A'] then A1 x = 0 so that 0 = 

x'AA'x > x'BB'x. Hence B'x = 0 so that xJ.row[B']. It 

follows again that row[B'] ~ row[A'] . Hence we may, without 

loss of generality, assume that row[B'] ~ row[A'] . Write 

A ' = ( a 1 9 • • • ' a~ ) ' 
A 

and b1, .•• ,b 1 are, 
nB 

B' . Let v1, .•• ,v~ 

respectively, 

be a basis in 

where 

the row vectors of A' and 

row[A 1 ] and write p. = 
]_ 

v! S 
]_ 

i = 1 , ••• , r . Define matrices s = [s .. 1 and T = [tij} lJ 
r 

byg a! = 2: s .. v'. and b! = 2: t .. v'. Then A' B = S.' p 9 l. j=1 lJ J ]_ lJ J 

B' S = T'p and S' has r = rank S' columns. It is not dif-

ficult to check that CZA?. ~B <=> f£s > ~T 9 AA' > BB' - -
SS' > TT' and that rank(AA'- BB 1 ) = rank(SS'- TT') . The 

theorem follows novir from ( ii). I 

¢=> 
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4. Comparison by Fisher information matrices. Replicates. 

If X 

is cr- 2AA 1 

is N(A's,cr 2I) then the Fisher information matrix 

if cr 2 is known and it is 

0 \ 
-2 

jAA' 

\ 0 2nAa 
-2 ! l. f ~ 2 . k It follows that (J f u lS un~nown. 

i 

the comparison criterion in the case of known 2 
(J is just the 

usual ordering of the Fisher information matrices. This criterion 

could also have been obtained by noting that the Bayes risk for 

quadratic error for the problem of estimating a given linear com-

bination t'B of 8 when s1 , ••• ,sk are independently and nor­

mally (0,1) distributed is t'(I+AA')- 1t. 

It may be shown quite generally that the ordering 11 being 

more informative" is stronger than the ordering of Fisher infor-

mation matrices. In fact there is an intermediate ordering of 

nbeing locally more informativen. [4] 

In the case of unknovm 2 
(J the ordering > of the Fisher in-

formation matrices of (/ and ::7 
(!:iA 

is the ordering~AA' > BB' 

and nA ;: nB • It follovvs that this ordering is strictly weaker 

than the ordering "being more informative" • 

Ordering of Fisher information matrices of a fixed number, 

say n 9 of replicates does not depend on n • In contradistinc­

tion to this we have, in the case of ~mknown cr 2 that n repli­

cates of ~A is more informative than n replicates of ~B if 

and only if * This may be seen by 

noting that the experiment obtained by combining (independently) 

* If A is a matrix~ then nA denotes the number of columns 
in A 
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experiments ~A , ~ , ••• , ~A is equi valent with the experi-
1 2 s 

ment where AA' = L: A. A! 
l l 

and 
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