STATISTICAL RESEARCH REPORT Institute of Mathematics University of Oslo

No 10 November 1976

TESTS OF SIGNIFICANCE IN

PERIODOGRAM ANALYSIS

by

Erik Bølviken

SUMMARY

The paper treats the problem of detection of hidden periodicities in periodogram analysis. The problem is stated as a problem of selection. A competitor to Fisher's classical test is proposed and analyzed. The distribution of the test criterion is derived. It is established that in most alternatives the new method is more powerful than Fisher's.

CONTENTS

- 1. Introduction
- 2. Formulation of the decision problem
- 3. Fisher's test
- 4. A new method
 - 4.1 A lemma
 - 4.2 The exact distribution of the test criterion when $\rho_1 = \dots = \rho_m = 0$
 - 4.3 Approximations
 - 4.4 Performance

5. Other approaches

- 6. Tables of critical values
- Appendix. An approximation to the non-central χ^2 -distribution

Acknowledgements

References

1. INTRODUCTION

Let X_1, \ldots, X_T be an observed time series described by the model

(1.1)
$$X_t = g_t + U_t$$
, $t=1,...,T$

where U_1, \ldots, U_T are pure white noise, i.e. independent and identically distributed random variables. We shall assume throughout that their common distribution is normal with unknown variance σ^2 . From the observations of X_1, \ldots, X_T we want to identify periodical components of the trend ξ_t . Although the periods are unknown and may be any among a large number, it is known that only a few of them are present. In mathematical terms the problem may be stated as follows. Assume that ξ_t can be written

(1.2)
$$\mathbf{\xi}_{t} = \boldsymbol{\alpha}_{0} + \sum_{\nu=1}^{p} A_{\nu} \cos(2\pi\lambda_{\nu}t - \boldsymbol{\varphi}_{\nu})$$

where $A_1, \ldots, A_p > 0$. All the parameters in (1.2) (including p) are unknown. It is assumed that p is small compared to m. We are to find out if p = 0 or > 0, and in the latter case we want to determine $\lambda_1, \ldots, \lambda_p$. The decision problem will be restated in chapter 2 in a more convenient form.

The statistical problem described above is a classical one. (For early references see [10] and [13]). The standard method found in textbooks is due to Fisher [5]. It is described and studied in chapter 3. The main object of the paper is to propose and analyze a new procedure which is introduced in chapter 4. Fisher's method is seen to be included as a special case. The distribution of the test criterion is derived exactly and approximately. Critical values are computed and tabulated. It is established that the new method represents a considerable improvement over Fisher's.

- 1 -

Various other approaches to the problem, some considered in the past and some new ones are briefly discussed in chapter 5.

The paper is based on a part of the author's Cand.Real. thesis at the University of Oslo. The presentation has on several points been extended. Theorem 4.1 is stated in a new form with a new proof.

2. FORMULATION OF THE DECISION PROBLEM

 ${\bf 5}_1, \dots, {\bf 5}_T$ can be expanded uniquely in an ortogonal trigonometric series, i.e. for t=1,...,T

the last term being excluded when T is odd. (2.1) is equivalent to

(2.2)
$$\begin{bmatrix} \frac{T-1}{2} \end{bmatrix}$$
$$= \alpha_0 + \sum_{j=1}^{\infty} \rho_j \cos(2\pi \frac{j}{T}t - \theta_j) + \alpha_{T/2}(-1)^t$$

where

$$\rho_{j} = \sqrt{\alpha_{j}^{2} + \beta_{j}^{2}}$$

$$\theta_{j} = \arctan \left(\frac{\beta_{j}}{\alpha_{j}}\right) .$$

The last term of (2.2) represents an inessential, but unwanted complication, and we shall throughout assume that T = 2m+1 in which case (2.2) can be rewritten

(*) For a real number y, the symbol [y] here and later denotes the largest integer less than or equal to y.

- 2 -

(2.3)
$$\mathbf{\xi}_{t} = \boldsymbol{\alpha}_{0} + \sum_{j=1}^{m} \rho_{j} \cos(2\pi \frac{j}{T} t - \theta_{j}), \quad t=1,\ldots,T$$

We shall refer to ρ_1, \ldots, ρ_m as the amplitudes of (2.3).

Comparing with (1.2), it is clear that ρ_1,\ldots,ρ_m are functions of $\lambda_1,\ldots,\lambda_p$. Suppose

(2.4)
$$\lambda_{v} = \frac{j_{v}}{T}$$
, $v=1,\ldots,p$

where j_1, \ldots, j_{ν} are integers less than $\frac{T}{2}$. Then $\rho_{j\nu} = A_{\nu}$, $\nu = 1, \ldots, p$, and $\rho_j = 0$ otherwise. (2.4) means that the periods are integral divisors of the series length. This is sometimes a reasonable a priori assumption, for instance in connection with monthly, seasonly or annual data. But even if there is no such knowledge, as is usually the case, there still are among the quantities ρ_1, \ldots, ρ_m a few dominating ones corresponding to values of $\frac{j}{T}$ close to one of the periods $\lambda_1, \ldots, \lambda_p$. As an example, suppose that p=1 in (1.2). Then

(2.5)
$$5_t = a_0 + \rho_1 \cos(2\pi\lambda_1 t - \phi_1)$$
.

In [1] it is proved that if $\lambda_1 \in (\frac{k}{T}, \frac{k+1}{T})$, then ρ_k and ρ_{k+1} will be the two largest of ρ_1, \dots, ρ_m , and the two of them will account for at least 81% of the sum $\sum_{j=1}^{m} \rho_j^2$, the minimum value being attained when $\lambda = \frac{k+\frac{1}{2}}{T}$. Thus, under (2.5) most of the quantities ρ_1, \dots, ρ_m are small with one or two dominating the others, the indices approximately determining λ_1 . The situation is analogous when p > 1.

It is clear from the reasoning above that the problem of identifying the periods $\lambda_1, \dots, \lambda_p$ may (approximately) be regarded as a

- 3 -

problem of selection of the large ones among ρ_1, \ldots, ρ_m .

Estimates of ρ_1, \dots, ρ_m can be constructed from the leastsquares estimates of $\alpha_0, \alpha_1, \dots, \alpha_m$ and β_1, \dots, β_m , i.e.

$$\hat{\mathbf{\alpha}}_{o} = \bar{\mathbf{X}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t}$$

$$\hat{\mathbf{\alpha}}_{j} = \frac{2}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \cos(2\pi \frac{j}{T}t)$$

$$\hat{\beta}_{j} = \frac{2}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \sin(2\pi \frac{j}{T}t)$$

$$\hat{\rho}_{j}^{2} = \hat{\mathbf{\alpha}}_{j}^{2} + \hat{\beta}_{j}^{2} \cdot$$

It is easily seen that $\hat{\rho}_1^2, \dots, \hat{\rho}_m^2$ are independent, the distribution of $\frac{\hat{\rho}_j^2}{\sigma^2}$ being non-central χ_2^2 with eccentricity $\frac{\hat{\rho}_j^2}{\sigma^2}$. The selection rule will be based on $\hat{\rho}_1^2, \dots, \hat{\rho}_m^2$. This is hardly any restriction as it can easily be proved that $\hat{\rho}_1^2, \dots, \hat{\rho}_m^2$ together with $\hat{\alpha}_0$ is a sufficient set of statistics.

The decision problem will be interpreted as a choice, for each j=1,...,m , between the statements "state $\rho_j > 0$ " and "state nothing". A decision rule will be represented by a vector-valued function $\psi = (\psi_1, \dots, \psi_m)$ where $\psi_j = 1$ and 0 respectively for the two statements above. We shall require the methods to have level ε , i.e. that the probability of stating that $\mathbf{5}_t$ has periodical components when indeed there are none $(\rho_1 = \dots \rho_m = 0)$ is at most ε . For the decision rules of chapter 3 and 4 this will also control the probability of making false statements for arbitrary values of ρ_1, \dots, ρ_m .

3. FISHER'S TEST

The standard method for the problem formulated in chapter 2 was proposed by R.A. Fisher [5]:

(3.1)
$$\psi_{k}^{(o)} = \begin{cases} 1 & , \text{ if } \frac{h^{2}}{\rho_{k}} / \frac{m}{\Sigma} \frac{h^{2}}{\rho_{j}^{2}} > c \\ 0 & , \text{ otherwise } . \end{cases}$$

The constant c is to be determined from

(3.2)
$$\Pr[\max_{k} \frac{\rho_{k}^{2}}{\rho_{k}} / \sum_{j=1}^{m} \frac{\Lambda^{2}}{\rho_{j}} > c |\rho_{1} = \cdots = \rho_{m} = 0] = \epsilon .$$

To derive an expression for the left hand side, note that

$$\Pr[\max_{k} \rho_{k}^{2} / \sum_{j=1}^{m} \rho_{j}^{2} > c] = \sum_{k=1}^{m} (-1)^{k-1} \sum_{p_{1} < \cdots < p_{k}} \Pr[\min_{1 \le j \le k} \rho_{p}^{2} / \sum_{j=1}^{m} \rho_{j}^{2} > c].$$

When $\rho_1 {=} { \ldots = } \rho_m {=} 0$, this yields by symmetry

(3.3)
$$\Pr[\max_{k} \rho_{k}^{2} / \sum_{j=1}^{m} \rho_{j}^{2} > c] = \sum_{k=1}^{m} (-1)^{k-1} {m \choose k} \Pr[\min_{1 \le j \le k} \rho_{j}^{2} / \sum_{j=1}^{m} \rho_{j}^{2} > c].$$

It is well known that the two statistics, $k \cdot \min_{\substack{1 \leq j \leq k \\ \Sigma \rho^2 - k \\ j=1 \\ j}} \frac{h}{1 \leq j \leq k} \frac{h^2}{p_j^2}$ are independently distributed as χ^2_2 and $\chi^2_{2(k-1)}$ respectively. It easily follows that

$$\Pr[\min_{\substack{\substack{n \geq j \leq k \\ j \leq k \\ j = 1 \\ m = 1 \\ j \leq k \\ j = 1 \\ m = 1 \\ j \leq k \\ j = 1 \\ m = 1 \\$$

Combining this with (3.3), we obtain

(3.4)
$$\Pr[\max_{k} \frac{h^{2}}{\rho_{k}} / \sum_{j=1}^{m} \frac{h^{2}}{\rho_{j}} > c |\rho_{1} = \dots = \rho_{m} = 0] = \sum_{k=1}^{\lfloor c^{-1} \rfloor} (-1)^{k-1} {m \choose k} (1-kc)^{m-1}.$$

Other proofs of (3.4) are given in [1], [4] and [14]. The derivation above, which is new, at least to the author, is of a more elementary character and also simpler than the earlier proofs.

It is easily shown that the probability of stating falsely that $\rho_k>0$ for some k for which $\rho_k=0$, attains its maximum when $\rho_1=\dots=\rho_m=0$.

Let N_{ρ} be the number of non-zero amplitudes, i.e. $N_{\rho} = \#\{j | \rho_j > 0\}$. It can be proved that the test has optimum properties when $N_{\rho} = 1$. To study the power in more general alternatives, note that the test statistic in (3.1) is an increasing function of $\rho_k^2 / \sum \rho_j^2$. In this expression the numerator and the denominator may, in the context, be interpreted as estimates of ρ_k^2 and σ^2 respectively. This means that when there are non-zero amplitudes other than ρ_k^2 , σ^2 will be over-estimated, and the test may become unsensitive. In the extreme case when $\rho_1 = \infty$ for an $1 \neq k$, the power is zero.

We now proceed to study this effect quantitatively. Denote the power function by

$$\beta_{k}^{(o)} = E(\psi_{k}^{(o)} | \rho_{1}, \dots, \rho_{m}, \sigma)$$

In general the distribution of the test statistic (3.1) will be complicated as the ratio of two non-central χ^2 -distributed variables. For our purpose it will be sufficiently accurate to apply a result due to Patnaik (see Appendix) which approximates a non-central χ^2 -distribution with a central one. Accordingly, replace on the right of (3.1) $\hat{\rho}_k^2$ and $\sum_{j \neq k} \rho_j^2$ with $s_k \Upsilon_{\nu_k}$ and $r_k W_{\gamma_k}$ respectively,

- 6 -

where
$$Y_{\nu_k}$$
 and W_{ν_k} are independent, $Y_{\nu_k} \sim \chi_{\nu_k}^2$, $W_{\nu_k} \sim \chi_{\nu_k}^2$
and
 $s_k = 1 + \frac{\rho_k^2}{2\sigma^2 + \rho_k^2}$
 $\nu_k = 2 + \frac{\rho_k^4}{2\sigma^4 + 2\sigma^2 \rho_k^2}$
 $r_k = 1 + \frac{j \pm k \rho_j^2}{2(m-1)\sigma^2 + \Sigma \rho_k^2}$

$$\gamma_{k} = 2(m-1) + \frac{\left(\sum_{j=k}^{\Sigma} \rho_{j}^{2}\right)^{2}}{2(m-1)\sigma^{4} + 2\sigma^{2} \sum_{j=k}^{\Sigma} \rho_{j}^{2}}$$

We hereby easily obtain

(3.5)
$$\beta_k^{(o)} \approx 1 - B\left[\frac{r_k^c}{r_k^{\circ c+s_k}(1-c)}; \frac{\nu_k}{2}, \frac{\gamma_k}{2}\right]$$

where $B(\circ; \frac{\nu_k}{2}, \frac{\gamma_k}{2})$ is the central Beta-distribution with parameters $\frac{\nu_k}{2}$ and $\frac{\gamma_k}{2}$. Nummerical results are shown in Figure 3.1 and 3.2.

Figure 3.1. The power
$$\beta_{k}^{(r)}$$
 of Fisher's method as a function of
 $\frac{1}{\sigma^{2}} \sum_{j \neq k} \rho_{j}^{2}$ for several values of $\frac{\rho_{k}^{2}}{\sigma^{2}} \cdot m = 6$, $\varepsilon = 0.05$.

- 8 -

Figure 3.2. The power $\beta_k^{(o)}$ of Fisher's method as a function of $\frac{1}{\sigma^2} \sum_{j \neq k}^{2} \frac{\rho_k}{j}$ for several values of $\frac{\rho_k^2}{\sigma^2} \cdot \underline{m} = 12$, $\varepsilon = 0.10$.

Summing up, the optimum properties of the test for N_{ρ} = 1, are in my opinion of little importance in view of the fact that the power rather drastically decreases when $N_{\rho} > 1$. As an example let m = 12, ε = 0.10. The power in alternatives where N_{ρ} = 2, $\rho_k^2 = \rho_j^2 = \Delta > 0$, is roughly 50% of the value attained when

4. A NEW METHOD

The reasoning of the preceding chapter indicates that Fisher's test can be improved by replacing the denominator in (3.1) by a "robust" estimate of σ^2 , "robust" in the sense that it is reasonably unsensitive to the number of large amplitudes. In theory there are many possibilities. This author has chosen a trimming procedure. For a specified integer $a \ge 0$ leave out the a largest of $\rho_1^2, \ldots, \rho_m^2$ and use an estimate based on the average of the remaining. Introducing $\rho_{(1)}^2 \le \rho_{(2)}^2 \le \cdots \le \rho_{(m)}^2$ as the order statistics of $\rho_1^2, \ldots, \rho_m^2$ we are lead to the test $\psi^{(a)}$ defined by

(4.1)
$$\psi_{k}^{(a)} = \begin{cases} 1 & , & \text{if } \rho_{k}^{2} / \sum_{j=1}^{m-a} \rho_{(j)}^{2} > c \\ 0 & , & \text{otherwise.} \end{cases}$$

Obviously (4.1) reduces to (3.1) when a = 0.

It is easy to see that the probability of stating falsely that $\rho_k > 0$ for some $\rho_k = 0$ attains its maximum when $\rho_1 = \dots = \rho_m = 0$.

Thus to control the error, we have to calculate the quantity $\Pr[\stackrel{A2}{\rho}_{(m)} / \stackrel{m-a}{\Sigma} \stackrel{A2}{\rho}_{(j)} > c]$ under this condition. More generally, as it is only a trifle more difficult, we shall, for an arbitrary integer $r \ge 0$, derive the distribution of

(4.2)
$$F_{r}^{(a)} = \frac{\Lambda^{2}}{\rho_{(m-r)}^{p-a}} / \frac{\sum_{j=1}^{m-a} \Lambda^{2}}{\sum_{j=1}^{p} \rho_{(j)}}$$

i.e. we shall find an expression for

(4.3)
$$H_r^{(a)}(c) = \Pr(F_r^{(a)} > c | \rho_1 = \dots = \rho_m = 0).$$

The derivation is an extension of the method used in establishing (3.4). As a first step we shall in the next section prove a result which may be taken as a generalisation of equation (3.3).

4.1. A lemma.

For variables Y_1, \ldots, Y_m and integers q and p, q < p, let $Y_{(j;q,p)}$, $j=1, \ldots, p-q+1$ denote the order statistics of Y_q, \ldots, Y_p . Introduce the events

(4.4)
$$A_{k} = \begin{cases} \{Y_{(1;1,k)} / \sum_{j=1}^{m-a} Y_{(j;k+1,m)} > c\}, & k \leq a-1 \\ \{Y_{(1;1,k)} / [\sum_{j=a+1}^{k} Y_{(j;1,k)} + \sum_{j=k+1}^{m} Y_{j}] > c\}, & k \geq a \end{cases}$$

and define

(4.5)
$$T_k = {\binom{m}{k}} {\binom{k-1}{k-r-1}} \Pr(A_k)$$
, $k=r+1,...,m$.

Then the following lemma holds.

Lemma 4.1.

Let the distribution of Y_1, \dots, Y_m be invariant with respect to permutations (*). Then, for non-negative integers r and a

(4.6)
$$\Pr[Y_{(m-r)} / \sum_{j=1}^{m-a} Y_{(j)} > c] = \sum_{k=r+1}^{m} (-1)^{k-r-1} T_k$$
.

Furthermore, for an integer p > 0,

(4.7)
$$\sum_{k=r+1}^{r+2p} (-1)^{k-r-1} \mathbb{T}_{k} \leq \Pr[\mathbb{Y}_{(m-r)} / \sum_{j=1}^{m-a} \mathbb{Y}_{(j)} > c] \leq \sum_{k=r+1}^{r+2p-1} (-1)^{k-r-1} \mathbb{T}_{k}$$

Proof. For arbitrary $k \ge r+1$, let

(4.8)
$$N_k = \binom{m}{r+1} \frac{k}{j=r+2} (m-j+1)$$
.

(4.9)
$$e_k = N_k \Pr[A_k \cap \{Y_{(1;1,r+1)} < Y_{r+2} < Y_{r+3} < \dots < Y_k < Y_{(m-k;k+1,m)}\}]$$

We shall prove that for arbitrary p > 0

(4.10)
$$\Pr[Y_{(m-r)}/\sum_{j=1}^{m-a} Y_{(j)} > c] = \sum_{k=r+1}^{r+p} (-1)^{k-r-1} T_k + (-1)^p e_{r+p}$$
.

The lemma is an immediate consequence of this result.

By symmetry

$$e_k = N_k(m-k) Pr[A_k \cap \{Y_{(1;1,r+1)} < Y_{r+2} < Y_{r+3} < \dots < Y_{k+1}, \dots < Y_{$$

$$Y_{k+1} > Y_{(m-k-1;k+2,m)}].$$

Recalling the definition of $\ {\rm A}_k$, it follows that

(*) Without this assumption a more complicated version of the lemma still holds. The method of proof is essentially the same as the one employed here.

$$e_{k} = N_{k+1} \Pr[A_{k+1} \cap \{Y_{(1;1,r+1)} < Y_{r+2} < Y_{r+3} < \cdots < Y_{k+1}, Y_{k+1} > Y_{(m-k-1;k+2,m)}\}].$$

From the elementary formula $Pr(A \cap B) = Pr(A) - Pr(A \cap B^{C})$ we easily deduce

(4.11)
$$e_k = N_{k+1} Pr[A_{k+1} \cap \{Y_{(1:1,r+1)} < Y_{r+2} < Y_{r+3} < \dots < Y_{k+1}\}] - e_{k+1}$$

By symmetry it easily follows that

$$\begin{aligned} &\Pr[A_{k+1} \cap \{Y_{(1;1,r+1)} < Y_{r+2} < Y_{r+3} < \cdots < Y_{k+1}\}] \\ &= (r+1) \Pr[A_{k+1} \cap \{Y_1 < Y_{(1;2,r+1)}, Y_1 < Y_{r+2} < Y_{r+3} < \cdots < Y_{k+1}\}] \\ &= (r+1) \begin{bmatrix} k \\ \Pi \\ j=k-r+1 \end{bmatrix} \Pr[A_{k+1} \cap \{Y_1 < Y_2 < Y_3 < \cdots < Y_{k+1}\}] \\ &= (r+1) \begin{bmatrix} k \\ \Pi \\ j=k-r+1 \end{bmatrix} \frac{1}{(k+1)!} \Pr[A_{k+1}] = \frac{r+1}{(k+1)(k-r)!} \Pr[A_{k+1}] .\end{aligned}$$

Combining with (4.11) and (4.8) this yields

$$\mathbf{e}_{k} = \binom{m}{k+1} \binom{k}{k-r} \operatorname{Pr}(\mathbf{A}_{k+1}) - \mathbf{e}_{k+1} \qquad \text{or}$$

(4.12) $e_k = T_{k+1} - e_{k+1}$.

Now, from an easy symmetry argument, recalling the definitions of A and A $_{\rm r+1}$

$$\Pr[Y_{(m-r)} / \sum_{j=1}^{m-a} Y_{(j)} > c] = \binom{m}{r+1} \Pr[A_r \cap \{Y_{(1;1,r+1)} < Y_{(m-r-1;r+2,m}\}] \\ = \binom{m}{r+1} \Pr(A_{r+1}) - e_{r+1} = T_{r+1} - e_{r+1} .$$

This is (4.10) with p = 1. For arbitrary p, (4.10) follows from (4.12) by induction.

It will be shown in the next section, that when Y_1, \ldots, Y_m are independently χ_2^2 -distributed, it is possible to derive simple analytical expressions for T_k . Although this may not be possible in other cases, it is believed that the lemma is of interest beyond the problem considered here. In general the first terms on the right of (4.6) are dominating. Indeed, $Pr(A_k) = 0$ if $k > \left[\frac{1}{c}\right] + a$. Typically the very first term provides a reasonable approximation. We shall return to this subject in section 4.3.

4.2. The exact distribution of the test criterion

when $\rho_1 = \dots = \rho_m = 0$.

Introduce $Z_j = \hat{\rho}_j^2 / \sigma^2$, j=1,...,m. Assuming $\rho_1 = \cdots = \rho_m = 0$, Z_1, \cdots, Z_m are independently χ_2^2 -distributed. We are to calculate the distribution of $F_r^{(a)} = Z_{(m-r)} / \sum_{j=1}^{\Sigma} Z_{(j)}$. Applying the results of the preceding section, let from now on in (4.4) and (4.6) $Y_j = Z_j$, j=1,...,m. An expression for $\Pr(A_k)$ and hence for T_k will be derived from three lemmas. The first one enables us to write the statistic defining A_k as the ratio of a χ_2^2 -distributed variable and a linear sum of independent χ_2^2 -variables.

Lemma 4.2.

Let $Z_{(1)} < \cdots < Z_{(m)}$ be an ordered sample from the χ_2^2 distribution. Put $U_1 = mZ_{(1)}$, $U_j = (m-j+1) (Z_{(j)}-Z_{(j-1)})$, $j=2,\cdots,m$. Then U_1,\cdots,U_m are independent and χ_2^2 -distributed.

This is a well known result. The proof is elementary and is omitted.

The next two lemmas are believed to be new.

Lemma 4.3

Let Z and Y be independent. Suppose that $Z \sim \chi_2^2$ and that $Pr(Y \ge 0) = 1$. Put V = Z - Y. Then the conditional distribution of V given V > 0 is χ_2^2 .

<u>Remark:</u> Consider two independent streams of events A and B. Suppose A are Poisson events with intensity $\frac{1}{2}$. Interprete Z and Y as the time of first occurrence of A and B respectively. Then the lemma states the well known fact that the Poisson process has "no memory".

<u>Proof:</u> Assume for simplicity that Y has a density g(y). It is easy to see that the density of V can be written

$$q(v) = \frac{1}{2} e^{-\frac{1}{2}v} \int g(y)e^{-\frac{1}{2}y} dy$$
$$\max(o, -v)$$

from which the lemma is an immediate consequence.

Lemma 4.4

Let U_0, U_1, \dots, U_n be an independent sample from the χ_2^2 -distribution, and let l_1, \dots, l_n be non-negative numbers. Then

(4.13)
$$\Pr[U_0 / \sum_{j=1}^n l_j U_j > c] = \prod_{j=1}^n (1+l_j c)^{-1}$$
.

Proof: For k=1,2,...,n , let

$$B_{k} = \{U_{0} / \sum_{j=1}^{k} U_{j} > c\}.$$

Since l_k is non-negative, $B_k \subset B_{k-1}$ and hence

$$Pr(B_k) = Pr(B_k|B_{k-1}) Pr(B_{k-1}).$$

Introducing $W = U_0 - c \sum_{j=1}^{k-1} U_j$, we may write

$$Pr(B_k | B_{k-1}) = Pr(W/U_k > 1_k c | W > 0)$$
.

As U_k and W are independent, it follows from Lemma 4.3 that conditioned on W > 0 the ratio W/U_k is F-distributed with 2 degrees of freedom in numerator and denominator. This yields

$$Pr(B_k|B_{k-1}) = (1+1_kc)^{-1}$$
.

Thus

$$\Pr(\mathbb{B}_{k}) = (1 + \mathbb{I}_{k} c)^{-1} \Pr(\mathbb{B}_{k-1})$$

implying

$$Pr(B_k) = \sum_{j=1}^{k} (1+l_jc)^{-1}$$

which was to be proved.

We now turn to the calculation of $Pr(A_k)$. It is necessary to distinguish between two cases.

<u>Case 1. $k \leq a-1$.</u> Let

$$U_{j} = \begin{cases} k Z_{(1;1,k)} , j=0 \\ (m-k)Z_{(1;k+1,m)} , j=1 \\ (m-k-j+1)(Z_{(j;k+1,m)} - Z_{(j-1;k+1,m)}), j=2, \dots, m-k \end{cases}$$

 $(Z_{(j,1,k)}, j=1,...,k \text{ and } Z_{(j;k+1,...,m)}, j=1,...,m-k \text{ are the order statistics of } Z_1,...,Z_k \text{ and } Z_{k+1,...,Z_m} \text{ respectively.})$ From Lemma 4.2 it is easily deduced that $U_0, U_1, ..., U_{m-k}$ are independent and χ_2^2 -distributed. In terms of these variables A_k may be written

$$A_{k} = \{U_{o} / \sum_{j=1}^{m-a} \frac{j}{a-k+j} U_{m-a-j+1} > k c\}$$
.

Applying Lemma 4.4, it follows that

(4.14)
$$Pr(A_k) = \prod_{j=1}^{m-a} (1 + \frac{jk}{a-k+j} c)^{-1}$$
.

<u>Case 2.</u> $k \ge a$. In this case we use the transformation

$$U_{j} = (k-j+1) (Z_{(j;1,k)} - Z_{(j-1;1,k)}) , j=2,...,k$$

$$Z_{j} , j=k+1,...,m$$

As in case 1, U_1, \ldots, U_m are independently χ^2_2 -distributed. It is easily seen that

$$A_{k} = \left\{ \frac{U_{1}}{a - \frac{k - a}{j = 2}} > \frac{k - c}{1 - (k - a)c} \right\}, \text{ if } (k - a)c < 1$$

(If $(k-a)c \ge 1$, then A_k is empty.) Another application of Lemma 4.4 yields

(4.15)
$$Pr(A_k) = \frac{[max(1-(k-a)c,0)]^{m-1}}{(1+ac)^{m-a} \prod_{j=1}^{a-1} (1+c \frac{(k-a)j}{k-j})}$$

Finally by inserting (4.14) and (4.15) into (4.5) and (4.6), the distribution of $F_r^{(a)}$ can be written down. We state the result as a theorem.

Theorem 4.1.

Let Z_1, \ldots, Z_m be an independent sample from the χ^2_2 -distribution. Put $F_r^{(a)} = Z_{(m-r)} / \sum_{j=1}^{m-a} (j)$. Then

(4.16)
$$H_r^{(a)}(c) = Pr(F_r^{(a)} > c) = \begin{bmatrix} c^{-1} \end{bmatrix} + a \\ \sum_{k=r+1}^{k-r-1} {m \choose k} {k-1 \choose k-r-1} Q_k(c)$$

where

(4.17)
$$Q_{k}(c) = \begin{cases} \frac{m-a}{\prod (1+\frac{j k}{a-k+j} c)^{-1}}, & k \leq a-1 \\ \frac{(1-(k-a)c)^{m-1}}{(1+ac)^{m-a} \frac{a-1}{j=1}(1+\frac{(k-a)j}{k-j} c)}, & a \leq k \leq [c^{-1}]+a \end{cases}$$

Furthermore, for arbitrary integer p > 0,

(4.18)
$$\sum_{k=r+1}^{r+2p} (-1)^{k-r-1} {m \choose k} {k-1 \choose k-r-1} Q_k(c) \leq H_r^{(a)}(c)$$

$$\leq \sum_{k=r+1}^{r+2p-1} (-1)^{k-r-1} {m \choose k} {k-1 \choose k-r-1} Q_k(c).$$

If a = 0, (4.16) reduces to

(4.19)
$$H_r^{(o)}(c) = \Pr(F_r^{(o)} > c) = \sum_{\substack{k=r+1 \ k=r+1}}^{\lfloor c^{-1} \rfloor} (-1)^{k-r-1} {m \choose k} {k-1 \choose k-r-1} (1-kc)^{m-1}$$

which was proved in [1], [6] and [11] by other, more complicated methods. Note that when r = 0, (4.19) is the same expression as (3.4)

ł

4.3. Approximations.

We only consider the most important case r = 0. As indicated in section 4.1, the sum of the lowest terms on the right of (4.16) provide good approximations to $H^{(a)}(c) = H_0^{(a)}(c)$. Using p terms, the approximation can be written

(4.20)
$$\widetilde{H}_{p}^{(a)}(c) = \sum_{k=1}^{p} (-1)^{k-1} {m \choose k} Q_{k}(c).$$

In particular

(4.21)
$$\widetilde{H}_{1}^{(a)}(c) = m \prod_{j=1}^{m-a} (1 + \frac{j}{j+a-1} c)^{-1}$$
.

It is clear that $\widetilde{H}_{p}^{(a)}(c)$ is larger or smaller than $H^{(a)}(c)$ according to p being even or odd. An indication of the accuracy is given in Table 4.1, where the difference $|\widetilde{H}_{p}^{(a)}(c) - H^{(a)}(c)|$ is recorded for several values of a, m, c and p.

		a=1	a=2	a=3	a=4
(a) () a ar	m=12	0.0000	0.0021 0.0000	0.0036 0.0002	0.0052 0.0005
n (87=0.09	m=20	0.0001	0.0016 0.0000	0.0023 0.0000	0.0029 0.0001
u(a)(a) = 0.10	m=12	0.0001 0.0000	0.0064 0.0000	0.0104 0.0006	0.0146 0.0017
п (с)=0.10	m=20	0.0006	0.0053 0.0000	0.0076 0.0004	0.0094 0.0007

Table 4.1. The difference $|\tilde{H}_{p}^{(a)}(c) - H^{(a)}(c)|$, p=1,2 is recorded for values of c satisfying $H^{(a)}(c) = 0.05$, 0.10. For each m the upper line of the table corresponds to p = 1, the lower line to p = 2. As was to be expected the approximation is better the smaller the value of a and the larger the value of m. It is clear that $\widetilde{H}_p^{(a)}(c)$ as p increases, very rapidly approaches $H^{(a)}(c)$. In applications the accuracy will almost always be better the larger the value of p. However, this is not true in general.

Applying the approximation $H_1^{(a)}(c)$ is for many practical purposes sufficiently accurate. Suppose c is determined from

(4.22)
$$\widetilde{H}_{1}^{(a)}(c) = \varepsilon .$$

Then $H^{(a)}(c)$ is less than ϵ , and as is clear from Table 4.1 not much less. Asymptotically, as $m \rightarrow \infty$, it is possible to derive a lower bound. From the Bonferoni inequality, it is easy to see that

(4.23)
$$H^{(a)}(c) \ge m \Pr(v_1 > c) - {\binom{m}{2}}\Pr(v_1 > c, v_2 > c)$$

where

$$v_1 = Z_1/(\text{sum of the m-a smallest of } Z_2, \dots, Z_m)$$

 $v_2 = Z_2/(\text{sum of the m-a smallest of } Z_1, Z_3, \dots, Z_m).$

Asymptotically v_1 and v_2 are independent. Hence (4.23) as $m \rightarrow \infty$ can be rewritten

$$H^{(a)}(c) \ge m Pr(V_1 > c) - {\binom{m}{2}}Pr(V_1 > c)Pr(V_2 > c)$$

Inserting $Pr(V_1 > c) = \frac{1}{m} \tilde{H} \overset{(a)}{H} (c) = \frac{c}{m}$, we obtain

(4.24)
$$H^{(a)}(c) \ge c - \frac{c^2}{2}$$
, as $m \to \infty$.

It is clear from Table 4.1 that this inequality does not hold in general for finite m, unless a = 0,1. In the latter cases

- 20 -

(4.24) can indeed be proved, using essentially the same method as above (see [3]).

The approximations should be particularly useful in the following context. Let

$$F_{k} = \frac{\frac{\rho_{k}}{p_{k}}}{\sum_{j=1}^{m-a} \rho(j)}, \quad k=1,\ldots,m$$

Instead of determining c from $H_0^{(a)}(c) = \varepsilon$, one might in practice prefer to calculate the quantities $H^{(a)}(F_k)$, $k=1,\ldots,m$, and state $\rho_k > 0$ if $H^{(a)}(F_k) \leq \varepsilon$. A quick and simple method, with level slightly less than ε , is to state $\rho_k > 0$ if

$$\widetilde{H}_{1}^{(a)}(\mathbf{F}_{k}) = \underset{j=1}{\overset{m-a}{\prod}} (1 + \frac{1}{j+a-1} \mathbf{F}_{k})^{-1} \leq \varepsilon .$$

4.4. Performance

The object of this section is to study the performance of procedure (4.1) for different values of a and compare with Fisher's test (a=0) in particular. In this respect two questions arise:

1) How much is lost by using a > 0 in the case of only one nonzero amplitude (when Fisher's test is optimal)?

2) How much can be gained in other cases ?

Let the power function of the test $\psi_k^{(a)}$ be denoted

 $\beta_{k}^{(a)} = \mathbb{E}(\psi_{k}^{(a)} | \rho_{1}, \dots, \rho_{m}, \sigma) , \quad k=1,\dots, m$

Since the distribution of the test statistics for general values of ρ_1, \ldots, ρ_m is extremely complicated, the simplest way to go about seems to be by Monte Carlo technique. The results below are obtained from 1000 simulations on the computer of the University of Oslo. A well-tested random number generator was used. The accuracy of the results is indicated in Table 4.2. In the simplest case of a=0 the power, as derived in chapter 3 from an approximate analytical expression, is compared to returns from the Monte Carlo simulations. It is seen that the absolute error is at most 0.01-0.015, which is good enough for our needs.

	ρ_k^2/σ^2	5.0	10.0	15.0	20.0
5 0	Analyt.	0.181	0.453	0.697	0.856
j‡k ^j – 0	Monte C.	0.177	0.464	0.692	0.841
5 - 10 - 2	Analyt.	0.068	0.231	0.446	0.648
j‡k j	Monte C.	0.069	0.232	0.454	0.660

Table 4.2. The power $\beta_k^{(o)}$ of Fisher's test in the case m=12, ε =0.10. Comparision between results obtained analytically and from Monte Carlo simulations.

As above let N_{ρ} be the total number of non-zero amplitudes. Results in the case $N_{\rho} = 1$ are shown in Table 4.3. It is clear that the loss in power by using a > 0 is slight. This is true even for small values of m. For instance, when m=6, the absolute loss is for a=2 at most 0.06-0.08, (admittedly the discrepancy is 2-3 times greater for a=3, but this seems to be a very large value of a for such a small m .)

	ρ_k^2/σ^2	5.0	10.0	15.0	20.0
m=6	0	0.12	0.32	0.53	0.69
m-0	1	0.12	0.32	0.53	0.69
€=0.05	2	0.12	0.28	0.47	0.62
	3	0.11	0.24	0.38	0.50
	0	0.18	0.46	0.69	0.84
m=12	1	0.18	0.46	0.69	0.84
- 0 40	2	0.17	0.45	0.69	0.84
2-0.10	3	0.17	0.44	0.68	0.82

Table 4.3. The power $\beta_k^{(a)}$ in alternatives with only one non-zero amplitude. Cases considered are m=6, ε =0.05 and m=12, ε =0.10.

To answer the second question above, consider alternatives where $\rho_k > 0$ and the non-zero amplitudes other than ρ_k have the same magnitude ρ_A . In Figure 4.1 and 4.2 the power $\beta_k^{(a)}$ in the case m=12, ε =0.10 is plotted as a function of ρ_A^2/σ^2 for N_p=2 and N_p=3 respectively. The test a=1 is not included as its performance differed little from a=0. Also, when N_p=2, the power functions of methods a=2 and a=3 were close, and the latter is omitted.

Figure 4.1. The power $\beta_k^{(a)}$ as a function of ρ_A^2/σ^2 when there is outside ρ_k exactly one non-zero amplitude ρ_A = m=12_, $\varepsilon=0.10$.

Figure 4.2. The power $\beta_k^{(a)}$ as a function of ρ_A^2/σ^2 when there outside ρ_k are exactly two non-zero amplitudes of equal magnitude ρ_A . m=12, c=0.10.

It is clear that when $N_{\rho} > 1$, the Fisher method very rapidly becomes inferior to the other methods. For example, if $N_{\rho}=2$, $\rho_{k}^{2} > \rho_{j}^{2} \ge 0$, then $\beta_{k}^{(2)}$ and $\beta_{k}^{(0)}$ become equal when ρ_{j}^{2} is about 10-15 % of ρ_{k}^{2} . On the other hand the gain in using $a \ge 2$ instead of a=0 may be substantial. As an example, suppose $\rho_{A} = \rho_{k}$. In Figure 4.1 where $N_{\rho}=2$, the power is increased by 60-80 %. When $N_{\rho}=3$ (Figure 4.2) the power is doubled or threedoubled by using a=3 instead of a=0.

It was chosen to present results for the case m=12. Smaller values of m will tend to increase the discrepancy between the methods. Larger values have the opposite effect.

- 25 -

The results above also give insight into how a should be selected. It is clear that the performance may be poor if a is chosen too small. If the number of large ρ_k 's is believed to be bounded by, say s, it may be reasonable to put a=s, for instance if the model is described by (2.5), our choice could be a=2. However, if m is not too small, it is clear that there is not much to lose by choosing a for safety somewhat larger than s. This would be all the more **appropriate** in cases where some of ρ_1, \dots, ρ_m , although uninteresting concerning the periodical nature of ξ_t , may not be exactly zero (cf. the discussion in chapter 2.)

5. OTHER METHODS

In this chapter other methods suggested in the past are briefly discussed along with a couple of new propositions.

Anderson [1] derives Bayes procedures assuming that the nonzero amplitudes have the same magnitude^(*). These procedures, however, are rather complicated and are, perhaps, not so interesting from a practical point of view. Also, no effort is made in [1] to calculate the relevant constants (which would be far from easy).

From the same starting point another method can be derived by applying a technique suggested by Doornbos for a related problem (see [3]). Let us for a moment assume that the number of potential amplitudes is exactly k (or zero). Then a reasonable decision

(*) In addition Anderson assumes that the number of non-zero amplitudes is at most two, but his results can easily be extended on this point.

- 26 -

rule, optimal when the non-zero amplitudes have the same magnitude, would be to state $\binom{(*)}{p[m]}, \dots, p_{[m-j+1]} > 0$ if the statistic

(5.1)
$$V_{k} = \frac{\sum_{j=1}^{k} A^{2}}{\sum_{k=1}^{m} A^{2}}$$

is sufficiently large. To define the test in the general case, let $v_k^{(o)}$ be the observed value of V_k and introduce for k=1,2,...,a (a is an integer fixed in advance)

(5.2)
$$P_k = Pr(V_k > v_k^{(o)} | \rho_1 = \dots = \rho_m = 0)$$
.

Define the integer $\overset{*}{k}$ by

If $P_{\underset{k}{\star}} \leq \frac{\varepsilon}{a}$, then $\rho_{[m]}, \dots, \rho_{[m-k+1]}$ are stated positive. Otherwise no statement is made.

It is immediately recognized that the probability of stating incorrectly that some $\rho_k > 0$ is bounded by ε when $\rho_1 = \cdots = \rho_m = 0$. However, it is not clear whether this is the case for general values of ρ_1, \cdots, ρ_m .

To transform the test proposition into a working method we must have a way of calculating P_k as given by (5.2). It does not seem that the proof of Theorem 4.1 easily can be extended to

(*) For k=1,2,...,m
$$\rho[k]$$
 is the amplitude corresponding to $\hat{\rho}(k)$.

to cover this case. However, in [2] the present author arrived at a solution by another method. By Lemma 3.2 the numerator and the denominator of (5.1) may be written as linear sums of the same independently distributed χ_2^2 -variables. Thus, their joint characteristic functions are not difficult to obtain, and their joint density can be found by the inversion formula for characteristic functions. Finally an expression for P_k can be derived by straightforward integration. Omitting the details (which are given in [2]) we are here content to state the result:

(5.4)
$$P_{k} = 1 - \sum_{j=\left[\frac{k}{v_{k}}^{(0)}\right]+1}^{m} (-1)^{m+j} (\frac{k}{j-k})^{k-1} {m \choose j} (\frac{j-1}{k}) (\frac{j}{k} v_{k}^{(0)} - 1)^{m-1}$$

$$k=1,2,\dots,a$$

It can easily be verified that when k=1,(5.4) coincides with (3.4), as it should.

A reasonable approximation is provided by the first term of the Bonferoni inequality, i.e.

$$P_{k} \leq \binom{m}{k} Pr\left[\begin{array}{c} \frac{\sum \rho_{j}}{\sum \rho_{j}} \\ \frac{j=1}{m} \rho_{j}^{2} \\ \sum \rho_{j} \\ j=1 \end{array}\right] > v_{j}^{(\circ)} |\rho_{1} = \cdots = \rho_{m} = 0 \right].$$

Introducing $B(x;\nu,\mu)$ as the cumulative Beta-distribution, this yields

(5.5)
$$P_k \leq {\binom{m}{k}}(1 - B(v_k^{(o)}; \frac{k}{2}, \frac{m-k}{2}))$$
.

The difference between the two sides of (5.5) is typically small.

Whittle (see for example [1]) has suggested to make the inference stepwise. As the first step state $\rho_{m} > 0$ if

(5.6)
$$\frac{\frac{\rho_{m}^{2}}{\rho_{m}}}{\sum_{\substack{\Sigma \\ j=1}}^{m} \rho_{j}^{2}} > w_{m} \cdot$$

Otherwise no statement is made and the process is terminated. The constant w_m is to be determined from

$$\Pr(\frac{\stackrel{\wedge 2}{\rho(m)}}{\stackrel{m}{\underset{\substack{\Sigma \\ j=1}}{\sum}}} > w_m | \rho_1 = \dots = \rho_m = 0) = \epsilon$$

which can be done by (3.4). As the k-th step, assuming $\rho[m]$,..., $\rho[m-k+2]$ to have been stated positive, state $\rho[m-k+1] > 0$ if

(5.7)
$$\frac{\rho_{(m-k+1)}}{m-k+1} > w_{m-k+1} \cdot \sum_{\substack{\Sigma \\ j=1}}^{\Sigma} \rho_{(j)}$$

Otherwise terminate the process and make no further statement. How the constant w_{m-k+1} should be determined, is discussed in [1].

A serious objection to this procedure is that it may not at all get started if several of ρ_1, \ldots, ρ_m are large, especially if their magnitudes are not far apart. As was demonstrated in chapter 3, the probability that (5.6) is satisfied, may then be quite low.

To overcome this difficulty one might consider to reverse the process. For a specified interger a, state $\rho_{[m-a+1]} > 0$, and in addition $\rho_{[m-a+2]}, \dots, \rho_{[m]} > 0$, if

$$\frac{\stackrel{\wedge_2}{\stackrel{}{\underline{\rho}(\underline{m}-\underline{a}+1)}}{\stackrel{}{\underline{m}-\underline{a}}_{\Lambda 2}} > 1_{\underline{m}-\underline{a}+1}$$

$$\sum_{j=1}^{\sum p(j)} p(j)$$

Otherwise it is concluded that there is no basis for stating $\rho_{[m-a+1]} > 0$, and $\rho_{(m-a+1)}^{2}$ is to be included in the estimate of σ^{2} . As the next step, state $\rho_{[m-a+2]} > 0$, as well as $\rho_{[m-a+3]}, \dots, \rho_{[m]} > 0$ if

$$\frac{P(m-a+2)}{m-a+1_{\Lambda_2}} > 1_{m-a+2}$$

$$\sum_{\substack{j=1}}^{\Sigma} P(j)$$

Otherwise continue the process as above until we can either state $\rho_{[m-a+k]}, \dots, \rho_{[m]} > 0$ for an index $k \leq a$ or it is concluded that no amplitude can significantly be judged positive.

When $\rho_1 = \cdots = \rho_m = 0$, the probability of making a false statement is bounded by the quantity

$$\sum_{k=1}^{a} \Pr\left[\frac{\sum_{m=k}^{n} \left(m-k+1\right)}{\sum_{j=1}^{m-k} \left(\frac{p}{m-k}\right)} > 1_{m-k+1}\right]$$

which by Theorem 4.1 is equal to $\sum_{k=1}^{a} \varepsilon_{k}$ if l_{m-k+1} is determined from

(5.8)
$$H_{k-1}^{(k)}(l_{m-k+1}) =$$

1- 1

$$\begin{bmatrix} 1_{m-k+1}^{-1} \end{bmatrix} + k \\ \sum_{j=k}^{\infty} (-1)^{j-k} {m \choose j} {j-1 \choose j-k} \frac{(1-(j-k)l_{m-k+1})^{m-1}}{(1+kl_{m-k+1})^{m-k} \prod_{i=1}^{k-1} (1+\frac{(j-k)i}{j-i} l_{m-k+1})} = \epsilon$$

This only gives an upper bound for the error. The actual value is likely to be much smaller. Also it is an open question whether the error for arbitrary values of ρ_1, \ldots, ρ_m is controlled by the quantity $\sum_{k=1}^{a} \epsilon_k \cdot \sum_{k=1}^{a} \epsilon_k$

The question arises how to choose $\epsilon_1, \dots, \epsilon_a$. Conceivably it would be a mistake to make the level to low for the first steps, as this could result in low-powered tests at the start leading to over-estimation of σ^2 later on. Anyway, from a practical view-point, I judge this procedure for a number of reasons to be clearly inferior to the one described in chapter 4.

6. TABLES OF CRITICAL VALUES

CRITICAL VALUES FOR METHOD (4.1)

LEVEL = 0.01

м	1		A = 3		A = 5	A F Ó	A = 7	A = 8
111. A	6 7691	A • 2	h - J		· · · ·			
4 K	3 7287	10 6323						
6	2 5014	5 7780	15, 4409					
7	1 0708	3 8100	7.8358	19.6278				
0	1.9790	5 7012	รั <i>น</i> 1025	9 9437	24.3818			
0	1,3903	2,/912	3 5725	6 2487	12,1071	29.2869		
Y	1,5405	1 7931	2 7362	4 3544	7.4365	14.3240	34.3282	
10	1,1344	1.6031	21975	3 2854	5.1447	8,6873	16.5912	39,4929
11	1.0144	1,3031	1 8258	2 6053	3.8372	5,9459	9.9610	18,9049
12	9001	1.130/	1 5561	2 1414	3.0130	4.3941	6.7585	11.2565
10	7450	1 4155	1.3526	1.8081	2.4555	3.4230	4.9572	7.5827
1.6	6860	0155	1 1942	1.5589	2.0579	2.7702	3.8362	5.5267
10	6753	8777	1 0678	1 3664	1.7626	2.3075	3.0867	4.2532
17	5010	7646	9649	1 2140	1.5360	1.9656	2.5578	3,4053
10	5513	7040	8795	1 0907	1.3575	1.7046	2.1688	2.8094
10 T0	5211	6564	8077	9890	1,2139	1,4999	1.8730	2.3727
20	1 1010	6130	7465	9040	1.0961	1.3358	1.6419	2.0417
21	4659	5751	6937	8319	9979	1.2018	1.4573	1.7839
22	1 4407	5416	6479	7702	9151	1.0906	1.3070	1.5786
23	4217	5118	6076	.7167	.8444	.9971	1.1826	1,4119
24	4927	4852	5721	.6699	.7834	.9174	.1.0783	1,2743
25	13854	4613	5404	6287	.7302	.8489	.9897	1,1592
26	1806	4396	5120	5922	.6836	7894	.9137	1,3610
27	3551	4199	4865	5597	.6423	,7373	.8478	.9781
28	3417	4020	4634	.5304	.6056	,6913	.7903	,9059
29	3294	3855	4424	5041	.5728	.6506	.7397	.8429
30	3179	.3704	4232	4802	.5432	.6141	.6948	.7876
31	3073	3564	4057	4584	.5165	.5814	.6549	,7387
32	2974	3435	3895	.4385	.4922	,5519	.6190	,6952
33	2881	3315	.3746	4203	.4701	,5251	.5867	.6562
34	2794	3204	.3608	.4035	.4498	, 5008	.5575	.0212
35	2713	3099	3480	.3880	.4312	,4785	.5309	,5895
36	2636	3002	3360	.3736	.4140	. 4581	.5067	.5607
37	2564	2911	.3249	.3602	.3981	.4393	.4845	.5345
38	2495	2825	.3145	.3478	.3834	,4219	,4641	.5106
39	2431	.2744	. 3048	.3362	.3697	.4059	.4453	.4880
40	2370	2668	.2956	.3254	.3570	.3910	.4279	,4683
41	2312	2596	2870	.3152	.3451	. 3771	.4118	.4496
42	2256	.2528	2789	. 3057	.3340	.3642	.3968	.4323
43	2204	2464	.2712	.2967	.3235	.3521	.3829	.4162
44	2154	.2403	.2640	. 28 8 3	.3137	.3408	.3698	,4012
45	2107	,2345	.2571	.2803	.3045	.3302	.3576	. 3873
46	2061	.2290	.2506	.2727	.2958	.3202	.3462	.3742
47	2918	.2237	.2445	.2656	.2875	.3198	.3355	.3628
48	1976	.2187	.2386	.2588	.2798	.3019	.3254	.3505
49	1936	.2139	.2330	.2523	.2724	.2935	.3159	.3397
50	1898	.2093	.2277	.2462	.2654	,2856	.3069	.3296

- 32 -

CRITICAL VALUES FOR METHOD (4.1)

LEVEL = 0.025

Μ	A = 1	A = 2	A = 3	A = 4	A ≠ 5	A = 6	A = 7	A = 8
4	4,4288							
5	2,7606	7,3803	,					
6	1,9926	4.2699	10,4330					:
7	1,5578	2,9210	5,7859	13,6115				
8	1,2797	2.1926	3.8321	7.3400	16.9079			
9	1,0871	1.7445	2.8041	4,7544	8,9363	20,3110		
10	9459	1.4440	2.1854	3.4166	5,6940	10.5731	23,8103	
11	8380	1,2298	1.7784	2.6233	4.0363	6.6520	12.2481	27.3969
12	7529	1.0700	1.4929	2.1079	3.0636	4.6651	7,6281	13,9583
13	6840	9465	1.2831	1.7506	2.4376	3,5084	5.3033	8,6215
14	6270	8484	1.1230	1.4906	2.0072	2.7694	3,9584	5,9509
15	5792	7687	9973	1.2948	1.6964	2.2647	3,1041	4,4139
16	5384	7027	.8962	1.1410	1.4631	1,9023	2.5237	3.4421
17	5032	6472	8133	1.0188	1.2826	1.6318	2.1090	2,7848
18	4726	5999	7442	.9193	1.1393	1,4235	1.8008	2.3169
10	1 1156	5501	6857	8368	1.0232	1.2589	1.5644	1.9704
20	4216	5236	6357	.7675	.9274	1,1261	1.3783	1.7056
21	4003	4924	5924	.7085	.8473	1.0170	1.2287	1.4978
22	3810	4648	.5546	6576	.7793	9261	1.1062	1.3312
22	7637	4491	5213	.6135	.7211	8492	1.0044	1.1952
21	3479	4180	4918	5747	6706	7835	.9186	1.0824
25	1775	3081	4655	5406	.6265	.7268	.8454	9876
26	3333	3800	4418	-5101	5877	6774	.7824	.9070
20	5205	3636	4205	4829	-5533	6340	.7277	.8377
70	1001	3485	4200	4585	.5226	.5956	6797	.7776
20	2909	3400	7875	4363	.4951	5615	.6374	.7251
23	2000	3010	3674	4162	. 4702	.5309	5998	6788
30	2/09	- 3100	* 350F	3070	. 477	5034	-5662	6378
20	20/9	. 3102	7780	39/3	4273	4785	.5360	. 6012
32	2595	2801	1267	3657	. 4085	4559	5088	.5683
33	2017	.2091	3146	3614	3914	4353	4841	5387
34	2443	,2790	- 3140		3756	4164	4616	5119
32	,23/4	.2/08	- 2021	. 3361	3610	3001	4010	4876
36	,2309	.2620	2930	3147	3475	3831	4999	4653
3/	,224/	.2040	0757	- 3147	13475	3684	1018	9444
38	,2189	.24/5	.2/53	. 3042	.3338	3547	1968	4262
39	,2134	.2400	2009	.2943	. 3233	- 3047	3740	4202
40	,2082	.2341	.2591	.2850	. 3123	3301	3/40	4030
41	.2032	,22/9	.2518	.2/03	. 3023	, 3301	. 3002	. 3350
42	1985	-2221	-2448	2002	•2920 2938	- 3191	. 34/4	3644
43	,1940	-2100	2305	2000	•2050 275A	2000	3243	3516
44	1897	.2114	• 2 J 2 I	2052	0675	2990	7178	3306
40	100/	.2004	- CEUZ	- 4444 3300	0207J	2073	3444	10RA
46	1817	.2010	.2200	-CJ77 3177	-2000	2013	2048	3170
47	1780	.19/1	2103	-233/	020J0 2463	2656	-2940	30R1
48	.1744	.1920	2103	- CC/ J	- 24UJ	•2000 2584	2770	208A
49	,1/10	.100/	.2024	0171	52520 0220	+ C J U H 96 1 6	0700	2500 2000
20	10//	1848	• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. < 1 / 1	• ()) 7	* 2 7 1 7		

- 33 -

CRITICAL VALUES FOR METHOD (4.1)

LEVEL = 0.05

Μ	A = 1	A = 2	A = 3	A = 4	A = 5	A # 6	A = 7	A = 8
4	3,3089							
5	2,1623	5,4982						
6	1,6952	3,3350	7.7645				•	
7	1 2787	2.3467	4.5141	10.1263	Т. Т.			
8	1 0648	1,7951	3.0753	5,7240	12.5775			
9	9139	1.4478	2,2933	3.8136	6.9677	15,1096		
10	8016	1.2109	1.8120	2.7930	4.5664	8.2440	17.7146	
11	7149	1.0398	1,4899	2.1740	3.2990	5,3346	9,5507	20.3857
12	6458	9107	1.2612	1.7653	2.5386	3,8128	6,1179	10.8857
13	5894	8101	1.0912	1,4783	2.0411	2,9071	4.3347	6.9155
14	5425	7296	9604	1.2673	1.6949	2.3190	3.2803	4 8647
15	5929	6637	8570	1.1064	1.4422	1.9123	2.5996	3.6583
16	4689	6089	7733	.9802	1.2509	1.6172	2.1312	2.8830
17	1 105	5625	7943	8788	1.1018	1.3951	1,7931	2.3520
18	F A137	5220	6464	7959	.9827	1.2229	1.5398	1.9702
10	1 3000	4885	6973	7268		1.0860	1.3441	1.6851
19	1706	4605	5551	6684	8054	9749	1,1891	1.4656
20	3700	4305	5195	6186	7370	8833	1.0639	1.2924
ST -	17761	4321	4864	5755	6801	8466	0000	1 1528
22	5301	.4000	4004	6790	6310	7415	8749	1 4384
23	, 3213	.3870	.4381	-000V	*0310	6957	8422	1.0004
24	3078	. 308/	4329	.0000	• 200 L	6374	- 0022 7 A 00	9430
25 25	,2954	. 3510	-4104	.4/3/	- 50Ø5	- 0J/4 5050	6963	2040
26	2841	.3301	- 2401	.4497	4070	•0902 5590	UBUJ	7740
27	,2736	.3220	.3/18	.4204	.40/8		0344	./ .49
28	,2639	.3090	.3551	.4053	.4014	.5251	.2483	,0000
29	2550	.2971	.3399	.3862	.43//	,495/	.0020	.0384
30	2466	.2861	.3260	. 3689	.4163	,4094	.0290	.5980
31	2389	.2759	.3132	.3530	.3968	.4450	, 2007	. 2032
32	2316	.2664	.3013	.3385	.3/91	.4241	.4/40	.5310
33	,2248	2576	2904	.3251	.3629	.4045	4510	.5032
34	2183	.2494	2802	.3128	.3480	.386/	.4296	.4//0
35	2123	.2417	2708	.3013	.3343	,3703	.4101	.4544
36	2066	.2345	2620	.2907	.3216	,3552	.3922	.4332
37	2013	.2277	.2537	.2808	.3098	.3413	,3758	.4139
38	1962	.2213	2460	.2716	.2989	,3284	.3607	.3961
39	1914	2153	2387	.2630	.2887	,3165	.3467	.3798
40	1868	2096	2319	.2549	.2792	.3054	.3337	.3647
41	1824	2043	2255	.2473	.2703	.2950	.3217	.3507
42	1783	.1992	.2194	2401	.2620	2853	,3105	.3378
43	1744	1943	2136	.2334	.2541	.2763	.3000	.3257
44	1706	1897	2082	.2270	.2468	,2677	.2902	.3145
45	1670	1854	2030	.2210	,2398	.2597	.2811	. 3040
46	1636	1812	1981	.2153	.2332	,2522	,2724	.2942
47	1603	.1772	,1934	2099	.2270	.2451	.2643	.2849
48	1571	.1734	1890	.2048	.2211	.2384	.2567	.2763
49	1541	1698	.1848	.1999	.2155	.2320	.2495	.2681
50	1512	.1663	.1807	.1952	.2102	.2260	.2426	.2604

- 34 -

CRITICAL VALUES FOR METHOD (4.1)

LEVEL = 0.10

М	A = 1	A = 2	A = 3	A = 4	A = 5	· A = 6	A = 7	A = 8
4	2,4200							
5	1,6591	3,9984						
6	1,2679	2.5446	5,6358					
7	1.0301	1.8434	3.4372	7.3446	ম .			
8	8701	1.4383	2.4109	4.3547	9,1200			
ō	7550	1 1769	1.8339	2.9870	5.2989	10.9556	•	
10	6681	0053	1.4792	2.2315	3.5753	6.2689	12.8454	
1.4	160001	8622	1,2225	1.7626	2.6348	4,1762	7.2628	14.7844
12	1 5452	7606	1.9441	1.4474	2.0573	3.0448	4.7895	8.2790
17	5991	6807	9100	1 2230	1.6730	2.3558	3.4617	5.4144
1.7	14600	6162	- R Ø50	1 0561	1.4017	1.9005	2.6582	3.8854
14	4022	6671	7228	9277	1.2015	1.5813	2.1305	2.9649
10	4301	5195	6560	8263	1.0486	1.3473	1.7625	2.3631
10	1 2701	4907	1 E 0 0 1	7440	0285	1 1605	1 4030	1 9453
1/	.3/81	4007	-0771	./446	9700	1 0305	1 20/18	1 6416
18	,3569	4482	2210	.0700	+0J20	1.0202	1 1307	1 4128
19	3380	.4199	.5115	.0201	,7529	,9194	1 1 1 27	1,4120
20	, 3212	3951	.4767	-2721	.08/0	.020/	1.0007	1,2303
21 -	, 3061	, 3732	.4464	.5309	.0314	,/000	.9043	1.0945
22	,2924	3536	,4197	.4952	.5839	.6902	,8197	,9801
23	2799	3361	.3961	.4640	.5429	.6363	./48/	.8859
24	2686	.3203	.3751	.4365	.5071	,5899	.6884	.8071
25	2582	.3060	,3562	.4120	.4757	• 5497	,6367	.7484
26	2486	.2929	3392	.3902	.4479	,5144	. ,5918	.6833
27	2398	2810	.3237	.3705	.4231	,4832	.5527	,6339
28	2316	2700	3097	3528	.4009	.4555	.5182	,5908
29	2239	2599	2968	.3367	.3809	.4308	,4876	.5529
30	2168	2506	2850	3220	.3628	.4085	.4603	.5194
31	12102	2419	2741	3086	.3464	.3884	.4358	.4895
32	1 2040	2339	2641	2962	.3313	.3702	4137	4628
77	1 1082	2264	2548	2848	.3175	3536	3937	.4387
11	1902	2104	2461	2743	. 3049	.3384	3755	. 4170
34 76	172/	-2134	2380	2646	2931	3244	.3588	. 3972
33	10/0	2120	2300	2555	2823	3115	.3436	.3791
20	1020	2000	2305	2000	2723	2996	.3296	.3626
3/	1/80	-2000	·22J4	2301	2620	2886	3166	3474
38	,1/36	.1954	,2100	.2391	12027	.2000	3047	1115
39	,1695	.1902	.2100	.2317	.2542		. 3047	2005
40	,1656	,1853	.2047	.2248	.2400	.2088	.2930	.3205
41	1618	1807	_1992	.2182	.2384	,2599	.2832	. 3086
42	1582	.1763	.1939	.2121	.2312	.2516	.2736	.2974
43	1548	.1721	,1890	.2063	.2245	.2438	,2040	.20/1
44	,1516	,1682	.1843	.2008	.2181	.2305	.2002	.2//4
45	,1485	1644	,1798	.1956	.2121	.2296	.2482	.2083
46	1455	.1608	.1756	.1907	.2064	.2231	.2408	.2598
47	1426	.1574	1716م	.1860	.2010	.2169	.2338	.2519
48	1399	.1541	1677	.1816	.1959	.2111	.2272	.2444
49	1373	1509	1640	.1773	.1911	.2056	.2209	,2373
50	1347	1479	.1645	.1733	.1865	.2004	.2150	.2306

- 35 -

Appendix.

.....

An approximation to the non-central χ^2 -distribution. Let $Z \sim \chi_n^2(\lambda)$. Patnaik [8] has suggested approximating Z with γY where $Y \sim \chi_{\gamma}^2$ and

$$\gamma = 1 + \frac{\lambda}{\lambda + n}$$
$$\nu = n + \frac{\lambda^2}{2\lambda + n}$$

Table A.1, computed in [8], indicates the accuracy of the approximation.

In chapter 3 the approximation is used in the following way: Let V and W be independent and non-central χ^2 -distributed and let V^{*} and W^{*} be Patnaik's approximations. If we compare $R = \frac{V}{V+W}$ with $R^* = \frac{V^*}{V^*+W^*}$, it is easily shown that $|\Pr(R^*>r)-\Pr(R>r)| \leq \sup_{W} |\Pr(W^*>w)-\Pr(W>w)| + \sup_{W} |\Pr(V^*>v)-\Pr(V>v)|$.

The actual error is no doubt much less.

n	λ	Z	Approx.	Exactly
4	4	1.765	0.0399	0.0500
	4	10.000	0.7191	0.7118
	4	17.309	0.9492	0.9500
	4	24.000	0.9913	0.9925
	10	10.000	0.3178	0.3148
7	1	4.000	0.1621	0.1628
	1	10.004	0.9499	0.9500
	16	10.257	0.0430	0.0500
	16	24.000	0.5947	0.5898
	16	38.970	0.9482	0.9500
12	6	24.000	0.8187	0.8174
	18	24.000	0.2936	0.2901
16	8	30.000	0.7895	0.7880
	8	40.000	0.9626	0.9632
	32	30.000	0.0590	0.0609
	32	60.000	0.8329	0.8316
24	24	36.000	0.1556	0.1567
	24	48.000	0.5333	0.5296
	24	72.000	0.9656	0.9667

Table A.1. The accuracy of Patnaik's approximation. Approximate and exact values of the cumulative distribution function of the non-central x^2 -distribution are recorded.

The author is grateful to Professor Erling Sverdrup for reading the manuscript. Many thanks also to Gerd Salter for typing. REFERENCES

- [1] Anderson, T.W. (1971). The statistical analysis of time series. John Wiley and Sons.
- [2] Bølviken, E. (1975). Noen desisjonsproblemer i lineær-normale modeller. Cand.real. - thesis at the University of Oslo.
- [3] Dornboos, R. (1966). Slippage Tests. Mathematical Centre Tracts No. 15, Mathematisch Centrum, Amsterdam.
- [4] Feller, W. (1971). An introduction to probability theory and its applications, vol. II. John Wiley and Sons.
- [5] Fisher, R.A. (1929). Tests of significance in harmonic analysis. Proceedings of Royal Society series A, 125, 54-59.
- [6] Hannan, E.J. (1970). Multiple time series. John Wiley and Sons.
- [7] Owen, D.B. (1962). Handbook of statistical Tables. John Wiley and Sons.
- [8] Patnaik, P.B. (1949). The Non-central χ^2 and F- distributions and their applications. Biometrika 36, 202-232.
- [9] Pearson, K. (1934). Tables of the incomplete Beta-function. The Biometrica office, University College, London.
- [10] Schusterer, A. (1898). On the investigation of hidden periodicities with application to a supposed 26-day period of meterological phenomenia. Terr. Mag. Atmos. Elect. 3.13.
- [11] Slutzkes, E. (1937). The summation of random causes as the source of cyclic processes. Econometrica, 5.
- [12] Sverdrup, E. (1967). Laws and chance variations. North Holland Publishing Company, Amsterdam.
- [13] Walker, C.T. (1914). Correlation in seasonal variation of weather III. On the criterion for the reality of relationships and periodicities. Menn. India. Meteorol. Dent. 21 (9), 13-15.
- [14] Whittle, P. (1951). Hypothesis testing in time series analysis, Uppsala.