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SUMMARY

The paper treats the problem of detection of hidden periodi-
cities in periodogram analysis. The problem is stated as a
problem of selection. A competitor to Fisher's classical test
is proposed and analyzed. The distribution of the test criterion
is derived. It is established that in most alternatives the new

method is more powerful than Fisher's.
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1. INTRODUCTION

Let X1,...,X be an observed time series described by the

T
model

(1‘1) Xt=§t-‘* Ut ’ t=1,ooo,T

where U1""’UT are pure white noise, i.e. independent and iden-~
tically distributed random variables. We shall assume throughout
that their common distribution is normal with unknown variance 02 -
From the observations of X1""’XT we want to identify periodical
components of the trend gt « Although the periods are unknown and
may be any among a large number, it is known that only a few of

them are present.In mathematical terms the problem may be stated as

follows. Assume that §t can be written

(1.2) = PA (2mA_ t-0_ )
1. §t = a t v§1 ,COS 2n'v -0,

where A1,...,A.p >0 . All the parameters in (1.2) (including p)
are unknown. It is assumed that p 1is small compared to m . We
are to find out if p =0 or >0 , and in the latter case we
want to determine k1,...,}p . The decision problem will be restated
in chapter 2 in a more convenient form,

The statistical problem described above is a classical one.
(For early references see [10] and [13]). The standard method found
in textbooks is due to Fisher [5]s It is described and studied in
chapter 3. The main object of the paper is to propose and analyze
a new procedure which is introduced in chapter 4. Fisher's method
is seen to be included as a special case. The distribution of the
test criterion is derived exactly and approximately. Critical
values are computed and tabulated. It is established thatvthe new

method represents a considerable improvement over Fisher's,



Various other approaches to the problem, some considered in the
past and some new ones are briefly discussed in chapter 5.

The paper is based on a part of the author's Cand.Real. thesis
at the University of Oslo. The presentation has on several points

been extended. Theorem 4.1 is stated in a new form with a new

proof.

2. FORMULATION OF THE DECISION PROBLEM

§1,...,§T can be expanded uniquely in an ortogonal trigono-

metric series, i.e. for t=1,0ee, T

[55'] Ny . -
(2.1) E4,= Gt T o cos(ZW%t) + I B sin(ZW%t) g5 (=1)

j=1"7 j=1

the last term being excluded when T is odd. (2.1) is

equivalent to

T-1
=] . "
(2.2) Bi= Gt 321 P cos (om %t-ej) + aT/z(—1)
where —_—
./ 2 2
. = NQ . + .
P ] BJB
8. = arctan (=) .
J C.'.j

The last term of (2.2) represents an inessential, but unwanted
complication, and we shall throughout assume that T = 2m+1 in

which case (2.2) can be rewritten

(*) For a real number y , the symbol [y] here and later denotes

the largest integer less than or equal to y .
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m .
(2'3) gt = ao +j§1pj COS(2W %t-ej) ’ t=1,ooo,T .

We shall refer to p,,«.e,p; a5 the amplitudesof (2.3).
Comparing with (1.2), it is clear that Pyresespy are

functions of A1,...,Ap « Suppose

J
(2'4) XV = T! ’ V=1,-oo,p

where j1""’jv are integers less than % « Then pj = Av ’
v

V=1,e00,P , and Py = O otherwise. (2.4) means that

the periods are integral divisors of the series length. This is
sometimes a reasonable a priori assumption, for instance in con-
nection with monthly, seasonly or annual data. But even if there
is no such knowledge, as is usually the case, there still are among
the quantities PysecesPy @ few dominating ones corresponding to

values of % close to one of the periods A1""’kp . As an ex-

ample, suppose that p=1 in (1.2). Then
(2.5) B, =&, * p1cos(2nl1t-¢1) .

In [1] it is proved that if X, €(F53') , then p, and py,, will be
the two largest of PyseecsPpy and the two of them will account

2

m
for at least 81% of the sum ¥ pj , the minimum value being

1 J=
attained when X = E%E . Thus, under (2.5) most of the guantities

Pyreesspy are small with one or two dominating the others, the

indices approximately determining x1 « The situation is analogous

when p>1 .

It is clear from the reasoning above that the problem of identi-

fying the periods X1,...,x may (approximately) be regarded as a

p



problem of selection of the large ones among PpreccsPpy o

Estimates of p1,...,pm can be constructed from the least-

squares estimates of O s0yseeesC and 51,...,Bm sy le€oe
Aixed 3z
o} T £=1 1
A -2 31 (on #t)
c’j"Tt____1tCOS T
A 2T .
= £ i 4
Bj T t§1Xt sin(2m Tt)
A2 N2 |, A2
Py =ty + Py
. . Ao A2 . e
It is easily seen that p1,...,pm are independent, the distribution
A2 2
Pj . . 2 . . Py
of -5 being non-central X5 with eccentricity - - The
o o

A
pé . This is hardly any
restriction asrit can easily be proved that %?,...,ei together

selection rule will be based on Sf,...,

A
with e, is a sufficient set of statistics.

The decision problem will be interpreted as a choice, for each
j=1,ese,m , between the statements "state pj > 0" and "state
nothing". A decision rule will be represented by a vector-valued
function ¢ = (¢1,...,wm) where mj =1 and O respectively for
the two statements above. We shall require the methods to have
level € , i.e. that the probability of stating that §t has
periodical components when indeed there are none (p1=...pm=0) is
at most € . For the decision rules of chapter 3 and 4 this will
also control the probability of making false statements for

arbitrary values of PpseeesPpy o



3. FPISHER's TEST

The standard method for the problem formulated in chapter 2

was proposed by R.A. Fisher [5] :

N2

(1, if pk/ B Py >

(3.1)  ¢lo) = J=1
{o

1% 9

otherwise .
The constant ¢ 1is to be determined from

A2

(3.2)  Prlmax 02/ z

> Clp,]:too:pm = O] = € .

To derive an expressioh for the left hand side, note that

A2, 2 oa2 k-1 .
Primax pk/ z P3 >c] = Z (-1) ¥ Pr[ min / Z >c] .

When p1=...=gm=0 y this yields by symmetry

>cl = Z (-1)% 1(E)Pr[ min p2/ pH s 42 >cle.

m
(303) Pr[max / 2
e Ko & k=1 1< 3 gen’

%? and

It is well known that the two statistics, k o min

1<igk
K a2 2 L
¥ p~=k min ;
=13  1gigk Y

are independently distributed as x5 and

Xg(k-1) respectively.
It easily follows that

Pr{ min 82/ 2 2> c] = fmax (1-ke,0)} 21,
1<igk 3 J= 1

Combining this with (3.3), we obtain



e’

(3.4) Pr[m;x / z pJ > elog=eee=p,=0] = T (=151 (1-ke )™ T,

Other proofs of (3.4) are given in [17], [4] and [14] . The

derivation above, which is new, at least to the auchor, is of a

more elementary character and also simpler than the earlier proofs.
It is easily shown that the probability éf stating falsely that

Py = O for some k for which Py = 0 , attains its maximum when
p1 Seane ..—.pm..—..o .

Let Np be the number of non-zero amplitudes, i.e.

N, = #13 ]pj>0} . It can be proved that the test has optimum pro-
perties when Np =1 . To study the power in more general alter-

natives, note that the test statistic in (3.1) is an increasing

function of / i A? o In this expression the numerator and the
j3k

denominator may, in the context, be interpreted as estimates of

pi and o? respectively. This means that when there are non-

zero amplitudes other than pﬁ ’ o° will be over-estimated, and

the test may become unsensitive. In the extreme case when py; =

for an 1 4 k , the power is zero.

We now proceed to study this effect quantitatively. Denote the

power function by

ﬁko) = E(\lll(co)\p1;---,pm,c) .

In general the distribution of the test statistic (3.1) will be

2

complicated as the ratio of two non-central x“=distributed variables.

For our purpose it will Te sufficiently accurate to apply a result
due to Patnaik (see Appendix) which approximates a non-central

xz-distribution with a central one., Accordingly, replace on the

right of (3.1) GE and ¥ p2 with s, Y

and r, W respectively,
jFk £y

Vk k
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X 2 2
where Y and W ar dependent Y =~ W ~
ere Vi Y are independent, v ka, Yy XYk
and : 0
14—k
S =
k 2c'52+p12C
.
v, = 2 +
k 204+202p§
L 2
r =1+ —aHEL
k 2
2(m-1)o"+ % P
Jfk
(.5.°P3)
Yy = 2(@-1) + ——de
2(m=-1)c"+20° % P3
J¥k
We hereby easily obtain
r, C v Y
Xk k k
(3.5) glo) ~ 4 _ B ;
k [‘r ccts, (1-¢) 2 T]
k k
Yk Yk
where B(. ; 5= =—) is the central Beta-distribution with para-
Vo Yi .
meters 5 and 5 Nummerical results are shown in Figure

3,1 and 3.2.
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Summing up, the optimum properties of the test for Np =1,
are in my opinion of little importance in view of the fact that
the power rather drastically decreases when Np > 1. As an example
let m =12 , € = 0.10. The power in alternatives where N_ = 2 ,

2

pi =py = A >0, is roughly 50% of the value attained when



N =1 = A , TFor the case m =6 , € = 0,05 +the corres-

P Pk
ponding number is about 10-20% .
As another illustration assume that the model is described by (2.5),
Let pi be the largest of pf,...,gi . Then the value of
z p? may be as much as 50% larger than pi « Thus the sensivity
gﬁkthe test may clearly be poor. As an example let m = 12 ,

€ = 0,10, The probability of stating Py > O which is 0.85

when pi = 20 02 and i p? = 0 , decreases to 0.28 when the
< 34k
value of % p§ increases to 30 02 .

gk

4. A NEW METHOD

The reasoning of the preceding chapter indicates that Fisher's
test can be improved by replacing the denominator in (3.1) by a
"robust" estimate of 02 s "robust'" in the sense that it is
reasonably unsensitive to the number of large amplitudes. In theory
there are many possibilities. This author has chosen a trimming

procedure. For a specified integer a 2 0 leave out the a
A2
P
of the remaining. Introducing %%1) < 3%2) <o G%m) as the

A - ()

order statistics of pf,...,pé we are lead to the test

largest of Sf,..., and use an estimate based on the average

defined by mn-a
/1 ir B2/ 5 0%,y >0
, if .
k2 PG)

(4.1) méa) =

i
i
i
(O s, Otherwise.

Obviously (4.1) reduces to (3.1) when a =0 .
It is easy to see that the probability of stating falsely that

P > O for some o = O attains its maximum when P =eee=py = o .
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Thus to control the error, we have to calculate the cuantity

Pr[p(m)/ (J) > ¢] under this condition. More generally, as

it is only a trifle more difficult, we shall, for an arbitrary

integer r > O , derive the distribution of

' (a) _
(4.2) F. a p(m_ )/ (J)
i.es we shall find an expression for
(4.3) Héa)(c) = Pr(EESa)>'c|p1 =eee=pp = 0).

The derivation is an extension of the method used in establishing
(3.4). As a first step we shall in the next section prove a

result which may be taken as a generalisation of equation (3.3).

4.1, A lemma.

For variables Y1""’Ym and integers q and p, q<0p,

let Y(j;q,p) s J=1seeeyp-q+1 denote the order statistics of
Yq,...,Yb . Introduce the events
m-a
50,0/ 2, Ygsmet,m) > o 0 T g e
(4:4) by

k

1)Y4
@

UY(1 ;1 k)/[ URICIIBY T_EHYJJ >l

and define
(4.5) no= (GET,) Br(ay) , kerel,...m .

Then the following lemma holds.



- 12 -

Terma 4.1,

Let the distribution of Y1,...,Yb be invariant with respect

to permutations (*). Then, for non-negative integers r and a
(4.6) (Yoo T 1= & (-)Er
4- PI' Y - 2 Y, . > C = X -1 T .
Furthermore, for an integer p > 0 ,
r+2p m-a r+2p-1 .
k-r-1 k=-r-1
. — < . >c < - .
(4.7) k=§+1( 1) T < Pr[Y(m_r)/j§1Y(a) 1< Z. (-1) T,

ProgiL For arbitrary k > r+1 , let

(4.8) (oy : )
4.8 N = n m-j+1) .
_ k T+ J=r+2

(4.9) e, = N, Pe[A n {Y(1;1,r+1)<Yr+2<Yr+3<‘"<Yk<Y(m-k;k+1,m)¥]'

We shall prove that for arbitrary p > 0

m-a T+p K-1=1 D
(4.10) Pr[Y(m-r)/j§1Y(j) > el —k=§+1(—1) e * (51 epyy -

The lemma is an immediate consequence of this result.
By symmetry
e, = Ny (m-k) PrlA, n{Y(1;1’r+1)<Yr+2<Yr+3<...<Yk+d,
Yk+1 > Y(m-k—1;k+2,m)}]"

Recalling the definition of Ak , it follows that

(*) Without this assumption a more complicated version of the
lemma still holds. The method of proof is essentially the

same as the one employed here.



1
—
W

i

e =N . Pr(4 n{Y(1;1,r+1 <y o Ty 5<e e o<y g

Vw1 ™ Y(modetke2,m) b 30

From the elementary formula Pr(4nB) = Pr(A) - Pr(4nB°) we easily

deduce
(411 e = Nyq Bl 0¥ (g0 pg ) oS e o <Tye g} 1 -
By symmetry it easily follows that

Prlay n{Y(1;1,r+1) < Tppo < Ypyz <eee< Teiqt]

I

(r+1) Er(a, . n{Y1<Y(1;2’r+1), Y1<Yr+2<Yr+3<...<Yk+1}]

Il

(r+1) _*E r+1JJ Pr[Ak+1 n {y 1< o<T5<ae <Yy 1}]

il

k -
(r+1)[j=k§r+1aj (1) Pr[Ak+1] — (k+1)(k-1)! Pride,, .
Combining with (4.11) and (4.8) this yields
e, = (BNGE ) Pr(a,..) - e or

k k+1/ k-1 A kK+1

Now, from an easy symmetry argument, recalling the definitions

of Ar and Ar+1

m-a
Pr{Y(p-r) /:’513((:j y> ]

) PI'[A n <Y(m_

r+1 l(1;1,r+1)

) Pr(A ) T Cryq T Tr+1 - €

-

r+1

This is (4.10) with p = 1 .+ For arbitrary p , (4.10) follows

from (4.12) by induction.

ek+1 L]

r—1;r+2,m}]
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Note that when r =a =0, (4.6) with Y J=1yeeaym ,

it %5

reduces to (3.%2). Purthermore, inequality (4.7) is then an easy

application of the Bonferoni inequality. In this case (4.6) is an

immediate consequence of the well known expansion

Pr(g Bi) =3 Pr(Bi) - ¥ Pr(B nB J+eve « In general, however, (4.6)
i i i<j

can not be established in this manner.

It will be shown in the next section, that when Y1,...,Yﬁ are
independently xg-distributed, it is possible to derive simple
analytical expressions for Tk « Although this may not be possible
in other cases, it is believed that the lemma is of interest
beyond the problem considered here. In general the first
terms on the righf of (4.6) are dominating. Indeed, Pr(Ak) =
if k > [%] + a . Typically the very first term provides a

reasonable approximation. We shall return to this subject in

section 4.3,

4,2, The exact distribution of the test criterion

Whel'l p1=o-o= = 0 .

pm

Introduce % = 8? /02, j=1seee,m « Assuming

=0, ZyyeeesZ, ore independently Xg—distributed. We
-3,

Py=eee=py
are to calculate the distribution of Fﬁa) Z (- r)/ “(3)
Applying the results of the preceding section, let from now on in
(4.4) and (4.6) Yj = Zj y J=1,eeesm o« An expression for Pr(Ak)
and hence for Tk will be derived from three lemmas. The first
one enables us to write the statistic defining Ak as the ratio
of a xg-distributed variable and a linear sum of independent

xg—variables.



Lemma 4.2.

Let z(1)<...< Z(m) be an ordered sample from the xg -

distribution. Put U, = mZ(4qy s Uj = (m-j+1) (Z(j)'z(j-1) ,

j=2yeee,m . Then U,,...,U are independent and X5-distributed.

This is a well known resultes The proof is elementary and is

omitted.,

The next two lemmas are believed to be new.

Lemma 4 - 3

Let 2 and Y be independent, Suppose that Z ~ xg and
that Pr(¥20) =1 . Put V=2 - Y. Then the conditional distri-

bution of V given V>0 is xg .

Remark: Consider two independent streams of events A and
B. Suppose A are Poisson events with intensity 2 . Interprete
Z and Y as the time of first occurrence of A and B respective-
ly. Then the lemma states the well known fact that the Poisson

process has "no memory".

Proof: Assume for simplicity that Y has a density g(y).

It is easy to see that the density of V can be written

o
_1. . i
a(v) =% | g(y)e Fay
max(0,=v)

from which the lemma is an immediate comnsequence.

Lemma 4.4

Let Uo’U1""’Un be an independent sample from the xg—

distribution, and let 11”"’1n be non-negative numbars. Then

n n -1
(4.13) Pr[0/ = 1.U.>c]= T (1+1jc) .

j=1 9 j=1

i
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«

Proof: For k=1,2,.ee5n , let

k
B, = {Uo/j§1lj% >c} .

Since 1, is non-negative, B, © B,_, and hence

Pr(By) = Pr(By |B_) Pr(B_,)

k-1
- c¢c 2 1.U. , we may write

Introducing W =10
=1 J J

6]
Pr(Bk]Bk_1) = Pr(W/Uk > lc|W > 0) .

As and W are independent, it follows from Lemma 4.3 that

Uy
conditioned on W_> 0 +the ratio W/Uk is F-distributed with

2 degrees of freedom in numerator and denominator. This yields
_ -1

Thus
(1+1,0)7" Pr(B,_,)

Pr(3,)

implying
z
J=1

Pr(B,)

1
'l-c
(1 -] )

which was to be proved.

We now turn to the calculation of Pr(Ak). It is necessary to
distinguish Dbetween two cases.

K 20151,%) » 3=
U. = (m-k)z(1;k+1’m) , J=1

(m_k-j+1 )(Z(J;k+1 ,m) - Z(J"1;k+1 ,m))., j=2, ooo,m"'k

\‘\
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(Z(j,1,k) y J=1,.+4.,k and Z(j;k+1,...,m) y J=1,...,m=k are the
order statistics of Z,,...,%, and zk+1,...’zm respectively.)
From Lemma 4.2 it is easily deduced that UO,U1,f..,U _x are
independent and xg-distributed. In terms of these variabies

Ak may be written

m-a .
= ——
Ak {Uo/j§1 a-k+j Um—a-j+1 >kl .

Applying Lemma 4.4, it follows that

m-a .
(4.14) Pr(y) = 1 (1 - = o). ‘

Case 2. k za. In this case we use the transformation

k Z(1;13k) ' y 3=
Uy = O3 (Bgpg )7 B(g150,0)) 2 3720eeeik
Zj ) j=k+1,--o,m

As in case 1, U ,...,U; are independently X5-distributed.

It is easily seen that

)

_ 1 k ¢ . _

A = {a - = > ==a)e J if (k-a)ec < 1
=8 g o4y UL
j=2 K731 U 354

(If (k-a)ec > 1, then A, is empty.) Another application of

Lemma 4.4 yields

) = max (1= (k-a)c,0) ™
(1+ac)™"@ éﬁj(1+c ﬁ%;?ll)
J=

(4.15) Pr (4,
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Finally by inserting (4,.,14) and (4.15) into (4.5) and (4.6), the
distribution of F(i) can be written down. We state the result

as a theoren.

Theorem 4.1.

Let Z,‘,...,Zm be an independent sample from the xg-diSTri—

bution. Put F(a) =3 / miaz Then
T (m-r) (i) °

[ J+a

(4.16) B (c) = pe(@{®) 5 ¢) - LB G DEETEY 0T e (e)
where
(-2 ik -1
lj§1(1+ 5:%:3 c) y k< a-1
3=
(4.17) Q. (e) =
o 1 (1- (k-—a)c)m_1
a7 ,
l\(1+ac)‘n'a o (1+ £§;§21 c) , a<kcg [c™ 1 ]+a
J=1

Furthermore, for arbitrary integer p >0 ,

r+2p

k-r-1 - (
(4.18) &_r+1( ST @) K e (o) < B (o)
L N -1
< k=§+1 (=1)°7F (i)(k-r—1)Qk(c)?
If a =0, (4.16) reduces to
[0'1]

(4.19) Hﬁo)(c) = Pr(Fﬁo) >c) =

T T ) (ke )™
k—r+1

which was proved in [1], [6] and [11] by other, more complicated
methods. Note that when r =0, (4.19) is the same expression

as (304)
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4,%. Approximations,

We only consider the most important case r =0 . As indi-
cated in section 4.1, the sum of the lowest terms on the right of
(4.16) provide good approximations to H(a)(o) = Héa)(c).

Using p ‘terms, the approximation can be written

@ P = E eI @e .
In particular
(4.21) E§a)(c) =m jéj(1+ i ) .
It is clear that Ep(a)(c) is larger or smaller than

H(a)(c) according to p being even or odd. An indication of the
accuracy is given in Table 4.1, where the cifference
\ Ep(a)(c) - H(a)(c)i is recorded for several values of

a, m, ¢ and p .

: —I
a=1 | a=2 a=3 | a=4 «
_ip |0.0000 | 0.0021 | 0.0036 | 0.0052
n= 0.0000 0.0000 | 0.0002 | 0.0005

=20 0.0001 0.0016 0.0023 : 0.0029
= 10,0000 1 0.0000 0.0000 . 0.0001

o 10.0001 | 0.0064 | 0.0104 , 0.0146
m=1 0.0000 | 0.0000 | 0.0006 : 0.0017
'

o0 |0+0006 10.0055 | 0.0076 | 0.0094
| m=2 0.0000 | 0.,0000 | 0.0004 | 0.0007

H(a)(c)=0.05

H(a)(c)=0.10

I B

- ——— —— - T — — —— - S o G - . S . o G W S o ga S S oo g Yo e e ] s e e B e S wn e T v — —— o -

D e e e —— g - S S o W T G B T S ot S B B T W S S . G e S T B G an St S e - W W — e - —
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As was to be expected the approximation is better the smaller the
value of a and the larger the value of m . It is ciear that
Eéa)(c) as p increases,very rapidly approaches H(a)(o) .

In applications the accuracy will almost always be better the

larger the value of p . However, this is not true in general.
Applying the approximation Hga)(c) is for many practical
purposes sufficiently accurate. Suppose c¢ 1is determined from

(4.22) ﬁfa)(c) ¢ .

Then H(a)(c) is less than € , and as is clear from Table 4.1
not much less. Asymptotically, as m - c>, it is possible to

derive a lower bound. From the Bonferoni inequality, it is easy

to see that
(4.23) 1) 20 pr(v> o) - B)Pe(v,> ¢, Tp> o)
where v, = Z1/(sum of the m-a smallest of Zz,...,Zm)

Il

v, Zz/(sum of the m-a smallest of Z1’ZB""’Zm)'

Asymptotically V, and V, are independent. Hence (4.23) as

1
m = can be rewritten

28 () 2 e(V,> ¢) - (D)Br(V,> 0)Br(V,> o) .
Inserting Pr(V1> c) = % Ega)(c) = % , we obtain
(a) e?
(4.24) HYY/(c) > ¢ - = , as m =,

It is clear from Table 4.1 that this inequality does not hold

in general for finite m , unless a = 0,1 . In the latter cases
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(4.24) can indeed be 4proved, using essentially the same method

as above (see [37]).

The approximations should be particularly useful in the

following context. Let

Ap
Px
k T m-a ’

2
T
S P74
i=1 (3)

k=1’ooo,m L]

Instead of determining ¢ from Héa)(c) = € , one might in
practice prefer to calculate the quantities H(a)(Fk) sy K=1540.,m ,
and state Py = 0 if H(a)(Fk) < € . A quick and simple method,
with level slightly less than € , is to state Px >0 if

1

OO N -1
H,] (Fk) = ij=11(1+ 'jTa'.-_f Fk) <e .

4.4. Performance

The object of this section is to study the performance of
procedure (4.1) for different values of a and compare with

Fisher's test (a=0) in particular. In this respect two questions

arises

1) How much is lost by using a > 0 in the case of only one non-

zero amplitude (when Fisher's test is optimal) ?
2) How much can be gained in other cases ?

Let the power function of the test wﬁa) be denoted

Béa) = E(wéa){p1,...,pm,c) sy k=1,...,m
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Since the distribution of the test statistiecs for general values
of PysesesrPpy is extremely complicated, the simplest way to go
about seems to be by Monte Carlo technique. The results below
are obtained from 1000 simulations on the computer of the
University of Oslo. A well-tested random number generator was
used. The accuracy of the results is indicated in Table 4.2.

In the simplest case of a=0 the power, as derived in chapter 3
from an approximate analytical expression,is compared to returns
from the Monte Carlo simulations. It is seen that the absolute

error is at most 0.01-0.,015 , which is good enough for our needs.

~Rx 5.0 10.0 15.0

™S
ot

RNy i ' | !

| Analyt. |0.181 0.453 | 0.697 | 0.856

Monte C.{0.069

Table 4.2. The Dower Béo) of Fisher's test in the case

———————————————— T e > - o = e S e T S G — . T e T P TS G G T P W IS Gun S T S S S — ——— e -
——————————————————————————————————————————————————————————————

. S S G - ———— = - S Gee S P S Gey G S S W e W . Gve . S

As above let Np be the total number of non-zero amplitudes.
Results in the case Np = 1 are shown in Table 4.%. It is
clear that the loss in power by using a > 0 is slight. This is
true even for small values of m . For instance, when m=6 , the

absolute loss is for a=2 at most 0.,06-0.08 , (admittedly the
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discrepancy is 2-3 times greater for a=3 , but this seems to

be a very large value of a for such a small m .)

\\Qﬁ/cz 5.0 10.0 | 15.0 | 20.0
a N
0 0.12 0.3%2 0.53 0.69
m=6 ———————————————————————————————————— be o o e e e e
1 O.12 0.32 0.53 0.69
—————————————————— o o - o S - b——-—-———ﬂ-—————--—-{
3 0.11 0.24 0438 0.50
0 0.18 0.46 0.69 0.84
--------- S VPP SR RPN S ISR
m=12 1 0.18 0.46 0.69 0.84
___________________________________ P ———
2 0«17 0«45 0.69 0.84
€=0,10 |mmmme- S S T --------------- bl
3 | 0.17 | 0.44 | 0.68 | 0.82

Table 4.3.__The power Béa) in alternatives with only one

S S S - b G . - - e o — — - ————— v~ S e $ e e ey S v G - o o - . g - -
— e . S - o T o St —— W D S S Tms S S G B W W TS SR S G e ST SR M e G e AED U SR Y GG e S Gue G S S -

e T e - S - - - — —

To answer the second question above, consider alternatives
where Pr = O and the non~zero amplitudes other than Py have
the same magnitude p, . In Figure 4.1 and 4.2 the power séa)
in the case m=12 , €=0.10 is plotted as a function of pi/c2
for Np=2 and Np=3 respectively. The test a=1 is not inclu-
ded as its performance differed 1ittle from a=0 . Also, when
Np=2, the power functions of methods a=2 and a=3 were close,

and the latter is omitted.



& (2) m=12
1.0+ B N,=2 €=0.10

a p2

—% =20
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\%?__\\\ a=2

\\\
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E'l-{- =10 - ™
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Figure 4.1. _The power B,."/_ _as_a function of _p,/0”__ when



A
1.0 + (a)
B N =3 m=12
k p €=O«1O

. —= =20
0.8 E%\\~ 02
~

O. 6 + S, \\ \\.\”

2 b
N 0
0.4 £ —% =10 \\\\\\

there outside p, _are exactly two non-zero amplitudes of egual

———— T o e —— — e - ——— T —_——— - - —

It is clear that when Np > 1 , the Fisher method very
rapidly becomes inferior to the other methods. For example, if

2

N. =2 , pi > pj = 0 , then Béz) and Béo) become equal when

p

p? is about 10-15 % of pﬁ « On the other hand the gain in

using a > 2 instead of a=0 may be substantial. As an example,
Suppose p, = pp - In Figure 4;1 where Nb=2 , the power is in-
creased by 60-80 %. When Nb=3 (Figure 4.2) the power is doubled

or threedoubled by using a=3 instead of a=0 .

It was chosen to present results for the case m=12. Smaller
values of m will tend to increase the discrepancy between the

methods. Larger values have the opposite effect.



The results above also give insight into how a should be
selected.s It is clear that the performance may be poor if a is
chosen too small. If the number of large pk's is believed to be
bounded by, say s , it may be reasonable to put a=s , for
instance if the model is described by (2.5), our choice could be
a=2, However, if m is not too small, it is clear that there is
not much to lose by choosing a for safety somewhat larger than s .
This would be all the more appropriate in cases where some of
PyseeesPp » although uninteresting concerning the periodical
nature of &, , may not be exactly zero (cf. the discussion in

chapter 2.)

5. OTHER METHODS

In this chapter other methods suggested in the past are briefly
discussed along with a couple of new propositions.

Angerson [1] derives Bayes procedures assuming that the non-

. *
zero amplitudes have the same magnitude< ) « These prucedures,

however, are rather complicated and are, perhaps, not so interes
ting from a practical point of view. Also, no effort is made in
[1] to calculate the relevant constants (which would be far from
easy).

From the same starting point another method can be derived by
applying a technique suggested by Doornbos for a related problem
(see [3]).. Let us for a moment assume that the number of potential

amplitudes is exactly Xk (or zero). Then a reasonable decision

*
(*) In addition Anderson assumes that the number of non-zero ampli-
tudes is at most two, but his results can easily be extended

on this point.
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rule, optimal when the non-zero amplitudes have the same magnitude,

(*) . L
would be to state me] ”"’p[m-j+1]_> O if the statistic

A2
RIN

k
X
_ J=
(541) v, =

FN o~

m
A

o
k=1

is sufficiently large. To define the test in the general case,
let véo) be the observed value of Vk and introduce for

k=1,2,¢00,a (a is an integer fixed in advance)

(5.2) P = Pr(V,> Véo)lp1=...=pm=0) .

Define the integer ﬁ by

(5.3) P, = min P, .
ﬁ 1<k<a k
€ .
If Pﬁ <3 then p[m],...,p[m_§+1] are stated positive.

Otherwise no statement is made.

it is immediately recognized that the probability of stating
incorrectly that some P > O 1is bounded by € when .
p1=...=pm=0 + However, it is not clear whether this is the case
for general values of PseeesPpy o

To transform the test proposition into a working method we must
have a way of calculating P, as given by (5.2). It does not

seem that the proof of Theorem 4.1 easily can be extended to

(*) For k=1,2,¢..,m p[k] is the amplitude corresponding
A
to p(k) .
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to cover this case. However, in [2] the present author arrived

at a solution by another method. By Lemma 3.2 the numarator and

the denominator of (5.1) may be written as linear sums of the same
independently distributed y5-variables. Thus, their joint characte-
ristic functions are not difficult to obtain, and their joint

density can be found bj the inversion formula for characteristic
functions. Finally an expression for Ek can be derived by straight-
forward integration. Omitting the details (which are given in [27)

we are here content to state the result:

(5.4) B =1 - k? P G D -1
J=_[;§)]+1

k=1,2,oo~,a .

It can easily be verified that when k=1, (5.4) coincides with
(.4), as it should.

A reasonable approximation is provided by the first term of the

Bonferoni inequality, i.e.

k
5 A2

m =1 ()1, ovzp =
Pk é (k) PI‘[ -J—-’—\—E > Vj lp,l—'o.o—pm—O] .

Z p-
=119

Introducing B(xj;v,n) as the cumulative Beta-distribution, this

yields

(5.5) B g @)1 - B(v®); kudky)y

The difference between the two sides of (5.5) is typically small.
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Whittle (see for example [1) has suggested to make the inference

stepwise. As the first step state p[m] >0 |if

A2
p
(5.6) —le L > W
N2
Z p:
i=1"7

Otherwise no statement is made and the process is terminated.

The constant W is to be determined from

A2
P( 2
Pr( = > W ‘P o0 e=p =O)=€
m AD m ' m
zp

j=1d
which can be done by (3¢4). As the k-th step, assuming Plm] 7+
p[m_k+2] to have been stated positive, state p[m-k+1] >0

if %2
m-k+1
(5.7) a:ﬁwl > Vileeq
iz PG

Otherwise terminate the process and make no further statement.

How the constant Wi k41 should be determined, is discussed in [1].

A serious objection to this procedure is that it may not at all
get started if several of p1,...,pm are large , especially if
their magnitudes are not far apart. As was demonstrated in
chapter 3, the probability that (5.6) is satisfied, may then be
quite low.

To overcome this difficulty one might consider to reverse the
process. For a specified interger a , state p[m-a+1] >0, and

in addition p[m-a+2}""’p[m] >0, if
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A2
pgm-a+12 > 1
m-a

s B2
=1 ()

m-a+1

Otherwise it is concluded that there is no basis for stating
A2 . . . .
p[m7a+1] > 0, and Plm-a+1) 1S to be included in the estimate of

02 . As the next step, state p[m—a+2] >0, as well as

p[m_a+3],---,P[m] >0 if

A2
pfm-a+22
DI o I
521 ()

> 1m-a+2_

Otherwise continue the process as above until we can either state
p[ﬁ;a+k]""’p[m] >0 for an index k < a or it is concluded that
no amplitude can significantly be judged positive.

When Py=eee=py = 0 , the probability of making a false statement
is bounded by the quantity

/\2
a p - _
s Pr Sm k+12 -1 |

|
k=1 51‘2/32 - m=-k+14
521 ()

a
which by Theorem 4.1 is equal to £ €

oSk M Tpegay 18

determined from

(k) -
(5.8) Bl (O peeq) =
-1
V[Im-k+ 1+k (1 m-1
£ ity sty U ) - ¢

Tm-k+1 RIS J-1 m~k+1)
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This only gives an upper bound for the error. The actual value
is likely to be much smaller. Also it is an open question whether

the error for arbitrary values of PyresssPy is controlled by the

o

quantity bX € *
k=1

The question arises how to choose € reeer€y o Conceivably it
would be a mistake to make the level to low for the first steps,
as this could result inlow=powered tests at the start leading to

2

over-estimation of o later on., Anyway, from a practical view-

point, I judge this procedure for a number of reasons to be clearly

inferior to the one described in chapter 4.
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CRITICAL VALUES FOR METHOD (4.1)
LEVEL = R,81
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1.2139
1,0961
+9979
+9151
.8444
7834
.7382
+6836
6423
6056
.5728
5432
5165
.4922
478}
.4498
«4312
.4140
.3981
.3834
<3697
.3570
.3451
« 3340
«3235
.3137
3045
.2958
.287%
.2798
L2724
.2654

A B 6

29,2669
14,3240
8,6873
5,9459
4,394]
3,4230
2.7702
2,3075
1,9656
1,7046
1,4999
1,3358
1.2018
1.,#906
.9971
.9174
,8489
« 7894
7373
26913
,6506
6141
5814
L5519
5251
5008
,4785
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7.3803
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1,0780
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.5999
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CRITICAL VALUES FOR METHUD (4.1)

18.4338
5.7859
3.8321
2.8041
2.1854
1.7784
1.4929
1.2831
1.1230

.9973
L8962
.8133
.7442
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.4918
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23146
L3037
L2936
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LEVEL = 0,025

A= 4

13.6115
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{.1410
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.8368
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A =5

16,9879
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4,0363
3.0636
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2.0072
1.6964
1.4631
1.2826
11393
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20,3110
18,5731
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4,6651
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3191
3087

2990
. 2899
.2813
.2732
2656
.2584
2515
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5.,4982
3.3350
2,3467
1,7951
1.4478

1,2109
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CRITICAL VALUES FOR METHOD (4.1)

LEVEL = 4,85

A= 4

10,1263
5,7240
3.8136
2.7930
2,1740
1.7653
1,4783
1,2673
1.1064

.9802
.8788
.7959
.7268
.6684
.6186
.5755
.5380
.5050
L4757
,4497
.4264
.4853
.3862
.3689
.3530
.3385
.3251
.3128
L3013
.2907
.2808
L2716
.2630
.2549
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.2334
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.2210
.2153
.2099
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.1952

Az5

12,5775
6.9677
4,56064
3.2990
2.5386
2,0411
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1.4422
1.2509
1.1018

9827
«8858
» 8054
07379
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25881
«5585
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+A878
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«3968
«3791
3629
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.3216
3068
«2989
22887
02792
.2703
2620
«2541
«24068
02398
2332
2270
2211
02155
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15,1096
8,2440
5,3346
3,8128
2,9071
2,3190
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1,3951
1.2229
1,0860
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,8833
.8066
7415
.6857
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5952
5580
.5251
,4957
,4694
4456
,4241
L4045
.3867
,3703
.3552
.3413
.3284
.3165
3054
.2950
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2677
«2597
2522
02451
.2384
2320
226V

17,7146
9,55a7
6.,1179
4,3347
3,2803
2,5996
2.1312
1.7931
1.5398
1.3441
1,1891
1.0639

.9689
.8749
.8022
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.6863
.6394
.5983
.5620
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,5407
4746
<4510
.4296
.4101
.3922
\3758
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23467
.3337
.3217
.3105
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. 2992
.2811
.2724
.2495
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A= 8

20,3857
10,8857
6.,9155
4,8647
3.6583
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2,3528
1.9702
1.6851
1,4656
1.2924
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20310
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4770
.4544
»,A4332
.4139
«3961
3798
.3047
. 3587

.3378
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.2942
.2849
2703
2684




A=l
2,4200
1,6591
1.2679
1,831

8701

+ 7550

+6681

- 6000

5452
*sen1
4622

4301
- 4823
3781
£ 3569

3380
+3212
13061
2924
22799

2686
;2582

2486
2398
;2239
'2168
2102
2040
1982
- 1927

1875
01826
$1780
11736

1695
1656
1618
L1582
~1548
21516

1485
" 1455
‘1426
51399
1373
. 1347

A= 2

3.9984
2,5446
1.8434
1,4383
1,1769
,9953
.8622
.7606
6807
6162
.5631
.5185
,4807
,4482
.4199
.3951
,3732
.3536
.3361
.32083
.3860
.2929
.2810
.2700
.2599
.2506
,2419
.2339
,2264
.2194
.2128
L2066
.2008
.1954
.1902
.1853
.1807
.1763
L1721
,1682
L1644
.1608
.1574
L1541
.1509
.1479

CRITICAL VALUES FOR METHOD (4,1)

5.6358
3,4372
2341ﬂ9
1.8339
1.4782
1,2225
1,0441
?9103
,8@59
e 7228
,6552
5991
?5518
«5115
4767
.4464
L4197
.3961
»3562
.3392
,3237
,3@97
.2968
3285@
22741
-2641
22548
.2461
»2380
.23u5
.2234
21068
.2186
-2047
.1992
" .1939
,189@
.1843
.1798
.1756
p1716
.1677
.1640
.16U5

LEVEL = 2,10

A3 4

7.3446
4,3547
2.9870
2,2315
1,7626
1.4474
1.2230
1,0561
.9277
.8263
.7442
.6766
.6201
.5721
.5309
4952
. 4640
4365
4120
. 3982
.37¢5
.3528
.3367
3220
.3086
.2962
., 2848
.2743
.2646
.2555
2470
.2391
L2317
.2248
.2182

.2121
.2063

. 2008
.1956
1907
.1860
.1816
.1773
.1733

A =s5

9.1200

5.2989
3.5753
2.6348
2.8573
1.0730
1.,4017
1.2015
1.0486
+9285
.8320
«7529
.6870
6314
5839
05429
« 5071
«4757
4479
04231
«4009
23809
23628
« 3464
« 3313
«3175
. 3849
. 2931
.2823
22723
02629
2542
2460
.2384

2312
«2245

.2181
2121
.2064
20140
»1959
« 1911
. 18065

A& 6

10,9556
66,2689
4,1762
3.n448
2,3558
1,9085
1.5813
1,3473
1,1695
1,8385

29194
.8287
+7535
. 6902

«6363
295899

5497
5144
., 4832
. 4555
4308
.4085
.3884
,3702
.3536
3384
.3244
3115
.2996
2886
.2784
2688
.2599

2516
2438

.2365
22296
.2231
.2169
2111
2856
. 2004

12,8454
7.2628
4,7895
3,4617
2,6582
2.1305
1.7625
1,4939
1.2908
1.1327
1.,0067

,9043
,8197
7487
.6884
,6367
. .5918
.5527
.5182
L4876
.4603
4358
.4137
.3937
.3755
.3588
.3436
.3296
« 31060
3047
.2936
.2832

22736
22640

2562
.2482
.2408
.2338
2272
22209
2150

14,7844
8,2798
5,4144
3,8854
2,9649
2,3631
1,9453
1,6416
1,4128
1,2353
1,0943

L9831
.8859
.8071
7404
.6833
.6339
.5908
.5529
.5194
.4895
.4626
.4387
,4178
03972
L3791
.3626
.3474
.3335
.3086

22974
.2871

.2774
.2683
.2598
.2519
,2444
.2373
.2306
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Agpendix.
2

An approximation to the non-central <« -distribution.

Let 2~ xﬁ(l). Patnaik [8] has suggested approximating 2

with yY where Y ~x\2) and

<
|
'
+
>
3

<
fl
=}
+
[A®)
i
5
[ ]

Table A.1, computed in [8] ,indicates the accuracy of the

approximation.
In chapter 3 the approximation is used in the following way:
Let V and W be independent and non-central x2-distributed
and let V. and W  be Patnaik's approximations.
v * v
If we compare R = S with R = V*+W* s it is easily shown that

[PT(R*>T)-IT(R>r)] < sup[Pr(W*>w)—Pr(W>w)[ + suplPr(V*>v)-Pr(V>v)\ .
W W

The actual error is no doubt much lesse.
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n A Z Approx. Exactly
4 4 1.765 0.0399 0.0500
4 10,000 0.7191 0.7118
4 17.309 0.9492 0.9500
4 24.000 0.9913 0.9925
10 10,000 0.3178 0.3148
7 1 4,000 0.1621 0.1628
1 10,004 0.9499 0.9500
16 10,257 0.0430 0.0500
16 24,000 045947 0.5898
16 38.970 0.9482 0.9500
12 6 24.000 0.8187 0.8174
18 24..000 0.2936 0.2901
16 8 30.000 0.7895 0.7880
8 40,000 0.9626 0.9632
32 30,000 0.0590 0.0609
32 60.000 0.8329 0.8316
24 24 364000 0.1556 0.1567
24 48,000 0.5333 0.5296
24 724000 0.9656 0.9667
Table Asl.__The accuracy of Patnaik's_approximation.
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