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SUMMARY 

The paper treats the problem of detection of hidden periodi­

cities in periodogram analysis. The problem is stated as a 

problem of selection. A competitor to Fisher's classical test 

is proposed and analyzed. The distribution of the test criterion 

is derived. It is established that in most alternatives the new 

method is more powerful than Fisher's. 
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1. INTRODUC!riON 

Let x1 , ••• ,XT be an observed time series describ~d by the 

model 

t=1, ••• , T 

where u1 , ••• ,UT are pure white noise, i.e. independent and iden­

tically distributed random variables. We shall assume throughout 

that their common distribution is normal with unknown variance cr 2 

From the observations of x1 , ••• ,XT we want to identify periodical 

components of the trend St • Although the periods are unknown and 

may be any among a large number, it is lmown that only a few of 

them are present.In mathematical terms the problem may be stated as 

follows. 

( 1. 2) 

Assume that F can be written ~t 

p 
~t = ~ + ~ A cos(2rrX t-~ ) 

o v=1 v v v 

where A1, ••• ,AP > 0 • All the parameters in (1.2) (including p) 

are unknown. It is assumed that p is small compared to m • We 

are to find out if p = 0 or > 0 , and in the latter case we 

• 

want to determine x1, ••• ,Xp • The decision problem will be restated 

in chapter 2 in a more convenient form. 

The statistical pro.blem descri"bed above is a classical one. 

(For early references see [10] and [13]). The standard method found 

in textbooks is due to Fisher [5]. It is described and studied in 

chaptel~ 3. The main object of the paper is to propose and analyze 

a new procedure which is introduced in chapter 4. Fisher's method 

is seen to be included as a special case. The distribution of the 

test criterion is derived exactly and approximately. Critical 

values are computed and tabulated. It is established that the new 

method represents a considerable improvement over Fisher's. 
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Various other approaches to the problem, some consiJ.ered in the 

past and some new ones are briefly discussed in chapter 5. 

The paper is based on a part of the authorvs Cand.Real. thc:sis 

at the University of Oslo. The presentation has on several points 

been extended. Theorem 4.1 is stated in a new form with a new 

proof. 

2. FORMULATION OF THE DECISION PROBLEM 

s 1, ••• , sT can -be expanded unig_uely in an ortogonal trigono-

metric series, i.e. for t=1, ••• ,T 

(2.1) 
LT21J 

St= a+ ~ ~. cos(2TI~T."t) 
0 j =1 J 

[~] 
+ ~ !3. 

j =1 J 

_:i ) )t (*) sin(2~t +aT/2 (-1 

the last term being excluded when T is odd. (2.1) is 

equivalent to 

(2.2) 

where 

The last term of (2.2) represents an inessential, but unwanted 

complication, and we shall throughout assume that T = 2m+1 in 

which case (2.2) can be rewritten 

(*) For a real number y , the symbol [y] here and later denotes 

the largest integer less than or equal to y • 
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m 
~t = ~0 + ·~ p. cos(2n ~t-eJ.) , 

j=1 J 
t=1 , ••• , T • 

We shall refer to p1 , ••• ,pm as the amplitudes of (2.3). 

Comparing with (1.2), it is clear that p1 ' • • • 1 Pm are 

functions of 

(2.4) 

A. 1 , ••• ,Ap. Suppose 

jv 
Av = ~ v=1, ••• ,p 

where j1, ••• ,jv are integers less 

v=1, ••• ,p ' and Pj = 0 otherwise. 

the periods are integral divisors of 

than T Then A 2 . p. = 
J\1 v 

(2.4) means that 

the series length. This is 

sometimes a reasonable a priori assumption, for instance in con-

nection with monthly, seasonly or annual data. But even if there 

is no such knowledge, as is usually the case, there still are among 

the quantities 

values of l 
T 

p 1, •.• , p a few dominating ones corresponding to 
m 

close to one of the periods As an ex-

ample, suppose that p=1 in (1.2). Then 

(2.5) 

In [1] it is proved that if A. 1 E(~,k; 1 ) , then pk and pk+1 will be 

the two largest of p1, ••• ,pm ' 
&'1d the two of them will account 

m 2 for at least 81% of the sum ~ P· ' 
the minimum value being 

A _ k+i j·=-1 J 
attained when - T • Thus, under (2.5) most of the quanti ties 

p1 , ••• ,pm are small with one or two dominating the others, the 

indices approximately determining A.1 • The situation is analogous 

when p > 1 • 

It is clear from the reasoning above that the problem of identi­

fying the periods A.1 , ••• ,A.p may (approximately) be regarded as a 
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problem of selection of the large ones among p1, •• ~,pm • 

Estimates of P 1 ~ .. • • 'Pm can be constructed from the least-

squares estimates of a.o ,Ct1' • • • 'c.m and 

A - 1 T 
a.o = X = T L: Xt 

t=1 

1\ 2 T 
cos(2rr ~t) a.j = T L: xt 

t=1 

1\ 2 T 
sin(2rr ~t) ~j = T L: xt 

t=1 

It is easily seen that "2 /\2 p1, ••• ,p m 
are independent, the distribution 

2 

of 

/\2 
p· 

J 

~ 
being non-central 

Pj 
2" The with eccentricity 

selection rule will be based on 

restriction as it can easily be proved that 
/\ 

with c. 0 is a sufficient set of statistics. 

cr 
This is hardly any 

together 

The decision problem will be interpreted as a choice, for each 

j=1, ••• ,m ' between the statements "state p. > 0" and 11 state 
J 

nothing 11 • A decision rule will be represented by a vector-valued 

function ~ = (w1'"""'*m) where *j = 1 and 0 respectively for 

the two statements above. We shall require the methods to have 

level e , i.e. that the probability of stating that gt has 

periodical components when indeed there are none (p1= ••• pm=O) is 

at most e • For the decision rules of chapter 3 and 4 this will 

also control the pro·babili ty of making false statements for 

arbitrary values of p1 , ••• ,pm • 
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3· FISHER's TEST 

The standard method for the problem formulated in chapter 2 

was proposed by R.A. Fisher [5] : 

l.f A2;m"2 pk L: p. > c 
j=1 J 

otherwise • 

The constant c is to be determined from 

(3.2) 

To derive an expression for the left hand side, note that 

[ A2; m /\2 Pr max pk L: p . > c J 
k j=1 J 

m m 
= z= (-1)k- 1 z= Pr[ min ~2 I z= S~ > c] • 

k 1 1 "<k p. . 1 J = p1< ••• <pk ~J= J J= 

When p1= •.• =pm=O , this yields by symmetry 

(3.3) 

It is well known that the two statistics, k . A2 
o m1n p. 
1~j~ J 

k 
L: ~2-k 

j=1 j 
are independently distributed as X.~ 

2 
'X2(k-1) respectively. 

It easily £allows that 

A2 m A2 Pr[ min p./ L: p. > c] = 
1~j~ J j=1 J 

{max(1-kc,O)}m- 1• 

Combining this with (3.3),we obtain 

and 

and 
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(3.4) 

-1 

[ A2; m A2 \ J __ [c~ ](-1 )k-1(m)( 1-kc)m-1. Pr max pk L: p. > c p1= ••• =pm=O ~ 
k j=1 J k=1 k 

Other proofs of (3.4) are given in [1], [4] and [14] • The 

derivation above, which is new, at least to the auGhor, is of a 

more elementary character and also simpler than the earlier proofs. 

It is easily shown that the probability of stating falsely that 

pk > 0 for some k for which pk = 0 , attains its maximum when 

p1= ••• =pm=O • 

Let Np be the number of non-zero amplitudes, i.e. 

Np = #{j \pj>O} • It can be proved that the test has optimum pro-

perties when Np = 1 To study the power in more general alter-

natives, note that the test statistic in (3.1) is an increasing 

A2/ A2 function of pk L: pJ. • In this expression the numerator and the 
j4k 

denominator may, in the context, be interpreted as estimates of 

p~ and o 2 respectively. This means that when there ~re non­

zero ampliunes other than p~ , o2 will be over-estL~ated, and 

the test may become unsensitive. 

for an 1 + k , the power is zero. 

In the extreme case when P = 00 
I 

We now proceed to study this effect quantitatively. Denote the 

power function by 

In general the distribution of the test statistic (3.1) will be 

complicated as the ratio of two non-central x2-distributed varia-bles. 

For our purpose it will be sufficiently accurate to apply a result 

due to Patnaik (see Appendix) which approximates a non-central 

x2-distribution with a central one. Accordingly, replace on the 

( ) A2 2 right of 3.1 pk and r. PJ· with s Y and rkW respectively, 
j+k k vk Yk 
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where y and w are independent, y ""'x2 2 ,W ""X 
'Vk yk vk \}k yk yk 

and 
p~ 

sk 1 + = 
2cr2+ 2 Pk 

2 + 
p~ 

vk = 
2cr4 +2o 2p~ 

L: 2 
1 + 

j~kp. 
rk = 

2 (m-1 )a~+ b p~ 
-~k J . 

2 2 
( _2: Pj) 

yk = 2(m-1) + J!k 
2(m-1)cr4+2cr2 L: p~ • 

j~k 

We hereby easily obtain 

(3.5) p~O) ~ 1 - B[ rkc . vk ?J , 2 rkoc+sk( 1-c) 

where B( o . vk ~) , 2 2 is the central Beta-distribution with para-

meters 
\lk 

and 
yk - 2 • 2 Nummerical results are shown in Figure 

3.1 and 3.2. 
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for several values of m = 6 , e = 0.05 • 
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~igure 3.2. The power p~0~ of Fisher's method as a function of 

2 

for several values of 
pk 
2. ill= 12 , E: = 0.10. 
a 

s~urrming up, the optimum properties of the test for N = 1 , 
p 

are in my opinion of little importance in view of the fact that 

the power rather drastically decreases vv-hen N > 1. p As an example 

let m = 12 , e = 
2 2 

pk = Pj = A > 0 ' 

0.10. The power in alternatives where N = 2 , 
p 

is roughly 50% of the value attained when 
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Np = 1 , pk = A • For the case m = 6 , e = 0.05 the corres­

ponding num."ber is about 10-20% .. 

As another illustration assume that the model is described by (2.5), 

Let p~ 
2 

be the largest of 2 2 
P 1 ' • • •' Pm • Then the 7alue of 

l: p. 
j =\=k J 
of the 

may be as much as 50% larger than Thus the sensivity 

test may clearly be poor. As an example let m = 12 , 

€ = 0.10. The probability of stating pk > 0 which is 0.85 

when 2 20 cr 2 and I: 
2 = 0 decreases pk = P· ' j =\=k J 

to 0.28 when the 

value of 2 increases to 30 cr2 L: P· • 
j4k J 

4. A NEW METHOD 

The reasoning of the preceding chapter indicates that Fisher's 

test can be improved by replacing the denominator in (3.1) by a 

"robust" estimate of cr 2 , 11 robust 11 in the sense that it is 

reasonably unsensitive to the number of large amplitudes. In theor~ 

there are many possibilities. This author has chosen a trimming 

procedure. For a specified integer a ?; 0 leave out the a 

largest of ~~, ••• , ~~ and use an estiruate based on the average 

of the remaining. 

order statistics of 

defined ·oy 

(4.1 ) 

A2 /\2 A2 
Introducing P( 1 ) ~ P( 2 ) ~···~ P(m) 

/\2 "2 p1 , • • •, Pm 1,pJe are lead to the test 

i1 .. 

otherwise. 

Obviously (4.1) reduces to (3.1) when a= 0 • 

as the 

$(a) 

It is easy to see that the probability of stating falsely that 

pk > 0 for some pk = 0 attains its maximum when p1= ••• =pm = 0 • 
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Thus to control the error,we have to calculate the ~uantity 
A2 m-a.t\2 

Pr[p(m)/j:1P(j) > c] under this condition. More gene~ally, as 

it is only a trifle more difficult, we shall, for an arbitrary 

integer r ? 0 , derive the distribution of 

(4. 2) 

i.e. we shall find an expression for 

= .... = p = 0). m 

The derivation is an extension of the method used in establishing 

(3.4). As a first step we shall in the next section prove a 

result vrhich may be taken as a generalisation of equation (3. 3). 

4.1. A lemma. 

For variables Y1, ••• ,Ym and integers q and p , q < p , 

let Y ) , j=1, ••• ,p-q+1 denote the order statistics of 
(j;q,p 

Y , ••• ,Y • Introduce the events q p 

rn-a 

J!Y< 1;1 ,k/ jE1 Y (j ;k+1 ,ml 

~-, k 

UY(1 ;1 ,k)/Lj=~+1 y(j;1 ,k) 

and define 

(4. 5) 

Then the following lemma holds. 

> c} k ~ a-1 

m -
+ 2:: Y.J > c} , k 
j =k+1 J 

k=r+1 , ••• ,m • 
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Lemma 4.1. 

Let the distribution o£ Y1, ••• , Ym ·be invariant with respect 

to permutations (*). Then, for non-negative integers r and a 

(4.6) 
m-a m 

Pr[y I ~ Y > J -- ~ (-1)k-r-1Tk 
(m-r) J. ~-1 ( j ) c '-" • k=r+1 

Furthermore, for an integer p > 0 

(4.7) 
r+2p k r 1 m-a r+2p-1 k r 1 

I: (-1)-- Tk ~ Pr(Y(m-r)/.2: Y(J')>c] ~ I: (-1)-- Tk. 
k=r+1 J=1 ~=r+1 

Proof. For arbitrary k ~ r+1 , let 

(4.8) 

(4. 9) 

We shall prove that for arbitrary p > 0 

(4.10) 
m-a r+p k 1 

Pr[Y(m-r"C</.I: Y( ') > c] = I: (-1) -r- Tk + (-1)Pe • 
1 J=1 J k=r+1 r+p 

The lemma is an immediate conseg~ence of this result. 

By symmetry 

yk+1 > y (m-k-1 ;k+2 ,m) }]. 

Recalling the definition of Ak , it follows that 

(*) Without this assumption a more complicated version of the 

lermna still holds. The method of proof is essentially the 

same as the one employed here. 
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yk+1 > y(m-k-1 ;k+2,m) l ]. 

From the elementary formula Pr(AnB) = Pr(A) - Pr(AnBc) we easily 

deduce 

(4.11) 

By symmetry it easily follows that 

Combining with (4.11) and (4.8) this yields 

(4.12) 

Now, from an easy symmetry argmnent, recalling the definitions 

m-a 
Pr(Y(m-r)lj~1 Y(j)> c] = (r~1) Pr[Ar n {Y(1;1,r+1)<Y(m-r-1;r+2,m}] 

= ( m ) Pr(A ) T r+1 r+1 - er+1 = r+1 - er+1 • 

This is ( 4. 1 0) with p = 1 • For arbitrary p , ( 4. 10) follows 

from (4.12) by induction. 
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Note that when r 7 a= 0 , (4o6) with Yj = zj , j=1, ••• ,m, 

reduces to (3.3). Furthermore, inequality (4.7) is then an easy 

application of the Bonferoni ineg~ality. In this case (4.6) is an 

immediate consequence of the well lmown expansion 

Pr(u B.)=~ Pr(B.)- ~ Pr(B.nB.)+ •••• In general, however, (4.6) 
i l i l i<j l J 

can not be established in this manner. 

It will be shown in the next section, that when Y1 , ••• ,Ym are 

independently ')(~-distributed, it is possible to derive simple 

analytical expressions for Tk • Although this may not be possible 

in other cases, it is believed that the lemma is of interest 

beyond the problem considered here. In general the first 

terms on the right of (4.6) are dominating. Indeed, Pr(~) = 0 

if k > [~] +a • Typically the very first term provides a 

reasonable approximation. We shall return to this subject in 

section 4.3. 

4.2. The exact distribution of the test criterion 

when P = •.. =p = 0 • 
1 -- m 

Int d Z /\2 I 2 . 1 A . -ro uce j = p j a , J = , ••• ,m • ssum1ng 

p1= ••• =pm = 0 , z1 , ••• ,zm are independently X~-distributed. We 
(a) m-a 

are to calculate the distribution of Fr = Z(m-r)/j~1 z(j) • 

Applying the results of the preceding section, let from nov-r on in 

(4.4) and (4.6) Y. = Z. , j=1, ••• ,m. An expression for Pr(A_) J J --k 

and hence for Tk will ·be derived from three lemmas. The first 

one enables us to write the statistic defining ~ as the ratio 

of a x~-distributed variable and a linear sUt-n of independent 

2 . -bl x2-var1a es. 
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Lemma 4.2. 

Let Z( 1 )< ••• < Z(m) be an ordered sample from the x~ -

distribution. Put u1 = mz( 1 ) , Uj = (m-j+1) (Z(j)-z(j-1 ) , 

j=2, ••• ,m • Then u1, ••• ,Um are independent and x~-distributed. 

This is a well known result. The proof is elementary and is 

omitted. 

The next two lemmas are believed to be new. 

Lemma 4. 3 

Let z and Y be independent. Suppose that and 

that Pr(Y>O) = 1 • Put V = Z - Y • Then the conditional distri-= 
bution of V given V>O is 

Remark: Consider two independent streams of events A and 

B. Suppose A are Poisson events with intensity i . Interprete 

Z and Y as the time of first occurrence of A and B respective­

ly. Then the lemma states the well knovm fact that the Poisson 

process has "no memory". 

Proof: Assume for simplicity that Y has a density g (;}r). 

It is easy to see that the density of V can be written 

q ( v) = ! e -!v j" ( ) -!y . g y e dy 
max(o,-v) 

from which the le:mrna is an j.mmediate consequence. 

Lemma 4.4 

Let U0 ,U1 , ••• ,Un be an independent sample from the 

distri.bution, and let 1 1 , ••• ,1 be non-negative numbers. n 

(4.13) 
n 

Pr(U0 / L l.UJ. > c] = 
j=1 J 

n -1 
11 ( 1 +l .c) 

j=1 J 

Then 
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Proof: For k=1,2, ••• ,n ~ let 

k 
R = {U I ~ 1 . u > c} • 
-k 0 j =1 J J 

Since lk is non-negative, ~ c Bk_ 1 and hence 

Pr(~) = Pr(~ ~~- 1 ) Pr(~_ 1 ) 

k-1 
Introducing W = U - c ~ l .U. , we may write 

0 j =1 J J 

As Uk and W are independent, it follows from Lemma 4.3 that 

conditioned on W > 0 the ratio W/uk is F-distributed with 

2 degrees of freedom in numerator anc1. denominator. This yields 

Thus 

implying 
k 

= ~ ( 1 + l_. c ) - 1 
j=1 J 

which was to be proved. 

We now turn to the calculation of Pr(Ak). It is necessary to 

distinguish between two cases. 

Case 1. k < a-1. Let 
--~~--= = ----

k z(1;1,k) 

(m-k)Z ( 1 ;k+1 ,rn) 

' j=O 

j=1 

\_(m-k-j+1)(Z(j;k+1 ,m)- Z(j- 1 ;k+1 ,m)),j=2, ••• ,m-k 
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(Z(j, 1,k), j=1, ..• ,k and Z(j;k+1, ••• ,m), j=1, •. qm-k are the 

order statistics of z1, ••• ,Zk and Zk+1 Z respectively.) 
' • • • ' m 

From Lemma 4.2 it is easily deduced that U ,u1, ••• ,U k are 
0 . ill-

independent and ')(.~-distributed. L11. terms of these variables 

~ may be written 

A_ = { u /m~a j U > k c} 
--k o a-k+J' m-a-J"+1 • j=1 

Applying Lemma 4.4, it follows that 

(4.14) 

Case 2. k > a • In this case we use the transf'ormation 

u. = 
J 

=-

k z(1;1,k) 

(k-j+1) (z(j;1,k)- z(j-1;1,k)) 

zj 

j=1 

' j=2' ••• ,k 

j=k+1, ••• ,m 

As in case 1, u1, ••• ,Um are independently x~-distributed. 

It is easily seen that 

{ u1 
a k-a m 
l: k . 1 u. + L: u. 

j=2 -J+ J j=a+1 J 

k c } 
> 1-(k-a)c ' if (k-a)c < 1 

(If (k-a)c ~ 1 , then Ak is empty.) Another application of 

Lemma 4.4 yields 

(4 .15) [max(1-(k-a)c,O/]m- 1 



- 18 -

Finally by inserting (4- .14) and (4 .15) into (4. 5) and (4. 6), the 

distribution of F(a) can be written down. We state the result r 

as a theorem. 

Theorem 4.1. 

Let 

bution. 

(4.16) 

where 

(4.17) 

z1, ••• ,zm 

Put F(a) 
r 

be an independent sample from the 
m-a 

= Z(m-r)/ j~1 z(j) • Then 

-1 

2 d" t . X - lS rl-2 

( ) ( ) [ c ]+a 
H a (c) = Pr(F a >c) = 2:: (-1 )k-r-1 (mk)(k~r-21 )Qk(c) 

r r k=r+1 

k < a-1 

Furthermore, for arbitrary integer p > 0 , 

(4.18) 
r+2p , ( ) 

L: (-1 )k-r-1(m)( x-1 )Q (c)< H a (c) 
k k-r-1 k = r k=r+1 

r+2p-1 
( )k-r-1 (m) ( k-1 ) ( ) 

~ L: - 1 k k-r-1 Qk c ! k=r+1 ! 

If a = 0 , (4.16) reduces to 

(4.19) 

which was proved in [1], [6] and [11] by other, more complicated 

methods. Note that when r = 0 , (4.19) is the same expression 

as (3.4) 
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4.3. Approximation~~ 

We only consider the most important case r = 0 • As indj.-

cated in section 4.1, the sum of the lowest terms on the right of 

(4.16) provide good approximations to H(a)(c) = H(a)(c). 
0 

Using p terms, the approximation can be written 

(4. 20) 

In particular 

H(a)(c) 
m-a j c )-1 (4.21) = m n ( 1 + 1 j+a-1 • 
j=1 

It is clear that ~(a)(c) is larger or smaller than 

H(a)(c) according to p being even or odd. An indication 

accuracy is given in Table 4.1, where the C.ifference 

a, 

\ H (a)(c) - H(a)(c) t is recorded for several values of 
p 

m, c and p • 

i a=1 a=2 a=3 a;;::4 I 
I 

l m=12 1 o .oooo i 0.0021 0.0036 0.0052 
H(a)(c)=0.051 I o.oooo i 0 .oooo l 0.0002 0.0005 

I 
1 o.ooo1 ! 0. 0016 0.0029 i m=20 I 0.0023 

l 
1 o.oooo i 0.0000 1 0.0000 0.0001 

1 o.ooo1 1 o.oo64 I 0.0104 0.0146 I ! 
( ) \ m=12 ; 

0.0006 0.0017 Ha (c)=0.10. ·0.0000 I 0.0000 I 

i 0.0006 j 0.0053 0.0076 0.0094 
i m=20 I 

I I 0.0000 : o.oooo 0.0004 0.0007 

of the 

~§E~§-±~1~--~g§_~~ff§E§g£§ __ \Hp <:2i£2_:_B~:2i£1l __ ~-E=1~g 
~~-E~2~fg§~_f2E_Ye~£§~-~f __ £ __ ~§~~~fJ~~g __ B~:2i£2_=-Q~Q2_L_Q~1Q_~ 
E2E_§e£h __ ~--~h~_£EE§E_1!g~-~f-~h~-~e21~_£2EE§~E~g~~-~2--E-=-1-L 

~Q§_1~~§f_~~g~-~~--E-=_g_~ 
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As was to be expected the approximation is better the smaller the 

value of a and the larger the value of m • It is clear that 

as p increases,very rapidly approaches H(a)(c) • 

In applications the accuracy will almost always be better the 

larger the value of p • However, this is not true in general. 

Applying the approximation is for many practical 

purposes sufficiently accurate. Suppose c is determined from 

(4.22) 

Then is less than e: , and as is clear from Table 4.1 

not much less. Asymptotically, as m ~ oo , it is possible to 

derive a lower bound. From the Bonferoni inequality, it is easy 

to see that 

(4. 23) 

where 

Asymptotically v1 and v2 are independent. Hence (4.23) as 

m -? oo can be rewritten 

Inserting 

(4.24) 

Pr(V1> c) = 1 H(a)(c) 
m 1 

e: = - , we obtain 
m 

as m -? cc • 

It is clear from Table 4-.1 that this ineguali ty does not hold 

in general for finite m , unless a= 0,1 • In the latter cases 
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(4.24) can indeed be proved, using essentially the same method 

as above (see [3]). 

The approximations should be particularly useful in the 

following context. Let 

Instead of determining c from 

k=1 , ••• , m • 

H(a)(c) = € , one might in 
0 

practice prefer to calculate the quantities H(a)(Fk) , k=1, ••• ,m , 

and state pk > 0 if H(a)(Fk) ~ € • A g:uick and simple method, 

with level slightly less than € , is to state pk > 0 if 

< e: • 

4.4. Performance 

The object of this section is to study the performance of 

procedure (4.1) for different values of a and compare with 

Fisher's test (a=O) in particular. In this respect two questions 

arise: 

1) How much is lost by using a> 0 in the case of only one non­

zero amplitude (when Fisher's test is optimal) ? 

2) How much can be gained in other cases ? 

Let the power function of the test ili(a) be denoted 
'~'k 

k=1, ••• ,m 
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Since the distri.bution of the test statistics for g.;neral values 

of p1 , ••• ,pm is extremely complicated, the simplest way to go 

about seems to be by Monte Carlo teclmique. The results below 

are obtained from 1000 simulations on the computer of the 

University o£ Oslo. A well-tested random number generator was 

used. The accuracy of the results is indicated in Table 4.2. 

In the simplest case of a=O the powe~ as derived in chapter 3 

from an approximate analytical expression,is compared to returns 

£rom the Monte Carlo simulations. It is seen that the absolute 

error is at most 0.01-0.015 , which is good enough for our needs. 

1'·,, 2 2: 
I '•, ekl (f : 5 o 0 
I '·.. i 
t '"~·- .. , '! 

10.0 15.0 20.0 

------------~, • f 

i Analyt. I o.181 ! 0.453 l o.697 ' o.856 I 
2.: p . = 0 

j4k J 
;. ________ .;.... -------~--------i---------~--------1 l I I 1 : 

j I • i 1 , 

1 Monte c. i 0.177 l O.LJ.6L:- J 0.692 ! 0.041 1 

1 ' 1 : I 
! Analyt. 10.068 I 0.231 I 0.446 J 0.648 ! 
, --------~-------r--------~--------~--------i I ! I j i I 
i Monte c.j0.069 i 0.232 ! 0.454 . 0.660 I 

~§Q1§_1~g~--~h§_E~~§f __ ~~o~---~f-~~@Q§f~§-~§@~-~g-~h§_Q§§§ 
~=1g_~-~=Q~1Q_~--Q~~E~f~@~~g_Q§~~§§g_E§§~~~@-~Q!e~g§~-~g~~~!~£~~~~ 

§g~_f£~~-~~g!§_Q§£~~-§~~~~!~~g§~ 

As a·bove let N be the total number of non-zero amplitudes. 
p 

Results in the case N = 1 are shovm in Table 4. 3. It is 
p 

clear that the loss in power by using a > 0 is slight. This is 

true even for small values of m • For instance, when m=6 , the 

absolute loss is for a=2 at most 0.06-0.08 , (admittedly the 



- 23 -

discrepancy is 2-3 times greater for a=3 , but thiR seems to 

be a very large value of a for such a small m .) 

m=6 

1 e:=o.os 

m=12 

€=0.10 

~~E!~-1~d~--~~~-E~~~E--P~a2 __ ~g-~!!~£g~!~Y~~-~~!~-~£!l_££~ 
g~g:~~E~-~E!~!~£~!--9~~~~-£~£~~£~£~£-~££ __ ~='§.z._~=Q!Q2 
~g£_~=1g.z._~=Q~1Q_~ 

To answer the second question above, consider alternatives 

where pk > 0 and the non-zero amplitudes other than pk have 

the same magnitude pA • In Figure 4.1 and 4.2 the power ~~a) 
in the case m=12 , e:=0.10 is plotted as a function of pi/cr 2 

for N =2 and N =3 respectively. The test a=1 is not inclu-
p p 

ded as its performance differed little from a=O • Also, when 

N =2, the power functions of methods a=2 and a=3 were close, 
p 

and the latter is omitted. 
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It is clear that when N > 1 , the Fisher method very 
p 

rapidly becomes inferior 
2 2 Np :;:2 , pk > p j ?; 0 , then 

p~ is about 10-15 % of 
J 

to the other methods. For example, if 

~~2 ) and ~~o) become equal when 

On the other hand the gain in 

using a ~ 2 instead of a=O may be substantial. As an example, 

suppose pA = pk • 

creased by 60-80 %. 
In Figure 4.1 where N =2 , the power is in­

p 

When N =3 (Figure 4.2) the power is doubled 
p 

or threedoubled by using a=3 instead of a=O • 

It was chosen to present results for the case m=12. Smaller 

values of m will tend to increase the discrepancy between the 

methods. Larger values have the opposite effect. 
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The results above also give insight into how a should "be 

selected. It is clear that the performance may be poo::- if a is 

chosen too small. If the number of large p 's k is believed tc be 

bounded by, say s ' it may be reasonable to put a=s ' for 

instance if the model is described by (2.5), our choice could be 

a=2. However, if m is not too small, it is clear that there is 

not much to lose by choosj.ng a for safety somewhat larger than s • 

This would be all the more a];)propriate in cases where some of 

p1 , ••• ,pm , although uninteresting concerning the periodical 

nature of ;t , may not be exactly zero (cf. the discussion in 

chapter 2.) 

5. OTHER METHODS 

In this chapter other methods suggested in the past are briefly 

discussed along with a couple of new propositions. 

Anderson [1] derives Bayes procedures assuming that the non­

zero amplitudes have the same magnitude(*) • These prucedures, 

however, are rather complicated and are, perhaps, not so interes-

ting from a practical point of view. Also,no effort is made in 

[1] to calculate the relevant constants (which would be far from 

easy). 

From the same starting point another method can be derived by 

applying a technique suggested by Doornbos for a related problem 

(see [3]) .. Let us for a moment assume that the number of potential 

amplitudes is exactly k (or zero). Then a reasonable decision 

(*) In addition Anderson assumes that the number of non-zero ampli­

tudes is at most two, but his results can easily be extended 

on this point. 
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rule, optimal when the non-zero amplitudes have the same magnitude, 

Would be to state (*) p p > 0 if the statistic [m] '• • •' [m-j+1} 

= 

k /\2 
. I: P (m- J. + 1 ) 
J=1 

is sufficiently large. To define the test in the general case, 

let v~o) be the observed value of Vk and introduce for 

k=1,2, ••• ,a (a is an integer fixed in advance) 

(5.2) 

Define the integer ~ ·by 

(5.3) 

If € 
p* <­=a k 

P* = min P • 
k 1<k<a k = = 

1 then are stated positive. 

Otherwise no statement is made. 

It is immediately recognized that the probability of stating 

incorrectly that some pk > 0 is bounded by e when 

p1= ••• =pm=O • However, it is not clear whether this is the case 

for general values of p1 , ••• ,pm • 

To transform the test proposition into a working method we must 

have a way of calculating Pk as given by (5.2). It does not 

seem that the proof of Theorem 4-.1 easily can be extended to 

(*) For k=1, 2, ••• ,m is the amplitude corresponding 
1\ 

to P(k) . 
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to cover this case. However, in [2] the present au~hor arrived 

at a solution by another method. By Lemma 3.2 the numerator and 

the denominator of (5.1) may be written as linear sums of the same 

independently distributed x~-variables. Thus, their joint characte­

ristic functions are not difficult to obtain, and their joir1t 

density can be found ·by the inversion formula for characteristic 

functions. Finally an expression for Pk can be derived by straight­

forward integration. Omitting the details (which are gi~en in [2]) 
we are here content to state the result: 

(5.4) 1 -

k=1 , 2, ••. , a • 

It can easily be verified that when k=1, (5.4) coincides with 

0.4), as it should. 

A reasonable approximation is provided by the first term of the 

Bonferoni inequality, i.e. 

Introducing B(x;'V,IJ.) as the cumulative Beta-distribution, this 

yields 

(5.5) (m) ( ( ( o ) • k m-k) ) 
pk ~ k 1 - B vk ' 2'~ • 

The difference between the two sides of (5.5) is typically small. 
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Whittle (see for example [ 1]) has suggested to mal:e the inference 

stepwise. As the first step state P[m] > 0 

/\2 

(5.6) P(m) 
m /\2 > wm • 
L: P· 

j=1 J 

if 

Othe~vise no statement is made and the process is terminated. 

The constant wm is to be determined from 

1\2 

Er( P(m) > wm IP1=· • .=pm=O) = e: 
m A2 
L: P· 

j=1 J 

which can be done by (3.4). As the k-th ste~ assuming P[m] , ••• , 

P[m-k+2] 
if 

to have been stated positive, state 

A2 
P~m-k+1) 

m- +1/\ 2 
L: P( ·) 

j=1 J 

> wm-k+1 • 

P[m-k+1 J > 0 

Otherv1ise terminate the process and make no further statement. 

How the constant should be determine~ is discussed in [1]. 

A serious objection to this procedure is that it may not at all 

get started if several of p1 , ••• ,pm are large , especially if 

their magnitudes are not far apart. As was demonstrated in 

chapter 3, the probability that (5.6) is satisfied, may then be 

quite low .. 

To overcome this difficulty one might consider to reverse the 

process. For a specified interger a, state P[m-a+1 ] > 0, and 

in addition P [m-a+2]' • • • ' P [m] > 0 ' if 



l\2 
P(m-a+1) 
m-a/\ 2 

I: P(·) 
j=1 J 
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Othervvise it is concluded that there is no ·basis for stating 
1\2 

P[m7 a+1] > 0, and P(m-a+1) is to be included in the estimate of 

cr2 • As the next step, state P[m-a+2 ] > 0 , as well as 

if 

A2 
-P .... (m ..... -_a=-+....-2....,) 

1 > 1 2 • m-a+ /\ 2 m-a+ 
L: P(·) 

j=1 J 

Otherwise continue the process as above until we can either state 

P[m-a+k]'•••'P[m] > 0 for an index k ~a or it is concluded that 

no amplitude can significantly be judged positive. 

When p1 =· •. =pm = 0 , the proba.bili ty of making a false statement 

is bounded by the quantity 

a 
L: 

k=1 

a 
which by Theorem 4.1 is equal to L: ek if lm-k+1 is 

k=1 
determined from 

(5.8) H(k) (1 ) = 
k-1 m-k+1 

(1-(j-k)lm-k+1)m-1 
------------~~~--------------- = € m k k- 1 ( · k) · 
(1+klm-k+1)- .n (1+J-l 1 ) 

l=1 j-i m-k+1 
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This only gives an upper bound for the error. The actual value 

is likely to be much smaller. Also it is an open question whether 

the error for arbitrary values of p1, ••• ,pm is controlled by the 
a 

quantity r, ek • 
k=1 

The question arises how to choose e 1, ••• , e: a • Conceiva-bly it 

would be a mistake to make the level to low for the first steps, 

as this could result in low-powered tests at the start leading to 

over-estimation of c/ later on, Anyway, from a practical view-

point, I judge this procedure for a number of reasons to be clearly 

inferior to the one described in chapter 4. 



M 
4 
5 
6 
7 
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,9 
_10 

!1 
~2 
l3 
.14 
.~5 
!6 
J7 
18 
l9 
?0 
21 
22 
23 
24 
25 
26 ,, 
28 
29 
30 
31 
32 
33 
34 
35 
J6 
37 
38 
39 
40 
41 
4t2 
43 
44 
45 
46 
-17 
48 
49 
!'li0 
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6. TABLES OF CRITICAL VALUES 

A a 1 
6~3681 
3.7287 
?.:5944 
1:9798 
1~5985 
t, :34~3 
t, 154 4 
l.0l44 
~9051 
,~176 
.7459 
~6860 
,6353 
,5919 
,.5541 
, 5211 
,.4919 
·.4659 
~4427 
,4217 
,4027 
,3854 
.3696 
:3!5t 
~3417 
.3294 
~3P9 
.3073 
~2974 
,..2881 
,2794 
.2713 
:2636 
~2564 
.. 2495 
;2431 
,2370 
.231:> 
~2256 
,2204 
,2t54 
,2107 
r2A61 
,2018 
,1976 
.1936 
~1898 

A • 2 

10.6323 
5.7780 
3.810~ 
2.7912 
2.1826 
1. 7831 
.1.5031 
1.2970 
1.1394 
1.9155 

.9155 

.8333 

.7646 
·~ 7063 
.6564 
.6130 
.5751 
.5416 
.5118 
.4852 
.4613 
~4396 
~4199 
.4020 
.J85b 
.3704 
.3564 
.3435 
~3315 
.3204 
.3099 
• 3C102 
.2911 
.2825 
.2744 
.2668 
.2596 
.2528 
.2464 
.2403 
.2345 
.229~ 
.2237 
.2187 
.2139 
.2093 

CRITICAL VALUES rOR MlHiOD (4.1) 

LEVEL : 0.01 

A : 3 

15~0409 
7~8358 
5~k11Z125 
3.5725 
2.7362 
2~1975 
1,.82b8 
1.-5561 
1.3526 • 
1~1942 
1.0678 
~9649 
:8795 
~8077 
~7465 
~6937 
~6479 
.6076 
~5721 
.54k14 
~5120 
~4865 
~4634 
.4424 
.4232 
~4957 
~3895 
~3746 

..•. 36~8 
~3480 
:3360 
~3249 
.3145 
.3048 
.2956 
:2870 
~2789 
.2712 
~2640 
·• 2571 
~25Hti 
~2445 

.• 2386 
.233~ 
~2277 

A ~ 4 

19,6278 
9.9437 
6,2"87 
4.3544 
3.2854 
2.60.53 
2.1414 
1.8081 
1.5589 
1.3664 
1.2140 
1,0907 

.9890 
,9040 
,831~ 
.7702 
.7167 
,6699 
.6287 
,5922 
.5597 
,5304 
.5041 
.4802 
.4584 
.4385 
.4203 
.4035 
.3880 
.3736 
.3602 
.J478 
.3362 
,3254 
.3152 
.J057 
.2967 
,2883 
.2603 
,2727 
.2L5b 
.2588 
.25?3 
.2462 

A • 5 

24.3818 
12.1"71 
7,4365 
5,1447 
3.8372 
J.0130 
2.4555 
2,0579 
1.7626 
1.5360 
1,3575 
1.2139 
1,09bl 

,9979 
,9151 
.8444 
,7834 
.7302 
.6836 
,6423 
.b056 
.5728 
,5432 
.5165 
.49~2 
.470l 
.4498 
.4312 
,4140 
.3981 
,3834 
.3697 
,3570 
.3451 
.3340 
.3235 
.3137 
,3045 
.29f)8 
.287!:> 
.2798 
.2724 
.?6!:>4 

A II 6 

29.2869 
14,3240 
8,6873 
5,9459 
4,3941 
3,4230 
2,77~2 

2,3075 
1,9656 
1,7046 
1,4999 
1,3358 

'· 2018 
1, 0906 

,9971 
.9174 
,8489 
.7894 
.7373 
,6913 
,6506 
,6141 
.5t:il4 
,5519 
,5251 
,5~08 

,4785 
,4561 
,4393 
,4219 
,4059 
,3910 
.3771 
,3642 
,3521 
.3408 
,33"'2 
.3202 
,31"8 
,3~19 
.2935 
,2856 

A ;: 7 

34.3282 
16.5912 
9,9610 
6,7585 
4,9572 
3.8362 
3,0867 
2.5578 
2.1688 
1.8730 
l.6.at9 
1,4573 
t,Jft170 
1,J82b 

-1-0783 
.9897 
,9137 
,8478 
.7903 
.7397 
.6948 
,6549 
.6190 
,5867 
,5575 
,5309 
,5"67 
.4845 
,4641 
.4453 
,4279 
• 4 t 18 
.3968 
.3829 
.3698 
.3576 
,3462 
,3355 
.J254 
,3159 
.3~69 

A 1: 8 

39,4929 
18.9049 
11.2565 
7.5827 
5.5267 
4.25J2 
3,405J 
2,8"94 
2.3127 
2.0417 
1.7839 
1.,5786 
1.4119 
1.2743 
1,1592 
t,J6lD 

.9781 
,9059 
,8429 
,787b 
,7387 
,6952 
.b5b2 
.b212 
,5895 
,5607 
.5345 
.5106 
,488o 
,4b83 
.449b 
.432J 
,4162 
,4012 
.3873 
.3742 
,Jb2i! 
.35"5 
.JJ9/ 
.3290 



M 
4 
!> 
6 
7 
8 
9 

10 
u 
12 
l. 3 
J4 
J5 
1.6 
.17 
18 
19 
20 ,. 
22 
'3 
24 
25 
26 
'7 
'8 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

A a l 
4~4288 
2,~606 
1,99~6 
1.5518 , . 
1,2797 
1,0871 
,9459 
,eJ80 
,7529 
,6840 
,6270 
,5792 
,5384 
,5032 
,.11726 
,4456 
,4216 
,40~3 
,3810 
,3637 
.3479 
~3335 

. ·.3203 
~3081 
,2969 
.2866 
~2769 
,2679 
,2!595 
,2517 
.. 2443 
~2374 
,2309 
·.2247 
:2lH9 
:2134 
~2~82 
.2032 
~1985 
,1940 
,t897 
.1857 , . 
.1817 
:17R0 
.1144 
~1710 
.lh77 

A • 2 

7.3803 
4,.2699 
2,.921~ 
2,.1926 
l,.7A45 
1,.4440 
1,.2298 
1,.0700 
~9465 
,.8484 
,.7b87 
·.7027 
.6472 
.5999 
,.5591 
.5236 
~4924 
.4648 
,.4401 
,.4180 
.3981 
.3800 
,.3636 
.3485 
.3347 
,.3219 
,.3102 
.2993 
.2891 
,.2796 
,.2708 
.2625 
,.2548 
.2475 
,.2406 
,.2341 
,.2279 
.2221 
.2166 
• 21 1 4 
.2064 
,.20lb 
.1971 
.1928 
.1887 
.1848 
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CRITICAL VALUES fOR METHOD (4.11 

LEVEL • 0,.025 

A • 3 

10 .• 4330 
5~7659 
3~8321 
2~8041 
2~1854 
1~7784 
1~4929 
1:2831 
1~1230 
~9973 
~8962 
~8133 
~7442 
~6857 
~63o7 
·.5924 
.5546 
-~521 J 
~4918 
.4655 
·.4418 
:4205 
.4011 
.3835 
~3674 
~3525 
.3389 
~3263 
.3146 
~3037 
~2936 
.2841 
.2753 
~2669 
~2591 
~2518 
~2448 
.2363 
·.2321 
:2262 
.22~6 

~2153 
.211113 
~20o4 
• 2kh19 

A ;r 4 

13.6115 
7.3400 
4.7544 
3,.4166 
2.6233 
2. U179 
1.7506 
1.4906 
1.2940 
1.1410 
1.0188 
.9t9J 
.BJ68 
,.7675 
.7085 
.6576 
,6135 
.5747 
.5406 
.5HH 
.4829 
.458o 
.4363 
.4162 
.3979 
.3811 
.J657 
.3514 
.338J 
.3261 
.3147 
.3~42 
.2943 
.2850 
.2763 
.2682 
.26~5 
.2bJ2 
.2464 
.2399 
.2337 
.2279 
,.2224 
.2171 

A = 5 

16.9079 
8,9363 
5.6940 
4.0363 
J.06J6 
2.4376 
2.~072 
1,6964 
1.46:St 
1.2826 
1.1393 
1.0232 

,9274 
,8473 
.7793 
.7211 
,.6706 
.6265 
.5877 
.5~33 
.5226 
.4951 
.47~2 
,4477 
.427J 
.4085 
.3914 
.3756 
.361~ 
.3475 
.J35" 
.3233 
.3125 
.3023 
.2928 
.2838 
.2754 
.2675 
,.26tH" 
.2530 
.24!JJ 
.2399 
.2339 

A a 6 

20,3110 
1'~.5731 
6,652~ 
4.6651 
3,5084 
2,7694 
2.2647 
1.9~23 
1,6318 
1.4235 
1.2589 
1.1261 
1.0170 

.. 9261 

.8492 

.7835 
,7268 
.6774 
,.6340 
.5956 
.5615 
.53~9 
.5034 
.4785 
.4559 
,.43b3 
.4164 
,.3991 
.3831 
.3684 
,3547 
.342kt 
.3301 
.3191 
.3087 
.299~ 
.2899 
.2813 
.2732 
,2656 
.2584 
,.2515 

A a: 7 

23.,8HlJ 
12.2481 

7,6281 
5. :.H1JJ 
3.9584 
3.1~41 
2.5237 
2.1090 
1.8k'08 
1.5644 
1.3783 
1,2287 
J.1~62 
1 .. 01t144 

.9186 

.8454 
,7824 
.7277 
.6797 
,6374 
.5998 
.5662 
.5360 
.5~88 
.4841 
.4616 
.4410 
.4222 
.4048 
,.3888 
.3740 
.3602 
.3474 
.3355 
.3243 
,.3138 
.3~40 
.2948 
.2Bo1 
,2779 
,2702 

A a 8 

27,.3969 
13.9583 
8,6215 
5.9509 
4.4139 
3.4421 
2.7848 
2.3169 
1.9704 
1.7056 
1,4978 
1,3312 
1,1952 
l • 0824 
.9876 
.9070 
,8J77 
.7776 
.7251 
"'6788 
.6378 
,MH2 
.5683 
,5387 
.5119 
,.487b 
,4b53 
.4449 
,.42b2 
.40910 
.3930 
.3782 
.3644 
,.351b 
,3396 
,.3284 
.3179 
.3081 
,2988 
.2900 



M 
4 
5 
6 
7 
8 

.. 9 

'·" J1 
!2 
\3 
.\4 
J5 
.~6 
.l.7 
18 
19 
20 
'-1 
'-2 
23 
24 
~5 
26 
27 
:?8 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
<11 
42 
43 
44 
45 
46 
47 
48 
49 

~" 

A a 1 
3~3089 
2~1623 
1~M152 
1,2787 
1,0648 
,9tJ9 
,~Al6 
,7149 
,6458 
,sB94 
,5425 
,51i129 
.4689 
~439~ 
,4t37 
,J009 
,3706 
,3!525 
.3361 
~32J3 
,3078 
,2954 
.2841 
:2736 
~2639 
,.2550 
,2466 
.2389 
~ 2316 
,2248 
,.2183 
,2123 
,2~66 
.2013 
r 
,tQ62 
,tQl4 
,t868 
.1A24 
~1783 
,t744 
,1706 
.1670 
~1636 
,t603 
,t57l 
,1541 
.1~12 

A • 2 

5.4982 
3.335~ 
2.3467 
l.795J 
1.4478 
1.2109· 
1 .. 0398 

,.9107 
.8101 
.7296 
.6637 
.6089 
.5625 
.5229 
.4885 
.4585 
~4321 
.4l:186 
.3876 
.3687 
.3516 
.3361 
.3220 
.309~ 
.2971 
.2861 
.2759 
.2664 
.2576 
.2494 
;.2417 
.2345 
.2277 
.2213 
.2153 
.2"96 
.2043 
.1992 
.1943 
.1897 
.1854 
.1812 
.1772 
.1734 
.1698 
.1663 

CRITICAL VALUES rOR METHOD (4.1) 

LEVEL : 0.05 

A • J 

7~7645 
4~5141 
3.0753 
2.2933 
,·.8120 
1~4899 
1~2612 
1~"912 
~9604 
~8570 
.7733 
~7043 
~6464 
,.5973 
~5551 
~5185 
~4864 
~4581 
~4329 
.4104 
~3901 
~3718 
·.3551 
.3399 
.3260 
~3132 
~3013 
~2904 
:2802 
~2708 
~262" 
.2537 
~24M~ 
:2387 
~2319 
~2255 
.2194 
.2136 
~2082 
~2~30 
.1981 
~1934 
.1890 
.1848 
.1807 

A :; 4 

10.1263 
5,7240 
3.8136 
2.7930 
2.1740 
1.7653 
1.4783 
1.2673 
1.1064 

.9802 

.8788 

.7959 

.7268 
,6684 
.6186 
,5755 
.!J380 
.5050 
.4757 
.4497 
.426f1 
,4k'53 
.3862 
.Jb89 
,3530 
.3385 
.3251 
.3126 
.J013 
.29fr:J7 
,2608 
.2716 
.2630 
.2549 
.2473 
.2401 
.2334 
.2270 
.2210 
.215J 
.2099 
.2048 
.1999 
.1952 

A ~ 5 

12,5775 
6.9677 
4,56b4 
3.2990 
2.5386 
2.0411 
1.{)949 
1,4422 
1.2509 
1.1018 

.• 9827 
,8858 
.8054 
,7379 
,o8~4 

.6310 

.5881 

.5505 

.5173 

.4878 
,4614 
.4377 
,4163 
.3968 
.3791 
.3629 
.3480 
.3343 
.3216 
.3098 
.2989 
.2867 
.2792 
.2703 
.262~ 
.25411 
.2468 
.2398 
.2332 
.2270 
.2211 
,2155 
.?102 

A F 6 

15.1~96 
8,2440 
5,3346 
3.8128 
2,9~71 
2,3190 
1.9123 
1,6172 
1,3951 
1.2229 
1,0860 

.9749 
,8833 
.8~66 

.7415 
,6857 
.6l74 
,5952 
,5580 
,5251 
,4957 
,4694 
,4456 
,4241 
,4t145 
.3867 
,3703 
,3552 
.3413 
,3284 
.3165 
.3054 
,295fl 
,2853 
.2763 
,2677 
.2597 
,2522 
,2451 
,2384 
.2320 
.226.., 

A • 7 

17.7146 
9,5507 
6,1179 
4,3347 
J,28t13 
2,5996 
2,1312 
1,7931 
1.5398 
1.3441 
1,1891 
1,0639 

,9609 
.8749 
.8022 
,7400 
,6863 
.6394 
.5983 
,5620 
,5296 
,5..,07 
,4746 
,451tJ 
.4296 
.4101 
.3922 
,3758 
.3607 
.J4o7 
.3337 
.3217 
,3105 
.3it'100 
,2902 
.2811 
,2724 
,2643 
.25b7 
.2495 
,2426 

A a 8 

20.3857 
!0.8857 

6"9155 
4.8647 
3,b58J 
2.8830 
2,3520 
1.9702 
t.b851 
!,4656 
1.2924 
1.1528 
1.~384 

,9430 
,862b 
.7940 
.7J49 
,.oo35 
.6384 
,598b 
.5632 
.5.31t> 
.5032 
.477b 
.4544 
.43.32 
,4139 
.3961 
.3798 
.Jb~l 
.J51d7 
.3378 
.3257 
.3145 
.3040 
.2942 
.2849 
.27b3 
.2b8l 
.2b~4 



M 
4 
5 
6 
7 
8 

... 9 
1_0 
n 
.12 
13 
·~ 

J4 
.t 5 
16 

.1.7 
18 
'ig 
20 
21 
22 
23 
:?4 
~5 
26 
27 
28 
29 
30 
Jl 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
.lj4 
45 
46 
47 
lt8 
49 
~0 

A s 1 
r 

2,4200 
1.6591 
1~2679 
1,0301 

.8701 
~7550 
,6681 
,6900 
,5452 
,5001 
,4622 
,4301 
.4023 
:3781 
:3569 
~3380 
.3212 
~JB61 
,2924 
;2799 
,2686 
r2582 
,2486 
,23~8 
,2316 
,2239 
,2168 
,2102 
,2040 
,t982 
.1927 
~1875 
,1826 
.1780 
~i7J6 
~1695 
'.1656 
.UH8 
~1582 
,1548 
,t5t6 
,1485 
.. 1455 

:1426 
.1399 , . 

.1373 
:t347 

A • 2 

3.9984 
2,.5446 
1.8434 
1.4383 
1 .. 1769 

,.9953 
.. 8622 
.7606 
~6807 
.6162 
,.5631 
,.5185 
.4807 
~4482 
.4199 
.3951 
.3732 
.3536 
~3361 
.3203 
~3060 
.2929 
,.2810 
.. 2700 
.2599 
.2506 
,.2419 
.2339 
,.2264 
.2194 
.2128 
.2066 
.2008 
.1954 
.1902 
.. 1853 
~1807 
.1763 
.1721 
~1682 
.1644 
.tb08 
.1574 
• 1541 
.1599 
.1479 
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tRITltAL VALUES roR METHOD (4,1) 

LEVEl s 0.10 

A • 3 

5 .• 6358 
3~4372 
2~4109 

• 1,.8339 
1,.4702 
1.2225 
1;0441 
~9100 
~8059 

7228 
~65o2 
:5991 
.5518 
~5115 
~4767 
~4464 
:4197 
:3961 
.3751 
~3562 
~3392 
~3237 
~3097 
~2968 
:2850 
~274t 
.2641 
~2548 
:2461 
~2360 
.231d5 
~2234 
.2168 
:2106 
· .. 2047 
:1992 
.1939 
,t890 
.1843 
·.1798 
~1756 
,.1716 
.. 1677 
:1640 
.16V'5 

A : 4 

7.3446 
~.3547 
2.9670 
2.2315 
1.7626 
1.4474 
1.2230 
1.0561 

.9277 
~8263 
.7442 
.6766 
.6201 
.5721 
.5309 
.,4952 
.4640 
.4365 
.4120 
.,3902 
.3705 
.3528 
.3367 
.3220 
.3086 
.2962 
.2648 
.,2743 
.2646 
.2555 
.2470 
.2391 
.2317 
.2248 
.2182 
.2121 
.2063 
.2008 
.t956 
.. 19,17 
.1so0 
.1816 
.1773 
.1733 

A ~ 5 

9.120k' 
5.2989 
3.5753 
2.6348 
2.0573 
t.o7J0 
1.4017 
1.2015 
1.0486 

,9285 
,8320 
.7529 
.6870 
.6314 
.5839 
,5429 
.5071 
,4757 
.4479 
.42Jl 
.4009 
.3809 
.3628 
.3464 
.3313 
.3175 
.3049 
~2931 
.2823 
.2723 
.2629 
.2542 
.2460 
.2384 
.2312 
.2245 
.2181 
.2121 
.2064 
.2010 
.1959 
• 1911 
.1865 

10,9556 
6.2689 
4.1762 
3.0448 
2,3558 
1.9005 
1.5813 
1.3473 
l,l695 
1,0305 

.9194 

.8287 

.7535 

.6902 

.6363 

.5699 

.5497 

.5144 
,4832 
.,4555 
.4308 
.4~85 

.• 3884 
.3702 
.3536 
.3384 
.3244 
.3115 
.2996 
.2886 
.2784 
.2688 
~2599 
.2516 
.2438 
.2365 
.2296 
.2231 
.2169 
• 2111 
.2~56 
.2004 

A ~ 7 

12.,8454 
7.2628 
4,7895 
3.4617 
2.9562 
2.1305 
1.7625 
1.4939 
1.2908 
1.1327 
1.0067 

.9043 

.8197 
,7487 
.6884 
.,o367 
,5918 
.5527 
.5182 
,4876 
,4603 
.4358 
.4137 
.3937 
.3755 
.3588 
.3436 
.3296 
.3lob 
.3047 
.2936 
~2832 
.2736 
.2646 
.2562 
.2482 
.24eB 
.2338 
.2272 
.22~19 
.21~~ 

A : 8 

14.7844 
8.2790 
5.4144 
3.8854 
2,9649 
2.3bJ1 
1.9453 
1.64lb 
1.4128 
l,.2J5J 
1.094J 

.98iH 

.8859 

.8071 

.7404 
!116833 
.6339 
.59k)8 
.5529 
.5194 
.4895 
-462b 
.4387 
.417~ 

.J972 

.3791 

.Jo26 

.J474 

.JJ35 

.32~5 

.3066 

.2974 

.2871 

.2774 

.2683 

.2596 

.2519 

.2444 

.2373 

.2306 
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Appendix. 

An approximation to the non-central x2-distribution. 

Let Z"' -x;(A.). Patnaik [8] has suggested approximating Z 

with yY where and 

y = 1 + ...L 
A.+n 

'\) = n 
A2 

+- • 2A.+n 

Table A.1, computed in [8] ,indicates the accuracy of the 

approximation. 

In chapter 3 the approximation i& used in the following way: 

Let V and W be independent and non-central x2-distributed 

and let v* and w* be Patnaik's approximations. 

If we compare v R = V+W with 
v* 

* * V +W 
, it is easily shown that 

* * * lPr(R >r )-Pr(R>r) I ~ sup lPr(W ~ )-Pr(W>W) \ + sup IPr(V >v )-Pr(V>v) l . 
w w 

The actual error is no doubt much less. 



n 

7 1 4.000 0.1621 0.1628 
I 1 

I 
10.004 0.9499 

I 
0.9500 

I I 16 10.257 0.0430 0.0500 
I 16 

I 
24.000 l 0.5947 I 0.5898 

16 38.970 
1 

0.9482 0.9500 ! l 
i 

, 
I j 

6 I 24.000 0.8187 0.8174 I 12 I I I I 18 24.000 0.2936 0.2901 I i ! I ! ! 16 8 30.000 0.7895 0.7880 
8 L1r0 .000 0.9626 0.9632 

I 32 30.000 0.0590 0.0609 I l 32 ' 60.000 0.8329 0.8316 

I 
24 

I 
24 36.000 0.1556 

I 
0.1567 

I 24 48.000 0.5333 0.5296 
I I 24 72.000 0.9656 0.9667 I 

I t 

~e91§_~~1~--~h§_e££~Ee£Y_£f_~e~g~~~~~-eEEE~!~~~~~g~ __ !EEE~~~~~~ 
and exact values of the curnulative distribution function of the ----------------------------------------------------------------
non-central 
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