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S U M M A R Y 

ON COMPLETE SUFFICIENT STATISTICS AND 

UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATORS 

Call a parameter estimable if it has an unbiased estimator with 
everywhere finite variance. Say that a model has property (RA,BL) 

if any estimable parameter has a UMVU estimator. Say that a model 

has property (BA) if it admits a quadratically complete and 

sufficient statistic. 

By the Rado-Blackwell theorem (BA)~ (RA,BL) and Bahadur, 19&7, 

showed that (RA,BL)~(BA) for dominated models. 

In 1964 Le Cam introduced the notion of theM-space of an 

experiment and thereby extended the usual notion of a bounded 

random variable. This M-space may be enlarged in order to permit 

the same extension of the concept of a real random variable. With­

in this extended framework the equivalence (RA,BL)~(BA) holds 

without qualifications. Restricting ourselves to models where 

this extended notion of a random variable coinsides with the usual 

one, we shall see that the condition of dominatedness in Bahadur's 

theorem may be replaced by a weaker condition which is also appli~ 

cable to many models in sampling theory. 
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1. INTRODUCTION 

One of the most known, and deservedly so, theorems of 

mathematical statistics is the Rae-Blackwell theorem. If complete 

and sufficient statistics exist, then this theorem tells us not 

only what the UMVU estimators look like, but it also shows how 

UMVU estimatcrs may be obtained from unbiased ones by conditioning. 

The question then naturally arose whether there are experiments 

which do not allow (quadratically) complete statistics and still 

have the property that any parameter possessing an unbiased estima­

tor with everywhere finite variance also has a UMVU estimator. 

In this generality, and within the usual framework of mathema­

tical statistics, the problem is still open. Bahadur [1], however, 

settled the problem for dominated models by showing that the answer 

is negative in this case. 

We shall in the last part of this paper show that Bahadur•s 

result extends to a wider class of experiments which includes 

several of the non dominated models encountered in sampling theory. 

Before taking up this problem, however, we shall - following 

the footsteps of LeCam - consider an extension of the notion of 

a random variable. We believe that the discussion here shows that 

we more or less have placed ourselves in the role of a mathemati­

cian refusing to get involved with irrational numbers. Continuing 

this analogy one might tentatively consider Cauchy sequences of 

random variables for uniformities arising from statistical problems. 

It then turns out that such sequences may 

not converge. So where do we find the ''irrational variables"? 

A clue, or rather a complete hint, is implicit in LeCam's paper 

[5 ]. Noting that limits of powerfunctions of tests need not be 
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powerfunctions of any test, LeCam extended the notion of a bounded 

random variable. This was done by imbedding them in the space of 

bounded linear functionals on the band generated by the underlying 

probability distributions. Within this extended framework LeCam 

proved, among many other interesting results, that there is always 

a minimal algebra within the class of weakly closed and sufficient 

algebras. 

Unbounded variables define linear functionals on the space of 

measures making the variables integrable and it is quite possible 

that we could have proceeded this way. A more direct line of 

attack, however, suggests itself by the fact that the linear func­

tionals considered by LeCam may be represented as uniformly 

bounded families of random variables satisfying a coherence condi­

tion. Dropping the condition of uniform boundedness but keeping 

the coherence condition we arrive at our "irrational variables". 

Actually the space obtained that way might also be considered as 

the completion of the space of real random variables for a uni­

formity corresponding to everywhere convergence in probability. 

Now comes a pleasant surprise. If we admit these new variables 

as estimators then the Rae-Blackwell theorem and its converse hold 

without exceptions. Furthermore, by restricting ourselves to 

experiments such that the new framework coinsides with the usual 

one, we obtain the generalization of Bahadur's result mentioned 

above. 

These results were obtained by utilizing ideas in Bahadur [1] 

and in LeCam [5]. The starting point was the observation that a 

result (Proposition 6) in [1] might be reformulated in order to 

avoid the assumption of dominatedness. Bahadur showed there that 

if the model is dominated and the expectations of certain 
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Radon-Nikodym derivatives were UMVU estimable then the Radon­

Nikodym derivatives themselves were the UMVU estimators. If the 

assumption of dominatedness is deleted, then the arguments of the 

proof show that the Radon-Nikodym derivatives coinside almost every­

where with UMVU estimators,provided we restrict the underlying 

distribution to a certain dominated set. If, furthermore, the 

Radon-Nikodym derivatives are minimal non negative within the 

extended space of random variables, then Bahadur's conclusion 

remain valid - provided the assumptions are adapted to the extended 

framework. The existence of these Radon-Nikodym derivatives is a 

consequence of the order completeness of the extended space of 

random variables. 

Now we are almost through since the minimal sufficient algebra, 

whose existence was established in LeCam [5], is the smallest 

"weakly" closed algebra which contains the constants and all mini­

mal Radon-Nikodym derivatives dP 82 /d(PSr +P~) ; 81 ,82 E 0 • Here 

0 is the parameter set and P 8 , for each 8 in 0, is the distri­

bution of our observations when 8 holds. 

In the case where the extended framework coinsides with the 

traditionalone we obtain the generalization of Bahadur's result 

described above. 
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2. AN EXTENSION OF THE CONCEPT OF A RANDOM VARIABLE 

We shall in this paper consider experiments K of the form 

t. = (X ,,I~,P 8 : 8€0) where ( x ,Ji) is the sample space (i.e. a measure­

able space) and (P8 :8E0) is a family of probability measures on A. 

The index set 0 is called the parameter set of t. By some abuse 

terminology any function on 0 may be called a parameter. Often 

the sample space will be supressed in this notation and we may just 

write ~= CP 8 :GE0). Using the terminology established in LeCam 

[5] the band L of finite measures generated by the p 's 
8 is the 

L-space of {:, while the M-space, M, of .P;;. is the space of bounded 

linear funct.ional.s on L, i.e. M=L*. 

As any abstract L-space may be represented as some band of 

finite measures on some measurable space we have not excluded any 

type (in the sense of LeCam [5]) of experiments. Furthermore it 

is not difficult to see, using these representations, how the con-

cepts below carry over to the general case. The uniformities con-

sidered in this paper might as well have been expressed in terms of 

families of non negative and normalized elements in abstract L-

spaces. On the other hand the particular form permits representa-

tions in terms of measurable functions and we can keep our discus-

sion within the usual framework of measure theory. Let us begin by 

an example indicating the need of an extended framework. 

Example 1. Put x = [0,1], Je~ the class of Borel subset of x 
and 0 = { -1} n [ 0,1] • Let P 8 , for each 8 E [ 0,1], be the Dirac 

measure in 8 and let P_1 be the uniform distribution on [0,1]. 

This model is clearly complete and P8 A P8 = 0 whenever e1 f 8 2 • 
1 2 

Nevertheless a real valued function g on 0 has an unbiased 

estimator with variance - 0 if and only if gj[0,1] is 
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measurable and almost everywhere (Lebesgue) equal to some constant. 

More generally a real valued function g on e has an unbiased 

estimator v if and only if gj[0,1] is measurable and 
1 

g(-1) =I g(8)d8. If these conditions are satisfied then 

v = gj[0,1] so that Var_1v = Var g(X) where X is uniformly 

distributed on [0,1]. 

Although only families of real random variables are needed 

here we shall, as no extra effort is required, introduce the con-

ccpts for variables which are not necessarily real valued. 

Let UIJ, :'B) be some measurable space and let 'U, be a class of 

sub sets cf e. We shall then say that a family (f8 :eEe) 

measurable functions from 't, (i.e. ( x, J!:)) to U~, ~) 1s 

of 

coherent if there to each U E w is a measurable function fu 

from 'E. to (t~-, 'Y.1> so that P~Cf8 tfu) = 0 when 8 E U. 'V..· coherent 

families will be denoted as f = Cf8 :8Ee), g = (g8 :eEe), .•.• 

Call a sub set U of e dominated if (Pa:8EU) is dominated 

and ~d be the classes of sub sets of e which 

are, respectively, finite, countable and dominated. We shall then 

say that f is finitely coherent or countably coherent or 

dominatedly coherent or coherent if f is, respectively, ~f 

coherent or {A_ 
c coherent or coherent or {E>} coherent. 

Notions of coherence for variables taking their values in 

[0,1] were introduced in Hasegawa and Perlman [4]. 

A measurable function s from t to (~,$) may be identi­

fied with the ~coherent family (s:aEE>). 

"~ coherent families f and g are called equivalent if 

P:<f8tg8 ) = o ; a E e. [If <11j, ~) is Euclidean then [fat gal is 

measurable and we may write P8 instead of P:] . This notion of 
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equivalence is clearly a proper equivalence relation. 

It is not difficult to show that the notions of countable 

coherence and dominated coherence coinsides and that these notions 

co insides with the notion of finite coherence when (·~-h 1-:S) is 
(, 

Euclidean. 

The experiment ~ will be called coherent if any finitely cohe-

rent family of real valued variables is coherent. Now any abstract 

M-space with unit may be represented as the class of continuous 

functions on some compact space. (See Kelley [ 6]). It follows that 

any experiment is, in the sense of LeCam [5 ], equivalent to a cohe­

rent one. If i is coherent then any finitely coherent family 

f = <f8 :eee) from 
~l) 

G:. to a Euclidean space (('A,·~) is coherent. ,r 

..P • (-, = < x , <1-t: P 8 : e E e ) is coherent if is dominated or if 

consists of all sub sets of x and each P8 has countable support. 

Let us ln passing mention that LeCam's randomization criterion 

(Theorem 3 in [5]) may be expressed in terms of finitely coherent 

families as follows: Consider experiments Lf..-, = <x,&;P 8 :8E8) and 

'7' 
(;t_,t' 3; Q8 :eEe) and negative function 0. Then f, s- = a non E on 

u 

is £-deficient w.r.t. '~ in the sense of LeCam [5] if and only if 

there are finitely coherent families M( B) ; BeS; from ~ to [ 0,1] 

such that 2jQ 8 (B)- J M8 (B)dP 8 ! < e: 8 ;BE1:5: 8E8 and such that 
00 00 

M(¢) = o, MCx) = I and M8 C I B.) = I M8 CB.) a.s. P8 for all 
. 1 l . 1 l l= l= 

8 whenever the sets B1 ,B 2 , ... are disjoint. 

Operations on coherent families may be carried out as follows: 

Let for each t ln a countable set T, ft be a ~~~coherent family 

from ~ to (l't·t ,1\) . 

from II (l11t, ~jt) to 
t •I 

Suppose also that is a measurable function 

coherent and may be denoted 

Then ¢ ( f t, 8 : tET) ; 8€0 is again '11..­

by ¢Cft:tET) or by similar suggestive 

notations. 
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It is easily seen that such operations respect equivalence, i.e. 

that ~(ft:tET) and ~(ft:tET) are equivalent when ft and ft 

are equivalent for each t. Here ~ may be replaced by a U-coherent 

family of UJ, ~) measurable functions on the experiment with sample 

space ~ C1Yt, "S1.)t ) which is induced by ( f t: tET). 

Leaving these generalities we shall in the sequel restrict atten-

tion to the set V of equivalence classes of finitely coherent 

families of real valued random variables. 

Let v, wE V and let a, 13 E R. Then we may define elements 

o.v+Bw,vw and o.v in V by: 

o.v+Bw = (a.v8+sw8 :eE0) 

vw = <v8w8 :8E0) 

O.V = (av8 :eE0). 

Define also a relation > on V by defining v > w to mean 

P8 <v8 >w8 ) = 1 ;e€0. 

It may then be checked that these operations are well defined and 

that V becomes an order complete vectorlattice and an algebra over 

the reals with unit 1 being the equivalence class of (1 ;8€0). Also 

if are in v and if is a measurable function from 

RxRx ••• to R then ~<v1 ,v2 , ... ) lS a well defined element of V. 

Example 2. Suppose P8 A P8 = 0 when e1 +e 2 . Then any family 
1 2 

Cv8 :8E0) of measurable functions is finitely coherent. Thus if g 

is a real valued function on 0 then ( g( e): 8€0), considered as a 

finitely coherent family of constant functions, defines an unbiased 

estimator of g with variance zero. 

Integrals of elements 1n V w. r. t. measures f.! in L may be 

defined as follows: 
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Let v E V and suppose l.l E L. Then there is a countable sub set 

e 0 of e so that J.l is in the band generated by P 8 : 8Ee0 • Let 

<ve:eEe) be a representation of v and let ve 
0 

be such that 

v8 = ve 
0 

a.s. when 

provided the last integral exists. 

Then we put l.l(v) = fvd).l = fve dJ.l 
0 

is a probability measure If 

then we may write EJ.lv instead of fvd).l. It is easily seen that 

neither the existence nor the value of this integral depends on how 

e 0 , <v8 :eEe) and ve was chosen. We shall say that v is J.l 
0 

integrable if ll<lvl> < oo. 

If v 1 , v 2 , ••• EV and J.l E L then the joint distribution 
-1 ).l(v1 ,v2 , ... ) of <v1 ,v2 , •.• ) under J.l may be defined similarily and 

without ambiguity. 

by 

A few sub spaces of V of particular interest are: 

If 

Mp = { v: v E V and f I vI pdP e < oo for all 8}; 1 ,;s.p~oo 

M = {v: vEV and sup[Pe essential suplv8 ll < oo} 
8 

Clearly M ~ M00 S Mp ~ Mq c M1 when 

then the Lp norm of v8 w.r.t. will be denoted 

II v lie . ,p The uniformity on M 
p generated by the norms II lie ,p ; 

e E e will be denoted by d . p It is easily checked that M with 
p 

the topology of dp is a locally convex and complete linear space 

having the space of measurable functions as a dense sub set. 

If vE M then vE Moo and we may put llv!l = sup llvil8 00 • The 
8 ' 

space M equipped with this norm 1s an abstract M-space and is 

actually the M-space of the experiment. The space M p' 1~p<oo 1S 

the completion of M for the uniformity d . p 
Closure of a set UcM = p w.r.t. dp will be denoted by -p u . 

If p=2 then we may write u instead of -2 u . 
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If D is a sub set of V then we put D+ = {v:vED,v~O}. 

A family (v8 :8E0) of elements in v will be called D estimable 

if 

g 

8 
E8w.= E6 v for some wE D. 

8 
In particular a real valued function 

on 0 is D estimable if it is of the form g( 8) = E8w where 
e 

wE D. If g lS V estimable (M 2 estimable) then we may say that 

g is estimable (quadratically estimable). 

3. COMPLETENESS SUFFICIENCY AND UMVU ESTIMATORS 

An element v E V will be called an unbiased estimator of a real 

valued function g on 0 if E8 v = g( 8). A very important role is 
8 

played by the unbiased estimators of zero. The set of all unbiased 

estimators of zero is denoted by N i.e. 

N = { v : v E V and E e v ::: 0 }. 
8 

An estimator of a real valued parameter g is here called 

uniformly minimum variance unbiased (UMVU) if it is unbiased and 

if the variance is everywhere finite and everywhere at most 

equal to the variance of any other unbiased estimator. Denoting 

the set of all UMVU estimators by T we have: 

whenever v E M2 

A parameter having a UMVU estimator will be called UMVU estimable, 

Lehmann and Scheffe's fundamental result on UI1VU estimators, [6], 

carries over to this framework without difficulties. Thus: 
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Theorem 3. 

Proceeding as in Bahadur [1] we get: 

Corollary 4. T is linear and d 2 complete, and any t E T is 

uniquely determined by its expectation: e ~ E8t. 

Remark: The uniqueness property corresponds to (quadratically) 

completeness in usual statistical terminology. 

Corollary 5. (TnM ) oT c T so that T n M and T n M are both 
00 = 00 

algebras containing the constants. 

Remark: If V 1 and V 2 are sub sets of V then V 1 o V 2 denotes 

the set {v1 ov 2 :v1 EV1 ,v2EV 2}. 

Of particular interest are the sub algebras of V generated by 

sub a-algebras of Jd: • If ·~ is a sub a-algebra of A then the space 

of bounded ~ measurable functions will be denoted by .[tl( ~) . 

Permitting ourselves some abuse of notations we shall also write 

Jn(~~) for the algebra of equivalenceclasses in V determined by 

functions in .tfl.( (:9:,) • 

Before proceeding let us make a few remarks on sub algebras of 

M. If, in general, W 1s a sub space of M containing the constants 

and which is either a vector lattice or an algebra then its closure 

for the w(M,L) topology (which is also the closure for the Mackey 

topology for the pairing (M,L)) is both a vector lattice and an 

algebra. Furthermore if w1 ,w 2 , ... EW and if ¢ is a measurable 
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function from RxR ..• toR which is bounded on 

[-llw1 1!,!1w1 11lx[-jjw2 jj,jjw2 !1lx ... then cpCw1 ,w2 , .•• ) is 1n the w01,L) 

closure of W. Consider so elements w1 ,w2 , ... in the closure W 

of W for d2 , and a measurable function <P from RxRx ... to R 

such that ¢ ( w1 , w 2 , ... ) E M2 . Then, by standard arguments, 

cp (w1 , w2 , ... ) E W. [This is clear if cp : Rk-+ R is uniformly continuous 

and bounded. Thus, by approximation, indicators of closed sets in 

Rk, and hence all measurable indicator functions 1n 
00 

R , have the 

same property. By approximation by step functions this extend to 

all bounded measurable ¢'s and finally to all ¢ 1 s such that 

cp ( w 1 , w 2 , ••• ) E M2 • ] 

When applying these considerations to T n M we may utilize: 

Corollary 6. TnM is w(M,L) closed. 

Proof: Suppose the net t in TnM converges to t in M ----- n 

for the ~rJ(M,L) topology. Let z E N n M2. Then E8ztn = 0 so that 

E8zt = lim E8zt = 0. Hence, by Theorem 3 , t E T. 
n n 

Thus TnM is a vector lattice. The fact that also 

a vector lattice will follow from Proposition 7 below. 

and 

Two interesting sub spaces of T are: 

Th = {t : t E M2 and ¢(t) E T whenever 

¢: R-+ R is such that ¢(t) E M2} 

T a = { t : t E M2 and t is independent of 

every ancillary event}. 

IJ 

TnM lS 
00 
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The analogous classes within the usual framework were treated 

by Bondesson in [3] and by Bahadur in [2] . Following Bahadur we 

shall call estimators in Th' hereditary. This terminology is 

justified by the definition as well by the following result which 

is adapted from Bahadur [2]. 

Proposition 7. If t 1 , t 2 , ••• E Th and ¢ J.S a measurable function 

from RxRx ... to R such that ¢Ct1 ,t 2 , ... )E M2 then 

<P ( t 1 , t 2 , ... ) E T h . Furthermore : 

Remark: See Bahadur [ 2] for examples where T n M f Th, Th f T a 

and T f T. a 

~rggf: By Corollary 4, T = T and it is clear that 

TnM~TnMco and that Ta~T. Also ThsT since ¢(t)EM2 when 

¢(x) :: x and T E Th. By the arguments preceding Corollary 6, 
X 

¢Ct1 ,t 2 , ... )ETnM~T when t 1 ,t 2 , ... ETnM and¢Ct1 ,t 2 , ... )EM2 . 

It follows in particular that T n M ~ Th. Consider so a t J.n Th. 

Then + t nmETnH, m= 1 , 2 , •••• Thus, by monotone convergence, 

t+ETnM. Similarily - ETnH t E T n H. Hence TnM Th. t so that = 

Let 0 <tE T n M . Let zEN n M2 , mE {1,2, •.. } and 8€8. Then - co 

there is a sequence Pn' n=1,2, ... of polynomials such that 

Pn (x) + x n m uniformly on [-II t lie ,co ,II t lie ,col. 

Hence E8 (tAm)z =lim E8pn(t)z = 0 sJ.nce pn(t) E T. Thus t n mET. 
n 

Letting m +co we find that t E T n M = Th so that T n M00 ~ T n M. 

Hence T n M is a vector lattice and co 
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It remains to show that The T . = a Let t E Th and let A E J:t be 

such that c = P 8 (A) does not depend on 8. Let 1/J be any bounded 

measurable function on R. Then 1/J ( t) E T and c - I A E N n M2 • 

Hence E81/J(t)IA = cE 61/J(t) = CE 8IA)E 81/J(t). 
c 

Here is the reformulation of proposition 6 in Bahadur [1] 

described in ~he introduction. 

Proposition 8. Let c be a finite non negative measure on 8 with 

minimal countable support 8 . Put ~ =E C(8)P8 
0 8 

be such that v,.., 
t:J 

0 

is in the Hilbert sub space of 

and let 0 ~ v E H2 

generated 

by dP 8 /d~ ;eEe0 • Suppose is UMVU estimable by 

Then t 6 = v 6 a.s. P8 ;8E80 • 

If v is minimal in the sense that 

such that a. s. when 8€8 
0 

t = v so that v E T. 

v' ~ v whenever 

then 

t E T. 

v' E V + 

Remark 1 • Using the notations introduced in section 2, v8 
0 

up to a set of ~ measure zero determined by the property that 

a. s. 

Remark 2. 

when 8€8 o· 

and 8 
0 

is countable then there is 

always a smallest vE V+ such that v 8 = w8 a.s. P8 when 8€0 0 • 

is 

is 

v may be obtained by considering the whole set V' of elements v' 

such that 

8€8, be the 

v' 
8 = vJ e a. s. v-Jhen 8€0 . 

0 

P8 essential infimum of v' 
8 

as 

Let, for each 

v' runs through 

V'. Then (v8 :8E0) determines the element v in V. 
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f~99!_9f_!E~-P~9P9E~!i9~: t0 E L2(U) since 
2 2 2 ° 2 2 2 

oo > fv d]J :::_ Jt d]J. Now Jv d]J~ft d]J = f<t-v) d]J+Jv d]J + 2Jv<t-v)d]J 

so that 0 ~ f<t-v) 2d]J + 2fvCt-v)d]J. The assumption of unbiasedness 

of t implies that E8 Ct0 -v0 ) = o ;8€00 . Thus 
0 0 

t 0 -v0 1 dP8/dJ.l 
0 0 

when 8E00 . By assumption v00 E [dP8 /d]J;8E00 ]. Hence 

fvCt-v) d]J = Jv0 <t8 -v0 )d]J = o so that f<t-v) 2d]J < o. 
0 0 0 

= v 0 
0 

a.s. J.l so that t 8 = t 80 = v 9 a.s. P8 when 

Thus 

8€0 o" 

Suppose next that v is minimal. By what we have already shown: 

lt8 1 = v 8 a.s. 

v ~ 1 t 1 so that 

P8 ;8€00 . By minimality: 

2 2 1 2 2 
E8 t ~E8v ~E81 tl = E8t. 

that v itself is a UMVU estimator. 

The final step is achieved by noting that by arguments in 

so 

[] 

LeCam [4] the minimal sufficient algebra is generated by the minimal 

non negative Radon-Nikodym derivatives dP 8 /dCP8 +P8 ) ;81 ,e 2E0 . 
1 1 2 

Before we, for the sake of completeness, explain this let us shortly 

review the concept of a sufficient algebra and describe the associated 

conditional expectations. 

A weakly closed (i.e. w(M,L) closed) sub algebra of M containing 

the constants defines an experiment tjw = CP 8 1W; BEG) in the sense 

of LeCam [5] with LIW as L-space and W as M-space. This experi-

ment is always at most as informative as t itself. If t; IW is 

equally informative as -g (i.e. the deficiency of '&I W w. r. t. '& is 

zero) then W is called sufficient. It was shown in LeCam's paper 

that W is sufficient if and only if there is a , necessarily 

unique, non negative linear projection IT of M onto W such that 

TI(1) = 1 and P8 (TI(v)) :: P8 Cv) for any v€ M. This projection has 
8 

the additional property that TI(wv) = wTI(v) whenever wEW and vEM. 



- 16 -

Also, by propositions 11 and 13 in LeCam [5], ordered experiments 

are equivalent if and only if they are pairwise equivalent. 

Consider now a sufficient algebra W and the associated condi-

tional expectation (projection) IT. Let vE M1 • Then there is a 

sequence v1 ,v2 , ••• in M converging to v in the d1 uniformity. 

It is easily seen that IT(vn)' n=1 ,2, ... converges for the same 

uniformity to an element which does not depend on how the sequence 

in M converging to v was chosen. Denote this element by IT(v). 

Then IT extended this way defines a non negative projection (conditio~ 

nal expectation) of M1 

uniformity such that: 

onto the closure -1 w of W 

P8 CIT(v)) 

and 

IT(wv) = wiT(v) -1 
wE W , v E M1 

provided wv E M1 . 

for the 

Furthermore the restriction of IT to M2 is a projection onto 

W such that IT(wv) = wiT(v) E W whenever v E M2 and wE W. 

The final spadework is contained in the following result which 

is derived from arguments in LeCam [5]. 

Pro:eosition 9. Let c be a non negative measure on e with 

countable support and put J.l =!:C(8)P8 . Suppose C(8 0 ) > 0 and 
e 

that v lS a minimal non negative version of dP8 !dj.l. Then v 
0 

contained in any sufficient algebra. 

Proof: Let W be any sufficient algebra and let IT be the 

associated conditional expectation. 

imply that 
-1 

O<v<C(e) • = = 0 
Hence 

The 

vEM 

inequality 11 ~ C( 8 0 )P e 
-1 0 

and o < IT ( v) < c ( e ) • = = 0 

is 



- 17 -

Let s EM+. Then P8 (s) = P8 (TI(s)) = lJ(TI(s)v) = l:C(8)P0 (TI(s)v) = 
o o e 

= l: C(8)P8 (TI(s)II(v)) = l: C(8)P8 (sii(v)) = 11< s TI(v)). Hence TI(v) is 
e e 

a version of dP 8 I d11. By minimali ty v ~ II ( v) . Hence, for any e 
0 

O~P8 (TI(v)-v) = P8 (IT(v))-P0 (v) = o. It follows that v = TI(v)EW. 

0 
/ 

As a corollary we get the following characterization of the minimal 

sufficient algebra, which might also have been derived directly 

from the proofs in LeCam Cs] . 

Corollary 1 0. Let for each ( 81 'e 2) € eX e' ue e be a minimal 
1 ' 2 

non negative version of dP 8 /d(P 8 +P 8 ). Let H be the smallest 
2 1 2 

w(M,L) closed subalgebra of M which contains all functions 

u · e 8 E e and the constants. Then H is sufficient and i9 
81,82 ' 1' 2 

contained in any other sufficient algebra. 

Remark. Clearly 0 ~ u 8 e < 1 so that 
1 ' 2 

u 8 e E M and thus 
1 ' 2 

H is well defined. 

Proof: Let be positive numbers 

Then IIAII= (Pe +Pe )( la1(I-ue e )-a2u8 e I> so that H is 
1 2 1' 2 1' 2 

pairwise sufficient and hence, by proposition 11 in LeCam [5] 

H is sufficient. If W is another sufficient algebra then, by 

Proposition 9, VJ ~H. 0 

The minimal sufficient algebra will in the following be denoted 

by H and the associated conditional expectation (projection) 

by II. 
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Our first, and not so surprising, result linking UMVU theory 

and sufficiency is: 

Proposition 11 . (The necessity of T n M.) 

TcH and T n M~ H . 

Proof: The las-t: inclusion follows' since H n M = H' from the 

first. Let t E T. Then 

E8t 2 = E8 Ct-TI(t)) 2 + 2E8TI(t)(t-TI(t)) + E8TI(t) 2 

= E8 (t-II(t)) 2 + E8nCt) 2 ~ E8TI(t) 2 Hence, since 

E8t 2 _ E8n(t) 2 so that t = TI(t) E H. 
e 

IT (t) E M2 ; 

[] 

Now all the p1eces are here and putting them together we get the 

main result of this paper: 

Theorem 12. Consider only non negative minimal Radon-Nikodym 

derivatives. Say that v E M2 is UMVU estimable if its expectation 

1s. Then the following conditions are all equivalent: 

(i) dP8 /dCP8 +P8 ) is UMVU estimable 
1 1 2 

(ii) Each vEM is UMVU estimable 

(iii) Each v E M2 lS UMVU estimable 

(iv) TnM = H 

(v) T = H 

(vi) :H is complete (i.e. P8 Ch) = 0 and hEfi,.h = 0) 
e 

(vii) M has a sufficient subalgebra w such that w lS complete. 

If one, and hence all, of these conditions are satisfied then: 

T = T = T = H h a 
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Proof: As (iii) ~ (ii) ~ (i) is trivial it suffices to 

show that (i) ~ (iv) ~ (v) ~(vi).- (vii)~ (iii). 

(i) =:. (iv) 

(iv) ~ (v) 

(v) =Q (vi) 

Follows from Proposition 11, Corollary 10 and 

Proposition 9. 

Follows from Proposition 11 and Corollary 4. 

Follows from Corollary 4. 

(vi )4=>( vii) : Follows from the fact that if 

sufficient algebra then W=H. 

and E8w = E8II(w) so that w = 

W is a complete and 

[If wE W then II(w) E H 

II(w) E H]. 
8 

(vi)~(iii): Suppose (vi) holds and let vEM2 . Put t = II(v). 

Then t E H and E8t = E8v. Let zEN n M2 . Then 
- 8 

II( z) E H n N. Hence, by completeness, II( z) = 0 so th9-t 

E8tz = E8II(tz) = E8tii(z) = o. Hence tET. 

If these conditions are satisfied then, by (iv), T = Tn M = Th 

and the final statement follows from Proposition 7. 

Let us return to the "traditional" framework. If G is any 

sub set of V then we shall denote by ~ the set of equivalence 

c 

classes in G which are determined by measurable functions, i.e. 

G = { g : g E G and g is coherent}. ~tJe thus have the sets M2 , * 
v v 

and M2 A N. The set 1: of "usual'' UMVU estimators is, in general, 
v 

larger than T. By the Lehmann-Scheffe theorem again: 
~ v v v v 
T = {t:tEM2 and to(M2nN)~N}. Let also:<-?. be the a-algebra 

v 
induced by 1: n M and put Th = { t : t E M2 and ¢ ( t) E T whenever 
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v 
<1> R-+R issuchthat cj>(t)EM2}. 

Then, as shown by Bahadur [ 1] , :53 is complete w. r. t. Jf and is 

contained 1n the completion (w.r.t. A) of any sufficient a-algebra. 

Furthermore, by Bahadur.[2], !h is precisely the class of every­

where quadratically integrable and ~ measurable functions. 

Denote by Ta the set of "traditional" UMVU estimators which 

are independent of ancillary events. 

Example 13. Take [0,1] 2 with the Borel class Jt as sample space. 

Put 8 = -1 U [ 0,1] and let P 8 ; 0 ~ 8 < 1 , be the uniform distri­

bution on {(8,y) : 0~<1}. Let P_1 have density (x,y)--+ 2y 

w.r.t. the uuiform distribution on [0,1] 2 . This example satisfies 

the conditions of Theorem 12. 

Consid.:;r now this example within the traditional framework. 

Let p be any differentiable function on R 2 such that 

p (X, 0) : p (X, 1 ) : 0, 0 ~ X~ 1 and f 1 f l p (X, y) dxdy : 0. 
. - - 0 0 

Put o (x ,y) = ~y p (x ,y). Then o is an unbiased estimator of zero. 

It follows that, for any UMVU estimator cj>: 

r r <j>(x,y)(~yp (x,y))2ydxdy = 0. 
0 0 

Furthermore it is easily seen that a UMVU estimator cp is essen-

tially a function of x alone. Hence the last equation may be 

written JJ<t><x,y)p(x,y)dxdy = 0. By varying p we see that 

cp = constant a.e. P8 for all e. Thus only the constants have 

UMVU estimators in the traditional set up. 
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The final theorem of this paper is - except for the last 

statement- essentially reformulations of results in Bahadur [1] 

and [2]. 

Theorem 14. The following five conditions are equivalent: 

v r.J v 
( i) Each H estimable parameter is TnM estimable. 

v ,..., 
(ii) Each 0'12)+ estimable parameter 1S T+ estimable. 

v ,..., 
(iii) Each M2 estimable parameter is T estimable 

and Th = Ta = T. 

( iv) 3 is sufficient (and hence minimal sufficient). 

(v) There is a sufficient and quadratically complete sub 

a-algebra of A . 

(vi) 

These conditions all imply the sixth condition: 

v 
Each M2 estimable parameter is T estimable. 

If ~ is coherent then all six conditions are equivalent. 

Remark. (iii)~ ( iv) ~ (v) is proved in Bahadur [ 2] 

while (i) and (ii) are merely rephrasings of these conditions. 

(v) q (vi) is a consequence of the Rao-Blackwell theorem and the 

implication (vi) ~ (v) for dominated experiments was established 

in Bahadur [1]. In proving the last statement we utilized the fact, 

proved by Siebert in [ 8] , that a wU1, L) closed (in Jt) and pair­

wise sufficient a-algebra is sufficient when t is coherent. 

As a complete proof is not long we include one here. 

v ,..., 
Proof: (iii) q ( ii): Let v EM+. ----- By (iii) there is a tET 

,..., ,.., 
5~ so that E8v - E8t. Then, since Th = T, t is measurable and 

e 
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when B E J'j, Hence t ~ 0 • 
v v 

E8IBt = EaiBv ~ 0 

(ii) ~ (i): Let v E M. Then Iv+ II vII E ( M2 ) + . Hence, by (ii), 

there are t 1 ,t 2 E T+ such that E8 t 1 = E8v+llvl! and 
e 

E8 t 2 = -t8 v+llvll. Thus E 6 Ct1 -t 2 )/2 = E8v. By uniqueness 
,.... v 

t 1 -llvll =II v!!-t 2 so that O~t1 ,t 2 ~ llvl!. Hence (t1 -t 2 )/2ETnM. 

" v (i).,. (iv): Let, for each AE Jt, IA ET nM be such that 

" E 8IA ::: E 8IA. Then when BE 3 so that, since 

" IA is 'Rmeasurable, a. s. P 8 for each 8. It 

follows that .J3 is sufficient. 

Civ) ~ (v): Follows from the quadratic completeness of 

(v) ~(iii): Suppose v holds, that d: is sufficient and 
v 

quadratically complete and that vE M2 . Then, by the Rae-Blackwell 

theorem, t = ECvl t:f) E T and E8t = E8v. 
v 

is precisely the class of functions in M2 

Hence T = Th. 

By the same theorem T 

which are Qf measurable~ 

The implication (v) ~(vi) is trivial so suppose that (l3 is co-
~ v 

herent and that (vi) holds. By coherence, T = T and M2 = M2 so 

that (iii) of Theorem 1 0 holds. Hence, by Theorem 1 2, T n M = H so 

that H is generated by {IB : BE~}. Thus 3 is pairwise sufficient 

and, since it is w(M,L) closed in ,it and ~ 1.s coherent, it is 

actually sufficient. [If A E Jt then, by pairwise sufficiency, 

( P 8 (A I~): 8€0) is finitely coherent. Hence, since 'fb is coherent, 

there is a test function o so that P 8 <AI~~) = o a.s. P8 for 

each 8. Finally o is, since ~ is w(M,L) closed in Jt , ~ measu-

rable ]. Thus (iv) holds. 

0 



- 23 -

REFERENCES 

[1] Bahadur, R.R. (1957). On unbiased estimates of uniformly mini­

mum variance. Sankhya, 18, 211-244. 
~--

[2] Bahadur, R.R. (1976). A note on UMV estimates and ancillary 

statistics. In memorial volume dedicated to J. Hajek. Charleq 
University, Prague. 

[3] Bondesson, L. (1975). Uniformly minimum variance estimation 

in location parameter families. 

637-660. 

Annals of Statistics, 3, ,...., 

[4] Hasegawa, M. and Perlman, M.D. (1974). On the existence of a 

minimal sufficient subfield. Ann. Statist., 2, 1049-1055. ,...., 

Correction: Ann. Statist., 3, 1371-1372. ,...., 

[5] LeCam. L. (1964). Sufficiency and approximate sufficiency. 

[ 6] 

Ann. Math. Statist., 35, 1419-1455. 
"""'"' 

Lehmann, E.L. and Scheffe, H. (1950). 

regions, and unbiased estimation. 

Completeness, similar 

Sankhya 10, 305-340. ,....,..,. 

[7] Kelley, J.L. (1955). General topology. D. Van Nostrand. 

[8] Siebert, E. (1976). Klasseneigenschaften Statistischer 

Experimente und ihre Charakterisierung durch Kegelmasse. 

Thesis. Eberhard-Karls-Universitat zu Tubingen. 


