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1. INTRODUCTION

. The title of this lecture contains the word
"decision theory", which to some statistician would
suggest that I am going to talk in very general and
abstract terms. 1 may put some statisticians to ease
and perhaps disappoint others by saying at once that
8o will not be the case. v

My lecture will consist of two parts. The first
part will discuss the meaning of the classical type of
significance testing; which seems to have held its
position among statisticians despite the heavy critisism
it has sometimes been .subject to. In the second part of
my lecture I am going to deal with renewed attempts to
construct test methods essentially from the distribution
of relevant statistics under the null-hypothesis. These
are ideas which have re-emerged after having received
death-sentence many years ago when the Neyman-Pearson
theory aid the likelihood principle were widely accep-
ted among statisticians.,

%) To be presented to 41st session of the International
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2. THE MEANING OF SIGNIFICANCE TESTING

So let me then first go into the problem of the
meaning of significance testing, which sometimes has
been the concern of statisticians; some of whom have
even found it contradictory to test null-hypotheses
which are known to be false and would have been
rejected anyhow if the number of observations were
large enough. I have been in some doubt if state-
ments of this kind are meant to be taken seriously
as an objection to significance testing in general,
or just as a warning against misuse. In any case I
hope that my considerations should have some relevancee.

The purPOSe of many statistical investigations is
to find important effects which depend upon the unknown
parameters in the model. - To fix the idea, let us think
of p = (p1,p2,...) as having components of bimomial
probabilities. We are interested in effects f(p).

Thus we consider a class of functions f. An effect

f Mexists" if f(p) > O and is non-existent if f(p) = O.
(It £(p) < O then -f exists.) Let now H_ be the set of
all p for which f(p) = O for all interesting effects.
Reversing this construction let F be the class of all
f which are such that f(p) = 0 for p € Ho.-gj is the set
of contrasts relatively to Ho'

HO is the "null-hypothesis", but should properly
be called the null-state.

As an illustration consider the case where
p{,pz,... are binomial probabilities at equidistant
points of time. We may be interested in the ups and

downs of pi.hence in effects pi—pj. This leads to
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On the other hand our main interest could be in
the curvature, i.e. in the "escalating" effects
Pis1™ 2pi+ Pi_qs which leads to

_HO : pi =qQ + Bi 3 i=1,2,e00 .

with @ and B unknown parameters under H .
We thus choose the null-hypothesis H , not because we

have any a priori confidence in it, or are interested
in the truth of it, but because we are interested in
certain effects which are contrasts relatively to the
hypothesis. We may even know in advance that the null-
state H  cannot be true. Hence the term null-state is
more appropriate than null-hypothesis. . ‘

Now let us consider two situations treated in any
decent text book of statistics. The first one is the
one-way lay-out for normally distributed variables,
the other one is homogeneity testing by multinomial
distributions. _

~ In the first case we observe xij H i-1,2,...,nj H
j=1,2,¢.,r, which are independent and normally distri-
buted with var X, = o? and BX;; = §; (unknown).

We are intemsted in comparing different g , for examples
in pairs §l- §J, or if one group of gJ on the average
is greater than another group, or if §. is covariant
with some quantity t5,  §;(t;-T) >0, or if the influ-
ence of t. on §J is accelerating (§i+1 g. )/(t1+1 ti)
(§l §1_1)/(t tl_ ) >0 and so on. In short, we are
interested in discovering contrasts Z§=1fj§j (with
L= 0) which are > O. Obviously the null-state is
By =eee=E .. According to Scheffé's wellknown method it

should be asserted that ¢ fjgj > 0 if

T szj ?'V(r-1)c SANgZ f?/nj o (1)
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2 is the usual unbiased
¢stimate of 02 with n-r degrees of freedom and c¢ is

1-€¢ fractile of the Fisher distribution with r-1 and

n-r degrees.of freedom (n=2nj). In particular we state
8, > 6, if |

ii— Xj > V(r-1)c s Nl + 1o | (2)

ni nj

where Xj is the class average, S

Hence we use J(r-1)c in place of Students fractile t
with n-r degrees of freedom.

Now, consider the case of r X s cqntingency tables
with factor A having the levels A1"“’Ar and factor B
the levels B1,...,BS. Among n independent trials, Nij
of them have level A, A Bje We consider n; = Z§=1 N5

3 is the probability of Bj

in a single trial Z§=1 pij = 1. We are interested in
seeing how the distribution over B1,...,BS changes with
Ai. Hence we are interested in contrasts Zi,j Pijfij
where Zi flj = 0 for eagh je This leads to the null-

state of homogeneity

as fixed. For given Ai’ Py

= p. for all i and j

Pij i

where p,,...,p  are unknown parameters in the null-
state. We do not believe, of course that this state
could be true at all. _

The maximum likelihood estimates a priori of pij
*

Py = Nyy/ng

J
whereas the maximum likelihood estimates in the null-

state are

A A
Pij =Py = Iy Njy/n=1Ny/n




The observed contrasts If | p i3 are to be compared with
the standard deviation o, (p) of ¥ ilJle In o (p) we
‘way either use null- state estimates of p or a prlorl
estimates of p, to obtain the two slightly different

criterions for stating T f13p13 > 0, viz.

% pzj ij > Je Jz ——(2 fprJ (z £ p )2 ) (3)
or —_
z p:J ij > Je Jz 1 (2 fia -(z flap* 2) (@)

In both cases ¢ is the 1-€¢ fractile of the chi-square
distribution. ’

Now, what relationships are there between the three
methods which I have described and the classical tests
used in those situations?

It is well known that (1) is true for at least one
£ = (f1,...,fr) if and only if

Z =5 nj(xj-i)z/(r—ﬂ s2 > ¢ (5)
(where X is the total mean). Similarly (3) takes place

tor some contrast {fij} if and only if the ordinary chi-

square

A2 2
‘ (N 47n4P; ) NS
72, =%, =n(f == -1) > ¢ (6)
1 i,J n. P lNJ o
p |

In order to find a similar relationship in the case of
(4), we have to find the minimum chi-square estimates
oi‘.p'j under the hypothesis, using observed numbers in
denominator. This gives the following estimates of pj;

A n;
- r -
Py = pj/Z‘i=1 p; where p = n/zl —

piJ
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Then (4) takes place for some contrasts if and ‘only if

(v ;n;B.)° ) |
2, =T JN A = n(-1+1/xpj) >c (7)
i,] ij

Note that the relations between Z-1 and erand the
corresponding multiple decisions procedures are strict-
ly true algebraic relations. There is nothing asympto-
tical about them, as we are used to in the case of chi-
square goodness of fit tests.

From these results it follows that.under the null-
hypothesis the probability of finding a false effect
is (exactly or approximately) equal to €. How interes-

ting is this result? Of course it is of very little

interest. This is obvious if you are sure in advance
-that the null hypothesis cannot be true. However, even
it the hypothesis may be true, it is uninteresting.
Because the mathematical result in itself says nothing
about the probablllty of stating that ¢ P13f13 >0
for any set of p not consistent with this statement.
The true set of p's may be such that ¥ leflJ < 0.
What is then the probability of stating the opposite?
Clearly the failure to say anything about that and
instead just make a statement relatively to the null-
hypothesis; lend support to the point of view that -
testing hypothesis known to be wrong is an absurdity.
Fortunately, the situation is not so bad. The
mathematics needed to solve it is very easy. From
a statistical point of view.it is very interesting

that it can be proved that

Pr( U (stating T §.f.> 0)|g) <
fzzgjfjgp J J

< Pr(u (stating £ §.f.>0)|8 € H ) = ¢
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in the dndlySlu variance 31tuatlons. A similar

result is true in the general llnear-normal situation.
It is now seen that we are in the happy and

entirely new situation of having freed ourselves com-

pletely from any nullhypothesis. Using the rule (1)

mentioned we know that the probability of committing

at least one error is at most € for any value of

(§1,...,§ ). We are not hampered by having to refer
back to the nullhypothesis. :

Nothlng can, of course, prevent us from perfor-
ming the test in the following manner. Ascertain
first if the variance ratio Z is > c. If it is not,
then drop the whole statistical analysis. If it is
true, then we may look around for interesting effects.
Numerical convenience may justify such a procedure.
But then we have also justified "testing" the null-l
state. Thus we may test without having an hypothesis.

The hypothesis or rather, nuli-state'is just there to
generate the class of contrasts, As the number of
obs ervat1ons goes to infinity the probability that

Z > c goés to 1, and we will almost certainly "reject".

That is as. it should be, and it should not make
statisticians unhappy.

In the case of beingbinterested in only one scalar

parameter B in the linearnormal situation, the set of
all possible effects are ap > O for different a. Thus
the null-state is a Student hypothesis B = O and we
have Jjust the choice betWeen'B.< 0, B >0 (according
as a < O or > 0) or saying nothing. We have a three-
decision problem. We are not interested'in~aCCepting
the nullhypothesis (the null-state). We are not
1nterebtcd in rejecting it as false elther, because we
know that. We 31mply state that B < or >0 ‘according
as the estlmate.B < O or > O after having obtained
clearance by Student's significance testing. The



-8 -

metlhod unitarmly waximizes the performance among all
performance unbiased methods. That means that we want to
avoid stating that B > O when B < O and vice versa and we
want optimal chance of discovering that B > 0 (resp. B<0).
That is the purpose ol Student's test. We are completely
rclieved from the burden of any null-hypothesis.

Returning again to the multinomial trials let me
first comment upon a technical point. It is true under
very general assumptions with a null-state
pij

bility between multiple comparison and chi-square good-
‘ness of fit testing you should proceed as follows.

= ¢ij(e1,...,et), that in order to obtain compati-

With null-state estimated variance - which is the con-
ventional manner of doing it - you should use maximum
likelihood estimates and expected numbers in the deno-
minator of the chi-square when testing. With a priori
estimated variance you should use chi-square minimizing
estimates with observed'numbers in the denominator and
the corresponding minimum of chi-squaré when testing.

Now it can be proved that the probability of making
a false statement is asymptotically at most equal to the
level € regardless of the value of the p's, even if they
vary with n = number of obserVations,perhaps in such a
manner that they go to a value consistent with the null-
state. There are, of course, some restrictions which
I shall not go into. Thus again we are completely freed
from the null-hypothesis and the test is just a ¢learance
test, allowing us to say something.

In the special case of double dichotomy

B not-B Sum

A X M-X M
not-4 | L-X n-M

Sum L n-L n
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we would suspect positive or negative dependence between
A and B according as X is > %L or < %L and we are
permitted to make one of those statements if the well
known chi-square (LM-nX)?/nL(n-L) with one degree of
recdom is significant. We certainly must perform

this test (or the exact hypergeometric test) to be

able to infer dependence. We have no worries whatso-
e¢ver because independence is excluded a priorie.

Il we use exact testing with cumulative hyper-
gcometric.distribution H(x), then we state negative
and positive dependence according as H(X) < € or > 1-~¢.
I we add an unimportant randomization we have again a
method which uniformly maximizes the performance among
performance unbiased methods at a certain level.

As the benevolent audience would perhaps have
realized, it has not been my purpose to advocate the
use of multiple comparison procedures, even if I would
be willing to do that also. My purpose has been- to
give a reasonable interpretation of a large class of
significance tests, which have persisted to be in
common use despite the doom that has been hanging over
their heads. The classical Karl Pearson test, as we
know it today, which to the old generation of statis-
ticians was the very embodiment of statistical testing,
has almost never been a two decision problem. Signifi-
cance has always meant scrutinizing data. The progress
that was made by Scheffé was to define the last part of
the proccdure in rigorous terms.

There may have been one exception viz., the testing
that grouped independent and identically distributed
' variables have density of a certain form, e.g. one
density in the Karl Pearson system. - That is the kind
of test that is seldom recommended today. It is out
of date. This, I think, proves my point. It is the
chi-square tesl as a clearance test wich has survived.
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Keturning to my main point, significance testings
lhatve been discredited because they have been interpre-
tirbea by means of a wrong decision space. Any statioc-
tical situation maust be described by means ol three
Glorentls, Lhe model, “he decision space and (at least
ju priuciple) the loss function. It is the decision
Space Lhat has become cripled in the usudl presenta-
tion of signiticance testing. The desicion space
contains neither rejection nor acceptance of the hypo-
thesis. However, the decision space contains the
decision not to state anything as a possible decision.
The purpose of significance testing is to see if this
pussibility could be excluded. Perhaps clearance
tesling would be a better word than significance
tesling. '

Somebody may perhaps find it peculiar that the
construction of the test requires derivation of the
sampl ing distribution in the null-state, that is,
under an assumption that cannot be true. Perhaps
that is the reason why somebody has felt compelled to
attach credence to the hypothesis. 'However, the logic
behind the presentation of significance tests as
clearance tests should be clear enough.

Let me add parenthetically, deviating somewhat
Lrow my main theme, that the multiple study of contrasts
by binary and multinary observations is a very basic
piroblem in statistics.



- 11 -

It is really a problem of reading (contingencies)
tables of the kind that are published in large
quantities by govérment statistical bureaus in all
countries. The reading is performed every day by sta-
tisticans, often by very crude methods, or without any
method at all. The methodological problem is not easy.
You may discover interesting features and want to
test il they are real. You cannot use the method which
would have been adequate if you had suspected the
relationship in advance. Hence you have to adopt a
soul searching attitude of defining the state of your

nind before you look. at the data. Some may object
to such a procedure. llowever, it is good to be
reminded that statistical inference concerning histo-
rical observations is as subjective as just that. On
the other hand, to discard historical data altogether
is a too easy way out of the difficulties. They may
contain important informations. A general admonition
to exercise caution is not satisfactory. The warning
must be worked out in rigorous terms. That is what
one attempts to do by the'multiple comparison approach.
This approach amounts to additional insight into the
performance of the method. You have knowledge of the
all over probability of making an error. Perhaps some
other properties of the performance should be studied,
e«ges wWithin a limited class of decisions, the expected
- number of errors.

- Consider a 12 X 2 contingency table for "testing"
homogeneity, or rather, discovering interesting devi-
ations from homogeneity. Suppose you test a difference
between two frequencies, which you find interesting,
at a 5% level by conventionally using a critical value



- 12 -

of 1.64 for the ratio between difference of frequencies
and standard deviation. Then the all-over level

would be~the awesome 99.4%. If you want an all over
level of 5%, you must use 4.44 as critical value for
the ratio just mentioned. I don't find that unreason-
able. You have to pay heavily for "snooping" around

in historical data. |

5. A GENERAL APPROACH TO SIGNIFICANCE TESTING

It is natural to generalize my interpretatioh of
significance testing in the following manner.
X1,X2,...;Xn are independent with the same densi-
ty p(x;6), where g = (91,...,er). The null-state is
to the effect that ¢(6) =0 ; i.e.mi(e) =0 3 .i=1,2,¢9S
Let'gf be the class of all functions f(8) such that
©(s) = O implies £(g) = O. We are interested in the
existence of f-effects, i.e. f(p) > 0, and we declare
this to be the case if '

£(o%) > Jz{zfg(e*)vj-(e*)+2 T fj(e*)fi(ef)yji(e*f}*

J j<i
where 8% is the maximum likelihood estimate for @

R = o = * o¥ i -€- i
a priori, fj ejf, Yij cov(ei,ej), c is 1-e-fractile
of the chi-square distribution with s degiees of freedom.,
On the right hand side null-state maximum likelihood
estimates may also be used. Then the probability of
falsely stating at least one effect f E_gr‘
€. Furthermore stating at least one effect f is asym-
totically in probability equivalent to

is at most

42 log(Likelihood ratio) > c
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Thus we are back on the good old standard error
~ computations in large samples, but now combined with
the 1ikelihood ratio. |

This‘outiine should be stated in rigorous terms
and proved, if it has not already been done.-

4. CURVE-FITTING BY MEANS OF 4
WFALSE" MATHEMATICAL EXPRESSION

Closely related to the situation of testing with-
out an hypothesis is the situation of smoothing sequen-
ces of observations by means of a simple analytical
expression. The demographers and the actuaries have
been interested in this problem and they‘havé been

.smoothing data as part of a statistical analysis long
before exact‘probabilistic approach became common in
statistids, The mortality as a function of age is
smoothed by a very crude expression, disregarding many
significantlvariations in the mortality with age, which
farspeCial_purposes they do not want to be bothered with.
Perhaps a common attitude has been that if you are really
interested in describing the observations by means of
such a crude expression, then just Eretend that the
expression répresents expected values and derive the

" method accordingly. A better approach'would}obviously
be to make ho,assumptions that are known to be wrong
and construct the method under realistic assumptions.

We shall illustrate the idea by returning to the
example of analysis of variance of a one-way lay-out.

Assume that we have discovered, by looking at the
group means ii; i=1,2,...,r, that 8, varies roughly
linearly with some quantity ti, i=1,2,¢¢0,r« Then we -
might be interested in joint confidence intervals for all
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n(t) = a + B(t-%)
when t varies continuously. Here

- 1 1 E - ' =\2
= e . . = e 2% s = . ol . . t"t [
b= ngtye @ = gBn ey B = I (-8 s/, (vt

This is the famous problem of Working and Hotelling

(1929). Let

,M = Elﬂ‘j(tj‘:ﬁ)‘g, a = %En;]i;]’ b = sz(tJ-%) XJ/MQ

%(t) = a+b(t-%), cj(t) = Jﬁ}[% + jﬁ:i(t-%)]'

P i
K2 = rf 1 c2(t)
; J
J=1
where f is the (1-€)-fractile of the Fisher,distribu#
tion with r and n-r degrees of freedom. Then by
using Schéffé's multiple comparison method we find
that '
' A A
n(t) - k.S < n(t) < n(t) + K.S

defines a (1-€)-confidence band for the regression

values. '
Note that we do géﬁ assume Exij = a+p(tj-¥).

The stlatement above that "gj varies roughly linearly

with t." is just a motivation, it is not a basis for

the ma%hematical derivation of the method, Hence our

method is completely figorous. If we had assumed that

E. = a+B(tj-%), then we could get a confidence band,

J
In(t)-n(t) | < SJZI‘(% + ﬁﬁ;ﬁ-ﬁ) N
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where f is now the (1-€)-fractile of the Fisher distri-
bution with 2 and n-2 degrees of freedom and s? is the
usual estimate of 02. This was Hotelling and Working's
solution.

The statistician may adopt the same attitude in the
case of &a, say, three-way lay-out in the analysis of
variance. He may be interested in estimating the repre-
sentation of the means by main effects and first order
interactions, but without assuming the second order
interactions to be O.

5. TESTS DERIVED FROM THE NULL-DISTRIBUTION

In the second part of my lecture I shall briefly
go into the question of the basic ideas of constructing
efficient test procedures. This question was discussed
very thoroughly in the 1930's and the 1940's when the
. Neyman-Pearson theory was founded. We have been used
to think that an epoch-making contribution was rendered
at that time.

The question that has been raised lately is the
following. Could we really reject a statistical hypo-
thesis after having observed the most probable outcome
under the hypothesis? One might perhaps be captivated
by this leading question and answer it in the negative.
However, after a second thought one would make a com-
plete turn-about.

The question would of course be answered in the
affirmative by any statistician. Rejecting an hypo-
thesis after having observed the most probable outcome
under the hypothesis is done by statisticians every
day in his run-of-the-mill statistical work. If ihe
hypothesis is to the effect that in n Bernoulli trials
the probability of success is 0.6, then the probability
of a given séquence'of events is 0.6% 0.,4%7%, where x
is the number of successes. This has its largést value
for x = n. But certainly with x =n = 1000 000
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successes you would reject 0,6, even if this is the most
probable outcome.

Perhaps the following example is useful when faced
with operation research people who don't like statisti-
cal inferénce and are satisfied when a very likely
sequence of events has occurred under the assumptions
about the process. The number of telephone calls during
each quarter of an hour is observed. Let X, be number
of calls during the t-th quarter. The hypothesis states
that the expected distance between two calls is # hour.
Thus the traffic intensity is A=2 calls per hour. Under
the Poisson assumption the probability of x calls during
T =;% hour is '

: Br(Xt=x) = ﬁl%%_ M o e'&/2xx!

Thus the most probable outcome of the time series
Xp)Xpsees is (0,0,0,40.). But certainly if calls never
occur one would reject that average dlstance between two

calls is % hour. .

Now, the idea has been advanced that if you consider
only "relevant" statistics, then the principle of rejec-
ting when an unlikely event occurs and accepting when a
likely event occurs, is basicly sound. It seems clear
that "relevant" means minimal sufficient a priori. I am
myself not able to see why this should be a basicly
convineing principle when referring to relevant statistics
but not when referring to the original observations, but
shall go along with it anyhdw. ‘

The basic principle is then the following. (Martin-
L8f 1974). Consider the relevant, i.e. minimal sufficient
statistic T a priori and the minimal sufficient statistic
U under the hypothesis. Thus U is a function of T. Find
the conditional density of T given U under the hypothesis
and reject when this density is small adjusting it to a
level in the traditional manner. Note that this density
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would be independent of lhe nuisance parameters.

The two examples which I have given do not fit
this prescription. But the following example serves
as counter eXample.' It is suspected that there are
far more non-paying (cheating) passengers on a tram-
car line A than on a tramcar line B. Hence an inspec-
tion is made and the inspector finds the first nonpaying
passenger on line A after X inspections. On line B the
first non-paying passenger is found after Y1 inspec-
tions and the second after additional Y2 inspections.
Let the probability that a passenger is nonpaying be
Py and Pys respectively, on the two lines. Then we
have -
Pr((X=x) n (Y,=y,) n (Yy=y,))

yx=1 Yi*ypm2

2
= pA(1-pA PB(1-PB)

The sufficient statistic a priori is T = (X,Y1+Y2).

Set Y =_Y1 + YZ’ We find

Pr((X=x) 0 (Y=y)) = (y-1)p5(1-p5)¥ %p,
X (1'PA)X-1 |

Under the null-hypothesis Py =Pg =P and

U=X+ Y1 + Y2 = X +Y is a sufficient statistic

Pr(U=u) = (“;")p’(1-p)*"?

Hence under the hypothesis

Pr(X=x|U=u) = 2(u-x-1)/(u-1)(u-2);

x=1,2,ooo,u-2

which decrease from 2/(u-1) to 2/(u~-1)(u-2).
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We should of course reject when X is small, but
get rejection for large X by the new principle. This
example can be made two-sided. Then we ought of course
to rejecl when X is close to 1 or u-2, but by the'new
principle we get rejection only when X is close to u-2.
[If we had inspected to obtain a and b non-paying
passengers respectively, we would have got

Br(x=x [U=u) = (D D/
which could be called the "inverse hypergeometric
distribution"]

Of course, the geometric distribution
p(1-p)x'1v:~x=1,2,... is a much simpler example.
Regardless of p, the mcst probable value of x is x=1.
But that does not mean that no value of p could be
rejected if x=1.

Using Fisher's F to test equality of the varian-
ces in samples from two normal populations, the
density of F under the hypothesis is monotonic if the
number of observations are m = 3 and n > 3 respectively,
resulting in the most likely result being that the three
observations in the first sample are very close together.
Certainly that should result in rejection. No statis-
tician would warn against using the F-test when the
numbers of degrees of freedom are small, at least ndt
because the density is monotonic or perhaps U-shaped.

An interesting example in my opinion is the case
of the dealer in bridge who gives himself 13 spades,
or perhaps the best no-trump hand. Why are we not
willing to ascribe 13 spades to chance despite the
ract that the event 13 spades is not less probable
than any other hand? The null-hypothesis that the
dealer is not cheating is in this case that all the
N = 52!/(13!)4 combinations of the 4 hands are equally
likely. If we reject this hypothesis in the case of
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15 spades allotted to the dealer, it musi be because

other circumstances than those which follow from the

dcnulty under the hypothesis are taken 1nto account.
To be more precise let

G1,G2,...,Gr

be r groups of four-hands-combinations which are such
that all combinations x belonging to a ilxed G are
equally favourable to the dealer, whereas if x e G

and x' € G, with j > i then x' is more favourable

than x to the dealer. It certainly would be a formid-
able (really prohibitive) task to determine GireeesCy
but in principle they are given. Let

N1,

. T

Nyyeoe N, (ZN;=N)
1

be the number of four-hands-combinations in G1,...,G
respectively. We now let the test statistic be T(x),
where T(x) is defined by T(x) = t if x € G,. By the
classical test principle the hypothesis (of no chea~-
ting) should be rejected if T(X) is large. This seems
rather obvious from the definition of T(x). On the
other hand it seems to be irrelevant whether NT(x)/N
is laxge or small, i.ee. which qlcontalns few or many
combinations. Thus it is the rules of the game, and
a thorough knowledge of the game of bridge, which are
required to determine the test. The test cannot be
constructed from the hypothesis alone. It would be
a poor statistician who would neglect the facts about
bridge when constructing the test, just as it would be
a poor statistician who neglect biological facts when
devising a test for analyzing some biological observa-
tions. That is just the idea of the a priori spesifi-
cation, to be able to mould the known facts of the
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matter inio the teét construction, Before the Neyman-
Pearson era it was recommended to do that by using
statistic measuring the distance from the hypothesis.‘
This is of course still a sound procedure. The main
point is that you must bring in something which

cannot be derived from the null-hypothesis alone.

The new principle may perhaps be called the null-
distribution criterion. It has been called "the exact
test", presumably because it is so convincing a priori.
It must be taken seriously, because so many statisti-
cians have shown interest in it. It is indeed revo-
lutionary and violates most of what I have been used
to teach my students. It is sweepingly more general
than the Neyman-Pearson principle because it disregards
the alternatives to the hypothesis except for'the
purpose of constructing a minimal sufficient statistics
under the a priori assumptions. S

The new principle contradicts the Neyman-Pearson
point of view and the likelihood idea. Those are ideas
which many statisticians have oonsidered fundamental.

In all of the examples which I have mentioned the
obvious test procedure is uniformly most powerful un-
biased. I have seen no example where the null-distri-
bution criterion leads to an obviously acceptable
procedure whereas power-optimizing or the likelihood
criterion does not. ‘ '

‘I still feel that the idea of Neyman and Pearson
from 1933 of judging a procedure from its power or
performance is fundamental. It created a revolution
in the logic of statistical inference. I also feel
that the set of implications

unbiasedness in power => similarity
<=> conditional testing

- is étill important, both_because it represents
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fundamental ideas of inference and because it iS a
useful constiruction. The reasons why it is a useful
construction are; first; modern computatidnal outfit
makes it possible to perform exact tests; second;
statistiical analysis focussed on one parameter in a
regular Darmois-Koopman class of distributions will
always be important; third; the construction can be
generalized to situations of inference about many
paramers either as stepwise procedures (T.W. Anderson)
or multiple decision procedures (Erich Lehmann). I
find myself repeatedly making use of conditioning,
justitied by power umnbiasedness, in concrete practi-
cal applications. The objections that can be advanced
to power unbiasedness I find less serious than those
which can be made to the widely accepted concept of
unbiasedness in the\mean by point estimation.
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Appendix I

SIGNIFICANCE TESTING AND MULTIPLE
COMPARISON BY LINEAR-NORMATL MODELS

The following results are perhaps well known, but is
stated for the sake of completeness. ‘
1. Suppose that xij5 i=1,2,...,n;_j 3 J=1:25e09T

are independent and normally distributed with varXij = 02,

» . T o '

. =B Q.0 | .. 1. . > O N .=O Py '.f
and EX;; = 85 We state that %, _ I8, (2f,=0), i
T fjij > N (z-1)c S/\szg/nj- - (1)
It is well-known (Scheffé) that (1) is true for some f
(ijuo) if and only if
Z =R/ (1) $° e (2)

(We use the same notations as in section 2.) - »

If §,=v.e=8  then the probability of making a wrong state-
ment is the same as the probability of stating (1) for some
fo It follows that the probability of a false statement
is exactly €. Now, let §1,...,§r be arbitrary. The pro-
bability of making a false statement is then
Pr( v (z £.%. >K,)
fiTf.€.<o JJ
3%3= (3)

= Pr(f:zfggjso(z fj(xj-gj)+z 8> Kp))

where K. denotes the right hand side of (1). However,
since T fjgj < 0, (3) is
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< F e K .s_o(z £5(X5-85) > Ke)
N (4)

all f

By what we have stated above, the last term is equal to

€ since all xij'gj have the same expectation.

2. In the general case let X = (X,,...,X )" have
ce 1 :

independent and normally distributed components with

variance 02 and

8 = EX = yp o (5)
where y is a known (nxs) matrix of rank s and
B = (B1,-o-sﬁs)'. Let o
9 = (e1y-0095r). y T < S - (6)

According to the general multiple comparison rule
we shall state that

r . :
f'¢ =3 f.g. >0 (7)
j=1 99 |
if A r A
f'cp=>:f.s.>~lrcsf (8)
j=1 9 4

where c¢ is the 1-€ fractile for the Fisher distribution
with r and n-s degrees of freedom,

-1 A - |
s% = f'g 1562 (9)
A oy A2 . ) 1 2
BJ and 0~ are the usual estimates of Bj and 0, and g
is suxh thatAg“102 is the covariance matrix of '
= (Byse.rB.)". Tt is well kmown that (8) takes place

for some f if and only if

F = $'g$/r92 >c
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However, this is the usual Fisher's F for testing
518...=Br=0.

Hence the probability of maklng a fa]se statement if
B1=Q..s =0 is €.

Consider now for arbitrary ¢ = (B1,.,,,Br)' the
probability of making a false statement

Pr( U (Zfﬁ > re S¢)) (10)
fzsf<ol=1ll : |

A
Let us introduce Qi = Bi-Bi 3 1i=1,25e00yTe
Then (10) may be written

Pf( U ( Z f, Y +If.B, > Jro Sf)) (11)

£178;f; <0 i=1 1’4

Hence by the same reasoning as above (11) is

A
< Pr(li{(ZfiYi > xf?cf S¢)) o (12)

where the union is taken over all f. However, since
Qi, is least square estimate of B;» then Qi = Qi- B; is
least square estimate of Yi= Bi-si =0 3 i=1,2,...,r.
Hence, by what has been stated above, (12) has proba-

bility e.
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Appendix II1

STATEMENT AND PROOF OF THE PROPERTIES OF THE MULTIPLE
COMPARISON RULE BY BINARY AND MULTINARY OBSERVATIONS

We give in this appendix a more detailed and some-
what more well-organized proof of the properties of the
multiple comparison rule by multinary observations, than
that which was presented by Sverdrup (1975). A correc-
tion is also made, see Propositions 2 and'3 with footnote.

1. Statement of the Properties of the General Multiple
Comparison Rule.

A. The result of n independent multinary trials are
observed. The'series of trials may be divided into s
sequences such that there are n_ trials in the a-th-
sequence; a=1,2,+.¢¢,S3 Zna= n. Each of the trials in

the a-th sequence may result in one of T, mutually exclu-

sive events

A ’ooo,A

a ara.
with probabilities .
a
pa‘]’.."P.ar ’ Z Pag = 1 (1)

a j=1

respectively. We assume a priori that all paj are bet-
ween O and 1. The observed number of times the r

a
events occur are
_ . |
a _ 2)
N ’...’N 9’ XN . =1 9 .. 2
al ar, je1 aj a N
respectively. Let R = v r..

a=1"a
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B. The null-state H is to effect that the Pgy are
specified functions

paJ = maa(e)f 0€EB ,J=1 2’ooo,ra' a=1,25e0035

of a parameter 8 = (8,5...,0,), where 8 varies in an
open set © in the t-space, t < R-s. We assume that the
@, ; have continuous second order derivatives, and that
the rank of the RXt matrix

( A
{ i (ayJ) = (1, 1)’0'0’(3 Tq ) l=1’-°°,t, (4)

is e :
A function f(p) of p = {p“,...,psr } is a contrast
S .

relatively to H if f(p) = O for all ¢. It will be called
smooth if it has continuous first order derivatives

(P) = bpaj . (5)

We shall consider a class T of smooth contrasts f with
no stationary points for p = ¢. Two cases will be treated.
% is the set of all (or some) linear contrasts

f =73 faapaj + £, (6)

Case (i)e.

Thus in this case the f, aj are independent of p.

Case (ii). % is such that the class of all f_ aj ob-

talned by varying f in T is equicontinuous.

C. The statistical method can be described as follows.
First the maximum likelihood estimates 6 under H are

found as solutions of

- A
z 6‘.‘ 26 =03 i=1,2,000,t (7)
a,J waj( ) B o _
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A
Alternatively 6 is a modified minimum chi-square estima-
tor, given by '

' A | N

z n
yi ag 5 0h,

W

. : A '
We do not care whether ¢ actually maximizes the

likelihood
Mo N, .
. L = CPaJ(G) al

or, alternatively, minimizes,

2
(N, -n_e_.(6))
X2 =¥ ‘a avaj
We assume that for all {Naj}, (7) (or(8)) has either
one or no solution. We shall let all n, go to infinity
in such a manner that na/n = g, > 0. We assume that the
probability that (7) (or (8)) has one solution goes to
1 for any p. When (7) (or (8)) has no solution we can
let 3 have any value (e.g. such that it‘actxally maxi-
mizes L). It can then be prxved that plim =6, if p=p.
 Let p* 4 = Naj/na and @y = cpaj(e). We find in
case (i), . :
02(p) = var f(p*) =$n'1[2 fz‘ -(z £,.p »)2] (9)
£\P ' P 5 @ 3 ajPaj”. aj¥aj
In case (ii),‘cg(p) can be found by linearizing f(p*)
with respect to p*-p. We then get the same expression
(9) but with f, ==faj(p), depending on p. Now define

j
Op = 0p(®) , o =0 @%)  (10)

= O‘ i=1,2,..-,t, : (8)
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These two quantities will be called respectively the
null-state estimated and a priori estimated standard

deviation.

The rule consists in stating that f(p) > O for
all those f € Q; for which

£(p*) >z G, (11)

wherc z is the 1-€ fractile of the chi-square distribu-
tion with R-s-t degrees of freedom. Alternatively we
may use o¥ on the right hand side of (11).

It should be noted that if we want to test f(p) < O
with a specified form f selected in advance, then we
would have used the 1-€ fractile for the normal distri-
bution instead of Nz (one degree of freedom for z).

D. We shall prove, :
Proposition 13 In case (i) and (ii) with a priori

estimated variances the limit of the probability of making

a false statement; i.e. stating that £ > O for some

T é % for which f < 0; is_asymptotically < €. More

precisely

limsup Pr( U (£(p*) > ‘\/?o}k))g € | (12)
n- <o f(p)<o : :

if p = p(n) approaches some p(o) as n 2,
Ao This also hglds with nu%i;state estimated variances
of instead of c? provided p equals some .||

Of course the case when p N/ is kept constant is
included. However, it is desirable to let p go to some
-@aj) are kept
constant. However, this special kind of convergence is
not needed in the mathematical derivation.)

We shall also prove, '

¢ (e.g. in such a manner that all ~n (paj



- 30 -

Proposition 2: In case (i) with ¥ consisting of

*
all linear contrasts and all Paj being linear ) in o,
we have if p = ¢ (and hence all f(p) > O rfalse),

i B (@) >VEE)) = (13)

mh o 4 I TP N 4 A
This is also lrue with Op replaced by c§ .|

E. We shall prove,
Proposition_3: Suppose case (i) with % consisting

. ] . *).
of all linear contrasts and all Paj linear in ¢. Then
if null-state estimated variances are used some contrast

will be declared positive if and only if

H

- , A2 »
' (N_.-n_o,.) :
2= p 2@l o, (14)

A}
J.(e) are maximum likelihood estimates.

If a priori estimated variances are used, then some

A
where the ¢aj =@,

contrast will be declared positive if and only if

Z= 3 > z ' (15)

a,J aj

A2
‘(Naj_na¢aj)

A A | | :
where the @, ='¢aj(e) now are modified minimum chi-
square estimates."

Proposition_4: In case (i), (14) is a necessary

condition for significant contrasts when null-state‘

estimated variances are used and (15) is a necessary
condition for significant contrasts when a priori esti-
mated variances are used.l|| '

Note that these relations between the multiple com=-
parison rules on the one hand side and (14) and (15) on
the other hand side are Purely algebraic. They are

strictly true, there are no approximations involved and

*) The assumption that ¢ should be linear was incor-
rectly left out in Sverdrup (1975).
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they are not probablllty statements.

Proposition pi In case (:Ll), (14) (resp. (15))
is asymptotically necessary condition for significant
contrasts in the sense that if S, = "some significant
contrast" and S, = "(14)(resp. 315)) is true", then
IT(S1-S2) + 0 as n =2, and p R converges in +ne manner
described in Proposition 1.

Propoéitions 3-5 suggest that both in case (i) and
case (ii) one might first check if (14) (or (15)) is
true and only if such is the case go on to apply (11).
Thus the test proposed is a refinement of the class1cal

- Karl Pearsson's 51gp1flcance test.

Pr09051t10n 6: A simuﬂaneous confidence interval

for all contrasts follows from,

Linsup Pr(y VR £(o%) - VE £(p) 2 47 ofl) < ¢

Under the assumption of Proposition 2, we have

lim Pr(g{J;\f(p*)-- Jﬁ\f(P) Z‘WEG;}) =€ ||

Note 1hat if the a priori estlmated varlance is used,
then theestlmate 9 is not needed in connectlon with the

- multiple comparison rule. It is only needed for checking

(15).

F. It is of interest to consider the speciai case of
homogeneity testing. Then ry=...=rg = r‘and we choose
as a null-state that Pyqse+esP,,. 8TE 1ndependent of a.
ThlS can be written

Pqj= ej; 351,2,...,r-1, Pyp= 1-91—.f.-er;1 =8,

We then get from (7) the maximum likelihood estimates
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A A . A
gy = 85 =L Ngg/n =Ny/m=p,  (16)

and from (8) the minimum modified chi-square estimates

A A - T _ _
where P; is the harmonic mean of the p*aj = Naj/na;
a=1’2,ooo,So
n
Py =0/t = - (18)
. & P3;

The chi-square statistics are respectively for null-
state estimated and a priori estimated variances.

o N2. C

2 = n(Z g~ -1), 2 = n(-1+1/(z3;)) (19)

aiyj

They are found from (14) and (15) respectively. Now it
is seen that }:pajfaj is a contrast if and only if

zfaj = 0 for j=1,2,eseyre According to the general rule
a . A

with a priori estimated variances this should be declared

> 0 if

z p*ajfaj >GJg(zfijp*aj-(:fajp*aj)Z)n;1 | (20)
where z is determined with (r-1) (s-1) degrees of free-
dom. (20) will take place for some faj if and only if

2y < (14 27 (e
where 53 is given by (18). (Note that'ﬁj < Sj and hence:
P; < 1 with equality only if all D*, 5 are strictly
independent of a. Thus heterogeneity is measured by the
degree to which the harmonic means fall short of the
arithmetic means.) '
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With null-state estimated variances we should

slale Tp, €, > 0 if

Ip} >F«/2(2f33p -(zf, p ) )n] ‘A | (22)

aj aj

and this takes place for some faj if and only if

Ep*/ﬁj>1+% | (23)
‘-:J :

2. Proof of the Assertions about the General Rule.»

A, In sections A-F we shall treat the case (i) when 2
conoluts of ]Jnear contrasts and null state estimate

variances are used. We introduce

A

and it is well known that in the limit, when n - ;

with n_ = ng_, g. > 0; then 2 = T Y2. has chi-square
a a’ ©a a, aj
distribution with R-s-t degrees of freedom. We now have

in case (i) (see 1.B), since f(e) = 0,
f *) f (ﬁél A )
(P RREPY o, " ¥aj

A
We introduce h = aJ a' and get

f(p*) = \—’f. zhaj aj _ | (_25)

Note that if @(p) is linear and % consists of all linear

contrasts, then the set of (h11,..., s ) forms a (R-t)-

dimensional space. S
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Bs Let us now consider,

r
S a
2 ] = -1— ‘
of(p) = var £(p*) L g var ?fagNaJ/V ‘ (26)

We have
p,i(1-p, ) if k=j,
J aj :
cov (N V n,, Nak/vna) = { . (27)
» - if k#j.
pajpak +

\
We then get for c = (¢)

: S
1
op =3 I E (by V¢a3 Vo ak P jPax (28)
a=1 j,k

(where we have made use of the Krdnecker 8).

C.  Below we shall, in order to facilitate the intro-
duction of matrix notations, replace (a,j) by a single
letter i, such that i=1,2,...,R represents (a,j) in

 lexical ordering. Hence Ny = Ni, Py = Dy, 9,5(8) =
¢;(8), £p5 = £

aj i? haj = h . We write also n; and 84 in

place of n, and 8¢ Thus ny and g; are constants on

seclions of lenghts T Toseee, Ty respectively, We
denote the sections by S1,...,Sa respectively, and have

T N =n ) Z P 1

1ES a 1€S
We can now write (24)
N.-n $
Y, = 2311, 529,2,,..,R (29)
1 / A :
n;9P4

Now, let b denote a matrix of order Rxs, the a-th
column of which is



- 35 =

(u,...('),«/é.—-1

.
Jgar ,O...O). (The column starts with
a N

a1,ooo,
a=-1
Tor; zeros.) We see that
y
b'p = I (30)
and get from (25)
£(p*) = 1 Pny, =lny (31)
Nn 1 1d n :
and from (28)
N2 1 | ,
or =3 h'(I-bb')h , (32)

De From the contrast property of f we have,

f +Zfi9; =0, (33)
hence :
R’ bwi(e) ] ‘
% fi —sgg—- = 03 J=1525e00,1 (34)
for any ¢. We introduce
_ A 3
'Bij = —_— e } 1=1,2,¢0e¢3R; J=1,2,004,1T (35)
b, b,
J : .
: A
_ | _ o, (6)
It is seen that B = {Bij} is the matrix —g— multi-
0.
J

plied by a diagonal non-singular matrix. Hence, by 1.B,
B must have rank t. We can write (34) with ¢ = 8
h'B =0 (36)
From
£ 9;(0) = 15 a=1,2,.04,5, | (37)
iESa '

we gel by derivakion with respect to @ JZ1,25e00, 1,

and setting 6 = 9,

j;
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b'B = 0 ' (38)

. Since B has full rank, the space Vt spanned by the
colums of B is a t-dimensional subspace of the R-dimen-
sional vector space V,. Let H be a RXt matrix such that
its columns'constitute an orthonormal basis for Vt.-
Then of course H'H = I and since by (36) and (38) h and
all columns of b are perpendicular to'Vi we have

‘h'H = 0; - (39)
b'H = O ' (40)

From (40) it is seen that the matrix (H, b) of order
Rx(t+s) has orthogonal columns. We complete it and
obtain an orthogonal matrix

K = (G, H, b) | B (41)
of order RxR. G is of order Rx(R-t-8).
Let us now introduce , |
" d = K'h; | (42)
V= KY (43)
If o ié 1inear.and ¥ consists of all linear contrast,

then {d|f§§’} is a - (R-t)-dimensional subspace.
We have from (31)

Nu' £(p*) = h'Y = 4'V (44)

(29) reduces to

= 1] = =
O = h'H = d"K'H = (dp_g_4,qree+sdp_g)

Hence,
dp-s-t+1=***= dp-g = O - (45)

A2

I'rou equation (32) we get ngy = h'h-h'bb'h=4'd-d'K'bb'Kd.
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But _
G 0 |
K'b={H'|]b=| O | (46)
bt/ b'% - '

which combined with (30) and (45) gives

R~-s5-1
ng% = 3 a2 (47)

i
For V given by (43) we have
_ o
V=\|H Y
b'

But by (29), the a-th component of b'Y is

) A | |
iesa(Ni-ni¢i>/J;1 ’ ‘ (48)
which from (37) and since n; is constant, equals O.
Thus _ ‘
VR-S+1=...=VR = 0 : ‘ (49)
and by (44) i
Nn f(p*) = ¥ 4.V, (50)
7 ] i'i

By (50) and (47) the criterion (11) for stating that
£(p) > O reduces to

‘R-s-1 / R—s-t»e‘
, % d;V, > 2 121 dy . (51)

for all d. But for given Zdi, an upper bound of the left
liand side is, by Schwartz inequality,




'R¥5-£Wém_35i¥__\
L df = V? (52)
1 1

R=-s-t 5
¥ Vi >z (53)
1

Now we make use of -the fact that 6 is maximum likelihood
estimate in the null-state, i.e.satisfies (7), which can

be written N
RN, 29p.(8)
E o —F— = 0; J=1,2,000,t (54)
i=1 o3 b¢j T '

A
By dervivation of (37) with respect to 84 setting ¢ = @,

multiplying by n,, summing over all a, and subtracting
from (54), we get

B'Y = 0 (55)

Hence H'Y = O and vR s t+1=...=vR = 0, Thus (53) is
the same as '

R >
Z=3Y >z (56)
1

Thus we have proved the first part of Proposition 4.
Since under the assumption of Proposition 3,
(d1""’dRes-t’dRrs+1”"’dR) varies freely (see remark
after (42)) then (52) is the maximum of the left hand
side of (51). Then (53) is also a sufficient condition
for making a statement and the first part of Proposition
5% is proved.

r. ‘Sincé in the null-state 2 iS’chi-square distributed
with R-s-1 degrees of freedom, we have proved the first
part of Proposition 2.
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G. We shall still consider case (i), but we now assume
thal we use a priori estimated variances in the multiple

comparison rule. The derivation in A-F can then be re-

peated with the following changes.

—
p*.' .
haj is now defined = faj / gii and (24) is replaced by
AN
N N0,

Y . = 2] _a‘aj (24)!
aJ N

aj
with the corresponding change in (29). In the definition
' A

The definition of Bi' in

of b, a3 is replaced by p* j

(35) is replaced by

aj’

d (3)
€ 0010/ .
Bij - p*i be. (35)
J

From (8) we get (55) with Y defined by (24)'. Hence we
get the last parts of Propositions 2, 3 and 4.

H. Now let p 4 ¢ in case (i). We consider the multiple
comparison rule when a priori estimated variances are
used. Let

X, = 4 _i7i ()
1 .'Ni
Then
RN, R |
Vo' £(p*) =Vn' £ £f;== + £, = £ h,X; + V0 £(p) (58)
1 i 1 1
where h, = f; E}' . Hence the probability of a false
i

statement can be written,
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R B .
Pr( u {g h X, + Nn' f(p) Z‘Jin o?}) (59)
£(p)<0 1 '

where the union is taken over all £ € % such that
f(p) <0, for given p. It is seen that (59) is

<Pr( v {n'X >+ o¥}) <
| f(p)<o

< Pr(%{h'x >Wzn o)) = P, (60)

where in the'last expression the union is taken over all
linear contrasts. _
We shall show that limsup P <€ when p is replaced

(n) and lim p( n) = P.

n-» oG )
‘Below we shall refer to equations (24)',(28)',(29)',

(30)',(35)', etc. They are equations (24),(28),(29),
(30),(35) etc. above with-$ replaced by p* on the proper
places such as described in section G above. We use the
same notations B,h,d,b,K,G,H for the modified concepts.
We shall also neﬁd B,h,3d,b etc. which are the modified
B,h,d etc. with ¢ replaced by 6 and p{ by‘pi, Thus

by p

5 e vw;(e)
13 Vp; 08
(see (35)' page 35).
Consider now

X = Ni'nip§n) ¥, -ny p{*) / ™)
i | NN Jnipﬁn) p¥

i

Then it can be proved by means of a result'generalizing
Loeve (1955) p.295, that (X ,...,XR) converges in distri-
bution to a vector (11,...,% ) which is multinormal with
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expectation O znd covariance matrix

4

" covm (21,...,2R) =I-b b | (61)

We have used the fact that plim p* = p, which follows
because p¥ = p¥. - p(n) + p(n) and plim (pg-p§n)) =0
by Chebyshev's inequality.

Now, it is seen from (8) that

pt-% (8) 29 (8) \
—l——j— —+— ; i=1,2,ooo’t (62)
J .

Hence from the assumption of continuity, uniqueness etc.
A

(see 1,C page 28), plim § = ¢, where ¢ is the unique

salution of '

~¢.(8) 59 (8) | -
2} —1—-1——— -—l——- 0 3 i=1,2,000,t (63)
D ,J
J J l
‘it follows that
plim B = B : (64)
Hin 2,5 can be constructed from B in such a manner
that the elements H . are continuous functions of B, .

A A
hence of e. We wrlte Hij(e). Similarly Gij(e) can be
constructed such that they are continuous. Then

’

plim K = K = (G(e), H(s), b) (65)
Returning to (60), we introduce

W = K'X (66)
and get

b'X = a'KE'W = d'W ' (67)

by (42). We also have

e
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[

- W=| H' X
.
But the a-th component of b'X is
: N.-n. (n)
oy ,\/B? 1 lpl ‘= 0
ies, * JNi‘

Hence

WR.S+1=0..= WR = O

We have from'(69)‘and (45)'

. " R-s-%
h'X = T a.w.
B T

Consider now o% in- (58). We have from (32)°

nog2 = h'(I-bb')h = hh' - h'bb'h =

= d'd - 4'K'bb'Kd = % di
1

since b'K = (0,0,b'b) = (0,0,I).
We get from (58), (70), (71)

By o= Bro(4y)
| (R-s-t | JfR-s-t 2,
where A =U T 4d.W. >,z T 45
A imp 17

But

L AW, < Nxdlswl

Thus 4 implies JZW? >Nz

and R-s-1

B s E( T W >a)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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From the convergence property of X, (66) and (65) it
follows that W converges in distribution to

R'X = W (say). Of course W is multinormal with
covariance matrix ‘ |

covm (W) = K*'(I-BB*')k : (75)

This matrix has zero elements except for the first R-s
elements of the diagonal which are equal to 1. Hence
WR g41=c = w = 0 with probability 1 and W1,...,WR -5
are 1ndependent normal (0,1).

It follows that the right hand side of (74)
converges to €. Hence limsup P < €. Combining this }
result with (57) and (58) we obtaln that the probabllit&
of a false statement has a probability the llmsup of
which is < €. 1

This proves Proposition 1 in case (i) with a priori
estimated variances. The assertion in Proposition 1
with null-stafe estimated variances is proved in a
similar manner. : _ _ ,

I. DNote that under the assumptions of Proposition

2 we have lim P = €. From this result (58) and

limsup P < € under general assumptions, the assertlon ‘
in ProposltlpnA6,follows in case (i). In case (ii) the
assertion follows from the development below.

Je Let'us'ﬁow,considér the case (ii) of non-linear
contrasts f(p) and let us use linearized null-state
estimated variances. We then state that f(p) > O
if ‘ | :

ten >ATE, e

A
where 0, =‘of(¢),
1

of(p> En § (p)paJ (zfaJ(mpaJ 2] (77)
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and faj(p) = f(p)

bpaJ
We shall first study asymptotic properties of this
rule if p = o.
We now set

= Nj_ A v
-’J;l f(p*) ='JEE fl<P')(I1-I- CPi)‘i
N. .
= Jﬂ‘z fi(w)(ﬁ% - $i) + J;‘A'f (78)
1

A ' ,
where p' is "between" p* and ¢ and A% goes to O uni-
formly in f as p* and 6 go to @. (78) may also be
written '

Wz £(p*) = £ hY, + 4 A', | (79)

where Yi is deflned as before and

h, = £,(g) J[——ﬂ | (80)

By (77) we have
o 3
Vi o, = {z &' [22®%; - (= £,(8)8,)2])

c e
- {3 &5'eftodey - 2 2587} o ay -

=n o, + Al T (81)
_ A -
where A" goes to O uniformly in f as @ goea to o.
We see that (32) above still holds with af replaced by
f and h; defined by (80). Ve can now go through the
same development as in 2.D - 2.H above. Equation (34)

with f, = fi(¢) is derived from the contrast property
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f(p(e)) =0 - | (82)

Thus (34) is rigorously true. We finally obtain in
place of (50)

R-5-t Ro-t
121 d;V, + 4, > ? aj (83)
where Ap = Al + AV, / No goes to O uniformly in f as p*
and ¢ go to ¢.,
Now, let S, denote the statement that (83) takes

1
place for some £, and 82 the statement that

R-s-t [ R-s-t ,
L 4V, >4z T df - (84)

i=1q . o imq

for some f. Then S, asymptotically implies S, in the
sense that the probability of S1-S goes to zero.
Because S,-S, means that (83) is true for some f and the
reverse inequality of (84) is true for all f. Hence

81-82 implies that

A

s >0 | (85)

is true for some f. Thus

Pr(s,-s,) < Pr(g(Af > 0)) . (86)

(Note that by separability the union in (86) can be made
countable.) The right hand side of (86) is the 1imit of

Pr(U(dg > m) (e

as n > 0 goes to 0. (87) is equal to



- 46 -

1= By <) (88)

However, we can find a & such that |p*-@| < & and

A .

|o-9| < & implies Af < 7n for all f, by the equiconti-
nuity property. Hence (88) is less than

Pr(|o*-p| 2 8) + Pr(lo-o| 2 8) (89)

Now, first choose n so small that the difference between
the right hand side of (86) and (87) is less tha.n% .
Afterwards we can find the corresponding 6. Then for
fixed & choose n so large that (89) is less than % .
Then Pr(S1-Sz) < p and Pr(S1-SZ).+ O.

However, since

zaivig«[z af £ Vy
we have that (84) implies

TV >z - | (90)

1

Combining (90) and lim Pr(S1-Sz) = 0 we obtain Proposition

5. We also have from S, c (5,-5,) U 52 that
Pr(S1) < Pr(s,) + Pr(S1-82)
and hence -
| limsup Pr(S,) < lim Pr(z V5 > z) (91)

Hence we have proved that in the null-state :

lim sup Pr(false statement) < €. The statement about
limsup Pr(false statement) < € for any p(n) + p is now
proved in essentially the same manner as when f is linear.
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Instead of (58), we start out from
Jﬁ‘f(p*) =
. N. ‘ . ;
=n 3 fi(p(n))(ﬁ% -‘p§n)) + J;\f(p) +4n Af (92)
, i

where Af = O uniformly in f as p* and pn go to p, and
use the same kind of arguments as in H and this section.
Thus we have proved the assertions in Propositions 1

and 5 in case (ii).

AoR

agpdEE

=
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Appendix III

PERFORMANCE OPTIMAL TESTING OF A SINGLE PARAMETER

Suppdse that an observed random vector has proba-
bility distribution depending on parameters (p,T),
where p is scalar. We want to decide whether p < or
> 0, i.e. we have a choice between three decisions
"o < O",%" > 0", "no inference". Let the acceptance
regions for the three decisions be_B1,B2,B3, respec-
tively, where’B1 v 32 v 33 = sample space.

The performance of the method (B1,32,33) has two
branches :
B,(ps7) = Br(B,) , By(p,7) = Pr(B,) (1)

which are respectively the prObabilities of stating that
p<0and p > 0.
(B1,BZ,B ) is performance ogtlmal with level ¢ if

(1) 51(Q:T) <e for p2>20

52(5,7) <€ for p<O L (2)
(ii) 91(9:7) 2 € for p< O
Bo(ps7) 2€ for p>0 (3)

(iii) Among all methods satisfying (i) .
and (ii) it maximizes B,(ps7) for all (p,T) with p <O
and maximizes ﬁz(p,T) for all (p,T) with p > 0.

Suppose now that there exist a unlformly most power-
ful unbiased test for testlng p > 0 and also for testing
p < 0. Let the rejection regions be‘B1 and B, respec-
tively and suppose that B, N B, = 0. Then (B1,BQ,B ),

—_ 1
where B, s.(B1U B,) , has optimal performance.
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From this it follows that the Student test des-
cribed in section 2 is performance optimal.

In the double dichotomy case (see section 2), let
P, and p, be the probabilities of B under A and not-A

'respectlvely. Then there are p081t1ve or negatlve

dependences according as

p = log T—=— / log == (4)
| 1-p, 1-p, |

is positive or negative.

The uniformly most powerful test for testing p <O
against p > O is the following. Reject if H(X) > 1-€..
Reaect with probabllity y2 if X = 02 : Here‘

RIGEN >(§’M>/(n) , H(x) = yz h(y)
=0

and ¢,,Y, are determined such that O $~Y2 < 1
1 - H(e,) + Yph(ey) = ¢

Similarly we reject the nu11~hypothesis p 20 if
H(X) < €. We reject with probability y1 if X = c,,
where O <Yy < 1.and

H(c1f1) + Y1h(¢1) = €

Thus the optimum three-decisionﬁprécedufe consists
in stating negative or positive dependence according as
H(x) < € or > 1-¢, and making randomized decisions if
X = c,

or C,e (0f course the randomization is never
carried out in practice.) '




