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ABSTRACT

The relation between the ergodic coefficient and deficiency
relative to the least informative and the most informative
experiment js investigated. The results are applied to non-
homogeneous Markov chains (NMC's). Our main result can be
described as follows: Given an NMC, define the experiments
géj) for n>1 consisting in observing the (n+j)-th state
of the chain, the j-th state being the unknown parameter.

Then the chain is weakly ergodic if and only if for any j ,
fgéq) converges as n = o to the least informative experiment.
It is finally shown that in the homogeneous case, the rate

of convergence is always exponential.
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1. _Introjuction and summary.

Lindqvist (1977) studies the experiment <én obtained
by observing the n-th state of a finite Markov chain in order
to obtain information about the initial state. As a particu-

lar result it follows that é’ converges to the least inform-

n
ative experiment if and only if the Markov chain is ergodic.
Here convergence means convergence with respect to the
defieciency introduced by LeCam (1964). It is furthermore
proved that the rate of convergence is exponential.

The present paper extends these results to the case of
non-homogeneous Markov chains (NMC's) with arbitrary state
spaces. Given an NMC, we shall consider the experiments
én(j) for n>1, j >0 consisting in observing the
(n+j)-th state of the chain, the j-th state being the unknown
parameter. We prove that téx(la) converges, Dr any Jj , to the
least informative experiment if and only if the NMC is weakly
ergodic. This corresponds well to the common interpretation
of weak ergodicity as "loss of memory". It is finally proved
that the rate of convergence is exponential for homogeneous
chains, .

Weak ergodicity of NMC's is studied by e.g. Paz (1970),
Madsen (1971) and Iosifescu (1972), who make use of the ergodic
coefficient introduced by Dobrusin (1956). In section 2
of this paper we study, using ideas and results from Torgersen
(1976a), the relation between the ergodic coefficient and

deficiencies, In section 3 these results are combined with the

theory of weak ergodicity - in order to derive our main results,



2., The ergodic coefficient and deficiencies.

Let u be a signed measure on some measurable space

(x,00) . By llull we shall mean the usual total variation

norm, i.e.

lull = pw(a) - u(B)

where A and B are the positive and negative part, respec-
tively, of the Hahn decompostion for u .
Let (%,00) and Cg,ﬁB) be measurable spaces and let
p  be an (Ol-measurable measure on @ , 1.e. p 1s a real
function on xX@ such that
(i) p(x,+) 1is a signed measure on B for any XC X
(ii) o(+,B) is an Ol-measurable function for any BEH .
We shall let the norm of an (l-measurable measure on 55 be

given by

toll = sup llp(x, )
XEX

If p(x,*) for any xX€ % is a probability measure on

® , then p will be called a Markov kernel from (x,00) to

4B

The ergodic coefficient was introduced by.Dobrusin (1956).

We shall state the definition and some basic properties (see
also Tosifescu, 1972).
Let P be a Markov kernel from (¥X,00) +to (%l ,.23) .

The ergodic coefficient of P,a(P) , is defined by

(2.1)  o(P) = 1 - sup|P(x',B) - P(x",B)|



-4 -

where supremum is taken over all x',x"€ X and all BEﬂB.
Clearly 0<o(P)<1 . It is seen that a(P) = 1 if and
only if P does not depend upon x . In this case P is

called a constant Markov kernel.

As is noted by Dobrusin, a(P) can be expressed in terms

| as follows:

of the total variation norm |-

(202) CI‘(]—D) =1 - % sup HP(X',.) - P(X"")H
x',x"e
(This is easily seen from (2.1) considering the Hahn decom-
position of the measure P(x',<) - P(x",+))
For convenience, we shall introduce the functional

e(P) = 1 -a(P) .
def

If O is a set, then let Tn = O if Q is infinite and

let r. = k-1

0 if Q is finite with k points.

Lemma 2.1.
Let P be a Markov kernel from (X,00) +to (g?,jg) .
Then there exists a constant Markov kernel I such that

P=FE+R and
IRl < 2(1-x, ) & (2)

Remark: Tosifescu (1972) states the same result, except
that the right hand side is 2€ (P) . Hence our result is
somewhat stronger in the case of finite ¥ .

Proof: If X 1is infinite, let X, be some fixed member
of X and let E Dbe the constant Markov kernel defined by

E(x,B) = P(x, ,B) ; X€X,BE D, Then if R=P - E ,
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IRl = sup IIP(x,*) - P(x,, )l
XEX

< sup [IP(x',") - P(x", )| = 2¢(P)
X', xWeEX
by (2.2).
If x is finite with k points, then define I Dby

! v p(x',B) ; x€x,BeB
X'€ X

E(x,B)

and let R

]

P-E . For fixed XOG X we get

X+ X
o

< k™1 (k-1) e (P) by (2.2)

IRGe, )l = E G, ) - B, ]l

Let P' and P" ©be Markov kernels, respectively from

x,00) +to (’g,ﬁ) and from (y,ﬁ) to (3 ,‘6) . Then
the composition P = P'P? is defined to be the Markov kernel
from (x,0U) +to (5 ,‘é ) defined by

(2.3)  B(x,0) = [2"(7,0) P'(6,dy) , yey cel.

As is proved by Dobrusin (1956)

(2.4) e(P)<e(p')e (P")

Example 1. TLet x and %t be (at most) countable sets. In
this case we shall always assume that the o-field UL (%)
consists of all subsets of X(’g) . Any Markov kernel P

from X to /9’ may now be represented by a Markov matrix

(PlJ)le X, Jey’ where



P(i,A) = % .. 3 i€x, AcC?
; Z Py » As Y

As is shown by Dobrusin (1956) (see also Isaacson and Madsen,

1976), we can write

a(P) = inf S (Pir. A DPiv)
i,jexkey ik T Tk
and
e(P) =% sup I
i 3€xkéfgjpik - ij‘

We note that the composition P = P'P¥ of two Markov kernels
P' and P" 1is now given by the usual matrix product of the
corresponding Markov matrices.

The rest of this section is devoted to relating o(P)
and €(P) +to the concept of deficiencies, as defined by
Le Cam (1964). A survey of the theory of deficiencies is
given by Torgersen (1976 D).

‘The deficiency & (é ,@') of an experiment Ig relative
to an experiment & measures the loss, under the least
favorable conditions, by basing ourselves on ‘15 rather than
on & . We have O§6(£ ,9’\')5 2(1-r®) , where 6 denotes
the parameter set. If 6(é ) = 0 then we say that &
is more informative than ¥  and write this é > g .

Let (0,77) and (%,C0l) be measurable spaces. Inter-
preting (%,0l) as the sample space and © as the parameter
set, we shall let the experiment é p be defined by T‘éP =
(x,X,P(8,°) ; 6€0) , where P is a Markov kernel from
©,7) to (x,00) . Let now Q Dbe a Markov kernel from
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©,7) to (/62{,@) , and assume that % p is a dominated
experiment. Then, by theorem 3 in LeCam (1964), we have

5 (€ 5.8 ) - ing e - qll

where infimum is taken over all almost Markov kernels M
from (X,0) to (’9,5) , i.e., all real valued functions

M from x><§3 satisfying

(i) M(-,B) is OU-measurable for any fixed BeED .

(i) 0 = M(-,@)<M(*,B)<M(-,Y) = 1
a.e. P(0,¢) ; 68€@ for each BE Q}.
(ii) mM(+, U Bi) = X M(-,Bi) a.e. P(9,-) ;
i=1 i=1

0€® when B,,B,,... are disjoint sets in B .

The composition PM is defined by (2.3), noting that the integ-
ration is valid even if P%(y,-) is not a measure on (3 Jg ) .
However, conditions(i) - (iii)above imply that PM is always a
Markov kernel,

Let d£ denote the least informative experiment, i.e. an
experiment satisfying 'g >4£ for any experiment g ,5
may be represented by any experiment Z?P for which P is a

constant Markov kernel. 26 is obviously a dominated experi-

ment, ILet Q ©be a Markov kernel from (@;YJ) to (? ,23) .

Since P constant implies that PM is a constant Markov
kernel for any almost Markov kernel M , it is seen that we

have

(2.5) 1(Q) = &(&, éQ) = inf ||P-Q|)
def P



where infimum is taken over all constant Markov kernels P .
Let L denote a totally informative experiment, i.e. an
experiment such that %? é for any “g . % may be repre-
sented by any experiment %?(Q for which Q(6',-) and
Q(e",+) are mutually singular measures whenever 6' &£ 67 .,
If P is a Markov kernel from (®’gr) , then we shall define
m(P) = 6(€7P,¢2) . It can be shown that m(P) = 2 whenever
éﬁP

® 1is not countable. Hence we shall be concerned with the

is a dominated experiment not equivalent to 7 and

functional m(P) only in case ©® is at most countable. In
this case m may be represented by the identity matrix I

and we have m(P) = inf ||PM ~ Ill where infimum is taken over
M .

all Markov matrices M of suitable dimension,

Theorem 2.2

- —— - —— ok W . o a2

Let P be a Markov kernel from (@,g,) . Then

e(2) <1(P) <2(1-7p) € (P)

Proof: Let m>0 . Then by (2.5) there is a constant
Markov kernel Q such that [[P-Q!<1(P) +n . Iet Q, denote

the probability measure Q(6,-:) . Then
lp(6,-) - QJ|<1(R) +n for all e€o.
Hence, if 0' & @v

126, -) - B, )lI<lp(er,-) - aji+lp(e™,.) - Q.

< 21(P) + 2n.



least

From (2.2) follows since 7T was arbitrainly chosen, that
e(P)<1(p) .
The right hand inequality of the theorem follows from lemma

2.1 and (2.5).

— e - o s v o e ot e e

If ® has two points, then 1(P) = ¢(P) .
Corollary 5.5 of Torgersen (1976 a) states that if ©

has k points, then
(2.6) m(P)/(k(k-1))<2(1-15) - 1(P)<m(P)

The right hand inequality follows directly from the triangle

inequality for deficiencies, since

2(1"' O> = 6(5 ,%)56(5 ,gP) + 6(£9¢)2) .
From (2.6) and theorem 2,2, we get

Theorem 2.4.

(1) wn(®)>2(1-ry)a (P)
(ii) If © has two points, then Zm(P)<a(P)<mn(P)

Remark: If €@ has more than two points, then there exists
no constant ¢>0 such that c¢ m(P)<a(P) for all P .
In fact we may have o(P) = 0 and m(P) £ O . This happens if at
two, but not all, measures P(6,.) are mutually singular.

As will be seen from example 2, the inequalities of theorem
2.4 can not be sharpened. In the example we prove in fact
statement(ii)of theorem 2.4 in the case where P is given

by a 2X 2-matrix, without using formula (2.6).

e e
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Example 2: Let P be a Markov kernel from {1,2} into
{1,2} defined by the 2X 2-matrix

1-0 a
P=( )
B 1-B

By corollary 2.3, 1(P) = €(P) , which by the formula of

example 1 equals |1-a-B| . Hence o(P) =1 - |1-a-8]| .

It remains to compute m(P) . By definition, m(P) =

inf ||PM - Il , where infimum is taken over all 2X 2-Markov
mgtrices M . A geometrical approach, which will not bhe given

here, leads us to

m(P) = 2 .JLGVJ31ﬁ [(1-0) v (1-8)]

T+ a=B1

If the cases a+8 S and « §-B are treated separe-
tely, then it is now easy to show that m(P)>a(P) and
m(P)<2 o(P) . We finally show that these inequalities can
not be sharpened. Put 0<a = 8<% . Then m(P) = a(P) = 2a.
If we put B = 0 , then m(P) = 2a/(1+a) and o(P) = a .
Hence m(P)/a(P) » 2 as « ¢ O . In fact it is not difficult
to prove that m(P)<2a(P) holds whenever o(P) % 0 .

%, Application to non-homogeneous Markov chains.

By Dobrusin (1956) (see also JTosifescu, 1972), a non-
homogeneous Markov chain (NMC) can be considered as a sequence
of measurable state spaces (xj,cnj) and Markov kernels
?P from (xj,CEj) to (Xj+1,6lj+1) : §=0,1,2,... . Then

is the propabillty of being in Aj+1éxj+1 at




- 11 -

time Jj+1 , conditional on being in ij'xj at time J .
The n-step transition probability YP" is a Markov kernel

from (xj,Olj) to (Xj+n’OLj+n) : >0, n>1, defined by
Pt = (Ip) (e ... (23T

where composition of Markov kernels is defined in section 2.

Hence by (2.4)
n+j=1 i
m< TT () 5 320, n>

e(JP =i

Definition 3.1.

D . 0 PO P > S G W =

An NMC is said to be weakly ergodic if lim €(9P") =0
n -»co

for all Jj=20 .
The following result is taken from Iosifescu (1972):

Theorem 3.2.

- - - — o e v S

An NMC isweakly ergodic if and only if either one of the

following conditions is fulfilled.

(i) For any j=20 there is a sequence of constant Markov

kernels {JB ] ., such that

1im |97% - JE || = 0
11 =2CO

(ii) There exists a strictly inereasing sequence (jk)k>'1

of natural numbers such that

4 3 -]
z a(dkP ket 1 Jk) diverges

k>1

won

(iii) For an arbitrarily fizxed 0<e<1 +there is a function

f mapping the set of natural numbers into itself
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such that

lim inf ct(ij(j))ie
Jj >

Given an NMC we may for any Jj>O define a sequence of
experiments {(én(j)fn>1 where 8 n(j) is the experiment
of observing the chain at time n+j , the state at time
being the unknown parameter. Hence én(j) is an experiment
with parameter space Xj defined by the Markov kernel an
from (Xj,OLj) t0 (Xn+j’an+j) . The following results

are direct consequences of theorem 3.2.

- o - . oy . et e 2y s e

An RMC isweakly ergodic if and only if for any j>0 ,
the sequence {én(j)}n>1 converges to the minimal informa-

tive experiment (with respect to deficiencies).

Proof: én(j) is defined by Jpn+d . Hence 5(£ , én(j)) -

l(an"'j) , Which by theorem 2,2 tends to O as n = o if and
only if €(9P™*J) 5 0 . But this means by definition 3.1
that the NMC is weakly ergodic.

Remark: The above corollary is also an immediate consequence

of (2.5) and theorem 3.2 (i).

- s wn ot oy weny 2w Yne o ws s oen

Given a weakly ergodic NMC such that the spaces Xj ;s J20

are at most countable, then
(i) There exists a strictly increasing sequence (jk)k>1

of natural numrbers such that
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T 6(5'(jk)_ﬁ ) diverges
k > 1 Jee 17k

(ii) for any 0<€<1 there is a function f mapping

the set of natural numbers into itself such that

lim int 6 (& gg%),’m)ge

j=»co -
If, for all jE:O,Xj has exactly two points, then each
of conditions(i)and (ii)imply that the given NMC is weakly

ergodic.

Proof: These results follow from theorem 2.4 and theorem

3.2,

We shall finally study homogeneous Markov chains (HMC).

A HMC is completely determined by a measurable state space

BN

to (Xsm) .

Now the n-step transition probabilities an equal

(X,GL) and a Markov kernel P from (x,0U)

Pt - P.P..-P, so the sequences {é:n(j)}n>*1 are identical
for j =0,1,... . Hence it is enough to consider the experi-
ments é;,njz1 , with parameter space X , and which are given

by the Markov kernel P . TFrom corollary 3.4 we get

An HMC is weakly ergodic if and only if the sequence

thJ converges to the minimal informative experiment.

From Lindgvist (1977) follows that this result holds if
¥ is a finite set. Furthermore, Lindqvist (1977) proves that
6(’6’511) converges to O with exponential speed. The next

theorem extends this result to the case of general state space.
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- o ot e Tt e st e it

Assume that the sequence {gnf is constructed from a
mc., If 6(;6 ’én) - 0 as n -» o, then the rate of conver-
gence 1is exponential,

Proof: It is by theorem 2.2 enough to prove that e(P) » 0
with exponential speed whenever P defines a weakly ergodic
HMC. Since by assumption €(P") » 0 we must have €(Pno) =
n<1 for some nOZ‘1. Then given n , choose 1 and
0<j<n, such that n = in +j . By (2.4)

e(P?) = n{;n°+j)§ |:e:(’£’n°)]:'L e(Pj)<_; cn n/0

for some ¢>0 independent of n . The result follows.
Remark: That the convergence of & (aﬂ’ s é n) is not exponential
Hn general for NMC's, is seen from the following example,
Example 3. TLet an WMC with state spaces Xy = {1,21 for all

J=20 Dbe given by the transition matrices

1

Ll
. ( J+2e j+2
JP'= ) ;3 =0,1,2,...
0 1

Here S(jP) =1 - (j+2)"1 for j=0,1,2,... . It is easily
verified that if P and Q are 2X 2-Markov matrices, then

e(PQ) = €(P) ¢(Q) . Hence
e(3p™) = e(9p) (1) ... e(ITR) o (J41)/(nedet)

so €(IP%) » 0 as n - for any j=>0 . However, the

convergence is not exponential,
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Remark: From theorem V.4.3. of Isaacson and Madsen (1976)
follows that the chain considered in example 3 is in fact
strongly ergodic (for definition, see e.g. Iosifescu, 1972).
A criterion for exponential convergence of 6(5, én(j)) in
the case of strongly ergodic NMC's follows from the result

of Cheng-Chi Huang et al. (1976).
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