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ABSTRACT 

The relation between the ergodic coefficient and deficiency 

relative to the least informative and the most informative 

experiment iS investigated. The results are applied to non­

homogeneous Narkov chains (11MC' s). Our main result can be 

describedas follows~ Given an NMC~ define the experiments 

~(j) for n> 1 consisting in observj_ng the (n+j)-th state 
n 

of the chain, the j-th state being the unknown parameter. 

Then the chain is weakly ergodic if and only if for any j , 

~ (j) 
n 

converges as n -7 co to the least informative experiment. 

It is finally shown that in the homogeneous case, the rate 

of convergence is always exponential. 

Key words: ergodic coefficient, least informative experiment, to~ 

ta111 informative experiment, deficiency, weak ergodicity, 

convergence of experiments. 
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.1'-.Jn trod ucti o~nd SUIIJEl~l-'.l· 

Lindqvist (1977) studies the experiment ~n obtained 

by observing the n-th state of a finite Markov chain in order 

to obtain information about the initial state. As a particu-

lar result it follows that ~ converges to the least inform-6n 

ative experiment if and only .i.f the I"larkov chain is ergodic. 

Here convergence means convergence with respect to the 

deficiency introduced by LeCam (1964). It is furthermore 

proved that the rate of convergence is exponential. 

The present paper extends these results to the case of 

non-homogeneous Markov chains (NMC's) with arbitrary state 

spaces. Given an NMC, we shall consider the experiments 
t (j) 

n for n > 1, j > 0 consisting in observing the 

(n+j)-th state of the chain, the j-th state being the unknown 

parameter. We prove tba t ~ ~ j) converges~ :Dr any j , to the 

least informative experiment if and only if the NMC is weakly 

ergodic. This corresponds well to the common interpretation 

of weak ergodicity a.s "loea ot maoory". It ie :finally proved 

that the rate o:f· convergence is exponential for homogeneous 

chains. 

Weak ergodici ty of NT•1C' s is studied by e. g. Paz ( 1970), 

Madsen (1971) and Iosifescu (1972), who make use of the ergodic 

coefficient introduced by Dobrusin (1956)~ In section 2 

of this paper we study, using ideas and results from Torgersen 

(1976a), the relation between the ergodic coefficient and 

deficiencies. In section 3 the·se results are combined with the 

theory of weak ergodicit,y- in order to derive our main results. 
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2. The ergojic c~effi9ient and deficiencies. 

Let ~ be a signed measure on some measurable space 

(X, ut) • By \\1-L\\ we shall mean the usual total variation 

norm, i.e. 

where A and B are the positive and negative part, respec-

tively, of the Hahn decompostion for 1-l • 

Let (x,OZ.) and ('lJ ,f,) be measurable spaces and let 

p be an at-measurable measure on ~ , i.e. p is a real 

function on X X 9/J such that 

( i) p (x, ·) is a signed measure on :t3 for any x(: X 

(ii) p(·,B) is an at-measurable function for any BE~ 

We shall let the norm of an at-measurable measure on J.3 be 

given by 

(f) 

\lp\\ =sup \\p(x,·)\1 
xEX 

If p (x, ·) for any xE x is a probability measure on 

, then p will be called a l.\'Iarkov kernel fro,!!l J::t.4 /4) _to 

i1L.i3). 
The ergodic coefficient was introduced by .Dobrusin ( "1956). 

We shall state the definition and some basic properties (see 

also Iosifescu, 1972). 

Let P be a Markov kernel from (X ,m) to <Y. , 9J) . 
!_:q.~gg_9.dic __ coe.fl.icj_§jlj:;~E~~P,a(P) , is defined by 

(2.1) a(P) = 1- supiP(x',B)- P(x",B)I 
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where supremum is taken over all x', x 11 E X and all BE (l; . 

Clearly 0::: a.(P) ~ 1 • It is seen that a. (P) = 1 if and 

only if P does not depend upon x • In this case P is 

called §.__const3;,nt IVfa£~?.Y. k~rnEt1:. 

As is noted by Dobrusin, a.(P) can be expressed in terms 

of the total variation norm \l· \I as follows~ 

(2.2) a.(P) = 1- i sup \\P(x',·)- P(x 11 ,·)1\ 
x' ,x"E X 

(This is easily seen from (2.1) considering the Hahn decom­

position of the measure P(x',·)- P(x"~·)) 

For convenience, we shall introduce the functional 

e(P) = 1 - a(P) • 
def 

If 0 is a set, then let r 0 = 0 if 0 is infinite and 

let ro = k- 1 if 0 is finite with k points. 

Lennna 2.1. 

Let P be a tlrarkov kernel from (X, m) to <3' , JJ) 
Then there exists a constant Markov kernel E such that 

P = E + R and 

Remark: Iosifesm1 (1972) states the same result, except 

that the right hand side is 2 e: (P) • Hence our result is 

somewhat stronger in the case of finite X • 

]?_r_o_Q,f:~ If X is infinj_ te, let x 0 be some fixed member 

of X and let E be the constant l,1arkov kernel defined by 

E(x,B) = P(x0 ,B) ; xE X,BE :lJ. Then if R = P - E , 
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\\R\1 = sup !\ P(x, ·) - P(x , ·)\I 
xEx 0 

< sup \\P(x', ·) - P(x 1', • )\1 = 2 & (P) 
·· x',x 11 EX 

by (2.2). 

If X is finite with k points, then define E by 

E(x,B) = k-1 . L P(x' ,B) ; ~E ~,BE fE 
X' EX 

and let R = P-E • For fixed x 0 E X we get 

\\R(x ,·)\\ = \\k- 1 ~ [P(x0 ~·)- P(x,·)]\\ 
0 x~x 

0 

::S k- 1 (k-1) & (P) by (2.2) 

Let P' and P 11 be Markov kernels, respectively from 

(X, Ol) to C1J- ,]3 ) and from ( ~ ~.:Q) to <3 ,~ ) . Then 

the composition P = ptpn is defined to be the Markov kernel 

from (X,~) to ( 3 ,{; ) defined by 

(2.3) P(x,C) = .JP"(y,C) P'(x,dy) ~ ; xE x,CE b • 

As is proved by Dobrusin {1956) 

(2.4) e:(P) ~ &(P') & (P") 

~~_:ple _1• Let x and '1J be (at most) countable sets. In 

this case we shall allvays assume that the a -field ()t c£) 
consists of all subsets of x<1f) . Any Markov kernel P 

from X to 1f may now be represented by a Markov matrix 

(pij)iE x, jE?J, where 
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P(i~A) = L: p .. ; iEX, AC'~ lJ ~~ jEA 

As is shown by Dobrusin (1956) (see also Isaacson and ~~dsen, 

1976), we can vrri te 

and 

e:(P) = 

We note that the composition P = P' P 11 of two rJiarkov kernels 

P' and pii is now given by the usual matrix product of the 

corresponding Harkov matrices. 

The rest of this section is devoted to relating a(P) 

and e:(P) to the concept of deficiencies, as defined by 

Le Cam (1964). A survey of the theory of deficiencies is 

given by Torgersen (1976 b). 

The deficiency o ( ~ /if) of an experiment 

to an experiment ~ measures the loss, m~der 

favorable conditionst by basing ourselves on 

on~. We have O~o(~,~)~2(1-r8 ), vfhere 

the parameter set. If 6 ( f5 ,fi:) = 0 then we 

is more informative ,than C?' and write this 

!; relative 

the least 

--& rather than 

(9 denotes 

say that ~ 
~?, ~. 

Let (®, J) and (X, O'L) be measurable spaces. Inter­

preting (x,OL) as the sample space and @ as the parameter 

set, we shall let the experiment f? p be defined by ...gp = 

(X, ct, P(8, ·) ; 8 E 0) , where P is a Markov kernel from 

(G, J) to ( x, m,) • Let now Q be a Markov kernel from 
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(8 ,J) to C'}, iJ ) , and assume that is a dominated 

experiment. Then, by theorem 3 in LeCam (1964), we have 

inf \\PM - Q\\ 
M 

where infimum is taken over all almost Markov kernels M 

from (x,Ol..) to C'Y ,1j) , i.e. all real valued functions 

M from X x ~ satisfying 

(.i) M(•,B) is QZ,-measurable for any fixed BE13. 

( j i ) 0 = M ( • , 0 ) :::; r1 ( • , B) :;: 11 ( • , 'Y ) = 1 

a. e. P( e, · ) . 8E tBl for each BE :iJ . 
' co co 

( ili) M( • , u J3. ) = 2: l\'I(.,B.) a. e. P(8,·) 
. 1 l i=·J l l= 

ElE@ when B1 ,B2 , ••• are disjoint sets in 1J. 

The composition PM is defined by (2.3), noting that the integ­

ration is valid even if P 11 (y, •) is not a measure on C) ,-&) . 
However, conditions (1) - (:iti.) above imply that Pl'1 is G.lvJays a 

Markov kernel. 

Let denote the least informative experiment, i.e. an 

experiment satisfying ~ ?.£ for any experiment ~ 
may be represented by any experiment ~ p for which p is a 

constant Markov kernel, £ is obviously a dominated experi-

ment. Let Q be a l\'Iarkov kernel from (e ,1) to <1t ,:B) . 
Since P constant implies that PM is a constant Markov 

kernel for any almost r1arkov kernel M , it is seen that we 

have 

(2.5) l(Q) = 6 (/;, ~ Q) = inf \\P-Q\\ 
def p 
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where infimum is taken over all constant Markov kernels P • 

Let 7ft denote a. totally informative experiment, i.e. an 

experiment such that 1'll >-§ for any j . ~· may be repre­

sented by any experiment <£ Q for which Q(8 1 , ·) and 

Q(8 11 ,·) are mutually singular measures whenever 8' ~ 8". 

If P is a l1arkov kernel from (®, 1') , then we shall define 

= o(l P'~) • It can be shown that m(P) = 2 whenever 

is a dominated experiment not equivalent to and 

® is not colli~table. Hence we shall be concerned with the 

functional m(P) only in case ® is at most countable. In 

this case ?'It may be represented by the identity matrix I 

( ) II I' and we haye m P = inf d PM - I,\ where infimum is taken over 
M 

all Markov matrices M of suitable dimension. 

Theorem 2.2 -----.... --~--
Let P be a Markov kernel from (9, T) . Then 

e ( P) ~ 1 ( P) ~ 2 ( 1-r9 ) e: ( P) 

Proof~ Let 'll > 0 • Then by ( 2. 5) there is a constant 

Markov kernel Q such that IIP-Q\1 :0::: l(P) + 'll • Let Q0 denote 

the probability measure Q(8,·) • Then 

\\ P ( 8, • ) - Q0 \l ~ 1 (P) + '11 for all 8 E ®. 

\\P(8',·)- P(8H,·)\\~!\P(8',·)- Q0 \i+\\P(6 1',.)- Q0 \\ 

< 2l(P) + 2Y] • 
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From (2.2) follows since 1') was arbitrainly chosen, that 

e(P):C:l(P) • 

The right hand inequality of the theorem follows from lemma 

2.1 and (2.5). 

Q~!:2~~~!.'l-~.:.2· 

If 8 has tvm points, then l (P) = e (P) • 

Corollary 5.5 of Torgersen (1976 a) states that if e 

has k points, then 

(2.6) m(P)/(k(k-1)):<:2(1-r19 )- l(P)~m(P) 

The right hand inequality follows directly from the triangle 

inequality for deficiencies, since 

Fram (2.6) and theorem 2.2. we get 

Theorem 2.4. -----------
( i ) m ( P) ?: 2 ( 1-r 8 ) a ( P) 

(ii) If @ has two points, then !m(P).::;: a(P) Sm(P) 

3emar~~ If @ has more than two points~ then there exists 

no constant c > 0 such that c m(P) :=,: a(P) for all P • 

In fact we may have 0(P) = 0 and m(P) ~ 0 . This :happens if at 

least two, but not all, measures P(e,.) are mutually singular. 

As will be seen from example 2, the inequalities of theorem 

2. 4 can not be sharpened. In the example vre prove in fact 

statement(ii)of theorem 2.4 in the case where P is given 

by a 2 X 2-matrix, without using formula (2. 6). 
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~x~~le_g~ Let P be a Markov kernel from {1,2} into 

!1,2! defined by the 2X 2-matrix 

By corollary 2.3, l(P) = e(P) , which by the formula of 

example 1 equals \1- a-~ I • Hence a(P) = 1 - \1- a- !31 • 

It remains to compute m(P) • By definition, m(P) = 

inf 1\Pr-1 - Il\ , where infimum is taken over all 2 x 2-Markov 
M 

matrices M • A geometrical approach, which will not be given 

here, leads us to 

m ( P) = 2 • J_~v l3J.t\ r ( 1-o" ) v ( 1-S )l 
~ 

If the cases and are treated separe-

tely, then it is now easy to show that m(P)?. a.(P) and 

m(P)::; 2 a.(P) • We finally show that these inequalities can 

not be sharpened. Put 0 <a = !3 < ~- • Then m(P) = a(P) = 2a.. 

If we put !3 = 0 then 

Hence m(P)/a(P) t 2 as 

m(P) = 

Cl ~ 0 

2a./(1+a) and a(P) = a • 

In fact it is not difficult 

to prove that m(P) < 2a(p) holds whenever a(P) ~ 0 • 

~ Application t~po~~omogeneous Markov cha~ 

By Dobrusin (1956) (see also Iosifescu, 1972), a non­

homogeneous Markov chain (lmC) can be considered as a sequence 

of measurable state spaces (Xj'~j) and Markov kernels 

jp from (Xj,Olj) to (xj+ 1,0lj+ 1) ; j = 0,1,2, •••• Then 

Jp(xj,Aj+·l) is the pro1bability of being in Aj+ 1 E Xj+ 1 at 
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time j+1 , conditional on being in xjE xj at time j • 

The n-step transition probability jpn is a Markov kernel 

from (x . , OC.) 
J J 

to (xj+n' Ltj+n) ; j;:: 0 , n> 1 , defined by 

where composition of Markov kernels is defined in section 2. 

Hence by (2.4) 
n+j-1 

e ( j pn) ~ n e ( ip) ; j ?. 0 ' n > 1 
i=j 

Defj_ni tion 3. 1. ---------------
An NMC is said to be ~~~kly ergod~ if lim e(jPn) = 0 

n~co 

for all j ::= 0 • 

The follo'Vving result is taken from Iosifescu ( 1972): 

Theorem 3.2. _______ .... __ _ 
An NTviC is weakly ergodic if and only if either one of the 

following conditions is fulfilled. 

( i) For any j?. 0 there is a sequence of constant 11arkov 

kernels l jEn In> 1 such that 

lim \ijPn 
n~co 

(j i) There exists a strictly increasing sequence ( jk)k_::: 1 

of natural numbers such that 

E a.(jkpjk+i-jk) diverges 
k>1 

(fu) For an arbitrarily fixed 0< e:< 1 there is a function 

f mapping the set of natural numbers into itself 
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such that 

lim inf ct ( j Pf ( j ) ) ?. e 
j-+CO 

Given an NMC we may for any 
ct. (') experiments { c;. n J ! 11 > 1 where 

j 2:0 define a sequence of 
Q, ( j) 6 is the experiment n 

of observing the chain at time 

being the unkno~~ parameter. 

n+j , the state at time j 
./J (j) Hence ~n is an experiment 

with parameter space Xj defined by the Markov kernel 

from ('Xj,OZ..j) to (Xn+j'~'l+j) • The following results 

are direct consequences of theorem 3.2. 

9~E~11~El-~!.~ · _ 
An NMC is "v-reakly ergodic 

~ (') 
the sequence l ~ n J l n > 1 

if and only if for any j ~ 0 , 

converges to the minimal informa-

tive experiment (with respect to deficiencies). 

Proof: ~ (j) is defined by jpn+j 
n 

l(jpn+j) , which by theorem 2.2 tends to 0 as n-+ co if and 

only if e(jpn+j)-+ 0 • But this means by definition 3.1 

that the NMC is weakly ergodic. 

Remark: The above corollary is also an immediate consequence 

of (2.5) and theorem 3.2 (1). 

Q~E~!!~E'l-~!.1 · 
Given a weakly ergodic NMC such that the spaces X j j ~ 0 

are at most countable, then 

(i) There exists a strictly increasing sequence ( jk)k.?:: 1 

of natural nurr:~_bers such that 
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( ii) for any 0 < e < 1 there is a function f mapping 

the set of natural numbers into itself such that 

lim inf 6 ( ~ } ~ ~ ) 'm) ?. € 
j ~CD _.. ~ J 

If. for all · > 0 X . has exactly two points, then each ' J~~ ' J 

of conditions (.i) and (i i) imply that the given NMC is weakly 

ergodic. 

Proof: These results follow from theorem 2.4 and theorem 

3.2. 

We shall finally stu.dy homogeneous filarkov chains (HMC). 

A HMC is completely determined by a measurable state space 

(X ,(Jl,) and a IvJ:arkov kernel P from (X, Ot) to (X,(}[.) • 

Now the n-step transition probabili ti.es jpn equal 
.1, (") r = p.p. • ·P, so the sequences { G n J } n> 1 are identical 

-for j = 0, 1, • • • • Hence it is enough to consider the experi­

ments ~1 ,n> 1 , with parameter space X , and which are given 

by the Markov kernel Pn • From corollary 3.4 we get 

.Q~E~±±§!:E~-~:.2· 
An ID1C is weakly ergodic if and only if the sequence 

l ~ n! converges to the minimal informative experiment. 

From Lindqvist (1977) follows that this result holds if 

X is a finite set. Furthermore, Lindqvist (1977) proves that 

o(~,g n) converges to 0 with exponential speed. The next 

theorem extends this result to the case of general state space. 
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Theorem 3.6. -------------
Assume that the sequence l'£ nl is constructed from a 

IDJIC. If 6 Cf , ~ n) -+ 0 as n -+co , then the rate of conver­

gence is exponential. 

Proof: It is by theo~em 2.2 enough to prove that e(Pn) -+ 0 

with exponential speed whenever p defines a weakly ergodic 

HMC. Since by assumption e:(pn) -+ 0 we must have e:(pno) = 
Y) < 1 for some n > 1 o- . Then given n 

' 
choose i and 

0 < j < n such that n = in0 +j • By (2.4) 
- 0 

for some c > 0 independent of n • The result follows. 

Remark: That the convergence of 6 (/.;, ~ n) is not exponential 

in general for NMC's, is seen from the following example. 

Exam.12..l e ~. Let an NMC with state spaces x.={1,2! 
J 

for all 

be given by the transition matrices 

j = 0,1,2, ••• 

Here e:(jP) = 1 - (j+2)- 1 for j = 0,1,2, •••• It is easily 

verified that if P and Q are 2X 2-Markov matrices, then 

e:(PQ) = t(P) e:(Q) • Hence 

e(j+n- 1P) = {j+1)/(n+j+1) 

so e:(jPn) -+ 0 as n-+ CD for any j ?O • However, the 

convergence is not exponential. 
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B.~ma~~~ From theorem V.4.3. of Isaacson and Madsen (1976) 

follows that the chain considered in example 3 is in fact 

~trongly ergodic (for definition, see e.g. Iosifescu, 1972). 

A criterion for exponential convergence of 6 ( i, -& n ( j)) in 

the case of strongly ergodic NMC's follows from the result 

of Cheng-Chi Huang et al. (1976). 
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