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SUMMARY 

Optimum multiple tests are found for a family of multiple 

hypothesis testing pro-blems in multivariate normal models. 

The optimum criteria are directed towards the simultaneous 

rather than the individual performance of the tests. 

Applications are made to selection and multiple comparison 

problems. 
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1. INTRODUCTION 

Let X .. , j=1, ••• ,n. , i=1, ••• ,m be p-dimensional random vectors, 
lJ l 

independently andnormally distributed with common covariance 

matrix ~ (*) and expectations EX .. = sJ... For given 
N lJ 

m-dimensional column vectors b1 , ••• ,ba introduce p-dimensional 

linear forms vi = bl~ , where ~ is the mxp-matrix with 

rows s1, ••• ,gm • Consider the multiple hypothesis testing 

problem 
Hi : vi = 0 against K. 

l 
i=1 , ••• , a • 

The purpose of the paper is to derive optimum multiple tests. 

Attention is directed towards maximizing the simultaneous rather 

than the individual power of the tests. The optimum criteria 

which are of the maximin type, are due to Lehmann [5]. 

1 • 

2. 

Applications are made to the following examples: 

The selection of S· different from some known standard 
l 

Testing the eq~ality of successive g. 
l 

3. Multiple comparison of ; 1 , ••• ,~m 

4. The selection of non-zero regression coefficients. 

The paper is based on a part of the author's Cand.Real. thesis 

at the University of Oslo. 

( *) The symbol r.J belovr the letter will be used throughout 

to denote matrices. 
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2. FORMULATION OF THE OPTIMUM PROBLEM 

The formulation of the optimum problem is based upon an 

idea due to Lehmann [5]. As in ordinary Neyman-Pearson theory, 

there are two sources of error. We may reject H. while v.= 0 , 
1. 1. 

or we may fail to state Ki while vi~ 0 • The latter will be 

regarded as an error only if v. 
1. 

is outside some neighbourhood 

of the origin. The area 0 < vi z vi< ~i , for some specified 

number Ai > 0 will be taken as an indifference zone where 

it does not matter whether H. 
1. 

is rejected or not. 

As a measure of the performance of a procedure with respect 

to false rejections we shall take either 

(2.1 a) The expected number of false rejections 

or 
(2.1 b) The expected proportion of true Hi rejected, that 

is the quantity (2.1a) divided by the total number of true H. • 
1. 

In the opinion of the author these criteria usually should 

be preferred to 

(2.1 c) The probability of at least one false rejection 

which has the disadvantage of measuring only how often false 

rejections occur, not how many we are likely to make each time. 

Introduce 

(2. 2) 

To see how well a test carries out its task of identifying non-

zero v. ' 1. 
we shall use one of the following four q~antities: 
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(2. 3 a) The expected nurrfber of vi in l'r' identified as non-zero 

(2. 3 b) The expected proportion of v. 
J. 

in ··& recognized as 

non-zero, that is quantity (2.3 a) divided by the total 

number of elements in lJ- • 

(2.3 c) The probability of identifying at least one non-zero 

vi in-/}. 

(2. 3 d) The probability of stating VM f 0 where M is given 

"by VM ~ - 1v• =max v. ~- 1 v' • M E :o<J.. J. ('.J i vi v 

(2.3 a) and (2.3 b) are appropriate if it is desired to identify 

as many non-zero vi as possible, while (2.3 c) or (2.3 d) may 

be preferred if the decision is only a part of a scheme aiming 

at a final selection of a single vi • 

A fifth possibility is 

(2.3 e) The probability of identifying as non-zero all vi ELT. 
However, this criterion seems appropriate only in rare cases 

{see [5].) 
As generic notations for (2.1 a) - (2.1 b) and (2.3 a) - (2.3 d) 

we shall use respectively R(~;~)(*) and S{~;~)(*) where ~ is 

the procedure in question. 

Clearly it is desirable to have S(~;cp) as large as possible 

and R(~;~) as small as possible. In this paper we shall regard 

a procedure as optimum if it subject to 

(*) if ~ is known. In section 5 where ~ is unknown, we 

shall write R(~,~;cp) and S(~ ~;~) • 
"''('.J 
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(2.4) 

maximizes 

(2.5) inf S(s;cp) 
~EO* "' 

where 0* = {~lv. ~-i v! > ~. 
"' l. "' l. - l. 

for at least one i} • 

A dual problem is to minimize sup R(~;cp) 
N 

subject to 

inf S(s;cp) 2: e:' • This problem will not be dealt with here 
"' 

although its solution is analogous to the solution of (2.5). 

For optimum criteria aiming at the maximization of the indivi­

dual power of the tests, the reader may consult Spj0tvoll [7] • 

Studies from a decision theoretical viewpoint are undertaken, for 

example, in [4] • None of these references treat multivariate 

pr6blems. 

3. A FUNDAMENTAL THEOREM 

Suppose the procedures are to be based on some statistic Z • 

(In sections 4 and 5 Z will be derived from sufficiency and 

invariance arguments.) Let f(z;~) be the density of Z . 

Introduce 

( ) -1 , c· , ) -1 c· , ) • e.~ = v. ~ v. = b.~ ~ b.~ • 
l. ,.... l. ,.._, l. J.N N )rV 

Suppose there exist parameter points ~0 ,~1 , ••• ,!a satisfying 

the following conditions: 

i=1, ••• , a 

e.(~.) = A1. l. ,....1. 
e. (g.) < ~. 

J rvl. J 
for any j4i , i=1, ••• ,a 
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where h. is 
~ 

function and 

a strictly increasing 

U. = U. (Z) some statistic. 
~ ~ 

The distribution of U i depends on ! through 8 i (~) , 

and ui is stochastically increasing in ei • 

Introduce the following multiple test (*) : 

(3.2) 1\ =f 1 ' 
cpi l 

if ui > ci 

otherwise 0 ' ,. i=1 , ••• , a • 

Suppose the constants c1 , ••• ,ca are determined to satisfy the 

equations 
A 

R(~o ;cp) = e 

{ A A 
S(~i;cp) = 8(~1 ;\o) ' i=2, ••• ,a 

where R and S respectively are one of the quantities 
1\ 

(2.1 a)- (2.1 b) and (2.3 a)- (2.3 d). Then cp is maximin. 

This is the conclusion of the followb1g theorem which is only a 

restatement of a theorem in [5] for the pro-blem at hand. 

Theorem 3.1. Suppose the conditions c1 - c4 hold. 

If the constants c1 , ••• ,ca 
1\ 

are determined to satisfy (3.3), then 

cp , among all procedures based on Z , maximizes 

subject to sup R(~;cp) < e • 
"' 

Proof: Conditions c2 and c4 easily yield 

A A 
inf S(~;cp) = S(g.;cp) i=1, ••• ,a • 

,.... "'~ 

Hence, for an ar·bi trary procedure cp , 

(*) A multiple test will in general be represented by a vector­

valued function cp(z) = (cp 1(z), ••• ,cpa(z)) where cpi(z) has 
the familiar interpretation as the probability of rejecting 
H. given Z = z • 
~ 
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For arbi traxy positive numbers 

this implies 

~ n. = 1 , 
. l 
l 

inf S(s;~) - inf s(~;~) ~ ~ rri[s(~i;~)-s(~i;~)] • 
N l 

Now, suppose sup R(i;~) < e • Then, in particular, R(~0 ;~) < e • 

Hence, for any a. > 0 

A A A 
inf S(~;~) - inf S(~;~) ?- ~ 1Ti(S(.[i;~)-S(~i;~)J - ll(R(~;~)-R(!0 ;~)]. 

N l 

Introduce fi(z) = f(z;~i) , i=0,1, ••• ,a. Clearly 

S(_§i;~) = s~ifi and R(~0 ;~) = ~ s~ifo • Thus the last inequa­
l 

lity may be rewritten 

(3.4) 

Choose in particular 

c,-1 - ~ 1 
-. h.(c.) 

l l l 

i=1 , ••• , a • 

Then (3.4) becomes 

inf S(~;~)- inf S(~;~) ~a. J ~ h.(~.)(fi-hi(ci)f0 )(~i-cpi) 
l l l 

From condition c3 it is easily seen that the integrand is 

everywhere non-negative. 

Hence 

inf S(~;~) > inf S(C;~) 
N - ,..._, 

which completes the proof of the theorem. 
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4. L: KNOWN 
N 

4.1. The general maximin procedure 

The ~aximin procedure may be based on the sufficient mxp-matrix 

X with rows 
I'V n. 

= L L:J_ xi nJ_. . xiJ' 
J=1 

i=1, ••• ,m • 

.Furthermore, let D be a fixed non-singular 
I'V 

satisfying 

pxp 

D' L: D = the pxp identity matrix • 
N N N 

matrix 

It is easy to show that the decision problem is invariant under 

the following group of transformations 

- - -1 G1 : ! ~ ~ ~ ~1 E , 21 any pxp ortonormal matrix. 

It follows from the Runt-Stein theorem that we may look for an 

optimum procedure among invariant procedures. 

Let Z be a maximal invariant function. Explicit knowledge 

of the distribution of Z will not be needed. Below we shall, 

for each i=1,2, ••• ,a , construct a set (JJ. J_ associated with the 

i' th problem. The distri.bution of Z vlill be characterized on each 

means of a sufficient statistic u .• J_ Eventually 

parameter points ~i satisfying conditions o1 - o4 of 

section 3, will be selected from the 

Observe that the density of 1 = {!~} may be written 

= r (;$;Q)exp-' ~ ~ P. 
'· v=1 !-l=1 ~~ 

where ~ = { sk\1 } and A = {A } = L:-1 
!J.V N 

Hence, it is easy to 

see that Yi = bi.l is a sufficient statistic for % on the set 
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(4 .1) 

(bik is the k-•th element of bi). Note that G1 induces a 

corresponding group in the Yi-space: 

By straightforward calculations it may 'be proved that 

(4.2) 

"'"' 

* is a maximal invariant for G1 • 

Observe that Ui was derived ·by first applying wi-sufficiency 

(going from X to Y.) and then invariance. It is the statement ,..._ . 1 

of a general theorem (*) that we should arrive at the same result 

by first applying invariance (going from Z to Z) and then 

sufficiency. Hence we have proved that u. 
1 

is sufficient for 

if ~ E w. • This means that the density of Z may be written 
"' 1 

z 

(*) Theorem 3.1 in (3]. It is the statement of this theorem that 

we under weak conditions on the transformation group may interchange 

the seq~ence of applications of the invariance and sufficiency 

principles without affecting the final result. The conditions are: 

(i) gw. == w. for all transformations g of the group (satisfied 
1 1 

in our case). 

(ii) .Any almost invariant function is equivalent to an invariant 

function {satisfied also). (For definitions of the concepts 

"almost invariant" and "equivalent to an invariant function", 

see (6].) 
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(4. 3) f (z ; t=) = y . (u. ;e . ) f. (z \u. ) ..c. l l l l l ~ E w . 
"" l 

where y i (ui ;e i) 

el. =e.(~)), and 

is the density of U. , (depending on ~ through 
l '""' 

l ...... 
f.(zlu.) is the conditional density of Z given 

l l 

U. (not depending on ~ E w.) • 
l "" l 

The next step is to choose ~0 , ~ 1 , ••• ,~a and verify the 

conditions First, let ~ = 0 which trivially satisfies ..... o 
bik c1 • Secondly, suppose ~ E wi • Then ~k = nk 11 

For this ~ straightforward caJ.culations yield 
"' 

(4.4) 

where 

(4.5) 

e.(~")= B?. o'lll:- 1 11' 
J ~ lJ "" 

B .. = lJ 

111 

L. 
k=1 

k=1 , ••• ,m • 

Hence, choose as ~ -Bi any member of wi corresponding to an 'll 

satisfying 

Then 

A. 
l 

=~ 
B .. 
ll 

e.(~.)= A. 
l "'l l 

and condition 

(BU)2 Al. B.. ~ < .Aj 
ll 

is satisfied if and only if 

As an immediate consequence of (4.3) 

f(z;~i) 

f(z ;~0 ) 

y.(u.;A.) 
l l l 

= y.(u.;O) 
l l 

Furthermore, it is for any s clear that 
"" 
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u. 2 e. (*) 
2.._ rv X (..l.) 
B.. p B .. 

11 11 

Hence conditions o3 and o4 follow from well-known properties 

of the non-central x2-distribution. 

Applying Theorem 3.1, we can now write down the maximin proce-

dure: 

(4-.6) 
1\ 

~i 
if (b!?) E- 1(b!l)' >c. J? rv lrv 1 
otherwise 

i=1 , 2, ••• , a • 

O"bserve that the power functions of the individual tests are given 

by 
1\ 

E ~· 1 

e. 
• ____;I;;. ) 
' B. - • 

11 

Hence, the constants c1 , ••• ,ca should, according to (3.3), be 

determined to satisfy 

(4.7) 
1::... c1 
....L) = r (- . 
Bii p B11 ' 

i=2, ••• ,a. 

(If R is given ·by (2. 1 b) the right hand side of the first equation 

should be ae: rather than e:.) 

(*) denotes the non-central x2-distribution with p 

degrees of freedom and eccentricity A • The corresponding cumula-

tive distribution function is written r ( 0 ; A.) ,or if 
p 
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The results of this section are summarized in the following 

theorem. 

Theorem 4.1. Suppose 

(4.8) 

where 
m 

B .. = L: 
lJ k=1 

b.kb"k l J 
nk • 

1\ 
Then ~ given by (4.6) and (4. 7), 

is maximin, i.e. maximizes inf S(~;~) among all ~ satisfying 

sup R(~;~) < e: • 
"' -

4.2. Remarks: 

1) (4.8) was clearly essential for the proof of Theorem 4-.1. 

(Without this condition c2 could not have been established.) 

The author conjectures that (4.8) is not only sufficient, but also 
1\ 

necessary for ~ to ·be maximin. 

Based on this conjecture the theorem has the following interes-

Suppose the vectors are in some sense ting interpretation. 

normalized (either to the same 
b.kb"k 

)' l J 

length or to make B. . independent 
ll 

of i). Then B .. = 
lJ k nk 

may be taken as a measure of how 

strongly the i'th and the j'th problem is related. In this sense 

(4.8) states that the stronger the relation between the individual 

problems, the more uniformly A1, ••• ,Aa 
1\ 

make ~ maximin. In the extreme case 

have to ·be selected to 

for all 

(the pro-blems being completely "unrelated 11 ) there are no conditions 

on the A. 1 s 
J. 

at all. 

2) Suppose the vectors b 1 , ••• ,ba are normalized to have 

the same length. Then one reasonable choice of A1 , ••• ,Aa appears 

to "be 
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(4.9) A ""'• •• = A = A • 1 a 

Condition (4.8) reduces to 

(4.10) 
m 

- I 2:: 
k=1 

In particular, this inequality is an immediate conseg.uence of the 

Cauchy-Schwarz ineguali ty if n 1 ==· •• nm For most problems of 

interest (4.10) is satisfied whatev3r the values of n1 , ••• ,nm. 

Another reasonable choice of the A.'s is 
J. 

(4.11) A. =A o 
J. 

2 
m bik 
2:: -

k=1 nk 
• 

Then (4.8) is universally satisfied (again as a consequence of the 

Cauchy-Schwarz inequality). The system of equalities (4.7) simpli-

fies to 
2 m bik 

(ci = c 2:: -
k=1 nk 

• 
(4.12) ~ • 

lc = r-1 (1-e/a) p 

Thus the maximin procedure may be rewritten 

1\ 
cp. ;:: 

J. 

1 ' if 
( I-) -1( t_)t b. X L: b .X 

J. rw "" J.rw 

0 , otherwise. 

> c 

This choice of A1, ••• ,Aa is suggested by the fact that the test 

statistics in (4.13) are normalized in the sense that they all 

have the same variance. 
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4.3. Applications 

Example 1. Comparison with some known standard. 

Suppose we want to compare each ~- with some known standard 
1 

which we without loss of generality take to be zero. Note that this 

problem corresponds to bi = (o, •• 0,1,0 •• ,o).The indifference zone 

f -1 t is or each ~ 1. defined to be the area 0 < S·L ~- <A .• The 
1,..,. 1 1 

maximin procedure is to state si10 if 

(4.14) X. <;'- 1 X! >c. 
1 ld l 1 

where c 1 ' • • • 'em are determined from 

m 
L [1-r (n.c.)J = e 

i=1 p 1 1 . 

i=2, ••• ,a. 

Observe that condition (4.8) is always satisfied. Hence (4.14) 

is maximin whatever the values of 

If we in particular choose Ai 

and (4.14) becomes 

n.X. L- 1 X! > c • 
1 1 "' 1 

Note that with this choice of l:J.. 
1 

n.c. = c 
1 J. 

the indifference zones, 

-1 t 
0<~. L ~·<A., 

1 "' 1 1 
become smaller the larger the value of' n. • 

1 

This is very reasonable if the unequal sample sizes n 1 , ••• ,r1:n 

originally were motivated from unequal priorities on ; 1 , ••• ,;m • 

.;;;;Ex;;.;;.;.am;.;;;"•P.-l.e ....... 2_._...;;T .. e.s.._-c;.-· 1_,· n001g....._t.-1_,1 ... e__.e ... gu.._a_l.-i .. t""y_..o-f.__s_.u_c_,c ... e.s_s_J._. v.-e~ g i....!. 

Let ~· represent the value of a quantity at some time 
1 

ti (t1<t2< ••• <tm). Suppose it is desired to find out at which 

points in the process the g,uanti ty has undergone changes. This 

means that each ~i is to be compared to si+1 ' i=1,, •• ,m-1 • 
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Observe that bj_ =(0~ •• 0,-1,1,0, •• 0), the non-zero elements being 

no. i and i+1 • The indifference zone is for each difference 

the area o < Cs-+1-s.) I:-1 (g. 1-~.)· < t:. . • 
J. J. "' J.+ J. l 

Condition 

(4.8) is not satisfied in general. However, it is certainly 

satisfied when A1= ..• :::::am...; 1=i:>.. Hence, under this choice of the Ai's 

a maximin procedure is to state ~ ~ ~ if '='i+1T ':li 

(4.15) 

where 

( - - ) -1 ('t"r - ) 1 x. 1-x. 2: A. 1-x. >c. 
J.+ J. "' J.+ J. J. 

c1, ••• ,c 1 m- are determined from the conditions 

m c. 
2: [ 1-IP ( -1 J. -1 ) J = e: 

i=1 · ni +ni+1 

r ( p 
c. A 

-~J.~ • ) 
-1 -1 ' -1 -1 n . +n . 1 n . +n . 1 J. J.+ J. J.+ 

independent of 

Example 3. Complete comparison of g1 , ••• ,~m ~ 

i 

For each pair (gi'~j) we are to decide whether si+ gj • 

Note that a= i.m(m-1). The indifference zone is for each pair 

(g.,~.) the area 0 < (s.-g.) ~- 1 (g.-~.)'</::. ..• Condition (4.8) 
J. J J. J J. J lJ 

does not hold in general, ·but as in the preceding example it is 

clearly satisfied if A .. = A • 
J.J 

Hence, under this choice of 

a maximin decision rule is to state ~--'-g. 
J.l J if 

( - - ) -1 c- - ) , x.-x. t x.-x. >c .. 
J. J "' J. J J.J 

where the constants are determined to satisfy 

c .. 
( J.J 

rp -1 -1 n. +n. 
J. J 

. 
' 

A 
-1 -1) 

ni +n-1 
tJ 

independent of i 

6. .. 
J.J 

and j • 
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Example 4. Selection of non-zero regression coefficients. 

Suppose a multivariate regression model is given, i.e. let ~ 

be a mxp random matrix of the form 

(4.17) 

where ~ is a knovm mxr matrix (r:9Jl) of full rank, .@. an 

Uilknown rxp matrix ru1.d U an unobservable random matrix with 

independently and normally distributed rows u1 , ••• ,um with 

common known covariance matrix ~ and expectations zero, Suppose 

the selection of non-zero regression coefficients is desired, that 

is the non-zeros among the rows ~ 1 , ••• ,~r of ~. 

Writing ~=E.! it is clear that ~=~·!,where 

£ = ~(~'~)- 1 • Hence the selection problem is contained in the 

general formulation of the paper. Note that b.= d.(= the i'th 
l l 

row of d). 
('V 

state 

(4.18) 

1\ 

According to the general procedure (4.6) we should 

if (d!X) L:- 1 (d !X)'> c. , or eq_uivalently if 
lrv rv lrv l 

~. ~-1 ~! >c. 
l..... l l 

where ~· = d! X is the least-squares estimate of ~; • l l ..... .._ 

Introducing the area 0 < ~· ~- 1 ~! < ~. as the indifference zone, 
l..... l l 

the constants c1 , ••• , cr are to be detel~mined to satisfy 

r c. 
~ [1-r (-1-)J = e 

i=1 p qii 

c. A. c 1 r (-1- ; _!_) = r (--- ; 
p q·ii qii p q11 

where is the diagonal elements of the matrix ~ = (~'~)- 1 • 

This selection rule is maximin provided 
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(4.19) 

(g is the general element of a.J. ·ij ~ 
Observe that if ~ represents 

an ortogonal design, this condition is fullfilled whatever the values 

One reasonable choice of A. 
l 

is to make it proportional to the 

variance of ~i , that is to let b.= g .. o A. 
1. '1.1. 

always satisfied and (4.18) reduces to 

v1here 

_j_ ~. L:-1 ~! > c 
g 1. ,..... 1. ·ii 

c = r- 1 ( 1- ! ) . 
p r 

5. I UNKNOWN 
N 

Then (4.19) is 

The natural extension of the general test procedure of the 

preceding section is 

(5.1) 
r1 , if T. >c. 

-1 1. l 

1 0 , otherwise 
, i=1 , ••• , a 

where 

(5.2) 
A 

T1. = (b!X) L:- 1 (b!X)' 
l.I'V N l.N 

(5.3) 

and N = 2: nk • 
k 

The constants are to be determined 

from a system of equations analogously to (4.7). 

Let 3C~,v(o) denote the non-central F-distribution with 

~ and v degrees of freedom and eccentricity 5 • The correspon-

ding cumulative distribution function is written 

if 5=0 , F~,'V(o) • It is well-kno\'J:'l that 

F (o;6) 
~'\) 

or 
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where N' = N-m-p+1 and 9i = ef~,~) = (b~) ~- 1 (b~)' • Suppose 

the constants c1 , ••• ,ca are determined to satisfy 

a [ c. N' J 
L: 1-F N'(Bl o (N-m)p) =e 

i=1 p t ii 

(5.4) 
A. c. N' l Fp,N' (B~. o (N-m)p 

• .2:_) 
, Bii 

independent of i=1 , 2, ••• , a • 
ll 

Then, from well-known results concerning the non-central F-distri­
A 

bution, it follows that $ has the following two properties: 

1 ) 

2) 
1\ (*) (s,L:) S(~,L:;l\f) attains its minimum value in points 

"' .-..J ro# rv 

for which 9 i ~,~) =A. for exactly one i and 
l 

e . (~, L:) < J rv Aj for all j~i • 

As in the preceding section the solution of (5.4) is particu-

larily simple if we choose A. =A o B .. • 
l ll 

In this case (5.1) 

may be rewritten 

(5.5) 
A 1 ' i.f T. > c 0 B . . 
1\ l ll 
$. = { 

1 0 , otherwise 

where c = (N-m)Ii :JL1 , ( 1_ !) 
N1 -p ,N a • 

(*) Over the set of all (~,~) for which ei(!,f) > Ai for 

at least one i • 
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1\ 
It is shown in [5] in a special case (for p=1) that l is 

not maximin. However, we now proceed to show that if condition 

(4.8) is satisfied, it usually comes close. 
1\ 

Note that (X,z:;) are sufficient statistics. Furthermore, 
r.J r.J 

the decision problem is clearly invariant under the following 

group of transformations: 

(! ~ ! ~2 g2 any non-singular pXp matrix 

G2 : i 1\ 1\ 

\~ ~ ~2 k ~2 • 

However, as the Hunt-Stein theorem does not apply for this trans­

formation group (see [6], page 338-339), it can not be concluded 

that there exists an invariant maximin procedure. Instead we 

shall require the procedures themselves to be invariant. 

Let z* be a maximal invariant function for G2 • Let 

(5.6) 
bik = - TJ , k=1 , ••• ,m 
nk 

, TJEnf}. 

Introduce 

* Trivially s(*) < s ($) for any * • Thus 

where the suprema are taken over all invariant * satisfying 

sup R(!,z;$) ::;: e • * Hence, if we have· found a procedure w 

* maximizing s (*), we may judge how close 
1\ 
w comes to being 
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A * * maximin by comparing s(~) with s (~ ) • 

To derive ~ , note that it can easily be proved that (~,~) 
* under w. has a sufficient set of statistics 
J. 

A m-1 
w. = (oJ.! X ' (N-m) 2: + 2: vl~Vk) 

J. r..J N k=1 >. 

where v1, ••• ,vm-1 

distributed from 

are p-dimensional row vectors independently 
A 

b!X and ~ , and themselves mutually independent 
J.N ;';;j 

and normal with expectations zero and covariance matrix 

Furthermore, it can be seen that G2 induces the following 

transformation group in the W .-space: 
J. 

Maximal invariant is lmown to be 

{\ m-1 , -1 , , 
T1~ = (N-i)(b~X)[(N-m)L: + L: VkVk] (b.X) 

J.rv N k=i l,.._, 

It follows, as in section 4.1, that * z* T. is sufficient for 

under 

where 

* w. • 
l 

Hence the density of 
l 

z* may be written 

* * * * * * * h (z ;t:;,L:) = f.(t.;e.)h.(z lt.) 

* f. 
l 

and 

~ ~ l l l l l 

* h. 
l 

are respectively the density of * T. 
l 

conditional density of Z* given * * T. = t .. 
l l 

Note that 

, .. 

and the 
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As in section 4.1 it follows that a version of is given by 

(5. 7) 
/ * I 1 , 

~ i =~ 
lo , 

if 

otherwise 

provided (4.8) holds, that is 

B .. 2 
max [A . - A . ( Bl J ) J > 0 • 
ifj J l ii 

* * The constants c 1 , ••• ,ca are to be determined to satisfy 

(5.8) 

(. ~ [1 - F (c: 
. 1 p,N-p J3."':'" 

jl= ll 

N-p ) J = 
0 (N-1 )p € 

1 F (c: N-p - • 
\ p,N-p Bii (N-1)p ' 

A . 
....L) 
B .. 
ll 

independent of i . 

It is clear that the possible improvement of the maximin 
1\ 

value of ~ is ·bounded ·by the quantity 

c. N' 
Q = Fp ,N' (B~. o (N-m)P 

ll 

* A. c. u 

; Bl ) - F 1\T (Bl o (NJ_~~Il ; 
ii p,J_~-p ii - )p 

(The right hand side is independent of . \ 

l). 

Recall that N' = N-m-p+1 • Since N-p usually is considera-bly 

larger than m , it is clear that Q typically is small. (It is 

easy to 

value of 

difference between the two functions 
A. 

prove that the 

A. 
· -L) and , B .. F ( _d._) p,N-p o ; B .. more than accounts for the 

ll ll 

Q). 
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