RESEARCH REPORT	No 3
Institute of Mathematics	March
University of Oslo	

MAXIMIN SELECTION AND MULTIPLE COMPARISON PROCEDURES IN

MULTIVARIATE NORMAL MODELS
by
Erik Bølviken

SUMIVARY
Optimum multiple tests are found for a family of multiple hypothesis testing problems in multivariate normal models. The optimum criteria are directed towards the simultaneous rather than the individual performance of the tests. Applications are made to selection and multiple comparison problems.
CONTENTS
Page

1. Introduction 1
2. Formulation of the optimum problem 2
3. A fundamental theorem 4
4. Σ known 7
4.1 The general maximin procedure 7
4.2 Remarks 11
4.3 Applications 13
5. Σ unknown 16
References 21

1. INTRODUCTION

Let $X_{i j}, j=1, \ldots, n_{i}, i=1, \ldots, m$ be p-dimensional random vectors, independently and normally distributed with common covariance matrix $\sum_{\sim}\left(^{*}\right)$ and expectations $E X_{i j}=\xi_{i}$. For given m-dimensional column vectors b_{1}, \ldots, b_{a} introduce p-dimensional linear forms $v_{i}=b_{i}^{\prime} \underset{\sim}{\sim}$, where $\underset{\sim}{\underset{\sim}{F}}$ is the m×p-matrix with rows $5_{1}, \ldots, 5_{m}$. Consider the multiple hypothesis testing problem

$$
H_{i}: v_{i}=0 \text { against } K_{i}: v_{i} \neq 0, i=1, \ldots, a
$$

The purpose of the paper is to derive optimum multiple tests. Attention is directed towards maximizing the simultaneous rather than the individual power of the tests. The optimum criteria which are of the maximin type, are due to Iehmann [5].

Applications are made to the following examples:

1. The selection of \bar{F}_{i} different from some known standard
2. Testing the equality of successive ξ_{i}
3. Multiple comparison of $\boldsymbol{5}_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{m}}$
4. The selection of non-zero regression coefficients.

The paper is based on a part of the author's Cand.Real. thesis at the University of Osio.
(*) The symbol ~ below the letter will be used throughout to denote matrices.

2. FORMULATION OF THE OPTIMUM PROBLEM

The formulation of the optimum problem is based upon an idea due to Lehmann [5]. As in ordinary Neyman-Pearson theory, there are two sources of error. We may reject H_{i} while $v_{i}=0$, or we may fail to state K_{i} while $v_{i} \neq 0$. The latter will be regarded as an error only if v_{i} is outside some neighbourhood of the origin. The area $0<\mathrm{v}_{i} \Sigma \mathrm{v}_{i}^{\prime}<\Delta_{i}$, for some specified number $\Delta_{i}>0$, will be taken as an indifference zone where it does not matter whether H_{i} is rejected or not.

As a measure of the performance of a procedure with respect to false rejections we shall take either
(2.1 a) The expected number of false rejections
or
(2.1 b) The expected proportion of true H_{i} rejected, that is the quantity (2.1a) divided by the total number of true H_{i}.

In the opinion of the author these criteria usually should be preferred to
(2.1 c) The probability of at least one false rejection which has the disadvantage of measuring only how often false rejections occur, not how many we are likely to make each time.

Introduce

$$
\begin{equation*}
q^{\infty}=\left\{v_{i} \mid v_{i} \sum_{\sim}^{-1} v_{i}^{\prime} \geq \Delta_{i}\right\} \tag{2.2}
\end{equation*}
$$

To see how well a test carries out its task of identifying nonzero v_{i}, we shall use one of the following four quantities:
(2.3 a) The expected number of v_{i} in identified as non-zero
(2.3 b) The expected proportion of v_{i} in if recognized as non-zero, that is quantity (2.3 a) divided by the total number of elements in \mathcal{Y}.
(2.3 c) The probability of identifying at least one non-zero v_{i} in $\%$ 。
(2.3 d) The probability of stating $V_{M} \neq 0$ where M is given

(2.3 a) and (2.3 b) are appropriate if it is desired to identify as many non-zero v_{i} as possible, while (2.3 c) or (2.3 d) may be preferred if the decision is only a part of a scheme aiming at a final selection of a single v_{i}.

A fifth possibility is
(2.3 e) The probability of identifying as non-zero all $v_{i} \in \mathcal{V}$. However, this criterion seems appropriate only in rare cases (see [5].)

As generic notations for (2.1 a) - (2.1 b) and (2.3 a) - (2.3 d) we shall use respectively $R(\underset{\sim}{\xi} ; \varphi)^{(*)}$ and $S(\underset{\sim}{\xi} ; \varphi)^{(*)}$ where φ is the procedure in question.

Clearly it is desirable to have $S(\underset{\sim}{c} ; \varphi)$ as large as possible and $R(\underset{\sim}{F} ; \varphi)$ as small as possible. In this paper we shall regard a procedure as optimum if it subject to
(*) if $\sum \underset{\sim}{ }$ is known. In section 5 where \sum is unknown, we

(2.4)

$$
\sup _{\underset{\sim}{\xi}} R(\underset{\sim}{\xi} ; \varphi) \leq \varepsilon
$$

maximizes
(2.5) $\quad \inf _{\underset{F}{\xi} \in \Omega^{*}} S(\underset{\sim}{\xi} ; \varphi)$
where $\Omega^{*}=\left\{\underset{\sim}{\xi} \mid v_{i}{\underset{\sim}{~}}^{-1} v_{i}^{\prime} \geq \Delta_{i}\right.$ for at least one $\left.i\right\}$.

A dual problem is to minimize sup $R(\underset{\sim}{\boldsymbol{T}} ; \boldsymbol{\varphi})$ subject to inf $S(\underset{\sim}{\xi} ; \varphi) \geq \epsilon^{\prime}$. This problem will not be dealt with here although its solution is analogous to the solution of (2.5).

For optimum criteria aiming at the maximization of the individual power of the tests, the reader may consult Spjøtvoll [7]. Studies from a decision theoretical viewpoint are undertaken, for example, in [4]. None of these references treat multivariate problems.
3. A FUNDAMENTAL THEOREM

Suppose the procedures are to be based on some statistic Z . (In sections 4 and $5 \quad z$ will be derived from sufficiency and invariance arguments.) Let $f\left(z ;{ }^{\boldsymbol{F}}\right)$ be the density of Z. Introduce

$$
\begin{equation*}
\theta_{i}(\underset{\sim}{\xi})=v_{i}{\underset{\sim}{\Sigma}}^{-1} v_{i}^{\prime}=\left(b_{i}^{\prime} \xi \underline{N}\right) \underset{\sim}{\Sigma^{-1}}\left(b_{i}^{\prime} \xi\right)^{\prime} . \tag{3.1}
\end{equation*}
$$

 the following conditions:
$C_{1}: \theta_{i}\left(\mathcal{N}_{0}\right)=0 \quad, \quad i=1, \ldots, a$
$c_{2}: \theta_{i}\left(\mathcal{R}_{\dot{j}}\right)=\Delta_{i}, \quad \theta_{j}({\underset{\sim}{\mathcal{N}}})<\Delta_{j}$ for any $j \neq i, i=1, \ldots, a$
$C_{3}:\left\{\begin{array}{ll}f\left(z ;{\underset{\sim}{j}}_{i}\right) \\ f\left(z ;{\underset{\sim}{N}}_{0}\right)\end{array}=h_{i}\left(U_{i}(z)\right) \quad\right.$ where h_{i} is a strictly increasing $\quad \begin{array}{ll}\text { function and } U_{i}=U_{i}(Z) \text { some statistic. }\end{array}$
$C_{4}:\left\{\begin{array}{l}\text { The distribution of } U_{i} \text { depends on } \underset{\sim}{\xi} \text { through } \theta_{i}(\underset{\sim}{\text { g }}), \\ \text { and } U_{i} \text { is stochastically increasing in } \theta_{i} .\end{array}\right.$ Introduce the following multiple test ${ }^{(*)}$:
(3.2) $\hat{\varphi}_{i}= \begin{cases}1, & \text { if } U_{i}>c_{i} \\ 0, & \text { otherwise }\end{cases}$

$$
\text { , } \quad i=1, \ldots, a .
$$

Suppose the constants c_{1}, \ldots, c_{a} are determined to satisfy the equations
where R and S respectively are one of the quantities $(2.1 \mathrm{a})-(2.1 \mathrm{~b})$ and $(2.3 \mathrm{a})-(2.3 \mathrm{~d})$. Then $\hat{\varphi}$ is maximin. This is the conclusion of the following theorem which is only a restatement of a theorem in [5] for the problem at hand.

Theorem 3.1. Suppose the conditions $C_{1}-C_{4}$ hold.
If the constants c_{1}, \ldots, c_{a} are determined to satisfy (3.3), then $\widehat{\varphi}$, among all procedures based on Z, maximizes $\inf _{\Omega^{*}} S(\underset{\sim}{5} ; \varphi)$ subject to $\sup R(\underset{\sim}{\underset{\sim}{*}} ; \varphi) \leq \epsilon$.

Proof: Conditions C_{2} and C_{4} easily yield

$$
\inf S(\underset{\sim}{\underset{\sim}{j}} ; \hat{\varphi})=S(\underset{\sim}{\underset{\sim}{j}} \underset{i}{ } ; \hat{\varphi}) \quad, \quad i=1, \ldots, a .
$$

Hence, for an arbitrary procedure φ,
(*) A multiple test will in general be represented by a vectorvalued function $\varphi(z)=\left(\varphi_{1}(z), \ldots, \varphi_{a}(z)\right)$ where $\varphi_{i}(z)$ has the familiar interpretation as the probability of rejecting H_{i} given $Z=z$ 。

$$
\inf S(\underset{\sim}{\xi} ; \hat{\varphi})-\inf S(\underset{\sim}{\xi} ; \varphi) \geq S\left({\underset{\sim}{\sim}}_{i} ; \hat{\varphi}\right)-S\left({\underset{\sim}{j}}_{i} ; \varphi\right) \cdot
$$

For arbitrary positive numbers π_{1}, \ldots, π_{a} satisfying $\sum_{i} \pi_{i}=1$, this implies

$$
\inf S(\underset{\sim}{\xi} ; \hat{\varphi})-\inf S(\underset{\sim}{\xi} ; \varphi) \geq \sum_{i} \pi_{i}\left[S\left({\underset{\sim}{F}}_{i} ; \hat{\varphi}\right)-S\left({\underset{\sim}{j}}_{i} ; \varphi\right)\right] .
$$

 Hence, for any $a>0$

Introduce $f_{i}(z)=f\left(z ;{\underset{\sim}{i}}_{i}\right), \quad i=0,1, \ldots, a$. Clearly
$S\left({\underset{\sim}{\mathcal{N}}}_{i} ; \varphi\right)=\int \varphi_{i} f_{i}$ and $R\left({\underset{\sim}{\sim}}_{O} ; \varphi\right)=\sum_{i} \int \varphi_{i} f_{0}$. Thus the last inequalaity may be rewritten
(3.4) $\quad \inf S(\underset{\sim}{\underset{\sim}{j}} \underset{\sim}{\hat{\varphi}})-\inf S(\underset{\sim}{\xi} ; \varphi) \geq \int \sum_{i}\left(\pi_{i} f_{i}-\alpha f_{0}\right)\left(\hat{\varphi}_{i}-\varphi_{i}\right)$.

Choose in particular

$$
\begin{aligned}
& a^{-1}=\sum_{i} \frac{1}{h_{i}\left(c_{i}\right)} \\
& \pi_{i}=\frac{\dot{q}}{h_{i}\left(c_{i}\right)} \quad, \quad i=1, \ldots, a .
\end{aligned}
$$

Then (3.4) becomes

$$
\inf S(\underset{\sim}{\xi} ; \hat{\varphi})-\inf S(\underset{\sim}{\xi} ; \varphi) \geq \omega \int \sum_{i} \frac{1}{h_{i}\left(c_{i}\right)}\left(f_{i}-h_{i}\left(c_{i}\right) f_{0}\right)\left(\hat{\varphi}_{i}-\varphi_{i}\right)
$$

From condition C_{3} it is easily seen that the integrand is everywhere non-negative.

Hence

$$
\inf S(\underset{\sim}{\xi} ; \hat{\varphi}) \geq \inf S(\underset{\sim}{\xi} ; \varphi)
$$

which completes the proof of the theorem.

4. $\underset{\sim}{\text { KNOWI }}$

4.1. The general maximin procedure

The maximin procedure may be based on the sufficient mxp-matrix X with rows

$$
\bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j} \quad, \quad i=1, \ldots, m
$$

Furthermore, let $\underset{\sim}{D}$ be a fixed non-singular $p \times p$ matrix satisfying

$$
{\underset{\sim}{D}}^{\prime} \underset{\sim}{\sum} \underset{\sim}{D}=\text { the } p \times p \text { identity matrix }
$$

It is easy to show that the decision problem is invariant under the following group of transformations
$G_{1}: \underset{\sim}{X} \rightarrow \underset{\sim}{X} \underset{\sim}{D}{\underset{\sim}{1}}_{1}{\underset{\sim}{D}}^{-1},{\underset{\sim}{c}}_{1}$ any $\mathrm{p} \times \mathrm{p}$ ortonormal matrix.

It follows from the Hunt-Stein theorem that we may look for an optimum procedure among invariant procedures.

Let Z be a maximal invariant function. Explicit knowledge of the distribution of Z will not be needed. Below we shall, for each $i=1,2, \ldots, a$, construct a set ω_{i} associated with the i'th problem. The distribution of Z will be characterized on each ω_{i} by means of a sufficient statistic U_{i}. Eventually parameter points \mathbb{R}_{i} satisfying conditions $C_{1}-C_{4}$ of section 3, will be selected from the ω_{i} 's.

Observe that the density of $\underset{\sim}{X}=\left\{\bar{X}_{k \mu}\right\}$ may be written
where $\boldsymbol{\mathcal { E }}=\left\{\boldsymbol{\xi}_{\mathrm{k} \mathrm{\nu}}\right\}$ and $A=\left\{A_{\mu \nu}\right\}=\sum_{\sim}^{-1}$. Hence, it is easy to see that $Y_{i}=b_{i}^{\prime} \bar{X}$ is a sufficient statistic for $\underset{\sim}{X}$ on the set
(4.1)

$$
w_{i}=\left\{\xi \left\lvert\, \xi_{k}=\frac{b_{j k}}{n_{k}} \eta\right., k=1, \ldots, m, \eta \in \mathbb{R}^{P}\right\}
$$

($b_{i k}$ is the k th element of b_{i}). Note that G_{1} induces a corresponding group in the Y_{i}-space:

$$
G_{1}^{*}: Y_{i} \rightarrow Y_{i} \underset{\sim}{D} g_{1}{\underset{\sim}{D}}^{-1} .
$$

By straightforward calculations it may be proved that

$$
\begin{equation*}
U_{i}=Y_{i} \Sigma^{-1} Y_{i}^{\prime}=\left(b_{j}^{\prime} \underset{\sim}{X}\right) \Sigma_{\sim}^{-1}\left(b_{i}^{\prime} \bar{X}\right)^{\prime} \tag{4.2}
\end{equation*}
$$

is a maximal invariant for G_{1}^{*}.
Observe that U_{i} was derived by first applying w_{i}-sufficiency (going from $\underset{\sim}{\mathbb{X}}$ to Y_{i}) and then invariance. It is the statement of a general theorem (*) that we should arrive at the same result by first applying invariance (going from $\bar{\sim}$ to Z) and then sufficiency. Hence we have proved that U_{i} is sufficient for Z if $\underset{\sim}{5} \in w_{i}$. This means that the density of Z may be written
(*) Theorem 3.1 in [3]. It is the statement of this theorem that we under weak conditions on the transformation group may interchange the sequence of applications of the invariance and sufficiency principles without affecting the final result. The conditions are: (i) $g w_{i}=w_{i}$ for all transformations g of the group (satisfied in our case).
(ii) Any almost invariant function is equivalent to an invariant function (satisfied also). (For definitions of the concepts "almost invariant" and "equivalent to an invariant function", see [6].)
(4.3) $f(z ; \underset{\sim}{\mathcal{E}})=\gamma_{i}\left(u_{i} ; \theta_{i}\right) f_{i}\left(z \mid u_{i}\right) \quad, \quad \underset{\sim}{5} \in w_{i}$
where $\gamma_{i}\left(u_{i} ; \theta_{i}\right)$ is the density of U_{i}, (depending on $\underset{\sim}{K}$ through $\left.\theta_{i}=\theta_{i}(\underset{\sim}{J})\right)$, and $f_{i}\left(z \mid u_{i}\right)$ is the conditional density of Z given U_{i} (not depending on $\underset{\sim}{5} \in \omega_{i}$).
 conditions $\mathrm{C}_{1}-\mathrm{C}_{4}$. First, let $\underset{\sim}{5}=0$ which trivially satisfies C_{1}. Secondly, suppose $\underset{\sim}{5} \in \omega_{i}$. Then $\xi_{k}=\frac{b_{i k}}{n_{k}} \eta, \quad k=1, \ldots, m$. For this $\underset{\sim}{5}$ straightforward calculations yield

$$
\begin{equation*}
\theta_{j}(\underline{\Sigma})=B_{i j}^{2} \circ \eta{\underset{\sim}{\Sigma}}^{-1} \eta^{\prime} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i j}=\sum_{k=1}^{m} \frac{b_{i k} b_{j k}}{n_{k}} \tag{4.5}
\end{equation*}
$$

 satisfying

$$
\eta \sum_{\sim}^{-1} \eta^{\prime}=\frac{\Delta_{i}}{B_{i i}^{2}}
$$

Then $e_{i}(\underset{\sim}{\underset{\sim}{j}})=\Delta_{i}$ and condition C_{2} is satisfied if and only if

$$
\left(\frac{B_{i j}}{B_{i i}}\right)^{2} \Delta_{i}<\Delta_{j} \text { for any } j \neq i
$$

As an immediate consequence of (4.3)

$$
\frac{f\left(z ; \tilde{\xi}_{i}\right)}{f\left(z ; \tilde{\sim}_{0}\right)}=\frac{\gamma_{i}\left(u_{i} ; \Delta_{i}\right)}{\gamma_{i}\left(u_{i} ; 0\right)}
$$

Furthermore, it is for any $\underset{\sim}{5}$ clear that

$$
\frac{U_{i}}{B_{i i}} \sim x_{p}^{2}\left(\frac{\theta_{i}}{B_{i i}}\right)^{(*)}
$$

Hence conditions C_{3} and C_{4} follow from well-known properties of the non-central x^{2}-distribution.

Applying Theorem 3.1, we can now write down the maximin procedue:
(4.6) $\quad \hat{\varphi}_{i}=\left\{\begin{array}{ll}1, & i f\left(b_{i}^{\prime} \bar{X}\right) \\ 0, & \text { otherwise }\end{array} \sum_{i}^{-1}\left(b_{i}^{\prime}\right)^{\prime}>c_{i}\right.$

$$
i=1,2, \ldots, a .
$$

Observe that the power functions of the individual tests are given by

$$
E \hat{\varphi}_{i}=1-I_{p}\left(\frac{c_{i}}{B_{i i}} ; \frac{\theta_{i}}{B_{i i}}\right)
$$

Hence, the constants c_{1}, \ldots, c_{a} should, according to (3.3), be determined to satisfy
(4.7)

$$
\left\{\begin{array}{l}
\sum_{i=1}^{a}\left[1-I_{p}\left(\frac{c_{i}}{B_{i i}}\right)\right]=\varepsilon \\
\Gamma_{p}\left(\frac{c_{i}}{B_{i i}} ; \frac{\Delta_{i}}{B_{i i}}\right)=\Gamma_{p}\left(\frac{c_{1}}{B_{11}} ; \frac{\Delta_{1}}{B_{11}}\right), i=2, \ldots, a
\end{array}\right.
$$

(If R is given by (2.1b) the right hand side of the first equation should be ae rather than $\epsilon_{\text {. }}$)
(*) $x_{p}(\lambda)$ denotes the non-central χ^{2}-distribution with p degrees of freedom and eccentricity λ. The corresponding cumulafive distribution function is written $\Gamma_{p}(0 ; \lambda)$, or if $\lambda=0, \Gamma_{p}(0)$.

The results of this section are summarized in the following theorem.

Theorem 4.1. Suppose
(4.8) $\quad \max _{i \neq j}\left[\Delta_{j}-\Delta_{i}\left(\frac{B_{i j}}{B_{i j}}\right)^{2}\right]>0$
where $B_{i j}=\sum_{k=1}^{m} \frac{b_{i k} b_{j k}}{n_{k}}$. Then $\hat{\varphi}$, given by (4.6) and (4.7), is maximin, i.e. maximizes inf $S(\underset{\sim}{\xi} ; \varphi)$ among all φ satisfying $\sup R(\underset{\sim}{\sin } ; \varphi) \leq \varepsilon$.

4.2. Remarks:

1) (4.8) was clearly essential for the proof of Theorem 4.1. (Without this condition C_{2} could not have been established.) The author conjectures that (4.8) is not only sufficient, but also necessary for $\hat{\varphi}$ to be maximin.

Based on this conjecture the theorem has the following interesting interpretation. Suppose the vectors b_{i} are in some sense normalized (either to the same length or to make $B_{i i}$ independent of i). Then $B_{i j}=\sum_{k} \frac{b_{i k} b_{j k}}{n_{k}}$ may be taken as a measure of how strongly the i^{\prime} th and the j^{\prime} th problem is related. In this sense (4.8) states that the stronger the relation between the individual problems, the more uniformly $\Delta_{1}, \ldots, \Delta_{a}$ have to be selected to make $\hat{\varphi}$ maximin. In the extreme case $B_{i j}=0$ for all i申j (the problems being completely "unrelated") there are no conditions on the Δ_{i} 's at all.
2) Suppose the vectors b_{1}, \ldots, b_{a} are normalized to have the same length. Then one reasonable choice of $\Delta_{1}, \ldots, \Delta_{a}$ appears to be
(4.9)

$$
\Delta_{1}=\ldots=\Delta_{a}=\Delta .
$$

Condition (4.8) reduces to
(4.10) $\quad \max _{i \neq j}\left[\sum_{k=1}^{m} \frac{b_{i j}^{2}}{n_{k}}-\left|\sum_{k=1}^{m} \frac{b_{i k} b_{j k}}{n_{k}}\right|\right]>0$.

In particular, this inequality is an immediate consequence of the Cauchy-Schwarz inequality if $n_{1}=\ldots n_{n}$. For most problems of interest (4.10) is satisfied whatevar the values of n_{1}, \ldots, n_{m}. Another reasonable choice of the Δ_{i} 's is (4.11) $\quad \Delta_{i}=\Delta \circ \sum_{k=1}^{m} \frac{b_{i k}^{2}}{n_{k}}$.

Then (4.8) is universally satisfied (again as a consequence of the Cauchy-Schwarz inequality). The system of equalities (4.7) simplifies to

$$
\left\{\begin{array}{l}
c_{i}=c \sum_{k=1}^{m} \frac{b_{i k}^{2}}{n_{k}} \tag{4.12}\\
c=\Gamma_{p}^{-1}(1-\varepsilon / a)
\end{array}\right.
$$

Thus the maximin procedure may be rewritten
(4.13) $\hat{\varphi}_{i}= \begin{cases}1, & \text { if } \frac{\left(b_{i}^{\prime} \underset{\sim}{\bar{X}}\right) \sum_{\sim}^{-1}\left(b_{i}^{\prime} \overline{\mathbb{N}}\right)^{\prime}}{\sum_{k=1}^{2} b_{i k}^{2} / n_{k}}>c \\ 0, & \text { otherwise. }\end{cases}$

This choice of $\Delta_{1}, \ldots, \Delta_{a}$ is suggested by the fact that the test statistics in (4.13) are normalized in the sense that they all have the same variance.

4.3. Applications

Example 1. Comparison with some known standard.

Suppose we want to compare each \boldsymbol{F}_{i} with some known standard which we without loss of generality take to be zero. Note that this problem corresponds to $b_{i}^{\prime}=(0, \ldots 0,1,0 \ldots, 0)$.The indifference zone is for each \boldsymbol{s}_{i} defined to be the area $0<\boldsymbol{\xi}_{i} \sum_{\sim}^{-1} \boldsymbol{g}_{i}<\Delta_{i}$. The maximin procedure is to state $\overline{5}_{i} \neq 0$ if

$$
\text { (4.14) } \quad \bar{X}_{i} \Sigma^{-1} \bar{X}_{i}^{\prime}>c_{i}
$$

where

$$
\begin{aligned}
& c_{1}, \ldots, c_{m} \text { are determined from } \\
& \quad \sum_{i=1}^{m}\left[1-I_{p}\left(n_{i} c_{i}\right)\right]=\varepsilon \\
& \quad I_{p}\left(n_{i} c_{i} ; n_{i} \Delta_{i}\right)=I_{p}\left(n_{1} c_{1} ; n_{1} \Delta_{1}\right) \quad, \quad i=2, \ldots, a .
\end{aligned}
$$

Observe that condition (4.8) is always satisfied. Hence (4.14) is maximin whatever the values of $\Delta_{1}, \ldots, \Delta_{a}$.

If we in particular choose $\Delta_{i}=\frac{\Delta}{n_{i}}$, then $n_{i} c_{i}=c=\Gamma_{p}^{-1}(1-\varepsilon / m)$ and (4.14) becomes

$$
n_{i} \bar{X}_{i} \sum_{\sim}^{-1} \bar{X}_{i}^{\prime}>c .
$$

Note that with this choice of Δ_{i} the indifference zones, $0<\boldsymbol{\xi}_{i}{\underset{\sim}{\sim}}^{-1} \boldsymbol{\xi}_{i}^{\prime}<\Delta_{i}$, become smaller the larger the value of n_{i}. This is very reasonable if the unequal sample sizes n_{1}, \ldots, n_{m} originally were motivated from unequal priorities on ξ_{1}, \ldots, ξ_{m} •

Example 2. Testing the equality of successive \boldsymbol{g}_{i} -
Let $\boldsymbol{5}_{i}$ represent the value of a quantity at some time $t_{i}\left(t_{1}<t_{2}<\ldots<t_{m}\right)$. Suppose it is desired to find out at which points in the process the quantity has undergone changes. This means that each $\mathbf{5}_{i}$ is to be compared to $\boldsymbol{5}_{i+1}, i=1, \ldots, m-1$.

Observe that $b_{i}^{1}=(0, \ldots,-1,1,0, \ldots 0)$, the non-zero elements being no. i and $i+1$. The indifference zone is for each difference $\boldsymbol{\xi}_{i+1}-\boldsymbol{\xi}_{i}$ the area $0<\left(\xi_{i+1}-\xi_{i}\right){\underset{\sim}{i}}^{-1}\left(\xi_{i+1}-\xi_{i}\right)^{\prime}<\Delta_{i}$. Condition (4.8) is not satisfied in general. However, it is certainly satisfied when $\Delta_{1}=\ldots=\Delta_{m-1}=\Delta$. Hence, under this choice of the Δ_{i} 's a maximin procedure is to state $\boldsymbol{5}_{i+1} \neq \boldsymbol{5}_{i}$ if

$$
\begin{equation*}
\left(\overline{\mathrm{X}}_{i+1}-\overline{\mathrm{X}}_{i}\right) \sum_{\sim}^{-1}\left(\overline{\mathrm{X}}_{i+1}-\overline{\mathrm{X}}_{i}\right)^{\prime}>c_{i} \tag{4.15}
\end{equation*}
$$

where c_{1}, \ldots, c_{m-1} are detemined from the conditions

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[1-I_{p}\left(\frac{c_{i}}{n_{i}^{-1}+n_{i+1}^{-1}}\right)\right]=\varepsilon \\
& I_{p}^{\prime}\left(\frac{c_{i}}{n_{i}^{-1}+n_{i+1}^{-1}} ; \frac{\Delta}{n_{i}^{-1}+n_{i+1}^{-1}}\right) \quad \text { independent of } i .
\end{aligned}
$$

Example 3. Complete comparison of $\boldsymbol{5}_{1} \ldots, \boldsymbol{5}_{\mathrm{m}}-$

For each pair $\left(\boldsymbol{\xi}_{i}, \xi_{j}\right)$ we are to decide whether $\xi_{i} \neq \xi_{j}$. Note that $a=\frac{1}{2} m(m-1)$. The indifference zone is for each pair $\left(\xi_{i}, \xi_{j}\right)$ the area $0<\left(\xi_{i}-\xi_{j}\right) \sum^{-1}\left(\xi_{i}-\xi_{j}\right),<\Delta_{i j}$. Condition (4.8) does not hold in general, but as in the preceding example it is clearly satisfied if $\Delta_{i j}=\Delta$. Hence, under this choice of $\Delta_{i j}$ a maximin decision rule is to state $\xi_{i} \neq \xi_{j}$ if
(4.16)

$$
\left(\bar{X}_{i}-\bar{X}_{j}\right){\underset{\sim}{c}}^{-1}
$$

$$
\left(\bar{X}_{i}-\overline{\mathrm{X}}_{j}\right)^{\prime}>c_{i j}
$$

where the constants $c_{i j}$ are determined to satisfy

$$
\begin{aligned}
& \sum_{i<j}\left[1-I_{p}\left(\frac{c_{i j}}{n_{i}^{-1}+n_{j}^{-1}}\right)\right]=\varepsilon \\
& I_{p}\left(\frac{c_{i j}}{n_{i}^{-1}+n_{j}^{-1}} ; \frac{\Delta}{n_{i}^{-1}+n_{j}^{-1}}\right) \quad \text { independent of } i \text { and } j .
\end{aligned}
$$

Example 4. Selection of non-zero regression coefficients.
Suppose a multivariate regression model is given, i.e. let \mathbb{X} be a $m \times p$ random matrix of the form

$$
\text { (4.17) } \quad \underset{\sim}{X}=X \underset{\sim}{\beta}+\underset{\sim}{U}
$$

where $\underset{\sim}{Z}$ is a known $m \times r$ matrix ($r \leq m$) of full rank, β an unknown $r \times p$ matrix and $\underset{\sim}{U}$ an unobservable random matrix with independently and normally distributed rows U_{1}, \ldots, U_{m} with common known covariance matrix $\underset{\sim}{\sum}$ and expectations zero. Suppose the selection of non-zero regression coefficients is desired, that is the non-zeros among the rows $\beta_{1}, \ldots, \beta_{r}$ of $\underset{\sim}{\beta}$.
 $\underset{\sim}{d}=\underset{\sim}{d}\left(X^{\prime} y\right)^{-1}$. Hence the selection problem is contained in the general formulation of the paper. Note that $b_{i}=d_{i}\left(=\right.$ the i^{\prime} th row of $\underset{\sim}{d}$). According to the general procedure (4.6) we should state $\beta_{i} \neq 0$ if $\left(d_{i} X_{\sim}^{X}\right) \sum_{\sim}^{-1}\left(d{ }_{i}^{\prime}\right)_{\sim}^{\prime}>c_{i}$, or equivelently if

$$
\hat{\beta}_{i} \Sigma^{-1} \hat{\beta}_{i}^{p}>c_{i}
$$

where $\hat{\beta}_{i}=d_{i}^{q} \underset{\sim}{X}$ is the least-squares estimate of β_{i}. Introducing the area $0<\beta_{i} \sum_{\sim}^{-1} \beta_{i}^{\prime}<\Delta_{i}$ as the indifference zone, the constants c_{1}, \ldots, c_{r} are to be determined to satisfy

$$
\left\{\begin{array}{l}
\sum_{i=1}^{r}\left[1-I_{p}\left(\frac{c_{i}}{q_{i i}}\right)\right]=\epsilon \\
I_{p}\left(\frac{c_{i}}{q_{i i}} ; \frac{\Delta_{i}}{q_{i i}}\right)=I_{p}\left(\frac{c_{1}}{q_{11}} ; \frac{\Delta_{1}}{q_{11}}\right)
\end{array}\right.
$$

where $g_{i i}$ is the diagonal elements of the matrix $\underset{\sim}{q}=\left(\underset{\sim}{y}{ }_{\sim}^{\prime} \underset{\sim}{r}\right)^{-1}$. This selection rule is maximin provided
(4.19)

$$
\max _{i \neq j}\left[\Delta_{j}-\Delta_{i}\left(\frac{q_{i j}}{q_{i i}}\right)^{2}\right]>0
$$

($q_{i j}$ is the general element of q). Observe that if $\underset{\sim}{y}$ represents an ortogonal design, this condition is fulfilled whatever the values of $\Delta_{1}, \ldots, \Delta_{a}$.

One reasonable choice of Δ_{i} is to make it proportional to the variance of $\hat{\mathbb{R}}_{i}$, that is to let $\Delta_{i}=q_{i i} 。 \Delta$. Then (4.19) is always satisfied and (4.18) reduces to

$$
\frac{1}{q_{i i}} \hat{\beta}_{i} \sum_{\sim}^{-1} \hat{\beta}_{i}^{\prime}>c
$$

where $\quad c=I_{p}^{-1}\left(1-\frac{\varepsilon}{r}\right)$.

5. \sum UNKNOWN

The natural extension of the general test procedure of the preceding section is

$$
\hat{\psi}_{i}=\left\{\begin{array}{l}
1, \text { if } T_{i}>c_{i} \\
0, \text { otherwise }
\end{array} \quad, i=1, \ldots, a\right.
$$

where

$$
\begin{equation*}
T_{i}=\left(b_{i}^{p} \bar{X}\right) \sum_{\sim}^{\wedge}{ }^{-1}\left(b_{i}^{p} \bar{X}\right)^{\prime} \tag{5.2}
\end{equation*}
$$

$$
\sum_{\sim}^{n}=\frac{1}{N-m} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}}\left(x_{k j}-\bar{X}_{k}\right)^{\prime}\left(X_{k j}-\bar{X}_{k}\right)
$$

and $N=\sum_{k} n_{k}$. The constants c_{1}, \ldots, c_{a} are to be determined from a system of equations analogously to (4.7).

Let $\mathcal{F}_{\mu, \nu}(\delta)$ denote the non-central F-distribution with μ and ν degrees of freedom and eccentricity δ. The corresponding cumulative distribution function is written $F_{\mu, \nu}(0 ; 0)$ or if $\delta=0, F_{\mu, \nu}(0)$. It is well-known that

$$
\frac{T_{i}}{B_{i i}} \circ \frac{N^{2}}{(N-m) p} \sim \mathcal{F}_{p, N-m-p+1}\left(\frac{\theta_{i}}{B_{i i}}\right)
$$

where $\mathbb{N}^{\prime}=N-m-p+1$ and $\theta_{i}=\theta_{1}\left(\xi_{\Sigma}, \sum_{\sim}\right)=\left(b_{i}^{\prime} \underset{\sim}{\xi}\right){\underset{\sim}{N}}^{-1}\left(b_{i}^{\prime} \underset{\sim}{\xi}\right)^{\prime}$. Suppose the constants c_{1}, \ldots, c_{a} are determined to satisfy
(5.4) $\left\{\begin{array}{l}\sum_{i=1}^{a}\left[1-F_{p, N^{\prime}}\left(\frac{c_{i}}{B_{i i}} \circ \frac{N^{\prime}}{(N-m) p}\right)\right]=\varepsilon \\ F_{p, N}\left(\frac{c_{i}}{B_{i i}} \circ \frac{N^{\prime}}{(N-m) p} ; \frac{\Delta_{i}}{B_{i j}}\right) \quad \text { independent of } i=1,2, \ldots, a .\end{array}\right.$

Then, from well-known results concerning the non-central F-distribution, it follows that $\hat{\phi}$ has the following two properties:

1) $\sup R\left(\underset{\sim}{5}, \underset{\sim}{\sum} ; \hat{\psi}\right)=R\left(0, \underset{\sim}{\sum} ; \underset{\psi}{\hat{\psi}}\right)=\epsilon$
2) $S\left(\underset{\sim}{5}, \underset{\sim}{\sum} ; \hat{\psi}\right)$ attains its minimum value (*) in points ($\underset{\sim}{\xi}, \underset{\sim}{\Sigma}$) for which $\theta_{i}\left(\mathcal{I}, \sum_{\sim}\right)=\Delta_{i}$ for exactly one i and $\theta_{j}\left(\right.$ g,,$\left.\Sigma_{\sim}\right)<\Delta_{j}$ for all jキi.

As in the preceding section the solution of (5.4) is particularily simple if we choose $\Delta_{i}=\Delta$ 。 $B_{i i}$. In this case (5.1) may be rewritten
(5.5) $\quad \hat{\psi}_{i}=\left\{\begin{array}{l}1, \quad \text { if } T_{i}>c \circ B_{i i} \\ 0, \text { otherwise }\end{array}\right.$
where $\quad c=\frac{(N-m) p}{N^{\top}} F_{p, N^{\prime}}^{-1} \quad\left(1-\frac{\epsilon}{a}\right)$.
(*) Over the set of all (NNN $\left.\underset{\sim}{\sum}\right)$ for which $\theta_{i}\left(\underset{\sim}{\mathcal{N}}, \underset{\sim}{\sum}\right) \geq \Delta_{i}$ for
at least one i.

It is shown in [5] in a special case (for $p=1$) that $\hat{\psi}$ is not maximin. However, we now proceed to show that if condition (4.8) is satisfied, it usually comes close.

Note that ($\underset{\sim}{\bar{X}}, \underset{\sim}{\wedge})$ are sufficient statistics. Furthermore, the decision problem is clearly invariant under the following group of transformations:

However, as the Hunt-Stein theorem does not apply for this transformation group (see [6], page 338-339), it can not be concluded that there exists an invariant maximin procedure. Instead we shall require the procedures themselves to be invariant.

Let Z^{*} be a maximal invariant function for G_{2}. Let

$$
\begin{equation*}
\omega_{i}^{*}=\left\{(\underset{\sim}{\xi}, \underset{\sim}{\Sigma}) \left\lvert\, \xi_{k}=\frac{b_{i k}}{n_{k}} n_{1}\right., k=1, \ldots, m, \eta \in \mathbb{R}^{p}\right\} . \tag{5.6}
\end{equation*}
$$

Introduce

$$
\begin{aligned}
& S(\psi)=\inf _{\underset{\sim}{\xi}, \sum_{\sim}} S\left(\underset{\sim}{\xi}, \underset{\sim}{\sum} ; \psi\right) \\
& s^{*}(\psi)=\inf _{i} \inf _{\omega_{i}^{*}} S(\underset{\sim}{(\underset{\sim}{n}}, \underset{\sim}{j} ; \psi) .
\end{aligned}
$$

Trivially $s(\psi) \leq s^{*}(\psi)$ for any ψ. Thus

$$
\sup _{\psi} s(\psi) \leq \sup _{\psi} s^{*}(\psi)
$$

where the suprema are taken over all invariant ψ satisfying $\sup R(\underset{\sim}{\boldsymbol{\sim}}, \tilde{j} ; \psi) \leq \varepsilon$. Hence, if we have found a procedure ψ^{*} maximizing $S^{*}(\psi)$, we may judge how close $\hat{\psi}$ comes to being
maximin by comparing $s(\hat{\psi})$ with $S^{*}\left(\dot{\psi}^{*}\right)$.
To derive $\hat{\psi}$, note that it can easily be proved that
under w_{i}^{*} has a sufficient set of statistics

$$
W_{i}=\left(b_{i}^{\prime} \underset{\sim}{\bar{X}},(\mathbb{N}-m) \sum_{\sim}+\sum_{k=1}^{m-1} V_{k}^{\prime} \nabla_{k}\right)
$$

where V_{1}, \ldots, V_{m-1} are p-dimensional row vectors independently distributed from $b{ }_{i}^{\prime} \bar{\sim}$ and \sum_{∞}, and themselves mutually independent and normal with expectations zero and covariance matrix \sum_{\sim}. Furthermore, it can be seen that G_{2} induces the following transformation group in the W_{i}-space:

$$
G_{2}^{*}:\left\{\begin{array}{l}
b_{i}^{\prime} \bar{X} \rightarrow b_{i}^{\prime} \bar{X} g_{2} \\
(N-m) \sum_{\sim}^{n}+\sum_{k=1}^{m-1} V_{k}^{\prime} V_{k} \rightarrow \underset{\sim}{g} 2\left[(N-m) \sum_{\sim}^{N}+\sum_{k=1}^{m-1} V_{k}^{\prime} V_{k}\right] \underset{\sim}{\underset{\sim}{2}}
\end{array} .\right.
$$

Maximal invariant is known to be

$$
T_{i}^{*}=(N-1)\left(b_{i}^{\prime} \bar{X}\right)\left[(N-m) \sum_{\sim}^{n}+\sum_{k=1}^{m-1} V_{k}^{\prime} V_{k}\right]^{-1}\left(b_{i}^{\prime} \bar{X}\right)^{\prime}
$$

It follows, as in section 4.1, that T_{i}^{*} is sufficient for Z^{*} under ω_{i}^{*}. Hence the density of Z^{*} may be written

$$
h^{*}\left(z^{*} ; \underset{\sim}{E}, \sum_{\sim}\right)=f_{i}^{*}\left(t_{i}^{*} ; \theta_{i}\right) h_{i}^{*}\left(z^{*} \mid t_{i}^{*}\right) \quad, \quad \Sigma \in \omega_{i}^{*}
$$

where f_{i}^{*} and h_{i}^{*} are respectively the density of T_{i}^{*} and the conditional density of Z^{*} given $T_{i}^{*}=t_{i}^{*}$. Note that

$$
\frac{\mathbb{T}_{i}^{*}}{B_{i i}} \frac{N-p}{(N-1) p} \sim \mathcal{F}_{n N-1}\left(\frac{\theta_{i}}{B_{i i}}\right)
$$

As in section 4.1 it follows that a version of ψ^{*} is given by

$$
\psi_{i}^{*}= \begin{cases}1, & \text { if } T_{i}^{*}>c_{i}^{*} \tag{5.7}\\ 0, & \text { otherwise }\end{cases}
$$

provided (4.8) holds, that is

$$
\max _{i \neq j}\left[\Delta_{j}-\Delta_{i}\left(\frac{B_{i j}}{B_{i j}}\right)^{2}\right]>0
$$

The constants $c_{1}^{*}, \ldots, c_{a}^{*}$ are to be determined to satisfy (5.8) $\left\{\begin{array}{l}a \\ \sum_{i=1}^{a}\left[1-F_{p, N-p}\left(\frac{c_{i}^{*}}{B_{i i}} \circ \frac{N-p}{(N-1) p}\right)\right]=\epsilon \\ F_{p, N-p}\left(\frac{c_{i}^{*}}{B_{i i}} \quad \frac{N-p}{(N-1) p} ; \frac{\Delta_{i}}{B_{i i}}\right) \quad \text { independent of } i .\end{array}\right.$

It is clear that the possible improvement of the maximin value of $\hat{\psi}$ is bounded by the quantity

$$
Q=F_{p, N}\left(\frac{c_{i}}{B_{i i}} \circ \frac{N^{\prime}}{(N-m) p} ; \frac{\Delta_{i}}{B_{i i}}\right)-F_{p, N-p}\left(\frac{c_{i}^{*}}{B_{i i}} \circ \frac{N-p}{(N-1) p} ; \frac{\Delta_{i}}{B_{i i}}\right) .
$$

(The right hand side is independent of i).
Recall that $N^{\prime}=N-m-p+1$. Since $N-p$ usually is considerably larger than m, it is clear that Q typically is small. (It is easy to prove that the difference between the two functions $F_{p, N}\left(\circ ; \frac{\Delta_{i}}{B_{i i}}\right)$ and $F_{p, N-p}\left(\circ ; \frac{\Delta_{i}}{B_{i i}}\right)$ more than accounts for the value of Q).

References

[1] Anderson, T.W. (1958). Introduction to multivariate statistical analysis. John Wiley \& Sons.
[2] Bølviken, E. (1975). Noen desisjonsproblemer i lineær-normale modeller. Cand.Real. thesis at the University of Oslo.
[3] Hall, W.J., Wijsman, R.A. and Ghosh, J.K. (1965). The relationship between sufficiency and invariance with applications in sequential analysis. Ann.Math.Stat.,36, 575-614.
[4] Lehmann, E. (1975). A theory of some multiple decision procedures I. Ann.Math.Stat., 28, 1-25.
[5] Lehmann, E. (1961). Some model I problems of selection. Ann.Math.Stat., 32, 990-1012.
[6] Lehmann, E. (1959). Testing statistical hypothesis. John Wiley \& Sons.
[7] Spjøtvoll, E. (1971). On the optimality of multiple comparison problems. Ann.Math.Stat., 42, 398-411.

