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Environmental substances like polychlorinated biphenyls and dietary fatty acids have 

been suspected to influence cognitive functions in humans, although much of their 

specific effects on synaptic functions are still unclear. There are many contradicting 

studies of the cognitive benefits of polyunsaturated fatty acids. In some studies it is 

emphasized that children with cognitive impairments such as ADHD, may have 

impaired fatty acid metabolism, implicating that the genetic status may be of 

importance. Ingestion of polychlorinated biphenyls have been associated with 

negative effects on cognitive processes, although the effects seems to be highly 

dependent on their molecular structure exposure time, duration, doses. In this thesis, 

the effect of dietary fat content and polychlorinated biphenyl 153 was investigated in 

neostriatal dopaminergic synapses and included measurements of related 

neurotransmitters like e.g glutamate and serotonin.  

We included both male and female rats of two different genotypes namely the Wistar 

Kyoto rats and the spontaneously hypertensive rats as an animal model of ADHD, to 

investigate if genetic and hormonal status may influence the effect of these 

compounds. Initially the dietary study involved two distinct diets, one with a low level 

of dietary fatty acids (5%, w/w) with the other one supplemented with omega-3 

polyunsaturated fatty acids (equal amounts of EPA and DHA) containing a high level 

of fatty acids (21%, w/w). The omega-3 supplementation led to gender dependent 

improvement in behaviour in the male SHRs, and included reduced levels of 

reinforcer-controlled activity, impulsiveness and inattention, with no or opposite 

effects in the female SHRs. Further biochemical studies on the neostriatal 

dopaminergic system, involved in reinforcement of behaviour, confirmed that the 

male SHRs had a reduction of the dopamine content in concert with enhanced 

homovanillic acid and calculated turnover ratio of dopamine, all of which were absent 

in the female SHRs. To further investigate if the effects achieved by omega-3 

supplementation (this time with 80% DHA and 20% EPA), could be specific for 

omega-3 fat, we included an extra diet composed of high levels of fatty acids (21%, 

w/w) containing mainly lard which is rich in both saturated (40%) and polyunsaturated 

fats (60%) but with low levels of omega-3. In this second round  we discovered that in 

the male WKY rats, both the lard and omega-3 enriched diets gave reduced levels of 

dopamine, tyrosine hydroxylase and vesicular monoamine transporter-2, without 
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changing the extracellular dopamine metabolite homovanillic acid in neostriatum. In 

contrast to the lard enriched diet, omega-3 enrichment induced an additional 2-fold 

increase in dopamine turnover ratio in the male WKYs, as well as a significant 

decrease in the levels of the dopamine transporter. Another finding was that the 

young male SHRs at p30 were hypodopaminergic compared to age and gender 

matched WKYs. In these male SHRs, the 40% lower dopamine turnover ratio was 

reversed 2-fold, to a similar extent by both lard and omega-3 enriched diets, without 

any significant effects on the protein levels.  

These findings show that dietary fatty acid composition may strongly influence the 

neostriatal dopaminergic system in a gender and genotype dependent way, with both 

type of fatty acids as well as the amounts influencing the synaptic responses. 

Polychlorinated biphenyls (PCBs) can be separated into ortho- and non ortho-

substituted PCBs, where most of the ortho-substituted being neurotoxic and possibly 

interrupt cognitive functions. In this thesis we employed the ortho-substituted PCB 

153, which is one of the most abundant PCB found in mammalian milk. 

Biochemical studies were performed on dopamine and serotonin neurotransmitters 

as well as amino acids in the neostriatum of both genders from the Wistar Kyoto 

(WKY) and the spontaneously hypertensive rat (SHR) genotypes. Exposure to PCB 

153 led to increases in homovanillic acid and 5-hydroxyindoleacetic acid in all groups 

except the female SHRs, whereas levels of dopamine and serotonin 

neurotransmitters as well as amino acids were unchanged in all genotypes and 

genders. PCB-153 also induced a decrease in the neostriatal D5 receptor in both 

genders and genotypes, without changing the D1 receptor. In contrast, levels of the 

dopamine transporter were reduced in the male WKYs, together with an insignificant 

reduction of the mean in the male SHRs. In addition, a gender-specific decrease of 

the PSD-95 protein occurred in the PCB-exposed male rats. Levels of tyrosine 

hydroxylase and vesicular monoamine transporter-2 were unchanged in all animals 

examined. Therefore, postnatal PCB exposure had major effects on both dopamine 

and serotonin turnover as well as specific PCB-sensitive synaptic proteins. 

Differences occurred between the effects obtained in both genotypes, as well as 

between genders. Altogether, this set of studies shows that both PCB 153 and 

dietary fatty acids, environmental compounds suspected to influence cognitive 

functions, may modulate neostriatal dopaminergic synapses in distinct gender and 

genotype dependent ways. 
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5-HIAA   5-Hydroxyindole acetic acid

ADHD    Attention deficit hyperactivity disorder    

cAMP    Cyclic adenosine monophosphate         

COMT    Catechol-o-methyl transferase                   

DAT    Dopamine transporter  

DHBA    3, 4-hydroxybenzylamine 

DHA    Docohexaenoic acid 

D1/5R    Dopamine receptor D1/D5 

EPA    Eicopentaenoic acid 

GABA    -amino butyric acid 
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LFA    Low fatty acid 

LTD    Long term depression 

LTP    Long term potentiation 
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n-3    Omega-3 

P    Postnatal day 
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PUFA    Polyunsaturated fatty acids 

SHR    Spontaneously hypertensive rats 

SFA    Saturated fatty acids 

TH     Tyrosine hydroxylase 

VMAT-2    Vesicular monoamine transporter-2 

WKY    Wistar Kyoto rats 
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Neuronal circuits communicate through the use of neurotransmitters and receptors. The 

functional dynamics of neurons are changing trough out the life cycle in response epigenetics 

and frequency of stimulations, stress, nutrition or other environmental factors like neuro-

active toxins or pharmaceuticals (Bowers et al., 2010;Johannessen, 1991;Zainuddin & Thuret, 

2012;Timmermans et al., 2013;Bliss & Cooke, 2011;Takesian & Hensch, 2013). Disturbances 

to functional neuronal processes could lead to more or less maladaptive strategies of living 

and to psychological disorders. Among several neurotransmitters, glutamate, dopamine are 

believed to be important in cognitional processes. For glutamate, changes in plasticity like 

long-term potentiation (LTP) or long-term depression (LTD) which is dependent upon 

glutamatergic signalling, has been associated with memory and learning (Bliss & 

Collingridge, 1993). Studies have implicated that dopaminergic neurons might be important 

mediators of reward and involved in regulating aspects of cognitive functions (Schultz, 

2007;Nieoullon, 2002). Changes in glutamatergic and dopaminergic  neurotransmission have 

also been suggested to be involved in one of the most common cognitive childhood disorder 

named,  attention deficit hyperactivity disorder (ADHD). The symptoms of this disorder 

involve severe attention deficit, but also impulsivity and hyperactivity. The world-wide 

prevalence of ADHD is ~5 % and although it is mainly genetic, twin-studies show only ~76 

% heredity, leading to proposals of environmental impact. Environmental factors which have 

been suggested include maternal smoking, alcohol, poor diet as well as organic environmental 

toxins, although, no clear effect or single explanation has been found in epidemiological 

studies (Banerjee et al., 2007). In this thesis I am going to focus on two carefully selected 

environmental factors that have been proposed to influence synaptic cognitional processes by 

modulating synaptic functions; 1) Dietary lipids and 2) Polychlorinated biphenyls (PCBs). 

Since earlier studies have implicated that both lipids and PCBs might influence cognitive 

functions (Winneke, 2011), we chose to focus on the dopaminergic dynamics of striatum 

(involved in reward and reinforcing mechanisms), and the glutamatergic dynamics in 

hippocampus (involved in memory formation). We also wanted to explore if a rodent model 

with ADHD-linked gene pool (SHR) inhabit the same sensitivity for environmental factors as 

9



its control (WKY), and also if there is gender-related responses. In this thesis we therefore 

studied neurologic effects of dietary lipids and PCB on the rat model (SHR) of cognitive 

deficits (ADHD) and its control (WKY).  

ADHD is highly common and normally diagnosed during childhood, although 

diagnosis in adults have become more common the last decades (Polanczyk et al., 

2007). According to World health organization and American Psychiatric Association, 

ADHD are defined by 18 different symptoms of inattention, hyperactivity and 

impulsivity. The symptoms must been present for at least six months and represent a 

level that is maladaptive in relation to the age, as well as onset of symptoms before the 

age of seven years. The common symptoms of ADHD can be followed by severe 

comorbidities that might lead to reduction of life quality (learning problems, conduct 

disorder, anxiety,  speech problems, increased chance of drug addiction and increased 

risk taking) (Larson et al., 2011;Reinhardt & Reinhardt, 2013). ADHD is a male-

dominated disorder, with three times more boys being diagnosed than girls. Further, 

symptoms differ between the genders with males usually express more severe 

hyperactivity and females often are more likely to be mainly inattentive (Weiss et al.,

2003). Because of different combinations of symptoms expressed among the patients, 

ADHD diagnosis consists of three sub-diagnoses. Primarily we have the typical 

ADHD combined (ADHD-C) subtype with all the main symptoms including attention 

deficit, hyperactivity and impulsivity, affecting boys three times more than girls. 

Secondly we have the primarily inattentive (ADHD-PI) subtype, characterized by 

inattention and a lack of focus leading to increased daydreaming, mind wandering and 

forgetfulness. The ADHD-PI subtype diagnosis is more frequent among girls than 

ADHD-C, since girls often show less external hyperactivity and impulsiveness. The 

last subtype is the hyperactive and impulsive subtype (ADHD-H), where the 

individuals express mainly these symptoms without being inattentive (Weiss et al.,

2003). Twin-studies have given evidence that this is a multifactorial and primarily 

inheritable disorder due to several polymorphisms; while a small part are thought to be 

environmental (Faraone et al., 2005). Although increased amounts of polymorphisms 

have been found in ADHD patients, the variability was so large that  no single genetic 
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marker has been identified. Therefore it has been suggested that the polymorphisms 

associated with ADHD might hold increased sensitivity for epigenetic and 

environmental factors (Thapar et al., 2013). First choice medications 

(psychostimulants) are ineffective in 20% of all cases, and some patients may require 

special combinations of medication (Wigal, 2009). This shows that the underlying 

mechanisms are complex and incompletely understood. It is important to gain more 

understanding about the underlying neurobiology of ADHD. In this thesis I will 

concentrate my work around neurochemical parameters believed to be important in 

ADHD, both in normal rats (WKY)  and the rat animal model of ADHD-C (SHR), as 

well as exploring gender-dependent responses to our interventions. 

In mammalian brain, neurotransmitters can be divided into amino acid transmitters 

(like glutamate and GABA), catecholamine's (dopamine and noradrenaline), 

indoloamines (serotonin), acetylcholine or neuropeptides. The catecholamine's like 

dopamine and noradrenaline are derived from the amino acid tyrosine while the 

monoamine serotonin is derived from the amino acid tryptophan. With regard to 

ADHD especially neurons involving dopamine, noradrenaline, serotonin, glutamate 

and GABA is of interest, since abnormalities have been associated with these 

neurotransmitter systems (Bralten et al., 2013;Yang et al., 2013;Edden et al.,

2012;Gold et al., 2014;Sagvolden et al., 2005a). Although all these neurotransmitter 

systems are tightly connected and might influence each other, I have chosen to focus 

this thesis mainly on the dopaminergic neurotransmitter system, while including some 

serotonergic and amino acidergic analyses. 

The dopamine producing neurons are mainly present in the substantia nigra, the 

ventral tegmental area and hypothalamus. These neurons have widely projecting axons 

and are forming four important signalling pathways namely the nigrostriatal-, 
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mesocolimbic-, mesocortical- and tuberoinfundibular pathway (Dahlstrom & FUXE, 

1964;Anden et al., 1964). Dopamine has an important modulatory role in the brain 

where it influences motor function and reward processes leading to motivation and 

different forms of learning (Nieoullon, 2002). The respective dopaminergic pathways 

innervate a variety of brain tissues. Here they modulate different functional aspects, 

such as motoric control (nigrostriatal system), feelings of reward and desire 

(mesolimbic), motivation, emotional and cognitive control (mesocortical) as well as 

hormonal release (tuberoinfundibular). Diseases and conditions which  involves the 

these systems, includes Parkinson disease, schizophrenia, restless leg syndrome and 

ADHD (Morales & Root, 2014). Drugs targeting the dopaminergic neurons might 

therefore modulate a diverse set of systems that might influence several brain 

functions. 

Dopamine is mainly synthetized from L-tyrosine by the stereospecific enzyme, 

tyrosine hydroxylase (TH). TH is exclusively present in catecholaminergic neurons 

and represents the rate-limiting step in the biosynthesis of dopamine (Bademci et al.,

2012). After production, dopamine is concentrated into synaptic vesicles by the proton 

gradient- and ATP-dependent vesicular monoamine transporter-2 (VMAT-2), for 

storage and release (Varoqui & Erickson, 1998). The VMAT family in mammals 

include two isoform of the vesicular monoamine transporter; VMAT-1 and VMAT-2, 

where VMAT-2 is the only isoform expressed in the brain (Sudhof, 2004;Weihe et al.,

1994). 

After an excitatory stimulus, exocytosis of vesicles releases dopamine into the synaptic 

gap where it diffuses and may stimulate five types of G-protein coupled receptors (D1-

D5) (Missale et al., 1998). The dopamine receptors are divided in two main groups 

called D1-class and D2-class receptors, based on their ability to activate adenylyl 

cyclase. Activation of adenylyl cyclase induces formation of cyclic adenosine 3`,5`-

monophosphate (cAMP) and may lead to phosphorylation of phosphoprotein-32 and 

inhibition of dephosphoryllation (Greengard 2001). The D1-class receptor group 

includes the D1- and D5-receptor and are bound to G-proteins called Golf or Gs that are 
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cAMP inducing. The D2-class receptors, including D2-, D3- and D4-receptor, are 

coupled to Gi where stimulation inhibits cAMP formation (Missale et al., 1998). The 

distribution and combination of dopamine receptor subtypes in different brain parts are 

also characteristic. This demonstrates that the different brain parts and functions are 

most likely dependent on diverse dopamine receptor subtypes and their unique 

properties (Beaulieu & Gainetdinov, 2011). 

Action of extracellular DA is terminated by presynaptic reuptake by the dopamine 

transporter (DAT), which is a sodium coupled symporter (Sudhof, 2004). Free 

dopamine not capsuled by vesicles may be candidates for degradation by monoamine 

oxidase (MAO) and Catechol-O-methyltransferase (COMT) to homovanillic acid 

(HVA). The balance between TH-activity, DAT, VMAT-2 and the receptors, are 

therefore important factors controlling dopamine signalling. 

The subgroups of dopamine receptors can be distinguished by ability to induce cAMP 

formation and their ways of dealing with guanosine triphosphate. In addition they have 

characteristic agonists and antagonists as well as individual affinity for dopamine. The 

D1- and D5-receptor have SKF-38393 and SCH-23390 as a characteristic agonist and 

antagonist respectively, and their affinity for dopamine is micromolar and 

submicromolar respectively. In addition the D5-receptor is the only subtype that does 

not regulate guanosine triphosphate. The characteristic agonists for D2-, D3- and D4-

receptor are bromocriptine, 7-OH-DPAT and CP-226269 PD respectively, whereas 

their affinity for dopamine is micromolar, nanomolar and submicromolar respectively. 

Ligands for these receptors are mainly used as research tools for investigation of 

dopaminergic function, although some of them potentially can be used as therapeutics 

(Mailman et al., 2001). 

Many drugs like psychostimulants, antidepressants as well as recreational drugs like 

cocaine, are targeted for DAT (Wang et al., 2013). Ligands of DAT might be divided 

in two groups, inhibitors and substrates where the inhibitors will block monoamine 
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uptake without being translocated, whereas substrates are actively translocated and 

triggers DAT-mediated release of dopamine by a reverse translocation cycle (Schmitt 

et al., 2013). Both groups of DAT ligands are contributing to increase in extracellular 

dopamine and might lead to addiction. 

Dopamine is the precursor of noradrenaline, dysregulation of dopamine- and 

noradrenaline seems to be highly associated with ADHD. Methylphenidate and d-

amphetamine are first choice pharmaceuticals for treating ADHD, and works by 

modulating the monoaminergic system as well as inhibiting DAT (Dopheide & 

Pliszka, 2009). Methylphenidate might also be an cognitive enhancer in healthy 

individuals (Linssen et al., 2014). Based on the dynamic development theory it is 

hypothesized that altered dopmainergic function plays a central role by failing to 

modulate non-dopaminergic targets primarily including glutamatergic and GABAergic 

neurons (Sagvolden et al., 2005a). According to this theory three of the main 

dopaminergic pathways can potentially be dysfunctional, giving rise to the three main 

symptoms respectively. The involved dopaminergic signalling pathways are; 1) the 

mesolimbic, where impairment results in altered reinforcement of behaviour and 

deficient extinction mechanisms, 2) the mesocortical pathway where impaired 

signalling results in attention deficiencies and poorer behavioural planning and 3) the 

nigrostriatal dopaminergic pathway where impairment will cause altered motor 

function (hyperactivity/hypoactivity) and nondeclarative habit learning and memory 

(Sagvolden et al., 2005a). 

Glutamate is the most abundant excitatory neurotransmitter in the central nervous 

system (Zhou & Danbolt, 2014). It is thought to contribute in memory formation 

associated processes and are important  for neuronal communication, conversely, 

glutamatergic overstimulation can lead to neuronal damage (Zhou & Danbolt, 

2014;Rothman & Olney, 1995;Bliss & Collingridge, 1993). It is therefore important to 

keep the activity levels in a controlled normalized range. To keep the excitatory 

glutamate stimuli under control it is important that these neurons are tightly connected 
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to well-functioning GABAergic neurons, as GABA is the main transmitter for 

damping excitatory stimulation. Glutamate is also the main neurotransmitter of the 

hippocampus and are involved in memory formation processes and developmental 

plasticity. Memory formation has been suggested to involve processes like long-term 

potentiation (LTP) or long-term depression (LTD) (Bliss & Collingridge, 1993). LTP 

is the measure of long-term-changes in synaptic plasticity and is mostly studied in the 

CA1 area at the Schaffer collaterals or in the structural hippocampal layers; stratum 

oriens and radiatum (Niemi et al., 1998;Herwerth et al., 2012). Although, it is also 

present in limbic forebrain and the entorhinal area (Racine et al., 1983). In this thesis 

hippocampus will be the target for measurement of lipid or PCB influenced LTP and 

excitability. 

Released extracellular glutamate in the synapse usually undergo high affinity uptake 

into astrocytes (Schousboe et al., 1977). In the astrocytes glutamate will react with 

ammonium by the help of glutamine synthase and adenosine triphosphate (ATP) to 

form glutamine. This reaction is highly important in detoxifying ammonium, since 

high concentrations will disturb synaptic function (Nissim, 1999;Sonnewald et al.,

1997;Norenberg et al., 1997). Glutamine is not a neurotransmitter and is released from 

the astrocyte in to extracellular spaces, where it is taken up by the presynaptic terminal 

and converted back to glutamate by glutaminase. Glutamate are also involved in 

metabolic pathways like the citric acid cycle (TCA-cycle) and will here be transformed 

into other amino acids like f.eks GABA (Roberts & Rankel, 1950;Waagepetersen et 

al., 2005). Glutamate from the cytosol will accumulate in vesicles due to vesicular 

glutamate transporters (VGlut), which are proton interchanging glutamate ports (Tabb 

et al. 1992). This is due to proton-dependent ATPases in the vesicle membrane that 

creates a proton-based electrical gradient. For the accumulation of glutamate to happen 

it is important with positively charged vesicular lumen (full of H+) in addition to low 

pH (Tabb et al. 1992).  
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Glutamate receptors have L-glutamate as a primary activator and are a diverse group, 

including ionotropic (NMDA-, kainat- and AMPA-receptors) and G-protein-coupled 

metabotropic receptors (mGluR). The ionotropic glutamate receptors mediate fast 

excitatory synaptic transmission that are normally not voltage dependent (except 

NMDA receptors), while the g-coupled mGluR are involved in secondary messenger 

pathways mediating slow modulatory responses. N-methyl-D-aspartate (NMDA) in 

addition to AMPA receptors are suggested as important for memory processes and are 

found in particular high densities in the hippocampus and cerebral cortex(Roberts & 

Rankel, 1950;Wheal et al., 1998). The NMDA receptors are voltage dependent 

(requires initial depolarization), ligand gated (requires binding of co-agonists), non-

selective cation channels that are composed of two subunits of multiple combinations. 

Functional NMDA-receptors are normally composed of one NR1 and at least one 

NR2-subunit (Kew & Kemp, 2005), although these exists as several variants. NR1 can 

exist in seven splice variants while NR2 can be encoded by four different genes giving 

a total of 11 different subunits that can be combined. Due to high subunit diversity and 

their combinations, there can be many variants of this receptor. It's also worth to notice 

that there are several ways of modulating NMDA receptors as there are 6 known 

binding sites for different substances that can influence the receptor activity. 

Activation of the NMDA receptor requires not only binding of the main agonists but 

also binding of a co-agonist (glycine or d-serine). In addition, the ion channel is during 

normal resting potential blocked by Mg2+ and initial depolarization is necessary for the 

Mg2+ to disassociate allowing influx of Na2+, small amounts of Ca2+ and outflow of 

K+. Immediately after the Mg2+ is disassociated it re-binds due to strong attraction to 

its site in the ion channel, leading to inhibition of further ion flux through the channel. 

The influx of Ca2+ is thought to be the main mechanism behind synaptic plasticity 

formation, since Ca2+ might lead to several intracellular cascades of events.  NMDA-

receptors are also due to their complexity, slower and requires several factors to be 

present than the other ionotropic glutamate receptors (AMPA or Kainate) (Meldrum, 

2000). AMPA receptors have lower affinity for glutamate than NMDA-R although, 

when activated, they have much faster kinetics (Meldrum, 2000). Normally, NMDA, 
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AMPA and Kainate receptors are enriched in postsynaptic densities (PSD) and 

coupled to PSD associated proteins. This enrichment of NMDA-receptors as well as 

AMPA-receptors in certain areas leads to increased chances of ion-channel opening 

when successful stimulation does occurs. Activation of one receptor gives a local 

depolarization, which removes the Mg2+ blockage, leading to increased chances of 

activation of the neighbour NMDA receptors in the local area. 

LTP can be created by agonists activating the NMDA receptor with continuous 

patterns of stimulation, which leads to increased plasticity in the synapse, making it 

more sensitive to stimulation and increase chances of new stimulation (Bliss & 

Collingridge, 1993). The relationship between AMPA and NMDA receptor has also 

been suggested to be important(Williams et al., 2007). In addition it is suggested that 

dopamine stimulation of D1 subunit could change NMDA-receptor sensitivity. This is 

thought to be a synergistic regulation since it leads to decreased dephosphorylating of 

the NR1-subunit of the NMDA-receptor (Snyder et al., 1998). 

Although high, the concordance of monozygotic twins mentioned earlier is not perfect, 

suggesting that environmental factors may act in additive or interactive ways with the 

genetic influence (Caspi & Moffitt, 2006;Willcutt et al., 2007). Identifying possible 

causes and increasing our understanding of the mechanisms behind ADHD is 

important in treatment and prevention of symptom development. Although individuals 

with ADHD do not always express the same polymorphisms, there are some that are 

frequently represented. Some of these polymorphisms have been found in genes 

coding for serotonin- and dopamine- transporters and receptors, glutamate receptors 

and solute carrier protein (9A9) (Akutagava-Martins et al., 2013).  Several studies of 

blood parameters and early clinical studies have implicated that ADHD patients may 

have a dysregulation in the fatty acid metabolism, but also that lactational exposure of 
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PCBs could induce changes in gene expression of fatty acid-metabolism proteins and 

proteins involved in dopaminergic signalling (Sazonova et al., 2011). 

While PCB was widely used in industrial products since the 1920s, suspicion of 

adverse effects in wild animals and in humans was first raised in the 1970s. Although 

they are forbidden, their persistence in the environment and in organisms combined 

with their lipophilic properties has led to bioaccumulation. Although the levels are 

declining in nature, they are still high in some organisms on top of the food chain. It is 

also worth noticing that different PCB-congeners and mixtures can give a diverse 

spectrum of toxicity. Industrial mixtures of different PCBs types have shown to 

influence a variety of gene expressions also involved in the dopaminergic transmission 

system (Sazonova et al., 2011).The effect of PCBs is highly dependent on the type of 

PCB, dosage and development stage of the exposed individual (Sazonova et al., 2011). 

PCB-congeners have 209 different possible structures and are hence named PCB 1 to 

209. The different PCBs are distinguished by the amount of chlorination and whether 

they are in para-, meta- or ortho- positions on the biphenyl structure (figure 1.). The 

chlorination determine the mechanism of action and the persistence and toxicity in 

biological systems (Safe, 1984). PCBs can be divided in to two main groups, namely 

coplanar (non-ortho substituted) and non-coplanar (ortho-substituted) PCBs. The 

coplanar PCBs have no chlorine atoms in ortho-position leading to a planar 

relationship between the two phenyl rings. The non-coplanar PCBs have chlorine 

atoms in at least one ortho-position, forcing the two phenyl rings into different plane.  
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Figure 1: Structure of the PCB biphenyl skeleton. Chlorine atoms are bound to the 
biphenyl structure in meta-, ortho- or para-position (2-6). There are 209 theoretically 
possible congeners (including isoforms). The persistence and toxicity  is determined 
by the number of chlorine atoms and their positions (ortho-, meta- or para-) also 
determine their toxicity (Safe 1984).

Non-ortho PCBs are very similar to the structure of dioxins, and might therefore 

induce similar effects as dioxins. The dioxin-like PCBs are able to induce increased 

liver enzyme production by binding to the aryl hydrocarbon-receptor (AhR). AhR 

inducing PCB-molecules includes mostly non-ortho PCBs with 4-6 chlorine atoms in 

meta- and para- positions. The AhR is coupled to heat shock protein 90 (HSP90) and 

are present in the intracellular fluid. When PCB binds to the AhR, Hsp90 is released 

and the PCB-AhR-complex is transported inn to the nucleus. The release of Hsp90 

uncovers the DNA binding site for aryl hydrocarbon receptor nuclear translocator, 

which is a transcription factor that can bind to DNA. Most of the activated genes are 

coding for enzymes involved in biotransformation, and could lead to increased 

turnover (detoxification) or bio activation (increased toxicity) of xenobiotics (Hansson 

et al., 2006). Also genes coding for enzymes responsible for thyroid hormone 

conjugation and metabolism of retinol seems to be influenced (Durham & Brouwer, 

1989). Exposure to large amounts of non-ortho PCB-molecules might in addition 

result in chlor-acne and hyperpigmentation (Luecke et al., 2010). They have also been 

suspected to be involved in carcinogenesis, disturbed hormone balance and impaired 

immune function (Yoshizawa et al., 2007;Davis & Safe, 1990). PCB exposure might 

also lead to changes in tissues and liver dysfunction caused by necrosis and fibrosis, 

probably due to changed contents of lipids, cholesterol, porphyrin and retinol.  
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In body tissue from mammals, birds and fish it has been found that the ortho-

substituted PCBs are dominating (Mariussen & Fonnum, 2001). Studies have shown 

that these types of PCBs could lead to changes in behaviour, which involves both hypo 

and hyperactivity (Eriksson et al., 1991;Holene et al., 1998;Johansen et al.,

2011;Johansen et al., 2014). Certain types of ortho-PCBs have also shown to be 

especially good activators of the Ca2+ transporting ryanodine receptor (RyR) (Pessah et 

al., 2006). Alterations in Ca2+ homeostasis and subsequent intracellular second 

messengers have been proposed to be involved  in developmental neurotoxicity (Unni 

et al., 2004;Tilson & Kodavanti, 1998). 

Other changes in brain parameters includes both short and long term changes to the 

muscarinic cholinergic receptor and  dopamine uptake inhibition in vesicles  (Eriksson 

et al., 1991;Mariussen & Fonnum, 2001). Considering the large role of dopamine in 

ADHD, it is also notable that a recent study have confirmed that especially ortho-

substituted PCBs might bind to DAT (Wigestrand et al., 2013) with PCB 110 possible 

being as potent as cocaine. The thyroid and retinol homeostasis was found as one of 

the ortho-substituted PCB 180s most sensitive physiological parameters discovered in 

WKY rats (Viluksela et al., 2014). Changes in thyroidal hormones might as well lead 

to severe effects on the thyroid gland, which is highly important in normal 

development of the brain. Early disturbances in the thyroidal gland can therefore 

possibly influence hearing, motoric and intellect (Porterfield, 2000).  

Also studies on humans have found correlation between psychomotoric impairments 

and the degree of PCB burden (Gladen et al., 1988). Although, it is important to notice 

that human studies often includes several confounding factors as they are naturally 

exposed to a multitude of substances. The prenatal and lactational part of life is 

considered to be the most vulnerable regarding developing neurological damage due to 

PCB-exposure (Chevrier et al., 2008;Sazonova et al., 2011;Schantz et al., 2003). This 

is therefore interesting in regard to ADHD which is believed to be a 

neurodevelopmental disorder.  
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Dietary fat is one of our most important macronutrient, not only containing lipids but 

also vitamins. Fatty acids are thought to be important in cellular development and 

maintenance, and might influence cell membrane fluidity, neuronal function and 

signalling (Su, 2010;Kim et al., 2011;Cao et al., 2009;Muskiet, 2010). The human 

diets have been changing gradually since the agricultural revolution approximately 10 

000 years ago, with accelerated changes being introduced during the industrial 

revolution approximately 200 years ago (Cordain et al., 2005). From the nutritional 

and anthropological point of view, humans have developed on a diet with a fair 

amount of n-3 FAs, whereas many industrial diets of today contain less n-3 FAs and 

more n-6 FAs and SFAs (Muskiet, 2010). Both n-3 and n-6 fatty acids are essential 

and must be provided primarily through diet (Richardson, 2006). Polyunsaturated n-3 

FAs like DHA and EPA are abundant in brain tissue and are necessary for proper 

neurological functions including G-protein signalling (Janssen & Kiliaan, 2014;Litman 

et al., 2001).  

Many studies implicate that cognitive dysfunction in ADHD may be escorted by a lack 

of n-3 PUFAs, during embryonic development and early life (Antalis et al.,

2006;Dopheide & Pliszka, 2009;Peet & Stokes, 2005). This association is believed to 

root in nutrition sensitive polymorphisms in patients predisposed to ADHD. A recent 

study shows that children with low scores on cognitional tasks receives improvement 

on these tasks after DHA supplement, while children with higher scores did not 

improve (Richardson et al., 2012). This suggests that low scores might be associated 

with DHA deficiency, but also that the response is highly dependent on genetics. The 

findings have been varying in older studies and could possibly be due to the absence of  

genetic considerations. Despite variation, other studies have also found some 

association with DHA supplementation and improved cognitive performance (Willatts 

et al., 1998;Bloch & Qawasmi, 2011a;Henriksen et al., 2008;Helland et al.,

2008;Birch et al., 2000). The clinical research evidence on n-3 FAs as an ameliorating 

compound on cognitive disturbances are limited, and further research have been 

warranted (Peet & Stokes, 2005). We therefore chose to study possible effects of long-

term n-3 PUFA supplementation on SHR and WKY rats. 
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The working hypothesis explores the effect of environmental factors such as dietary 

fatty acids and PCB153 on the neostriatal dopaminergic synapses in different genders 

and genotype. In addition, we wanted to investigate if the SHR animal model of 

ADHD have an increased sensitivity to any of these compounds. We want to explore 

this by studying the dopamine, serotonin and glutamate signalling-dynamics in 

specific brain structures (striatum and hippocampus, respectively) after introducing a 

toxin (PCB 153) that is suggested to make the symptoms worse and polyunsaturated 

fatty acids that is suggested to ameliorate the ADHD symptoms. By introducing a 

toxin and a suspected ameliorating compound, we aim to identify eventual 

neurochemical responses in brain areas associated with learning and motivation. The 

aim of this study was to investigate how these two compounds effected behaviour and 

related biochemical parameters. We have therefore investigated if: 

Polyunsaturated fatty acids: 

1) Change ADHD symptoms in the SHR-rat. 

2) Have effects on the dopaminergic synapse, by studying the nigrostriatal 

pathway and if a general increase in n-6 FAs could give the same effect as 

n-3 FAs. 

3)  Have same effects on both genders and on the SHR-ADHD model 

compared to WKY- control rat strain. 

PCB 153: 
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4) Have effects on the dopaminergic synapse, by studying the nigrostriatal 

pathway, performing analyses in neostriatal tissue and electrophysiological 

activity measurements of the hippocampus detecting possible changes in 

dopaminergic modulation of the mesocortical pathway. 

5) Have genotype specific effects in the SHR-ADHD animal model and the 

control WKY-rat. Since our hypothesis suggests that ADHD-genetics and 

thus SHR-genetics might represent increased vulnerability to environmental 

factors. 

6) Have gender specific effects, especially since ADHD is regarded as a 

gender dependent disorder. 

The spontaneously hypertensive rat (SHR) is considered one of the best available 

animal models of ADHD (ADHD-C). It is a genetic model of ADHD and hypertension 

that have derived natural from the Wistar Kyoto /NHsd (WKY) rat strain by prolonged 

isolation. In operant behavioural tests the SHRs show hyperactivity, impulsivity and 

reduced attention compared to WKY-rats(Sagvolden et al., 2009), and also if 

compared to Sprague Dawley rats. Although many rat strains might show similar 

behaviour as the WKY, they may not have the same genetic and levels of biological 

markers. This also comprise outbred WKY strains like Wistar Kyoto from Charles 

River (WKY/NCrl) which exhibit divergence in behavioural tests, showing inattention 

compared to WKY/NHsd. The WKY/NCrl is therefore proposed as an animal model 

of ADHD-PI and cannot be used as a control for SHR-rats (Sagvolden et al., 2009). It 

is therefore important to select a proper control-strain to avoid misinterpretation of 

acquired data and spurious results. Since the SHR-rat strain has developed from the 
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WKY/NHsd, they should be more genetically similar than any other rat strain making 

them the most proper control for studying the SHR-rats. Exposure of WKY-rats to di-

ortho-substituted PCB-congeners during development have in some tests shown to 

result in changed behaviour which is similar to SHR behaviour (Holene et al., 1998). 

The SHR-rat model has been extensively studied in details and shows exceptional 

validity in behavioural symptoms in a variety of behavioural tests. In general, SHR-

rats respond well to d-amphetamine, methylphenidate and guanfacine resulting in 

reduced hyperactivity (Sagvolden et al., 2005b;Sagvolden, 2006). Since there is no 

known specific genetic and neurological benchmark marker to define ADHD, the 

validity of the biological mechanisms can therefore not be emphasized too much. 

Although there are polymorphisms in related gene families that seem to be present 

more often in ADHD subjects, one cannot state that all subjects with the given 

polymorphism will exhibit ADHD-like symptoms (Akutagava-Martins et al., 2013).  

Since SHR-rats are the currently best validated model of ADHD, we chose to perform 

our experiments on both the SHR-rat and on its appropriate control; the Wistar Kyoto 

rat (Sagvolden et al., 2009). 

In our animal facility, the standard rat feed consists of 5% (w/w) FAs (LFA) giving 

11% of total calorie intake. A calorie intake of 11% from fat might be considered as 

fairly low compared to western diets with an average at  35% (Lee et al., 2001). 

Although several studies have suggested that the type of fat is more important than the 

amount; the American Academy of Pediatrics recommends to maintain the calorie 

consumption of fat to 20-30% (Lee et al., 2001). The FAs found in human diets 

depend on many factors, including geography, socioeconomic status and culture. In the 

coastal areas or Inuit people there is usually a high intake of n-3 PUFAs compared to 

inland populations or populations with low marine seafood culture. Therefore it was 
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important to also investigate the effect of low fat diet (with 11 % of total kcal from 

~5% FAs) to a more normal high fat diet (LFA; 40 % of total kcal from ~20% FAs), as 

well as investigating if there were differences between an western diet (SFA; rich in 

SFA and n-6 FAs) compared to a Inuit-diet (PUFA; rich in n-3 PUFAs) (Muskiet, 

2010).  

The 20% SFA-rich diet induced a significant increase in the weight of both WKY and 

SHR rats, compared to the 5% FA-diet. In contrast the 20% PUFA-rich diet induced a 

small (paper I) or no weight gain (paper II). It is also worth to notice that we changed 

distributor of the PUFA-diets between paper I and paper II, which also led to a  slight 

change in the n-3 FA composition. In paper I, the n-3 content were present as almost 

equal amounts of DHA (40%) and EPA (60%), while this ratio was changed to mainly 

DHA (80%) and EPA (20%) in paper II.  Since there are different amounts of fat and 

different fatty acids present in the diets, the rats could have preferences, making them 

ingest different amounts of feed. Therefore we also performed fatty acid analysis with 

Gas chromatography (GC) of the cortical brain tissue, to see if the diets could reach 

the brain and induce a change in the lipid composition. While there was few changes 

in the SFA-fed groups with no effect on the n-3 FA proportion, the PUFA-diet induced 

significant increases in the cortical n-3 FA proportion, giving a higher n-3/n-6 ratio in 

the cortical tissue.  

In humans and mammals non-coplanar PCBs have been especially associated with 

problems in cognition. These PCBs are found in high concentration in both nature and 

human milk. PCB 153 is the most dominant congener in human milk and has a slow 

turnover in human tissue of 25 to 30 years (Cerna et al., 2010;Seegal et al., 2011). For 

this reasons we have chosen to study the di-ortho-substituted PCB congener 153 in this 

thesis. The total dose of PCB 153 used (9 and 18 mg PCB/Kg bodyweight) is similar 

to a tissue concentration range found in wild animals (Skaare et al., 2000). The dose 

was divided in sub-doses of 3 and 6 mg/Kg that were administered orally three times 

during lactation, to avoid acute toxicity. Because we have recently observed 

behavioural changes attributed to PCB 153 (Johansen et al., 2011;Johansen et al., 
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2014), this study focused on whether PCB 153 interfered with aspects of glutamatergic 

excitatory and dopaminergic/serotonergic modulatory neurotransmission.

The function of the dopaminergic striatal synapses is linked to various types of 

learning including reward based learning, habits and procedural skills . The dopamine 

content of the nigrostriatal synapses is high, compared to other brain areas like cortex 

and hippocampus. The dopaminergic terminals communicate with cholinergic 

interneurons and GABAergic efferent neurons mainly through D5 and D1-receptors 

respectively. Hippocampus is another brain structure known for its importance of 

information processing leading to learning and memory formation, which seems to be 

linked to encoding of prediction error of reward, cue outcome-associations of novel 

responses and mismatch signals (Delgado & Dickerson, 2012). The hippocampal 

neurons are primary of glutamatergic nature, although they are modulated by 

dopamine and GABA (Lang et al., 2014;Shohamy & Adcock, 2010). Although not 

much is known about the function of the anatomical connection between hippocampus 

and striatal tissue (cortico-striatal circuit), some studies implicates that it is important 

for reward-based learning (Delgado & Dickerson, 2012;Pezzulo et al., 2014). The 

dynamic developmental behavioural theory of the neurologic mechanisms of ADHD is 

based on the hypothesis that altered dopaminergic function leads to impaired 

modulation of non-dopaminergic (primarily glutamate and GABA) signal 

transmission. In addition it is suggested a hypofunctioning mesolimbic dopamine 

branch in ADHD (Sagvolden et al., 2005a). Dysregulation of the dopaminergic system 

seems to be highly relevant with regard to ADHD. In addition, both striatum and 

hippocampus seems to be possible areas important for the neuropsychological 

symptoms of this disorder. Therefore, we chose to study biological parameters 

primarily in striatum and additionally in the hippocampus.  
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The dopamine turnover of untreated prepubertal (p30) SHR rats (paper III), had a 50% 

lower turnover than age-matched WKYs, while at adult age (p60) this difference was 

almost vanished between these two strains. This is due to an age dependent decrease in 

dopamine-turnover, which was predominant in WKY. A similar age dependent 

reduction was also found in the serotonin-turnover, although no significant differences 

was found between WKY and SHR. In general the basal level of dopamine, serotonin 

and dopamine-related proteins like DAT, VMAT-2 and TH as well as D1R and D5R 

were the same in both the WKY and SHR rat strains. In paper I, we also observed a 

higher neostriatal levels of GABA in adult WKY, compared to the SHRs. Since 

ADHD is also believed to be highly linked to dysfunction in the dopaminergic system, 

the low dopamine-turnover in the young SHRs might be of high relevance to the 

symptoms of the SHR rats.  

Paper I. This study investigated if n-3 PUFA-supplement during development could 

ameliorate ADHD symptoms in the SHR-rat model of ADHD. Here we gave the SHRs 

one experimental n-3 PUFA-enriched diet with 20% total fat, while the control SHRs 

received the standard animal facility diet containing mainly n-6 FAs with 5% total fat. 

In the behavioural studies, n-3 rich feed led to improved reinforcer induced attention in 

males, while inducing a reduction in spontaneous locomotion in both genders. Further, 

a n-3 PUFA effect restricted to males involved a 30% decrease in dopamine-levels and 

an increased turnover. The turnover was practically doubled in the SHRs that received 

the n-3 FA supplement. In addition, a similar n-3 FA induced change was observed in 

the serotonergic system with a 40% reduction of serotonin and a four times increased 

serotonin turnover, both restricted to male.
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Paper II. Further investigation was performed on males of both WKY and SHRs at 

p30 instead of p60. The feeding procedure was the same as in paper I, by giving diets 

before and during pregnancy and development. The experimental diets included two 

high FA-diets with 20% fat, one containing mainly n-6 FAs as and the other 

containing mainly n-3 PUFAs. They were compared to a control group fed the 

standard animal facility diet for rats which contained low levels of FAs (5% fat). FA-

analysis of cortical tissues was performed and showed that the n-3 FA diet lead to 

increased n-3 FA in the tissue, while n-6 FA diet did not. Further, we found that both 

FA-enriched diets could lead to the same dopaminergic modulation in both WKYs and 

SHRs, as seen in paper I. The n-3 FA was the most potent and led to larger effects on 

the protein levels including DAT, as well as on the turnover in both SHR and WKY 

rats. Although the SHRs responded to the FAs in a similar way as WKY, the responses 

were weaker and did not reach significant levels for all parameters. 

Paper III. In this paper we investigated the effect of postnatal exposure of PCB 153 

on the dopaminergic striatal system and the LTP obtained  in the hippocampus of 

standard WKY rats.  We found that PCB 153 exposure led to a 250 % and 115% 

increased level of the metabolite of dopamine and serotonin; HVA and 5-HIAA, 

respectively, without influencing the overall levels of dopamine and serotonin. This 

led to a 4 and 2 times increase in the calculated turnover rates of  dopamine and 

serotonin, respectively.  There were no effects on the general amino acids. At the same 

time we did find a pathway specific increase in LTP magnitude of the stratum oriens 

(no effect in stratum radiatum) in hippocampus without effecting the basal synaptic 

transmission in the same strata.     
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Paper IV. Further we wanted to investigate if the PCB 153-effect was the same in the 

SHR as in WKY, and if there were any gender specific effects. In this study we 

focused mainly on the measurements of dopamine, serotonin and their respective 

metabolites, in addition to measurements of dopamine associated proteins. Here we 

did also find an increase in the HVA and 5-HIAA –levels in all but the female SHRs, 

without effecting dopamine or serotonin levels. When looking at the dopamine 

associated proteins we found a reduction of DAT in the WKY males only as well as a 

reduction in D5R in all group without any effects on D1R. Reductions of PSD-95 

proteins were restricted to the males of both genotypes. At the same time no effects 

were seen on TH or VMAT-2. It might be proposed that increased HVA results from 

inhibited reuptake of  dopamine through DAT. Most likely, the measured down-

regulation of D5R might either be due to compensatory mechanisms of 

dopaminoceptive cells or degradation of postsynaptical targets (as seen by a decrease 

of PSD-95 in males), possibly due to increased dopamine-induced stress. In the overall 

results we found that there were fewer significant effects in the female rats of both 

strains. Also, the SHRs of both genders seemed to respond less than the gender 

matched WKYs. In this set of data we reused the monoamine results of WKY male 

from paper III, to compare to the females and the SHRs, but there was also added new 

additional measurements to the male WKY groups for this paper.
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Mapping of dopamine dynamics during postnatal development in the animals showed 

that there was a hypoactive dopamine-turnover in SHR compared to the WKY which 

was larger at p30 compared to p60. This difference is supported by a previous study 

showing 25% less effective COMT in the SHRs (Masuda et al., 2006), in addition to 

another work, showing enhanced DAT reuptake in the SHRs (Miller et al., 2012). 

Both of the findings may contribute to restrained HVA formation and lead to lower 

turnover rates. In the our first study (Paper I) where we examined (p60) SHR-rats of 

both genders after receiving diets with either 5% FAs or 20% PUFAs we found gender 

dependent effects restricted to males. These data made us perform further analyses in 

paper II on males at 30 only, where we also included both WKYs and SHRs exposed 

to the experimental diets with the proportion of dietary at 5% (LFA) and 20% w/w 

(SFA or PUFA respectively). 

In the initial study (Paper I) we measured ADHD related symptoms in adult (p60) 

SHR-rats of both genders receiving diets with either 5% FAs or 20% PUFAs. It was 

clear that there was a gender-dependent response to the PUFA-diet, where several 

responses were restricted to males, such as ameliorated impulsiveness, inattention and 

increased dopamine-turnover, while both genders got a reduction in general 

movement. The reason for this remains unknown, although it could be due to sex-

hormone sensitivity of FA-acid metabolism (Kelly et al., 2014;Petrovic et al., 2014). 

The behavioural and dopaminergic data of SHRs from paper I, implied that the PUFA-

supplement improved behaviour compared to the LFA-diet, with greater effects in 

males. Because of low levels of FAs in the control diet, it was difficult to conclude 

whether this behavioural effect was a result of the n-3 PUFAs or a result of increased 

level of general FAs. Although the uncertainty, a published paper showed that high-fat 

diet should led to reduced mesolimbic dopamine-turnover and unchanged dopamine-

levels (Davis et al., 2008). Since these results were opposite from what we found, we 
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made a preliminary conclusion that the effect we found in paper I, could be due to the 

n-3 PUFA supplement. 

 In paper II, we found that increasing the dietary fat content from 5% to  20%, 

regardless of whether it contained SFA or PUFA, had large impact on the neostriatal 

DA system in both male  WKY and SHR. Although SFA led to similar effects, n-3 

PUFA had an even larger effect than SFAs on the dopamine-turnover and the related 

synaptic proteins. It should be emphasized that it is a weakness of the study design that 

we were unable to measure the behavioural parameters of the animals used in paper II, 

therefore giving no behavioural results for WKY rats receiving n-3 PUFAs or SFAs as 

well as for the SHRs receiving SFA. Since the neostriatal dopamine system of both 

WKY and SHR reacted in a similar way with the SFA-diet as with the PUFA-diet, it is 

highly likely that the fat content of the standard animal facility diet (LFA) is 

insufficient, particularly considering that normal human diets should preferably 

contain 20-30% w/w fat (Lee et al., 2001). Since the SHRs received behavioural 

benefits from increased fat  as well as reaching a dopamine turnover similar to WKY, 

this implies that the SHRs might need higher amounts of dietary fat than the WKY to 

achieve proper dopamine signalling (Miller et al., 2012;Masuda et al., 2006). The 

WKY-rats received a greater boost of their dopamine turnover than the SHR after 

PUFA-supplementation. Before drawing any conclusion of the benefit of SFA and 

PUFAs in the WKY animals, it would be necessary to measure their behavioural 

parameters. 

Furthermore, the SFA and PUFA-dependent decrease in the levels of both TH and 

VMAT-2, could explain the decreased dopamine level. Strangely, the cells managed to 

keep the dopamine signalling and turnover rates stable, while increasing it with the 

PUFA-diet. Another study also demonstrate that dietary restriction of  FAs could lead 

to an increased amount of TH as well as a VMAT-2 level, most likely leading to 

higher dopamine levels like we found in the LFA-diet (Bondi et al., 2014). The study 

also confirmed our results by demonstrating lower VMAT-2 and TH levels due to n-6 

or n-3- FA supplemented diets (Bondi et al., 2014;Narendran et al., 2012). The 

concordance of the TH and VMAT-2 regulation found in paper II and by Bondi et al. 
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might be due to a TH and VMAT-2 complex on the synaptic vesicles (Cartier et al.,

2010;Bondi et al., 2014) therefore a reduction might possibly implicate a decrease in 

amounts of vesicles. Although reduced VMAT-2 might mean that the vesicle uptake is 

reduced, the amount of DA may also be reduced. The PUFA induced increase in 

dopamine turnover might possibly be due to the increased down regulation of DAT, 

which was larger than in the SFA group. The PUFA induced reduction of DAT have 

most likely resulted in reduced dopamine reuptake by the presynaptic neuron, leading 

to increased amounts of extracellular dopamine, giving a Ritalin/amphetamine-like 

effect. Our discovery of SFA and PUFA-enhanced dopamine turnover was 

unexpected, as another study has shown opposite effect on dopamine-turnover after 

high FA-diets (Davis et al., 2008). However, our use of HVA as marker for 

extracellular dopamine degradation may give a more detailed picture of dopamine 

available for stimulation of receptors than DOPAC (Jones et al., 1998). 

We did not see any changes in the D1/D5-type receptors, suggesting no compensatory 

effect of these receptors on cholinergic and GABAergic interneurons or the efferent 

GABAergic neurons (Berlanga et al., 2005) Finally, a significant reduction in PSD-95 

was induced only by PUFAs and might implicate changes in postsynaptic 

glutamatergic neurons and their glutamate receptors (El-Husseini et al., 2000;Rao et 

al., 1998;Sans et al., 2000). Except for the changes in dopamine levels and turnover, 

the SHRs failed to reach significant levels of confidence on the TH, DAT and VMAT-

2 levels. The lower sensitivity to SFA and PUFA might be a reflection of possible 

underlying dysfunctions in SHRs dopamine metabolism and regulation (Miller et al.,

2012). 

Since the SFAs also were able to induce changes in the dopamine system which were 

similar although slightly less effective, than PUFAs, it could be possible that the SFAs 

are metabolized less effectively, to some of the same active compounds as PUFAS. 

However, when we measured total FAs from cortex, we did not find any increase in 

the n-3 FAs in those only receiving SFA-diet. In contrast, we did find significant 

increases in n-3 PUFA levels in the group that received PUFA-diet, showing that the 

feeding was successful and that the lipids were distributed to the brain. For future 
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studies, it would be interesting to measure different behavioural parameters also for 

animals which have been treated with the SFA-type diet to find out if n-6 also may 

induce similar behavioural changes as n-3 PUFA did. Studies on children have also 

shown that n-3 PUFA supplements might be beneficial for reading and behaviour, 

especially for underperforming children with lower reading and behavioural scores 

(Bloch & Qawasmi, 2011b;Richardson et al., 2012). In one of the recent studies the 

placebo group receiving n-6 FAs did not achieve the same benefits as the group 

receiving n-3 PUFAs (Richardson et al., 2012). It would also be interesting to 

investigate what the reduction of PSD-95 might mean to the incorporation, amount and 

function of glutamate receptors in the neostriatum.  

The level of HVA and 5-HIAA are good markers of released dopamine and serotonin, 

respectively. The PCB-induced increase in HVA-levels in both WKYs and SHRs of 

both genders, described in paper III and IV, is most likely due to the reduction in 

DAT-levels. DAT impairment leads to accumulation of extracellular dopamine by 

inhibiting reuptake and making dopamine a candidate to degradation to HVA. We 

found a PCB induced reduction of DAT in WKY male together with a tendency of 

reduction in SHR male and in the females of both strains. A recent study (Wigestrand 

et al., 2013) demonstrates that PCBs also have the ability to bind to DAT, leading to 

dopamine-reuptake inhibition. The unaffected dopamine levels found in both WKY 

and SHR of both genders, were also supported by the finding of unchanged TH levels. 

High dopamine production and reduced DAT can contribute to accumulation of 

dopamine in the extracellular space and explain the increase in HVA-levels that we 

observe. The dopamine degradation process by COMT is necessary for clearance of 

extra-vesicular dopamine and might be especially important during reuptake 

inhibition. Clearance of dopamine by COMT have previously shown to be impaired in 

the SHRs (Masuda et al., 2006), in addition to a recent work showing enhanced 

reuptake of dopamine by DAT in the SHRs (Miller et al., 2012), both of which might 

be an explaining factor for the low PCB-induced dopamine turnover found in the 
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SHRs compared to the WKYs of both genders. High amounts of free dopamine can 

also be bio-transformed to the toxic metabolite called 6-hydroxydopamine which is  

damaging to the dopamine producing cells (Zigmond et al., 2002). Excess extra 

vesicular dopamine have been suspected to result in increased chance of 6-

hydroxydopamine formation, and might therefore be disadvantageous (Graumann et 

al., 2002). Since the degradation of free dopamine by COMT might be impaired in the 

SHRs in addition to enhanced DAT uptake, these rats could face a greater risk of 6-

hydroxydopamine formation and toxicity (Liao et al., 2003;Masuda et al.,

2006);(Miller et al., 2012). The female SHRs had the lowest PCB-induced increase in 

HVA-levels and was the only group that failed to show significant enhanced 

dopamine-turnover. Like HVA and dopamine, 5-HIAA was also highly increased 

while serotonin remained stable in both WKYs and SHRs except for the female SHRs. 

Also here, the female SHRs failed to receive significant enhancement of serotonin 

turnover, unlike the other groups, as well as it only was a small but insignificant 

increase in 5-HIAA. This shows that PCB 153 most likely works in the same ways on 

both of  the dopamine and serotonin transmitter systems. Another finding was that the 

D5 receptor were significantly down-regulated by PCB 153, whereas D1-receptors 

was unchanged for all strains and genders. A down-regulation of D5 receptors could 

be regarded as a compensating mechanism by the cholinergic interneurons in response 

to excess dopamine, by reducing the availability of these targets. In contrast, D1 

receptors are located mainly on the efferent GABAergic neurons. The failure of D1Rs 

to respond to PCB in a similar manner as the D5R, could indicate possible inability of 

the D1Rs to compensate for increased stimulation of dopamine or alternatively that 

they are more insensitive to increased dopamine levels (Sunahara et al., 1991). Further 

research should be performed to investigate if the cAMP-levels in these neurons are 

changed, as this would be a good indicator of the postsynaptic response to the excess 

extracellular dopamine levels (Walaas et al 2011).  

PSD-95 is highly involved in scaffolding and modulation of postsynaptic receptors, 

and is especially concentrated in glutamatergic excitatory neurons. The decrease of 

PSD-95 in males only, could therefore signalise PCB-induced changes on these 

innervating glutamate neurons (Han & Kim, 2008;Kennedy, 1998) and possible 
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AMPA and NMDA activation (El-Husseini et al., 2000;Rao et al., 1998;Sans et al.,

2000). In paper III we also found a PCB-induced pathway specific increased LTP in 

hippocampus. Increased LTP has also been found in Alzheimer disease and PSD-95 

mutant mice, and were associated with reduced learning abilities. The findings of 

increased LTP and reduced learning was explained by possible disturbances of 

bidirectional synaptic plasticity (Gylys et al., 2004;Migaud et al., 1998). An increase 

in PSD-95 have on the other hand been associated with a possible compensatory 

mechanism in learning-impaired old rats (Nyffeler et al., 2007). As increased PSD-95 

can protect against impairments in the bidirectional synaptic plasticity processes.  

In the female rats we also found increased HVA and 5-HIAA, together with stable 

dopamine and serotonin levels. This findings suggest excess levels of extracellular 

dopamine levels also in these female-rats. Similar to the males, the female rats also 

responded to PCB by a reduction in the D5 receptor although the PSD-95 were 

unchanged. A down-regulation of D5 receptors could also be regarded as a 

compensating mechanism by the cholinergic interneurons, by reducing availability of 

these targets in response to excess dopamine. The reason for why we do not find a 

reduction in PSD-95, in the females could possibly be due to PCBs inability to 

significantly reduce DAT in these females, as well as a stronger tendency of increased 

VMAT-2 (WKY and SHR females; p = 0.37 and p = 0.056 respectively, whereas 

males; p = 0.39 and p = 0.30 respectively). Both DAT and VMAT-2 levels are 

important for efficient clearance of dopmaine from the synapse, and high levels 

decrease the chance of  dopamine-mediated toxicity (Liao et al., 2003).  

A recent behavioural study of rats that received PCB 153 (Johansen et al. 2014) shows 

dose dependent behavioural changes which were sex and strain dependent. This 

particular study demonstrated that the SHRs are more sensitive to PCB induced 

behavioural changes than WKYs, at the same time, more behavioural changes was 

seen in the females than in males, although few changes reached significance. Since 

the behavioural data shows magnitude of effects regarding sex and strain which were 

opposite compared to what we found in the biochemical analyses, it is possible that the 

measured biochemical changes, such as HVA and 5-HIAA, which were greater in 
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WKY and in male rats, might be of compensatory importance, by showing metabolic 

effectiveness of the excessive amounts of free neurotransmitters. Effective clearance 

and compensatory mechanisms might be important if the stimuli of these 

neurotransmitters exceed to unbeneficial levels. Effective clearance might also 

possibly reduce the chance of toxic by-product formations, such as 6-

hydroxydopamine. Because of possible lower clearing efficacy of free DA from the 

synaptic gap in the SHRs (Masuda et al., 2006), it is possible that the SHRs have a 

lower ability to compensate for possible PCB-induced dopamine-toxicity. Also the 

decrease of PSD-95 as well as D5-receptors which were greater in males than in 

females, might contribute to lowering postsynaptic targets. From these combined 

findings it is clear that PCB-153 might influence neurological processes related to 

cognition at several levels. However, the currently available biochemical and 

behavioural data of these animals makes it difficult to determine  the exact impact on 

cognitive processes. 

Taken together, this study shows that both dietary FA and PCB 153 environmental 

factors may modulate the dopaminergic system and its related proteins. It is also clear 

that there are some gender specific effects of fatty acids, with males being more 

receptive than females, but also that genetics influence the effect of these compounds 

on the dopaminergic system, where we saw a larger effect in WKYs compared to 

SHRs, which might be due to SHRs suggested hypo-functional dopaminergic system. 

Since our behavioural data,  as well as studies done by others, have showed reduction 

in ADHD-associated behaviour or cognitive improvements after PUFA-supplemented 

diets, it is likely to believe that this supplementation was beneficial. Since an increase 

in general SFA induced similar biochemical changes as PUFAS, although PUFAS was 

more potent, it looks like both of the 20% FA-diets boosts dopamine signalling 

compared to the 5% FA-diet. This enhancement might be especial beneficial for the 

SHRs, which have indications of a hypo-functional dopamine signalling. Although the 

WKY rats-got double effect of the PUFAS compared to SHRs, still remain to be done 

extended behavioural tests of these animals in order to underpin the meaning of these 

biochemical changes. The effect of PCB was distinct from that found in the PUFA 
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studies. While PCB led to increased HVA and had no effect on dopmaine levels, SFA 

and PUFA-diets lowered the dopamine levels, while HVA-levels were almost 

unchanged. Interestingly both PCB, SFA and PUFAs led to increased calculated 

dopamine turnover rates, with PCB being most potent followed by PUFAs. Excess free 

dopamine has been suggested to be unbeneficial, as it might increase probability of 

reactive dopamine species (Graumann et al., 2002). It is clear that PCB is a more 

potent agent in increasing HVA-levels, compared to n-3 PUFAs and SFA, implying 

stronger inhibition DAT reuptake of dopamine. The possible low activity of COMT in 

SHRs might also contribute to higher effect of possible dopaminergic hyperactivity 

(Masuda et al., 2006).  

In conclusion, both groups of compounds led to increased transmitter turnover, 

although by distinct mechanisms. Where high FA-diets seemed to reduce the 

dopamine content, while keeping the HVA more or less stable, PCB had the opposite 

effect, by keeping the dopamine levels stable and largely increasing HVA levels. 

These environmental compounds clearly have the ability to modulate neuronal 

functions associated with cognitional processes, and may modulate behaviour. Studies 

on specific impacts of these effects on cognitive functions and overall behaviour, still 

remains limited.
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1) Ameliorate ADHD symptoms in the ADHD-animal model SHR by operant 

testing of behaviour:  

According to the initial study (Paper I) where we measured ADHD related 

symptoms in SHR-rats, the n-3 PUFA rich diet reduced ADHD symptoms in a 

gender dependent manner. Male rats obtained reduced reinforcer-controlled 

activity, impulsiveness and inattention, with no or opposite effects in the female 

SHRs. The PUFA-supplement also  led to reduced general hyperactivity in 

SHRs of both genders. These behavioural effects in the male SHRs occurred in 

concert with biochemical changes of the dopamine synapse. In the second 

study, similar biochemical changes as found by the n-3 FA enrichment were 

found to be induced by the SFA-diet, rich on saturated and n-6 FAs. 

Unfortunately we were unable to obtain behavioural data from the SFA-group. 

Therefore we cannot conclude if the ameliorating effect was restricted to a 

certain type of fatty acid. 

2) Have effects on the dopaminergic synapse, by studying the nigrostriatal 

pathway and if a general increase in n-6 FAs could give the same effect as n-3 

FAs: 

In paper II we introduced three different diets (LFA, SFA and PUFA). From 

this study we learned that a general increase in the percentage of dietary fat 

from 5% to 20% could dramatically reduce the overall dopamine level in 

neostriatum, by lowering the dopamine synthetizing protein TH. Since the 

dopamine levels were lowered and the HVA levels were stable after SFA- diet, 

the turnover (HVA/dopamine) were increased compared to the LFA-diet, at the 

same time the n-3 PUFA-diet was the only one reducing DAT-levels which led 

to slightly increased HVA levels, increasing the dopamine turnover even more 

than with the SFA-diet. The reduction of DAT could be thought of as a Ritalin-

like effect, by increasing dopamine availability in the synaptic gap. 
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3) Have same effects on both genders and have same effects on the ADHD model 

compared to a control rat strain:  

We did find gender and strain specific responses to the PUFA-diet. Firstly, in 

paper I, we showed that the PUFA-diet did not decrease dopamine levels in the 

female rats as it did in the male rats, in addition the HVA levels remained 

unchanged, resulting in unaffected turnover ratios. This lack of responsiveness 

was further reflected by the behavioural data, showing reduced reinforcer-

controlled activity, impulsiveness and inattention in male SHR, with no or 

opposite effects in the female SHRs. Furthermore, in paper II, we observed 

clear strain differences on biochemical parameters, with WKY being more 

receptive to changes than the SHR. The dopamine associated proteins TH, DAT 

and VMAT-2, were significantly reduced in WKY; the SHRs only had an 

insignificant tendency towards the same effects. Despite this, the WKY and 

SHR responded in the same way regarding the total levels of dopamine, and 

both strains responded to increased dietary FA with increased dopamine-

turnover with n-3 PUFA being more effective than n-6 FAs . 

4)  Have effects on the dopaminergic synapse, by studying the nigrostriatal 

pathway, performing analyses in neostriatal tissue and electrophysiological 

activity measurements of the hippocampus detecting possible changes in 

dopaminergic modulation of the mesocortical pathway: 

PCB 153 had a clear effect on the dopaminergic system which involved an 

increase in free dopamine that could be degraded to HVA. We also observed 

PCB 153 mediated effects on hippocampal excitatory synaptic plasticity in the 

stratum oriens but not in the radiatum. It is clear that PCB153 did not affect the 
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total measured TH and dopamine levels, as these seemed to be stable, although 

it had an ability to increase HVA, showing that the amount of TH is able to 

compensate for the metabolised dopamine. We also discovered a reduction in 

DAT, which could be a contributing factor to the observed increase in the HVA 

level. Furthermore we also discovered increased amounts of the metabolic 

degradation product of serotonin; 5-HIAA, which also might contribute to 

modulate synaptic signalling. It is also clear that PCB have the ability to affect 

PSD-95 and D5R, implicating changes in both postsynaptic glutamatergic 

neurons, GABAergic and cholinergic interneurons.  

5) Have genotype-specific effects in the ADHD-animal model spontaneously 

hypertensive rat (SHR) and the control WKY rat. Our hypothesis suggests that 

ADHD-genetics and thus SHR-genetics might represent increased vulnerability 

to environmental factors:  

However, no clear differences were seen in the responses between WKY and 

SHR, although SHR seems to respond with lower magnitude and higher 

variability compared to the WKYs. Another genotypic but also gender-specific 

effect was found in the female SHRs, which failed to show significant increased 

turnover of both dopamine and serotonin.  

6) Have gender-specific effects, which was of importance since ADHD is 

regarded as a gender dependent disorder: 

The males seemed to respond in a greater magnitude as well as with higher p-

values compared to the females of both the WKY and SHR genotype. 

Regarding ADHD, this finding fits well, as the symptomatic display in boys and 

girls are highly gender dependent (Arnett et al., 2014).  
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