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Summary 
 

5-hydroxymethylcytosine (5hmC) is involved in various cellular processes, including 

transcriptional regulation, demethylation of 5-methylcytosine (5meC) and stem cell 

pluripotency. 5hmC is formed by oxidation of 5-methylcytosine by the Tet family of 

enzymes. This thesis describes two functions attributed 5hmC – these are the role of 

5hmC in transcription and the role of 5hmC in hepatocyte polyploidy.  

Overwhelming evidence supports the notion that 5meC has a negative effect 

on transcription; however, only recently has the effect that 5hmC has on transcription 

begun to be studied. Using model substrates including the CMVIE promoter and a 

generic gene body we have directly assessed the effect that 5hmC, both at the 

promoter and in the gene body, has on in vitro gene transcription. We show that the 

presence of 5hmC modifications strongly represses transcription. We also 

demonstrate that the inhibition of transcriptional activity is primarily due to the 

presence of 5hmC in the promoter and that 5hmC in the gene body has a minimal 

effect on transcription. Thus, we propose that the presence of 5hmC in promoter 

prevents the binding of essential transcription factors or recruits factors that repress 

transcription. 

In the second part of my thesis, we describe the identification of an activity 

that preferentially cleaves 5hmC-modified DNA; a mammalian nuclease that can 

differentiate between cytosine, 5meC, and 5hmC. Using biochemical methods this 

activity was isolated from mouse liver extracts and the enzyme responsible for the 

cleavage of 5hmC-modified DNA was identified to be Endonuclease G (EndoG). 

Recombinant EndoG preferentially recognizes and cleaves a core sequence when one 

specific cytosine within that core sequence is hydroxymethylated. EndoG catalyzes 

the formation of double stranded DNA breaks in a 5hmC-dependent manner in vitro 



and in vivo. Finally we show that EndoG and 5hmC can initiate recombination in 

vitro.  

 

  



Introduction 
 

 According to biology’s central dogma DNA is transcribed to RNA; and RNA 

is translated to proteins (Fig. 1). While this central dogma generally remains true, in 

the past half century, researchers have found that these processes are highly regulated 

[1-4]. This regulation at the DNA to RNA level is accomplished through the 

coordinated effort of DNA modifications – 5-methylcytosine and 5-

hydxymethycytosine; proteins that bind DNA and effect transcription; and 

modifications to proteins that allow for accessibility of the DNA for active or 

repressed transcription [5]. The translation of RNA to protein is regulated by RNA 

splicing, RNA binding and RNA modifying proteins, and ribosomal binding proteins, 

among other entities [3, 6, 7]. 

 

Fig. 1. Central dogma of molecular biology. DNA is transcribed to RNA; and RNA 
is translated to proteins. 

Deoxyribonucleic Acid 
 
 Deoxyribonucleic acid (DNA) is the heritable molecule in most organisms, 

with the exception of several viruses that utilize ribonucleic acid (RNA) as their 

genetic material [8]. The DNA backbone is a polymer of alternating phosphates and 



deoxyribose sugars. Attached to each of these deoxyribose sugars is a base, which is 

either adenosine (A), cytosine (C), guanidine (G) or thymine (T). Each strand of the 

DNA polymer is paired with another strand of the DNA polymer that is 

complementary to the first strand. The complementary strand pairs using Chargaff’s 

Rules – where A pairs with T and C pairs with G [9, 10].  

The entirety of the DNA in a normal cell is referred to as that organism’s 

genome [11]. In general, genes are smaller units of DNA that code for proteins, the 

entities that carry out the bulk of the work in a cell. Transmission of alleles, different 

variations of a particular gene, from parental organism to daughter organism allows 

for the large variations of a single species seen in nature [12, 13]. In mammalian cells, 

most alleles are split into exons, which contain the coding sequence for proteins, and 

introns, which are non-coding regions between the exons. Upstream of the first intron 

(Fig. 2), or internal to the first intron, of most genes is a promoter – a DNA element 

that allows for the induction of transcription, or RNA synthesis. Even further 

upstream from the first exon, or in some cases downstream, are enhancer elements, 

which, as their name implies, act to enhance the action of the promoter [5, 14-16].  

 

Fig. 2. Schematic structure of a eukaryotic protein-coding gene. The promoter 
region of the gene consists of a distal enhancer region, a CCAAT-box and a 
TATA-box. Most eukaryotic mRNA genes contain a basic structure consisting of 
coding exons and non-coding introns. 

 

 



RNA Synthesis 
 
 In most organisms genes are transcribed to RNA, which is then translated to 

proteins, commonly referred to as gene expression. In mammalian cells there are three 

RNA polymerases – RNA polymerases I-III. RNA polymerase I is responsible for the 

synthesis of most ribosomal RNA (rRNA) [17, 18]. As rRNAs are one of the most 

abundant species of RNA, RNA polymerase I synthesizes more than half of the 

cellular RNA pool. RNA polymerase II is the enzyme chiefly responsible for the 

synthesis of messenger RNA (mRNA); mature mRNA is utilized by the ribosome to 

synthesize proteins [18, 19]. RNA polymerase II also synthesizes some small 

nucleolar RNAs and microRNAs [20]. RNA Polymerase III is chiefly responsible for 

the synthesis of transfer RNAs (tRNA); however, this polymerase also transcribes the 

5S rRNA [21, 22]. Gene expression is a highly regulated process involving histones, 

transcription factors, and direct modification of the DNA molecule itself. These 

regulatory elements will be discussed in more detail below. 

 

Processing of messenger RNA 
 
 Prior to being translated into proteins by the ribosomes, mammalian pre-

mRNAs are, more often than not, spliced to remove sequences that are not part of the 

final coding sequence. These intervening sequences are referred to as introns whereas 

the coding regions are called exons. Exons are spliced together in the spliceosome 

protein complex [23, 24]. mRNA splicing allows for a wide variety of different final 

transcripts from the same DNA coding sequence as different exons can be included or 

excluded according to the cell’s needs (Fig. 3). Spliced mRNAs have a GTP cap 

added to the 5’ end of the molecule while the 3’ end of most mRNAs is modified by 

the addition of multiple adenosines to the RNA molecule. These modifications, called 



the 5’ cap and the polyA tail, improve the stability of the mRNA molecule [25]. The 

processed mRNAs are exported from the nucleus to the cytoplasm to be translated 

into proteins. As more recent studies have shown, mRNA molecules are further 

modified by several modifications; among these are not only adenosine deamination 

but also methylation at the N6 position of riboadenosine [26-29]. While it is 

understood that adenosine deamination participates in RNA editing, the significance 

of methylated RNA remains unclear [30]. 

 

Fig. 3. The figure illustrates different types of alternative splicing: exon inclusion 
or skipping, alternative splice-site selection, mutually exclusive exons, and 
intron retention. For an individual pre-mRNA, different alternative exons often 
show different types of alternative-splicing patterns [31]. 

 

Translation 
 

mRNAs are translated from the nucleic acid three letter code into proteins via 

the ribosome [32, 33]. As soon as the protein begins to be synthesized the cellular 

machinery recognizes its initial signal sequence and the protein is sorted to its 

appropriate subcellular localization. In most eukaryotic cells there are two distinct 



pools of ribosomes – the cytosolic ribosomes and the endoplasmic reticulum (ER) 

localized ribosomes. Proteins translated on cytosolic ribosomes have a distinctly 

different fate than mRNAs translated on ER ribosomes. Proteins synthesized on 

cytosolic ribosomes, in most cases, end up in the cytosol, nucleus, chloroplast or 

mitochondria. In contrast, proteins synthesized on ER ribosomes enter the secretory 

pathway and will end up in the ER, the golgi apparatus, the lysosome or will be 

secreted [34, 35]. Proteins carry out much of the work in a cell and are responsible for 

nearly all processes undertaken by an organism. Therefore, the development and 

maintenance of all the cells within an organism requires the differential expression of 

numerous proteins. This differential expression is controlled by the conversion of 

DNA to heterochromatin or euchromatin [36].  

 

Heterochromatin and Euchromatin 
 

Gene expression is principally controlled by two factors – (i) the presence of 

the appropriate RNA polymerase and appropriate transcription factors and (ii) the 

ability of these factors to access the DNA. DNA that is tightly wrapped around 

histones – heterochromatin – is transcriptionally inactive; DNA that is wrapped less 

tightly around the structural histone proteins – euchromatin – results in a state that is 

more transcriptionally active [37, 38]. This conversion from heterochromatin to 

euchromatin is controlled by two main factors – the number and types of histone 

modifications and DNA modifications [39, 40]. 

 

 

 



Histones 
 
 In most cells five types of histones compose the histone pool – these include 

Histone H1, Histone H2A, Histone H2B, Histone H3, and Histone H4 (Fig. 4). The 

core histones are generally hetero-octameric proteins that interact with DNA. Each 

histone octamer is comprised of two copies each of the histone proteins H2A, H2B, 

H3 and H4. 147 base pairs of DNA are wrapped around each histone octamer. 

Histone H1 links these octamers together resulting in significant compaction of the 

DNA [41]. In eukaryotic cells, this organization allows for the entire genome to fit 

within the cellular confines; in humans this is approximately 2 meters of DNA per 

cell [42]. There are several histone variants and alternative functions have been 

ascribed to the use of these variants. Among these variants are Histone H3.1, H3.2, 

H3.3, H2AX, and H2AZ [43]. Having a substantial amount of basic amino acid 

residues at their amino and carboxy termini, histone octamers are positively charged. 

This charge allows the histone octamers to interact strongly through ionic interactions 

with the negatively charged DNA backbone. As several studies have shown, the 

stronger the interaction between the histone octamer and the DNA the less accessible 

the DNA is to transcriptional, replicative, and repair machinery [44].  

 



 
Fig. 4. Schematic nucleosome structure. A nucleosome consists of two copies of 

each core histone (H2A, H2B, H3 and H4) and 150bp DNA. The N-terminal tail of 
each histone is extruded from the nucleosome [41]. 

Histone modification 
 
 Typically histones are modified by a wide array of chemical groups at their 

carboxy and amino terminal tails, these include all of the following: acetylation; 

methylation of arginine and lysine residues; phosphorylation at serine and threonine 

residues; glycosylation, ubiquitination, sumoylation, and ADP-ribosylation (Fig. 5) 

[44, 45]. The wide variety of Histone octamers can be modified in well over 100 

combinations of modifications. Histone modifications act to make the DNA either 

more accessible or less accessible to proteins – including transcription factors, RNA 

polymerases, and DNA repair proteins. By regulating access to DNA, histones can 

regulate transcription, replication, DNA repair, and almost all DNA transactions. 



Fig. 5. (a) Known post-translational modifications and the amino acid residues they 
modify. (b) Residues that can undergo several different forms of post-translational 
modification. ac, acetylation; bio, biotinylation; cit, citrullination; me, methylation; 
su, SUMOylation [46].

DNA Modifications 
 
 In a variety of organisms the bases in DNA are modified. In most cases, DNA 

modifications are deleterious to the organism; however, certain modifications are 

enzymatically added to the DNA and are essential for proper development and 

cellular maintenance. Deleterious modifications are the result of DNA damage. 

Mutagenic DNA damage falls into two general classes: modifications that alter base 

pairing and modifications that block replication; modifications referred to as DNA 

damage often alter a hydrogen bond donor or acceptor site within the modified base  – 

examples of these include deamination of cytosine resulting in uracil, an abasic site, 

and deamination of adenosine resulting in hypoxantine (Fig. 6) [47-49]. However, the 



modification may also be mutagenic if it stericly hinders the bases ability to fit 

normally within the double helix – examples of these include 8-oxoguanine, 7-

methylguanine, and O4-methylthymine. Several types of modifications prevent DNA 

replication by blocking the relevant DNA polymerase from synthesizing DNA using 

the damaged base as a template [50, 51]. 

Fig. 6. DNA damage, repair mechanisms and consequences. Common DNA 
damaging agents (top), examples of DNA lesions induced by these agents 
(middle) and the DNA repair mechanism responsible for the repair of the lesions 
(bottom) [52].

 

In instances where the organism intentionally adds the modification to the 

DNA, these regulatory modifications are generally advantageous to the organism’s 

survival. Below are descriptions of regulative DNA modifications identified in several 

organisms.  

 

DNA Modifications in bacteriophages 
 
 Bacteriophages are viruses that infect bacteria. As the bacteriophage is an 

obligate intracellular parasite, it requires a bacterial host to replicate its DNA; the 



bacteriophage injects its DNA into the bacteria, subsequently taking over the bacterial 

machinery to copy phage DNA [53, 54]. To prevent bacteriophage infection and the 

entry of foreign DNA, the bacterial host uses a restriction modification system [55, 

56]. Briefly, the bacterium synthesizes enzymes that specifically cut foreign DNA. 

These enzymes either recognize a DNA sequence that is not present in the bacterial 

genome or the cleavage of these enzymes is blocked by modifications present in the 

bacterial genome. In other cases, these restriction enzymes only destroy modified 

DNA. To evade the bacterial host’s restriction/modification defense mechanisms the 

bacteriophage camouflages its DNA with elaborate DNA modifications. Thus both 

the bacteria and the phage have co-evolved sophisticated DNA modification systems 

that allow for either the prevention of bacteriophage infection in the host or enhance 

the bacteriophage’s ability to evade the host’s restriction modification system.  

T-even bacteriophages (T2, T4, and T6) incorporate 3’-deoxyribo-5-

hydroxymethylcytosine into their DNA instead of 3’-deoxyribocytosine. Importantly, 

the 5-hydroxymethylcytosine modification is present prior to incorporation into the 

genome by the relevant DNA polymerase [57, 58]. This is a fundamentally different 

process than occurs in mammalian genomes, discussed later, which results in nearly 

all cytosines in the T-even phages being substituted with 5hmC. T2, T4, and T6 

further modify their DNA by adding at least one glucose molecule to a substantial 

fraction of these 5hmC-modified bases. The T2, T4, and T6 bacteriophages all 

possess the -glucosyltransferase; an enzyme that catalyzes the formation of -

glucosyl-5hmC. In addition the T4 bacteriophage possesses the -glucosyltransferase, 

catalyzing the formation of -glucosyl-5hmC [59]. The glucosylation of 5hmC is 

likely an evolutionary defense mechanism that protects the invading bacteriophage 

DNA from the activity of the nucleases coded for by the E. coli rglA and rglB genes. 



Initially designated as restricts glucose-less (rgl), these gene products specifically 

restrict 5hmC-modified DNA; however these enzymes are ineffective at cleaving 

glucosylated 5hmC modified DNA. As an additional defense mechanism the T6 

bacteriophage possesses a disaccharide modification on a significant fraction of its 

5hmC modified DNA: this modification is gentiobiosyl [60]. It is unclear at the 

present time which enzyme is responsible for the synthesis of gentiobiosyl.  

Most of these elaborate T-even bacteriophage DNA modifications are the 

result of synergistic evolution of both the bacterial host and the bacteriophage acting 

to prevent infection and increase infectivity, in each organism respectively.  

 

DNA Modifications in E. coli 
 
 There are two principle stable DNA modifications present in E. coli: N6-

methyladenine (6meA) and N5-methylcytosine (5meC) [61]. 6meA is deposited at 

almost all d(GATC) sequences following DNA replication. This methylation is 

catalyzed by the DNA adenine methyltransferase coded for by the Dam gene [62]. 

Dam methylation is required to correct post-replication errors through the DNA 

mismatch repair (MMR) pathway [63, 64]. While the daughter strand is 

unmethylated, the parental strand is labeled by methylation after replication; this 

allows the MMR machinery to distinguish the correct, parental strand from the 

mutated, daughter strand. After this distinction is made the MMR machinery acts to 

repair the unmethylated strand. Consistent with its function in MMR, a deletion of the 

dam gene results in 2-3 orders of magnitude reduction in replication fidelity. 

 While the function of 6meA is better described, the function of 5meC in E.

coli genomes is less well understood. 5meC in E. coli is deposited by the transfer of a 

methyl group from S-adenosyl-methylmethionine to the second cytosine in the 



sequence 5’-CCWGG-3’ by the DNA cytosine methyltransferase (Dcm) [65]. This 

methylation poses an interesting problem for the bacterium. While deamination of 

cytosine results in a uracil:guanosine (U:G) mispair, the deamination of 5meC results 

in thymine:guanosine (T:G) mispair. As the U:G mispair is recognized by the uracil 

DNA glycosylase (UDG), uracil is efficiently excised from the DNA and the base 

excision repair pathway (BER) processes the resultant abasic site [66]. Unlike 

mammals, E. coli does not encode a thymidine DNA glycosylase (TDG) required to 

repair a T:G mispair. Interestingly, the bacterium appears to have co-evolved a 

distinct repair pathway that recognizes T:G mispairs in the sequence 5’-CTWGG-3’: 

the very short patch repair pathway (VSP). When a T:G mispair is present at the 

second cytosine within the sequence 5’-CCWGG-3’, the mispair is recognized by the 

Vsr endonuclease; this cleaves 5’ to the mispaired thymine. The resultant nick and 

mispair is processed by DNA polymerase I and DNA ligase I [67]. Interestingly, both 

the Dcm and the Vsr genes are encoded at the same genetic loci. Typically, a mutation 

in either the Vsr gene or in the Dcm gene results in the inactivation of both genes. 

This genetic and functional arrangement indicates that the two genes evolved at 

nearly the same time. Indeed, without Dcm methylation the substrate for Vsr 

endonuclease is never present. Alternatively, in the absence of the Vsr endonuclease, 

Dcm methylation is mutagenic. 

 The purpose of methylation within E. coli is a matter of debate. It is known 

that Dam methylation is required for efficient MMR pathway [68]. While Dcm 

methylation is required for VSP, it seems unlikely that the bacterium evolved a 

mutagenic methylation system, followed by the evolution of a repair mechanism that 

would repair errors created by this system. In an evolutionary sense it appears easier 

to lose the Dcm gene to rectify the problem. Many have postulated that methylation 



by both Dam and Dcm function in all of the following processes: DNA repair; prevent 

the integration of foreign DNA; and suppress transposon replication. These 

mechanisms are beyond the scope of this thesis; however for a review of the subject 

please see Palmer et al [69]. 

 

DNA Modifications in kinetoplastids 
 
 Important in biology because many of these organisms cause severe human 

diseases, Kinetoplastids and Trypanosomes possess a unique DNA modification – the 

J-base [70]. The J-base, or -glucosyl-5-hydroxymethyluracil, is synthesized in these 

organisms in two steps: JBP1 catalyzed hydroxylation of thymidine resulting in 5-

hydroxymethyluracil, followed by the glucosylation of 5-hydroxymethyluracil by an 

enzyme that has not yet been identified. The function of the J-base is unclear; 

however, it is found most prominently at telomere sequences [71]. Interestingly, the 

JBP1 protein binds with a relatively high affinity to the J-base in DNA. As the J-base 

is almost chemically identical to  -glucosyl-5hmC, JBP1 binds with a high affinity to 

this base as well.  

 

DNA Modifications in Eukaryotic Cells  
 

The most common DNA modification found in mammalian DNA is 5-

methylcytosine (5meC). 5meC is composed of a deoxyribocytosine modified at the N5 

position by a methyl group [72]. Methyl groups are generally added to the cytosine 

moiety within the CpG dinucleotide sequence; this methylation occurs most frequently 

at promoter regions [73]. 5meC modified promoters are frequently transcriptionally 

inactive and 5meC-modified DNA is preferentially bound by methyl DNA binding 



domain proteins (MBD) [74]. It is widely accepted that the interaction between the 

MBD proteins and 5meC-modified DNA recruits histone modifying enzymes; these 

enzymes modify histones such that the region is transcriptionally inactive [75, 76]. 

In 2009, a second DNA modification was identified, which is likely key in gene 

regulation; this newly discovered modification was 5-hydroxymethylcytosine [77, 78] 

(5hmC, Fig. 7). 5hmC is created by the enzymatic oxidation of 5meC catalyzed by the 

Tet family of proteins. These proteins include Tet1, Tet2, and Tet3. Interestingly, all 

three of the Tet proteins (Tet1-3) are evolutionarily related to the kinetoplastid 

thymidine hydroxylase – JBP1. 

 

Fig. 7. Cytosine, 5-methylcytosine and 5-hydroxymethylcytosine modifications. 

 
Since its discovery, a plethora of studies have demonstrated that 5hmC is 

involved in a large number of cellular processes – including (i) transcriptional 

regulation, (ii) active DNA demethylation, (iii) stem cell self renewal, (iv) proper 

development, and (v) cancer formation [79]. 

Transcriptional Regulation 
 

As early reports have shown, the 5hmC modification might be an intermediate 

in the conversion of 5meC to cytosine; thus an enzymatic activity was identified that 

can potentially demethylate DNA [78]. At the same time, 5hmC was shown to be a 

stable DNA modification. It was found on one hand to be present in specialized 



nondividing neurons and on the other hand absent in specific cancer cell lines [77]. 

While MBD proteins interact well with 5meC; these proteins interact poorly with 

5hmC-modified DNA [80]. Therefore, it is speculated that the inability of the MBD 

proteins to interact with 5hmC-modified DNA prevents histone modifying enzyme 

recruitment; this purportedly relieves the 5meC-implemented transcriptional repression. 

However, the presence of 5hmC at a gene promoter has been shown not only to repress 

transcription but also to enhance transcription. The temporal and spatial transcriptional 

regulation in diverse cell types is likely to be partially accounted for by differential 

5hmC and 5meC patterning [81-84]. Hydroxylation of 5-methylcytosine effectively 

modulates gene expression using a novel transcriptional regulatory mechanism [85].  

Active Demethylation 
 
 Perhaps the most interesting observation is that 5hmC appears to be an 

intermediate in the active demethylation of 5meC. The formation of 5hmC from 5meC 

is catalyzed by the enzymes – Tet1, Tet2, and Tet3 (Tet1-3) [78, 86]. As several studies 

have proposed, at least three mechanisms explain the involvement of Tet1-3 in 5meC 

demethylation – these mechanisms are summarized in Fig. 8. In the first mechanism, 

5hmC is a substrate for the activation induced cytosine deaminase (AID). The 

deamination of 5hmC by AID results in the formation of 5-hydroxymethyluracil; this is 

processed further by elements of the base excision repair (BER) pathway yielding 

cytosine. In the second mechanism, Tet1-3 oxidizes 5hmC further forming both 5-

formylcytosine and 5-carboxycytosine [87]. These bases are acted on by the thymidine 

DNA glycosylase (TDG); this results in the formation of an abasic site. The BER 

machinery processes this abasic site liberating cytosine. In the third mechanism, a 5-

carboxycytosine is enzymatically decarboxylated; the enzyme or enzymes responsible 



for this decarboxylation reaction remain unknown [88]. All these reactions will require 

further investigation; however, in addition to being a stable DNA modification, it 

appears that 5hmC is an intermediate in 5meC active demethylation. As promoter 

demethylation is positively correlated with active transcription, the logical consequence 

of 5meC demethylation is an increase in transcriptional activation. 

 

 

Fig. 8. Cytosine base modifications and possible demethylation pathways. Cytosine 
is converted to 5-methylcytosine by both DNMT1 and DNMT3. Either Tet1, Tet2, 
or Tet3 (Tet1-3) oxidize 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). 
5hmC can be further oxidized by Tet1-3; this yields 5-formylcytosine and 5-
carboxycytosine. Both 5-formylcytosine and 5-carboxycytosine are depyrimidated 
by the thymidine DNA glycosylase (TDG) and processed by the base excision 
repair (BER) pathway. Alternatively, 5-hydroxymethylcytosine is enzymatically 
deaminated by AID or APOBEC resulting in 5-hydroxymethyluracil; this base is 
depyrimidated by SMUG or TDG and processed by the BER pathway. All these 
pathways result in unmodified cytosine. 



Stem Cells and Development 

 The modulation of the transcriptional landscape by Tet1-3 profoundly affects 

cell fate. Tet1 downregulation and concomitant reduction in 5hmC levels are 

characteristic of stem cell differentiation [78, 86, 89]. While remaining pluripotent, 

stem cells deficient for Tet1 and Tet2 appear to execute defective differentiation 

programs; this phenotype was not completely penetrant [90]. In combination with Oct4, 

Sox2, Klf4, and c-Myc, the addition of exogenous Tet1 or Tet2 to embryonic 

fibroblasts significantly enhances induced pluripotent stem (iPS) cell colony formation 

[91, 92]. During fertilization, maternal Tet3 catalyzes male pronuclei demethylation 

[93]. In line with this finding, Tet3 deficiency is strongly correlated with reduced 

female fertility. As these findings indicate, both Tet3 and 5hmC are likely to be 

involved in early development. As these studies also suggest, the appropriate regulation 

of both Tet1 and Tet2 is necessary for proper stem cell differentiation; and the precise 

execution of developmental programs requires the concerted action of Tet1, Tet2, and 

Tet3.  

5hmC and Cancer 
 

The inappropriate regulation of both tumor suppressor genes and oncogenes is a 

well-known aberrant cellular process; such disruptions often result in cancer formation. 

This inappropriate regulation is often caused either by oncogene promoter 

hypomethylation or by tumor suppressor gene hypermethylation [94-101]. The effects 

that 5hmC has on protein expression is the subject of many past and current studies. As 

recent reports suggest, 5hmC is present in all healthy mouse tissues at a low abundance. 

In many tumor cell lines 5hmC is either completely absent or aberrantly patterned [77]. 

Aberrantly patterned 5hmC are strongly linked to not only myeloid cancers and 



melanomas but also metastatic events [102-105]. A reduction in 5hmC levels is directly 

proportional to both the growth and the invasiveness of melanomas [106]. Indicating 

that appropriate Tet1-3 levels may inhibit tumor formation or progression, the 

reintroduction of Tet2 into 5hmC-depleted melanomas results in a significant decrease 

in both tumor volume and growth [106]. As these results highlight, gene regulation by 

the 5hmC DNA modification is important in tumorigenesis.  

Unknown Tet1-3 Regulatory Mechanism 
 

As these studies [102, 103] strongly suggest, Tet1-3 catalyzed oxidation of 

5meC to 5hmC is a non-random process. The important processes tied to 5hmC 

placement suggest that the Tet enzyme family is regulated by upstream elements; 

most likely these upstream elements are different in unrelated cell types. Most studies 

that look at the Tet enzyme family focus on the outward effect of inappropriate 5hmC 

patterning and levels, the downstream effects of Tet1-3 enzyme activity are well 

characterized. No screen has been designed to identify Tet1-3 upstream regulatory 

elements. Furthermore, only a few studies have been conducted to identify proteins 

that directly interact with Tet1-3. One research group used a screen to identify 

proteins that physically interact with Tet2 and Tet3 [107]. As this study showed, Tet2 

and Tet3 interact with O-Linked N-Acetylglucosamine Transferase (OGT). However, 

the interaction between OGT and either Tet2 or Tet3 affects neither cytosine 

hydroxymethylation nor Tet2 or Tet3 enzyme function. In a screen designed to find 

proteins that directly interact with the pluripotency gene – Nanog, Tet1 was 

identified. As this report showed, the interaction between Tet1 and Nanog had no 

appreciable effect on either 5hmC levels or 5hmC patterning [92]. 

 



Aims of study 
 
 5hmC in the mammalian genome has significant implications in development, 

metabolism, and disease. Therefore, the principle aim of my thesis work was to 

elucidate the mechanisms by which 5hmC influences these cellular processes. The 

two secondary aims of my thesis were (i) to determine the role of 5hmC in 

generalized transcription and (ii) describe a novel function of 5hmC, unrelated to 

transcription, in genomic DNA. 

 

Summary of results 

Paper I 
 

In our first manuscript, we show that 5hmC strongly inhibits generalized 

transcription if the modification is present at promoter regions. On the contrary, even 

when all cytosines in the gene body are replaced with 5hmC transcription is relatively 

unaffected. Further in the manuscript we speculate about the mechanism(s) by which 

transcription may be regulated by 5hmC. 

 

Paper II 
 
 In the second study we identified an activity present in mouse liver nuclear 

extracts that preferentially catalyzes the cleavage of 5hmC-modified DNA. We 

isolated this activity; we determined that the activity is catalyzed by Endonuclease G. 

We characterize the in vitro activity of Endonuclease G. Additionally we show that 

Endonuclease G catalyzes the cleavage of 5hmC-modified DNA in vivo, creating a 

substrate for recombination. 

  



Discussion 
 

 As relatively recent reports [108-110] and unpublished data from our 

laboratory show, followed by promoter and enhancer regions, 5hmC is present most 

prominently within gene bodies. Given the strong link between 5meC and 

transcriptional regulation, the involvement of 5hmC in transcription has been given a 

priority by most laboratories including ours. 5hmC is distributed throughout the 

genome principally within gene bodies – outside of the promoter and enhancer 

regions. Interestingly, 5hmC has limited effects on transcription when present within 

the gene body.  

 The effect that 5meC has on transcriptional regulation has been extensively 

studied; however, the effect that 5hmC has on transcription has only been indirectly 

addressed [89, 111-113]. We aimed to directly evaluate the effect that the presence of 

5hmC has on in vitro transcription using the CMVIE promoter and a generic gene 

body in a well defined mammalian system. 

We show in our first paper that the presence of 5hmC at the CMVIE promoter 

strongly inhibits transcription in human nuclear extracts. This finding is supported by 

two other studies that indirectly show that the presence of 5hmC at gene promoters 

reduces gene expression [111, 112]. We also demonstrate that the presence of 5hmC 

in the gene body has negligible effects on transcription in this in vitro system, 

contrasting with a report that suggests that 5hmC in the gene body increases 

transcription [89]. This study used DNA modified with 5hmC in the presence of 

nucleosomes that may differentially affect transcription in the presence of 5hmC 

within the gene body. Our study was intended to measure the singular effect that 

5hmC has on transcription in the promoter and/or in the gene body of naked DNA in 

the absence of nucleosomes. Demonstrating that 5hmC in the gene body has a limited 



effect on transcription is important because this finding rules out that 5hmC provides 

an elongation block to RNA polymerase II. Therefore, we can conclude that 

elongation catalyzed by RNA polymerase II is not inhibited by the presence of 5hmC 

and thus 5hmC prevents transcriptional initiation. 

We propose that the inhibition of transcription initiation from a gene that has 

5hmC at its promoter may occur by three different mechanisms. First, the 5hmC at the 

promoter may directly prevent the binding of necessary transcription factors or RNA 

polymerase II from binding to the DNA preventing the formation of the pre-initiation 

complex (Fig. 9A). Secondly, 5hmC may recruit an unknown factor to the promoter 

that inhibits the binding of basal transcription factors or RNA polymerase II (Fig. 9B). 

Currently, we are designing assays to assess the mechanism by which this 

transcriptional inhibition is carried out. Finally, 5hmC at the promoter may allow for 

the binding of the basal transcription factors and RNA polymerase II; however, 5hmC 

may provide an inhibitory signal to the pre-initiation complex preventing the initiation 

of transcription despite the presence of the all the necessary transcription factors and 

RNA polymerase II (Fig. 9C). 



 

Fig. 9. Models representing the potential mechanisms of transcriptional 
inhibition from promoters that contain 5hmC modifications. (A) 5hmC at the 
promoter prevents the binding of basal transcription factors or RNA polymerase II 
effectively suppressing transcription. (B) 5hmC recruits another cellular factor(s) 
that prevents some or all of the transcription machinery from binding to the 
promoter suppressing transcription. (C) 5hmC at a gene promoter may allow for 
the basal transcription machinery to bind to the promoter; however, the 5hmC 
induces a conformational change in the basal transcription factors or recruits 
another protein that prevents the release of RNA polymerase II from the promoter 
inhibiting transcription initiation. 

 

As mentioned in the opening paragraph, 5hmC resides at the greatest levels within 

gene bodies and not at promoter regions. These reports in combination with our result 

in Paper I, suggesting that 5hmC within the gene body has a limited affect on 



transcription, indicates that 5hmC within gene bodies and other genetic regions is 

likely to have a function outside of transcription. This led us to propose that 

transcription is not the only function for 5hmC. Using this as a working hypothesis we 

endeavored to identify other proteins that interact with 5hmC modified DNA. In 

Paper II, we did not identify a protein that preferentially interacts with 5hmC-

modified DNA; however, we found an activity that preferentially cleaves 5hmC 

modified DNA. That activity was found to be catalyzed by Endonuclease G. 

Several studies have implicated cytosine hypermethylation as a driving force 

for the initiation of endogenous double stranded breaks [114, 115]. Interestingly, the 

techniques used in these reports to identify cytosine methylation – bisulfite 

sequencing – cannot distinguish between cytosine methylation and 

hydroxymethylation [116]. Therefore, it is plausible that the endogenous double 

stranded breaks correlating with hypermethylation, observed in previous studies 

[117], are to some extent induced by hyper-hydroxymethylation.  

When the Tet2 CD is overexpressed we observed a significant increase in the 

number of -H2AX positive cells and the quantity of -H2AX foci per cell, signifying 

an increase in the number of dsDNA breaks. Importantly, the quantity of -H2AX foci 

returns to near control levels when EndoG is knocked down. The HeLa cell line 

overexpressing Tet2 CD shows a reduction in growth rate, which was overcome by 

the additional knockdown of EndoG. This slowed growth rate may be a response to 

the significant increase in dsDNA breaks. We suggest that these breaks must be 

repaired as apoptosis is not increased and cell viability is not reduced.  

Our results suggest that the 5'-GGGG5hmCCAG-3' sequence is preferentially 

cleaved by EndoG. Although we show that the 5'-GGGG5hmCCAG-3' sequence can be 

cleaved by EndoG, we cannot rule out the possibility that EndoG can catalyze the 



cleavage of other 5hmC-modified sequences. This hydroxymethylated cytosine is not 

in a CpG context; however, we note that 5hmC at this position is within the CHH (H 

= A, C, or T) sequence context, a known target of cytosine methylation [118, 119]. 

Depending upon the method used to quantify 5hmC content, the level of 5hmC at 

CHH regions is between 0.04% and 3% [120-122]. The differences in 5hmC at CHH 

sites in these reports may be due to random variation among cell lines or other 

technical issues. In any case, the cytosine in this sequence context is likely to be 

hydroxymethylated at some developmental stage and therefore the modified cytosine 

is in a biologically relevant sequence context.  

 We [84, 85] and others [112, 123] have envisaged a role for 5hmC in 

transcriptional regulation. Several groups have demonstrated that 5hmC has a role in 

stem cell pluripotency [89] and in the oxidative demethylation of 5-methylcytosine 

[87, 124, 125]. We do not believe that these studies conflict with the presence of an 

endonuclease that preferentially cleaves 5hmC-modified DNA. Indeed, cytosine 

methylation has been demonstrated to have several cellular functions, likewise 

cytosine hydroxymethylation potentially has multiple functions.  

 Previous reports [117, 126, 127] demonstrate that EndoG creates double 

stranded breaks at CG rich regions. However, these studies were performed before the 

identification of 5hmC in the genome and cytosine hydroxymethylation has not been 

implicated as a requirement for this cleavage. While we observe EndoG-mediated 

cleavage at CG rich regions, EndoG cleaves 5hmC-modified DNA much more 

efficiently. EndoG resides primarily in the mitochondrial inner membrane space [128] 

and in the nucleus at a lower concentration [129]. Importantly, the liver nuclear 

extracts used for this study were free of any detectable mitochondrial contaminants. 

EndoG is thought to induce apoptosis in a caspase independent manner [126, 130, 



131]. It has also been shown that EndoG can generate primers necessary for 

mitochondrial DNA replication [132]. Nevertheless, an Endog-deficient (Endog-/-) 

mouse did not show apoptotic defects and did not show any deficiencies consistent 

with ineffective or inefficient mitochondrial DNA replication [133, 134]. The absence 

of these defects in the Endog-/- mice suggests an alternative role for EndoG in nucleic 

acid metabolism. Indeed, several studies have shown that EndoG is necessary for the 

initiation of recombination by the creation of double-stranded DNA breaks [117, 

135]. The data in our study shows that EndoG prefers to cleave 5hmC-modified DNA, 

can promote the formation of strand breaks in vivo and that this break can be used to 

initiate recombination. Taken together, our data suggests that EndoG via its 5hmC-

mediated cleavage activity can initiate recombination at hydroxymethylated cytosine 

residues. 

  



Future perspectives 
 

 Our finding that 5hmC within the gene body has a limited effect on 

transcription will have a profound effect on future studies. Indeed, most studies have 

focused on the relation of 5hmC to transcription. While we believe that this relation is 

likely correct, it opens the door to studies that question the role of 5hmC in nucleic 

acid processes outside transcriptional regulation. We expect that these future studies 

will help solve important biological problems. 

In our second study we identified a protein and a mechanism that results in 

conservative recombination. We expect that our finding is only the beginning of 

research aimed at identifying roles of 5hmC in other nucleic acid transactions. 
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