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Abstract (249 words) 
We recently characterized the pontine reticulospinal (pRS) projection in the neonatal mouse 

physiologically, and showed that it mediates synaptic effects on spinal motoneurons via parallel 

uncrossed and crossed pathways (Sivertsen et al 2014). Here, we have characterized the origins, 

anatomical organization and axon trajectories of these pathways using retrograde axonal tracing with 

conjugated dextran-amines. The uncrossed and crossed pathways derive from segregated populations 

of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the 

pontine reticular formation (PRF). Ipsilateral pRS neurons outnumber contralateral pRS neurons by a 

factor of about 3, and are roughly equally divided between rostral and caudal regions of the PRF, 

whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron cell 

bodies are on average larger than contralateral, with a regionally systematic variation in which more 

caudal and more ventral ipsilateral pRS neurons are largest. The pRS neurons are interspersed with 

putative GABAergic interneurons. The axons from the ipsilateral and contralateral pRS populations 

follow distinctly different trajectories within the brainstem. On entering the spinal cord, there is a 

differential, graded distribution of pRS axons within the white matter, such that ipsilateral and 

contralateral pRS axons are more highly concentrated medially and laterally, respectively. The larger 

size and number of ipsilateral versus contralateral pRS neurons is compatible with our previous 

finding that the uncrossed projection transmits more reliably to spinal motoneurons. The new 

information about pRS axon trajectories will facilitate the physiological assessment of synaptic 

connections between pRS neurons and spinal interneurons.  

  



Introduction 
Most descending projections to the spinal cord in mammals arise from the brainstem (24 out of 27 

neuron groups of origin, Nudo and Masterton, 1988; over 70% of projecting neurons, Liang et al 

2011). Although descending projections from the brainstem are heavily involved in the control of 

sensory, autonomic and motor functions, how this control is achieved is poorly understood. One 

important gap in our knowledge involves the internal organization of brainstem descending projection 

neuron groups into subpopulations according to different functional phenotypes and axon trajectories 

within the brainstem and spinal cord. 

Brainstem projections to the spinal cord begin to develop prenatally and many have established 

contact with potential target neurons in the spinal cord by birth (Perreault and Glover, 2013). Several 

lines of evidence suggest that during development the brainstem sources of these projections are 

internally patterned by regionally differentiated gene expression, and that this patterning gives rise to 

heterogeneity in axon projections and synaptic targeting (Diaz et al 1998; Auclair et al 1999; Glover, 

2000; Cepeda-Nieto et al., 2005; Pasqualetti et al., 2007; Perreault and Glover, 2013). Thus, 

characterization of these projections in neonates is likely to reveal key features of internal organization 

that relate to functional connectivity.   

We recently characterized in the neonatal mouse the pattern of functional connections between pontine 

reticulospinal (pRS) neurons and spinal motoneurons (MNs), using optical recording of synaptically 

mediated calcium responses (Sivertsen et al., 2014). We showed that these connections are already 

established at birth and are mediated by two parallel channels, one involving pRS axons that descend 

ipsilaterally (uncrossed projection) and the other involving pRS axons that descend contralaterally 

(crossed projection). While the ipsilateral projection transmits more faithfully and may be more direct, 

both pRS projections elicit responses in axial and limb MNs in cervical, thoracic and lumbar levels, 

suggesting that both are involved in coordinating widespread patterns of muscle activation. 

This organization into different parallel channels has prompted us to make a more precise analysis of 

the internal organization of the pRS neuron population, with a particular focus on comparing the 

anatomical locations of the ipsilaterally- and contralaterally-projecting pRS neurons (hereafter referred 

to as “ipsilateral” and “contralateral” pRS neurons) and their axon trajectories to the spinal cord. We 

find that ipsilateral pRS neurons are about three times more numerous than contralateral, and that the 

two populations are differentially distributed within the PRF. Ipsilateral pRS neurons are equally 

divided between regions corresponding to the oral and caudal pontine reticular nuclei (PnO and PnC) 

whereas contralateral pRS neurons are more concentrated within the PnO. The two populations are 

also spatially segregated within the transverse plane, with the contralateral pRS neuron population 

occupying a domain just ventrolateral to the ipsilateral. The two populations of pRS axons project 

along distinct trajectories within the brainstem, and as they enter the spinal cord they have an 



oppositely graded mediolateral distribution within the white matter. Ipsilateral pRS axons are more 

concentrated medially, within the ventral funiculus (VF), whereas contralateral pRS axons are more 

concentrated laterally, within the lateral funiculus (LF). Part of this work has been published 

previously in abstract form (Sivertsen et al., 2013). 

 

  



Methods 

Animals 

Experiments were performed on preparations of the brainstem and cervical spinal cord from wild-type 

mice of the Hsd:ICR (CD-1) strain (Harlan, France; n=20, all P0 except for one P2 mouse that was 

used for neurofilament immunohistochemistry) or the transgenic strains GAD-67 (Tamamaki et al, 

2003; P1, n=2) and GIN (“GFP-expressing Inhibitory Neurons”, Oliva et al 2000; Jackson strain FVB-

Tg(GadGFP)45704Swn/J;  P0, n=2). After deep inhalation anaesthesia with isoflurane and a 

craniotomy, pups were decerebrated by transecting the brain between the superior colliculus and the 

forebrain and then submerged in ice-cold (4°C), oxygenated (95% O2 and 5% CO2), low calcium, 

“dissection” artificial cerebrospinal fluid (d-ACSF, containing in mM: glycerol 250, KCl 2, d-glucose 

11, CaCl2 0.15, MgSO4 2, NaH2PO4 1.2, HEPES 5, and NaHCO3 25). Animals were then 

eviscerated and the brainstem together with cervical and upper thoracic spinal cord was carefully 

dissected out. To maximize oxygenation the cerebellum was removed and the d-ACSF was exchanged 

every 5 min during the dissection. 

All efforts were made to minimize the number of animals used and their suffering in accordance with 

the European Communities Council directive 86/609/EEC and the National Institutes of Health 

guidelines for the care and use of animals. All procedures were approved by the Norwegian National 

Animal Research Authority. 

 

Retrograde labeling of pRS neurons 

After transfer of the preparations to room temperature, oxygenated artificial cerebrospinal fluid 

(ACSF, containing in mM: NaCl 128, KCl 3, d-glucose 11 CaCl2 2.5, MgSO4 1, NaH2PO4 1.2, 

HEPES 5 and NaHCO3 25), the spinal white matter at the level of the second cervical (C2) ventral 

root was cut unilaterally. The cut spanned the entire extent of the ventral and lateral funiculi (VF+LF) 

or more restricted regions thereof (defined below). To ensure that the LF was included in its entirety, 

the cut extended beyond the dorsal limit of the LF into the dorsolateral funiculus (DLF). Pre-made 

crystals of 3 kDa tetramethylrhodamine-conjugated dextran amines (RDA, Invitrogen, catalog number 

D-3308), alone or in combination (ratio 1:1) with biotin-conjugated dextran amine (BDA, Invitrogen, 

catalog number D-7135) were inserted into the cut (Glover et al., 1986). Four to ten crystals inserted 

over a period of about 3 min ensured continuous exposure of the cut axons to high tracer 

concentration. Preparations were then incubated in the dark for a period of about 12 hours to allow 

retrograde transport of the tracers to both ipsilaterally- and contralaterally-projecting pRS neurons.  

To eliminate the possibility of contamination by unintentional labeling of contralateral axons, in all 

but one preparation the contralateral spinal cord between C1 and T1 was carefully removed prior to 



application of RDA/BDA. All application sites and lesions were assessed histologically at the end of 

the experiment (see below). 

 

Retrograde labeling of restricted subpopulations of pRS axons 

To characterize the funicular trajectories of pRS axons, in 9 preparations we restricted RDA/BDA 

application to one of three zones of the VF+LF white matter by making smaller cuts of defined 

circumferential extent. The three zones, denoted Zones 1, 2 and 3 from medial to lateral, were of 

roughly equal size.  Zone 1 extended from the midline to the ventral apex of the hemicord, and thus 

encompassed the medial part of the VF. Zone 2 extended from the ventral apex of the hemicord to the 

longitudinal line along which ventral roots exited the spinal cord (“ventral root line”), and thus 

encompassed the lateral part of the VF and possibly a small part of the LF. Zone 3 extended from the 

ventral root line to just beyond the dorsal margin of the LF. All application sites were assessed 

histologically at the end of the experiment (see below).  

 

Histology and immunohistochemistry 

After each labeling experiment, the preparations were fixed with 4% paraformaldehyde in phosphate 

buffered saline (PBS) for 4 h, cryoprotected in 20% sucrose in PBS (4-24 h) and separated into 

brainstem and spinal cord portions. These were separately embedded in OCT (Tissue-Tek), frozen and 

cryostat-sectioned, either in a single series of 50 m thick sections in the parasagittal, horizontal or 

transverse plane (brainstem portion) or transverse plane (spinal cord portion), or in an alternating 

series of 14μm thick sections in the transverse plane (for 3D reconstruction of the brainstem portion, 

see below). Before further analysis, all spinal cord application sites and lesions were examined 

histologically for completeness. Their extents were evaluated through comparison with a standard 

cervical cord section and preparations that differed from the intended extent by more than 20% in 

either direction were discarded. Immunohistochemistry for neurofilaments (Table 1) was performed on 

12μm transverse sections from a spinal cord not subjected to retrograde labeling. 

The transverse 50μm sections through the spinal cord and one of the two alternating series of 14μm 

transverse sections through the brainstem were stained with methylene blue (Difco Laboratories, West 

Molesey, Surrey, UK; 10-20 s in 0.3% w/v solution). The second alternating series of 14μm transverse 

sections through nine brainstems (n=3 for VF+LF, n=2 for each of Zones 1, 2 and 3) were subjected to 

fluorescent signal enhancement. The combined RDA/BDA labeling was enhanced using either an anti-

rhodamine antibody (Table 1) and a red fluorophore-conjugated secondary antibody (Alexa 555 goat-

anti-rabbit IgG, Invitrogen, Table 1), or a red fluorophore-conjugated streptavidin (Cy3-Streptavidin, 

Jackson Laboratories, catalog number 016-220-084). The signal enhancement achieved by the two 



methods was comparable, and in both cases much improved compared to the non-enhanced signal. 

The enhancement made detection of labeled somata more reliable, and greatly improved the 

visualization of labeled neurites (both axons and dendrites).  

All sections were cover-slipped in gelatin-glycerol (50% v/v glycerol and 20% w/v gelatin in PBS), 

and photographed using a ProgRes C14 215 camera (Jenoptik) mounted on an AX70 microscope 

(Olympus) using 4x (UplanApo, NA 0.16) or 10x (UplanApo, NA 0.40) objectives. Selected sections 

were also imaged with a laser scanning confocal microscope (Z-stacks obtained using a Zeiss LSM 

Pascal 5 confocal microscope at 20x magnification, PLAN APOCHROMAT, NA 0.75)).  

 

Spatial distribution maps, soma sizes and neuron density  

To estimate pRS neuron soma size and relate it to position within the PRF, we used two of the VF+LF 

labeled brainstems sectioned at 50μm in the parasagittal plane to construct spatial distribution maps. 

Confocal projection images were opened in ImageJ (U.S. National Institutes of Health, Bethesda, MD, 

USA; http://rsb.info.nih.gov/ij/), and a plug-in was used to trace the outline of labeled neurons. The 

outlines were submitted to a program written in Python (http://www.python.org) for computation of 

the neuron area (ParticleDensityDouble; Max Larsson 2014). The source code of the ImageJ plug-in 

and the Python program are available online http://www.hu.liu.se/forskning/larsson-

max/software?l=en, NIH, open access). In a drawing program (CorelDraw4x, v14.0) a 2D matrix of 

10μm squares was superimposed onto 4x images of the sections and aligned using specific landmarks, 

so that each soma could be assigned rostrocaudal and dorsoventral coordinates. Section number was 

used to define the mediolateral coordinate. To calculate neuron densities, we applied a grid of 100μm-

sided cubes onto the Excel coordinate database, counting the number of labeled neurons within each 

cube. 

3D reconstructions  

Nine brainstems (n=3 for VF+LF, n=2 for each of Zones 1, 2 and 3) were sectioned at 14μm in 

alternating series of which one was labeled with methylene blue and the other subjected to fluorescent 

signal enhancement as described above. Every sixth section in these two series was photographed 

using a Zeiss Axioskop2 microscope equipped with a motorized stage (Märzhäuser), a CX9000 

camera (MBF) and a 10x objective (Achroplan, NA 0.25). Images were imported into Neurolucida 

software (Version 8, MBF, USA), and specific section features (section outline and midline in all 

sections, outlines of distinguishable nuclei based on Paxinos et al (2007) in one section series, and 

RDA/BDA-labeled neuronal somata in the other section series) were digitally traced or marked. 

Marked neurons were also given a digital name tag based on comparison to the structures mapped in 

the immediately adjacent methylene blue-labeled section, falling into one of the pRS neuron 



populations defined in Results. The alternating digital section series were then intercalated, allowing 

the construction of digital 3D models. In the 3D models, the anteroposterior extent of the pRS neuron 

population spanned about 12-13 digitized transverse sections. Because the angle we used for the 

transverse sections was not identical to that used by Paxinos et al. (2007) (partly because our material 

was sectioned after dissection and ex vivo incubation, which permits a more accurate alignment of the 

rostrocaudal axis), for presentation purposes outlines of cytoarchitectonically defined structures and 

nuclei were produced based on section-by-section comparison of our series with the series in Paxinos 

et al. (2007). Interpolation between multiple sections from the Paxinos et al. (2007) series was used 

where necessary to obtain appropriate outlines that could be superimposed on our sections (see Figure 

2).  

Neuron numbers and densities 

To estimate the number of neurons within the pRS neuron subpopulations, two different procedures 

were used. In one, we multiplied the number of marked ipsilateral and contralateral pRS neurons 

compiled in every sixth 14μm section of the 3D reconstructions (described above) by 6. We did not 

correct for potential errors due to “double-counting” of neurons intersected by a section plane (see 

Discussion). In the other, we simply counted all the soma outlines that were drawn in the parasagittal 

50μm sections used for spatial distribution maps. 

Statistics 

Data analysis was performed in Excel or the statistics software SPSS (IBM, USA). All graphs and 

plots were produced in SPSS. Distributions are presented as mean plus/minus standard deviation, 

where applicable, or range when n equaled 2. 

 

 

 

 

  



Results 
The pRS neurons and their axons were retrogradely labeled unilaterally from the spinal C2 segment in 

isolated brainstem-spinal cord preparations from 19 newborn (P0) mice (Figure 1A). In 10 

preparations the white matter encompassing the VF and LF was labeled in its entirety on one side. In 

the remaining 9 preparations, retrograde labeling was restricted to one of 3 zones that divided the 

combined VF+LF into equal parts (Zones 1-3, Figure 1B-D). To ensure that the LF was labeled 

throughout its dorsal extent we always extended the application site into the dorsolateral funiculus 

(DLF, arrow in Figure 1B-C; Sengul et al., 2012) in VF+LF and in Zone 3 preparations. Three VF+LF 

preparations and two each of the Zone 1, 2 and 3 preparations were used for 3D reconstructions. Two 

VF+LF preparations were used for neuron size, density and spatial distribution analysis. The 

remaining preparations were used for qualitative anatomical analyses. 

 

General spatial distribution of ipsilaterally and contralaterally projecting pRS neurons  

Retrogradely labeled neurons were found in several regions of the pons, including those corresponding 

in Paxinos et al (2007) to the nucleus reticularis pontis pars oralis (PnO) and pars caudalis (PnC), the 

locus coeruleus (LC), the nucleus subcoeruleus (SubCA), the vestibular nuclei, and some structures 

and areas adjacent to these (Figure 2). Here we focus only on the neurons labeled retrogradely within 

the region corresponding to the pontine reticular nuclei (PnC and PnO) together with small numbers of 

neurons clearly contiguous with these and not associated with other distinct labeled neuron clusters 

nearby. We define these neurons collectively as the pRS neuron population. In the description that 

follows, we describe the pRS neuron population in a series of 4 transverse sections moving from 

rostral to caudal (Figure 2A-D), taken from a representative preparation. To provide anatomical 

orientation, we have superimposed boundaries of specific nuclei and axon tracts onto each section (see 

Materials and Methods for a detailed description of how this was done). However, we wish to 

emphasize that such delineation of specific neuroanatomical structures is by its very nature subjective 

and should therefore be interpreted with caution.   

In the most rostral section (Figure 2A), we found labeled pRS neurons both ipsilateral and 

contralateral to the tracer application site, beginning at about the same rostral level. The ipsilateral 

pRS neurons were located dorsolaterally within the area corresponding to the PnO. The contralateral 

pRS neurons were located ventrolaterally, having a center of density just inside the presumed PnO 

border, with some found on either side of this border.  

Moving caudally (Figure 2B), the ipsilateral pRS neuron population broadened dorsoventrally so that 

it occupied the whole lateral half of the PnO. Some ipsilateral pRS neurons were located outside the 

presumed ventrolateral border of the PnO, close to and sometimes among the labeled axons of the 



rubrospinal (rs) tract (Figure 2B). At this level, a few labeled neurons were also found within the 

ipsilateral subcoeruleus nucleus, alpha part (SubCA). As defined above, we did not consider these 

labeled neurons to be part of the pRS neuron population as they clearly comprised a separate, distinct 

group. The contralateral pRS neuron population at this level maintained a more restricted location in 

the ventrolateral corner of the PnO, with some neurons located just outside the putative ventrolateral 

border and spreading into the ventral nucleus of the lateral lemniscus (VLL).  

Moving further caudally into the PnC (Figure 2C), the ipsilateral pRS population shifted ventrally and 

medially, and was more clearly separated from the labeled neurons in the dorsal part of the SubCA. 

Contralateral pRS neurons at this level were substantially less numerous and more faintly labeled. 

At the most caudal level (Figure 2D), the ipsilateral pRS neuron population remained within the 

putative border of the PnC but shifted slightly medially. The contralateral pRS population on the other 

hand shifted laterally outside of the putative PnC border into the region containing the superior olive 

(SO) and the intermediate reticular nucleus (IRt). Because the neurons involved maintained contiguity 

with the contralateral pRS population at more rostral levels and did not generate or associate with a 

separate group of labeled neurons (see 3D reconstructions below), we consider them to be part of the 

contralateral pRS population.  

We defined operationally the border between pons and medulla, which inherently delineates the caudal 

limit of the pRS neuron population, as the level where labeled raphespinal neurons appeared (neurons 

in raphe pallidus (RPa) in Figure 2D).  

 

Detailed topography of the ipsilaterally and contralaterally projecting pRS neurons 

The topography of the ipsilateral and contralateral pRS neuron subpopulations and their spatial 

relationship was quantified in the two parasagitally-sectioned preparations that were used for spatial 

distribution plots. 

The plot in Figure 3A shows the mediolateral positions of ipsilateral (magenta circles) and 

contralateral (green circles) pRS neurons along the rostrocaudal axis, in effect presenting a ventral 

view of the pRS neuron population. The two subpopulations have been placed on the same side to 

illustrate the degree of overlap and segregation. However, a plot of the non-overlapped distributions 

can be found in Supplementary Figure 1A. As shown, the ipsilateral pRS neuron subpopulation 

occupied a more medial position than its contralateral counterpart, at all rostrocaudal levels. This view 

also shows that in the ipsilateral subpopulation a distinct mediolateral shift occurred midway along the 

rostrocaudal axis (at about 400 μm from the caudal limit of the PRF). The average distance from the 

midline of the pRS neurons located above and below this shift differed by 165 μm.  



The plot in Figure 3B shows the dorsoventral positions of ipsilateral and contralateral pRS neurons 

along the rostrocaudal axis, in effect presenting a side view of the pRS neuron population. This view 

shows clearly the more dorsal position of the ipsilateral pRS neuron subpopulation relative to its 

contralateral counterpart, as well as the gradual dorsal to ventral shift of each population moving from 

rostral to caudal. This dorsal to ventral shift results from the gradual curvature of the pRS neuron 

population as it follows the natural curvature of the longitudinal axis of the pons.  

The plot in Figure 3C shows the mediolateral positions of ipsilateral and contralateral pRS neurons 

along the dorsoventral axis, in effect presenting an axial view of the pRS neuron population. This view 

shows a relatively sharp segregation between the ipsilateral and contralateral pRS populations, which 

was not as evident in Figure 3A or B because the line of segregation is angled with respect to both the 

frontal and the sagittal planes. This view also shows that each population is sharply delineated 

eccentrically to the line of segregation, mediodorsally and lateroventrally for the ipsilateral and 

contralateral pRS populations, respectively.  

Altogether the data indicate that, despite a partially overlapping spatial distribution in the PnO and 

PnC regions, the ipsilateral and contralateral pRS neurons have characteristic locations with the 

ipsilateral subpopulation occupying a more medial and dorsal position. 

 

Estimates of pRS neuron numbers 

To estimate the number of ipsilateral and contralateral pRS neurons, we used two approaches. In the 

first approach, we counted the pRS neuron soma outlines drawn in the position plots from the two 

preparations used for Figure 3. The estimates obtained with this method indicate that the numbers of 

pRS neurons were clearly larger on the ipsilateral side than on the contralateral side throughout the 

rostrocaudal extent of the pons (Figure 3D). In the second approach, we counted the individually 

marked pRS neurons in the three 3D-reconstructed brainstems that had received tracer application in 

the VF+LF (thus labeling the entire pRS neuron population) and multiplied by a factor of 6 (see 

Material and Methods). In these preparations, for which we had no cytoarchitectonic information, we 

made a tentative division into PnO and PnC domains at the mediolateral discontinuity in the ipsilateral 

pRS neuron population described in the previous section (Figure 3A). Estimates were obtained 

separately for pRS neurons in the PnO and PnC (Table 2), showing that the ipsilateral population was 

roughly equally divided between the PnO and PnC (376 versus 352 neurons) whereas the contralateral 

population was clearly more concentrated in the PnO than in the PnC (184 versus 28 neurons). Hence, 

although ipsilateral pRS neurons were more numerous than contralateral pRS neurons at all 

rostrocaudal levels, the ipsilateral predominance was much more obvious caudally within the region 

corresponding to the PnC.  



Descending pRS axons entered the spinal cord along a broad mediolateral swath of white matter. To 

examine the possibility of an internal organization of the pRS neurons related to axon trajectories 

within the white matter, in nine preparations we restricted labeling to one of three roughly equal zones 

of the combined VF+LF (Zones 1-3; Figure 1 and cartoons at the bottom of Figure 4). The three 

preparations shown in Figure 4 were cut transversely at 50 μm and were used for imaging purposes 

only. The remaining six preparations were reconstructed and used for estimating the relative number 

of pRS neurons projecting in Zones 1-3 (Table 2, Figure 5).  Zones 1-3 were not intended to match 

any traditional subdivisions of the white matter, but our assessment indicates that Zone 1 contains only 

VF fibers, Zone 3 contains mostly LF fibers, and Zone 2 contains parts of both, but probably more VF 

than LF. 

Tracing selectively from each zone resulted in distinct, reproducible patterns of labeling within the 

pRS neuron populations (Table 2, Figures 4, 5). Zone 1 (column A in Figure 4) labeled many 

ipsilateral but few contralateral pRS neurons, Zone 2 (column B in Figure 4) labeled ipsilateral and 

contralateral pRS neurons in proportions similar to their numbers in VF+LF preparations, whereas 

Zone 3 (column C in Figure 4) labeled few ipsilateral but many contralateral pRS neurons. The zone-

related distribution of ipsilateral pRS neurons showed a clear differentiation along the rostrocaudal 

axis. Zone 1 labeled relatively more ipsilateral pRS neurons in the PnC than the PnO (more evident in 

Table 2 than in Figure 4), Zone 2 labeled them about equally in the PnO and PnC (roughly in 

proportion to their numbers in VF+LF-labeled preparations), whereas Zone 3 labeled hardly any 

ipsilateral pRS neurons in the PnC. There was less rostrocaudal differentiation of contralateral pRS 

neuron labeling as a function of zone, except that Zone 1 only very rarely labeled any contralateral 

pRS neurons within their most prevalent location in the ventrolateral region of the PnO. These 

relationships can also be appreciated in the 3D reconstructions shown in Figure 5. 

We note that in Table 2, the numbers of pRS neurons labeled from the different zones do not add up to 

the numbers obtained when labeling the VF+LF in its entirety. The most likely explanation is that the 

cuts made to label the different zones overlapped slightly from preparation to preparation, and where 

axon density is high (for example at the transition from Zone 1 to Zone 2), even minor overlap could 

lead to labeling of large numbers of “unintended” axons. Thus, we do not emphasize the neuron 

numbers here, but rather focus on the very clear correlation between topography within the pRS 

neuron populations and mediolateral location of the descending axons. 

To summarize, the number of ipsilateral pRS neurons reaches on average about 3 times the number of 

contralateral pRS neurons and this relative predominance is particularly apparent in the PnC. The 

majority of ipsilateral pRS neurons in the PnO and PnC was labeled from the medial part of the VF 

(Zone 1) but a substantial number was labeled from the lateral part of the VF (Zone 2). In contrast, the 

majority of contralateral pRS neurons in both PnO and PnC was labeled from the LF (Zone 3). 



 

Regional differences in pRS neuron soma size 

Examination of labeled ipsilaterally- and contralaterally-projecting pRS neurons in low magnification 

parasagittal sections (Figure 6A and 6B, respectively) suggests the presence of regional differences in 

soma sizes in each population. As shown in Figure 6C-E, measurements of soma size demonstrated 

differential distributions along the different axes. In the PnO (defined as above the dotted line in 

Figure 6A and 6B), average soma size was similar in the two pRS neuron populations (grand averages: 

ipsilateral: 178.7 ± 81.7 μm2; contralateral: 181.3 ± 67.6 μm2) and relatively constant along the 

rostrocaudal axis (Figure 6C). By contrast, in the PnC (below the dotted line in Figure 6A and 6B), 

average soma size was noticeably larger in the ipsilateral population (accompanied by increased 

variability; 235.0 ± 102.2 μm2) and smaller in the contralateral population (150.5 ± 49.8 μm2). Along 

the mediolateral axis (Figure 6D), average soma size varied less. Finally, along the dorsoventral axis 

(Figure 6E) there was a clear tendency for increasing soma size in the ipsilateral population moving 

from dorsal to ventral, while there was no clear trend in the contralateral population. 

 

PRS neuron density 

Given the regional differences in soma size along the rostrocaudal axis, we decided to assess whether 

pRS neuron density also differed along this axis (Figure 7). Neuron density was obtained directly from 

the position plots shown in Figure 3 and averaged in the transverse plane (thick vertical bars in graph 

of Figure 7). For both the ipsilateral and contralateral pRS populations, the density was clearly lowest 

in the most rostral reaches of the PnO, while for the remainder of the PnO and for the PnC it was 

variable without any clear tendency along the rostrocaudal axis.  The variable density suggested that 

there might exist differences in the intercalation of pRS neurons with other neuron populations or with 

neuropil. To assess the former possibility, we labeled the pRS neurons in the GAD67-GFP and the 

GIN transgenic mouse strains in which putative GABAergic neurons express GFP (Figure 8). In the 

GAD67-GFP mouse, numerous putative GABAergic interneurons were found in the PnO and PnC and 

these were interspersed among the ipsilateral and contralateral pRS neurons. In the GIN mouse, 

putative GABAergic interneurons were found nearly exclusively in the PnC, distributed primarily 

among ipsilateral pRS neurons due to the paucity of contralateral pRS neurons in the PnC. Thus, these 

two different subpopulations of putative GABAergic neurons were differentially distributed among 

pRS neurons in the PnO and PnC. 

Trajectories of pRS axons in the brainstem 

Retrograde labeling with conjugated dextrans also reveals information about the trajectories of the 

labeled pRS axons. As shown in the examples illustrated in Figure 8, we sectioned a set of labeled 



preparations in specific planes designed to align with pRS axon trajectories. These planes were 

deduced from the material we had sectioned in the transverse, horizontal and sagittal planes.  

As a rule, the axons of the ipsilateral pRS neurons (Figure 9A-D) projected initially in a mediodorsal 

direction and followed quite strictly the natural transverse plane of the pons (the plane changes 

gradually along the rostrocaudal axis in keeping with the curvature of the pons). As they approached 

the MLF, ipsilateral pRS axons made a sharp, approximately 90-degree turn towards the spinal cord 

(arrowheads in Figure 9B-D) and formed a loosely organized axon bundle, the densest part of which 

adjoined the MLF. In confocal stacks from different parasagittal or transverse planes through the PnO 

(Figure 9B) or the PnC (Figure 9A, C-D), it can be appreciated that before turning to descend, many 

ipsilateral pRS axons coursed all the way to their most medial position while maintaining the same 

rostrocaudal level (best illustrated by the color-code for depth in Figure 9C,D). 

The axons of the contralateral pRS neurons located in the PnO had a trajectory similar to that of the 

ipsilateral pRS axons but with some notable differences. They initially projected in a dorsomedial 

direction and upon reaching a specific dorsal point, turned abruptly towards the midline (Figure 9E). 

After they crossed the midline, they joined a forest of labeled axons in this area. Presumably they here 

turn in a caudal direction but the density of labeled axons prevented us from following individual 

axons.  The entire axonal trajectory of the contralateral pRS axons has been captured in Figure 9E with 

at least one axon visible throughout the trajectory up to the caudal turn. The trajectory can also be 

appreciated in Figure 2C and Figure 7C, despite the fact that the section planes used here were not 

adapted to show it in its entirety. The few contralateral pRS axons originating in the PnC were too 

weakly labeled to follow with certainty. 

  



Discussion 

General overview of results 

Through selective retrograde labeling, we have characterized the internal organization of the pRS 

neuron population, with particular emphasis on the spatial relationship between the ipsilaterally and 

contralaterally projecting subpopulations and on the topographical relationship to axon trajectories and 

funicular distributions. We note that several internal features exhibit a marked discontinuity at about 

450μm from the caudal limit of the PRF, which we propose marks the transition from PnO to PnC. In 

the summary that follows we use the terms PnO and PnC for respectively the rostral and caudal parts 

of the PRF defined by this discontinuity, but we emphasize that the division has not yet been fully 

validated by direct cytoarchitectonic identification in retrogradely labeled preparations (see, for 

example, Diaz et al., 2003). Our salient findings are: 1) ipsilateral pRS neurons are 3-fold more 

numerous than contralateral pRS neurons; 2) ipsilateral pRS neurons are equally divided between the 

PnO and PnC, whereas contralateral pRS neurons are most prevalent within the PnO; 3) ipsilateral and 

contralateral pRS neuron populations are spatially segregated; 4) ipsilateral and contralateral pRS 

neurons exhibit opposite rostrocaudal gradients in soma size; 5) pRS neuron density varies, suggesting 

that filling of space between pRS neurons by neuropil and other intercalated neuron populations also 

varies; 6) two different subtypes of putative GABAergic interneurons  are differentially distributed 

among the pRS neurons; 7) ipsilateral and contralateral pRS neurons have distinct axon trajectories 

within the brainstem; 8) ipsilateral and contralateral pRS axons target the ventral and lateral spinal 

white matter differentially and in opposing gradients, such that ipsilateral pRS axons enter 

predominantly the medial region (VF and ventral part of LF) and contralateral pRS axons enter 

predominantly the lateral region (dorsal part of LF). Additional targeting is seen within the ipsilateral 

pRS axon population, with ipsilateral axons originating from the PnC and the PnO coursing 

respectively medially and laterally within their overall gradient. A summary of the principal features 

of organization and axon trajectory are summarized in Figure 10. 

 

Technical considerations 

Determining pRS neuron distribution and number with retrograde labeling  

Identifying neurons in the PRF as pRS neurons requires demonstrating that they project to the spinal 

cord. Retrograde labeling, as done here, is a practical way to ensure this. There are limitations to 

retrograde labeling techniques that can affect the assessment of neuron distribution and number, 

however. Earlier studies have shown that despite providing dependable and reproducible patterns of 

labeling in the central and peripheral nervous system, retrograde labeling with conjugated dextrans 

typically is not 100% efficient and therefore underestimates the total number of neurons within a given 

labeled population (see for example Stokke et al., 2002, who demonstrated suboptimal retrograde 



labeling of spinal interneurons). Moreover, neuron counts obtained from sections are subject to 

potential counting errors, which can either overestimate or underestimate neuron number, depending 

on circumstances (Abercrombie, 1946; Hendry, 1976; Williams and Rakic, 1988). This can be 

overcome to a large extent by stereological methods (Gundersen et al., 1988; Williams and Rakic, 

1988; West, 1993), which we did not employ. At least one report, from the lamprey, indicates that 

retrograde labeling of reticulospinal neurons with conjugated dextrans may be biased towards larger 

axon caliber (Brodin et al., 1988). Labeling bias of this type is important, since insufficient or absent 

labeling of a projection neuron subpopulation would clearly misrepresent the real picture. Of relevance 

in this regard is our observation that the more caudal contralateral pRS neurons were consistently 

labeled with weaker intensity than other pRS neurons. We have ruled out that this weak labeling is 

artifactual through an extensive series of control experiments to test for indirect contamination from 

the application site to axons not intended to be labeled (not shown), and since these neurons are among 

the closest to the application site it seems unlikely that axon length is a decisive factor. We have 

therefore no good explanation for why the labeling was consistently weaker in this particular pRS 

neuron subpopulation. 

On this backdrop we cannot guarantee that the picture we provide is complete, but given the 

consistency of labeling pattern we can safely conclude that the pRS neuron population consists of at 

least a larger ipsilateral subpopulation and a smaller contralateral subpopulation. Moreover, 

quantitation errors due to sectioning would not be expected to affect the two subpopulations 

differently, so we are also confident in our description of their regional segregation and relative 

numbers. Obviously, the variability in pRS neuron number estimates we report here could be either 

technical (labeling efficiency, labeling bias, counting) or biological, or any combination of these. 

Thus, we do not consider these numbers to be more than estimates. Taken at face value, these 

estimates indicate that there are about 900 pRS neurons in total on each side of the PRF of which 

about a fourth are contralaterally projecting. It should be noted that Liang et al (2011) report 

substantially more pRS neurons in the adult mouse, on the order of 6,500 on each side, using 

Fluorogold as tracer and 96 hours of in vivo tracer transport time. They also caution that their counts 

of retrogradely labeled neurons should be considered only as estimates. They, like us, did not use 

stereological methods or counting correction factors. It remains to be determined what the discrepancy 

between neonatal and adult counts represents.  

 

The vagaries of cytoarchitectonics 

As we have pointed out in earlier studies of bulbospinal neuron populations in which we have 

compared retrogradely labeled neuron populations to cytoarchitectonic divisions of the hindbrain 

(Díaz et al 2003), the mapping of cytoarchitectonic boundaries is by nature subjective and can vary 



from investigator to investigator and even from study to study by the same investigator, especially if 

different section planes are used. Thus, we feel that cytoarchitectonic boundaries should be used with 

great caution. Here, we have transferred boundaries of the PnO and PnC, and of other structures in 

their vicinity, from the atlas generated by Paxinos et al. (2007), aligning them with landmarks visible 

in our material. Since we have not used Nissl staining as in that atlas, but rather methylene blue 

staining which provides less cytoarchitectonic detail, and because methylene blue stained sections 

were intercalated between sections stained for the conjugated dextran tracers, the alignment further 

depends on subjective interpretation. Given these caveats, we find that coherent clusters of pRS 

neurons are located largely but not completely within the putative boundaries of the PnO and PnC. We 

suggest that boundary transgressions, to the extent that they do not obviously encroach on other well-

defined neuron clusters nearby, are of minimal functional significance. It seems most likely that 

anatomical coherence of retrogradely labeled neuron populations is a direct result of early patterning 

mechanisms that define axon projection pathway and to some extent synaptic connectivity (see Diaz et 

al., 2003, for discussion), such that this coherence should be considered a stronger indication of 

common identity than should compliance to subjectively defined boundaries.  

 

Definition of axon trajectories and funicular destinations 

We have described pRS axon trajectories within the brainstem based on the behavior of those axons 

that are most easily visualized within standard section planes. Although in some instances we have 

employed atypical section planes to better capture some of these trajectories, we cannot claim that all 

pRS axons behave as described. Our description is likely to be generally applicable, but there may be 

exceptions. A fully 3D in situ analysis using newly available tissue clearing methods and large volume 

confocal reconstruction approaches could provide a more certain assessment. 

We have used selective tracer application to describe the spinal funicular destinations of the pRS 

axons. This analysis shows a clearly differential targeting both between and within the ipsilateral and 

contralateral pRS neuron subpopulations. The three application sites were generated manually and in 

separate preparations, however, and some overlap between them is therefore unavoidable. Indeed, the 

estimated numbers of pRS neurons projecting into each zone do not sum to the total estimate, a certain 

indication of overlap. We therefore do not place undue emphasis on these numbers, preferring to use 

the results as a coarse indication of the pattern of axon targeting, which in our view suggests mutually 

opposing gradients rather than distinct white matter tracts.   

Our Zone 3 tracer application extended beyond the dorsal limit of the LF, to ensure that axons 

throughout the full extent of the LF were retrogradely labeled. With anti-neurofilament staining, we 

could discern a thin shell of axons, also visible in methylene blue stained sections, beyond the 



presumed dorsal limit of the LF (see Figure 1B,C). This has been identified as the dorsolateral 

funiculus (DLF, or Lissauer’s tract), since it lies dorsal to the lateral cervical nucleus (Sengul et al., 

2012). Thus, we are confident that our tracer applications have engaged all of the LF and thus the 

entire dorsoventral extent of the white matter region that contains bulbospinal axons in the neonate. 

However, the LF becomes larger and may extend further dorsally with continued postnatal 

development due to the addition of late developing, spinally projecting axon populations, such as 

corticospinal axons. It is not known whether these later arriving axons include additional pRS axons.   

 

Internal organization of the pRS neuron population 

Comparison to other retrograde tracing studies in the mouse and rat  

Several previous retrograde tracing studies have demonstrated projections from the PRF to the spinal 

cord in the mouse and rat, ranging from embryonic to adult stages (mouse: Auclair et al., 1999; 

Vanderhorst and Ulfhake, 2006; Liang et al., 2011, 2015; rat: Basbaum and Fields, 1979; Satoh 1979; 

Watkins et al 1980, 1981; Leong et al., 1984a,b; Newman, 1985; Jones and Yang, 1985; Nudo and 

Masterton, 1988; Rye et al 1988; Shen et al 1990; Masson et al 1991; Lakke, 1997; Auclair et al., 

1999; Reiner et al 2008; Huma et al 2014). Only three of these studies combined unilateral tracer 

application with contralateral spinal cord hemisection to ensure unilateral tracing so that the laterality 

of projections could be unequivocally documented (Basbaum and Fields 1979; Auclair et al., 1999; 

Vanderhorst and Ulfhake, 2006), as we have done here. In eight other studies, in the adult mouse or 

rat, unilateral applications were made but not combined with contralateral lesions to ensure unilateral 

tracing (Watkins et al 1980, 1981; Newman 1985; Nudo and Masterton, 1988: Liang et al., 2011, 

2015; Reiner et al 2008; Huma et al 2014). These studies will receive additional attention below. In 

the remaining studies the laterality of retrograde tracing is inherently questionable.  

Nearly all of the above studies have shown that both the PnC and the PnO project to the spinal cord; a 

few describe projections only from the PnC. Liang et al. (2011) also distinguish the PnV (ventral 

pontine reticular nucleus), containing a minor population of reticulospinal neurons, which may in fact 

be the most rostral part of the medullary gigantocellular nucleus, potentially misconstrued as having a 

pontine location because of mismatch between coronal sections of the adult brain and the planes of 

rhombomere boundaries (see below). Regarding laterality, Basbaum and Fields (1979), Auclair et al 

(1999), Vanderhorst and Ulfhake (2006) and Huma et al (2014) all report an ipsilateral predominance 

in the projection of pRS neurons throughout the PRF, including both the PnO and the PnC. Newman 

(1985) concurs, with a distinction between the PnC (his RPoC) pars alpha and beta, which project 

respectively with contralateral and ipsilateral predominance, and between the PnO (his RPoO) 

medialis and lateralis, which project respectively with a weak ipsilateral predominance and no lateral 

bias. Since RPoC pars beta and RpoO medialis correspond to the more dorsal and medial regions of 



the PnC and PnO, respectively, the ipsilateral predominance of pRS neurons in these specific regions 

reported by Newman (1985) correlates well with our results, as does the contralateral predominance of 

pRS neurons in the RPoC pars alpha. Nudo and Masterton (1988) also show a marked ipsilateral 

predominance in the pRS projection, but only illustrate one level in the PRF, evidently from the PnC. 

Watkins et al (1980) report an ipsilateral predominance, but since their tracer applications were 

targeted to the DLF with the aim of retorgradely labeling the raphespinal projection, only relatively 

few pRS neurons were labeled, in the most ventral region of the PRF. Using the same DLF-targeted 

tracer applications, Watkins et al (1981) report bilateral labeling in PnC and contralateral labeling in 

PnO, again with only few pRS neurons labeled. In contrast to these studies, Reiner et al (2008) report 

equal numbers of ipsilateral and contralateral pRS neurons irrespective of whether injections were 

made at cervical, thoracic or lumbar levels, and Liang et al. (2011) report a substantial contralateral 

predominance of projections from the PnO following tracer injections into the cervical spinal cord, 

although they do report an ipsilateral predominance for the PnC. Liang et al (2015) present images that 

suggest an ipsilateral predominance in the PnO following tracer injections in the lumbar spinal cord. 

Since a large proportion of pRS neurons in the PnO project very medially (in the ipsilateral Zone 1), it 

seems plausible that the contralateral predominance of the PnO projection reported by Liang et al. 

(2011) following cervical tracer injections and the nearly symmetrical laterality reported by Reiner et 

al (2008) may have arisen from contamination of medially located axons on the side contralateral to 

the injection. This would label ipsilaterally projecting pRS neurons in the PnO contralateral to the 

tracer injection site, which would then be misinterpreted as contralaterally projecting. An additional 

sign of such potential contamination is the much more symmetrical labeling of neurons in the ventral 

portion of the nucleus subcoeruleus reported by Liang et al. (2011) than is reported by Vanderhorst 

and Ulfhake (2006) and here. The discrepancies in laterality underscore the importance of using 

lesions in conjunction with tracer injections if the aim of retrograde labeling is to determine the 

laterality of axon descent, avoiding the complicating issues of contralateral tracer contamination and 

commissural collateralization of axons within the spinal cord.  

Huma et al. (2014) also aimed to assess, in the adult rat, the white matter trajectories of bulbospinal 

neurons, including those in the PRF. They combine unilateral lumbar injection of one retrograde tracer 

with ipsilateral injection of another retrograde tracer in either the MLF or the caudal ventrolateral 

medulla. They find a predominantly medial targeting of ipsilateral pRS axons originating from both 

the PnO and the PnC and a predominantly lateral targeting of contralateral pRS axons originating from 

the PnC, similar to what we report in the neonate. However, they report that contralateral pRS neurons 

in the PnO project predominantly medially, which does not fit with our results. Since they did not 

ensure unilateral labeling with a contralateral lesion, there again is a possibility that this discrepancy 

arises from contamination of the MLF on the side opposite the injection.  

 



Comparison to retrograde tracing studies in other mammals 

Although an exhaustive description of the literature on bulbospinal projections in non-rodent 

mammals is beyond the scope of this discussion, it is worth noting that the pRS projection has been 

described in a variety of mammalian species, particularly the opposum (Martin et al. 1979; Cabana 

and Martin 1984; Martin et al. 1988), cat (Nyberg-Hansen 1965; Petras 1967; Basbaum and Fields 

1979; Tohyama et al. 1979; Holstege et al. 1979; Hayes and Rustioni 1981; Mitani et al 1988; Rice et 

al 2010) and non-human primates (Carlton et al 1985; Sakai et al 2009). In general, these studies 

indicate that asymmetry with ipsilateral predominance of the pRS projection is a conserved feature, 

although discrepancies regarding laterality also exist in this literature.  

 

Relationship to developmental patterning  

By comparison to our earlier study of reticulospinal and vestibulospinal neurons in the mouse and rat 

embryos, it seems quite clear that the pRS neurons are located in the rostrocaudal domain that derives 

from rhombomeres (r) 1-4 (Auclair et al., 1999). In that earlier study, we also noted the development 

of a distinct discontinuity in the shape of the ipsilateral and contralateral pRS neuron populations, 

located at the transition from r2 to r3. Thus, we propose that this discontinuity in embryos corresponds 

to the discontinuity reported here that we have operationally defined as the boundary between PnO 

and PnC. This would mean that the PnO derives from r1-2 and the PnC derives from r3-4. This 

rhombomere-related discontinuity becomes apparent about a day after pRS axons reach the spinal cord 

(Auclair et al., 1999), indicating that it originates through cell aggregation imposed on initially more 

evenly distributed neurons – in other words a relatively late feature of patterning. By contrast, a 

differential location of ipsilateral and contralateral pRS neuron subpopulations in the transverse plane 

is evident as early as the pRS neurons can be retrogradely labeled from the spinal cord (Auclair et al., 

1999), suggesting that this feature of patterning originates early, likely because the two subpopulations 

originate from different dorsoventral progenitor domains. 

 

Relationship to function 

The numerical predominance of ipsilateral versus contralateral pRS neurons is significant relative to 

our previous report on the synaptic inputs from pRS neurons to spinal MNs (Sivertsen et al., 2014). In 

that study we found both an ipsilateral and a contralateral projection from the PRF to MNs, but the 

ipsilateral projection transmitted more faithfully and appeared to be more direct. Accordingly, we 

suggest that this difference in functional connectivity is due at least in part to differences in the spinal 

targets of the ipsilateral and contralateral pRS neurons. Ipsilateral pRS neurons evidently innervate 



MNs either directly or through few intermediate INs, whereas contralateral pRS neurons innervate 

primarily INs. How this relates to behavior is not yet clear. The PnC is involved in postural control 

and is a main relay for auditory stimulus-elicited startle reactions (Davis et al 1982; Femano et al 

1984; Yeomans and Frankland 1996). The latter generates widespread and bilateral activation of head, 

neck, trunk and limb musculature, whereas the former can involve more selective activation of 

muscles. The PnO has been implicated in the induction of widespread muscle atonia in connection 

with REM sleep and also overlaps the mesopontine tegmental anesthesia area, which when 

pharmacologically activated exerts widespread spinal anesthesia and atonia (Reiner et al 2008). 

Anterograde tracing in several mammalian species including the mouse have shown that axons from 

PnO and PnC terminate throughout the length of the spinal cord and differential retrograde tracing 

from multiple spinal levels suggests a high degree of rostrocaudal collateralization by individual pRS 

axons (selected studies in rodents: Sirkin and Feng, 1987; Reiner et al 2008; Liang et al; 2015). As in 

the cat (Matsuyama et al 1993, 1999), pRS axon terminals in rodents are particularly focused on the 

ipsilateral laminae VII and VIII, which are known to contain premotor interneurons, and are also 

found in the contralateral cord. Given the difficulty of distinguishing terminals derived from individual 

axons and the diversity of spinal interneurons that populate the regions of termination, a more 

comprehensive functional characterization of the spinal targets of the PnO and PnC and their 

ipsilateral and contralateral pRS subpopulations is warranted.  

Differences in pRS soma size can be related to several functional characteristics, including packing 

density of synaptic input, input resistance and its effects on synaptic integration, susceptibility to 

electrical stimulation, thickness and conduction velocity of axons, and number of axon terminal 

branches and synaptic contacts on target neurons. Thus, it is likely that the regional differences we 

observe in soma size reflect functional heterogeneity within the pRS population.   

Neuron density determines how much space surrounds each neuron and bears a direct relationship to 

neuropilar density and the potential for positing intercalated neurons. Since not all projection neurons 

in the PRF project to the spinal cord (Jones and Yang, 1985; Lingenhohl and Friauf, 1994), it is likely 

that submaximal neuron densities within the pRS neuron subpopulations relate to the presence of 

additional PRF projection neuron populations that project elsewhere or the presence of local 

interneurons, such as the putative GABAergic interneurons that we show are intercalated among the 

pRS neurons.  

 

Topography of axon trajectories including their funicular projections 

The trajectories of pRS axons within the brainstem and their funicular targeting in the spinal white 

matter clearly differ between the ipsilateral and contralateral pRS neuron subpopulations. Ipsilaterally-

projecting pRS axons course dorsally towards the midline, parallel to each other in a broad swath 



matching the rostrocaudal extent of their parent somata, before turning to descend in a largely medial 

location that overlaps but is not restricted to the MLF. The overall trajectory is very similar to that 

described for individual pRS neurons in the PnC in the adult rat (Lingenhohl and Friauf, 1994). By 

contrast, contralaterally projecting pRS axons follow a more tortuous path to their descending turning 

point, starting in a dorsomedial direction and then veering ventrally before crossing the midline. They 

cross the midline in a rostrocaudally narrower bundle relative to the ipsilaterally projecting axons. 

Upon turning to descend, the ipsilaterally and contralaterally projecting axons tend to take up more 

medial and lateral positions, respectively, and as they reach the spinal cord, they distribute with 

opposite gradients within the VF and LF. These distinct routes imply differences in the pathfinding 

cues that the ipsilaterally and contralaterally projecting axons follow as they navigate towards the 

spinal cord.   

Differences in funicular trajectories within the spinal cord have a clear functional significance, as they 

dictate proximity to specific laminae and to the dendrites of potential target neurons. Thus, we would 

expect that the more medial trajectories of the ipsilaterally projecting pRS axons would especially 

facilitate connections with spinal neurons in the ventromedial parts of the grey matter, including axial 

MNs and INs in lamina VIII and the medial part of lamina VII, whereas the more lateral trajectories of 

the contralaterally projecting neurons would bring them closer to limb-innervating MNs, sympathetic 

preganglionic neurons and INs in the lateral parts of lamina VII and lamina VI. The reach of target 

neuron dendrites complicates this picture of course, underscoring the importance of physiological 

confirmation of connectivity.   

Our description also provides a tool that can facilitate the physiological assessment of synaptic 

connections between the pRS neurons and spinal neuron targets, by indicating where lesions can be 

placed to restrict impulse traffic to identifiable axon subpopulations. For example, by making a 

midline lesion in the pons together with a lesion in the upper cervical cord sparing Zone 1, 

transmission of impulses elicited by stimulation of the PRF would be biased towards ipsilateral pRS 

neurons in the PnC, whereas an upper cervical lesion sparing Zone 3 would bias towards ipsilateral 

pRS neurons in the PnO.  

 

Future directions 

We are currently pursuing two lines of research to further characterize the pRS neurons. The first of 

these involves neurotransmitter phenotyping. In our study of synaptic connections from pRS neurons 

onto spinal MNs, we used calcium imaging that readily reveals excitatory connections (Sivertsen eal., 

2014). However, there is evidence that activation of spinal MNs by electrical stimulation within the 

ipsilateral PnC can be inhibited by concomitant stimulation within the contralateral PnC (Femano et al 

1984). Thus, we are performing a variety of assays to establish the neurotransmitters used by the 



ipsilateral and contralateral pRS neuron subpopulations. The second line of research is focused on 

developmental patterning. Since the ipsilateral and contralateral pRS neuron subpopulations appear to 

derive from different dorsoventral domains in the developing hindbrain, we are carrying out fate 

mapping experiments to determine their transcription factor-defined progenitor domains of origin. 

This will provide information about how the two subpopulations become specified to differentiate 

their specific characteristics, as well as an avenue for transgenic manipulation, including the use of 

optogenetic tools for more selective physiological studies. 
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List of abbreviations 

4V Fourth ventricle Pn Pontine nuclei 

5N Motor trigeminal nucleus PnC Pontine reticular nucleus, caudal part 

5TT Motor trigeminal nucleus, tensor tympani part PnO Pontine reticular nucleus, oral part 

6N Abducens nucleus Pr5 Principal sensory trigeminal nucleus 

Bar Barrington's nucleus pRS Pontine reticulospinal 

DC Dorsal cochlear nucleus RIP Raphe interpositus nucleus 

DMTg Dorsomedial tegmental area Rpa Raphe pallidus nucleus 

DRC Dorsal raphe nucleus, caudal part rs Rubrospinal tract 

DTgP Dorsal tegmental nucleus, pericentral part RtTg Reticulotegmental nucleus of the pons 

IRt Intermediate reticular nucleus SO Superior olive 

KF Kölliker-Fuse nucleus SpVe Spinal vestibular nucleus 

LC Locus coeruleus Su5 Supratrigeminal nucleus 

LDTg Laterodorsal tegmental nucleus SubCA Subcoeruleus nucleus, alpha part 

LVe Lateral vestibular nucleus SubCD Subcoeruleus nucleus, dorsal part 

mlf Medial longitudinal fascicle SuVe Superior vestibular nucleus 

MnR Median raphe nucleus Tz Trapezoid body 

MVeMC Medial vestibular nucleus, magnocellular part VeCb Vestibulocerebellar nucleus 

MVePC Medial vestibular nucleus, parvicellular part VLL Ventral nucleus of the lateral lemniscus 

PCRtA Parvicellular reticular nucleus, alpha part Vtg Ventral tegmental nucleus 

PMnR Paramedian raphe nucleus X Nucleus X 
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Figure legends 

Figure 1. Overview of retrograde labeling targeted to specific white matter zones 

A) Wholemount image of a P0 brainstem retrogradely labeled unilaterally at the level of the C2 ventral 

root. Labeling was restricted to Zone 1 and performed after removal of the contralateral spinal cord. 

Diffuse fluorescence produced by retrogradely labeled neurons and axons can be discerned in both 

medulla and pons, most noticeably in the medial half of the ipsilateral medulla. The preparation is 

illuminated by both epifluorescence and incident white light to reveal tissue contours. B) 

Neurofilament immunostaining in a transverse section from the upper cervical spinal cord at P0, 

illustrating the distribution of axons in the white matter. Arrow indicates the dorsolateral funiculus 

(DLF). Numbers 1-3 indicate the different zones used for selective retrograde labeling. C) Transverse 

section from the upper cervical spinal cord at P0, stained with methylene blue to show the white 

matter (light blue regions), with Zones 1-3 (outlined), and the DLF (arrow) indicated. D) Transverse 

sections at C2 in preparations with labeling restricted to Zone 1 (left) and Zone 3 (right). Arrow in 

right panel indicates the C2 ventral root. Scale bars: 500μm (A), 200μm (B-D). 

Figure 2. Spatial distribution of pRS neurons and other neuron populations in the pons.  

Epifluorescence images (50 μm transverse sections, evenly spaced at 250 μm intervals through the 

pons at P0) showing retrograde labeling in the pons after applying RDA unilaterally (Ipsi) to the entire 

VF+LF at C2. Cytoarchitectonically defined boundaries of relevant nuclei and structures adapted from 

the atlas of (Paxinos et al., 2007) have been superimposed (see Methods). Stippled lines indicate 

boundaries transferred from the Paxinos et al (2007) atlas, which should thus be considered only as 

approximate, whereas continuous lines indicate boundaries that could be seen in neighboring sections 

stained with methylene blue. A) Rostralmost section, showing ipsilateral pRS neurons in the PnO 

(open arrow) lying dorsal to the labeled axons of the rubrospinal tract (rs). Contralateral pRS neurons 

(filled arrow) lie near the lateral edge of the PnO, in the border area between the PnO and the ventral 

nucleus of the lateral lemniscus (VLL). B) At this level (250 um more caudal than A), ipsilateral pRS 

neurons form a distinct cluster in the lateral half of the PnO, adjoining the more dorsal group of 

retrogradely labeled neurons in the nucleus subcoeruleus, alpha part (SubCA). Contralateral pRS 

neurons lie in the ventrolateral corner of the PnO, similar to their location in A. C) Ipsilateral pRS 

neurons are located centrally in the PnC. A few contralateral pRS neurons are also labeled in the 

lateral part of the PnC. However, they are weakly labeled, and best seen in the inset displaying the 

same region at twice the magnification and with enhanced brightness and contrast (filled arrows 

indicate individual neurons). At this level, axons from contralateral pRS are seen traversing the PnC, 

the SubCD and the dorsomedial tegmental area (DMTg) before crossing the midline (arrowhead). D) 

In the most caudal region of pons, ipsilateral pRS neurons lie centrally within the PnC where they are 

enmeshed with labeled axons coursing toward the spinal cord. Contralateral pRS neurons are located 



near the ventrolateral corner of the PnC, in a region that according to Paxinos et al (2007) corresponds 

to the superior olive (SO) and the intermediate reticular nucleus (IRt). They are also shown in the inset 

on the right hand side. At this level, ipsilateral and contralateral vestibulospinal neurons can also be 

seen clearly. Note that the location of contralateral pRS neurons outside the indicated confines of the 

PnO is in our view due to a combination of shifts in the locations of boundaries from the illustrated 

section to the adjacent methylene blue-stained section and ambiguity in the transfer of the boundaries 

defined by Paxinos et al (2007). 

Figure 3. Spatial relationship between the ipsilateral and contralateral pRS neuron populations.  

A-C: Plots showing the positions of individual pRS neurons pooled from two preparations in different 

planes of view (inset cartoons). Magenta and green circles indicate ipsilateral and contralateral pRS 

neurons, respectively. Note that both pRS neuron populations are plotted on the same side to 

emphasize the difference in spatial domains. Because the plots are obtained from parasagitally 

sectioned preparations, for which mediolateral coordinates automatically become discontinuous 

according to the spacing of the sections (see Supplementary Figure 1), the mediolateral coordinates 

have been randomized through the section thickness to provide a smoother representation. A) Plot of 

rostrocaudal versus mediolateral position of each labeled pRS neuron (ventral view). The origin is 

placed at the point where the midline and the medulla/pons transition meet. . B) Plot of rostrocaudal 

versus dorsoventral position of each labeled pRS neuron (side view). The origin is placed at the point 

where the ventralmost extent of the 4th ventricle and the medulla/pons transition meet. C) Plot of 

dorsoventral versus mediolateral position of each labeled pRS neuron (axial view). The origin is 

placed at the point where the ventralmost extent of the 4th ventricle and the midline meet. D) 

Histogram of the number of pRS neurons along the rostrocaudal extent of the pons (divided into 50 

μm bins). The value in each bin represents the mean of the number of neurons in the two preparations. 

 

Figure 4. Spatial distribution of pRS neurons that project in different white matter zones.  

Column A-C show the spatial distribution of pRS neurons in preparations retrogradely labeled from 

Zone 1 (A1-4), Zone 2 (B1-4) and Zone 3 (C1-4), respectively. Each column includes 4 transverse 

sections evenly spaced at 250 μm intervals through the pons, at the levels indicated in the inset at top 

right.  A1-4) Zone 1 labels preferentially the ipsilateral pRS neuron population, relatively more at 

caudal than at rostral levels. B1-4) Zone 2 labels both the ipsi- and contralateral pRS populations, in a 

pattern similar to that seen in preparations labeled from the VF+LF (see Figure 2). C1-4) Zone 3 labels 

preferentially the contralateral pRS neuron population, but also some rostral ipsilateral pRS neurons. 

Note the axons of the contralateral pRS neurons crossing the midline in C3.  

 



Figure 5. 3D reconstructions of pRS neurons labeled differentially from different white matter 
zones.  

Four 3D reconstructions, one for each tracer application employed (VF+LF, Zones 1-3), generated 

using the Neurolucida Solids modeling module. Ipsilateral pRS neurons are blue, contralateral pRS 

neurons are green, and other neurons (including vestibulospinal and medullary reticulospinal) are grey. 

The surface of each reconstruction (transparent white) has been generated from section outlines. In the 

VF+LF reconstruction, contralateral pRS neurons are concentrated in the caudal portion of the pons, 

whereas the ipsilateral pRS population is larger and more evenly distributed along the rostrocaudal 

axis. In the Zone 1-3 reconstructions, ipsilateral pRS neurons are mainly labeled from Zones 1 and 2, 

whereas contralateral pRS neurons are mainly labeled from Zone 3. 

Figure 6. Regional variation of pRS neuron soma size  

A) Image of retrogradely labeled ipsilateral neurons and axons, including the ipsilateral pRS neurons 

and axons, from 4 adjacent parasagittal 50 μm sections (taken between 400 to 600 μm from the 

midline) projected onto a single layer. The ipsilateral pRS population can be seen as a continuous band 

of labeled neurons that starts around the pons/medulla transition (horizontal line of tick-marks, 100 

μm intervals) and that follows the natural curvature of the pons rostrally. It thus extends from the PnC 

to the PnO, which we have operationally defined as respectively caudal and rostral to the oblique, 

dotted line. Clusters of neurons that were not considered part of the pRS are also labeled, including 

those in the nucleus subcoreuleus alpha and dorsal (SubCA/D), Barrington´s nucleus (Bar) and the 

medial vestibulospinal nucleus, parvocellular part (MVePC). The genu of the facial nerve can be seen 

as a dark spot (arrowhead) to the left of the vertical line of tick-marks (100 μm intervals) that has been 

used as the rostrocaudal axis in all figures. The circled cross indicates the intersection of the vertical 

and the dorsoventral axes and represents the origin of both, used in the graphs presented in other 

figures.  B) Image of retrogradely labeled contralateral neurons and axons, including the contralateral 

pRS neurons and axons, from 4 adjacent parasagittal 50 μm sections (taken from 600 to 800 μm from 

the midline) projected onto a single layer. Axes and division between PnC and PnO as in A. Also 

labeled are neurons in the medial vestibulospinal nucleus, magnocellular part (MVeMC).  C-E: 

Graphs displaying soma sizes of pRS neurons (magenta: ipsilateral, green: contralateral) measured in 

the parasagittal plane in 100 μm bins along the rostrocaudal axis (C), mediolateral axis (D) and 

dorsoventral axis (E).  Circles indicate mean values and error bars represent standard deviations. 

Figure 7. pRS neuron density along the rostrocaudal axis.  

Graph showing density of ipsilateral (magenta diamonds) and contralateral (green circles) pRS 

neurons measured in 100 μm-on-a-side cubes along the rostrocaudal axis. Densities averaged below 5 

neurons/106 μm3 but could reach as high as 10 neurons/106 μm3. For example, the single highest 

density (the magenta diamond within the 600-700 μm bin) matches well the densely populated area 

indicated by the open arrow in Figure 2B. 



Figure 8. Distribution of putative GABAergic neurons among the pRS neurons.  

Collapsed confocal image stacks of 14μm transverse sections from the rostral PRF (four left images) 

and caudal PRF (two right images). Retrograde labeling was performed in GAD67 (top row) and GIN 

(bottom row) GFP reporter mice. Green: GAD67 or GIN expressing cells. Magenta: ipsilateral or 

contralateral pRS neurons (ipRS, cpRS).  Note that GFP+ neurons within the PRF are much more 

numerous in GAD67 than in GIN reporter mice, a presumed consequence of the differences in the 

subtypes of putative GABAergic neurons that express GFP in these two transgenic mouse strains. In 

neither strain did we find pRS neurons that were positive for GFP. 

Figure 9. pRS axon trajectories within the brainstem. 

Collapsed confocal image stacks of 50 μm sections, showing pRS neurons and their axon trajectories. 

A) Oblique longitudinal section cut at an angle of approximately 35° to the parasagittal plane, showing 

caudal ipsilateral pRS neurons and their axons. B) Parasagittal section showing rostral ipsilateral pRS 

neurons and their axons. Arrowheads indicate the sharp 90° turns made by the axons as they begin 

their descent toward the spinal cord. C, D) Transverse sections showing ipsilateral pRS neurons and 

their axons, with color-coding for rostrocaudal depth within the section (blue is rostral, red is caudal). 

Examples can be seen of pRS axons that traverse much of the image within the same plane (constant 

color) before turning abruptly (changing color rapidly, arrowheads) and leaving the section. E) 

Oblique transverse section through the rostral pons (oriented radially from ventricular to pial surface 

according to the curvature of the pons) showing contralateral pRS neurons and their axons. Several 

individual axons can be followed for different distances dorsally and then medially within the same 

transverse plane (constant color) before crossing the midline and beginning their descent toward the 

spinal cord. Scale bars as indicated. 

Figure 10. Summary figure.  

Cartoon illustrating some of the major findings in this study. Ipsilateral and contralateral pRS neuron 

populations (ipRS, blue, and cpRS, green) are drawn as shapes that roughly represent their relative 

positions and neuron numbers. IpRS neurons are numerous at all rostrocaudal levels, whereas cpRS 

neurons are more numerous in the rostral than the caudal pons. The relative distributions of ipRS and 

cpRS axons in the three zones of the white matter are indicated by color saturation with the darkest 

and lightest colors indicating highest and lowest number of axons, respectively.  

  



Supplementary Figure 1. Spatial relationship between the ipsilateral and contralateral pRS 
neuron populations. Raw data from two separate preparations. 

This figure compares the two preparations contributing to Figure 3, the data from each shown in 

different colors. The two data sets showed very similar distributions. The figure organization mirrors 

that of Figure 3, with some exceptions: 1) The ipsilateral and contralateral preparations have been 

separated – in A and C by showing them in their actual positions, on opposite sides of the midline, and 

in B and D, with side views of each laterality shown in separate diagrams; 2) Neuron positions are 

shown as raw data, in which the mediolateral resolution is limited to 50μm corresponding to the 

thickness of the parasagittal sections. In Figure 3, the positions were randomized within each 50μm 

interval, to eliminate the distracting stripes and to better show variations in density.  

  



Tables 

Table 1. Antibodies used in this study  
 

Antibody name Type Host 
species 

Dilution Company Cat. nr.  RRID Specificity 

Tetramethylrhodamine Polyclonal Rabbit 1:1000 Invitrogen A-6397 AB 1502299 Quenches >50% of 
tetramethylrhodamine 
fluorescence.  Cross-reactivity 
with Texas Red and 
Rhodamine Red dyes. 

Pan-neuronal 
Neurofilament 

Monoclonal Mouse 1:5000 Covance SMI-311R-
100 

AB 10143907 Non-phosphoneurofilaments, 
mammalian. 

Alexa 555 goat-anti-
rabbit 

Polyclonal Goat 1:400 Invitrogen A21428 AB 141784 Rabbit IgG, H+L chains. 

 

Table 2. Number of labeled ipsilateral and contralateral pRS neurons 

Estimates from size analysis Estimates from 3D reconstructions 

VF+LF  VF+LF  Zone 1 Zone 2 Zone 3 

        Prep. A; 
        Prep. B 

           Mean  
           +/- SD 

                           Prep. A; 
                           Prep. B 

Laterality Ipsi Contra Ipsi Contra Ipsi Contra Ipsi Contra Ipsi Contra 

Above line 
459; 
214 

167; 
181 PnO 

376 
+/- 65 

184 
+/- 70 

240; 
240 

48;  
6 

174; 
144 

84; 
54 

54; 
90 

198; 
180 

Below line 
403; 
282 

42; 
59 PnC 

352 
+/- 70 

28 
+/- 23 

528; 
420 

30; 
0 

108; 
144 

30; 
6 

12; 
0 

54; 
18 

Sum 
862; 
496 

209; 
240 

728 
+/- 49 

212 
+/- 56 

768; 
660 

78; 
6 

282; 
288 

114; 
60 

66; 
90 

252; 
198 

            
























	Tom side


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


