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Preface

These notes were prepared in the course of giving a rather
extensive course in Time Series Analysis, following T.W.
Anderson's book. As often happens when lectures are based on
a certain text, one wants to deviate from it on certain points.

The deviations are contained in the present notes.

If there should be anything novel in them, it would be the study
of the stationarity and the "anteimpulse" nature of the auto-
regressive processes, which is treated more extensively. (I take
"autoregressive process" in a general sense with few restrictions
on the "nbice", the ARMA process is a special case.) I have

made a point of giving an elementary presentation, since I have
felt that the subject is by nature elementary. Only elementary
results about convergence in quadratic mean are used. For
comparison I have also included a derivation based on the famous
spectral theorem of Stone and Cramér, see Cramér (1967). That is
similar to derivations given by Grenander & Rosenblatt (1956)

and Gihmann & Skorohod (1974).

I have found it useful to expand upon and deviate in details
from Anderson's derivation of the distribution of the spectrum.

A self-contained proof is presented in Chapter VI.
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I INTRODUCTION

A. Structural cycles

In the study of time series the attention will in many cases
bevdirected toward oscillary motions, i.e. more or less periodical
regularities. This is true both when studying empirical obser-
vations u(t) of a variable u over time t, or when making
models to explain the structures of the time series u(t). The
study of periodicities and frequences will appear to be useful
even if the phenomenon we are studying do not have conspicuous
periodicities.

Let us take a brief look at these phenomenon. Sometimes the
oscillations are forced on a time series u(t) from the outside.

It may be realistic to assume that

m
_ . 2w
u(t) = po + Z p-51n(5~ t+¢j)+Vt

j=1 j
where the Vt are independent. One of the sine compoﬁents may
e.g. represent seasonal variation (with pj =12 months). However,

‘more often the oscillations are structural, arising out of the

sysfem itself. Thus Gallilei and Huygens recognized that the oscil-

lations of the pendulum were due to principles expressed by momen-

tum, inertiavand gravity, which per se say nothing about oscillations.
Let us consider theéituationin the case of an oscillating

spring balance.
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The weight L has mass m. The deviation wu(t) = distance bet-
ween position at time t and equilibrium pOsitidn. The coeffi-
cieht?of friction is f. We have three structural relations.

d

mu"(t) = m-— u(t)
’ dt

1}

Inertial force

Frictional force fu'lt)

k u(t) (Hooke's law).

1

Restoring force

These are the inner forces of the system. In addition the
weight is exposed to positive and negative shocks from the outside.

Let the shock at time t be K(t). We find,
K(t) =mu"(t) + fu' (t) +ku(t).

The shock acts against inertia, friction and the stress of the
compressed or lengthened spring. This differential equation has

the solution

t
_ K(t)
u(t) = [ —

- 00

provided A = /% —(%%)2 is real and >0. It is Seéh‘that the

sequence of past and present shocks has been transformed to a

- (=)
e sin A(t-1)dr

composition of damped OSCiilations, all of them with the same

period p=2n/x. The transformation has the form of a filter

t : o
u(t) = J KCt)y(t-t)dr = Jw(T)K(t-T)dT
- 00 0

where the form of.the transformation (filter) is determined by
¢, i.e. By the structural parameters m,f,k alone.

The essence of the situation just described is that a model
is used, which gives relationships between position, velocity
and acceleration, i.e. between position attlc@i&dn.pointc% Ltime
and at two points of time just past. There 48 a kind of sLuggishness in the

system, and that is the explanation of many oscillatory phénomenon.



sometimes such an ascertainment might seem trivial. H0wever,‘to
make use of it may not be trivial. It will be the main theme in
this paper, where we shall have in mind situations were shocks or
impulses will be non-observed random variables generating a se-
quence of observable wu(t). Contrary to the situation in the
example, we shall consider discrete processes u(t) where the

u(t) are observed for integer values of +t. Replacing u'(t) and
u'"(t) by u(t) —u(t-1) and u(t) - 2u(t-1) + u(t-2) respectively

in the differential equation above, we obtain
ul(t) = d)]_U(t-l) + ¢2U(t-2) + K(t).

We shall be concerned with models described by such linear diffe-
rence equation, where more generally, p instead of 2 lags may

be involved.

But first we shall say something about mathematical tools

used for describing, estimating and analyzing time series.

B. Search for periodicities. Spectrum and autocovariance.

First some words about periodic functions. f(t) has period
p  if f(t) = f(t+p) for all t. Considering f(t) as a value
arising at time t, then v = 1/p 1is the number of periods per

time unit. A prominent periodic function with period p 1is

f(t) =Asin(wt+¢) =Asin (%}t+¢). ¢ 1is called the phase and

w = 2n/p=2mnv 1is the angular velocities. (Projecting the graph
of Asin(wt+¢) on the circle with center in origin and radius A,
it is seen that v is the number of revolutions per unit time and
w the number of radians per unit time.) |

Consider now a time series of observations

ST CTRDIS & (1)



To investigate if p = 2n/w could roughly be considered

as a period,the covariance between Y(t) and f(t) = sin(uwt+¢),i.e.
1 T, s 1T 1 »
7 LY mDEM@-TEY) = 5 J(Y -V)sin(et+e) = FK(4) (2)
t=1 t=1

is studied, where the averages Y and T(t) are over all the
T value of t.
Let us vary ¢ i.e. shift the graph of the sine function back

and forth horizontally to make the ocovariance as large as pos-

sible. .Obviously $ = maximizing ¢
“\////\\//\ :
sin

must be such that

K'(8) = 1Y -T)cos(ut+g) = 0
or .

cos ¢X(Yt—?)cosLut-sin(b2(Yt¥Y)sinu)t = 0.

On the other hand from (2)
COS$ E(Yt-?)sintut-+sin$ Z(Yt‘Y)COS(ut = 0.

~

Multiplying the first equation by cos ¢ and the second by sinw

and adding we get

K(§) sing = J(¥,-Dcoswt = Alw) (3)



Similarly |
| ‘K($)cos$’= X(Yt—ﬁ—{) sinwt = B(w).
Hence | |
K(§) = V[Z(Y£—?)COSwt]2 (1Y, -Drsinut]?= (1)

VAG)? + B(w)?

It is seen from (3), that with Z(w) = A(w) +1iB(w) we may also

write ,
R2(w) = |2(w)|? = 2=|T(y, -9relvt)? (5)
T2 t

Obviously to search for periodicities p, we may try out different
values of p, i.e. different values of w, to find the p for
which an adjusted sine function is highly correlated with Yt'
It is convenient to make a graph of R(w) = %]((;) as a function
of w, or p, or v. (The reason for the factor 2 will be clear
later.) R(w) as a function of p is the periodogham, as a
function of v or w, the ApectMML However, today the words are
used interchangebly, whatéVer is the argument. Spectrum seems

to be preferred. Summing up what hasbéensaid above. The 4pec-
thal value for a given frequency 48 the phase ddju/.sted covariance
between the sine-function and the time senies.

In fhe‘socalled periodogram anélysié only periods p which
are factors in T are chosen, hence p = T/n, where n 1is an
integer. A cyclical trend

T

. 27 ;
+ . (Fn.t+¢.) =
Po jZ]_pJSln T ¢:] . (6)

r o (
= Do+.Z 0 cos n‘jt+ Z

Bj sinzT—“ njt
j=1 J

1

is fitted to the observatiohs Y, by least square method.

Here the nj are integers and



. : 2 - 2 2
. = p.sin ¢. . = p. COS ¢. ¢ = af +B2 (7)
oy T PySINéy s By T egCOS ey Py T Ay By
We get for the least square estimates of pj, aj, Bj
R ~_ 2 2w ~ _ 2 . 2T
po= Y aj =7 thcos:f-njt . Bj = 7 %Yt51nwrnjt (8)
0% = o + g2
Py T ey T B
~ 2 2 ~ 2 2n
Note that o5 T T A(jfnj) s Bj = T B(ﬁTnj) (see (3), note

also that Y drops out because of the special choice of w).

We see that ;§ = R(—ZTT—Tnj ). The spectrum gives the square of the

amplitude of the different perniods.

Obviously if Y, is roughly periodic with period p then

Yt 1s high whenever Yt+p is high and Yt 1s low whenever Yt+p
is low. Hence, for given p, there must be high correlation
between {Yt} and {Yt+p}'
This leads us to study the autocovariance function
1 T-p - -

C_ = m— Y -Y)(,, -Y) (9)

p T-p 921 t t+p ,
as a function of p. For convenience we define cP also for
negative p, by cP = c_P. It is seen that

1 5 3 '
c e TN (Y, -Y)(Y -Y) (10)
-P -P pzl t t-p

Nows;let us consider the relationship between spectrum and

covariance.

Let AZt = Yt-Y. We get
T2 ‘
7 R? = Y 7. 72_ coswtsinws+ ) 2.2 sinwtsinws =
b t's t s
t,s t,s
T-1
= 3 2,7 cos w(t-s) Y (32,2, ,)coswh =

t,s h==(T-1) t



-1 T T

| -1 T=h
= coswh 2 2.7, ., % ) coswh.z 2,7, =
' -(T§1)7 t=-h+1 T t+h' 0 St=1 # t+h
T-1 s
= (T-|h|)e,cos wh

-(T-1)
having made use of (10). Hence

‘ T-1
R?(w) = ) (1-—l%l>ch003w}1 . (11)
T-1)

which expresses the spectrum by means of the covariance function.
Let us now multiply (11) by coswk and integrate over u

from -1 to m. We get (|k| <T)

T

™
§1(1-l%l>ck =‘IR2(w) cos wkd w.
- «

Hence there is a one-to-one correspondance between R(w)

and c,. Often the spectrum is defined as Ip(w) = é% R? (w).

Then -
(1-—l%i>ck = IIT(Q) cos w k dw (12)
-1 )
: andrb '(11) :
y | ’ - : ) VT—l |h| ,
IT(m) = §;~ Z (1-——T—)chc0501h (13)

-(T-1)

Thé'aboVé’vdéfinitioné‘of sﬁectrum and cdvariénce functions
are rélative to.an empirical maferiél Yl,;..,YT( We shall now
define the séme concepts relatively to a well defined stochastic
procesé.

Consider an arbitrary stoéhastic proceés Y(t) 3 t=...-1,0,1,...
Then the joint distribution 6f Y(t1)""’Y(tn) exists for any

n, t >t If EIY(t)zK ©» for any t then the means n(t) =EY(t)

102°

and the covariances o(t,s) = E(Y(t)-n(t))(Y(s)-n(s)) exist. An

arbitrary_ prOcéss is said to be strictly stationary if

R



Y(tl),...;Y(tn)'has the same distribution as Y(t1+t),.;.,Y(tn+T)

for any n,ti,...,t ,T. It fbilows in particular thaf if EY(t)? <=

then since -(Y(f),Y(S))‘ éhd (Y(t+1),Y(s+1)) ﬁas the samé dis-

tribution theﬁ n(t) = n(t+t) and o(t,s) =o(t+r,s¥r), i.e.

n(t) ié‘a constant and (setting3r=*s) o(t,s) = o(t-s,0) depends

on t,s only through t-s. We wfite n(t) =n and o(t,s) = o(t-s).

Regardless of whether Y(t) is strictly stationary of not, we shall

say that ‘Y(t) is 4Aecond onden lbzta,téonafty if n(t) =n is a constant
and o(t,s) = o(t-s) depends only.on t-s. o(h) =o(t,t+h) is cal-
led the autocovariance function. Of coufse o(o) =var Y(t) and
o(h)/o(o) (if o(o)>0) is the correlation between Y(t) and Y(t+h),
the socalled serial correlation. The autocovariance o(h) is obvious-
ly quite analogous to the empirical autocovariance discussed above.
Referring to equation (2) (and neglecting the small term |h|/T for
large T) it might seem natural to define the cumulative spectrum
F(w) Dby means of |

m

S o(h) = JcoswhdF(w) . (14)
, ’ Bk

‘We shall take the integration'to be over the closed interval [-w,7].
Theorem,l. Let o(h)  be the'autOCQVariaﬁce of a sec¢nd‘order statio-
nary process. There exists a unique non-negative non-decreasing
| functiOn F(w) defined over the closed iﬁtefval [-my7],
(1) satisfying (14), (ii) having F(m) =0a(0), (1ii) beiﬁg éOnti—
nous from the right, (iv) having symmetric increments i.e.
F(w;) - F(w,) = F(-w,) - F(-w,) for any continuity points
Wy sW, =Wy 5= W, Furthefmére (v)
>1

F(w) = gégl(ﬂ+w)-+—
T i

o(h)
h

y sinwh (15)
h=1 -



for any continuity point « of F||.
Obviously»(15)_ihdidates‘that the spectral density may be

given by

Fw) = °§;’) +1 7 s(h)cosun '  (18)
he1 | |

18

This is true if':2|o(h)| <o , because in that case we may multiply

(16) by cos wh and integrate to obtain

o(h) = Jcoskw f(w)d w
4+ oo .

Thus an F(w) exists in this case and F'(w) = f(w).

Proof of the.theorem: Lét us first prove that if a non-decreasing

F exists, satisfying (i),(ii),(iii) and (iv), then F is unique
and given by (15) in the continuity points. Since F(w) is non-de-
creasing, we can expand it in a Poﬁrier series.in all continuity
points (See Appendix ITI). The sine Fourier éoefficients for F

over [-m,m] are

1 m . . ) 1 m ) m
= J F(w)sinw kd w = —I sin w k J I
m m _w(

-m -7

\)éw)(\),m)df(\))d‘w

h=1,2,..., where Ig(v,w) denotes the indicator function for a

set S. We get

o
LA
Al

i e ‘
J-‘n’ J,_."Slnwk I(\)ﬁw)(\’:u’)d.wdf'(\)) =

m m . , : ‘
J I sinwkdwd F (v) = o 17)

|
Sl

m ; B :
—1—J (-1 - cos vI) A F (v) = L (o(k) - (-1)5s(0))
mk - Tk

using (14). For the cosine Fourier coefficients we get in the

same manner for hz0

m - ) 1 ™
J F(w)cos(uh<iw ?EI sinvk dF(v) =0

- ) -

v
1
El e
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making use of (iv). Furthermore by (iv)

‘ i i
a = = f F(w)dw=0
o m

-

Hence
F(w) = ) by sinwk (18)
h=1
where ‘bk is given by (17). Writing down this expansion in the
particular case when F(w) = 0;:)(n+w) noting that then o(h) =0

(by (14)), and subtracting from (18) we get (15). Now F(w) is
given for an arbitrary‘cu by F(w) = F(w+0).

It remains to prove the existence of F.

For that purpose we introduce

1 T=h

cy = TR tzl Y(t)Y(t+h) - (19)

which it i1s now natural to use instead of the Ch in (10) since
EY (t) = 0. Furthermore also in the definitions of R?(w) and

IT(m) we now use Y(t) in place of Yt—Y, obtaining

I (0) = 22 R2(w) = & [(2¥(t)cos wt)? + (zY(t)sinwt)?]
T 8mn 8w
. (20)
JEPRID - iwt]?
- Q—TT-T IY(t)e I
(see (5) and (4)). Then (13) is still valid, it is only in the
development from (9) to (11) to replace Zt by Y(t).
Taking the expecfed‘Value in the new (13) we get
p 1 |h]
frlw) =EI (w)== § (1- Jo(h)cos wh (21)
T T ™ - T
-(T-1)
since by (19) Ec, = o(h). Multiplying (21) by coswk and inte-

h
grating, we get (see (12))

m
J fT(m)cosw}1dm‘=
-

{o(h)(l-J-}T(.—l-) if |x| <T

0 Cif k| =z



We introduce

foCo) if wzw
v o wv N ‘. Ly F
FT(m) % I fT(X)d A 1if -mswsw (22)
ﬁ" "
0 if ws-n
Ancians e Cfecoa-LElyie g er
J COS(ukCiFT(w) = (23)
0 if |kx| 2T

-

Obviously FTE)) FT(w) is a cumulative distribution function.
We make use of two famous limit theorems in probability theory. First
. . . 1 .
we know that there exist a non-decreasing function FTC] F(w), conti-
nuous from the right and a sequence T,,T,,... such that

.1 1 . .
lim GY?S)FTj(M) = ETE;YF(N) in all continuity points of F. It is seen from (22)

i

that 1

og(o)

also know that for any bounded continuous ¢(w) we have (dropping 1/6(0))

F(w) is a cumulative distribution function equal to 1 if wz2mw. Then we

+ o 4 o0
lim J¢(w)(1FTj(w) = J¢(w)ciF(w). In particular this

is true with ¢(w) = cos wk. Hence, replacing T by Tj in (23)

and going to the limit we get

o(k) = J cos wkd F(w)

Hence we have found an F(w) satisfying (14). It has symmetric
increments since FT(m) has symmetric increments by (22) and (21).

Therefore everything is proved.

It should be noted that it follows from the development above

that : "

lim E J Ip(dx = Flw)

T o
given by (14) or (15). (We use the same argument as in the proba-
bility theory to show that T = T ,T,,... could be replaced by

T =1,2,... .) Hence if search for periodicities in Y(1),...,Y(T)
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motivates studying IT(w), then searcﬁ,fqr periodicites in the
process {Y(t)} motivates studying F(w), or f(w) = F'(w) if
existing.

We refer to T.W. Anderson (1971) p.374-379, 383-384 for

examples of autocovarians functions o(h) and spectra F(w).

II. ALGEBRAIC SOLUTION OF THE AUTOREGRESSIVE EQUATION
Theorem 1.

For given at;t >k Zk’Zk-l""’Zk—p+1 " there 1s a unique
solution Zt;t> k of the difference equation

Z (1)

t ° 2 ¢3 t-37%¢
To find this solution proceed as follows.
1. Let the characteristic roots, i.e. the roots of the

characteristic algebraic equation

¢po + ¢p_1BP_1+ ..t¢,B =1 (2)
be Hj-leiajimgaj<2ﬁ); Jj=1,2,...,q9, with multiplicities mlmu,n,mq
respectively. Then set ’

| Q | . |
e (A) = jél[Qmj_l(t) cos ajtf-ij_l sunajt}% (3)

:wheréj‘QV, R, are polynomials df degree v and A dénotes the
vector having the p cdefficiénts‘of the polynomials as Qectors.
(The sum of the mj - each of which is counted twice if aj* 0
- should be p.)

2. Let A, be the solution of the system of linear equa-

tions in A,

c o (A) = 23 rzk, k=1,...,k-p+1 (4)
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Joor
.

Find ¥y,...,0,

p-1 recursively from ¥, = 1,

'?r = .g ¢j wr;j-; r=1,2,... p-1 ) - (5)
=1
4. Let D, be the solution of the system of linear equa-
tions in D,
‘ c.(D) = ¥. 3 §=1,2,...p-1 (6)
‘ J J
and set

wj = Cj(Do) 5 J=psptl,... (7)

Alternatively wj is given by the recursion

p
'l’r‘ = Z ¢]‘Pr,_j 3 r=p,ptl,... (8)
J=1
or by the formal identity in B,
_ v j_ 1 i |
p(B) = jzo ij = 5By °F $(B)y(B) =1 (9)
where
1% )
¢(B) = 1- ) ¢. BI (10)
j=1

5. Then the unique solution is

_ t
Z, = ct_k(A°)+ )

e, L (Ag) +V (11)
t i=baq t-k t

V-1 T K

(Note that the difference equation for determining cy is the

same as for determining wj; only the initial conditions are
different.)

6. Vv satisfies the difference equation for every h and

th

corresponds to the case when

Zyeprt Toer Tl =0 = 0

Proof: The uniqueness‘follows recursively from (1).

—-—— -

By a "general" solution of (1) we mean a solution containing



arbitrary constants so that it can be adjusted uniquely to any

value of Zk’Zk—1’°T'?Zk-p+1’ Now, 1f Ct is the general solution of

C¢ = Z"Jt] (12)

and .Vt is any special solution of (1), then it is seen that

Z_t = C_t+Vt is the general solution of (1). Hence we shall first
find a V.. We shall verify that
t .
Ve =05 tsk 3 Vo= __2 a;¥e_; 3 tzh+l (13)
1=k+1
where
min(p,r) ,

is a special solution of (1).

For that purpose we write wj =03 3J<0 3 and ¢. = 0 ;

j>p. Then (1), (13) and (14) may be written

7, = 7, . (1)'

T jzl ?3%0-3 * 3¢ )

LT S - (13)"
i=k+1 *

v, = Z ¢Jwr_ (1)

Substituting (13)' in the right hand side of (1)' we obtain

] ; ‘o0

2¢ Yajve s sta =] a 2¢1p . . +a
j K+l t-J-1 t k41 E 1 J t-1+] t
However, if 12t then Ve 3 equals 0, hence we obtain
‘til °2° til
a .V, .- a, = a.y,_.+a
iskar bogEg 3UETITI TR gy 1B E
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making use of (14)'. But by (13) this equals V, and the verifica-

tion is completed. I

Let us now consider the general solution of (12). It is

easily verified that

c, = 0™a" 5 v=0,1,...,n (15)
where g = ¢t is a (complex or real) root of ¢(B) = 0 of multipli-
city m, are solutions of (12). (x(v) denotes x(x-1)...(x-v+1),

x(O) = 1). Because we have for the right hand side of (12), sub-

stituting (15)

P : P ,
} 6 G-t V6T = g e (g TEY
J'_’lj j:j_ J
Vv
= " g t-egn = ()Mt = ¢
dg” t
° {

i

(using the multiplication rule for differentiation of the product in i

the bracket). Obviously then also ;

c, = t¥6" 5 v=0,1,2,...,n (16)

v

are solutions of (12), since they are linear combinations of 'the
functions (15).

Thus if :GII,G;;,‘..,G'l are the roots of ¢(B) = 1 of

' ; q

- orders nl,;a.;nq, respectively, then

. _ _ t-k
Cy = 1P, (t-KC, (17)

173

I ~10

3

is a solution of (12), where P 3 3=1,2,...,q 3 denote arbi-

nj—l

trary polynomials of degrees nj—l 3 j:1,2.,;,.q.
We shall now show that

z, = C + V

where  C._, and V. are given by (17) and (13) 4s the genenal sofution

05 (1). Thus we have to show that the coefficient of the polynomials



are determined uniquely for any Zh—p+1""’zh by Ct-k+vt =2

tzk=-p+l,eee, k ; i;e.vby

s t-k- | .
.2 Pj(t-k)Gj = Z, 5 tzh-p+l,....k (18)

j=1

since Vt'="0 ; t k. Here we write Pn 1 ° Pj for convenience.
‘ J

However, it is known from the theory of linear equations that (18)

has a unique solution if and only if the unique solution of

3 t-k
Y P.(t-h)G: = 0 ; tzk-p+1,...,k (19)
is that all coefficients of the polynomials are 0, hence Pj = 0.
We write (19)
3 v
Y P.(v)G: = 0 3 v==p+l,...,-1,0 (20)
3=1 J J

To prove that such is the case, assume that there exists a non-zero

solution r

)

P.(v)GY = 0 3 v=-p+l,...,=-1,0 (21)
2y 3 j

J
where the degrees of the Pj are Nj-l énj-l 3y J=1,...,r 3 and
where we leave out polynomials which are 0 ;3 r<q. (Below we fol-
low a type of proof in Edouard Goursat (1933),15.ed. Tome II,p.456-7
is much simpler than the customary proof using van der Monde deter-
minants.) We get from (21)

e Pfiv | |
P, (v) +jZQ(G1) Pj(v) = 0 3 J=-p+l,...,-1,0 (22)

Replacing v by v+l and subtracting we get

r Gj VIV“ El
APl(v)+jzz(aT) le(V+1)G1_ Pij)] =0 (23)

or

vy
AP (v) + .z‘g

Q. (v) = 0 5 J=-p+l,...,-1 (24)
3:23:’ :

Jdt
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where the Qj are pblynomials of degrees Nj-l s 3=2,...,r 3 but
AP, (v) has degree N -2. (We have used the notation Af(v) =

f(v+1)-f(v)). Note that now v goes to =1 (not 0) because of

the argument v +1 in (23).
The operation above on (22) to obtain (24) is now repeated

recursively to obtain

N, roy
A Py(v)+ ] giR.(v) =0
322 i)

r
or ) giR.(v) =0 ; vs-p+l,...,~N;. (25)
§=2 J ]

N,
since A P (v) = 0. Note that v goes to =-N,.

We now repeat recursively r-1 times on (25) the whole proce-
dure used on (21), to get
r-1
hYS(v) = 0 3 vaep+l,...,= } Ny (26)
171

where h#0 and S(v) 1is of degree N.-1. However, this polyno-

mial is‘by (26) 0 for
r-1 r q :
p - 3'21 Ny -_-Nrfp gziNj 2 N +p- jéinj = N,
values, -chh 48 a contrnadiction. Hence everything is proved. Now
all statements in the theorem fbllow easily, This compietes the proof.
| Note that by (4) the coeffiéients in the polynomials in (3)
are independent of k.
Example 1. Let

2e T Ppoq T Peog

with given values of 72 and a
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Z, = -2 +7 ,-a, ta,+ta
o - 3

2g = Zg-ap-aztaytag

It seems hard to find any general pattern even if we write
down many Zt‘
Let us then make use of Theorem 1 with k=0. The solution

of the characteristic equatioh -B2+B = 1 gives the roots

+

31(1 +1iv3) =e

i

wl =

Hence by (3)

i T +Bsin®
C(Al’A2) = Ajcosz t+Bsin 3t

From (4) we get
1

Al = ZO P A2 = - /3(22_1—20) i'r‘
= Ty 1 - inZ ,*
CJC = Zo cos xt /3(22_1 ZO)81n3t | ;
.y
From (5) we get vo =1, v, =1 and from (7)
; T , v . K Vv g .
- \ \ lT_ : 1 1 /-’"’ / . ‘ ~
wr = chosgr+ D281n3 ! ‘ ) )
(satisfying (8), i.e. v, T wr—i-wr—2)’ From b, Ty = 1 we then
- - 1
get D1 =1, D, RE
P zcos L+ lsinﬂr
T 357 V3 3

Hence we have the solution (by (11))
y/ =Z(cos£t.+1sin1t\—z gsin-TLt+
t~ o 3- /3 3-) “-1/3 3

t
'Elaj[ cos g—(t—j) + /%sin %(t-j)]
J:

Note that the last sum from 3j =1 to j=t equals
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‘mzo(atf6m+at-6m—1-at—6m—3—at-6m-u)

- (at+at-1'at-3;ateﬁ) + (ag_g*ai_g-2r_ g3 qg)
+

until the last term a for which the subscript is 2 1. The two

t-]
first terms have one of the forms ZO—Z_l, Z-l’ -ZO, -ZO+Z_1,
Z_ys Zg- Thus‘the‘general paftern‘has been discovered.
Examgle 2. Let

Z. =7, -7, ,+a, 3 t=1,2,...
with given values of Zo’ Z_1 ‘and at; Using the equation for

Zt recursively it is hard to find any general pattern for Zt

expressed by means of ZO, Z-l’ a5, .-

We denote the characteristic roots by Gzl, G;l. They are

the solutions of B2 +B = 1, hence

Gy = 3(/B41) G, = 3(-/B+1)
We have
- t t
C, = A6 + AG,
Hence by (4) ‘
: . _1__ .'_';]__- _c \
Ay = e (Z—1+91Zo)" A, = e(-2_,-G,2)
o A ettt tH1_Lt4
C, = ,5[(91 G,) Z_y + (6777-6,"7) zo]
We find y_ from y_ =y, =1 and
N r r
Vp = Dy8p ¥ D6,

(see (6) and (7). This gives

D, = 6, /VE , D,=-6,/Y5 , y_=¢&tt-elthy/ s

1 2

Making use of



1,.n . ny _ ;3y0=1 ; .n 1
/5(61=6y) = (O ] (2i+1) 5

. =0
' We jobtain %hé éblutién;
3 o t+1 oy . , t+1 : .
S t t+1):1 t-1 Cot i
2y = 2,00 1 (2i+1/5 t2,3) .Z,(2i+1) ot

: 1=0 1=0

i
+ a. Y, .

: j=1 7 "t-3

where

r+1 .

. r (r+1 i

2 (2i+1> 5
i=o _

III. THE STATIONARY AUTOREGRESSIVE ANTEIMPULSE-GENERATED PROCESS

A. The general AR-process

Consider a (second order) stationary process Y _ ;

t
t=...-2,-1,0,1,2,... ; generated by another stationary process
ag s t=...-2,-1,0,1,2,... by means of the difference equation

_ p
Y. = = .2 ¢j(Yt_j—n)-+at (1)
J=1
t=...-2,-1,0,1,2,... where EYt = n . We shall have in mind

situations where the ay ~are unobserved impulses (hence ﬁEaT =0),

the past and present values (aj 3 Js£t) of which influence the
obsefved time series Y,. The process is then said to be ante-
impulse-generated. Of course it is only in that case that the
process is meaningful as a timeseries. Since we are not going

to treaf the inference problems, we may concentrate our attention
on Z, = Yt-n. We shall take care to make an assumption ((ii) in
Theérem 1 below) which secures that the‘process is reélly anteim-
pulse-generated. In the later chapters we shall investigate to
which extent this assumption is also nécessary.

We shall investigate the existence and uniqueness of Zt

defined by means of (1) and we shall study how to express Zt




explicitly by means of a, 3 Tst.

We shall call such a process a general AR (p)#pfbéess and we shall
later use the same name even if the process is not anteimpulse-ge- |
nerated). AR indicates that the process is autoregressive (i.e.
~given by (1)){

Two speciél cases are important in practical application. The
first’one is the case.when the a, are uncorrelated (or indepen-
dent).  In thét case the process is usually referred to as an
AR(p) ﬁroéess.r The second case is the situation when a, 1is given

by

q
» - a1 '
a, = al z 6.a

where {a%} is an uncorrelated process Gla%=0). This process is
referred to as an ARMA (p,q), since the a, are moving averages (MA)
of the al. We shall include the case when q = -w=,

Thé concept of convergence in quadratic mean is used extensi-
vely below. For the properties of this concept the reader is
refefred»tovAppendix I.

Unléss sqmefhing else is Sfatéd, we shall aséume'éverywhere
below that "étationary" meané "second_order stationary" and
"cohvérgencé" means cOnvergenceiiﬁ qﬁadratic means; ;

Theorem 1 IF
» (i) a, t=. ..—j.,O,i,‘.. is ;econd onden stationany , E a, =0,
(ii) ‘fﬁé equation
$(B) = 1-¢,B-¢ B2=---=¢ BD = 0 (2)
, -0 1 2 p
" has all noots outside the unit cincle , then the only statio-

nary process 7. satisfying
7, 0= Y 6.2, . +a_ 3 t=...-1,0,1,... (1)

(with iEZ£=o) is




ag_s¥s = 1 agve g, (3)

where the convergence of the series is in quadratic
‘mean and the v. are defined recursively by

| min(p,r) :

bo =15 ¥y = jzi b5 Yoy 5 331,250 (%)

or more conveniently from the power series identity

$(B)Y(B) = 1 where y(B) = ] y.B (5)
O

If in addition the a, are Andependent then Z, 1is given by
(3) with convergence with probability 1.

Note that the theorem really gives a property of an arbitrany
stationarny brocess Z,. If for such a process a, is defined by

t ‘
(1)', then it is stationary and Zt is given uniquely by (3) and g
&

(4).
Proof: We assume (i) and (1i) and introduce _
) . /
' = yasv, . 5, V_ = a v, . (6)
tk ki1 T t-1 | t L, ivt-1

All the poles of

are Outside‘fhe unit circle (by (ii)). Hence (7) converges for
|B| £ minimal absolute value of the roots of ¢(B) = 0, hence for
|B| = 1, hence Z|wil converges. 'By Lemma 13 in Appendix I, the
series in (6) défining Vt converges in quadratic mean and is
statidnary. Now by the theorem of Chapfer 11, Vtk satisfies

(1)' and hence p
Vtk = le ¢jvt-jk+at (8)

Letting k-® we obtain that V. satisfies (1)'.

To prove that Vt is the only stationary solution we have to

-

"prove that if Z, is stationary and satisfies (1)'s then 2y =Vi.
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By the theorem of Chapter II we know that

Ly = Cpy (B + Vi S (9)

where ¢ _, is given by II-(3) and A = (Aoi,Aoz,...) are the
vector of the coefflclents in the polynomials 1nII (3) determined
such that

§20,-1,...,-p+l (10)

cj(Ao) :'Zk+j 5]

(see II-(4)). The left hand side of (10) is linear in A and
does not contain k. The right hand side have joint first and

second order moments independent of k, since Zt is stationary. i

Hence so have the components of AO. Ci_x Mmay be written as I
a sum of terms of the form /

- /

(t-10™ A . HETR K. (t-x) | (11)

01 ) ] !

;.

Fl

!

where Kj(ték) = cos a(t-k), sin a(t-k) and lHj|<j.(by (ii)).

Hence

1 AL ~ _ L) v
, “ik B X : g

1 e~-17g

h (Ab )" N .
| | S
where oy > 0 3 j=1,2,...,p 3 as k = =, By Lemma 11 in the
Appendix I,

; | , _
var‘c;t (A ) s ( lea ) max var A_: > 0.

j i
: R 2 2 : ,
Therefore c, (A ) -— 0 and Z — V,. However 7,  is indepen-
‘  dent of k hence Ztv=‘Vt ‘and we have proved the first statement

in the theorem. The second statement follows from lemma 10 in the

‘appendlx : .
- The ARMA pPOCeSE
We shall apply Theorem 1 to the spe01a1 case when ay is

a moving average process with infinite many terms in the average.

We denote the impulse by A, which has the form

A, = a, - ) 6.a,__. (13)
- 21 1 t-1



In the moving-average proceSs fhe a should be
ahd‘étatioﬁéry‘ However ‘we need only to assume

statlonary process.
Theorem 2. .If
(1) a3 tE...-1,0,1,
(ii) the equation
$(B) = 1 - ¢1B—----¢§BP = 0
has ail roots outside the unit circle,

(iii) Y e

then the only stationary solution satisfying

N
1

g LT

t 7 2 ¢3 t-j tay

is

uncorrelated

that

a.

t

- is

; 1s second order stationary,

where the convergence is in quadratic mean and the

~are given by the power series identity

w(B)$(B) = 8(B)

where @
$(B) = ¥ ijJ' , 68(B) = 1- 7§

 Proof: Note that if $j is defined by

$(B)F(B) = 1 , where T(B) = Xz

then

v(B) = 27(%} - 8(B)J(B)

and hence

a

(13)

(14)

(15)
Y5

(16)

(17)

(18)

(19)
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ObViouSly At given by (13) is a wide sense stationary process

by Lemma 13 -of Appendix I. We apply Theorem 1 to

el

2, = 2, b2y g+ Ay (20)

We obtain

[ -]
N R (21)
t izo t-171
This may be written
) @ o t'i
Z = - 2 F;' z B.a . . = - z z w'e -.-’a‘ (22)
t ifo ' jso I T izo jz-= * t=1-31

We‘nQW apply Lemma 14 in the Appendix to this 7, =27 where Vg

in the Lemma -is given by

. (23)
wij = 0 otherwise
to obtain
P ey A
2y == a bys == a, Vo0, . . (24)
t je-w J jzae *J jr=w 1 {20 i t=3=-1

We only have to check the assumptions 2), 3) and 4) in Lemma 14,
Assumption 2) is obviously true by Assumption (i1ii) of the Theorem.

Assumption 3) of the Lemma is true because

] tii»" L ltii | |
V.0, . .| S (T By s sl =
j=o jznm_l t-1-] j=o 1 Jz=e t-i-]

1¥:.1 1 ley| <=
o ' k=o k

"
Hne~-18-°

J
since z|$i|‘ converges by the proof of Theorem 1 (all roots of
$(B) = 0 are outside the unit circle). Assumption 4) is true by

(22) with Ctei
Y. == )} ¥

SR I AR I R
:] - 00

Combining (24) and (19) we obtain (15) and Theorem 2 is proved.




Note that the solution (15) of (14) can be constructed by
the folldwiﬁg "formal" procedure. Let B denote the backward
shift operator BZ% = Zy_q- Then Bth = Zt—j and (14) may be
written
¢(B)Z, = e(B)at (14)"
where ‘e(B) is a power series given by (17). Now operating on

(14)' as if B was a number, we get

_ 6(B) - _ 2
Zt -_m at = (1+w1B+sz +...)at
- R2 '
= at-+w1Bat + sz ;t+..
having deVeloped the function 6(B)/¢(B) in a power series. Now

returning to the original interpretation of B as an operator

we get Bja_t = at—j from which (15) is obtained.

C. Autocovariance and spectrum of second of stationary ante-

impuls-generated AR and ARMA processes.

We now assume that the at are uncorrelated with Eat =0

- 2
and varat-o
Let us first consider any stationary anteimpulse-generated
process ‘
- Z, = Z“’atj » v =1, z|q;j|<m (25)

where the convergence is in quadratic mean,

. : 2
Zyp = Z w] t-3 Ly (26)

as. m-» o,
We refer below to the lemmas in Appendix I. We have from
Lemma 3:

- ; - 2 . 2
EZ, =0 ,varZ =EZ? = o} Zq; (27)

Applying Lemma 3 to ZEZtmat+k we get



EZ

tTt+k

] ) ; K o
tat‘+k =0 for k>0 ) EZ_ a ?wkqa for kg 0 (28) )

Applying Lemma 3 to 'EZtht_k we get from (28) and (26) for the

autocovariance 5uncx£on (autocorrnelogham)

- (29)

©0
o(k) =EZ.2, _, =j§

2
_¥3¥5xCa

(setting wj = 0 for j<0).

Let us now consider the stationary 2 satisfying the auto-

t
regressive equation
Zt - ¢1Zt~v1+.'.+¢pztﬁp+at (30)
where all roots of ¢(B) = 0 are outside the unit curcle. If

we multiply (30) by Zt__,h and make use of (28) we get for h>0

and h=0,

o(h) = ¢1o(h-1)+---+¢ o(h-p) 3 h>0
P (31)

e (0) ¢1o(-1)+...+¢p0(_P)4,0;

With h = 1,2,...,p, these are the Yule-Walker equations. They

can be solved by USiné the theorem of Chapter II. We get

q
5 . : 1t
g(h) = jzi Qmj_l(t) cos ajt-+ij_1(t) sin ajt]Hj o (32)

.where the p coefficients in the polynomials Q and R are
determined by settihg h =04,2,..,,p~1 and makihg use of

o(h) = o(?h). Hence o(h) 1is expressed by means of o¢(0). Inser-
ting in the second equation (31) we can express o(0) by means

2 , . . .
of Ga .  Hence we have obtained the autocovariance function in

terms of the structural parameters ¢1,...,¢p and o,
Example: Z, = 0%, _,*ag lo] <1
We get

o(h) = ¢.0(h-1) for h>0



hence -

o(h)

¢ho(0)

Furthermore
a(0)

2
¢o(-1)-+oa
Since o0(-1) = 0(1) we get

a(0) = ¢ ¢o(0) +o; . A\

Hence o(0) = 9, and
s(h) = ¢ho;/(1—¢2)

for r =z 0.

v

The Yule-Walker equations (31) are often used to find esti-

@ates of ¢1,...,¢p,o; . The estimates
c(h) = 1 Tih Z,2
T-h L, “tt+n
c(0) = % § 72 oY
T t=1 t

N

are used for o(h) and o, in (31) and (31) is solved for

¢1,...,¢p,oa. (If EZ %0, then Z_ is replaced by Zt-z in

(33), where Z = %"2£=1 2.
We now consider the case, of an ARMA (p,«) process (14). It

follows from (15) and (28) that Zt and I h>0, are still

uncorrelated. We introduce the cross-autocovariance function

y(h) =EZ (34)

+%t-h

which is 0 for h<0. Multiplying (14) by - a and taking ex-

t-h

pected value we get

Y(h) = ¢1Y(h—1) +¢2Y(h—2)+---+¢pY(h—p)+ 0 h>0 (35)

2
ho% ?

Y(0) = 0;

fo¥ans

From these equations Y(h) can be expressed recursivéiy‘hy,



- 29 -

2 . . . .
., 6., 0o_ . It is seen that Y(h) is "stationary", i.e.
i? i a ?

of ¢
indepehdenf of t.
| Let us now mulfiply (14) by Zt-h and take expected value.

We then get

o(h) = ¢1o(h-1)+- . -+¢po(h-p) - eiv(-h+1) + 62Y(—h+2)+. .. (36)
h>0
‘0(0) =¢1o(-1)+'-'+¢po(-p)-+o;'+91Y(1) +92Y(2)+... (37)

‘With Y(h) determined from (35),we can obtain ¢(h) from (36) and

(37), making use of o¢(h) = o(-h) ; h=1,2,...,p-1.
Example: Consider the ARMA (1,1) process

Z :¢Zt—1+at'ea

t t-1

We obtain by (35)
Y(0) = o; , Y1) = ¢v(0)+ 862 , v(h) = ¢Y(h-1)

if h>1. Hence

v(h) = " lprero?
From (36) and (37) we get

_ - 2
o(0) = ¢10( 1) + o * e Y(1)

o(1) ¢ o(0) + @ 0;

- Since o(-1) = g(1) we get
2.
5(0) = 1+9°-2¢6 o2
1- 42 a

From (36) we have
o(h)

¢oCh-1) 3 h>1

hence o(h) = ¢h_1o(1) and

h-1 (1-¢06)(¢-6) 02
1 - 42

o(h) = ¢ s h>0




Let us now introduce the generating function for the autoco-

variance function
+ o

J(B) = ¥ o(h) B" ; (38)

- 00

‘Introducing (29) into (38) and rearranging the terms we get
J(B) = o2y (B) y(B™1) o (39)

In the case of an ARMA process (14) we have ' ¢(B) = 9(B)/¢fB) and

hence , -1.
' 2 e(B)o(B )

a 4(B)e(r L)y . - ; (40

Y (B) =0

So by expanding J(B) given by (40) in a series (38), o(h) can ,

¢

be expessed by means of o ej. (It is easy to see that (38)

2
a’ j’

converges in a proper annular region if )(B) is given by (40)).
An important general result follows from‘(uO). We have for
an arbitrary second order process for which J|o(h)| <«, that the
spectral density is‘given by
£ = hijmo(h)eixh (41)

Combining (40) and (41) we get for the spectrum of the ARMA (p,q) process

A -2i -
2 8(e"7)ole ") (42)

1
f(A) = = ¢ . v
27 a ¢(ekl)¢(e-xl)

Hence the 4pectaum of an ARMA process (14) can immediately be wrnitten down.

Thus if 2, is ARMA (1,1)

t
2y T g vap -0a
we get
0; 1+62-26 cos A

1+$2+26 cos X

We refer to Box and Jenkins (1970) page 67-84 where the autoco-
variance and spectrum for some important AR and ARMA processes

are given.
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D. The Gaussian ARMA process.

Let‘,Zt‘ be stétionary and defined as in Theorem 2. Assume

in addition that the a, are independent and Gaussian. We make

+

use of (15)

to prove that then 7. is Gaussian. By (26) 2y =2y, converges

in probability to 0. On the other hand

Zom = jz wj'at-j ; tzto’to+1’f"’t1‘ (43)

has a multivariate normal distribution with covariance matrix
given by

om(k) =EZ, 7 z '2 .

tm t-hm j ] h

Since'.ilel <o, then Ewg ‘aﬁd zijj-h converges. Hence it
follows that as m-+« then the variables (43) converge in distri-
bution (e.g. by meéns of characteristic functions). Then this also
'is true for the variables 2 H fzto,...,tl. HoweVer, these variab-

t
les are independent of m. Hence they anre multinormally distributed.

E. Prediction in AR processes.

At time t we want to predict 2., ; m>0 (disregarding

sampling errors in estimating the ¢i). It is natural to use as a

...,) of past and present obser-

predictor a function ¢(Z t 1,
vations which minimizes
- 2
ECO(Zy 32y y5e-0) = 2y
i.e. the predictor
2, (m) = BB, |2 5% se.s) (ny)

In the case of an AR-process with independent impulses we get from
Theorem 1 of Chapter II

Ziym * ctgAO)v+Vt+mm ‘ o (u5)



where ct(AO) and Vismm are given by;gquaﬁ;éns-(s) and (11)
of Chapter II, and the vector A, is. a function of the random

variables Zt”zt-i""’zt-p' gngany

Cr"‘t(A) = Z_t; I“t,t“l}m~‘st"P+1l.“"

We have from (45)

t

Z,(m) = Ct(Ab) 5 Q (t) cos ajt +IQ 3 1§t)81nuajt]Hj (46)
Also from (1), replacing t by'.t+m, ~f~ 
Z(m)-%; m11n.“+¢ 1%}1)+¢th.. ptﬂwp ,m p
- (47)
Z (m),-¢1z (m- 1)+...+¢PZt(m-p) . i | N mf»p

Except in very simple situations thé.recuféinfformulae_(u7) is
preferable for numericable purposes;~bhf (Hé)‘giVes an;explicit
analytical expression and is usefu1 in qﬁé1itafivendiScusSions
of the prediction formula. | N R

A third expression follows from the second expression (3)

- t : : ] - o »
Z,(m) = AiViamei * .g af;j¢j4mﬁ-_‘ )

where the a; can be cbmputed-from (1). (u8) reflectS the fact

that ai’ is unpredictable for i >t,



CHAPTER IV. THE STATIONARY AUTOREGRESSIVE tPROCEss’WHICH IS

'NOT ANTEIMPULSE-GENERATED

A. Sufficiency of the assumption about the charactéristic roots
Theorem 1; If

(1) a t = eee = 1,0,1, ¢es is gepondubrdef'statiOnary,

t;
Eat =0,
(ii)  the equation
@(B) = 1-9,B-0,B2=ese-9BP =0 (1)
| 1B 0% - eeem@BR =0
has no roots on the unit qiréle;'then'thé only sfaticnary

process satisfying

is ’ o FAR |
+o

t ,"Zat_j¢j (3)
where the wj are determined in the'foildwing méﬁner, ‘Wfite
©(B) = (B)wZ(B) whéve wl and wz'are polynOmials'ahd'all the p-q
roots of wl(B) 0 are outside “the unlt 01rcle whereas all the q roots
of wz(B) 0 are inside the unlt c1rc1e Then expand‘ ml(B)‘ accor-
ding to powers of B and wQ(B) accordlng‘to powefsjqf '% and
‘multiply the two power series tb‘obtain the idéntity~ |

1 = q).Bl‘ v T » o (4)

e Pe, B T L Vi

defining the wi.

Proof: (a) We shall first coﬁsidéf.the'céée whéh"q't p and

hence wl(B) =1, QQ(B) = w(B)v: i.e. all the roots of (B) =0

are inside the unit circle and the w;i' are fOUnd from
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1 __lp 5 3L v i v | ‘ 5
m}' (B) /jZOwP—j(B) | jgpw'jB _ ‘ | (5)

(where wo = -1). Hence in this case wj':'O for j > -p, and
we have to prove that
2, = Y v .a,.. e o (6)
t . - t+] ‘ L
jzp 3 i | =
We shall reduce this case to the case.deélt.with in
Theorem 1 of Chapter III by introducing  §; = Zy{ , §§§;'reversing

the process. We find from (2) -
Z_, = Ww. Z_, .. *+a,
t 321 J t+J. t
We replace t by t-p and then‘.p—jv by. j.fdhder the summation
sign and get | B

Z = Yo
=0

t-p p-t

Solving for Z, we get

72, = )@

L7 . +3 | R (7)
t j:l J tPJ . . L o

where

®. = -@__./@ 5 j.; 1,2‘9‘--y9p""1)‘

] P-] P (8)
o = 1/ a, = ~a___ /o |
%p T % 0 % T Tt/
The characteristic polynomial for (7) is now seen to be
®(B) = 1- §6.8) = —o(x)BPr0_ o (3)
j:]_ J B o P : . o

Thus @(B) = 0 has all roots outside the unit‘circlé and we can

apply Theorem 1 of Chapteb III to obtain

o . .
5 .y Ty . , R (10)
E wj at-] : » R ‘

t 520
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where the $j are given by
1/3(B) = § V. B3 | (11)
j=o0 J
We shall now rewrite (10) and (11) in terms of wj and wj.

From (9) and (11) we find the relationship between . and ¢

8

1 ~ 7
- ¢ /BPo(2) = . B
wp w(B _ wj

1=0
i.e.

/o(B) = - 7.p7 3P
®,/® ) jZO Vs

Hence by comparison with (5)

~. = - . 12
Vs ©p¥_3-p (12)

Hence from (10) and (8)

= 2 Yy . a .
. - t+
j=p 3 ]

which proves (6) and the theorem in the case when q = p.

(B). We now consider the case 0 <q<p. The equation (2), i.e.

©(B)Z, = a, may be written
0, (B)A, = a, (13)

where

A = 0, (B)Z, (1)

At is stationary by (14) and by Theorem 1 of Chapter III we
have from (13)

A = )
t 520

Ajat-j (15)
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By (14) and (a) above we have

g = g “J S ae

We have from (u)

‘ o +o ‘ R : :
Y. = 2 A . Ka 2 C e ‘ (17)
L7 e, 1 3 Tyttt el |
defining As =0, Kp 2 0“if s<0, r<q.

Now, from Theorem 1 of Chaptef‘iII,“(q) ahévé and (4) we

have , .
1/¢,(B) = ({) Ay B, 1/0,(B) = Jig BT,
| oy (18)
< (B) = Vu.Bl
~v(B) = 1/0,(B) v, (B) -i:{_:ia

By well known theorems about analytic functions the three series

(18) converge absolutely in the regions |3| <R1 s |B] SRZ R
<|B| <R1 s respecively, where Ri is the minimum mbduius of

roots of ¢,(B) = 0 and Ré is the maximum modulus of the root

of wz(B) = 0. For B =1 this implies

Inglcm s Tleglem s Thgles a9

We now apply Lemma 14 in Appendix I with Z = Z_ and

t
Ti ki B =jZO i Maiog

to obtain

Z, Z a3 i

ET S “i M43

which by (17) equals (3). We only have to check the assumptibns

in Lemma 14. Assumption 3 is true because

z |z i 't+l IleK |2|X = Zlkllzlle'( m

by (19). The other assumptionsare_triVi?llytrQe.'

b
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B. The necessity of the assumptions about the charaeteriStic roots
We shall now show that the requirement about the characteris-
ti¢c roots not being on the unit circle,is a‘neceséary condition i
for the AR-equation to have a stationary solution. For convenience
- we make the assumption that the spectrum offthe,impdlse‘process has

~a density.

Theorem 2. Suppose that {at}  is a seéoﬁd'qrder stafionafy
process, the spectrum of.which‘has,éontinudus‘poeifiVe{density..
Furthermore Ea, = 0, varatléo; | | i |

Abnecessary and sufficient condition for AReeqdainn (1) to
have a stationary solution is thet the chafacteriStic’aigebraic
equation (2) has no roots on the unit circle. If tﬁis‘condition
is satisfied, then the stationary solution is‘givehiby (3)..

We shall give two proofs. The first ppoof‘assﬁmes fhat} {a}
is an uncorrelated process. It'is intuitively‘aﬁpealing and is
based only on very elementary propefties abdﬁf secehd order mean
convergence. - The second pvbof assumes no exfra.reetriefion and is
somewhat briefer; it is based bn”the fundamentalbrelainnship
between the autocovariance functioh_and‘the epectrum (see Chapter I,
Theorem 1). The‘impatieht reader shouldltﬁbn\tdfthe-seCQnd proof

on page Uu0.

Proof (i). We assume now that {at} is uncorrelated. ‘We use
proof by contradiction.
Assume first that p = 1 and that the root is'equal to 1.

Then [following R.W. Andersen (1971) page 171],

Zt =z th_1 -t-a,t
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and hence

Dpmlyog TaAptrrita o
- = 2 2 - ‘= . 2 2 - .
var(Z -2, ) = E2¢ +EZ2___-2EZ, 7, s0, where o) = vara, .
. , . . - 9p72 ; = 2 502
Hence if Zt is stationary 2EZt < 2EZt Zt—s = 2EZt, s§05

The left inequality follows from Schwartz inequality. Hence

2.

HEZE 2 s0, which is impossible since s may be chosen arbitrarily

large. [However, if o2 = 0, a

a = 0, then Z, =127 'and Z, =7

t t t-s t =%

is a trivial stationary solution).

Assume now that p>1 and the characteristic equation (1)

~

has a root B=1. Then we may write w(B)=(1-B)(i-B$1-y--~Bp-1wp_1)
and Vt defined by | |
Ve = 247002000 70 T Zipag (20
satisfies
(1-B)V, f Ve=Vioq 7 a4 ‘ o (21)

Now , if Zt is stationary, then by (20) Vt is stationary.

This violates (21) by what has just been proved. [However if

o; = 0, then V. =V and by (3) if no other roots are on the

unit circle

4+ 7
Zy = jzmwjv =AV=2]

Consider now the case of two cohjugate complex roots of (1),

eimi ; 0<a<wj on the unit circle. Take fipst the case when
p =2

Z, = 02,4+ 0L _,ta, O
Then>the roots of @(B) = 1--wlB--w2B2 avév et i and only if
9, = 2CcOSs da ®, = -1, hence.

@(B) = 1-(2cosa)B + B?

1l

(1-Bel®)(1-pe %)
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We define

V. =7, -e %7, o (23)

from which we obtain
_ _sia ia - (s=1)ia
Vy = e Vitage Ta, g+t te ) (25)
Hence
- EIV eSiGV |2 - Elsi1 eldklz -
n.= t t-s! qt-k -
k=1
- iok ¢ -iak - 2 ' ‘ : )
= Ela e iatfke = sal ‘ | _ G (26)
On the other hand
. __sia uyk__-Siag -
o= E(V -e” TV, _ ) (Vi-e Vt—s) z
- %__sia % _ _Slap g o ok '
=EV Vi-e" EV VP -ePYEVIV, +EV, VP (27)
(where V¥ denotes the complex éonjugateYOf V);
However, from (23) we have,
¥ - : ia _ =ia
EVeViog # 2B 24 2y g€ B2 2y g8 Ezt_l 2tos-1

which is independent of t . Hence (27) reduces to

_ 2 _ sia * _ -sia * ‘
w o= 2E|V |" -e” EV, V,_ -e EVeVig
Hence _ ’
2 Y 2 2
lul s 2E|V |" +2|EV V] | s 2E|V, |+ 2E|V, | (28)

by Schwartz inquality. Combining that with (26) we get again
uE]Vt|2 2 so;_, which is a contradiction if c; > 0 . Hence

there is no stationary solution of (22).



- 40 -

[However, if o2 = 0, then by Chapter II,(22) has a sblution -

a
Zt= Acosat +Bsinat
Hence we get with o¢? =z varA, t? = varB and y = cov(A,B) ,
cov(Zt,Zt_S) = o2 cos (t-s)‘+(tzvoz)sinaizsinqsf+ysin(s+t)a.

. : d i oL . :
With s = 0 we have anuu‘Zt s 2ay ,»hence y = 0  1if Zt is
stationary. Furthermore o2 = 1% and from EZ, = 0 we have

EA = EB = 0. Thus
EA = EB =0, varA = varB , cov(A,B) = 0

Then we verify that 2, is statiohary;]

Consider now the case of at least one‘pairuofvcomplex con-

jugate roots e *® on the unit circle and p>2. Then we write

- - 2 S Be..oem o pPm? ‘
9(B) = (1-¢ B+B?) (1 wlB ‘$72B‘ ).

where ¢ 2cos a . Then

V. = 7 -8, % e =B

R ST Y 9p-2 Zt-pe2. (293

satisfies

Ve 2oV -V o tay ‘(30)

Thus, as before, if Zt is stationpary, then Vt'_is stationary
by (29) and hence from what we have proVed above’aboutv(22), Vt

can not satisfy (30), which is a contradiction; Then everything

is proved.

Proof (ii). Let us assume that Zt is Stationary,ahd satisfies

(2). We want to investigate if this is consistent with ©(B) = 0

having roots on the unit circle.

For that purpose we first find a PelatiOnship.betweéh‘

o (h) = Ea,a,_, , o, =E2.2. . (3D



We have from (2), with ¢, = -1

S D P T Y

o (h) = EjZO ©5 Zy_j j;o 2 z,c_j_‘h ;,ij O oz(lh-jf‘k) - (32)
For the cuﬁulativeISPectra FZ' and> F#;for' fit} ;na' fafl >
respectivély, we have by I B(14) | |

: iih : iAh . Loy |
o (h) = [ et dF,(}) , o (h) = Ielv _ aran.)h B (33)

- -n

recalling that FZ and Fa have symmetﬁiq_iﬁCremenf$. 'Intro—

ducing (33) in (32) we get

™. L ST
f el}\hdFa(A) 2 0. wkIelX(hJ+k)

df‘(k) z
Lo ok ] — Z

1 h ¢ _=1A]¢ 1ik: vy

-
Hence
T iih T iih i
[ e dF,(2) = [ e""oete™ ™) dF,(2)
A s _ _ oA

By the uniqueness property in Theorem 1 of Chapter I it then
follows that | 7

- : .-'A 2 ' - LA o _
dF_(0) = Jee™ M| dF,(0) - s

Hence we get, integrating and using the mean value theorem,
~ix, 2 ) L o
G (F,(u+8) = F,(u) = F_(u+8) = F_(W) | | ‘(36)

where min(u+é8,u) = 2 £ max(u+é8,u).

There are at most p roots of ©(B) = 0 on the unit circle.
Hence |o(e™*M)|? q

= 0 only for (say) A =»x1*.,;;x 5.9 =p.
Now since F is continuous by the assumptidh we‘get\from (36)

Fz(u-o) = FZ(u) if u # Al,.;.3xq . But

fo(lj) = FZ(Aj)-FZ(Aj-0)

may be > 0.
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EREREE we also have from (36)

4 .
\ £,(0) = 3 F, () = £ G0/ |ole tHy) (37)

. . d . . \
since fa(u) ol Fa(p) exists by assumption. Hence fZ(u)

exists for w #* A ..., and (see Theorem 1 of Chapter I)
1 q

il q
[ £,G0du+ ]

fO(Aj) = var Zt < ® (38)
- 7=1

It follows from (38) and (37) that

m fa(u)

- < o (39)
-ll,I)'Z

I =
- |p(e

We have, if A 1s one of the roots Aj¢0 and m with multiplicity r,

. . . - y p s
ole 1p) = (e lp—e 1A)r(e lp_elk) T e lu)

Writing

e_lp-e—lx = e—l%(A‘Hfl) 2i sin %(u"l)
we get

I = | h(p) du

“1 o4 sin®T 3(u-2) sin?T 3 (un)

where

h(w) = £_G0/[Fe™ |

However, since

sin®® 3(u=2) ~ [3(u-0)1°7

asymptotically, when u 1s close to X, we get that I diverges,

contradicting (39). The case A=Aj:0 or m is treated similarly.
Hence w(e_lu) = 0 has no real roots and the necessity of the
assumption in Theorem 2 is again proved.

The sufficience follows from Theorem 1.
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The theorem has as an immediate consequence

Theorem 3. Let {at} be an uncorrelated second order stationary

process, Eat =0, vara, > 0. Assume also that ‘1—elB—~--—%lEq=U
has no roots on the unit circle.
A necessary and sufficient condition for the ARMA(p,q)

equation

Zp@y 2y g ccem @ Ty, T A 0gaL g - -0y o (40)

too have a stationary solution is that the characteristic algebraic
equation (B) = 0 has no roots on the unit circle. In the case
when all roots are outside the unit circle the solution is given by

Theorem 2 of Chapter III.B.

Proof: Obviously Ap = ag-8,a, 4= —aq t-q 18 stationary,

and the covariance-function is given by

q

EA_A__, = ) 6.8
t t-h 3 k=0 j 'k

1

cA(h) ca(h—j+k) (41)

where 645 = 1. Hence by (33)

n . .
v ir(h-j+k) .
ap(h) = § s ak_f“e dF_ (1) =

k

]
i -ixj;2
‘j“|1~zaje ["dF_()).

Hence the spectrum of {A_} is by Chapter I eq. (14) given by

T

iy
dF,(A) = |1-0je P Ear, 00

But by Chapter I eq. (15), Fa(A) = E%%l(u+x) . Thus the density
of the spectrum of {At} exists and is given by
£400 = [1-8, e 1% G0y /2w (42)

Hence fA is a positive and continuous function of A .

This proves Theorem 3.
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C. Another proof of sufficiency (Theorem 1 in section A)

We shall give an alternative proof of the theorem in IV.A,
which naturally links up with the proof (ii) of necessity given
in the foregcing section. The proof is based on a famous result
about the Fourier representation of a discrete stationary process
by means of a process with uncorrelatsd increments, It states
that to a second order stationary process Zt can be assigned a

process ;Z(A) with orthogonal increments, i.e.

E g (A% —;Z(m)(;zu"'>-z;z<xi")) =0,

"

AV > A" 3 A s li"' (43)
such that for cach T
7 = ? I s (1) (4y)
v = e d T, (N

the integral being defined as a limit in quadratic mean.
cZ(A) -cZ(X‘) is uniquely given by 2, for any (A,a2'). Hence

0. Then

it

we may fix gz(—n)

Elc(A)]2 = F() (45)

where F(A) is the spectrum of the process given in section I.B.

Then let us consider the stationary Zt defined by (2), i.e,

v
= Y . . !
Z, 4%1% Zt—3 ta, (486)
J
where a, is stationary. We shall prove that provided
- - - a4 e p
w(B) = 1-¢ B wa

has no roots on the unit circle, then

+ o
Z, = .2, (47)
t j:z-wlp] t-]

where the y. are given by (4).

J
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For that purpose we introduce (44) and

w . :
a, = | eIt dz_(1) (us)

in (46). We obtain

L)

v . . a
[ e oe™ Hag, 0 = [ MM a0
2 2

However since :a(l) is unique, we have

¥ -ix
[ wle™™") ag, () = Y (49)
bl L}
or
1
dg, (V) = — dg_(A)
Z ole 1A) a

where w&flk)# 0 for A real by our assumption. Hence from (4u),

we have

n .
At 1
2, = [ et S d g (M) | (50)
t g o(e 1A) a

as the unique solution of (46).

Introducing (4) in (50) we get (47), since

T . <. 3
f elAt —1A)J
-

wj(e dca(k) = Y. a

jt-3

by (48).
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V  THE UNCONDITIONAL LIKEL1HOOD BY AR PROCESSES

. ool i cd N Lori : .

We shall derive th? likelihood of the observations
, e s ‘ .

.,Zn from a statiohary AR process defined by

7 '_ﬁi.al‘v' i -‘I

where EZt = 0, and the a  are independent and normal with vari-
ance o;. The roots of ¢(B) = 1~ ¢1B—--'-¢pBP = 0 are outside

_the unit circle. Thus {Zt} is Gaussian and the observations

Z(n) (Zl,...,Zn)' have density
"7 o (p) 3 -2§a! z'm’(‘p)z
£(2) = (2m) o " m P77 e (2)
We must determine mép).
We have for the conditional density of Zp+1""’zn’
. (
given 2 p) . (Zl,...,Zp)'
. § y
_n-p 202 5 e €3
- a =
f(zp+1,,..,zn|z(p)) = (2m) 2 aar“p t= p+1
From
(n) (p) (p)
£ (z "7y =fp(z P )f(zp+l" .,znlz P7y. (4)
(3) and (2) we then get
(n)'_(p)_(n)_ _(p)' (p).(p). § ( )2
Z m 2z : i d. (5)
n 7 T %p §=E+1 2 3%t
where we write ¢0 = -1. Hence we can concentrate on finding
(p) _ (p) -
mg? = (n{8)) 1,5 = mips
(p) _

writing briefl m. = m...
riting briefly ' m;y, = my;

Now we have from Chapter III, B (15) that

Z, = ) . a, -
t j=o 1 t-)




- 47 -

Lo-t F .Z wj Ge-t-j

However, for any c¢, the process {at} has preciseiy the same
~ distribdtion as {aok{i; Hence iZ } and {Z__.} have the same dis-

i o oo | . L
tribltion dhd we trien Hdve (il =h+1$ tHat (z

1,».-,Zh) and
Zo,....ly) dte identicaily dlgtvibhtbds Hehoe
(p) _ _(p) .
Mi3n ° ™n+1-j,n+1-i,n ()
From (5) we get
( 0) ($2, e )
: ¢p ¢p¢p— ’¢p¢o
o) , : 4’p_1¢P:¢p_1’--- 5
P p) I . .
mp+1 mp N : (7)
. 0 .
DY SO N Y SO 2
\ J L¢o¢p, ,¢ J
Hence
(p) - . :
Mijp+er TMi3 T Ppeier®pejer 3 THISP
m(p) e (8)
p+1,3,p+1 o'p-j+1

On the left hand side of (8) we make use of (6) with n=p+1 and
of (8). Then (8) reduces to

mp+2—i,p+2—i'+¢i¢j = mij +¢p-i+1,p-j+1 3y 1,322 (9)
¢o¢j-1 = m1j + ¢p¢p—j+1 (10)

We now make use of (6) with n=p, to obtain the recursion formula

Mig ¥Mioq,4-1 " ®i-1%5-1 7 ¥p-i+1%p-ge1 (11)
to be combined with (10). We get for j21i,
(p) i
mij p = ij =szl¢i_s¢j_s" 2 °p+s -3 p+s 3 (12)
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Hence the Likelihood of (ZT,...Zn) 48 explicitly given by (2) with n=p,(3){4)(12).

Obviously we may also write

_n 1 -5;7 S¢(z)
- a
f (z) = (2%) 7th nlm(p)te a (13)
n a ''p
where p
oY (n)
Se(z) = 1 DT 0y
s,t=o
and where the Dég) are quadratic forms in Zl""’zn' They are

the sufficient statistics relatively to our observations. We shall
derive explice expressions for them.
We then rewrite (12)
i-1 p-d

m. . = ¥ e_¢ - ) é_¢ (14)
1 1+d szo S s+d s=p-d-i s's+d

and get for thefirst term on the right hand side of (%)

p-d
1 - iy
z'mz -g iél My ied %i%ed (15)
The inner sum in (15) can, by (14), be written
¢_¢ 2.2, - ¢_¢ Z:Z. =Q,~Q (16)
i1 szo S s+d “1i71i+d i1 s=p-d-i+l s's+d"171i+d 1 %2

We have for Q2, substituting p-d-i+1=1' and rearranging

p-d p-=d p-d
the summation by J § = Y} ¥,
P51 87 se1 i-1

. pzd S
Q = 521 *s%s+d i§1zp-d-i*1zp'i+1

Hence, substituting again p-d-i+1 = i',

p-d p-d

Q, = ¥ ¢ ¢ ) zZ.2.
2 71 887 jipgogey 1AM

(17)
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For Q] we have

P'id 12 pid pid |
Q, = LR 4.2, = ¢ _ b _ 2.2,
1 151 g5 8-17s=1+d7i%ied T 2, L. Ts-17s-1+d"i7i4d
or T
p-d-1 p-d v
Ql = sz P54y ) LTI (18)

o) i=s+1
Comparing the lower 1ifiits in the inher sums in (17) and (18)
we observe that the expression for Ql--Q2 must be written diffe-

rently, according as 2s <p-d, = p-d, > p-d. We get for the coef-

ficients of ¢s¢s+d in (15), in the three cases respectively
-d-s s
(p) P
D = Y z.z. ., O, - 2.2,
r,s+d izs+41 T 1¥d p-d-s+1 ; i+d
or
-t S
(p? P
pD.2'= )} z.z. , 0, -y z.z.,.. (19)
st izgeq 1 itt-s p-t+1 i%i+t-s
according as s.<p-t, = p-t, »>p-t. Hence we may write for the
first term in (4)
p
(p), (p)
1 . - y
z mp z = sxtDSt o9, (20>
k]
(p) . .
where D_". is given by (19).
b}
Now let us find D;né in (13) by adding the last term in
»
(5) which may be written
3 ) 3 T
. ¢ . 2. L Z. = o, ¢ 2:2: . . (21)
t)s t's j=p+i j=t%j-s tss t's i=p+1—t,l i+t-s

Combining (21), (20), (19) and (5) we see that we get the same

(n) , (p)
st a8 for Dst , only replace p by n.

Hence we have

expression for D

Theorem. The likelihood function of the observations

Zyshoseees

AR-process (Zt} with independent and normal (0,c) impulses is given

Zn in a p-th order stationary anteimpulse-generated




by (13) where

[ n-t
. Z.Z... . L,if s+t <n
i=s+1 1 1+t-8
D(n) =D _(z) = {0 if s+t =n (22)
st st i
i
- 2:2; . _,if s+t>n
| i=n-teq T ATECS

and m;p)is.asymmetric pxp matrix with elements given by (12).
The Dst(Z) constitutes a sufficient set of statistics for
Zl""’zn'

Note that mép) does not depend on n, hence the.numerical
work connected with computing mép) will usually be trifling.
Note also that sirnce s,t sp, only the first sum will be of inte-
rest if 2p <n.

In the case when =EZ, is unknown, i.e. Zt-u is given
by (1), the likelilhood is easily written down. It is only to

replace D__(z) in (22) by

st
n-}-:t _ _
D . (z-u) = 2.2, - (n-t-s)(z__=~-wu)(z__ - u)
. . +1 -~
st i=s4+1 1% 1+t-s st ts
where Est is the average over z; 5 i=s+l,...,n-t.




V1, THE DISTRIBUTION OF THE EMPIRICAL SPECTRUM
We shall in this chapter consider a process Zy given by
Yy, V ' (1)

S [
- Q0

oy

"

Y

+ .
Hwr~1§g

S

where {Vt} is d process of independent variables which is second

order stationary with méan ¢ anhd vdriance o2. Furthermore
Lyl <= (2)
We then have for the covariance function
o.(h) =cov .l . = o? zys Yoon (3)

and the spectral density of {Zt} exists and is given by (see Chapter
I, B, eq.16)

to . 2 +® .
FOA) = 5= h{ eMotny = g- |1 v, e*® (4)

Obviously, the assumptions are satisfied in the case when
{Zt} 1s an ARMA process (see Chapter II,B, Eq.(15)).

We shall derive the asymptotic distributions of the empiri-
cal spectrum given in Chapter I. B. More precisely we shall be

interested in the joint asymptotic distribution of

T
A(r) = % ) (Zt—g)cos At
t=1
-T$AST (5)
2 T X
BOM = & tzl(zt-g) sin it

(see Chapter I, B, eq.(4)) for different values of X as T~ =,
The general idea of the proof of the theorem as given below,
is that presented in T.W. Anderson (1970). However, I have found

it necessary to expand upon and deviate from some details in

Anderson's proof.
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We obvicusly have EA(A) =EB(A) = 0. The exact expressions
for the covariances for the pairs (A(XA),(Ax")), (B(X),B(A")),
(A(A),B()') can be found in Anderson (1970) p. 447, see eq.'s

(73), (79), (80); (81). It is also proved in Anderson (see p.477),

that
limTvar A(A) = 4 nf(x), limTvar B(Xx) = 4w (X)) (6)

Trw
when A# 0, ¢ 7 and
1im T cov(AMAVI,AA1)) = 0 5 A#t A (7)
Also the pairs (B(A),B(A') and (A()A),B(A')) are uncorrelated.
In the course of the derivation we shall need two theorems.

First the well known

Lindeberg's Theorem: For each n=1,2,... let Xln""’xnn be
independent E Xjn = 0,

n

1 varX. =1

331 n

and for any 6 >0,

n
lim § { xzchjn = 0
171 [x|>6
n
where an(x) = Pr(Xjn £x). Then jgixjn converges in distri-

bution to the normal (0,1) as n+«. Then the useful

T.W. Anderson's Theorem: Let

ST B Amt + th

where plim X ¢ : 0, uniformly in T,
o m

%if Pr'(ZmTﬁz) = Fm(z)

for all m and z, where

lim Fm(z) = F(z)



for all continuity point of the probability distribution function
'(z2). Then

1im Pr(S..sz) = F(z)

Toe T
for all continuity points of F(z).

Note that this result is similar to Cramér's Theorem about
ST = ZT-+XT (where plin\XT = 0 and 2, converges in distribution).
However, here ZmT and me depend on an m, which cancel out in

the sum ST'

We also need some simple lemmas.

Lemma 1. ® 2 2
( L v cos As) +( sin As) - 25£00) (8)

Proof by substituting e - cosas +isinis in (4).
Lemma 2. 1 N
lim Y cos (Ar+¢) = 0 ; 0 <A< 2m (9)
N> r=1

which is also true with "cos" replaced by "sin".

Proof by using

- - — -

N . . . . .
17 cosCar+s) = E [el(“‘“u—elm) st lm}/(l-—e iy
r=1
Lemma 3.
., N 1
lim & )} sin?Qr+¢) = 5 ;3 0 <A <2w (10)
N _E 2
r=1
Proof: By

sin2(ar+¢) = 3(1-cos(2Ar+2¢))

and Lemma 2.

Lemma 4. Let 0<Aj<n;kj#xi;i¢j 3 Hj#O and

a,(n) = H, sin(xjr+¢j) (11)

He~13

31
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Then )
im ? (o (nn? =1 e
g(n) = lim = a (n = X 2
Nopzg 0t 2 j=1 )

Proof is by induction on n, starting from (10). We have

— - - -

(a (n+1))% = (a (n))2 +HZ , sin®(a_  v+e_ ) +

+1 n+l

+ QaP(n) Hn+1 51n(An+1r+¢n+1)

Hence by (10)

lim %

1

ne~s

n
- 2 u . R
g(n+1) —B(n)+}1—ln+1+2ﬂn+1 rzlsln(Ajr+%)31n(xn+1r+¢n+1)

-~

3
But the product of sines in the last term can be written

Jr+é ‘¢m+1)"COS((*j+xn41)¢j+¢j+¢n+1)1

i[cos((xj-xn+1

3
Hence the last term goes to 0 by Lemma 2.

Theorem: If {Zt} is defined by (1) and

lim sup J vzdFt(v) = 0 (12)

c > t=1,2,... IV‘>C

where Ft(v) = Pr-(Vt <£v), then

/T(A(A ) ,B(A ), A ) ,B(R D) (13)
0<A1<X2<...<xn < w, converges in distribution to a multinormal
variable with 0 mean, uncorrelated components and variances

4 f(Ai),un'f(Al,...,u-nf(ln),u'nf(kn) (14)

respectively.

Proof: We may suppose ¢ = 0. Consider first the limit

—— -

distribution of YT A(A). We shall apply T.W. Anderson's Theorem

to

/T A(\) = a p(2)+ (/T A(A)»« p(A)) (15)

%m

T
h - . B}
where a p(A) ‘/% tgi Z,,cosAT 3 and 2 g YV g



We have

T
cos x t Yy Vo_, ) =
Zl |s}>m s's-t’)

T
4 2 .
= - cos At cos At' vy y.+ EV Voo
T t,t7=1 Is],|s'|>m 5°8 t-s t'-8
482 P T o 5 (16)
= =m L T Y cos At cosa (t-s+s') s
|s]s]s!|>m t=1
s "02( | lelz)
s [>m
having made use of the fact that 'Evt-svt'-s’ = 62 or 0 according
as t'= or + t-s+s' . The interchange of E andl ’EI ¥ is per-
sl,|s
mitted since the general term is dominated by |y Y.:|| | |
'8 Vi-s Ve-s' 0

the expectation of which is £ a general term [Ysllys,loz of a

convergent series.
We get from (16)

plim| /T A(A) -a ()] =0 | (17)

m+e
uniformly in T,

We now consider the first term in (15), which we write

2 T m
a o(A) = /% Y P oy Vi_gcosrt =
t=1 s=-m (18)
o M -s+T
. ) Y y.V_cosi (s+r)

We divide the region of summation into I+ II+III
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r r=m+7

r=-m+7 [ 77T e emeoT

r=m+1

r=-m+l

The regions II and III have constant number of points. Hence the
variances of the sums over these regions (including the factor
2//T) go to 0 as T+«. Thus the limit distribution of a T is

the same as the limit distribution of

3 () = I v (19)
mT /% r=m+l rr
where
m

a =] v cos A(r+s) (20)

* -m
We introduce

T-m

o..T = ( ¥ az)i s WT = a_V /oaT (21)
r r rr

m+1 }

Then
T T-m

- T

a, =20 4= § W (22)

mT T rEm+l r

Now obviously from (20)




© i ‘ .
la | = sg-m lvg| = o (say) (23)
m }' H
@ =Cas ATy y cos)\s-sinkr? Y. sin s =
r L Yg s
§=-m z-m
= kh151n(lp+¢m) (24)
m
defining K, and ¢_ by the two sums . . Then by Lemma 1,
-m
lim K = 27 f(A)/o? , (25)
Mm->o m

From (24) and Lemma 3 we get

T

lim & ol =k /7 , limaT = = (26)
T m T
T-m T
We now make use of Lindeberg's Theorem on y W_ . We verify
r=m+l
that m
T-m T
) varW, = 1 (27)
r=-m+l
Let Fr and FE be the cumulative distribution functions of Vp
and wi , respectively. We have for the Lindeberg criterion
T~m T T-m u;
Z wzdFr(W) = -—-.]:—T; J VzdFP(V) s
r=m+1 [w]>6 r=m+l (a”)%c |V|>UGQT/GP
< 1 ( 2 -~
s — sup vedF_(v) (28)
02 r

r lvlzoéaT/a
making first use of (23) in the region of integration, then repla-
cing the integral by its supremum and finally using (21). Now by
the second relation (26) and the assumption (12) of our theorem,

the last term of (28) goes to 0. It follows from Lindeberg's Theorem
T-m
that T+ =, Y wz converges in distribution to norm (0,1). By
m+1
(2

(22) and the first equation (26) it then follows that ng
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converges in distribution to a variable Em(k), where Em(x) is
norm(0,v2 ¢ K.). Now by (25), Em(k) converges in distribution to
norm (0,/4nf(A) as m-+«, The assumptions of T. W. Anderson’s
Theorem are satisfied and we have proved that VT A()) (see eq.(15))
converges in distribution to norm (0,/4nf(A), which is a special
case of our theorem.

In the general case we make use of the fact that if a random
vector X 1is such that for any sﬁre vector g, g'X converges
in distribution norm{0,«x), where «? = g'og, then X converges
in distribution to the multinormal with expectéfioh'o and co-
variance matrix o . |

In our case we choose g = (gl,hl,...,gn,hn) and consider

VT 2[gA(A)+hB(A)]=

J
2 |
& ( 5 €08 A T+h, sin ;)2 = /T (say) (29)
As above we now introduce ar by replacing Zt by 2 . in
/T Ap where Z . is given by (15). Then as in (15) we write
VT Ap = a -+ (VT Ag-a o) | (30)

and prove that the last term converges in probability to 0 uni-
formly in T as m=>«, (See eq. {(17)). Thus /T Ap has the

same limit in distribution as a oo which may be written

2 7 7 i ¢ (s4r))  (
a .= y vV (g. cosA s+r)+h s1nx s+r 31)
mT /T sz-m pz~s+1 ° ¥ j=1 J j

(see eq. (18)). We deduce as above that a . has the samé limit

in distribution as

= A 2 V a (n) - (32)

s=m+1l

where
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m

01?(11) = ¥ v

n .
Y (g.cos A . (r+s) ¢+ h, sin A, (r+s)) (33)
S ==m j:l J ] ] ] .

S

(see eq. {19) and (20)).

We have
o n
fa )} sy Jvol Y Ueg:l+lnh:]) = atn) (say) (34)
r @ S j=1 J J
(see eq. (23)).
(33) may be written
a_(n) = Y H. cos [A.(r+s)+0.] : (35)
r sz-m ° j=z1 J J ]
where , _
H? = 24 n2 : ' 36
j 2_(33 3) (38

As in eq. (24) we may use the addition rule for cosine on
the two terms Ajr-éej and Ajs and get
n . .
ar(n) =s=§m Hj ij sin (Ajrw aj + ij) - : (37)
where ij and ’jm are defined as Km and *m in connection

with eq. (24).

By Lemma 4 we get

lim & Tim (a (n)).’ = 3 Iﬁ K} (g2+h.?) | (38)
Tse = pzm+l T j=1 3™ 73 3 |

We can now proceed as before, making use of Lemma 1 to obtain that
(38) goes to
£(2:)(g? +h?)/g? , (39)
" LE£0y) (8] +h]) /o |

as m-+= and we obtain that /T A converges in distribution

to norm (0,kx), where

n
2 -y . 2 2 40
3 'j§1 f(xJ)(g]+15) | | (40)

but «? may be written g'og where g = (gyshys..-08,0)

and ¢ is a diagonal matrix with diagonal given by (14%4). Hence
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by the general result cited before eq. (289), the theorem is proved.

The asymptotic distribution of the spectrum

1,00 = T A+ B (41)

(see Chapter I,B (12)) now follows immediately.

'ZIT(Aj)/f(Xj) 3 0<A1<u 3 3=1,2,... (42)

where f(i) 1is given by (M),_are independent and chi-square
distributed with two degrees of freedom. |

We easily derive that this result and the result in the
theorem is true if ¢ =£:Zt is replaced by the empirical mean

T
Zz%gz

T tlt

in A(x) and B(x).
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APPENDIX I: SECOND ORDER MFAN CNNVERGENCE

We shall in general assume the random variables to be complex
with finite second order moments. The sequence Xn 3 n=1,2,...,
is said to converge to X in‘quadratic mean; xnix; if

lim Elxn~x|= = 0. |

N+

Lemma 1.

AIXIE - ALYt g RIxer|? g ElxI s ElvE

Proof: by squaring and using Schwartz inequality lEXY‘]g
JE[X|*E|¥|®. |

Note that fElxl’ has the property ¢f a nora and v‘élx-Yi’ the

property of a metric.,

Lemma 2.

. . ¢
Xy 3 %Y imply aX +bY -+ aXsbY.

Proof: Use lemma 1 on E|aX +bY -aX-b¥|? = Elal(X -X)+b(Y ~¥)|%.

Lemma 3.
.
X, > X and Yn sy imply

a) EIx |? - glx]? B) EXY +EXY , ¢} EX +EX.

Proof: a) follows from the left inequality in lemma 1 with X=X/
and Y=s-X. b) follows from |[EX Y ~EXY| g
E X -X| ¥ |+ E{X{|Y -] < EIY |2E|X_-X[?+ £[X|2E{Y_-¥|*»0

since E[Ynja + E|Y|2 Dby a). c¢) follows from b) with Y, =¥=1.

(Note that it does not follow from X, : X Y, : ¥ that
XY, +X¥) |

Lemma 4. X s X : impiiee i:ixn-xl - 0.

Proof: Use 0gvar|X -X|=E|X -X|?-(E[X -X])2.

‘ e .
Lemma 5. X < X o plim X_=X.
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Proof: By Markov's inequality {(that for any Z such that
Pr(220) =1 we have Pr(22¢) <EZ/e with €>0. Take z=3‘xn-_x|=).

Lemma 6.

plim(X ~X ) = 0 implies that there exist a subsequence X_ 3
M, ne m n ni
i=1,2,... and an X such that limxn =X with probability 1.

i
Proof: For any &, €>0 there is an N such that m>n2N

implies Pr(|X -X |>8) <e. Let €;» 6;,>0 and zﬁi,Isi con-

vergent. We can then define n; ; i=1,2,... such that

n > ni and

i+ »
Pr(|X_~X_ |>8.) <¢, for all m>n,.
X n; ' ® | i

In particular

PrlX_. =X |>8,)<¢;..
Hence

I Prl|X
i Niet

-X_ |>68.)
nttd
converges and by Borel-Cantelli

Pr(|X ~X_ | >6; for infinitely many i) = O.
Divt By i

Thus with probability 1, |[X -X, |;:=6Jl for all but a finite

i+1 i .

~X, | converges almost certainly and
i

n

number of i. Hence [|X
Die

X = X } (X X )
"5 T oizt Tier My
has a limit X with probability 1.

Lemma 7.
2
]xm-xnl + 0 as m,n +» jimplies that there exists an X such

that Xn i X.

Proof: By Elxm-xni' + 0 and Markov's inequality we have
pliml‘xm—xnl = 0. Hence by Lemma 6 there cxist an X and a sub-

sequence X = such that Xn. + X a.e. Hence by Fatou's lemma
i i
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Elxm-x[‘ < 1im§nf E'xm"xn.ll'

i i

However, by the assumption the expectation on the right hand side
can be made < ¢ for m and n, sufficiently large. Hence
the liminf of it can be made < ¢ for = sufficiently large,
which proves the assertion.
(fatou’s lemma: £ 20 implies liminf Ifndu 2 Iliminf fndu).
Lemma 8. (Loeve)

X, s n=1,2,... converges in quadratic mean if and only if
. [ ] [ ]
B%E,*fhhehmpc
as E,n*o,

Proof: The “"only if" part follows from Lemma 3. The "if" part

‘ v |2 = » . * _ *
follows because E|X an = EX Xp ¢ EX Xp EX X = EX X

Below we shall assume, partly for convenience, that the random

variables in question are real.

The following two lemmas are fundamental in probability theory

and are given here without proofs.

Lemma 3. .

If X,5X5s... are independent and ) xj converges in probability
: 321 '

(or in quadratic mean) then [:xj converges with probability 1.

Lemma 10.

If the V., 3 ts1,2,... are independent identically distributed

with EVt =90, wvar Vt z g¢<» and Ea; converges, then

«©

I a;V; converges with probability 1.

iz1 *

For the proofs of Lemmas 9-10 sce M. Lo&ve: Probability Theory 1

(4.ed. 1977) Section 17.3 and 18.2.
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Lemma 11.

For any set of random variables V1,V2,...,V

var { asV; & ¢ { log ) maxvar V.
i=1 i=1

Proof: It follows from icov(vi,vj)l < Avarvivarvj .
Lemma 12.

1f Z la;] <= and the procese {V tle=1,2 has uniformly
i1 g e
bounded variance, svt? 0, then ;“iv converges in quadratic

mean.
Proof: We have by Lemma 11
Foyv0% < xcFlagh?
E(Ja.V.}?* < K(}|a.])
m 1+ a3
and use Lemma 7.

Lemma 13.

«
1f ii lv;l <= and {a,} is stationary in the wide sense, then
o %

vV, = a, .V a,
t 120 t-ivi 12,, i¥eei

converges  in quadratic mean and is stationary in the wide sense.

Proof: The Ffirst assertion follows from Theorem 12. To prove the

second statement, introduce

vy, = { a,_; ¥: -
tm iz0 t-i Vi

2 -
Then Vtm > vt. Hence by Lemma 3

thmvt+hm + EV vt+h *

However,
m

EVinVtshm ° i’i;=° Wi Bae 30 40

which is independent of t, since a, is stationary. Hence, also
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the limit EV.V .~ is independent of t. ||
Lemma 14.
If

1) a,_ is stationary in the wide scnse

t

+oo

2) jg Ni"‘" for all i
3) z I{ 'l‘iji“’

jIS= "-.,

4) 2z = ] Y, exists in quadratic mean, where

jz'ﬂw 334 in quadratic mean.
© e

then Z = [ a: 1 wi3 ‘n quadratic mean.
3—-@3 l:-w *J

Proof: The last double sum converges in quadratic mean by assump~

tion 3) and Lemma 12. Hence we just have to erVe that it equals

Z. We have
Puof Doy 1 oy 1
l"..a. b Yy a- w.'
-n -y~ i) 3 j:-c 3 iz-n 1)

by Lemma 2 and assumption 2). Hence

Q= [£a- 1 s I ‘) L L

j--a “'-O

- § xpr]ted o[ 1 a1 TP
< vad- . 4 a .

. iz-n * jr~o 3 m+1w13 is-» 137,

by Lemma 1. The first term on the right hand side goes to 0 by
assumption 4). The last term squared is

var X: (1=£+1W ?-,*13)
S (EE s phegl)ven e

py Lemma 11. Hence by assumption 3) the last term goes to O, .
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Hence - - '

j:-c J izem

and the result follows.

(Above we have used Schwartz inequality |EXY*| < A|x|2E[Y]?
in the case of complex variables. This is proved as follows, For
any complex number A, we have that

E[AX-Y|2? = AASE[X|2? - AEXY® - A#EYX®+E|Y|? is > 0. We write

~1u= t

EXY® = pei®, hence EXY = re 1%, and substitute A ste o

obtain
t2EjX|?~-2¢tr+E|Y|220
But the polynomial in t cannot be » 0 for all t if it has

two distinct real zeros. Hence r? < E|X|?E|Y]%.)
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APPENDIX II : FOURIER SERIES
We shall prove the following (see Apostol (1957))

Theorem. Let f be a real function of a real variable with

period 2» (i.e. f(x) = f(x+2w) for all x). If
(i) f 1is Riemann integrable over [=-w,w]

(ii) for a given x there is an interval X=-8,x+8 , 6 >0,

where f 1is of bounded variation; then

HE(x#)+f(x=)]=3a, + } (aj cos jx +b. sin j x) (1)

j=1 J

where

IS
A=

+n L
ff(t) cosntdt , b, = § £(t) sinnt dt (2)
- -7 .

a, -
Note that if f is of bounded variation over ([-w,7], then
(i) and (ii) are fulfilled, since any function of bounded varia-
tion is Riemann integrable.
In order to prove the theorem, we shall first prove some

lemmas.

Lemma 1. (Riemann-Lebesgue). If f is Riemann-integrable over
[a,b], then for any B8 , we have:
b : . .
lim [ £(t) sin (at+g) dt = 0 (3)
a+e a : .
Proof. For f(t) =1 if t € [c¢,d) « [a,b), £f(t) = 0 otherwise,
we get for the integral in (3); (cos(ca+8) -cos(da+B))/a , which

is § 2/e in absolute value. Hence<(3)'is.true for this f, hence

for any step function m(t)

b
J m(t) sin(at+8) dt + 0 . ' (%)
a .
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as a +=, However, from the theory of the Riemann integral we

know that there exist two step functions m{t) and M(t) such
b

that m(t) s £(t) s M(t) and dflM(t)-m(t)ldt is arbitrarily

small. Hence

b b :
[f(£()-m(t)) sin(at+p) dt|s [ |M(t)-m(t)|dt (5)
a a . ) .

Combining (4) and (5) we get the lemma.
Lemma 2. (Jordan). If g' is of bounded variation over {0,481},
6§ >0, then |

8 . | |
1im 2 fg(r) 208 L qr o g(o4) ‘ (6)
a+rw o] t ' .

Proof. We may assume g to be increasing. We then have for

0<hc<s,
8 sina t h sina t % sinat
[t Z0R=ar = [1g(t)-g(0n)] S22 deeglon [ SR8 at +
o 0

sina t dt (D

t

)
+ fglt)
h

Now it is seen after substituting at = u under the sign of

integration, that the second integral on the right hand side goes
to %g(0+) . The third integral goes to 0 by lemma 1. Thus it
suffices to prove that the first integral can be made arbitrarily

small. We have with

. h .
g(t) -g(0+) = 6G(t) , F(x) = [222Yav (8)
‘ t .
that this integral may be written
h h | | ,
I=-[G(t)dF(t) = [fF(t)da(t) = F(e) G(h) (9)
. 0 0 ' - |

for some ¢ € [0,h] (having used partial integration and the mean




value theorem). Introducing (8) in (9) we get

ha _.
= [g(h)-g(o+)] [ Sint gy

t
_€a
: 95int . . .
However, f‘ﬁr‘—dt is bounded under variation of p and ¢
. “blnt ) . .
since 6 T dt converges. Hence I can be made arbitrarily

small by choosing h small (we may set h=1/a ). Hence the lemma

is proved.

" Lemza 3. The partial sum in (1)

S (x) = 37"4 Ei(a] cosjx +b:l sinjx) (10)
may be written |
S (x) = 2.?2g(t) sin(2n+1) t (113
n L sint
where |
g(t) = 3[Ff(x+2t)+f(x~-2t)] (12)

Proof. Introducing (2) in (1) we get

R |
S, (x) = F..I,, £(t) D_(t-x)dx : _ - (13)
where

n sin (n+i)t/sin§ if t=man
D (x) = 3+ ] cosjt = (14)
j=1 n+3 if t=maqa

for any integer m.
Since Dn(x) and f(x) are periodic and Dn(x) z Dn(*x)

x+'n 1 n

[ £(£) D, (t~x) dt = o fE(x+t) D_(t) dt =

)w-'lr -

9 2 (15)
= g g(t) D (2t) dt

Sn(x)




where g 1is given by (12), Combining (15) and (14) we get (11).
We can now prove the theorem by proving that Sn(x) given
by (11) goes to g(x) as n +«, We first note that Sn(x) has

the same limit as

2 M2
s (x) = = g g(t)

sin(%?+1)t dt : (16)
|

since we may apply lemma 1 to

W2 4 1
| (F“m) g(t) sin(2n+1) tdt
) ‘

with a = 2n+1 (note that the first factor in the integrand can
be defined to be continuous for t=0). Now we may divide the

integral in (16) in two parts

2 8 2
RN
0 "o " §

vhere &6 1is defined in the theorem (and assumed < %-). The first
integral on the right hand side goes to g(0+) by lemma 2 and
the second integral goes to 0 by lemma 1. (The case § z%- is

easier.) This proves the theorem.
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APPENDIX III : PARTIAL AUTOCORRELATION

With a given random set of variables Xl,Xz,..,,Xn s let

£, (X X)) = X Xg, e 5X ) and £, (Xg,e el X)) = E(Xp | Xghae X )

3,
Then the partial correlation coefficient between X, and X, ,

relatively to X3,...,Xn is defined as

Eixl-ﬁi(xa ge e ’xn)] [(xz"'ﬁz(xs g e e ’Xn)j

(1)
: i
{E{xl_ei(X3 g s e ,Xn)lz E[Xz’gl(X3 gy e ,xr? 2]}

P12.3...n °
The coefficient may be interpreted in the following manner.
Suppose that there is negative cqrrelation between Xi = the bulk
of crop and X, = temperature during growth period. Then this may
be "explained" by a negative correlation betweeh temperature X2
and X, = average amount of rain in the growth period. The partial
correlation between X1 = crop and X2 = temperature, relatively
to X3 = amount of rain, may be positive. Thus calculating the
partial correlation coefficient amounts to "correcting" for the
amount of rain.

We shall be concerned with the least square partial corre-

lation coefficient which is defined in a slightly different manner.

Pgseees and Kyas-e.3k  ~are defined by minimizing
( z ( 'f ? | (2)
E X - @. X. ) E(X,- k: X.) 2
15237373 ’ 2 523 373

with respect to ¢ and «. Then % and Kk are given by

0 (3)

#"

n
EX; (X - 2 5 =0 , Exi(xz--ga-x].x )

For convenience we assume Exi = 0 and we write cov(x ,X ) = iy

Then from (3) | 2 Y- "Yy3 o Z ylj - Y?jv;st .. 5N (4)

n

Then we use £, (X4,. .. X0 ) = 9. X E (X3,000,X ) = Z Ky
| 1773 3):333’ 277327t y2g7d *3

ij J

in (1).
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Using (3),the numerator in (1) may be written

n n .

E(x1-§¢j xj)x2 = Y49 gyzj @ (5)
or, alternatively

L i . n

Bxi(xg-ng X3) = vy - g_yij ks | (6)
Furthermore

) n

E(Xj~4)% = E(Xj-g )X, = yll-gylj‘pj (7)

and
2 n

E(X2-£2) z Y22"§Y2j <3 (8)

Hence we have
n
Va2 =L Y259
= 1=3 (9)
12.3.++n S TR no 3
“"11‘%*15 05) ‘Yzz'g‘fzj x3) )

where the mj and ks are given by (4).

Now let {Zt}t=----1,0,1,". be a stationary process

EZ, =0, v; =E2,.2. 5, o5 =v;/v (10)

t 1

We define the k-th order partial autocorrelation coefficient

", as the partial correlation coefficient between Z, and Z, ,

relatively to Zt-l""’zt-k .M has the following interpretation.

Having "explained" 2 _ by the last k-1 observations 2. _j4s.-.

. . n
'f’zt—k+1 » 1s there any reason to involve Z, . also?

m, Measures the importance of involving Zt-k in order to explain
Z

t Ll
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!}}SOPG“‘- L@t tpk’j ; j = 1,2,ool,k ; k = 1,2,«.-, be defined

by
k
.}‘:3:1 pi_‘j (ij = O; i = 1,2,;--,)( (11)
theh
"k T %Kk
wkj may also be found from the recursion formulae
m-1 m-1
Oom = (=1 @ 13 pm_j)/(1~‘§ ®n-1m~j Pm-i) ? (12)
J=1 3=1
@mj § (pm-lj " Com Om-1 m-j ? (13)
starting with
34 . 2
©0,, = (pQ-pl)/(l-p;) . 2 01(1—p2)/1-p1 (1)
Proof: We get from (9) and (%)
k-1
e T k-il kil ; (15)
[(1~ W: p-)(1~ K: Py _z2]
j21 32 jz1 3 K-I
k-1 k-1
.p. - = p. . P. . = . 16)
521“’3"1-3 Pi > j§1 3 Pi-3 T Px-i ¢

Now we have,

k-1 k-1 k-1 k-1 k-1 m-1

jzl R jzl E m§1 “m Pk-3-m 7 Z wmj§1 “3 Px-m-j =m§1 ®m Pm

having succesively made use of the first and the second equation
(16). Hence (15) may be written
k-1 k-1

= - . . - . P 17)
e = Coy jzle Pr-32/ 01 _Ziwj p]} | (
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where wip..,¢k dre defined by the first equation (16). To

emphazisé that wj depends on k , we nhow write wj = wk—lj'

We have by (16}

1¢mj pi-j =05 i=1,2,...,m (18)

-

]

3

which is a set of linear sets of equations determining wmj 3

j =1,2,...,m; for each m = 2,3,... . (We may define ©4q =Py <)

The matrix of (18) is

(1 » Pq Pos "% » Pm._j_1

Pg o 1 s Pyttt s Ppoo
Rm-

m-1 o v

Now (18) may be written

m-1
Py = Opm Poi ° E Opy Pi-3 3 1= 1,2,...,m1
Hence
\ [ ) ¢

r Pm 1 °q Yn-1

L] _ -1- L] - -1 - .

. Rm_1 . ©nm Rm__1 . (20)
) p
\ mm-ii L m—1¢ \ 91 J

On the other hand from (18) with m replaced by m-1,

( ) '

P @11 )

R . =] - (21)
Lpl-lj L‘n’m-l m~1 |

Now in (18) with m replaced by m-1, we reverse both the
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eguations and the térms in the sum, i.e. we replace i by m-i

and j by m+<j. We then get

Pn-i1 = ’:gi Pn-1m-j Pi-j } i=1,2,...,m-1
Hence
r"'m-i m-l1 rpm-1‘
E = R7L E (22)
Pm-11 | ;11
Combining (20), (21), (22) we get
rthl W [ ®n-1 1\ rwm-i.m—l‘
E = ; e E (23)
:"r;l m-1] l‘pm-:; m-1 L’“’:;\-l 1 ]

which proves (13). We now insert (13) into (18) with i = m
and get (12). However the right hand side of (12) is equal to

the right hand side of (17) with k = m. Hence and

"k ® Pxxe
everything is proved.
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