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INTRODUCTION

There are three main goals of this paper:

1. To give some descriptions of the concepts e-deficiency and
"more informative" between a certain class of pseudo
dichotomies.

2. To show how some characterizations of the concept méjorization‘
can be viewed as consequences of the theory of pseudo
dichotomies.

3. To show that majorization can be considered at a statistical

concept and thereby give new interpretations of majorization.

Chapter I contains the statistical background and also the
general theory of comparison of pseudo dichotomies. In section
I.4 an important special case is presented, which is the first
step in the direction of the goals 2. and 3. above. |

Chapter II contains the definitionrof majorization and gives
the most important characterizations of this concept. It is also
shown how some of these characterizations are consequences of the
theory in chapter I.

Chapter III treats a generalization of majorization, the so-
called e-majorization. This concept can be considered as a
"nearly-majorization", and in fact many of the results show how
"0ld results" from chapter II by simple corrections still are.
valid. A numerical example is also presented in order to show
some geometrical ideas of e-majorization.

Chapter IV defines a certain measure of distance between
vectors by using the "sharpest" e-majorization. An application to

the construction of inequalities for convex functions is given.



Chapter V treats mulﬁi-dimensional majorization and demon-
strates how the general theory of pseudo experiments gives
descriptions of this concept.

I would like to thank professor Erik N. Torgersen for his
interesting lectures on the topics that make the foundation for
this work, and also for his help and encouragement during the work

with this paper.
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CHAPTER I. STATISTICAL EXPERIMENTS AND PSEUDO EXPERIMENTS
I.1. Concepts and definitions.

A statistical experiment is defined as a "tuple"
g= LZ“A,PG:GEG), where (X,4) 1is a measurable space and

(P,:6€0) 1is an ordered family of probability measures on (X,4).

¢
We imagine that we can observe a stochastic variable with distri-

bution P where 6€0 is unknown, and with valued in the obser-

o'
vation space X. when o is a twopoint-set, 4 is called a
dichotomy.

A pseudo experiment_is a generalization of an experiment, by
permitting arbitrary mass distributions. A pseudo expériment is
therefore a "tuple" £ = (Jﬁd,uezeee), where (X,4) is a measur-
able space and (ue:eee) is aniordered family of finite measures
on (£,4). When © is a twopoint-set, f is called a pseudo
dichotomy.

. A finite experiment is an experiment CZ”A,PG:GEG), where
both © and X are finite sets. If © = {1,...,s} and
X = h,...,n} are respectively parameter space and observation
space in a finite experiment £ , we define the sxn matrix Py
by

(P‘) =Pe({j})l e=];--"S, j=1'oo-,n-.

63
We denote Py the experimentmatrix of f , and it will be a
Markow-matrix (a stochastic matrix); the elements of Py, are non-
negative and the rowsums are equal to 1.

Analogously we can define a finite pseudo experiment and the

pseudo experimentmatrix.



A decision problem is a tuple D = (0,T,L), where © and T
are arbitrary sets and L 1is an arbitrary reél—valued function
defined on ©OxT. © is once again called the parameter space, in
which we know that an otherwise unknown parameter lies. T is
called the decision space, and it consists of the possible deci-
sions that can be made. Le(t) expresses the loss one suffers by
making the decision t€T when 0€0 is the underlying parameter.

Before making a decision a statistician will usually be able
to get information by performing an experiment. This means that
he can choose a model where he can observe a stochastic variable
X with a probability distribution Pe which depends on 6. It
is therefore of interest to compare statistical experiments in
order to find out how suited they are as sources of information in
decision problems. It is also useful to compare pseudo experi-
ments, for example within local comparison of experiments. Before
-~ we give the definition of e-deficiency, which will be the.starting
point for comparison of pseudo experiments, we will remind of a
few measure-theoretical definitions.

Let (X,4) be a measurable space and u a measure on

(X,4). Then the norm I+l is defined by
lul = sup{[fdp|f:X>[-1,1] 1is measurable}.

Here [-1,1] 1is considered as a measurable space with the

Borel-sets as the measurable sets.
Let now (T,S) be an arbitrary measurable space. A randomi-

zation p from (L,A) to (T,F) is a function
p(+]*):IxX>[0,1]

where p(S|+):¥+[0,1] is d-measurable for every sef, and p(e|x)



is a probability measure on (T,f) for each x€X. A randomiza-
tion is also called a Markow-kernel.

If p is a randomization from (X,d) to (T,) and u is
a finite measure on (X,4), a finite measure up on (T,f) is

induced by defining

(ep)(8) = [p(s|x)p(ax); sef.

If (Z,f) 1is an arbitrary measurable space, v is a finite
measure on (Z,f) and f a real-valued, £ -measurable function on
Z, we often use the notation vf for the integral [£(z)v(dz).

In this notation a generalized version of Fubini's theorem on

interated integration in the foregoing situation will be:
(pp)L = p(pL),

where L 1is a real—valued,J'—measurable function on T. There-
fore we can, without danger of confusion, use the notation upL
for this integral.

We now have the formal background for'defining e-deficiéncy.

DEFINITION I.1.1.
Let & = (IZJ,ue:eee) and F = (7)3,ve:969) be two pseudo

experiments with the same parameter space 0, and let ¢€,:6€0 Dbe

6
a function from © to [0,=]. We then say that ¢ is e-defi-
cient with respect to F (for k-decision problems) if there to
every measurable space (T,f) where *ffw #7 = 2k) and to
every family Le, 0€0 of measurable functions on T, and to every

"randomization ¢ from (Y,8) to (T,FX) is a randomization o

from (X,4) to (T,f) such that

(I1.1.1) | pepLe < veoLe + eeﬂLeﬂ, vo€o



When we hereafter discuss two pseudo experiments in the same
connection, it will be implied that they have the same parameter
space.

It is important to realize that (I.1.1), when £ ana ]'Z“ are
experiments, gives us an inequality between risk functions. When
{ = (Z,d,pe:eee) is an experiment and p 1is a randomization
- from (X,4) to (T,f), then p 1is also called a decision rule.

If we consider L as a loss function, we see that

boPLg = [/ (t)p(dt]x) Ju (ax)

is the risk (expected 1os$) by using the decision rule p in f
whén ® 1is the underlying parameter. The inequality (I.1.1) then
tells us how much additional risk we may have to face by choosing
(f in stead of F.

Let ¢ =(I',vf,p,e:966) be a pseudo experiment, where
©={1,...,s}. Let further D = (0,T,L) be a decision problem.

. . D .
Then we define the risk set Ry 1in f relative to D by

R?= {(r?(l,é),...,r?(s,é))|6 is a

randomization from (X,d4) to (T.,f)},

D
Where Iy (6,8) = ueéLe.
1f € 1is O-deficient with respect to F (for k-decision

problems), we write 4 >F, or alternatively F< 4 (f>F, or alter-
k

natively 7:<Z), and in this case we say that f is more informa-
k

tive than F (for k-decision problems). When €>F ana F>¢

(Z>F and F>f), we say that 4 and F are equivalent (for k-
k k

decision problems), and in this case we write ¢~& (£~F).
k

In order to measure the maximum loss one can suffer by



choosing one pseudo experiment in stead of another, we can use the

following concepts:

5(k)(£,F) = inf{e€[0,=]]| ¢ is e-deficient

with respect to F (for k-decision problems) }

B (P = 8 (P ve o (FL )

when ¢ and F are two pseudo dichotomies with the same

parameter space, we define

8(k)(£"ﬂ = kinf{e€ [0,=]] f is (0, e)-deficient

with respect to F (for k-decision problems)}
by &Py = 83 (W FIve yy(F.D).

We denote 6&(f,f) the deficiency between £ anda F and 5(Z.A
is denoted the dot-deficiency between f ana F.
1f ¢ = (I,d,uezeee) and F = (7,3,\)6:966) are two pseudo

experiments, then ¢ x F denotes the pseudo experiment
(Z'XY,«AX3,ue><ve:9€e),

where U x 3 is the product sigma-algebra on A xY and uGXv 0€0,

el
are the product measures.

If { consists in observing a stochastic variable X and F
consists in observing a stochastic variable 'Y which is inde-

pendent of X, then {xF will pe observing the pair (X,Y).

This definition of & x F can easily be extended to products

of a finite number of pseudo experiments f] ' ""[N' If

N .
Zl =, .= ZN =Z , We write { for this product pseudo experiment
Ex...xt.

We will close this section by presenting the notation that



will be used in this work.
‘When a,béR (where R denotes the set of real numbers), avb
and aAb denote respectively max{a,b} and min{a,b}, and we
+

also write a for avoO.

If f:Y+R is a real-valued function defined on a set X, we

define
1£1 = sup|f(x) |
xeX
If x = (xl""'xn) and y = (yl""'yn) are vectors in

n . .o
R, we use the notation <x,y> for the usual Euclidian scalar-

product of x and y:

Iyl
<X,y> = ) X.Y..
i=1 t 1

x[j] and x(j) are respectively the j-th greatest and the j-

th smallest component of x. We let n be the set

n n . .
{(x],...,xn)ER |x1>,...>xn}. When ye€R , K, is defined as the
convex hull of the set of all permutations of vy. Kn denotes the
set of all probability vectors in R" (Kn = {(xl,...,xn)GRnIxi>O7
n
i=1,...,n and | x. = 1}).We also define d_(x,y) = ) |x.-y.]|,
. i 0 .- i“i
i=1 i=1
n n
which is a metric on R, while I+l defined by Hxﬂo = E |xi|
: i=1
is the induced norm. We let e denote the vector (1,...,1)€Rn
n, o ' ‘
and H_ the set {(xl,...,xn)ER ) x; = «}, where a€R. The
i=1

dimension n will here always be understood from the context.
When v 1is a measure on a measurable space, |v| denotes the
total variation measure of v.
If AcR" is a set, <A> denotes the convex hull of A. We
also use the abbreviation <a,b> for <{a,b}>, when a,b€R?,

which is the line segment in R? between a and b. (This



abbreviation will be used in example III.2.14 only, and it can

therefore not be mixed up with the notation for the scalar

product.)
A m will denote the set of all stochastic matrices ():
’
. . D .
Markow-matrices) of dimension n*m, and an m 1S the set of all
’

doubly-stochastic matrices of dimension nXm.

When a,bﬁRn, fa b will denote the finite pseudo experiment
’
which has a pseudo experimentmatrix
. =(a].......an)
Za'b b.loouaooobn

More accurately we define
Za,b= ({ll"'ln}l W({ll"‘ln})l p’]lp'z)l

where & _({j}) = aj and uz({j}) =b.; j=1,...,n.

I.2. SOME MAIN RESULTS ON COMPARISON OF PSEUDO EXPERIMENTS

It is an immidiate consequence of Definition I.l1.1 that f’ is
e-deficient with respect to }r for k-decision problems whenever {
is ¢€-deficient with respect to F for (k+1)-decision problems.
Furthermore { is ¢€-deficient with respect to F if and only if Z
is €-deficient with respect to F for x-decision problems\for
k=1,2,... . When YA and jr are experiments A,(Z,f7>= 0 will
hold, while this isn't neéessarily true for pseudo experiments.

Since this work mainly will treat pseudo dichotomies and

dichotomies, it is important to note the relations between ¢t-de-

ficiency and ¢-deficiency for k-decision problems in these cases.



PROPOSITION I.2.1.

Let § = (IUJ,M],PZ) and f = (7}3,V],V2) be two pseudo
dichtomies where y > 0, Y4 >0 and 4,(¢,F) =o0.

Then i is €-deficient with reespect to F if ana only if {
is €t-deficient with respect to F for 2-decision problems |

(testing problems).
PROOF: See Theorem B.2.4. in Reference L4J. V u

Since the conditions in this proposition are easily seen to
be satisfied in the case of dichotomies, we know that there is an
equivalence between e-deficiency and ¢€-deficiency for testing
problems in this situation.

Let now § = (L, 4,1,:0c0) be a pseudo experiment where ©

y(s)
k

. . s s .
- maximum of k 1linear functionals on R", while

is finite, say #0 = s. We then let denote the set of all

Y(S) denotes the

set of all sublinear functionals on RS. We then define, for

¢ey(s)’

¢() = 1e(avgla Likgi:0€0)d Ejugi |

where dueid 29iu9i is "the" Radon-Nikodym derivative of #Hg with
respect to Eeiuei. If T is a non-negative measure on (X,4)

which dominates Peze € ©, then the following equation will hold
¢(f) = §u(fqy:0c0)ar

where fg4 = dkgy|drT.
We furthermore define T, =
we can then formulate the main result on comparison of pseudo

{1,...,k} and f; = 0(Tk), and

experiments.




THEOREM I.2.2.

Let ¢ = (Iﬁd,pe:eee) and F = (7}3,ve:9€0) be two pseudo
experiments with the same parameter set 0, where # 0 = s. Then
the statements (i)-(iv) below will be equivalent.

(i) { is e-deficient with respect to # for k-decision

problems.

(ii) For every randomization o from (Y,8) to (Tk'f%)' and

for every family L 6€0 of real-valued functions on

e ’
T, . there is a randomization p from (I,A4) to (Tk'j;)
such that

Y nm.pL, < ) v,oL, + Y e 1L _I.
5 8776 T g TeTe T o Te e

(iii) For every randomization ¢ from (7,8) to (Tk'j;)' there

is a randomization p from (£,4) to (Tk,f;) such that

npep—vecﬂ < €y ¢ vVo€o
(iv) W) > $(F)-Te (ol-eglviley)), voers®)
9 .
PROOF: See Theorem B.2.1. in reference [4]. | ’ O

Some comments will now be given in connection with this main
"result.

First of all we see that (ii) above is very closely connected
to a statement around minimum Bayes risk in the case of experi-

ments. In fact we have the following result:

PROPOSITION I.2.3.
Let.'f and jr be defined as in Theorem I.2.2. Then (v) below

will be equivalent with (i)-(iv) in Theorem I.2.2:
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(v) For every a priori distribution A on © and every family

Le of real-valued functions on Tk . the following

inequality will hold

(I.2.1) B(A[€) < B(A|F)+ g sekéHLeu

where B(A|{) = inf{: p is a randomization from

(II‘A) to (Tk'fk)}

o g#oPlg |

PROOF: Assume that (ii) of Theorem I.2.2. holds, and let A Dbe
an a priori distribution (): a probability distribution) on 0. We
lét all the subsets of © be measurable. Let furthermore Le, 0€0
be a family of real-valued functions on Ty - According to (ii) we
now know that there to every randomization o from (Y,8) to
'(Tk'j%) corresponds a randomization p such that

< +
gpep(xeLe) gvoo(xeLc) EEUHKSLOH

This is (ii) applied to the loss-function (6,t) - AeLe(t).

Consequently

: < + 1L 1
ghe”epLe gkevecLe gxeee 0

since Ae , 6 € ® are non-negative constants.

From the definition of B(A|f) we see that

B(AM[E) < JAgugeLy
6

which means that

o .

B(A|f) < gkev oL  + Xxeee 0

6 6 0

By taking infimum over all randomizations o from (7%,8) to

(Tk,f;) we get
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B(A|T) < B(A|F) + gKGEG“Lc“

and the implication from (ii) to (v) has been shown.
Assume now that (v) holds, and let Le , 8 €0 be a family

of real-valued functions on T, , and let A be the uniform pro—

k

s . . . 1 _ .
bability distribution on 0, Ae = o 6=1,...,s. From (v)_lt
follows that

I

B(x|£)'< B(A|F) + % JeglLy

which means that

+
oL o ZeeuL [

inf ZpepLe < inf Zve o

0 g © o

For every loss-function L and every randomization o from
(Y.8) to (Tk,i;) we then know that

inf Ju_pL_ < Yv_ oL + Je IL_I
o 568 ge e [ee

But this infimum will be attained for a suitable randomiza-
tion p from (X,4) to (Tk,fi). This can be seen analogously to
Lemma 5.10 in reference [5], by using weak compactness and

Tychnoff's theorem on product topologies. Consequently

guepLe < gvecL9+ ZeenLeu
ag .

and the proof is then completed. O

The characterization (iii) in Theorem I.2.2. treats Qperating
characteristics, which will be defined now. When f ==(I;d,ue:6€e)
is a pseudo experiment, (T,f) a decision space ((T,f) a measur-
able space) and p a decision rule in f , we denote: HqP the

operating characteristics in 2 , where

(uep)(s) = [o(s|x)n (ax) : sef



When 4 is an experiment(uep)(s) expresses the probability
of making a decision in S when 6 1is the underlying parameter.

Therefore (iii) of Theorem I.2.2. says how the operating

characteristics in F can be approximated by the operating charac-

teristics in f .
In connection with inequalities in Chapter IV, a special case
"of the next proposition will be needed, but this proposition is

also useful in other situations.

PROPOSITION I.2.4.

Let.'{ and jr be two pseudo experiments with the same para-

n=1 be

‘meter space 0, where 0 is finite. Let furthermore {e(n)}

a sequence of non-negative, real-valued functions on © such that

(n)
[ >

0 v € ©

Ee ’

(é)—deficient with respect to F (for k-

Assume that 4 is €
decision problems) for n=1,2,... .
Then ¢ will be e-deficient with respect to f-‘ ( for k-deci-

sion problems).

The famous Markow-kernel theorem for e-deficiency, which for
instance can be found in Corollary B.3.5. in reference [4], will

also be formulted here, since it will be of great use later on.

PROPOSITION I.2.5.

Let { = (I,u!,pezeee)- and F = (7,5,\;9:666) be two pseudo
experiments, where © is finite and ¥ is a Borel-set in a
complete, separable metric space and where 83 consists of Borel-
subsets. Let € Dbe a non-negative function on 0. Then the

following equivalence will hold:



f is e-deficient with reespect to F'
A
3

there is a Markow-kernel M from (£,U4)

to (Y,8) such that

flu M=v I < : 0
B vc € vO€O

6
If we represent Markow-kernels by Markow-matrices in the case

of finite pseudo experiments, we get the following corollary of

Proposition I.2.5.

COROLLARY I.2.6.

Let ¢ = (I,J,pe:eeo) and F = (7,3,u9:669) be two pseudo
experiments, where
L=1{1,...,r}
7

= {1,...,x}

o= {1,...,8}
anda 4 =CPIX), 8=FT). |

Then the following will hold:

> F
f

\

EIME/[r K: PgM = Py

We will also present a generalization of Neyman-Pearson's

lemma for later use.

PROPOSITION I.2.7.
Let (f,d,p) be a measure-space, and lét f1 and f2 be
measurable, p-integrable functions defined on X.

Assume that there to a constant « is a randomization 6
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satisfying

(1.2.2) féfldu = q

Let C' be the class of all ramdomizations for which (I1.2.2.)

holds. Then it follows that
i) Among all elements in £ there is one that maximises f&fzdu.
ii) A necessary and sufficient condition for an element § in e

to maximize féfzdu is the existence of a constant ¢ such

that
1 when fz(x) < c fl(x)»
5(x) = .
0 when f2(x) < c f](x)
" PROOF: See reference [2] page 83. ‘ O

I.3. PSEUDO DICHOTOMIES

In this section we'll give a few characterizations of e-
deficiency for pseudo dichotomies. These results are generaliza-
tions of the theory on pseudo derivatives, which forms the basis
'of local comparison of experiments.

Let henceforth (in I1.3.) € = (Iﬂd,pl,uz) and F = (Y)B,v],Qz)

be pseudo dichotomies which have the following two properties:

(1.3.1) By and v are probability measurees

1

(1.3.2.) Al(f,F) =0
Note that (I.3.2.) is equivalent to uz(X) = vé(?) because

of (I.3.1.). This means that Bo and v, are arbitrary finite

measures with the same total mass.



PROPOSITION I.3.1.

f is (81,82)-deficient with respect to jr

N

Y

v €
Ezla al,a R

[ > da v e ja, |- |
(r.3.3.) a, b, +a, b a;Vyta, vy l-€0a, gl 5

1'1 722 11 71 2
PROOF: From the assumptions (I.3.1) and (I.3.2) it follows by
using Proposition I.2.1. that 4 is (61,82)-deficient with re-
spect to F if and only if f is (51,62)—deficient with respect
to £ for testing problems. The proposition is then a consequence

of Corollary B.2.3. in Reference L4J. | u

PROPOSITION I.3.2.

[ is (81,62)—deficient with respect to f—

A

Il
Y

(1.3.4.) b —p, 0 > HEV —v l-gjEj-e, ,  VESR

PROOF: This result follows quite easily from Proposition I.3.1.
It is enough to show that (I.3.3.) and (I.3.4.) are equivalent.
It is trivial that (I.3.3.) implies (I.3.4.) (simply choose
a, = € and a, = -1).
Assune therefore now that (I.3.4.) holds and let a],aZER.

If a, = 0, then (I.3.3.) will hold because "P]“ = “Vln =1. If
a2*0, we choose & = - %; and from (I.3.4.) we then have
i 81y _u > - 81y _y l-e |- 21j_
a,'17%2 a, 17 V2" "% 1- 3,175

so multiplication by la_| gives us (1.3.3.). u

2

The concepts introduced in the next definition will be

important both in this and subsequent chapters.



DEFINITION I.3.3.

Let £ = (IZJ,u],uz). We then define

Up(E) = Tep = 0 s EER

and denote Ug the U-function of f .

Let furthermore

V’ & {(fadul,féduz)léaz > [0,1] is A -measurable}

and denote V? the V-set of f .

Finally we define

Bg(a) = sup{y|(a,y)ev,} ; a€[0,1]

)

and denote 32 the pB-function of f .

One of the reeasons for us to introduce the U-function, the
V-set and the pB-finction of a pseudo dichotomy, is that each of
them characterize pséudo'dichotomies up to an equivalence. This
will be shown later.

Proposition I.3.2. can now be reformualted with the aid of

the U-function.

COROLLARY I.3.4.

f is (el,ez)—deficient with respect to F

A

1
v

(1.3.5.) Ugle) > U;&&)—e]|§|-82 ' YEER

PROOF': This is seen directly from Proposition I.3.2. and

Definition I.3.3. | | O
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COROLLARY I.3.5.

PROOF: This follows from Corollary I.3.4. by considering (0,0)-

deficiency. O

Corollary I1.3.5. shows that the U-function is well suited
for describing "more inférmative" and "equivalence" between pseudo
dichotomies which satisfy (I.3.1.) and (I.3.2.). We can now see
that the U-function characterizes the pseudo dichotomy up to an
equivalence. Furthermore dot-deficiencies between pseudo dichoto-
mies can easily be expressed by the U-function, as the next pro-

position says.

PROPOSITION I.3.6.

§(2,F)

552P[QF(E)—U£(§)]+>

M2 F)

%sgplUF(E)-Ug(g)l

PROOF: By applying Corollary I.3.4. we get

5(8,F)

%inf{s>0|f is (0, e)-deficient with respect to Jf}
g

Linf{e>0 |Up(E)>Up(E)-€, VEER}

%inf{e>0|Up(2)-U, (£) <e, VEER}
sup [Up(E)-Ug (£)]"

The expression for A(Z,¥7) follows from this because

MEF) = 88, F) v 8(F.2). O



We shall now consider V-sets, and we start by showing that
every V-set is compact and convex. Since this result is based on
the finiteness of ©0 only, and not necessarily that 0 =2 we

present this result in its general version.

PROPOSITION I.3.7.
Let € = (I}d;pezeee), where 0 = {1,...,s} be a pseudo
experiment, and let
A= {5|6:X » [0,1] is d-m_easurable}'
Define now

vV = {(fédu],...,fédus”&e./‘(}

. s
Then V 1is a compact and convex subset of R .

PROOF: First we'll show that V is convex.

Let V]'V2

that v, = (f&idu,...,féidus), i = 1,2. Consequently

€V and let t€[0,1]. Then there are 61,626uQ such

tv]+(1—t)v2'= (f[t6]+(1-t)62]du1,...,f[t61+(1—t)62]dps)

and since t61+(1—t)62€o% (because él(x),62(x),te[0,1], vx€X),
this implies that tv1+(1—t)v2€V, which means that V 1is convex
We now show that V is compact.
It is sufficient to show that V 1is closed and bounded.

Since B 6€0 1is a finite measure, M = V Ipelcx) will be a real
0€0

number, because 0 is finite. We therefore see that
| fedugl < [lslafu | < fdlu | = e [(X) <M

so V is bounded in each component, and because V has a finite

number of components (namely s), V itself will be bounded.



In order to show that V 1is closed, it is enough to show

that every sequence in V has a convergent subsequence. Let

{vn}n=l be a sequence in V. Then there is a sequence {Gn}n=1

in A such that

v, = (féndu],...,féndps).
Define now

S
I legl(a) |
0=1

w(n) = — ;  Aed.
! lugl(X)
o=1

It is then easy to see that p 1is a probability measure on

(£, A4). Since {5}

nin=1 is uniformly integrable. (Because the

sequence is uniformly bounded), the weak compactness theorem tells
us that there is a subsequence {én,} of {én} and a -

measurable &:X+R such that § .*6 weakly :
f&n,hdu > [8hdp

for every bounded, measurable h:X»R.

We realize that 6¢ A because

f6_,6u ~ fsdp
A D A

and fdn,dpe[o,l] for every A€d, so [6du€[0,1] for every Aced,
A A

and consequently 0<8<1 a.e. [p]. Then &8 can be modified on
subset of p-measure O such that 0<§8<1 without changing the
value of [&hdp.

Finally, for 6€{1,...,s}, we have

due due
[6,dug = [8,, g~ du > [8 = du = [adu,

Q
RS
@

since h = is bounded (while g is'finite) and measurable.

Q)
=
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This shows, because 0 1is finite, that

(fén,dp.l, ...,jan,dus) > (chdp.],..., fadus)ev

so {vn} has a convergent subsequence in V. O

The next proposition gives us some important properties of

the V-set of a pseudo dichotomy.

PROPOSITION I.3.8.
Let £ = (Iﬁﬁ,p],pz) be a pseudo dichotomy. The V-set, Ve
of f will then have the following properties:
i) Vg is compact and convex
ii) (0,0), (1,u,(X))eV,

“iii) VZ is symmetrical about the point (%,%uZCX)).

_ PROOF : i) Follows from Proposition I.3.7 with s = 2.
ii) Can be seen by choosing respectively 6z0 and 6=1.
iii) If 6:X+[0,1] is U -measurable, then &' = 1-6 will have
the properties: &':X+[0,1] and &' is U -measurable.
Furthermore ,
(fs'du,, [6'dn,) = (fau -[du, [dp,-fédp,)

= (1-f8dpny, ny(X)=fodp,) = (1,u,(X))-(fsdn,, [6du,)
so we see that Vg is symmetrical about the point (%,%uZCZ)). 0O
Since Vg is compact and convex, it is possible to consider
the support function HZ of Vg, which is defined by

Hz(a) = sup <a,v>
VEV{



where a€¢R? and <+,+> denotes the usual Euclidian scalar

product on RZ.
Let now He e be the support function of the set
17 %2
€ .
epre, = [- 71,%1]X[- %2,52]. It is then easy to show that

Hel'ez(a],az) = k(e la,|+e,]a,]).

With this we have come to another characterization of (81,€2)—

deficiency between pseudo dichotomies satisfying (I.3.1) and

(1.3.2).

PROPCSITION I.3.9.

f is (el,ez)—deficient with respect to F

A

Il

\"
Hpo+ H ? .
f €17€9 Hf

- PROOF: 1In order to show this equivalence we show a useful
equality, which holds for any measure p on (XA :
Tl = 2 sup [8dp-p(X).
0<6¢1

We sée this from the following

5+1 . |
Tul = sup [6dp = 2( sup [ —— dp-hu(X)) = 2 sup fedp-p(X).
nsngl o<l 0<6¢1

According to Proposition I.3.1 we know that f is (e],ez)—

deficient with respect to F if ana only if

(1.3.3) hTa u1+a

) 1> ta v ta,v,l-e, fa; [-e,]a, ], Va,,a,€R

242 11

where we as usual let ¥ = (X,uf,ul,uz) and £ = (7,3,v],v2). But

now we have
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Hy(a,,a,) = sup (a,x,+a.x.) = sup (a,[édp,+a,[6dp,)
£'“1'%2 (x,.%,) €V, 171 7272 0cse1 | 1 2 2

I

sup féd(a]u1+a2u2) = %(na]u1+a2uzu+a]+a2uztx))
0<6<1

because of the equation above. Therefore (I.3.3) is equivalent to

2Hz(a1,a2)-a]-a2u20f) ? ZgF(a],az)-al—azvz(Y)
- 2H51'€2(a],a2), Va],azeR
which in turn, since p2¢Z) = v2(7), is equivalent to

H((al,az) + H (a],az) > HF(a],az), Va],azeR

51,62

and the proof is completed. a

It is now possible to describe (e],ez)—deficiency by means of

V-sets.

PROPOSITION I.3.10.

f is (el,ez)—deficient‘with respect to ?'

A

I
v

Vo + V oV
4 €1/ €2 Fo

PROOF: This is simply a reformulation of the previous proposition

since we have the following two properties of the support function

¢K of a compact, convex set K:
¢ = ¢
K;+K, K, 'K,
and
K1 c K2 <=> ¢K2 < @Kz. O
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COROLLARY I.3.11.
£>F <> vy ovp
£ ~F <= vy = Vg

PROOF: This follows from Proposition I.3.10 by considering (0,0)-

deficiency. : a

Corollary I.3.11 shows that the V-sets are well suited for
describing "more informative" and "equivalénce“ between pseudo
dishotomies satisfying (I.3.1) and (I.3.2). As we have pointed
out before, the V-set characterizes £he pseudo dichotomy up to an
equivalence. Later we'll discuss the geometrical aspects of this
corollary.

We now proceed with a study of the relationship between e-
deficienéy and the B-function. Let f = (Z}A,p],uz) be a pseﬁdo

dichotomy. Then B, is defined on [(0,1] by

B{(d) = sup{yl(a,y)GV%}.

We extend the domain of By to R Dby defining

B (0)1 a<0
Bz(a) = .
B (1)1 a>1

Our intention with this is to be able to present the next

result in a simpler form.

PROPOSITION I.3.12. v
f is (e],ez)-deficient with respect to }?
A
|
v

(1'3-6) sub{Bz(x)'|x€[a—-§-1,a+-%1]} ? B‘}‘(a)"%zl Vae[ol']]°
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PROOF: let ¢ = (Z}J,u],uz) and F = (7}3,v1,v2). Let further-
more

H= {(x,y)]y > u,TI)x, x€R}

by and Voo We now

put K = KNH for any K < R2, and the following equivalences will

where uzcl) = vz(Y) is the total mass of

:then hold:

“(1.3.7) f is (e,,e)-deficient with respect to 7
1 ,
1
v
A
J
v
(If3.9) _ V{ + V81:€2 o Vy

The equivalence between (I.3.7) and (I.3.8) is due to Proposition
I.3.10. The equivalence between (I.3.8) and (I.3.9) comes from

the fact that V,+V » like Vp, is symmetrical about the point

€1:82
(%,%uz(xﬁ), and because we can apply the following lemma:

LEMMA: Let A,B c R?2 and assume that A and B are symmetrical

about a€R2. Then we have:

~

Ac B <=> A — B.

PROOF OF THE LEMMA: Assume first that A < B. Then
A = ANH < BNH = %, so A c B.

Assume then that A < B, and let g:R2+R2 be defined by
glx,,x,) = 2a-(x,,x,)

which means that x and g(x) lie symmetrical about a. Then

A = ﬁUg(i) and B = BUg(B) since both A and B are symmetri-
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cal about a. Consequently A < B => g(A) < g(B) =>

AUg(A) = BUg(B) => A c B, which completes the proof of the lemma.

We have therefore proved the equivalence between (I.3.7) and
(I.3.9) (because the fact that Y?+Vel,52 is symmetrical about
(%,gszI)) follows easily from the symmetry of Ve about
(%,%uztx)) and the symmetry of V?liez about (9,0)).

Further it is clear that (I.3.9) is equivalent to

(1.3.10) Br(a) <sup{y|(g,y)€Vz+VE e2}, va€e [0,1].

ll

We now finish this proof by applying the next lemma.

LEMMA : sup{yl(a,y)GY?+Vellé2} = sup{az(x)|xe[a-§1,a+§1]}+%z,

Ya€ [0,1].

PROOF OF LEMMA: We have sup{yl(a,y)EY?+V’ } = sup{y|(v,,v,)eV
. 51182 1 2 [
€
and la"'vl | < ';—1' IY'V2| < 52} = sup{y]| I“'V'll < %1 and
(vy.¥) €V 1452 = sup{Bg(x) [x€[a-31,a+51]}#52, which completes the

proof of the lemma. O

COROLLARY I.3.13.
£>F <=> gy > Bp
f"F <=> By = Bg-

PROOF: This follows directly from Proposition I.3.12 by consider-

ing (0,0)-deficiency. - ' O

This corollary shows that the concepts "more informative" and

"equivalence" between pseudo dichotomies can be expressed quite
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easily trough the B-functions. In particular we see that the 8-
function characterizes the pseudo dichotomy up to an equivalence.
Furthermore we can express the dot deficiency between pseudo

dichotomies with the aid of B-functions, such as the next propo-

sition says.

'PROPOSITION I:3.14.

§(2,F)
AL, F)

sup( By (a)-Bg(a))”
a

sup | By (a)-Bg () |-
[0 4

PROOF: &(£,F) = Linf{e>0 | f is (0,e)-deficient with respect to £}

= %inf{e>0|6f(a)>3;(a)%5, vae [0,1 ]}

binf{e>0 |Bp(a)-By (a) <5, vae[0,11} = sup(Bpla)-8,(a))".
u |

The expression for Z(f,?) comes from the fact that
AEF) = (8. FIVE(F . | ’ u

We shall also give a characterization of "more informative",

which holds under certain additional assumptions on f anda F.

PROPOSITION I.3.15.
Let { = (I,d,u].uz) and £ = (7,3,\;1,\:2) be two pseudo
dichotomies, where p],v]>0, u2<<u1, v2<<v] and Al(f,F) = 0.
We define

=i, = vy = “1 nd Fp o= v.sll.
S¢ Tau,’ SFT av,r Fe = mSe and Fp = visp .

Then the following equivalence holds:.
2> F
A
@

.

(1.3.11) f¢dF? > f¢dFF for every convex function ¢:R-+R.
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PROOF: According to Theorem I.2.2 f >F will be equivalent to
(I.3.12) o(8) > o(F), veey(?)

Assume first that >F ana 1let ¢EY(2). Then, since u1>0

and M, << we have

2 1’

¢(€) = M(g%i’g%f)d“l = N(l,sz )dk,

= 3001, x) (k57 ) (ax) = Je(1, 0, (ax)

by applying the change of variable formula. But since every con-
vex function ¢:R?R can be written as 1lim ¢ (1;) for a suitable

n+®

. . . *® . 2
pointwise increasing sequence {¢n}n=1 in Y( )’ we see (from

monotone convergence theorem) that
S
Joar, > 10dF,

holds for every convex ¢:R*R and (I.3.11) holds.
Assume»now that (I.3.11) holds, and let ¢€W(2). Because

?(x) = ¢(1,x) is convex, we know that
fe(1,x)ak > Se(1,x)aEp.

Consequently, due to the equalities ¢(f) = S¢(],x)dF2 and
¢(F) = 14(1,x)dE , (I.3.12) will hold, which implies that ¢ >,

and the proof is completed. ‘ u
I.4. An important example.
In this séction we shall calculate Vg, BZ and UZ of a

certain kKind of pseudo dichotomy Z’, which will be of importance

in the following chapters.
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Let
£ = ([1,....n}, 0’({1,...,n}),u1,u2)
where

p (3 = ¢ and wy({3D) = x4 3 =1,....n.

Here x],...,xn are arbitrary real numbers.
First we'll determine Vg. Because £ is finite, one can

show that V% = C%'>, where
VE = {(fédul.fédu2)|6=X+[0,l]‘ is non-randomized}

by applying separating hyperplane theorem. A non—raﬁdomized deci-
sion rule & 1is such that 6&(j) = 6j€{0,l}; j=1,...,n. This
resu;t can be shown analogously to the fact that "a risk set is
the convex hull of the non randomized risk set" (see reference
[3D.

This simplifies the work in connection with determining Vg
_considerably, because V; is a finite set and quite easy to
determine.

Let 6:X+[0,1] be non-randomized and put 6(j) = 6.;
j=1,...,n. Then

(feau, fean,) = (]
J

and consequently

<{(' Z Xy ) |xe{0,...,n} and {jl""'jk} = {1,...,n}
I

Ve

wh j . ', h Ci#i>
ere 311#312 when 1]¢12

K .'. X k :
{(— Z x[J])Ik 0, ,...,n}U{(E,_Elx(j))|k =»0,1,..i,n}>

BIW’

. 'k : :
since all the points ) xJ , by varying j],...,jk,'lie on
» J=] i ‘
X k
the line segment between (3 7

X k
[3]) and (H,jzlx(j)).
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This means that Vt is given by

. k
kKt _
Y = { Z x[J])Ik 0,1,...,n}U{(H,j£]x(j))|k =0,1,...,n}>

From this it is easy to find B{' which is defined by

By (@) = sup{yl(a.y)EVz }. We see that

=1 by

B,(a) = Y x[ ] when a = o, k= 0,1,...,n

and that By is piecewise linear and continous on [0,1].

We let u denote the counting measure on {1,...,n}, and it

is then possible to calculate U,:

d(&ul-uz) no,
Ug (8) = NEpy=pyl = [|—Fg—=|du = 521 | -x'j|.
Consequently the expreésion for U{ is
v n ’
Y(e) = ] |- x|, teR.

j=1 . 3

In éuf example wé have started off by determining ‘% , and
then we have found BZ' We shall now give somevcomments on an
alternative mannér of proceeding. It is namely possible to_attack
‘the problem differently, by first calculating Be and thereafter
use the wellknown geometrical properties of V-sets in order to
determine Vt. This method is based on a generalized versiqn of
Neyman-Peafson's lemma. | |

Let a€[0,1]. We wish to calculate
Be (o) = sup{y|(a,y)evy}.

Since

v, = {(f&dul,fbdp2)|6 is a function from {1,...,n} to [O0,1]}.



- 30 -

This is the same as maximizing f&dpz under the constraint
fédul = o, where & 1is a function from {1,...,n} to [O0,1].

By introducing p = pu,+|p,|, we se that p,,u,<<p and
1 2 172 .

f&dui = f&fidu, i=1,2,

dp,
where fi = Eﬂi' We are then in the siutation described in Propo-

sition I.2.7. (The generalized version of Neyman-Pearson's lemma.)

This proposition assumes the existence of a maximizing &8 and it

says that this &8 must satisfy

v

1 when fz(x) cf](x)

8(x) =<{vy when f2(x) cfl(x)

0 when f2(x) < cf](x),
where ¢ and vy are constants (0<y<1) such thaf
f&fldu = qa.
After.some elementary calgulations, we now get

k
Be (a) = ) x[j]+(na—k)x[k+]], when §<a<5§l; k=0,1,...,n-1
. i=1

=
and

which is the same result as the one we got earlier.

According to Proposition I.3.8 we know that Vy is compact
and convex and that Vp is symmetrical about the point (5,%Xxj);
This implies that "the lower boundary" of VZ is determined by

the graph of the following function:

E{:[O,l] + R

Byla) = Jx;-p (1-a); w€[0,1]
]
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because B, and B, are symmetrical about (%,%Xxj).
| 3

Consequently
V-c = {(arY) |_§t(a) Ly < Bz(a)l ae[oll]}

and it is easy to realize that this is the same set as the one we
found originally.

If wé didn't know the symmetry-property of the V-sets, we
could have found B4 alternativly by using»the generalized

version of Neyman-Pearson's lemma in order to minimize
f&fzdu

among all decision rules & satisfying f&fldu = a.

This shows that the generalized version of Neyman-Pearson's
iemma plays a fundamental role in the example of this section.
Sincé these pseudo dichotomies will be of éreat importance in
chapter II on majorization, this generalization (Theorem 5 in
referance [2]) is quite eséential as regards characterizations of
majorization.

We shall end this chapter by giving a concrete example iﬁ
order to illustrate B3, B4, Vp, geometrically.

Let n=4 and x = (6,4,1,-1).

The following table gives us a few values of Bt and ﬁi‘

@ Be (a) Bg(a)
0 0] ' 0

] 3

Y 6 -1

1

3 10 0
3

vy 11 4

1 10 10
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On fig. I.4.1 By, By and Vp are all drawn, and we see how
the graphs of B8; and B, constitutes respectively the "upper"
and "lower" boundary of Vy. We also see that Vy is symmetric
about the point (%,5). Note that B; 1is concave and B,
convex; this holds in the general case, too.

When calculating V,, one has to treat five different inter-

- vals separately, and the result is:

- %+ 10 when £ < -4

- % + 12 when -4<E&<4
Vz(g) = 10 when 4<&<16
S+ 2 when 16<£<24
E - 10 when 24<E

By drawing the graph of UZ’ we see that this function is
convex. This also holds in the general case, which easily can be

shown analytically.
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CHAPTER II: MAJORIZATION
II.1. Definition and characterizations.

The ﬁathematical‘concept "majorization" is used in different
context in litteraturé. Most common is majorization between

vectors, which we shall study in this chapter.

DEFINITION II.1.1.

Let x = (x],...,xn) and y = (yl,...,yn) be two vectors in
R®. If
‘ k k
(II.1.1)  Xp.q S ) .1 k=1,...,n-1
jZ;] (3] ji]y[:’]

and '

n ‘n
(I1.1.2) Y x. = ) y.

j=1 J j=1 J

hold, we say that x is majorized by vy, and in that case we

write x<vy.

That x 1is majorized by y expkesses that the components of

x “are less spread out" than the components of vy.

EXAMPLE II.1.2.

The concept of majorization as defined above can be used to
describe whether a certain ihcome-distribution over a population
is "more équal" than another‘éuch income-distribution of thé same
amount of money. If x = (xl,...,xn) and y = (yl,...,yn)
denote the different individual incomes in a population of n

individuals'according to two ways of distributing the total

income, we can say that the income-distribution x is "more
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equal" than the income-distribution y when x<y. This means
that the sum of the Xk greatest incomes in the distribution vy
is at least as great as the sum of the k greatest incomes in the

distribution x, where k runs through {1,...,n-1}.

We shall now list several characterizations of this majoriza-
tion concept. The next theorem therefore gives different condi-
tions on the vectors x and vy, each of thesé being equivalent to
x<y. These equivalences are well-known, and they can be found in
reference [3]..

We remind ourselves that Ky' whenever yERn, denotes the
convex hull of the set of all possible permutations of y, and
that J{gln is the set of all doubly-stochastic nxn matrices.
THEOREM II.1.3.

Let x = (xl,}..,xn) and y = (yl,;..,yn) be two arbitrary
vectors in R'. Then (II.1.3)-(II.1.9) are all equivalent:
(II.1.3) x<y | '

k 'k
(I1.1.4) .Z X5y .X Y(35)7 k=1,...,n-1, and ]
j=1 3=l 3

(11.1.5) J|x.-a| < J|y.-a|: va€R, and Jx. = Jy.
j] jJ j 3 jJ

(11.1.6) Z(x.—a)+ < Z(y.—a)+; Va€R, and Jx. = Yy.
j j sERE

(I1.1.7) Jo(x.) < Yo(y.) for every convex ¢:R+>R, and )x. = )y.
j 5 | j I 3

(I1.1.8) x¢€K

(II.1.9) IMelf : x = yM
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IT.2. Majorization as a statistical concept.

We shall in this section show that majorization can be
considered as a statistical concept.

Let x = (xl,...,xn)ERn. We then define Z,l as the
—e,X
n

pseudo dichotomy
({1,....n}, IP({L---,n}).u].uz),

. 1 . .
where u]({j}) = 4 and pz({j} = x5 3= 1,...,n.
This implies that Zl has a pseudo experiment matrix
Ee’x
‘ PZ defined by
1
—e,x
n A
1 1
n, ...’n
P =
Zl X,e00,X%X
—e, X ‘n

In this situation f is denoted a majorization pseudo

1
—e,X
n

dichotomy, and if X€K (if x is a probability vector) fl
_e'x
n

is denoted a majorization dichotomy.

Majorization betweén vectors x and y now turns out to be
equivalent to the relation "more informative than" between the
corresponding majorization pseudo dichotomies. This is most
easily seen by applying the Markov-kernel criterion for "more

informative" in this situation.

PROPOSITION II.Z2.1.
Let x,yERn. Then the following holds:

Xx <y
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PROOF: By applying Corollary I.2.6 we get:

He,x Ee,y
A
3
IMEN : P = M
LS W
' n 'Y
A
U
Y
- —lr;-:; %,; Fo R
M™M= (m,.)."._,. : = : :
ij 1,J—l,lgqn,n Xpreeos Xy Yyeeeo oY\ Py e ™y
A
U
v
n
: =1 J=1,..., =
aMﬁln,n 'E]mlj 3 n and x = yM
A
I
v
D
HMan ntX*= yM
0
v
x <y

where the last equivalence is due to Theorem II.1.3. a

Proposition II.2.1 gives the connection between majorization and
the theory on pseudo dichotomies. Since we have several charac-
terizations of the "more informative"-concept, it is natural to
pose the following two questions:
- which characterizations of majorization in Theorem II.1.3
are consequences of the theory of pseudo dichotomies?
- can the theory of pseudo dichotomies also give new charac-
terizations and interpretations?

The rest of this chapter is devoted these two questions.

PROPOSITION II.2.2.

Let x,y€R™ and assume that Xxj = XYj’ Then the statements
3 3

(I1.2.1)-(II.2.4) are all equivalent.
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(II.Z.I) f < f

1
Ee,x -x-,l-e,y
(11.2.2) B < B
&y 4
e,Xx nery
(11.2.3) U < U
{) ¢
ne'x nely
(I1.2.4 3MQ4n n ¢ Py < PZ M
—e,X —-e,y

PROOF: The equivalence between (II.2.1) and (II.2.2), (II.2.3),
(I1.2.4) follow respectively from Corollary I.3.13, Corollary

I.3.5 and Corollary I.2.7. O

By using the expressions developed in section I.4 for the B-

function and the U-function of a majorization pseudo dichotomy, we

see that
' b b
(I1.2.2) <=> ) X, € ) Y. k=1,...,n-1
. j=1 (3] j=1 (3]
and that
(11.2.3) <=> X]xj-a| < §|yj—a|, Va€R.

J J
Besides it has just been shown in Proposition II.2.1 that

(II1.2.4) MEAD :ox = yM.

This means that we, by using the theory of comparison of
pseudo experiments, have proved the equivalences between (II.1.3),
(II.1.5) and (II.1.9) in Theorem II.1.3 in a new way. We shall
also comment the other characterizations in this theorem.

The equivalence between (II.1.5) and (II.1.6) is immediate
and can be seen by using the fact that |a| = 2a*-a and that

ij = Zyj. As regards (II.1.8), it can be shown tb be equivalent
373 |
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to (II.1.9) by applying Birkhoff's theorem (which says that the
set of all doubly-stochastic nxn matrices is the convex hull of
the set of all nxn permutation matrices). Furthermore one easily
realizes that (II.1.3) and (II.1.4) are equivalent since

ij = Zy.. but this can also be seen after a geometrical
J 3

discussion. We know that

x<y<=>€l (f]. <=> V, Cvz

—e, X —-e,y 1
n n —e, X —e
: n ' nSY

Because of the symmetry-property of the V-sets (see Proposi-
tion I.3.8) this is equivalent to the following: "the lower
boundary" of VZ lies above "the lower boundary" of Y( .

1 ' 1
e X nerY
Since the breakpoints on the lower boundary of VZ are among
1
—e,X
n

k
the points (%, y x[j]); k=1,...,n-1, one realizes (from this
j=1

informal argument) that (II.1.3) and (II.1.4) are equivalent.
We can also obtain the equivalence between (II.1.3) and
(I1.1.7) (the characterization of majorization by inequalities for

convex functions) as a result of the theory in chapter I.

PROPOSITION II.2.3.

Let x,yGRn and assume that ij = ij. Then the following
' 3 j

equivalence holds:

<=> A

z¢(xj) < ) ¢(yj) for every convex function  $:R4R.
J 3
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PROOF: We see that f 1 and,f] satisfy the assumptions in
He'x Hely v

Proposition I.3.15, and from this we know that

¢

1
-ﬁe,x He,y
0
v
(1.2.5) f¢dg£1 < f¢d%fl for every convex function ¢:R->R.
e X ey

With the same notation as in Proposition I.3.15, we have

-1 1
f¢dE£1 = f°d“1821 = I¢°SZ] du, = §¢(nxj);

e X nerXx n& X

from the change of variable formula. Thus (II.2.5) is'equivalent
to

(II1.2.6) Z¢(nxj) < X¢(nyj) for every convex ¢:R>R.
3 3

But since x+*¢(nx) is convex if and only if x-+>¢(x) is convex,

we have completed the proof by applying Proposition II.2.1. O

We now turn to the second question that was posed earlier in
this chapter: Can the theory of pseudo experiments give us new
characterizations of majorization?

The first result in this direction is available when we

return to the definition of "more informative".
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PROPOSITION II.2.4.

Let x,yERn. Then we have

to every decision space T = {1,...,k}. where kX = 1,2,..., and to

every bounded loss function Le(t); 6 =1,2, teT, and to every

decision rule p in il .+ there correspohds a decision rule &
—e,X :
n
in {1 such that
n®r

rf] (916) < rzl (elp)7 e =1,2,

ey Ter X

where rg (6,p) denotes the risk in f 1 by using the deci-
le, x , nc*
n

sion rule p when 6 1is the underlying value of the parameter.

PROOF: This is simply the definition of 271 < fl
: —e,X —e,y
n n

(see

Definition I.1.1) combined with Proposition II.2.1). O

When x,yEKn, rp (6,p) and rg (6,8) will in fact be
1

—e,X —e
nc’ nSY

the risk functions in the original sense, because { 1 and

—e,X
-’

f] - then are experiments. When x¢Kn

or y¢K , Proposition
n
ncY

II.2.4 still holds, but f ] orf1 are in that case no
. 'He'x Hely
longer experiments and the probabilistic interpretation dis-
appears.:
Loosely speaking we can say that x<y if and only if every

finite decision problem can be solved better, or just as good, in
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f] as in f‘] . Actually it is possible to consider a
He,y -r—le,x

larger class of decision problems and still conserve the validity
of this proposition, but this will not be proved here (éee Theorem
7.5 in referance [5]).

The next proposition vill also give a statistical description

of majorization, and now by means of operating characteristics.

PROPOSITION II.2.5.

Let x,yeRn and assume that ij = Zy.. Then the statements
j . .

3 ]
(I1.2.7)-(11.2.9) are all equivalent
(I1.2.7) x < y
(11.2.8) VK €N, Vpeﬂn'k, Héﬁkn,k : ed = ep and y& = xp
(1I.2.9) voe[0,1]1%, 36€[0,11%: V6. = Jp. and Jy.6. = Tx.p..
i J j J j J 3] 3 J 3]

PROOF: The equivalénce between (II1.2.7) and‘(II.2.8) follows from
Theorem I.2.3 (iii) by introducing matrix notation for decision
rules.

The equivalence between (II.2.8) and (II.2.9) follows from
Proposition I.2.1. This will be shown in detail later in a more

general version (see Propostion III.2.S8). ]

(II.2.8) expresses that there to every finite decision space

and every decision rule (represented by a Markow matrix p) in

fl , corresponds a decision rule (represented by the Markow
—e, X '
n
matrix &) in 11 parrying the first one in the sense that
_e'y
n

the operating characteristics are equal.
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(II.2.9) expresses the same idea, but for testing problems
(2-decision problems) only.
It's interesting to note that (II.2.8) is "quite close to"

the following'well—known characterization of x4y

D
(I1.2.10) mef oz ox = yM.

The equivalence between (II.2.8) and (IT.2.10) can in fact be
seen directly in an easy way:

The implication from (II.2.8) to (II.2.10) follows by
choosing k=n and p =1I (J: the nxn identity matrix). Then

there is a _ﬁedn , such that

’

ed = ep=elI =e and ybé = xp = xI = x,

which means that 6642 n and x =y8, and (II.2.10) holds.
Cohversely we prove the implication from (II.3.10) to

(II.3.8)vby( for given k€N and pé€f putting &8 = Mp. Then

n, k'

it's eaéy to see that 6Qﬂn k and that e§ = ep. Furthermore
y8 = y(Mp) = (yM)p = xp

so (II.2.8) holds.

On the other hand it is harder t§ realize the implication
from (II.2.9) to (II.2.8) directly (or alternativly the implica-
tion from (II.2.9) to (II.2.10)). This suggests that the redqc-
tion from e-deficiency to e-deficienéy for 2-decision problems
(which the implication from (II..8) to (II.2.9) represents) is not.

trivial.
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IT.3. An example showing the statistical content in the concept of

majorization.

This section gives an example of a practical problem in which
majorization occurs, and where the statistical interpretation of

the concept is illustrated.

EXAMPLE II.3.1.

A statistician is confronted with the following problem: Two
boxes are given; box 1 and box 2, each containing two dice, one

red and one blue. We denote the red die in box 1 by R and the

1'

Analdgously R and B are the red and the

blue die by B 2 2

.Io

blue die respectivly in box 2.

box 1 box 2

We have certain informations on the dice. All the dice have
sides showing the numbers 1,2,...,6, and in each box there is
exactly one die, which is just. When we denote a die just, we
‘mean that the probability of each of the six possible outcomes is
1/6. Furthermore Qe know that those two dice that are just, are

of the same colour. ' This implies that either R] and R2 are

just (while B, and B, are not) or B, and B, are just

(while R, and R, are not). Besides we have some knowledge of
those dice that are not just. The table below shows the probabi-
lity of the different sides coming up in a throw with the non-just

die from each box.
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niig:r Box 1 Box 2
1 0.10 0.05
2 0.05 0.30
3 0.15 0.30
4 0.30 0.15
5 0.25 0.05
6 0.15 0.15

The statistician's task is to choose one of the boxes, and
from certain experiments he is allowed to perform with the dice in
this box, he should tell whether the red dice are just or not.
Thus he faces the following problem: Which box should be chosen
in order to have as much information as possible before answering
- the "colour-problem".

We have by this presented two different problems:

Problem 1 is the decision problem the statistician faces
after he has chosen'a box, nemaly to answer the question: are the
red dice just?"

Problem 2 is whether we should choose box 1 or box 2 in order

to solve problem 1 in the best possible way. It is this problem

we are interested in her.

We now define problem 1 precisely, by giving the following
information: After having chosen which box he will use, the sta-
tistician shall pick one of the dice in this box and throw this
die 25 times. On the based of the 25 observed results he shall

then answer this question: are the red dice just? He must give

one of the answers "yes", "no" and "I don't know", and he then
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looses or wins a certain amount of money depending on the relation

between his answer and the correct answer according to the next

table:
Given
answer " " " " " N "
Correct yes no I don't know
answer
nyesu ’ 50 -20 -16
unou _20 50 _23

Positive numbers indicates profit and negative numbers indi-
cates loss to the statistician. By this problem 1 is well
defined, and we see that thié is a decision problem.

As we have mentioned before problem 2 is our man interest,
and we shall now show how this can be solved. |

We introduce the following two majorization dichotomies:

{'1 ' and f] '

ger¥x) ger X,
where
x1 = (0.10, 0.05, 0.15, 0.30, 0.25, 0.15)
and
“x2 = (0.05, 0.30, 0.30, 0.15, 0.05, 0.15)
The product experiment (fl )25, i=1,2, will then
[

consist in throwing one die from box i 25 times and observe the
result.

We now wish to find out which box to choose in order to have
as much information as possible when we shall decide the colour of
the just dice. Thus it is needed to compare the selection of box 1

to the selection of box 2 with respect to the solvation of problem
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1

. 25
1. Therefore we compare the two experiments (f] ) and
. _e,x
6 1
25 '
(f] ) .
-6-e,X2
- It turns out to be sufficient to compare fl and
Zl , and this is quite simple. We see (for instance from
'ée'xz
Definition II.1.1) that
X, < X,
according to Proposition II.2.1. This means that
£y <£, .
ger X ge1 Xy

From the general theory of product experiments it follows that

25 25
&, <, .
ge,xl -é-elxz
This implies that there to every decision problem (as long as
the decision space is Borel-isomorph; see Theorem 7.5 in referance

[5]), to every bounded loss function and to every decision rule in

(fl )25 having a risk function which is uniformly less than or
—e,X :
6 2
. . . . . f 25
equal to the risk function of the decision rule in ( 1 ) .
—-e, X
6 '"2

As a special case, this will hold for the decision problem that
problem 1 represents.

In oﬁr example one should choose box 2. It is important to
note that we arrive at the same conclusion whatéver decision space
and loss function we might consider. Besides one ought to choose
box 2 whatever number of throws we are allowed to make with the

die.
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CHAPTER III. e-MAJORIZATION

III.1. Definition.

We have earlier seen the following fundamental result:

If x,y€R" and Jx. = Jy., then
LRy T LY
: : |
e X e,y

Therefore x is majorized by y if and only if the majori-
zation pseudo dichotomy determined by y is more informative than
the majorization pseudo dichotomy determined by x. Since "more
informative" is the same as "(0,0)-deficiency", it is natural to

~ask which relations between x and vy that correspond to f ]
—e,y
n

being e-deficient with respect to Z’l . In this chapter we

—e,X’
nc

'shall consider this question in the case of (O,e)-deficiencyf

DEFINITION III.1.1.
Let x,yERn be such that Xxj = ij and let €>0.
_ J ]
We then say that x 1is e-majorized by y, and in that case

we write bxéy, if f

O -

—e,X
no’

i is (0,e)-deficient with respect to

—e
nS'Y

We demand that ij =‘Zy. in this definition because we wish
3 j

a (&

1464 ,Za ) = 0 to hold, since this is needed to aésure'that

He,x Be'y
e-deficiency is equivalent to e-deficiency for 2-decision pro-

blems. This gives source to several interesting characterizations
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of e-majorization, and besides Xxj = Yy. 1is a necessary condi-
3 j

tion of usual majorization.

We see that e-majorization generalizes majorization, like the

next proposition says.

PROPOSITION III.1.2.

Let x,y€R"” be such that ij = Zyj. Then
3 J

x Xy <=> x é Y.

PROOF: This is seen directly from Definition III.1.1 with € = 0

because "(0,0)-deficiency is the same as "more informative". |

This'implies that all the results we will get on e-majoriza—'
tion for €>0, will give us results on majorization by simply

letting € = 0.

II. Characterizations.

The results in this section are all different characteriza-
‘tions of e-majorization, and they are consequences of the general
theory in section 1.3 on pseudo dichotomies.

The first characterization we will present of e-majorization
conneéts the concept to inequalities between the partial sums that

we know from the definition of majbrization.

PROPOSITION III.2.1.

Let x,y¢R" and assume that ‘Exj = ij. Let €>0. Then the
3 3
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following holds:

<=> mA

k x
III.2.1 R i+ = k=1,...,n-1.
( ) jz,x[J] jzly[J] 2 n

PROOF: According to Proposition I.3.12 and Definition III.1.1 we

have
<
b'e 3 y
0
v
fl is (0,e)-deficient with respect to fA
n®rY | ner ¥
A .
I
v
€
By () > ﬁz (a) - 5 va€[0,1].
1 1
ey L& X
From I.4 we know that
k
=) = Xr.s k=1,2,...,n.
He,x
Furthermore Bz is continous, and linear on the intervals
LI
k-1 k .
[—;—,;], k=1,...,n. BZ has got the same properties. The
| )
, le,y

linearity and the continuity implies that (III.2.2) is equivalent
to the same statement when we let «a run through the set
{glk =0,1,...,n}, and this means that (III.2.1) and (III.2.2) are

equivalent. ' O

The next result is a consequence of "the U-criterion for e-

deficiency".
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PROPOSITION III.2.2.

Let x,yERn and €>0. Assume that ij = ij. Then we have
j

3
X é y
A
)
Y|x.-8| < Y|y.-E|+e, VEER.
j j

PROOF: By applying Corollary I.3.4 and the expression for the U-

function in section I.4, we get this equivalence immediately. a

COROLLARY III.2.3.

Let x,yERn and €>0. Assume that ij = Jy.. Then
5 ;

3 J
X é y
A
U
Y
+ +
J(xs-a) < J(yi-a) +=, vaeR.
2] 2 7]
J J :
PROOF: We realize this by using that [a]| = 2¥-a and ZXj = Jy.
3 3
in Proposition III.2.2. O

One of the most interesting results on majorization is:

If x,yERn and )x. = )y., we have
j 5 |

x <€ <=> x€K
Y Y

Here KY (see section I.1) denotes the convex hull of the
set of all permutations of y. This characterization of majoriza-

tion is closely connected to this result:

x < y <=> there exists a doubly-stochastic

matrix M such that x = yM.
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This "nice" geometrical description is also available within
e-majorization. This can be shown by using "the Markov-kernel

criterion" for e-deficiency.

PROPOSITION III.2.4.

Let x,y€R" and >0. Assume that Jxs = lys- Then the
3 3

following equivalence holds:

X é y
A
I
v
D
(I11.2.3) 3M€ﬂn'n : Ix=-yMIy < €.
PROOF: Let Z . = ({1,...,n},@({1,...,n}),v],vz) and
—e'x
n
f] = ({1,...,n},P({],...,n}),u],uz), where v, and u,

nerY |
defined in the usual sense. The Markow-kernel criterion now gives
us
x <

A Y

I

v
(111.2.4) there exists a Markow-kernel M such that

I -v I < , =1,2,
ueM ve Ee ) 1

e] =.O and 32 = g.

We reformulate (III.2.4) by considering the two inequalities

for 06 = 1,2 separately.

When 6 =1 (III.2.4) gives
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IuM=v 1 < O

A

i

\"

WM = v,

0

A\

2 11
ile({J}ll)E =4 j=1,...,n

A

()

When we let the Markow-kernel M be represented by the

. n,n .
Markow matrix (mij)i,j=1,1 defined by
miy = M({3}|1i); i,3€¢{1,...,n}.
. . : n,n .
Then (III.24) for 6 =1 1is equivalent to (mij)i,j=1,1 is
doubly-stochastic.
Furthermore
‘ n n n
“ - = = .
p M=V, I E | (n M)({ F)-v ({ b Z | z 15Y 7%
j=1 j=1 i=
Without danger of confusion, we now define M = (m..)?'?_
: , ij’i, j=1,1
and thus
n
.z ,13 i (yM)j
so
n
Tp M-v 1 = E |(yM) J| = Ix-yMI .

j=1

By this we see that (III.2.3) and (III.2.4) are equivalent and the

proof is completed. , |

Proposition III.2.4 says that x é y if and only if x can
be approximated within the Tely norm by the image of y wunder a

doubly-stochastic transformation.
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COROLLARY III.2.5.

.« Then we have

Let x,y€R" and €>0. Assume that Zx = Jy Yy
J .

<=>mnAN

do(x,Ky) < €

PROOF: Assume first that x é y. According to Proposition

' D
IIT.2.4 there must then exist a M&ﬂn n such that ﬂx—yMn0<e, so
’

4 (x K ) = inf fIx-zl_, < lIx-yMI_ < €

z€K 0 0
Y

since yMGKy (from Birkhoff's theorem we know that

<{yn|n is a permutation-matrix on {1,...,n}}>

{yM IMellg,-n} .)

(I1Ir1.2.6) K

Conversely, assume that do(x,Ky)<e; vsince K ¥ is éompact,

there is a zEKy such that

do(x,Ky) = ux-zno

and because z¢€K_ , we must have that A, z = yM for a suitable

Maﬂiln (see (II1I.2.6)). This shows that (III.2.5) holds. ]

Another major result from the theory of majorization is:

Let x,y€R" and assume that yx f Then
j

X Y

<=> A

(I11.2.7) Z¢(xj) < Z¢(yj) for every convex function ¢:R+R.
J J o

This can also be generalized to include e-majorization.
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PROPOSITION III.2.6.

Let x,yERn and €»>0. Assume that Xxj = ij. Then
3 j

X y

<=>mA

- - +
Jo(x) < Joly,) + 5(o (y)-0 (@)
j J j J
for every convex function ¢:R>R,

+ -—
where g = xlAy(]), y = x[]]vy[l] and where ¢ and ¢ denotes

rightsided and leftsided derivative respectivly.

PROOF: Assume that x é y. According to Corollary III.2.3 the

following will hold:

(I11.2.9) X(y.—a)+ > 2(x.-a)+ - %, Va€R.
j I j °

We shall now show start by showing that this implies that
(III;2.8) holds for all convex functions that are a maximum of a

finite number of linear functionals. Let

o(x) =

<z

(a,x+b ); x€R.
i=1 t 1
It is then easy to show that

N-1
o(x) = a x+b, + izl(ai+1x+bi+1 a;x bi) .

We may here assume that a]<a2<...<aN (because the convexity

implies that a]<a2<...<aN and if a;, = a

eliminate the functional corresponding to i+l in the maximum

i+ Ve might as well

above.

Thus
N-1 ,
¢(x) = a,x+b, + .z (a;,-a;)(x +

1 1
1
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sO

N-1 b, .-b

+1 Ti+
E[a y.+b + ): (a- —a-)(Y'. + -i—:———)
3 11571 i= i+l i 3 ai

Loy ) ]

N-1 n b, -bi
= aplyyrnby* ] (ajmay) 1 o(yg ¥+ g
j i=1 =1

N-1 b, ,-b.

alng+nb1+i£](ai+1—ai)[2(xj + <

v

i+

, N-1 _
= §¢(x.) - % '£1(ai+1_ai) = §¢(xj) - %(aN—a]).

Furthermore it's clear that it is only the behaviour of ¢
on [q,§] that matters as regards our inequalities since
xi,yie[q,§], i=1,...,n. Consequently we can assume that the

piecewise linear convex function above is such that
o(q) = a,q+b, and o(y) = ay+by

(because otherwise we elementate "the first and last" linear
functionals so that this will holdl)
Let furthermore this choice (and this can be done generally)

be such that there exist §,,68,>0 such that

172

I

a. x+b

xE[q,q+61] => ¢(x) . .

and

X€ [y—ézlY] => ¢(X) aNx+bN.
This implies that

- - - +

¢ (y) = ay and ¢ (q) = a,
and the inequality

Joly ) > Jolxy) - 5007 ()-0"(a))
J J

therefore holds for all piecewise linear, convex functions ¢.
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We can now perform the final step, by approximating an
arbitrary convex function ¢ with piecewise linear, convex
functions. Let ¢:R+*R be a convex function. We now define, for

m=1,2,..., a function ¢m by
i - i -
¢ (at ;ﬁ(y-q)) = ¢(q+ ;E(y-q)

for i = 0,1,...,2m, and where ¢m is linear on the intervals

i-1,- i- : m
[a+ ;ﬁ“(y-q).q+ ;ﬁ(y-q)]: i=0,1,...,2°.

Then the folloWing is clear:
i) Since ¢m is a maximum of a finite number of linear
functionals, we have

Nonlys) > Jog(xy) - SCo(P)-07(a))

for m=1,2,... .
| ii) ¢m(x)+¢(x), vx€[q,y] because ¢ is convex and o is
'eQual to ¢ at all the partition—poiﬁts.

iii) o (Y)+eT(¥) and el (y)+e (a).

By letting m»= in the inequality (III.2.10), we get the
desired result (III.2.8).

Conversely, assume that (III.2.8) holds. It is now enough
to show that the inequalities (III.2.9) hold, because according to
Corollary III.2.3 this means that x é Y.

If g = ;, we must have X| Tee.T X Ty, = ..; =Y, and
(III.2.9) holds trivially. |

Assume therefore that g < §, and we shall then show that
(III.2.9) holds for every a€R. We treat three different cases
separately:

i) Let a6<q,§> and define ¢(x) = (x—a)+. Then ¢ |is

convex and ¢+(q) =0, ¢ (y) = 1. From (III.2.8) we now get
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+
T(y.—a)® > T(x.-a)" - £
s ) 2
] J
and (III.2.9) holds.
ii) Let a€<-=,q]. Then Z(xj—a)+ = Z(xj—a) and
3 : 3

+
Y(y.-a) = J(y.-a), so because )x. = J)y., (III.2.9) will hold.
3 J A | i J 3 J

J
- + +
iii) Let a€[y,=>. Then Z(xj—a) = Z(yj-a) = 0, and again
J 3
(iii.2.9) holds.
The proof is then completed. O

We shall give some other characterizations of e-majorization,
and they all have in common that they describe the statistical

content of the concept.

PROPOSITION III.2.7.

Let x,yERn and ¢€20. Assume that Xxj = ij. Then the
3 3

following will hold:

<=> o A

(I11.2.11) VKEN, Vp €N k,aaeﬁn ki €6 = ep and lyd-xpl,<e.

PROOF: This follows directly from Theorem I.2.2 (iii) by intro-
ducing matrix notation for decision rules, like we did when

'proving Proposition III.2.4. O

This proposition can be given a statistical interpretation,

at least when {1 and fl are dichotomies (): when
'ﬁe,x 'r-le'y (

x,yEKn). In fact x é y 1if and only if operating characteristics

in fl relative to a finite decision space can be approximated

—e,X
n-’
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by operating characteristics in { 1 in the sense that
_..e'y
n
(II1.2.11) says. If we let fl = (7"$,P],P2) and
_-e'y
n
f] = (Z:J,Q],QZ) be two dichotomies, we see that
'—e'x
n

ed = ep <=> (Plé)({j}) = (Q]p)({j}): 3=1,....k

which means that the operating characteristics in Z 1 and
neY
il are equal when 6 = 1. Furthermore
He'x 4

lyd=xpl < e <=> HPZG-szH < €

which means that the statistical distance between the operating
characteristics when 6 = 2 is at most «.

In the next proposition we have a similar statement, except
that it says that is is enough to consider testing problems in
order to conclude e-majdrization. This is due to the fundamental

reduction result for e-deficiency, Proposition I.2.1.

PROPOSITION III.2.8.
Let x,y€R™ and let €30. Assume that Xxj = ij. Then
3 3

X

(IT1.2.12) vpe[0,11738€[0,1]%: J6. = Jp. and |Jy.6.-Jx.p.| < §
3 . 3 J ] 3 J 3

PROOF: This follows from Proposition I.2.1 and Proposition

III.2.7 that x é y 1is equivalent to

(I11.2.13) Vpeﬂhlz,aééﬁn'zz ed = ep and ﬂyé—xpno < €.
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But in this case we have

5, 1-%, Py 7Py
o=l S
én l—tSn I l—pn
SO
e = ep
0
\
(J6,,m-78,) = (Jp;.,n-Jp,)
1 1 . 1 1
A
)
A\
16, = ley
1 1

Furthermore y& = ( yiéi,Xyi—Zy.é.) and xp
i i

(inpil in_ inpi) ’
1 1 1

)
i

and because )x. = )y., we see
id o3

|0y 85-0%;0; [+ Ty 85-Tx;05] < ¢
1 1 1 1

0

\%

£
|y85-1x051 < 5
1 1

Consequently (III.2.12) and (III.2.13) are equivalent and

the proof is then completed. O

The next charaterization of e-majorization if of special
interest from a decision theoretical viewpoint. It gives a

connection to risk sets in the different' pseudo dichotomies.
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PROPOSITION III.2.9.

Let x,y€R" and &>0. Assume that Exj = ij. Then the
3 J :
following equivalence holds:
<
x <y

0
v

\Y <V + {0)x[- £, ]

Zl Zl 22

~€, X —e,y

PROOF: This follows directly from Proposition I.3.10 by consider-

ing (0, e)-deficiency. ‘ O

In section I.4 we have found the extreme points of VZ

lex
n-’

;nd Vfl , and the proposition therefore gives us a new geo-
ey

metrical idea of e-majorization. By drawing the V-sets in the

plane R2, one sees immediatly that the V-criterion and the B-

criterion are equivalent. This is caused by the graph of the 8-

function being "the upper boundary" of V, and that V is

symmetrical about (%:%Xxj).
J

We shall now show that Proposition III.2.9 also is interest-

ing from a decision theoretical viewpoint. Assume that f 1 =
_e,x
_ n
(X, A, ul,uz) and {1 = (7,3,\;1,\»2) both are pseudo dichotomies
n®'Y |
satisfying (I.3.1) and (I.3.2). We consider the decision problem

D that consists in estimating 6 with "O-1 loss" : we let

1 when 6 % t
o=T-= {1,2} and L_(t) =
® t

0 when 6
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We let R? and R? denote the risk set in respectively
1 1
He'x Ee,y
51 and Z 1 relative to the decision problem D. Let now
'—e,X _e’y
n n
5§ be a decision rule in 1 and define 6&(y) = &8({2}]y).
. Hely
Then

rp  (1,8) = [[JL (0)8(at|y) v, (dy) = [6(y)v, (dy) = [say,
1

n®'Y
and
rpg  (2,8) = [[JL,(£)8(aty) v, (dy) = [(1-6(y))v,(dy) = lyy=Jodv,
Consequently
R? = {(fbdv],Zyj—fédvz)|6:{1,---:n} > [0,1]}
1 :
Hety ]

and analogously

5 LT
Rf = {(fpdp],ij-fpduz)|p:{],...,n} > [0,1]}.
LI j
n
We now let a = Xxj = ij and define the transformation
s 3

g:R2»R2 by

= - . 2
g(vl,vz) (vl,a v2), (vl,vz)ER .

It is then easy to show

D _ D =
(I11.2.15) Rz] = g(Vf1 ) and R?] +V = g(Yf] +V ).

He'x Ee,x Hely ) . Hely

This leads to the following result:
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PROPOSITION III.2.10.

Let x,y€R™ and €>0. Assume that Xxj = Eyj. Then
' j j

<
xEY

(III.2.16) R - R?
1 1

PROOF: It is enough to show that (III.2.14) and (III.2.16) are
equivalent.

Assume that (III.2.14) holds. Then

g(Vv, ) = (V +V )

Zl Z] 0,¢
—ﬁe,x Ee,y

le) Rg = R? +{0}x[-

—e, X —e
nl n,y

,g] because of (III.2.15). Hence

(II1I.2.16) holds.
Conversely assume that (III.2.16) holds. Due to (III.2.15)
we then have

'ﬁe'x ?le,y
Since g 1is injective, this implies that

Ve = g-l(g(Vt )) < g—](g(VZ1 Wy )) = V? WV, .

—e, X —e,x —e ‘ —e
n '’ - n ' n®Y n-'Y

and (III.2.14) holds. O

Only when 21 and Zl are dichotomies the statistical

He,x He,y
content of Proposition III.2.10 is clear, and in that case

(ITII.2.15) expresses a relation between "the usual risk sets" in
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f] and f] relative to D. The proposition is of course
—e,X He'y

n
valied for more general mass distributions.

The next characterization of e-majorization we present is
particularly interesting because it shows a connection to usual

majorization.

When y = (y],...,yn)ERn and €»0, we define

ye = lyppp ¥ %'Y[2]""'y[n-l]'y[n] -3

PROPOSITION III.2.11.

Let x,yERn and €>0. Assume that Xxj = ij. Then the
3 3

following holds:

<
xSy
()
v
x<y..

PROOF: Since Xxj = ij = X(ye): the following holds
' 3 j j |

k k
jE]x[j] < jz](ye)[j]l k = 1,...,n—]

A
I
v

k k .
R .1+ 5, k=1,...,n-1
RESCTRRRREI RS n

%
oA <=>

y

where the last equivalence follows from Proposition III.2.1.
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This proposition giQes a useful description of e-majoriza-
tion,.because we now can use the known results from the theory of
usual majorization to obtain results on e-majorization.

By combining Proposition III.2.11 and Corollary III.2.5, we
get an interesting geometrical property of the do—metric. First

we present a useful lemma.

LEMMA III.2.12.

Let yERn and define, for >0,

€ n
q, = (5,0,...,0,- 5)€R".
Then

Kq = {VERnIXVj =0 and vl < e}.

PROOF: According to Theorem II.1.3 and Proposition III.2.11 we

have
veK
e
()
v
<
v < q
A
Y
v é (01°' IO)
A
| i
(1I11.2.17) ‘ ij = 0 and lej-a| < nla|+e, Va€R
] 3

where the last equivalende is due to Proposition III.2.2.

But now (III.2.17) is equivalent to

(II1.2.18) Jv.=0 and J|v.| < ¢
| j j

which we see by applying the triangle inequality. Since

iy = lejl the proof is completed. O
5 , A
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We are now able to prove the followin "nice" geometrical

result:

PROPOSITION III.2.13.

Let yERn and €>0. We define yeeRn by Y, = (%,0,...,0,- g).

Then we have:

PROOF: According to Proposition III.2.11 and Corollary III.2.5 we

have

K = {x|x< = {x[x< = vx Yx . = . and d_.(x,K )<e} = K +K
y, = Dxxer ) = Gxley) = xl0x = Ty, oK D<e} = K 4K

where the last equality is shown in the following way:

Assume that x€R" is such that Xxj = yyj and do(x,Ky)<e.
J 3 :

Then there is a y'€K such that do(x,y')<e (since do(x,Ky) =

y
inf{do(x,y')ly'EKy} is obtained because Ky is compact and

y'+d0(x,y') is continous). Put v = x-y'. Then

v, =Jx, - Jy. =)x, - Jy.=0
J 3 J 3 J 3 J 3 J

J
and nvno = Hx-y'"o = do(x,y')<e, and by applying Lemma III.2.12
we know that véK_ . Thus x = y'+v€K +K . This shows that
a, y a,
x|Vx. = Vy. and 4 (x,K ) < e} € K +K
{I-J zYJ Y y } Yy 4d.-
] J €
Assume then that xEKy+K . Then there exists a y'GKy and

€

vEKq such that x = y'+v. According to Lemma III.2.1 we then
€

have
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Furthermore

do(x,Ky) < do(x,y ) = lIx-y lg = ly'+v=y'ly = Ivi, <e
since vEKq . This shows that
€

{xl%xj = gyj and do(x,Ky) < e} o Ky+qu

and the proof is completed. O

We shall complete this section by giving a simple example,
which is intended to demonstrate some of the concepts of geometri-

cal nature in this chapter.

EXAMPLE III.2.14. ‘
' 311 1 1

_ .2 21 _ (311 1 1 .
Let n=5 and x = (3,3,3,0,0), y = (5,5,10,20,20). Figure
IIT.2.1 shows 8 , B : V and V. .
fl z1 Zl Zl
Tes X g€y gerX g€ Y

The first thing we notice is that neither x is majorized by

y nor y 1is majorized by x. For instance we realize this fact

by seeing that neighter B{ < B nor B < B
1 4 Zl Z]
'5-e,x "5-e,y ge,y ge,x
holds. On the other hand Bf +O.1>B[ and this is also
' %e,y %e,x '
seen in Figure III.2.1. Thus, according to Proposition III.2.1,

X é y for e = 0.2. The figure also shows Vf +{0}x[- %,%],
1
5e Y
and we see that this set contains Vf . This illustrates the
1

e X
close connection between the B-criterion (Proposition III.2.1) and
the V-criterion (Proposition III.2.9) for e-deficiency.

From a statistical viewpoint it is interesting that the power
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of the Neyman-Pearson test with size a (the power of the most
powerful test for the hypothesis 6 = 1 against the alternative

® = 2) 1is best in f’] when «€<0,0.4> and best in f]

ge,y ge,x
when @€<0.4,1>. If we for instance have a testing problem and

want size 5%, it will be preferable to choose Z] . Then the
__e'y
5

strongest test will have power 0.15, while the strongest test in

fl , of the same size, has power 0.10. On the other hand, if
€, X
5 ’

the size is 40% (which is very uncommon!) f] is to be
—e,X
57

preferred.

Figure III.2.2 illustrates R and R? . These sets
1 1
e, X 4

lie symmetrical to Vz and Vf respectivly with respect
1

to the line y = %, and they are interesting from a statistical

) and Zl as
ge,x —ge,y

viewpoint. In fact it is easy to compare f

regards minimax- and Bayes-solutions in the decision problem D

that consists in estimating ® with "0-1 loss" (see the descrip-

tion of D Dbefore Proposition III.2.10).

In I.7 in fererance [1] it is explained how to represent decision

rules by their risk points and how to find minimax- and Bayes-

solutions geometrically on the basis of R?] and R?1 . In
 Ee.X €/ Y

our example we see that the minimax-risk in f ) is approxi-
e, X
5 ’

mately 0.34, while the minimax-risk in f ) is 0.3. If one
5e0Y

uses the minimax principle in this decision problem, f] is to
{ _e'y
5

be preferred. On the other hand it is important to realize that
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there are other decision problems where f gives the smallest

1

ge,x
minimax-risk. This is the case because f ] <Zl does not
ge,x ge,y

hold.

We can also decide which experiment we should prefer when we
use the Bayes principle, but then the answer will depend on the a
priori distribdting on ©O. Once again we consider the decision
problem D described above, and we also have an a priori distri-
bution that gives masses 1-A and A to 6 =1 and 6 = 2
respectively, where A€[0,1]. By representing such a distribution
by the vector (1-A,A), the points in a risk set having the same
Bayes risk will lie on a straight line that is perpendicular to
(1-A,A). We find the minimum Bayes risk geometrically by con-
sidering the set of all sucﬁ lines that have a non-empty intersec-
tion with the risk seﬁ, and then find the smallest 1. coordinate
of points that lie on these lines and on the line y = x. (This
is explained in detail in 1.7 in reference [1].)

The nest table shows "the minimum Bayes point" in R?
1

—5—e,x
and R? respectivly as a function of A.
1

5oy



A ‘?1 {,
ge,x -s—e,y
1
re[0,> a a
A= % a <a, f>
11
Ké<z,3> a f
A= % <a, £> f
11
E<-§,-2-> g £
A = 12 <g,i> <f,g>
-1 2 .
€23 1 9
2 .
2 4
)\€<§,§> i h
4 .
A= 5 i <h, j>
xe<%,1] i j

From this table we see that in certain cases there is not

just one "minimum Bayes point", but that a while line segment can

have this property. For instance: when A = % all the points on

. . - . . D
the line segment <a,f> will be "minimum Bayes points" in R{ .
1
| 5¢Y
On the basis of this table one can calculate minimum Bayes
risk as a function of A. 1In f] and f] we denote this
€, X 5€/Y

variable by B(Alf] ) and B(X|Z1 ) respectivly. Then
ge,x —S‘G,Y

B(|€, )= (-Mrg (,8%)arp (2,8%),
 B&X : %e,X' ' %e,x

* . . '
where § is "the" Bayes-rule in Zl with respect to \.

'ge'x

Since (r? (1,6*),r? (2,6*)) is the "minmum Bayes point" in
] T .

Te,X e, X
5 5
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fl relative to A, it is easy to calculate B(x|f] ) on the
-S-e,x . ge,x

basis of the table above. Analogously B(A ) is calculated.
1

5&Y
We get
A when KG[O,%]
B(AMf, ) ={0.4-0.2) when 'xe<%.%]
—e'x
5
and
A when xe[o,%]
11
0.2+0.2\ when (xe<z,§]
B(A]f, ) =(0.4-0.2% when ac<t,2
5€/Y

2 4
0.6-0.5A when KE<§,§]

1-2 when xe<%,1]

B(r|f, ) ana BOA{, )

In figure III.2.3 the graphs of
- are drawn. We see that the minimum Bayes risk with respeét to D
is smallest in f] when 7\6<-}I,%> and smallest in f when
ge,y ge,x

A€<%,1>, and that they otherwise are equal. Thus: If one is
interested in solving D by using the Bayes principle for a

certain a priori distribution, the election between 2’1 and
' £e,X
5 ’

Zl can be done on the basis of these conclutions.
—e y ’
5 ’

We can also illustrate a consequence of the fact that X é_y
for € = 0.2. According to Proposition I.2.3 we know that

BAME, ) <BOAME, )+ ] e iLgr.
- gery ’ g€, X 6 ’
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It is possible to sharpen this inequality a little in our
situation, because the loss function is non-negative. This is

done in Theorem 6 in reference [6]. We then get

B(ME, ) <BO{, ) + %Y EghglLy!
€. Y 5€/ X 6

and thus

(II1.2.19) BAE, ) <B(AE, ) +35
gely ge,x

In figure III.2.3 the graph of B(Mf1 )+%6 is also drawn, and
ge,x

we see that this figure confirms the inequality (III.2.19). On

the basis of x é y we have therefore found an inequality that

gives an upper bound for B(xlf] )-B()»|f1 ), namely %5- We

ge,y 'ge,x
also see from Figure III.2.3 that this upper bound i attained when

2

XE[3,%], while it otherwise is "too high" (except when A = 0).

III.3. Product majorization.

In this short section we shall define a certain product
between vectors, and show how e-majorization is preserved under

such products.

(2) .m

(1)€Rn and x €ER'. We then define

Let x

(g, (2) _ (2) (1), (2)

(1)
-’x] Xm 2 1 2 o

L@ 0,2

X (xgl)xfz),..

RN CNCIN

PROPOSITION III.3.1.

Let x(l),y(])eKn and x(z),y(z)eKm, and let >0. Then

€17 %2
the following holds:
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(1 ox(2)_ % 41

oy(2).

, 1 =1,2 => x

L1 < y(i)

€.
1

PROOF: Since x(]) é y(l), {1 (1) is (0,e)-deficient with
1 —-e,y
n

respect to g ) (1)’ and because x(2) < (2 ), Zl (2) is
e, X 2 Ty

(0,52)—deficient with respect to Z,l (2)° According to Proposi-

—e,X
n ‘ .
tion 5.18 in reference [5], Z’ (]) f (2) will then be
n€ ne,y
(o, e]+e )-def1c1ent with respect to f (1) il x(z).

It is easy to realize from the deflnltlon of &® above that

¥4 Nf |
f%e’y(l) 1 1 (1)

(2)

ge,y me'Y '@y
and that
4
fle'x(l) leax fl—e, @x(2)°
n m
Thus f’ will be (0,e.+e,)-deficient with respect to
1, (Mg (2) 1752 =
—e,y @y |
l—e x(l)@x(z)' and this shows that
mn 7
(1) g 420 < (1) o (2) .
E1te;

Besides we remark that this result can be generalized to an

arbitrary, finite number of factors.
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CHAPTER IV. DOT-DEFICIENCIES AS A MEASURE OF DISTANCE

IV.1. Definition and calculation of dot-deficiency.

n

We know that majorization is a pre-ordering on R . This
means that < has the following properties:
(IV.1.1) vxeR™ : x < x
(IvV.1.2) vx,y,z€R? : x <y and y <z = x < z.

If we consider the restriction to SD", < will be a partial

ordering, s0 < will in addition to (IV.1.1) and (IV.1.2) satisfy
(Iv.1.3) Vx,yeRn : x<y and y S x => x = y.

On the other hand < won't be a total ordering, even though
we restrict ourselves to consider vectors in gn lying in the

same hyperplane Ha = {xGRnIXxj = a}. In fact there exists
J

x,yEHanﬂp such that x is not majorized by y and y is not
majorized by x. In that case we say that x and y are not
comparable.

When we consider e-majorization on the contrary, it is
possible to compare arbitrary vectors in the same hyperplane Ha
by using a suitable €>0. The following statements all hold for

<:
€

PROPOSITION 1IV.1.1.
Let a be an arbitrary real number. Then the following

statements hold:

(Iv.1.4) Ve, €,%0,VX,y€H :e,<e, and xéfy => xézy
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(Iv.1.5) Ve »0,VYx¢R" : x é X

: - <
(IV.1.6) Ve ,€, > 0,Vx,y,z¢H,: x ély and y ézz => X Je,?
(IV.1.7) Vx,y€H,,3€ 20 : x L y.

PROOF: (1IV.1.4) follows from the following well-known result:é’
is E—deficient with respect to F and n2e => , f is
N-deficient with respect to ]r.

(IV.1.5) follows from (IV.1.4) and the fact that Z >£.

(IV.1.6) follows from the following result: f is €-
deficient with respect to .F‘ and }— is n-deficient with respect
to j => Z is (&+n)-deficient with respect to.j .

(IV.1.7) is seen from the PB-criterion (Proposition III.2.1)

by, for given x,ytH , choosing ¢ = Yixji.
j

In this chapter property (IV.1.7) will be studied closer.
This statement tells us that two arbitrary vectors x and y in

the same hyperplane H, can be campared by simply choosing €

big enough. It is therefore natural to wonder how big it is

necessary to choose € to make x é y hold; or equivalently:
what is the smallest €20 such that x é y?
We find the answer to this question by considering the dot-

deficiency 5(f] 'fl ) Dbetween fl and f] . This

-ﬁe,y h—e,x He,y Ee,x

quantity is defined as

s(f, .f, ) =xingte0if]

—e —e,X —e
ncY L€ nS Y

is (0,€¢)~deficient with respect to Z’] }
—e, X
n

We now introduce the following definition:
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DEFINITION IV.1.2.

=~

Let x,y€R" and assume that ijv=
3

(.1

5(y,x) = 5(51 .f

—e —e,X
n 'Y ’

and this quantity is denoted by the dot-deficiency between vy

X.

Furthermore we define

A(y;x) = A(Z IZ
1

1
—e —e, X
nc'Y 7¢

The existence of the dot-deficiency between

)Y s+ We then define

and

is assured

by the fact that x %y for e = 2|xj|, which implies that the
3j ‘

infimum is taken over a non-empty set that has

bound.

Besides we note the following:

Let x,yeRn and assume that Xxj = Xy..
3

x 4y <=> 5(y,x) = 0.

We shall now show a method of calculating

X = (x],...,xn)ERn. We then define

~

X = (x[l],x[]]+x[2],...,x[1]+,..+x[nJ)

k .
): (‘i)k=j_XIX[j]; k=],000’n-

as a lower

This notation is used in our next proposition which gives a

simple formula for the dot-deficiency between y and x.



PROPOSITION IV.1.3.

Let x,yERn and assume that )x. = Xy.. Then the following
j

equation holds:

§(y,x) = (x=%) (11~
PROOF: &(y,x) = %inf{e>0|x <yl =
= Linf{e>0| X X < Z y +2, k=1,...,n-1}
31 7 55 (31 % 2

= Linf {e>0]2( 2 x[j] -

Yyr.-) <€, k=1,...,n-1}
321 5= (3]

) %(k=l,???,n-IZ(x[j]—y[j])vo) = (x=¥) 1y

where the last equality is due to the fact that (§—§)[n] = 0, so

that
su Y (x ) > 0. a
k=1,..?,n-1 SRS ERAEY
By introducing the notation |[x| = (|x1|,u..,|xn|) when
X = (x],...,xn)ERn we also have the following result:

COROLLARY IV.1.4.

Let x,y€R" and assume that Zx = Yy Yy Then we have
j .

y.,x) = (|%-¥D)[q 1

PROOF: This is seen from Proposition IV.1.3 because

My,x) = a8, &, ) =8& &, v
—e,y —e,X —e,y =—e,Xx
n n n n
3¢, ) =dy.x) v Bx,y). O
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EXAMPLE IV.1.5.

This is just a simple example showing how to find § and A.

Let n =4 and
x = (2,6,2,9) and y = (4,8,7,0).

Then we have

and
x = (9,15,17,19) and y = (8,15,19,19)
so we find

(] 101_210)

2
|
=
I

Yy=-x = (-1 101210)

|x-y| = (1,0,2,0).

According to Proposition IV.1.3 and Corollary 1IV.1.4, we then get

Blyax) = (x=y)pyq =1
§(x,y) = (9-2)[1] = 2

Aly,x) = (y=xD g = 2.

The dot-deficiency between y and x can also be given a

geometrical interpretation, like the next proposition says.

PROPOSITION IV.1.6.

Let x,y€R" be such that Exj = ij. We then have
3 j ‘

5(le) = ;ido(ley) .
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PROOF: A(y,x) = %inf{e>0|f1 is (0, e)-deficient with respect
_e'y
n
to Z] } = kinf{e>0|x < y} = kinf{e>0]d (x,K ) < e} = %3 (x,K_)
LI € 0 Y 0 Y
n ’
according to Corollary III.2.5. O

IV.2. Dot-deficiency and inequalities.

We are sometimes interested in making inequalities of the
type (III.2.8) for convex functions as sharp as possible. In such
situations it can be useful to calculate the dot-deficiency first,

and then apply the following result:

PROPOSITION IV.2.1.

Let x,y€R" and assume that ij = ij. If ¢:R+R is a
j 3

convex function, the following will hold

(1v.2.1) Jo(xs) < Jolyy) + Bly,x) (6" (=0"(a)),
J J

where § = x[l]vy[]] and q = x(l)Ay(l)’

PROOF: We have
28(y,x) = inf{e>0|x é v}.
Put now ey = inf{e>0|x 4 y}. First we shall show that x <y.
0

From the definition of €g We see that there is a sequence

{en,:=] of positive, real numbers such that

< .
en+eo and x Eny
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This means that f 1 is (O,en)—deficient with respect to fu
He'y Ee'x
for n=1,2,.... According to Proposition I.2.4 we know that

f] is (O,eo)—deficient with respect to f] . Hence x é Y.
ey ner X 0

and (IV.2.1) now follows from Proposition III.2.6. O

COROLLARY 1IV.2.2.

Let x,y€eR" and assume that Jx. = Vy.. If ¢:[q,y] is
j 3]
convex the following will hold:
. -, - + ' .
(Iv.2.2) 2o(x.)=-8(y,x) (¢ (y)-o¢ (a)) < Joly;) < Jo(x.)
j 3 13

+ 3(x,y) (6 (=06 (q)).

PROOF: This follows directly from Proposition IV.2.1 by applying

this result twice and the put the inqualities together. O

EXAMPLE 1IV.2.3.
The entropy of a discrete probability distribution on at set
with n elements and probabilities Pyre-esP respectivly, is

defined as

H(p) = H(P],---,pn) = - pjknpj,
j=1

Il o~

where p = (pl,...,pn)EKn and where define pjlnrj = 0 when

We now define ¢:[0,1]*R by
inx, <0,1
6 (x) ={ xAnx, when Xx¢€ ]
o, when x = 0
This implies that

(Iv.2.3) H(p) = -)¢(p.)
303
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and by two times derivation, we see that ¢ 1is convex (¢ 1is
also continous).
Let now p and g represent two probability distributions

on a set with n elements ): we let p,qGKn. We define

y = P[yjvap ] and a = p()Ad(y

and with the conventions 2fne = ® and 2fn 0 = -», we get from

(Iv.2.2) that

) _3 i ‘ ) . z
(IvV.2.4) §¢(pj) 5(q,p)2n g ¢ §¢(qj) < §¢(pj)+6(p.q)1n B

By multiplying (IV.2.3) by -1 and using (IV.2.3), we get
(Iv.2.5) H(p)-8(p,q)n % < H(q) < H(p)+5(q,p)£n,§-

These inequalities give us an upper and a lower bound of the
entropy in g, and these bounds are expressed by the entropy in
p-

We also have that

|H(p)-H(q) | < 8(a,p)4in é v 8(p,q)2n %

= (8(a,p) v 3(p,q)2in % = Ap,q)2n %.

Thus we have shown that

(IV.2.6) |H(p)-H(q) | < ;(p,q)xn Ié.

The inequality (IV.2.6) will also hold in a more general

situation, like the next corollary says.

COROLLARY IV.2.4.

Let x,y€R" and assume that ij ='ij. Let further
3 3
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¢:[q,§]+R be a convex function (where g and ; are defined as

before). Then the following inequality will hold:

(1v.2.7) Totyy) - Jotx)| < dx,y) (6" (=07 (@)
] ]

PROOF: This is an immediate consequence of Corollary IV.2.2 by

using the same appfoadh as in Example IV.2.3. a
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CHAPTER V. MULTI-DIMENSIONAL MAJORIZATION
V.1l. Multi-dimensional maorizatioh.

The concept of majorization can be extended to majorization
between matrices. In this chapter we shall present such a con-
cept, and also point out how it can be studied within the theory
of cqmparison of pseudo experiments.

Let Mm n denote the set of all real mxm matrices. We

’

then define a majorization-concept on Mm n in the following way
’

(see page 430 in referance [3]):

DEFINITION V.1.1.

Let X,YEMm n* We then say that X 1is majorized by Y, and

’

in that case we write X<Y, if there exists a dubly-stochastic

nxn matrix M such that

We realize that this is a generalization of majorization between

vectors, by simply choosing m = 1.

DEFINITION V.1.2.

Let XGMm n° We then define the finite pseudo experiment fx

’

by

fx = (X,.A,uezeee),

where X = {1,...,n}, U= P(X), o= {1,...,m+1} and where Mg

0€0 are decided by the pseudo experiment matrix PZ defined by
X



where X = (x..

With the aid of this definition it is now possible to find

the connection between multi-dimensional majorization and the

concept of "more informative".

PROPOSITION V.1.3.

Let X,YEMm n° Then the following equivalence holds:

’

x<Y<=>f <Z.
X Y

PROOF: According to Corollary I.2.6 we will have:
x € fY <=> HME‘/{n' : P[X = Pp M.

n Y

. . D
But this again will be equivalent to the existance of Mﬁﬂn n
’

such that X = YM. This is seen by writing out all the equations

contained in the matrix equation PZ = P{ M, and by noting that
X Y

if and only if M is doubly-stochastic. By using Defihition

V.1.1 the proof is then completed. ]

Since multi-dimensional majorization now has been reduced to
"more informative" between pseudo experiments, we can use this

theory to give a couple of characterizations of X < Y.
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PROPOSITION V.1.4.

Let X,YGMm n Then the following equivalence hold:

’

X<Y
0
\

n . n .
Y o(L,x(3) < ) ¢(-1—.y(3)), vpew (B+1)
i=1] D =1 n

J

3
(3)

where x and vy

(3)

denote the Jj-th coloum vector in

Y respectivly.

PROOF: According to Theorem I.2.2 we have

(m+]).

{ <l <> weev o) < olly) .

Therefore it is needed to calculate ¢(fx). Let p be the

X

and

counting measure on {1,...,n}, and put fi = dui|du, where
1
- when i =0
b ({3 ={ .
i X.. when i > O ,
1]
j=1,...,n. Then
% when i =0
£.(3) = .
i xij when i > 0 ,
j=1,...,n, and we have
. n . .
¢(Zx) = f¢(fi: ie{o,1,...,m})ap = X ¢(fi(3): 16{0,...,n})
j=1
n n .
1 1 _(3)
- z(b('—lx g o0, X -) = }Td’(—lx )-
j=1 n’71j mj j=1 n

The proposition follows from this equality.

COROLLARY V.1.5.

Let X,YEMm , and let I+l denote an arbitrary norm on

’
m+1
R . Then we have

S FO
X< Y => jzlﬂ(ﬁ,x]j,...,xmj)ﬂ < jz,"(ﬁ'ylj""'ymj)"'
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PROOF: This follows from Proposition V.1.4 because every norm on

Rm+1 is a sublinear functional on Rm+1. O

Within the theory of comparison of pseudo experiments one
speaks of "more informative for k-decision problems" (see I.1),
and it is therefore also possible to introduce a corresponding

concept within multi-dimensional majorization.

DEFINITION V.1.6.
Let X,Ye€M_ and k€{1,2,...}. We say that X is
’

majorized by Y for k-decision problems, and in that case we

. < .
wrlte X X Y, if fx i ZY

We now know from the general theory that the following will

hold:
Xy = <
(Vv.1.1) | Xk+1Y > X X Y
(Vv.1.2) X<y =>vke{1,2,...}: X {y.

When k = 2 the characterization in Proposition V.1.4 turns

out to be of a more simple kind.

PROPOSITION V.1.7.

’

Let X,YEMm n and assume that Zx 3 = Z L., 1 =1,...,m.
j

Then the following equivalences will hold

(I.1.3) X 5 Y
()
v
n m n S
(1.1.4) J |ao+.§ alxljl < Z lag* Z alle| V(ag,+..,a_)€R
j=1 i=l j=1 i=l]
A
U
v
n m
)+ + m+1
(v.1.5) z (ag+ y a.x. < Y (a+ Y oa.,y..), via reeesa ) €R
j=1 i=1 i 1] j=1 0 j=1 1] 0]
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PROOF: This follows from Proposition V.1.4 by reducing a maxmum

of two linear functionals to a simple type and then use that
inj = Zyij. This principle is the basis of Corollary B.2.3 in
J 3

referance [4], which says:

Assume Al(f '{Y) = 0. Then

_ m+f
fx:‘ {Y_<_> “Zaipi" < “Eaivi"' vaerR™ ',

where i,X = (ny: ie{o,...,m}) and {Y_= (v ie{o,...,m}).

But now
a (€8, = o
A
@
ui({l, .,n}) = vl({l, ..,n}), i =0,...,m
A
\
§x13 = %yij' i=1, .,Mm
and furthermore
q,
. 0 + X,
Jagugt = Jllage (13D ] = J15 * 23]
1 J1 ]

The equivalence between (V.1.3) and (V.1.4) then follows y

replacing a, b ayn. The equivalence between (V.1.4) and

(V.1.5) is simple and follows from Xxij = yyij, i=1,...,m, by
3 J

+
using the equation |b| = 2b -b. O

COROLLARY V.1.8.

Let X,YeM , and assume that inj = Jy.., Vi. Let further
’ . .
J

k€{2,3,...}. Then we have
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(v.1.6) X<y
I
v
(V.1.7) X]4<Y
I
v
1
(v.1.8) Z(a0+2a le < g(a +Xa Yy J +' v(ao,...,am)ERm+ .

PROOF: The first impliéation is seen from (V.1.2), and the second

from Proposition V.1.7. O

PROPOSITION V.1.9.

Let X,YeM . Then we have:
m,n :

’

X § Y
A
I
V .
m+1 1 j 1 j
Vdaé‘r]i ): Zd)(;.x(:’)) < Zcb(;.y(J))'
J J
PROOF: This follows from Theorem I1.2.2. O

The next proposition characterizes < and ? by means of

relations between the operating characteristics.

PROPOSITION V.1.10.

Let X,YEMm n° Then we have

’

(v.1.9) X<y
A
¥
(v.1.10) wvke{1,2,...}, VPEH, 1 1 IOEN | fp = § jt,Vt
and
Xp = Y§.

In addition the following equivalence holds:
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« 1o <
(v.1.11) X < Y
(
\%4
(v.1.12) VoM, 1 IBEH, ¢ g:pjt = gajt, .Vt
and
Xp = Y6.

PROOF: Let fx = (ui:iE{O,...,m}) and fY= (vi:iE{O,...,m}).
According to Theorem I.2.2 fX<fY if and only if the following
holds:

To every k€{1,2,...}, and to every randomization p from
{i,....n} to {1,...,k} there exists a randomization & from

{1,....,.n} to {1,...,x} such that
uip = vié, vi.

But a randomization p from {1,...,n} to {1,...,k} «can
be represented by a Markow-matrix p, where pﬁlh X Furthermore
’

we have

(t)

>

(Pg P)je = <(Bp )yy)eP Jzui({j})pjt

Ip({t}lx)ui(dx) (uip)({t}); ie{o,...,m}, te{1,...,k}.

Thus we see that

1 1,
P, = )=8..,
? t 2 t
jt 3% )

vt and Xp = Y6

and the equivalence between (V.1.9) and (V.1.10) has been shown.
The equivalence between (V.1.11) and (V.1.12) can be shown

analogously. a
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With the aid of Proposition V.1.10, we can say even more

about the relation between < and é than (V.1.2) tells us.

PROPOSITION V.1.11.
Let X,YeM . Then we have
m,n

X €Y <=> X é Y.

PROOF: The implication X < Y => X é Y is trivial (see. V.1.2).

We shall now show the converse implication, and let us there-

fore assume that X é Y. From Proposition V.1.10 we then know:

Vp&ﬂn’n,Eéﬁdn'n: gpjt = §jt' vt

and
Xp = Y6.
Let now In- denote the nxn identity matrix and choose

p=1I. Then there exists a éeﬁn , such that

6, = .o =1, t=1,...,

Z Jjt ijt n

J
and

YSs = Xp = XI_ = X.
n

This means that there is a doubly-stochastic nxn matrix §
such that X = Y§, and according to Definition V.1.1 X < Y must

hold. O

COROLLARY V.1.12.

Let X,YeMn and assume that

,2

i
X,., =
Rt

I
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Then the following equivalence will hold:

X<y
§
2 m + 2 m i o+
j21(a0+i£]aixij) < jzl(a0+i£laiyij) » ¥(ag,...,a )ERT .

PROOF: This follows easily by combining Proposition V.1.11 and

Proposition V.1.7.
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