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INTRODUCTION 

There are three main goals of this paper: 

1. To give some descriptions of the concepts e-deficiency and 

"more informative" between a certain class of pseudo 

dichotomies. 

2. To show how some characterizations of the concept majorization 

can be viewed as consequences of the theory of pseudo 

dichotomies. 

3. To show that majorization can be considered at a statistical 

concept and thereby give new interpretations of majorization. 

Chapter I contains the statistical background and also the 

generql theory of comparison of pseudo dichotomies. In section 

I.4 an important special case is presented, which is the first 

step in the direction of the goals 2. and 3. above. 

Chapter II contains the definition of majorization and gives 

the most important characterizations of this concept. It is also 

shown how some of these characterizations are consequences of the 

theory in chapter I. 

Chapter III treats a generalization of majorization, the so­

called e-majorization. This concept can be considered as a 

"nearly-majorization", and in fact many of the results show how 

"old results" from chapter II by simple corrections still are 

valid. A numerical example is also presented in order to show 

some geometrical ideas of e-majorization. 

Chapter IV defines a certain measure of distance between 

vectors by using the "sharpest" e-majorization. An application to 

the construction of inequalities for convex functions is given. 



Chapter V treats multi-dimensional majorization and demon­

strates how the general theory of pseudo experiments gives 

descriptions of this concept. 

I would like to thank professor Erik N. Torgersen for his 

interesting lectures on the topics that make the foundation for 

this work, and also for his help and encouragement during the work 

with this paper. 
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CHAPTER I. STATISTICAL EXPERIMENTS AND PSEUDO EXPERIMENTS 

I.1. Concepts and definitions. 

A statistical experiment is defined as a "tuple" 

e = (.X',vf I p e: 9E0) I where (.l,vf) is a measurable space and 

(P 9 :9E0) is an ordered family of probability measures on (I,~). 

We imagine that we can observe a stochastic variable with distri-

bution P 9, where 9E0 is unknown, and with valued in the obser­

vation space I. When 0 is a twopoint-set, £ is called a 

dichotomy. 

A pseudo experiment is a generalization of an experiment, by 

permitting arbitrary mass distributions. A pseudo experiment is 

therefore a "tuple" f = (.I,tA, ~e: 9E 0), where (I,v/) is a measur­

able space and (~ 9 :9E0) is an ordered family of finite measures 

on (I,~). When 0 is a twopoint-set, ! is called a pseudo 

dichotomy. 

A finite experiment is an experiment Lr,~,P 9 :9E0), where 

both 0 and L are finite sets. If 0 = { 1 , •.• , s } and 

I= {1, ... ,n} are respectively parameter space and observation 

space in a finite experiment e I we define the sxn matrix Pe 
by 

(Pt)ej = P9 ({j}), e = 1, .• ,,s, j = 1, ••. ,n. 

We denote Pt the experimentmatrix of f , and it will be a 

Markow-matrix (a stochastic matrix); the elements of P1 are non­

negative and the rowsums are equal to 1. 

Analogously we can define a finite pseudo experiment and the 

pseudo experimentmatrix. 
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A decision problem is a tuple D = (e,T,L), where e and T 

are arbitrary sets and L is an arbitrary real-valued function 

defined on exT. e is once again called the parameter space, in 

which we know that an otherwise unknown parameter lies. T is 

called the decision space, and it consists of the possible deci­

sions that can be made. L9 (t) expresses the loss one suffers by 

making the decision tET when 9E0 is the underlying parameter. 

Before making a decision a statistician will usually be able 

to get information by performing an experiment. This means that 

he can choose a model where he can observe a stochastic variable 

X with a probability distribution P9 which depends on e. It 

is therefore of interest to compare statistical experiments in 

order to find out how suited they are as sources of information in 

decision problems. It is also useful to compare pseudo experi­

ments, for example within local comparison of experiments. Before 

we give the definition of e:-deficiency, which will be the starting 

point for comparison of pseudo experiments, we will remind of a 

few measure-theoretical definitions. 

Let (Y,vf) be a measurable space and f..1. a measure on 

(I,r.A) • Then the norm II • II is defined by 

n !J.II = sup { J fdf..l.l f:X'+ [ -1,1] is measurable}. 

Here [-1,1] is considered as a measurable space with the 

Borel-sets as the measurable sets. 

Let now (T,f) be an arbitrary measurable space. A randomi­

zation p from (I,~) to (T,f) is a function 

p( ·I·> :.fx.l'+[O, 1 J 

where p(SI•):.Z-+-[0,1] islA-measurable for every SE/, and p(•lx) 
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is a probability measure on (T,f) for each xEI. A randomiza-

tion is also called a Markow-kernel. 

If p is a randomization from (X,~) to (T,/) and ~ is 

a finite measure on (.,r,vf), a finite measure ~P on (T,/) is 

induced by defining 

(~p)(S) = fp(Sjx)!-l(dx): SE/. 

If (Z,C) is an arbitrary measurable space, v is a finite 

measure on (Z,&) and f a real-valued,(-measurable function on 

Z, we often use the notation vf for the integral ff(z)v(dz). 

In this notation a generalized version of Fubini's theorem on 

interated integration in the foregoing situation will be: 

where L is a real-valued, f -measurable function on T. There-

fore we can, without danger of confusion, use the notation 1-lPL 

for this integral. 

We now have the formal background for defining e-deficiency. 

DEFINITION I.1.1. 

Let t = (I,.A I 1-1 e: 9E e) and F = ( y ,l, v e : 9E e) be two pseudo 

experiments with the same parameter space e, and let e9 :eEe be 

a function from e to [0, CD]. We then say that '! is e-defi­

cient with respect to ~ (fork-decision problems) if there to 

every measurable space (T,/) where +f <CD (t-/ = 2k) and to 

every family L9 , 9Ee of measurable functions on T, and to every 

randomization cr from (Y,3) to (T,f) is a randomization p 

from (L,~) to (T,/) such that 

(1.1.1) 
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When we hereafter discuss two pseudo experiments in the same 

connection, it will be implied that they have the same parameter 

space. 

It is important to realize that (I.1.1), when f and ~are 

experiments, gives us an inequality between risk functions. When 

t = (.Z I vf I IJ. 9 : 9 E 0 ) is an experiment and p is a randomization 

from (I ,tA) to (T 1 :f) 1 then p is also called a decision rule. 

If we consider L as a loss function, we see that 

is the risk (expected loss) by using the decision rule p in ! 
when 9 is the underlying parameter. The inequality (I.1.1) then 

tells us how much additional risk we may have to face by choosing 

! in stead of~. 

Let '( =(I,vl, !J. 9 : 9E0) be a pseudo experiment, where 

0 = {1, ... ,s}. Let further D = (0,T,L) be a decision problem. 

Then we define the risk set in £ relative to D by 

D D . D 
Rt = { ( r t ( 1 , 6 ) , . . . 1 r f ( s 1 6 ) ) I 6 is a 

randomization from (.Z,vl) to (T,j)}, 

where 
D 

r!(9,6) = !J. 96L 9 . 

If e is 0-deficient with respect to J7 (for k-decision 

problems), we write ! )r, or alternatively T" '! (f)F, or alter­
k 

natively J= (t) 1 and in thiS CaSe We Say that e is more informa­
k 

tive than r (for k-decision problems). When i ) J: and r) t 
ct) F and F )f) I we say that f and F' are equivalent (for k-

k k 

decision problems), and in this case we write f .... J:' (£ .... f:). 
k 

In order to measure the maximum loss one can suffer by 



- 5 -

choosing one pseudo experiment in stead of another, we can use the 

following concepts: 

6 (k) ct ,f.") = inf { e:E [0 I CD J I ! is e:-deficient 

with respect to F (for k-decision problems)} 

When £ and J: are two pseudo dichotomies with the same 

parameter space, we define 

b(k)(l,f) = ~inf{e:E[O,mJI {is (O,e:)-deficient 

with respect to ~ (fork-decision problems)} 

We denote 6 (f ,f) the deficiency between { and ~ and 6 ("!,I) 

is denoted the dot-deficiency between e and T. 
If f = (.l',cA,!J. 9 :9E0) and J:= (Y,Z,v9 :9E0) are two pseudo 

experiments, then f x F denotes the pseudo experiment 

where LAx 3 is the product sigma-algebra on Zx 7 and 11 9xv 9 , 9E0, 

are the product measures. 

If f consists in observing a stochastic variable X and JC 
consists in observing a stochastic variable Y which is inde­

pendent of X, then f x J: will be observing the pair (X, Y). 

This definition of t x :t' can easily be extended to products 

of a finite number of pseudo experiments ! 1 , ... ,!N. If 

!1 = ... = !N = f, we write "lN for this product pseudo experiment 

!x ... xf. 

We will close this section by presenting the notation that 
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will be used in this work. 

When a,bER (where R denotes the set of real numbers), avb 

and aAb denote respectively max{a,b} and min{a,b}, and we 

also write + a for avO. 

If f:I +R is a real-valued function defined on a set z·, we 

define 

llfll = suplf(x) I 
xE.l 

If x = (x 1, ... ,xn) and y = (y 1, ..• ,yn) are vectors in 

n 
R , we use the notation <x,y> for the usual Euclidian scalar-

product of x and y: 

<x,y> = 
n 
I X ,y .• 

i=1 ~ ~ 

and are respectively the j-th greatest and the 

th smallest component of x. We let ~n be the set 

When n 
yER I K y is defined as the 

j-

convex hull of the set of all permutations of y. K 
n 

denotes the 

set of all probability vectors in = {< x 1 , ..• , x ) ERn I x. ;;a.O; 
n ~ 

i = 1, .•. ,n 
n 

and I x. = 1 }).We also define 
. 1 ~ 
~= 

n 
d 0 (X I y) = I I X • -y. I, 

i=1 ~ ~ 
n 

which is a metric on Rn, while II • n defined by II xn - ~ I x I 0 - L i 
i=1 

is the induced norm. We let e denote the vector 

n 

n 
(1, •.• ,1)ER 

and H the set {Cx 1, ... ,x )ERnl I x. = a}, where aER. The a n i=1 ~ 

dimension n will here always be understood from the context. 

When v is a measure on a measurable space, I vI denotes the 

total variation measure of v. 

If A c Rn is a set, <A> denotes the convex hull of A. We 

also use the abbreviation <a,b> for <{a,b}>, when a,bER2 , 

which is the line segment in R2 between a and b. (This 
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abbreviation will be used in example III.2.14 only, and it can 

therefore not be mixed up with the notation for the scalar 

product.) 

·~ will denote the set of all stochastic matrices (>: 
V(, n, m 

Markow-matrices) of dimension nxm, and J(D is the set of all n,m 

doubly-stochastic matrices of dimension nxm . 

When 
. n .f 

a, btR , c;. b a, will denote the finite pseudo experiment 

which has a pseudo experimentmatrix 

where 

P - ( a 1 ...•..• an ) 

t a, b - b1 · • · · • • .bn 

More accurately we define 

!a,b = ({1, ... ,n}, (/J({1, ••• ,n}), 1.1. 1 ,1.1. 2 ), 

and b.; 
J 

j = 1, •.• ,n. 

I. 2. SOt-1E MAIN RESULTS ON COMPARISON OF PSEUDO EXPERIMENTS 

It is an immidiate consequence of Definition I. 1.1 that £ is 

E-deficient with respect tO ~ for k-decision problems Whenever e 
is e-deficient with respect to J7 for (k+1)-decision problems. 

Furthermore £ is E-deficient with respect to f: if and only if £ 
is E-deficient with respect to ~ for k-decision problems for 

\ 

k = 1,2, •..• When £ and !' are experiments ~:,, ct ,F) = o will 

hold, while this isn't necessarily true for pseudo experiments. 

Since this work mainly will treat pseudo dichotomies and 

dichotomies, it is important to note the relations between E-de-

ficiency and E-deficiency for k-decision problems in the.se cases. 
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PROPOSITION I.2.1. 

Let e ,. (.I',J '"'I' "'2) and r = (1,~ I \11 I \12) be two pseudo 

dichtomies where 1-' 1 > 01 v 1 > 0 and ~~(f,F) = 0. 

Then £ is £-deficient with reespect to J: if and only if f 
is £-deficient with respect to ~ for 2-decision problems 

(testing problems). 

PROOF: See Theorem B.2.4. in Reference L4J. u 

Since the conditions in this proposition are easily seen to 

be satisfied in the case of dichotomies, we know that there is an 

equivalence between £-deficiency and £-deficiency for testing i 

problems in this situation. 

Let now ! = (Z1~,1-'~:9t6) be a pseudo experiment where e 

is finite, say ~ e = s. We then let ~~s) denote the set of all 

maximum of k linear functionals on Rs1 while ~(s) denotes the 

set of all sublinear functionals on Rs. We then define, for 

~t~(s) I 

where di-'eld L 9 il-' 9 i is "the" Radon-Nikodym derivative of ~-'e with 

respect to L9 il-'9 i. If ~ is a non-negative measure on (I,~) 

which dominates !-'9 :9 t e, then the following equation will hold 

where fe = di-'~ld~. 

We furthermore define Tk = t 1 1 ••• 1 k J and fk = (/(Tk), and 

we can then formulate the main result on comparison of pseudo 

experiments. 



- 9 -

THEOREM I. 2. 2. 

Let f = (I,cA, lle: 9E0) and T = (V,~, v9 : 9E0) be two pseudo 

experiments with the same parameter set 0, where ~0 = s. Then 

the statements (i)-(iv) below will be equivalent. 

( i) { is E-deficient With respect to r for k-decision 

problems. 

(ii) For every randomization cr from (Y,~) to (Tk,/k), and 

for every family L 9 , 9E0 of real-valued functions on 

Tk, there is a randomization p from (I,~) to (Tk,/k) 

such that 

(iii) For every randomization cr from (Y,B) to (Tk,/k), there 

is a randomization p from (I,~) to (Tk,/k) such that 

( iv) 

PROOF: See Theorem B.2.1. in reference [4]. D 

Some comments will now be given in connection with this main 

·result. 

First of all we see that (ii) above is. very closely connected 

to a statement around minimum Bayes risk in the case of experi-

menta. In fact we have the following result: 

PROPOSITION I.2.3. 

Let t and l' be defined as in Theorem I. 2. 2. Then (v) below 

will be equivalent with (i)-(iv) in Theorem I.2.2: 
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(v) For every a priori distribution ~ on e and every family 

L9 of real-valued functions on Tk , the following 

(I.2.1) 

inequality will hold 

where B{~j!) = inf{E 9 ~ 9 ~ 9 pL 9 jp is a randomization from 

{I,~) to {Tk,/k)} 

PROOF: Assume that {ii) of Theorem 1.2.2. holds, and let ~ be 

an a priori distribution {J: a probability distribution) on e. We 

let all the subsets of e be measurable. Let furthermore L 9 , 9E9 

be a family of real-valued functions on Tk. According to {ii) we 

now know that there to every randomization cr from (Y,~) to 

.(Tk,/k) corresponds a randomization p such that 

This is (ii) applied to the loss-function {9,t) + ~ 9L 9 {t). 

Consequently 

since ~e , 9 E e are non-negative constants. 

From the definition of B{~j£) we see that 

which means that 

B { ~ 1 t ) ( I~ 9 v 9 crL 9 + I~ 9 e: 9 11 L 9 11 • 
e 9 

By taking infimum over all randomizations cr from {Y,~) to 

{ Tk ,J'k) we get 
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and the implication from (ii) to (v) has been shown. 

Assume now that (v) holds, and let L9 , e E 0 be a family 

of real-valued functions on Tk , and let A be the uniform pro-

bability distribution on 
1 

0, A 9 = s, e = 1 , ... , s. From ( v) it 

follows that 

which means that 

B ( A 1 t > < B ( A 1 1'> + 1 I e: 9 n L 9 n 
s e . 

inf L!J. 9 pL 9 < inf Iv 9aL 9+ Ie: 9 nL 9 n 
p e a e a 

For every loss-function L and every randomization a from . 

But this infimum will be attained for a suitable randomiza-

tion p from (I,~) to (Tk,/k). This can be seen analogously to 

Lemma 5.10 in reference [5], by using weak compactness and 

Tychnoff's theorem on product topologies. Consequently 

and the proof is then completed. D 

The characterization (iii) in Theorem 1.2.2. treats operating 

characteristics, which will be defined nCJ..l. When [ = (X,tA, lle: 9E 0) 

is a pseudo experiment, (T,/) a decision space ((T,!) a measur-

able space) and p a decision rule in f , we denote the 

operating characteristics in E , where 
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When f is an experiment( 1J. 9p) (S) expresses the probability 

of making a decision in s when e is the underlying parameter. 

Therefore (iii) of Theorem I.2.2. says how the operating 

characteristics in ~ can be approximated .bY the operating charac­

teristics in £ . 
In connection with inequalities in Chapter IV, a special case 

of the next proposition will be needed, but this proposition is 

also useful in other situations. 

PROPOSITION I.2.4. 

Let f and J: be two pseudo experiments with the same para­

meter space e, where e is finite. Let furthermore {e:(n)}~= 1 be 

a sequence of non-negative, real-valued functions on e such that 

ve E e 

Assume that f is e: ( n) -deficient with respect to J: (for k-

decision problems) for n = 1, 2, . . . . 

Then f will be e:-deficient with respect to F (for k-deci­

s ion problems ) . 

The famous Markow-kernel theorem for e:-deficiency, which for 

instance can be found in Corollary B.3.5. in reference [4], will 

also be formulted here, since it will be of great use later on. 

PROPOSITION I.2.5. 

Let t = (I,vi,IJ. 9 :9E8) and 'F = (Y,~,v 9 :eEe) be two pseudo 

experiments, where e is finite and Y is a Borel-set in a 

complete, separable metric space and where ~ consists of Borel-

subsets. Let e: be a non-negative function on e. Then the 

following equivalence will hold: 
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£ is e:-deficient with reespect to J: 

~ 
there is a Markow-kernel M from (.I,,)) 

to (Y,~) such that 

II 11 9M- v II .;; e: 
a 9 

\t9E9 

If we represent Markow-kernels by Markow-matrices in the case 

of finite pseudo experiments, we get the following corollary of 

Proposition I.2.5. 

COROLLARY I • 2 • 6 • 

Let '! = (.Z,vi,IJ. 9 :9E9) and J:= (Y,'J,IJ.9 :eEe) be two pseudo 

experiments, where 

X= {l, ... ,r} 

Y= {l, ... ,k} 

e = {l, ... ,s} 

and tA = (J(I), 2 = (/(Y). 

Then the following will hold: 

t ) J:' 

~ 
3MEvfr,k: PtM = P;-

We will also present a generalization of Neyman-Pearson's 

lemma for later use. 

PROPOSITION I.2.7. 

Let (I,~,!J.) be a measure-space, and let 

measurable, 11-integrable functions defined on 

and be 

Assume that there to a constant a is a randomization o 
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satisfying 

Let C be the class of all ramdomizations for which (I. 2. 2. ) 

holds. Then it follows that 

i) Among all elements in t there is one that maximises fof2 d1J.. 

ii) A necessary and sufficient condition for an element o in ( 

to maximize J of2 d 11 is the existence of a constant c such 

that 

{~ 
when f2 (x) < c f 1 (x) 

o ( x) = 
when f 2 (x) < c f 1 (X) 

PROOF: See reference [2] page 83. 0 

I.3. PSEUDO DICHOTOMIES 

In this section we'll give a few characterizations of E-

deficiency for pseudo dichotomies. These results are generaliza-

tions of the theory on pseudo derivatives, which forms the basis 

of local comparison of experiments. 

Let henceforth (in I.3.) £ = (I,~,IJ.1,1J.2) and r = (Y,~,v1,v2) 

be pseudo dichotomies which have the following two properties: 

(!.3.1) 

(!.3.2.) 

1-1 1 and v 1 are probability measurees 

t.1 (f,!) = 0 

Note that (I.3.2.) is equivalent to ~J. 2 (X) = v2 (Y) because 

of (I.3.1.). This means that IJ. 2 and v2 are arbitrary finite 

measures with the same total mass. 
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PROPOSITION I.3.1. 

(!.3.3.) 

f is ( E1 1 E2 )-deficient With respect to r 
1\ 

~ 

Ua11J.1+a21J.21l) lla1vl+a1v2·11-e:1iali-e:21a2i~ 'Va11a2ER 

PROOF: From the assumptions (I.3.1) and (I.3.2) it follows by 

using Proposition I. 2. 1 . that e is ( e: 1 I e:2 )-deficient with re­

spect to 1' if and only if f is ( e: 1 , e: 2 )-deficient with respect 

f""" to for testing problems. The proposition is then a consequence 

of Corollary B.2.3. in Reference l4J. 

PROPOSITION I.3.2. 

f is (e: 1 le: 2 )-deficient with respect to ~ 
1\ 

~ 

(!.3.4.) 

PROOF: This result follows quite easily from Proposition I.3.1. 

It is enough to show that (!.3.3.) and (!.3.4.) are equivalent. 

It is trivial that (!.3.3.) implies (I.3.4.) (simply choose 

a 1 = ~ and a 2 = -1). 

Assume therefore now that (I.3.4.) holds and let a 11 a 2 ER. 

If a 2 = 0 1 then (I.3.3.) will hold because II1J. 1 II = llv 1 11 = 1. If 

a 2 :fQ 1 we choose and from (1.3.4.) we then have 

so multiplication by 1a2 1 gives us (1.3.3.). 

The concepts introduced in the next definition will be 

important both in this and subsequent chapters. 

u 

w 
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DEFINITION I.3.3. 

Let t = (I,vl, 11 1 , 112 ) . We then define 

and denote the u- function of e . 
Let furthermore 

vt = { < fod1J. 1 , fod1J.2 ) 1 o:..r -j> [o, 1 J is cA-measurable} 

and denote Vt the V-set of t . 
Finally we define 

~t(a) = sup{yl(a,y)EVt} aE[0,1] 

and denote ~t the ~-function of f. 

One of the reeasons for us to introduce the U-function, the 

V-set and the ~-finction of a pseudo dichotomy, is that each of 

them characterize pseudo dichotomies up to an equivalence. This 

will be shown later. 

Proposition I.3.2. can now be reformualted with the aid of 

the U-function. 

COROLLARY I . 3 . 4. 

£ is (£ 1 ,£2 )-deficient with respect to ~ 
1\ 

~ 
(1.3.5.) \tl; E R 

PROOF: This is seen directly from Proposition I.3.2. and 

Definition I.3.3. 0 
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t ) r <=> 

i ... F <=> 

PROOF: This follows from Corollary I.3.4. by considering (0,0)-

deficiency. D 

Corollary I.3.5. shows that the U-function is well suited 

for describing "more informative" and "equivalence" between pseudo 

dichotomies which satisfy (I.3.1.) and (I.3.2.). We can now see 

that the U-function characterizes the pseudo dichotomy up to an 

equivalence. Furthermore dot-deficiencies between pseudo dichoto-

mies can easily be expressed by the U-function, as the next pro-

position says. 

PROPOSITION I.3.6. 
+. 

6({,1) = ~sup[U,r(f;)-U! (F;)] 
~ 

6<l.r> = ~suplu~<~>-ue<~> I 
~ 

PROOF: By applying Corollary I.3.4. we get 

6 ( f ,f) = ~inf { €>0 I ( is (0, e)-deficient with respect to F} 
~ 

= ~inf{e:>O IUt(O>U~(~)-e:, V~ER} 

= ~inf{e:>OIVJ:"<O-uz(O<e:, V~ER} 

= ~sup [u ,.< 0 -ue ( ~ u· 
The expression for 6([,~) follows from this because 

6<t ,:n = 6<t ,F> v 5<r.t>. D 
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We shall now consider V-sets, and we start by showing that 

every V-set is compact and convex. Since this result is based on 

the finiteness of e only, and not necessarily that e = 2 we 

present this result in its general version. 

PROPOSITION I.3.7. 

Let f = (I,v#, lle: 9E0) I where e = { 1 I ••• ,s} be a pseudo 

experiment, and let 

tit= {6I6:X + [0,1] is fA-measurable} 

Define now 

Then V is a compact and convex subset of Rs. 

PROOF: First we'll show that V is convex. 

Let v 1 , v 2 EV and let tE [0, 1 ] . Then there are 61 , 62 E.)(. such 

that vi= (J6id!J., ... ,J6id!J.5 ), i = 1,2. Consequently 

and since t6 1+(1-t)6 2Ev't. (because 6 1 (x),6 2 (x),tE[0,1], V'xEX), 

this implies that tv 1+(1-t)v2 EV, which means that V is convex 

We now show that V is compact. 

It is sufficient to shaw that V is closed and bounded. 

Since 9E0 is a finite measure, M = V lll 9 1(X) 
9E0 

number, because e is finite. We therefore see that 

will be a real 

so V is bounded in each component, and because V has a finite 

number of components (namely s), V itself will be bounded. 
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In order to show that V is closed, it is enough to show 

that every sequence in V has a convergent subsequence. Let 

{v }~ be a sequence in V. Then there is a sequence {o }~ n n=1 n n=1 

in cJt such that 

v = <fo d!J. 1 , ... ,Jo d!J. ). 
n n n s 

Define now 

!J,(A) = AEv/. 

It is then easy to see that !J. is a probability measure on 

(I,cA). Since { o }~ · n n=l is uniformly integrable. (Because the 

sequence is uniformly bounded), the weak compactness theorem tells 

us that there is a subsequence { o , } of { o } and a tA -
n n 

measurable o:I+R such that o ,+o weakly 
n 

fo ,hd!J. + fohd!! 
n 

for every bounded, measurable h:!+R. 

We realize that oE v't because 

and jd ,d!J,E[0,1] 
A n 

for every AE~, so fod!J,E[0,1] 
A 

for every AE.A, 

and consequently 0(0(1 a.e. [!J.]. Then o can be modified on 

subset of !!-measure 0 such that O~o(1 without changing the 

value of f ohd!J.. 

Finally, for 9E {1, ••• ,s,}, we have 

fon,d!J.e fo 
d!!e 

fo 
d!J.e 

0!-J. fod!J.e = -- d!J. + 
d!J. 

= n' d!J. 

since h 
d!!e 

is bounded (while is finite) and measurable. = d!J, !!e 
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This shows, because e is finite, that 

<Io ld1J. 1, ... ,Io 1d1J. > + <Iod1J. 1, ... ,Iod1J.s)EV n n s 

so {v } has a convergent subsequence in V. 
n 

The next proposition gives us some important properties of 

the V-set of a pseudo dichotomy. 

PROPOSITION I.3.8. 

D 

Let e = ([,vf, IJ.l I 1-12) be a pseudo dichotomy. The V-set, Ve I 

of e will then have the follawing properties: 

i) Ve is compact and convex 

ii) (0,0), (1,1J.2 (%))EVt 

iii) V! is symmetrical about the point (~, ~1-1 2 (%)). 

PROOF: i) Follows from Proposition I.3.7 with s = 2. 

ii) Can be seen by choosing respectively o:O and o:l. 

iii) If o:l+[O,l] is ~-measurable, then 0 1 = 1-o will have 

the properties: 6 1 :I+[O,l] and 6 1 is vi-measurable. 

Furthermore 

<J o I d 1-1 1 , I o I d 1-12 > = < I d 1-11 -I d 1-11 , I d 1-12- I od 1-12 > 

= (1-Iod~J. 1 ,~J. 2 <x>-Iod1J. 2 > = (l,~J. 2 <x»-<fod1J. 1 ,fod1J. 2 > 

so we see that Vt is symmetrical about the point (~,~IJ. 2 (X)). D 

Since Vt is compact and convex, it is possible to consider 

the support function Ht of Vt, which is defined by 

sup <a,v> 
vEVt 



- 21 -

where aER2 and <•, •> denotes the usual Euclidian scalar 

product on R2. 

Let nOW' H 
El'£2 

be the support function of the set 

£ £ e: £ v = [- -21,-2 l]x[- -22,-2 2]. 
£ 1' £2 

It is then easy to show that 

With this we have come to another characterization of (e: 1 ,e: 2 )­

deficiency between pseudo dichotomies satisfying (I.3.1) and · 

(1.3.2). 

PROPOSITION 1.3.9. 

t: is (e: 1 ,e:2 )-deficient with respect to 
,. 

~ v 

Ht'+ H ) HF. 
£1 I £2 

PROOF: In order to show this equivalence we show a useful 

equality, which holds for any measure ~ on (I,~): 

n ~~~ = 2 sup fod~-~(X). 
0< 0( 1 

We see this from the following 

II ~II = sup fod~ 
0&0<1 

2 sup fod~-~(.!'). 
0<&<1 

According to Proposition I.3.1 we know that e is (e: 1 , e: 2 )­

deficient with respect to ~ if and only if 

(1.3.3) 

where we as usual let f = ci,vf I ~1 I ~2) and J: = ( Y, 'J I "V 1 I "V2) . But 

now we have 
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sup (a 1x 1+a 2x 2 ) = sup (a 1 J6d~ 1 +a2 J6d~2 ) 
(X l' x 2 ) EV! 0 < 6 < 1 

sup f6d(a 1 ~ 1 +a 2 ~ 2 ) = ~(na 1 ~ 1 +a 2 ~ 2 n+a 1 +a 2 ~ 2 (X)) 
0<6<1 

because of the equation above. Therefore (I.3.3) is equivalent to 

- 2H (a 1 ,a 2 ), va 1 ,a2.ER 
E 1' E 2 

which in turn, since ~ 2 (I) = v2 (Y), is equivalent to 

and the proof is completed. 0 

It is now possible to describe (E 1,E 2 )-deficiency by means of 

V-sets. 

PROPOSITION I. 3.1 0. 

[ is ( E 1 , E2 )-deficient with respect to J: 
1\ 

~ 
v, + v ::l v,.. 

G. El'€:2 .r 

PROOF: This is simply a reformulation of the previous proposition 

since we have the following two properties of the support function 

~K of a compact, convex set K: 

= 

and 

0 



COROLLARY I.3.11. 

- 23 -

f ) J: <=> Vt :;:, VF 

t .... r <=> v! = v'F. 

PROOF: This follows from Proposition I.3.10 by considering (0,0)-

deficiency. 0 

Corollary I.3.11 shows that the V-sets are well suited for 

describing "more informative" and "equivalence" between pseudo 

dishotomies satisfying (I.3.1) and (I.3.2). As we have pointed 

out before, the V-set characterizes the pseudo dichotomy up to an 

equivalence. Later we'll discuss the geometrical aspects of this 

corollary. 

We now proceed with a study of the relationship between E­

deficiency and the ~-function. Let f = (I,cA 1 ~ 1 1 ~ 2 ) be a pseudo 

dichotomy. Then ~t is defined on [0,1] by 

~t(a) = sup{yl(a~y)EVt' }. 

We extend the domain of ~t to R 

[~ (0) 1 

~, (a) = 
B ( 1 ) , 

by defining 

a<O 

a> 1 

Our intention with this is to be able to present the next 

result in a simpler form. 

PROPOSITION I.3.12. 

e is (E 11 E 2 )-deficient With respect to ~ 

" n 
v 

(I.3.6) sup{~f(x) lxE [a-;1 1 a+~l j} ) 
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more 

H = { (X I y) I y ) 1!2 (.l ) X I X E R } 

where is the total mass of and We now 
.... 

put K = KnH for any K c R 2 1 and the following equivalences will 

then hold: 

(!.3.7) e iS ( E 1 1 E)-deficient With respect tO f 

" 
(!.3.8) 

(!.3.9) 

~ 

Vt + VEl'E2 ::> v,. 
" ~ 

.... .... .... 
V t + V E 1 I E 2 ::>. V J: 

The equivalence between (I. 3. 7) and ( 1.·3. 8) is due to Proposition 

!.3.10. The equivalence between (!.3.8) and (!.3.9) comes from 

the fact that V(+V 1 like 
El 1 E2 

V~ 1 is symmetrical about the point 

(~~~!!2 (Z))~ and because we can apply the following lemma: 

LEMMA: Let A1 B c R2 and assume that A and B are symmetrical 

about aER 2 . Then we have: 

.... .... 
A c B <=> A c B. 

PROOF OF THE LEMMA: Assume first that A c B. Then 
~ ~ ~ ~ 

A = AnH c BnH = B1 so A c B. 

Assume then that A c B1 and let g:R2+R 2 be defined by 

which means that x and g(x) lie symmetrical about a. Then 

A = AUg(A) and B = BUg(B) since both A and B are symmetri-
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cal about a. Consequently A c B => g(A) c g(B) => 

AUg(A) c BUg(B) => A c B, which completes the proof of the lemma. 

We have therefore proved the equivalence between (!.3.7) and 

(!.3.9) (because the fact that V +V is symmetrical about 
f Ep£2 

(~,~~2 (Z)) follows easily from the symmetry of 

(~,~~2 (I)) and the symmetry of V 
e:l,£2 

about 

V( about 

(0,0)). 

Further it is clear that (!.3.9) is equivalent to 

(!.3.10) ~F(a) (sup{yl(a,y)EV.,+V }, \iaE[0,1]. 
c. e:l'£2 

We now finish this proof by applying the next lemma. 

LEMMA: sup{y I ( a,y) EV! +V e: 1, e: 2 } = sup{ ~t (x) I xE [a-~1, a~1] }~2, 

\iaE[O,l]. 

PROOF OF LEMMA: We have sup{yl(a,y)EV.,+V } = sup{yl(v1 ,v2 )EV, 
' e:1,e:2 ' 

and la-v1 1 ( ~1, ly-v2 1 ( ~2} = sup{ylla-v1 1 ..: ~1 and 

(v1 ,y)EVt }1-2 = sup{~g(x) lxE[a-~1,a~1]}+~2, which completes the 

proof of the lemma. 0 

COROLLARY !.3.13. 

f)J: <=> ~,) ~~ 

f"' ]:' <=> ~t = ~:F· 

PROOF: This follows directly from Proposition !.3.12 by consider-

ing (0,0)-deficiency. 0 

This corollary shows that the concepts "more informative" and 

"equivalence" between pseudo dichotomies can be expressed quite 
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easily trough the ~-functions. In particular we see that the ~-

function characterizes the pseudo dichotomy up to an equivalence. 

Furthermore we can express the dot deficiency between pseudo 

dichotomies with the aid of ~-functions, such as the next propo-

sition says. 

PROPOSITION I:3.14. 

6 ct ,F> 

~({,.F) = supl~.r(a)-~!(a) I· 
a 

PROOF: 5(£,~) = ~inf{e>OI £is (O,e)-deficient with respect toF} 

= ~inf{e>O l~t(a))~j'(a)-~, 'VaE [0, 1 ]} 

= ~inf{e>Ol~r-(a)-~t(a)<~, 'VaE[0,1]} = sup(~}:'(a)-~t(a))+ 
a 

The expression for ~(f,F) comes from the fact that 

0 

We shall also give a characterization of "more informative", 

which holds under certain addi tiona! assumptions on e and y:. 

PROPOSITION I.3.15. 

Let f = (I,tA, 11 1 ,112 ) and J: = ( 'f,!, v1 , v2 ) be two pseudo 

dichotomies, where 1J. 1 ,v 1)0, 1J. 2<<1J. 1 , v2 <<v 1 and ~ 1 ((,}) = 0. 

We define 

~ dv 2 -1 
s. - 2 s.,.. = - F,. = "1 sf 

~o d1J. 1 ' r dv 1'" ""' 
and 

Then the following equivalence holds: 

~ v 

(!.3.11) f~dFt ) f~dF~ for every convex function ~:R+R. 
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PROOF: According to Theorem !.2.2 £ >f: will be equivalent to 

Assume first that f > f: and let ej.oE'¥ ( 2 ). Then, since tJ. 1 >o 

and tJ. 2 <<tJ. 1 , we have 

~ r (d1J.1 d1J.2) _ r ( ) 
CjJ (6 ) = ~ CjJ d IJ.l I d IJ.l d IJ.1 - ~ <jl 1 I Sf d IJ.1 

- ~<j1(1,x)(IJ.,si 1 )(dx) = Iej.o(1,x)F! (dx) 

by applying the change of variable formula. But since every con­

vex function $:R+R can be written as lim <jl (1 :) for a suitable 
n n+CD 

pointwise increasing sequence in 
(2) 

'¥ , we see (from 

monotone convergence theorem) that 

holds for every convex $: R +R and (I. 3. 1' 1 ) . holds; 

Assume now that (I.3.11) holds, and let <jlt'¥( 2 ). Because 

~(x) = ej.o(1,x) is convex, we know that 

Consequently, due to the equalities <ji(£) = )<j1(1,x)dFt and 

ej.o(]") = ~<jl(l ,x)dFF, (!.3.12) will hold, which implies that £ >1', 

and the proof is completed. 

!.4. An important example. 

In this section we shall calculate Vt , ~t and Ul of a 

certain kind of pseudo dichotomy '! , which will be of importance 

in the following chapters. 

u 
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Let 

t = ( { 1 1 • • • 1 n } I r; ( { 1 I • • 0 In } ) I ~ 1 I ~2 ) 
where 

~ ({j}) =.! 1 n and = X • j' j = 1, ••• ,n. 

Here x 1 , .•. ,xn are arbitrary real numbers. 

First we'll determine Ve· Because .X is finite, one can 

show that v, = <~' >, where 

Vt = {<f&d~ 1 ,f&d~2 ) l&:l+[0,1] is non-randomized} 

by applying separating hyperplane theorem. A non-randomized deci­

sion rule & is such that &(j) = &.E{0,1}; j = 1, ..• ,n. This 
J 

result can be shown analogously to the fact that "a risk set is 

the convex hull of the non randomized risk set" (see reference 

[3 j) • 

This simplifies the work in connection with determining Vt 

considerably, because V' t is a finite set and quite easy to 

determine. 

Let &:!"+[0,1] 

j = 1, •.. ,n. Then 

and consequently 

be non-randomized and put &(j) = 

= ( I *' ), X • ) j:& .=1 j:& .=1 J 
J J 

& • ; 
J 

k k 
V 8 = < { (.;..., L x . ) IkE { 0, ..• , n} and { j 1 , ... , jk} c { 1 , ••• , n} 

' n . 1 J. 1= 1 

where j. :fj. 
11 12 

when i1:fi2> 

k k 
= <{(-, I X[']) lk = 

n j=1 J 

. . k k 
0 , 1 , • • • , n } U { ( -, L x. ( . ) ) I k = 

n j=1 J 
0,1, ..• ,n}> 

. k 
since all the points (~, I x. ) , by 

n . 1 J. J= 1 

k k 
the line segment between (- r x ) 

n'j~1 [j] 

varying 

and 

j 1, •.. , jk' lie on 

k k 
(-,LX(')). 

n j=l J 
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This means that Vt is given by 

k k 
V.t =<{(-,I x['])lk 

n j=l J 

k k 
= 0,1, ... ,n}u{(-, I x('))lk = 0,1, .•. ,n}>. 

n j=1 J 

From this it is easy to find ~l' which is defined by 

~t (a) = sup{y I ( a,y) EVz } . We see that 

~t (a) = 
k 

I X [. J 
j=1 J 

when a = n' 
k k = 0,1, •.. ,n 

and that ~~ is piecewise linear and continous on [0,1 ]. 

We let ~ denote the counting measure on {1, ••• ,n}, and it 

is then possible to calculate Uf : 

Consequently the expression for U! is 

n 
I I~ - X. I I 

j=1 n J 

n 
I I~ -x·l· 

j=1 n J 

l;ER. 

In our example we have started off by determining 'i , and 

then we have found ~f· We shall now give some comments on an 

alternative manner of proceeding. It is namely possible to attack 

the problem differently, by first calculating ~( and thereafter 

use the wellknown geometrical properties of V-sets in order to 

determine V! . This method is based on a generalized version of 

Neyman-Pearson's lemma. 

Let aE[0,1 ]. We wish to calculate 

~t(a) = sup{yl(a,y)EVl}. 

Since 

Vt = {Cfod~ 1 , fod~2 ) lo is a function from {1, •.. ,n} to [0,1 ]}. 
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This is the same as maximizing fod~2 under the constraint 

fod~ 1 =a, where o is a function from {1, ... ,n} to [0,1 ]. 

where 

By introducing ~ = ~ 1 +I ~2 I, we se that ~ 1 , ~2 < < ~ and 

d~. 
f. = 1 

1 d~ • 

fod~. = fof.d~, i = 1,2, 
1 1 

We are then in the siutation described in Propo-

sition !.2.7. (The generalized version of Neyman-Pearson's lemma.) 

This proposition assumes the existence of a maximizing o and it 

says that this o must satisfy 

1 when f 2 ( x) > cf 1 ( x) 

o(x) = y when f 2 (x) = cf 1 ( x) 

0 when f 2 (x) < cf 1 ( x) , 

where c and y are constants (0(y(1) such that 

After some elementary calculations, we now get 

k 

~t(a) = ji1x[jt(na-k)x[k+1 ]'when ~--a<k+l. k = 0 1 1 n... n , 1 , ••• 1 n-

and 

~~ ( 1 ) = 
k 
I X. 

j=l J 

which is the same result as the one we got earlier. 

l~:C: [0 I 1 J + R 

~!(a)= ):x.-~ (1-a): aE[0 1 1] 
j J 
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because ~t and ~t are symmetrical about (~,~~xj). 
J 

Consequently 

V! = {(a,y) l~t(a) t>: y t>: ~t(a), aE [0, 1 ]} 

and it is easy to realize that this is the same set as the one we 

found originally. 

If we didn't know the symmetry-property of the V-sets, we 

could have found ~! alternativly by using the generalized 

version of Neyrnan-Pearson's lemma in order to minimize 

among all decision rules o satisfying fof 1 d~ = a. 

This shows that the generalized version of Neyman-Pearson's 

lemma plays a fundamental role in the example of this section. 

Since these pseudo dichotomies will be of great importance in 

chapter II on rnajorization, this generalization (Theorem 5 in 

referance [2]) is quite essential as regards characterizations of 

rnajorization. 

We shall end this chapter by giving a concrete example in 

order to illustrate ~~' ~t' Vt geometrically. 

Let n = 4 and x = (6,4,1,-1). 

The following table gives us a few values of ~i and ~t· 

a ~t (a) ~f(a) 

0 0 0 

1 \ 

4 6 -1 

1 
10 0 2 

3 11 4 4 
1 10 10 
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On fig. I. 4.1 ~t, J! t and Vt are all drawn, and we see how 

the graphs of ~t and l!t constitutes respectively the "upper" 

and "lower" boundary of Vt. We also see that Vt is symmetric 

about the point ( ~, 5}. Note that ~t is concave and J! t 

convex; this holds in the general case, too. 

When calculating Vc, one has to treat five different inter­

vals separately, and the result is: 

- ~ + 10 when ~ ( -4 

~ + 12 when -4<~<:4 - 2 

Vf ( ~) = 10 when 4<~<:16 

r: + 2 when 16<~<:24 2 
~ - 10 when 24<~ 

By drawing the graph of Ut, we see that this function is 

convex. This also holds in the general case, which easily can be 

shown analytically. 
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CHAPTER II: MAJORIZATION 

II.1. Definition and characterizations. 

The mathematical concept "majorization" is used in different 

context in litterature. Most common is majorization between 

vectors, which we shall study in this chapter. 

DEFINITION II.1.1. 

Let x = (x1 , ... ,xn) and y = (y1 , ... ,yn) be two vectors in 

Rn. If 

k k 
(II. I. I) L X [. J ( j~1Y[jf k = 1, ... ,n-1 

j=1 J 

and 

n n 
(II.1.2) I x. = I Y. 

j=1 J j=1 J 

hold, we say that x is majorized by y, and in that case we 

write x-< y. 

That x is majorized by y expresses that the components of 

x "are less spread out" than the components of y. 

EXAMPLE II. 1 . 2. 

The concept of majorization as defined above can be used to 

describe whether a certain income-distribution over a population 

is "more equal" than another such income-distribution of the same 

amount of money. If x = (x 1, ... ,xn) and Y = (y 1, · · • ,yn) 

denote the different individual incomes in a population of n 

individuals according to two ways of distributing the total 

income, we can say that the income-distribution x is "more 
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equal" than the income-distribution y when x-< y. This means 

that the sum of the k greatest incomes in the distribution y 

is at least as great as the sum of the k greatest incomes in the 

distribution X1 where k runs through {1 1 •.. 1n-1 }. 

We shall now list several characterizations of this majoriza-

tion concept. The next theorem therefore gives different condi-

tions on the vectors x and Y 1 each of these being equivalent to 

x < y. These equivalences are well-kn0Yin 1 and they can be found in 

reference [3]. 

n We remind ourselves that K I whenever yER 1 denotes the y 

convex hull of the set of all possible permutations of Y1 and 

that Jt D is the set of ali doubly-stochastic nxn matrices. 
n1n 

THEOREM 11.1.3. 

Let x = (x 1 1 · ••• ,xn} and y = (y1 1 ••• I yn} be two arbitrary 

vectors in Rn. Then (II.1.3}-(II.1.9} are all equivalent: 

(11.1.3} x<y 

k k n 
(11.1.4} LX('}) .1. y(J'}; k = 

j=1 J ]=1 
1~···~:n.-1~ and l. x. = 

j=l J 

(11.1.5} l:lx.-al ( l:ly.-al; V'aER1 and l:x . = LY· . J . J . J . J 
J 

(11.1.6} }:(x .-a}+ 
. J 
J 

(11.1.7} L<l>(x .} 
. J 
J 

(I I. 1 • 8} X EK 
y 

( 

J 

( }:(y .-a}+; 
. J 
J 

l:<~><Y .> for 
. J 
J 

(11.1.9} 3M~D :X= yM 
n1n 

J J 

V'aER1 and l:x . = LY. . J . J 
J J 

every convex cjl:R+R1 and 

n 

I YJ· 
j=1 

l:x . = 
j J 

LY. . J 
J 
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II.2. Majorization as a statistical concept. 

We shall in this section show that majorization can be 

considered as a statistical concept. 

Let 

pseudo dichotomy 

We then define ! 1 
ne,x 

( { 1 , ... , n } , @ ( { 1 , ... , n } ) , ~1 , ~2 ) , 

where 
1 

~ 1 ( { j}) = n and ~ 2 ({j} = xj; j = 1, ... ,n. 

as the 

This implies that t 1 has a pseudo experiment matrix 

Pe 
1 
-e x n , 

defined by 

-e x n , 

p!1 
n:e, x 

( 
1 1 ) - -I • • • I 

= :, ... , :n 
In this situation [ 1 is denoted a majorization pseudo 

ne' X 

dichotomy, and if xEK 
n 

(if X is a probability vector) f 1 

is denoted a majorization dichotomy. 

-e x n , 

Majorization between vectors x and y now turns out to be 

equivalent to the relation "more informative than" between the 

corresponding majorization pseudo dichotomies. This is most 

easily seen by applying the Markov-kernel criterion for "more 

informative" in this situation. 

PROPOSITION II.2.1. 

Let n x,yER . 

X ..( y 

~ v 

Then the following holds: 
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PROOF: By applying Corollary I.2.6 we get: 

3MEJ( n,n 

A 
II 

~, ••. ,- -, ••• ,- ·11 :ln n n n n : . 3M = ( m . . ) ~' ~ 1 1 t:-_11 
l.J 1., J= , "Vl n, n 

{ 
1 r ) ( 1 1 J (m 1 • • • 1ffi ) 

x 1 , • . . 1 x n = y 1 1 • • • 1 y n rhn 1 1 • • • 1 rhn n 

3Mt:._l/ 
"Vlnln 

" II v 
n 
L m . . = 1 ~ j = 1 I ••• 1 n and x = yM 

i=1 l.J 

~ v 

X= yM 

~ 
X -{ y 

where the last equivalence is due to Theor~1 II.1.3. 

Proposition II.2.1 gives the connection between majorization and 

the theory on pseudo dichotomies. Since we have several charac-

terizations of the "more informative"-concept 1 it is natural to 

pose the following two questions: 

-which characterizations of majorization in Theorem II.1.3 

are consequences of the theory of pseudo dichotomies? 

0 

- can the theory of pseudo dichotomies also give new charac-

terizations and interpretations? 

The rest of this chapter is devoted these two questions. 

PROPOSITION II.2.2. 

Let and assume that tx. = 
1: J 
J 

(II.2.1)-(II.2.4) are all equivalent • • 

LY .• 
. J 
J 

Then the statements 
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(1!.2.1) f1 ( !1 
-e x n I 

-e y n I 

(1!.2.2) ~t 1 
( 

~! 1 
nelx nely 

(1!.2.3) uf < u! 
1 1 
-e x n I 

-e y n I 

(1!.2.4 3M~ pe ( p! M 
n1n 1 1 

nelx -e Y n I 

PROOF: The equivalence between (1!.2.1) and (11.2.2), (1!.2.3), 

(1!.2.4) follCM respectively from Corollary !.3.13, Corollary 

!.3.5 and Corollary 1.2.7. 0 

By using the expressions developed in section 1.4 for the ~-

function and the U-function of a majorization pseudo dichotomy, we 

see that 

(1!.2.2) <=> 1 1 ••• 1 n-1 

and that 

(1!.2.3) <=> >:lxj-al < ~lyj-a1, VaER. 
J . J 

Besides it has just been shown in Proposition 1!.2. 1 that 

(1!.2.4) 3M c.ND : M "'L X = y • n1n 

This means that we, by using the theory of comparison of 

pseudo experiments, have proved the equivalences between (II. l. 3), 

(11.1.5) and (1!.1.9) in Theorem 1!.1.3 in a new way. We shall 

also comment the other characterizations in this theorem. 

The equivalence between (1!.1.5) and (11.1.6) is immediate 

and can be seen by using the fact that + lal = 2a -a and that 

Ix. = 
j J 

As regards (1!.1.8), it can be shown to be equivalent 
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to (II.1.9) by applying Birkhoff's theorem (which says that the 

set of all doubly-stochastic nxn matrices is the convex hull of 

the set of all nxn permutation matrices). Furthermore one easily 

realizes that (II.1.3) and (II.1.4) are equivalent since 

Ix. = LY·1 but this can also be seen after a geometrical 
j J j J 

discussion. We know that 

x -< y <=> e 1 
-e~x n 

<=> cVz 
1 -e y n I 

Because of the symmetry-property of the V-sets (see Proposi-

tion I. 3.8) this is equivalent to the following: "the lower 

boundary" of Vf 
1 
-e x n I 

lies above "the lower boundary" of v! 
1 
-e y n I 

Since the breakpoints on the lower boundary of vf 1 are among 

ne 1 X 

k 
the points 

k . 
(-~ L x [. ]) ; k = 11 ••• ~n-1 1 one realizes (from this 

n j=1 J 

informal argument) that (II.1 .3) and (II.1.4) are equivalent. 

We can also obtain the equivalence between (II.1.3) and 

(ILl. 7) ·(the characterization of majorization by inequalities for 

convex functions) as a result of the theory in chapter I. 

PROPOSITION II.2.3. 

Let n x1yER and assume that Yx • = Y. y .• 
; J : J 
J J 

Then the following 

equivalence holds: 

X -( y 

~ 
L~(x.) ' L ~(yJ.) for every convex function ~:R+R. 
j J j 
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PROOF: We see that and [ 1 satisfy the assumptions in 
-e Y n ' 

Proposition !.3.15, and from this we know that 

(I. 2 • 5) f ~dFf l for every convex function ~=R~R. 

With the 

f ~dFf 
1 

-e x 
n ' 

same 

-e x n ' 

notation as 

-1 
= J ~d~-tl sf 1 

11e,x 

in Proposition !.3.15, we have 

f~ost 1 
1 

= dIll = L~ (nx. )-. J n 
J ne,x 

from the change of variable formula. Thus (II.2.5) is equivalent 

to 

(II.2.6) 2~(nx.).;; ~~(nyJ.) for every convex ~=R~R. 
j J J 

But since x~•<nx) is convex if and only if x~•(x) is convex, 

we have completed the proof by applying Proposition 11.2.1. 0 

We now turn to the second question that was posed earlier in 

this chapter: Can the theory of pseudo experiments give us new 

characterizations of majorization? 

The first result in this direction is available when we 

return to the definition of "more informative". 
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Then we have 

X< y 

~ v 

to every decision space T = {1, ... ,k}. where k = 1,2, .•• , and to 

every bounded loss function L 9(t); e = 1,2, tET, and to every 

decision rule p in ! 1 , , there corresponds a decision rule ~ 
-e x n , 

in f 1 such that 
ne,y 

(9,6) <; (e,p); e = 1 1 2 1 

where rf (e,p) denotes the risk in f 1 by using the deci-
1 -e x -e x n , 
n , 

sion rule p when e is the underlying value of the parameter. 

PROOF: This is simply the definition of (see 

Definition I.1 .1) combined with Proposition II.2.1). D 

When x, yEK I 
n 

re (e,p) and will in fact be 
1 
ne,x 

the risk functions in the original sense, because f 1 and 

£1 · then are experiments. 
-e,y 
n 

II.2.4 still holds, but f 1 .orf1 
ne,x n:e,y 

-e x n , 

are in that case no 

longer experiments and the probabilistic interpretation dis-

appears. 

Loosely speaking we can say that x .( y if and only if every 

finite decision problem can be solved better, or just as good, in 
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Actually it is possible to consider a 

larger class of decision problems and still conserve the validity 

of this proposition, but this will not be proved here (see Theorem 

7.5 in referance [5]). 

The next proposition vill also give a statistical description 

of majorization, and now by means of operating characteristics. 

PROPOSITION II.2.5. 

Let n x,yER and assume that Ix. 
j J 

= LY .• 
j J 

Then the statements 

(II.2.7)-(II.2.9) are all equivalent 

(II.2.7) 

(II.2.8) 

(II.2.9) 

X< y 

\lk.EN, 't/pEt/( k' 3o€vt k : eo n, n, 
n . n t 

't/pE [0, 1 J I 3oE [0, 1 ] : L.O. = 
j J 

= ep and yo = xp 

and LY · o · = Ix . p . • . J J . J J 
J J 

PROOF: The equivalence between (II.2.7) and (II.2.8) follows from 

Theorem I.2.3 (iii) by introducing matrix notation for decision 

rules. 

The equivalence between (II.2.8) and (II.2.9) follows from 

Proposition I.2.1. This will be shown in detail later in a mor~ 

general version (see Propostion III.2.8)'. 0 

(II.2.8) expresses that there to every finite decision space 

and every decision rule (represented by a Markow matrix p) in 

f 1 , corresponds a decision rule (represented by the Markow 
n:e,x 

matrix o) in £1 parrying the first one in the sense that 
n:e,y 

the operating characteristics are equal. 
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(11.2.9) expresses the same idea, but for testing problems 

(2-decision problems) only. 

It's interesting to note that {1!.2.8) is "quite close to" 

the following well-known characterization of x-< y 

{1!.2.10) 
D 

3M~ : X = yM. n,n 

The equivalence between {11.2.8) and {11.2.10) can in fact be 

seen directly in an easy way: 

The implication from {1!.2.8) to {11.2.10) follows by 

choosing k = n and p =I {J: the nxn identity matrix). Then 

there is a o~k such that Wtn,n 

eo = ep = ei = e and yo = xp = xi = x, 

which means that 6E~D and x =yo, and {!!.2.10) holds. n,n 

Conversely we prove the implication from {!!.3.10) to 

{1!.3.8) by, for given kEN and p~ k' putting o = Mp. n, Then 

it's easy to see that o~n,k and that eo = ep. Furthermore 

yo = y(Mp) = {yM) p = xp 

so {!1.2.8) holds. 

On the other hand it is harder to realize the implication 

from {1!.2.9) to (1!.2.8) directly {or alternativly the implica-

tion from {!!.2.9) to {!!.2.10)). This suggests that the reduc-

tion from e-deficiency to e-deficiency for 2-decision problems 

{which the implication from {!! .• 8) to {!!.2.9) represents) is not 

trivial. 
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11.3. An example showing the statistical content in the concept of 

majorization. 

This section gives an example of a practical problem in which 

majorization occurs, and where the statistical interpretation of 

the concept is illustrated. 

EXAMPLE II. 3. 1. 

A statistician is confronted with the following problem: Two 

boxes are given: box 1 and box 2, each containing two dice, one 

red and one blue. We denote the red die in box 1 by R1 , and the 

blue die by B1 • Analogously R2 and a2 are the red and the 

blue die respectivly in box 2. 

box 1 box 2 

We have certain informations on the dice. All the dice have 

sides showing the numbers 1,2, •.. ,6, and in each box there is 

exactly ~ die, which is just. When we denote .a die just, we 

mean that the probability of each of the six possible outcomes is 

1/6. Furthermore we know that those two dice that are just, are 

of the same colour. This implies that either R1 and R2 are 

just (while B1 and B2 are not) or Bl and B2 are just 

(while R1 and R2 are not). Besides we have some knowledge of 

those dice that are not just. The table below shows the probabi-

lity of the different sides coming up in a throw with the non-just 

die from each box. 
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Side 
number Box 1 Box 2 

1 0. 10 0.05 

2 0.05 0.30 

3 0. 1 5 0.30 

4 0.30 0. 1 5 

5 0.25 0.05 

6 0. 1 5 0. 1 5 

The statistician's task is to choose one of the boxes, and 

from certain experiments he is allowed to perform with the dice in 

this box, he should tell whether the red dice are just or not. 

Thus he faces the following problem: Which box should be chosen 

in order to have as much information as possible before answering 

the "colour-problem". 

We have by this presented two different problems: 

Problem 1 is the decision problem the statistician faces 

after he has chosen a box, nemaly to answer the question: are the 

red dice just?" 

Problem 2 is whether we should choose 'box 1 or box 2 in order 

to solve problem 1 in the best possible way. It is this problem 

we are interested in her. 

We now define problem 1 precisely, by giving the following 

information: After having chosen which box he will use, the sta-

tistician shall pick one of the dice in this box and throw this 

die 25 times. On the based of the 25 observed results he shall 

then answer this question: are the red dice just? He must give 

one of the answers "yes", "no" and "I don't know", and he then 
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looses or wins a certain amount of money depending on the relation 

between his answer and the correct answer according to the next 

table: 

~ "yes" "no" "I don't know" 

"yes" 50 -20 -16 

"no" -20 50 -23 

Positive numbers indicates profit and negative numbers indi-

cates loss to the statistician. By this problem 1 is well 

defined, and we see that this is a decision problem. 

As we have mentioned before problem 2 is our man interest, 

and we shall now show how this can be solved. 

We introduce the following two majorization dichotomies: 

where 

x 1 = (0.10, 0.05 1 0.15 1 0.30 1 0.25 1 0.15) 

and 

x2 = ( 0 • 0 5 1 0 • 3 0 1 0 • 3 0 1 0 • 1 5 1 0 • 0 5 I 0 o 1 5 ) 

( e1 ) 2 5 I 1' -- ' The product experiment 1 1 2 1 w1ll then 
6elxi 

consist in throwing one die from box i 25 times and observe the 

result. 

We now wish to find out which box to choose in order to have 

as much information as possible when we shall decide the colour of 

the just dice. Thus it is needed to compare the selection of box 1 

to the selection of box 2 with respect to the solvation of problem 
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1 • Therefore we compare the two experiments and 

<t1 )25. 
6e,x2 

It turns out to be sufficient to compare { 1 and 
6e,xl 

[ 1 and this is quite simple. We see (for instance from 
6e,x2 

Definition II.1.1) that 

according to Proposition II.2.1. This means that 

From the general theory of product experiments it follows that 

( ~ )25 ,. 
' 1 ... 
6e,xl 

This implies that there to every decision problem (as long as 

the decision space is Borel-isomorph: see Theorem 7.5 in referance 

[5]), to every bounded loss function and to every decision rule in 

<f1 ) 25 having a risk function which is uniformly less than or 
6e,x2 

equal to the risk function of the decision rule in ct1 > 25. 
6e, x2 

As a special case, this will hold for the decision problem that 

problem 1 represents. 

In our example one should choose box 2. It is important to 

note that we arrive at the same conclusion whatever decision space 

and loss function we might consider. Besides one ought to choose 

box 2 whatever number of throws we are allowed to make with the 

die. 



- 48 -

CHAPTER III. E-MAJORIZATION 

III.1. Definition. 

If 

We have earlier seen the following fundamental result: 

n x,yER 

X -{ y 

Therefore x is majorized by y if and only if the majori-

zation pseudo dichotomy determined by y is more informative than 

the majorization pseudo dichotomy determined by x. Since "more 

inforrna tive" is the same as " ( 0, 0) -deficiency", it is natural to 

ask which relations between x and y that correspond to ! 1 
n:e,y 

being E-deficient with respect to [ 1 
n:e,x 

In this chapter we 

shall consider this question in the case of (O,E)-deficiency. 

DEFINITION III.1 .1. 

Let n x,yER be such that Ix. = ).y. and let 
j J j.J 

We then say that x is E-majorized by y, and in that case 

we write x~y, if f 1 is (0, E)-deficient with respect to 

We demand that 

n:e,y 

Ix. = LY· in this definition because we wish 
j J j J 

to hold, since this is needed to assure that 

E-deficiency is equivalent to E-deficiency for 2-decision pro-

blems. This gives source to several interesting characterizations 
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of £-majorization, and besides is a necessary condi-

tion of usual majorization. 

We see that £-majorization generalizes majorization, like the 

next proposition says. 

PROPOSITION III.l .2. 

Let n x,yER be such that LX. = LY .. . J . -J 
J J 

X -( y <=> X -{ y. 
0 

Then 

PROOF: This is seen directly from Definition III.l.l with £ = 0 

because "(0,0)-deficiency is the same as "more informative". 0 

This implies that all the results we will get on £-majoriza-

tion for £>0, will give us results on majorization by simply 

letting £ = 0. 

II. Characterizations. 

The results in this section are all different characteriza-

tions of £-majorization, and they are consequences of the general 

theory in section I.3 on pseudo dichotomies. 

The first characterization we will present of £-majorization 

connects the concept to inequalities between the partial sums that 

we know from the definition of majorization. 

PROPOSITION III.2.1. 

Let n x,yER and assume that }:x.=?yJ .. 
j J J 

Let Then the 
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following holds: 

(III.2.1) 
k k 

X< y 
e: 
1\ 

~ 

I x[']..; I Y['] + f; k = 1~···~n-1. 
j=1 J j=1 J 

PROOF: According to Proposition !.3.12 and Definition III.1.1 we 

have 

X -( y 
e: 
1\ 

~ 
f 

1 . -e y n I 

is (0 1 E)-deficient with respect to £ 1 

~f 
1 
-e Y n I 

From !.4 we know that 

Furthermore 

~t 
1 

~1 

-e x n I 

k-1 k 
[-n~nJ~ k = 11 ••• ln. 

( a:) ) ~! 
1 

e: 
(a:)- 21 Va:E[0 1 1]. 

-e x n I 

k 
y X (. ]; k = 

j=1 J 
1 12 1 ••• 1n. 

11e 1 x 

is continousl and linear on the intervals 

~! has got the same properties. The 
1 
nely 

linearity and the continuity implies that (III.2.2) is equivalent 

to the same statement when we let a: run through the set 

k 
{-lk = 0 11 1 ••• 1n} 1 and this means that (III.2.1) and (III.2.2) are n 

equivalent. 0 

The next result is a consequence of "the U-criterion for e:-

deficiency". 
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PROPOSITION III.2.2. 

Let n 
x,yER and Assume that LX. = 

j J 

X< y 
€ 

" ~ 
L I X • -1; I ( L I y . -1; I+ € , VI; E R • 
j J j J 

LY .. 
. J 
J 

Then we have 

PROOF: By applying Corollary I.3.4 and the expression for the u-

function in section I.4, we get this equivalence immediately. 0 

COROLLARY III.2.3. 

Let n x,yER and 

+ 
L(x.-a) < 
. J 
J 

Assume that 

PROOF: We realize this by using that Ia I 

LX. = 
j J 

'VaER. 

LY .. . J 
J 

+ = 2 -a and 

Then 

Ix · . J 
J 

= LY· 
j J 

in Proposition III.2.2. 0 

One of the most interesting results on majorization is: 

If n x,yER and LX·= LY·, we have 
j J j J 

X ~ y <=> xEK . 
y 

Here K (see section I.l) denotes the convex hull of the 
y 

set of all permutations of y. This characterization of majoriza-

tion is closely connected to this result: 

x < y <=> there exists a doubly-stochastic 

matrix M such that x = yM. · 
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This "nice" geometrical description is also available within 

E-majorization. This can be shown by using "the Markov-kernel 

criterion" for e:-deficiency. 

PROPOSITION III.2.4. 

Let n 
x1yER and 

following equivalence holds: 

Assume that 

X< y 
e: 
1\ 
II v 

LX. 
. J 
J 

(III.2.3) 
D 

3MEJ{ n,n llx-yMII 0 ( e:. 

= LY .• 
j J 

Then the 

PROOF: Let f 1 = ( { 1 1 ••• 1 n} 1 (f( { 1 1 ••• 1 n}) 1 v 1 1 v 2 ) and 
-e~x n 

t 1 = ( { 1 1 • o o 1 n} 1 ~( { 1 1 o • • 1 n}) 1 ~ 1 1 1-1 2 ) 1 wh~re 
nely 

v. and 
1 

defined in the usual sense. The Markow-kernel criterion now gives 

us 

X -<, y 
e: 
1\ 

~ 
(III.2.4) there exists a Markow-kernel M such that 

11 1-1 9M- v 9 n ( e: 9 I e = 1 I 2 I 

e: 1 = 0 and e: 2 = e:. 

We reformulate (III.2.4) by considering the two inequalities 

for e = 1 12 separately. 

When 9 = 1 (III. 2. 4) gives 
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II Ill M-v l II < 0 
/1. 
II v 

1 I • • • In 

J. M({j}li) = 1; j = l, ..• ,n. 
i=l 

When we let the Markow-kernel M be represented by the 

Markow matrix ( ) n, n 
m · · · · 1 1 1) 1, J= 1 

defined by 

m .. = M({j}li); i,jE{l, ..• ,n}. 
1) 

Then (111.24) for e = 1 

doubly-stochastic. 

Furthermore 

n 

is equivalent to ( ) n,n 
m · · · · 1 1 1) 1, J= 1 

n n 

is 

II!! M- v H = 
2 2 

.L I ( !! 2M ) ( { j } ) - v 2 ( { j } ) I = J. I Y. m .. y. -x . I . 
j=l i=l 1 ) 1 J J=l 

( ) n,n 
Without danger of confusion, we now define M = mij i,j=l,l 

and thus 

n 
J. m .. y . = ( yM) . 

i=l 1) 1 J 

so 

n 
n11 2M-v 2 n = L l(yM) .-x.l = llx-yMII 0 . 

j=l J J 

By this we see that (111.2.3) and (111.2.4) are equivalent and the 

proof is completed. 

Proposition 111.2.4 says that 

D 

x < y if and only if x can 
E 

be approximated within the II • n0 norm by the image of y under a 

doubiy-stochastic transformation. 
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Assume that 

X -< y 
E 
1\ 

~ 
d 0 (x, KY) <: e 

Ix. 
. J 
J 

= LY .• 
j J 

Then we have 

PROOF: Assume first that x ~ y. According to Proposition 
E 

111.2.4 there must then exist a MEJ{0 such that llx-yMII 0 <:e, so n,n 

inf llx-zn 0 <: llx-yMn 0 <: e 
zEK y 

since yMEK (from Birkhoff's theorem we know that 
y 

(11!.2.6) K = <{yrrjrr is a permutation-matrix on {1, ... ,n}}> 
y 

D 
= { yM I M f)( n, n } . ) 

Conversely, assume that d 0 (x,Ky)<:e. 

there is a zEK such that 
y 

Since K 
y 

is compact, 

and because zEK , we must have that z = yM for a suitable 
y 

M-'» (see (111.2.6)). This shows that (111.2.5) holds. 0 t:Vln, n 

Another major result from the theory of majorization is: 

Let 
n 

x,yER and assume that Then 

X ..( y 

~ 
(11!.2.7) L~(x.) <: L~(y.) for every convex function ~:R+R. 

j J j J 

This can also be generalized to include e-majorization. 
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PROPOSITION III.2.6. 

Let 
n 

and £)0. Assume that ?Y j. Then x,yER Yx. = . J 
J J 

X -< y 
E 

" ~ 
L~(x .) ?~(yj) 

E - - + 
( + 2(~ (y)-~ (q}} 

. J 
J J 

for every convex function ~: R~R, 

where q = X 1 1\y ( 1 ) ' y = x [1 Jvy [1 J and where ~ 
+ 

and ~ denotes 

rightsided and leftsided derivative respectivly. 

PROOF: Assume that X ..( Y· According to Corollary III.2.3 the 
E 

following will hold: 

+ + E 
(III.2.9) ?<yj-a) ) I<x.-a) - 2' V'aER. 

. J 
J J 

We shall now show start by showing that this implies that 

(III.2.8) holds for all convex functions that are a maximum of a 

finite number of linear functionals. Let 

N 
~(x) = V (a.x+b. ): xER. 

i=l 1 1 

It is then easy to show that 

N-1 
~(x) = a1x+b1 + ii1 (ai+1x+bi+1-aix-bi)+. 

We may here assume that a 1<a 2 < ... <aN (because the convexity 

implies that a 1(a 2 ( ••• (aN and if ai = ai+1 we might as well 

eliminate the functional corresponding to i+1 in the maximum 

above. 

Thus 

~(x) 
N-1 bi+l-bi )+ 

= a 1x+b 1 + .I (a1.+1-a 1.)(x + 
1=1 ai+1-ai 
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so 

N-1 bi+1-bi)+ 
= I[a 1y.+b 1+ l (a.+1-a.)(y. + 

j J i=1 1 1 J ai+1-ai 

~ N~1 ~ bi+1-bi + 
= a 1 ;.Y .+nb1+ 1. (a.+1-a.) 1. (y. + _ ) 

· J · 1 1 1 · 1 J a· +1 a · J 1.= J= l. l. 

Furthermore it's clear that it is only the behaviour of ~ 

on [q,y] that matters as regards our inequalities since 

xi,yiE[q,yJ, i = 1, ... ,n. Consequently we can assume that the 

piecewise linear convex function above is such that 

and 

(because otherwise we elementate "the first and last" linear 

functionals so that this will hold!) 

Let furthermore this choice (and this can be done generally) 

be such that there exist 61 ,62 >0 such that 

and 

This implies that 

+ 
4> (q) = al 

and the inequality 

therefore holds for all piecewise linear, convex functions ~· 
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We can now perform the final step, by approximating an 

arbitrary convex function 4> with piecewise linear, convex 

functions. Let 4>:R+R be a convex function. We now define, for 

m = 1,2, ... , a function ~ by '~'m 

i -
4> (q+ --(y-q)) = 

m 2m 
i -

$(q+ -(y-q) 
2m 

for i = 0,1, ..• ,2m, and where 4>m is linear on the intervals 

i-1 - i - m 
[q+ -(y-q) ,q+ -(y-q) ], i = 0,1, ... ,2 • 

2m . 2m 

Then the following is clear: 

i) Since is a maximum of a finite number of linear 

functionals, we have 

for m = 1 , 2, . . . . 

ii) 4>m(x)~4>(x), VxE[q,y] because 4> is convex and 

equal to 4> at all the partition-points. 

iii) and 

~ is 
'~'m 

By letting m+~ in the inequality (III.2.10), we get the 

desired result (III.2.8). 

Conversely, assume that (III.2.8) holds. It is now enough 

to show that the inequalities (III.2.9) hold, because according to 

Corollary III.2.3 this means that X ~ Y• e: 

If q = y, we must have 

(III.2.9) holds trivially. 

X] = • • • = X 
n 

and 

Assume therefore that q < y, and we shall then show that 

(III.2.9) holds for every aER. We treat three different cases 

separately: 

i) Let aE<q,y> and define 4>(x) = (x-a)+. Then 4> is 

convex and 4>+(q) = 0, 4>-(y) = 1. From (III.2.8) we now get 
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~(y.-a)+ > Y(x.-a)+- -2E 
4 J ,' J 
J J 

and (III.2.9) holds. 

ii) 

+ I<Y .-a) . J 
J 

Let aE<-m,q]. Then 

= L(y.-a), so because 
j J 

~(xj-a)+ = 
J . 

Ix · = LY ·, 
j J j J 

I<x .-a) and 
j J 

(III.2.9) will hold. 

iii) Let aE[y,m>. Then + 
I<x.-a) = 
j J 

+ L(y.-a) = 0, and again 
j J 

(iii. 2. 9) holds. 

The proof is then completed. 0 

We shall give some other characterizations of E-majorization, 

and they all have in common that they describe the statistical 

content of the concept. 

PROPOSITION III.2.7. 

Let n x,yER and 

following will hold: 

Assume that 

X< y 
E 
A 

~ 

Then the 

(III.2.11) VkEN,VpEif. k'36E,f k: e6 = ep and lly6-xpii 0 (E. . n, n, 

PROOF: This follows directly from Theorem I.2.2 (iii) by intro-

ducing matrix notation for decision rules, like we did when 

proving Proposition III.2.4. 

This proposition 

at least when £ 1 
ne,x 

can be given a statistical interpretation, 

and ! 1 are dichotomies ( >: when 
n:e,y 

0 

x,yEK ). In fact x ~ y if and only if operating characteristics 
n E 

in f 1 relative to a finite decision space can be approximated 
-e x n , 
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by operating characteristics in e 1 in the sense that 
ne,y 

(III.2.11) says~ If we let t 1 = (Y,2,P 1 ,P 2 ) and 
ne,y 

f 1 = (I,J,o 1,o 2 ) be two dichotomies, we see that 
-e x n ' 

e6 = ep <=> (P 16)({j}) = (Q 1p)({j}); j = 1, ... ,k 

which means that the operating characteristics in t 1 and 

f 1 are equal when e = 1. Furthermore 
ne,x 

lly6-xpll ( E <=> liP 6-Q pll ( E 
2 2 

ne,y 

which means that the statistical distance between the operating 

characteristics when e = 2 is at most E. 

In the next proposition we have a similar statement, except 

that it says that is is enough to consider testing problems in 

order to conclude E-majorization. This is 'due to the fundamental 

reduction result forE-deficiency, Proposition I.2.1. 

PROPOSITION III.2.8. 

Let n x,yER and let Assume that 

X ..( y 
E 

" ~ 
(III.2.12) 'v'pE[0,1]n36E[0,1]n: I6. = LP· and 

j J j J 

Then 

PROOF: This follows from Proposition I.2.1 and Proposition 

III.2.7 that x < y is equivalent to 
e: 

(III.2.13) 'v'pE~n, 2 ,36E~, 2 : e6 = ep and lly6-xpn 0 <:E. 
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But in this case we have 

61 1-6 
1 p1 1-p 

1 

• • • • 
6 = • • and p = • • • • • • 

6 1-6 Pn 1-p 
n n n 

so 

eo = ep 

~ v 

(L 6 . , n- I 6 . ) = (?Pi ,n- fPi) • l. • l. 
l. l. l. l. 

" II v 

Io. = LP. • l. • l. 
l. l. 

Furthermore y6 = (l,y.o., Iy.-Y,y.o.) 
• l. l. • l. • l. l. 

and xp = (Ix.p.,Ix.-Y,x.p.), 
• l. l. • l. • l. l. 

l. l. l. 

and because Ix. = Y,y., we see 
j J .j J 

lly6-xpn 0 .;; E 

~ v 

1Iy.o.-Y,x.p.I+IIY·6.-Y,x.p.l "E 
.l.l. .l.l. ,].]. ,].]. 
l. l. l. l. 

~ v 

I LY · 6 ·- Ix · P · I • l. l. • l. l. 
l. l. 

E 
( 2" 

l. l. l. 

Consequently (III.2.12) and (III.2.13) are equivalent and 

the proof is then completed. 

The next charaterization of E-majoriza~ion if of special 

interest from a decision theoretical viewpoint. It gives a 

connection to risk sets in the different·pseudo dichotomies. 

0 
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PROPOSITION III.2.9. 

Let n 
x1yER and Assume that Then the 

following equivalence holds: 

X -< y 
e:: 

~ 
c vzl + {o}x[- ~~~] 

nely 

PROOF: This follows directly from Proposition I.3.10 by consider-

ing (0 1 e::)-deficiency. 0 

In section I.4 we have found the extreme points of Vt 
1 
-e x n I 

and Vf and the proposition therefore gives us a new geo-
1 
-e y n I 

metrical idea of e::-majorization. By drawing the V-sets in the 

plane R2 1 one sees immediatly that the V-criterion and the ~-

criterion are equivalent. This is caused by the graph of the ~-

function being 11 the upper boundary .. of V1 and that V is 

symmetrical about P~~~Ix .>. 
j J 

\le shall nON shaY that Proposition III.2.9 also is interest-

ing from a decision theoretical viewpoint. Assume that f 1 = 
nelx 

<I~v4 1 ~ 1 1 ~2 ) and £ 1 = ( 1~2 1 v 1 1 v 2 ) both are pseudo dichotomies 
nely 

satisfying (I.3.1) and (I.3.2). We consider the decision problem 

D that consists in estimating e with 11 0-1 loss 11 we let 

when e * t 
0=T= {1 1 2} and 

when e = t. 
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We let and denote the risk set in respectively 

and f 1 relative to the decision problem D. Let nOW" 

n:e,y 

o be a decision rule in f 1 and define o (y) = o ( { 2} IY>. 
ne,y 

Then 

D 
( 1 , 0) f [JL1 (t) o(dt IY> ]v 1 (dy) fo(y)v 1 (dy) f od v1 r! = = = 

1 -e y n , 

and 

D 
( 2, 0) f [JL2 (t) o(dt IY> ]v2 (dy) f (1-o (y)) v2 (dy) rf = = = 

1 
-e y n , 

Consequently 

and analogously 

D 
Rf 

1 -e x n , 

= { ( f pd 1-1 1 , ~x j- f pd 1-1 2 ) I p: { 1, ... , n} ~ [0, 1 J} • 
J 

LY .- fodv 2 . J 
J 

We now let a= Y;xj = ~yj and define the transformation 
J J 

It is then easy to show 

( I I I. 2 • 1 5) R~ 
'1 
ne,x 

This leads to the following result: 
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Let 

(III.2.16) 

n x,yER and 
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Assume that 

X -< y 
e: 

g 

~X. 4 J 
J 

E e: 
+ {o}x[- 2'2]. 

= LY .• 
j J 

Then 

PROOF: It is enough to show that (III.2.14) and (III.2.16) are 

equivalent. 

Assume that (III.2.14) holds. Then 

g(V! 
1 -e x n , 

+vo > 
I E 

so C R~ 1 + { 0 } X [- ~ 1 f ] because of (III.2.15). Hence 

n:e,y 

(III.2.16) holds. 

Conversely assume that (III.2.16) holds. Due to (III.2.15) 

we then have 

Since g is 

vf = 
1 -e x n , 

g(Vt 

injective, 

-1 
g (g(Vt 

1 

1 -e x n , 

this 

)) c 

-e x n , 

and (III.2.14) holds. 

+Vo >. 
I E 

implies that 

-1 . 
+Vo > > g (g(Vf 1 = V.t 1 +Vo 

. I E I £ 

-e,y n -e y n , 

D 

Only when e 1 
-e,x 
n 

and ! 1 are dichotomies the statistical 
ne,y 

content of Proposition III.2.10 is clear, and in that case 

(III. 2.15) expresses a relation between "the usual risk sets" in 
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and ( 1 relative to D. The proposition is of course 

ne' y 

valied for more general mass distributions. 

The next characterization of e-majorization we present is 

particularly interesting because it shows a connection to usual 

majorization. 

When 
n 

y = (y 1, ... ,yn)ER and £)0, we define 

PROPOSITION III.2.1 1. 

Let 
n 

x,yER and Assume that 

following holds: 

PROOF: Since LX . = ~yJ. 
j J J 

k 

LX[']<: 
j=1 J 

X -( y 
£ 

" II v 

X -( y . 
£ 

= l,(y ); 
. £ 

the following holds 
J 

k 

X -( y 
£ 

L (y) [']' k = 1, ... ,n-1 
j=1 £ J 

fl 
v 

k k 
LX['J-<: LY['J+f,k=1, .•. ,n-1 

j=1 J j=1 J 

" ~ 
X .o( y 

£ 

Then the 

where the last equivalence follows from Proposition III. 2. 1. 0 
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This proposition gives a useful description of e-majoriza-

tion, because we now can use the known results from the theory of 

usual majorization to obtain results on e-majorization. 

By combining Proposition III.2.11 and Corollary III.2.5, we 

get an interesting geometrical property of the d 0-metric. First 

we present a useful lemma. 

LEMMA I I I. 2 . 1 2 • 

Let yERn and define, for e>O, 

Then 

E E n 
qE = (2 I 0 I ••• I 0 I- 2) ER . 

= {vERnl?vj = 0 
J 

and 

PROOF: According to Theorem II.1.3 and Proposition III.2.11 we 

have 

(III.2.17) 

1\ 

~ 
V .( qE 

1\ 

~ 
v ~ (0, ••• ,0) 

E 
1\ 

~ 
~v. = 0 and 
~· J 
J 

~lvj-al ( nlal+e, VaER 
J 

where the last equivalende is due to Proposition III.2.2. 

But now (III.2.17) is equivalent to 

(III.2.18) Iv. = 0 and 
j J 

I lv .1 ( E 

j J 

which we see by applying the triangle inequality. Since 

n vII 0 = I I v . I the proof is completed. 
j J 

0 
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We are now able to prove the followin "nice" geometrical 

result: 

PROPOSITION III.2.13. 

Let 
n 

yER and e)O. We define 

Then we have: 

K = K + K 
y E y qE 

PROOF: According to Proposition III.2.11 and Corollary III.2.5 we 

have 

= {xlx-<y } = 
E 

{xlx-<y} 
E 

= {X I ) X . = },y . 
j J j J 

and 

where the last equality is shown in the following way: 

Assume that xERn is such that 

Then there is a y'EK 
y 

such that 

tx. = ty. and d 0 (x,Ky)(e. 
~· J ~ J 
J J 

inf{d 0 (x,y') ly'EKY} is obtained because K 
y 

(since d 0 (x,KY) = 

is compact and 

y'~0 (x,y') is continous). Put v = x-y'. Then 

L v . = Ix . - LY '. = Y,x . 
·J :J ·J ·J J J J J 

/,y. = 0 
j J 

and nvn 0 = llx-y' 11 0 = d 0 (x,y') (e, and by applying Lemma III.2.12 

we know that vEK 
qE 

Thus x = y'+vEK +K 
y qE 

This shows that 

{ x I Yx . = ~Y J. 
j J J 

and K +K 
y qE. 

Assume then that xEK +K 
y qE 

Then there exists a y'EK and 
y 

vEK such that x = y'+v. According to Lemma III.2.1 we then 
qE 

have 

tx. 
~ J 
J 

= LY~ + }:v. = 
j J j J 

LY .• 
. J 
J 



Furthermore 

since vEK 
qe: 

This shows that 

{ x 1/,x · = IY · . J . J 
J J 

and the proof is completed. 
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We shall complete this section by giving a simple example, 

0 

which is intended to demonstrate some of the concepts of geometri-

cal nature in this chapter. 

EXAMPLE 1!!.2.14. 

Let n = 5 and Figure 

111.2.1 shows ~t 1 I ~t 1 
and 

se,x se,y 

The first thing we notice is that neither x is majorized by 

y nor y is majorized by x. For instance we realize this fact 

by seeing that neighter 

holds. On the other hand 

~{ 
1 se· x 

~! 1 +0 . 1 ) ~t 1 

nor 

and this is also 

5e, y 5 e, x 

seen in Figure 111.2.1. Thus, according to Proposition III.2.1, 

x ~ y for e: = 0.2. e: The figure also shows Vf +{O}x[- ~~~], 
1 
se,y 

and we see that this set contains This illustrates the 

close connection between the ~-criterion (Proposition III.2.1) and 

the V-criterion (Proposition III.2.9) for e:-deficiency. 

From a statistical viewpoint it is interesting that the power 



- 68 -

of the Neyman-Pearson test with size a (the power of the most 

powerful test for the hypothesis 9 = 1 against the alternative 

9 = 2) is best in f 1 when aE<0,0.4> 
se,y 

and best in f 1 
se,x 

when aE<0.4,1>. If we for instance have a testing problem and 

want size 5%, it will be preferable to choose e 1 Then the 
se,y 

strongest test will have power 0.15, while the strongest test in 

e1 I of the same size, has power 0.10. On the other hand, if 
se,x 

the size is 40% (which is very uncommon! ) f 1 is to be 
se,x 

preferred. 

Figure III.2.2 illustrates RD and 
[1 

These sets 

5e,x 

lie symmetrical to and respectivly with respect 

to the line y = ~, and they are interesting from a statistical 

viewpoint. In fact it is easy to compare t 1 
5e, x 

and t 1 as 
se,y 

regards minimax- and Bayes-solutions in the decision problem D 

that consists in estimating 9 with "0-1 loss" (see the descrip-

tion of D before Proposition III.2.10). 

In I.7 in fererance [1] it is explained how to represent decision 

rules by their risk points and how to find minimax- and Bayes-

solutions geometrically on the basis of and In 

our example we see that the minimax-risk in £ 1 is approxi-
5e,x 

mately 0. 34, while the minimax-risk in [ 1 is 0. 3. If one 
se,y 

uses the minimax principle in this decision problem, ( 1 is to 
I se,y 

be preferred. On the other hand it is important to realize that 
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there are other decision problems where f 1 gives the smallest 
se,x 

minimax-risk. This is the case because e 1 ~t1 does not 
se,x se,y 

hold. 

We can also decide which experiment we should prefer when we 

use the Bayes principle, but then the answer will depend on the a 

priori distributing on e. Once again we consider the decision 

problem D described above, and we also have an a priori distri-

bution that gives masses 1-A and A to e = and e = 2 

respectively, where AE[0,1 ]. By representing such a distribution 

by the vector (1-A,A), the points in a risk set having the same 

Bayes risk will lie on a straight line that is perpendicular to 

(1-A,A). We find the minimum Bayes risk geometrically by con-

sidering the set of all such lines that have a non-empty intersec-

tion with the risk set, and then find the smallest 1. coordinate 

of points that lie on these lines and on the line y = x. (This 

is explained in detail in I. 7 in refere nee [ 1 ] . ) 

The nest table shows "the minimum Bayes point" in 

and respectivly as a function of 
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A. e1 e1 
se,x se,y 

1 
A.E[0,4> a a 

1 
A. = -4 a <a,f> 

1 1 
f A.E<4,3> a 

A. = .!._ 
3 <a,f> f 

1 1 
f E<3,2> g 

1 <g,i> <f,g> A. = -2 

E <!. ~> 
2'3 i g 

A. = ~ 
3 i <g,h> 

A.E<~ i> 
3'5 i h 

4 
A. = 5 i <h, j > 

4 
A.E< 5, 1 J i j 

From this table we see that in certain cases there is not 

just one "minimum Bayes point", but that a while line segment can 

have this property. For instance: when 1 A. = 4 all the points on 

the line segment <a,f> will be "minimum Bayes points" in Rf1 
se,y 

On the basis of this table one can calculate minimum Bayes 

risk as a function of A.. and .P we denote this 
" 1 se,y 

variable by B(A-1(1 ) respectivly. Then 
se,x 

Q D * D * B(lr. 1 > = (1-A.>rt (1,& )+A.rt (2,& ), 
~e,x ~e,x 1 ;) -;e, x 

where 0 * is "the" Ba.yes-rule in e 1 with respect to A.. 
se,x 

Since (2,&*>> is the "minmum Bayes point" in 
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relative to ~, it is easy to calculate B(~lt1 
se,x 

on the 

basis of the table above. Analogously B(~l! 1 ) is calculated. 
se,y 

We get 

In figure III.2.3 the graphs of B( ~If 1 ) 
se,x 

are drawn. We see that the minimum Bayes risk with respect to D 

is smallest in £ 1 when and smallest in t 1 when 
se,y se,x 

1 
~E<2,1>, and that they otherwise are equal. Thus: If one is 

interested in solving D by using the Bayes principle for a 

certain a priori distribution, the election between f 1 and 
se,x 

( 1 can be done on the basis of these conclutions. 
se,y 

We can also illustrate a consequence of the fact that x ~ y 

for e = 0.2. According to Proposition !.2.3 we know that 

B(~lf\ ) c; B(~IZ\ 
se,y se,x 



~A4 
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It is possible to sharpen this inequality a little in our 

situation, because the loss function is non-negative. This is 

done in Theorem 6 in reference [6]. We then get 

and thus 

(III.2.19) A 
+ TQ· 

In figure III.2.3 the graph of B(AI£ 1 )+~0 is also drawn, and 
Se' X 

we see that this figure confirms the inequality (III.2.19). On 

the basis of x ~ y we have therefore found an inequality that 
E 

gives an upper bound for B(Aif1 )-B(A.If1 ), namely 
Se,y Se' X 

A 
ro· We 

also see from Figure III.2.3 that this upper bound i attained when 

[ 2 4- ( A.E J'S j, while it otherwise is "too high" except when A. = 0). 

III.3. Product majorization. 

In this short section we shall define a certain product 

between vectors, and show how E-majorization is preserved under 

such products. 

Let x(l)ERn and x( 2 )ERm. We then define 

X ( 1 ) ""'x ( 2 ) = ( ( 1 ) ( 2 ) ( 1 ) ( 2 ) ( 1) ( 2 ) 
w x 1 x 1 , ... ,x 1 xm ,x2 x 1 , .• 

(1) (2) (1) (2) (1) (2) .• ,x2 x , .•. ,x x1 , ..• ,x x • m n n m 

PROPOSITION III.3.1. 

Let (1 ) ( 1 ) EK X ,y 
n 

and ( 2) ( 2) EK 
x ,y m' and let Then 

the following holds: 
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(i) -< (i) 
X g,Y , i = 

1. 

PROOF: Since x ( 1 ) ~ y ( 1 ) , '[ 1 ( 1 ) is (0, e)-deficient with 
1 -e,y 

n 

respect to f 1 ( 1 ), and because 
se,x 

(2) -< (2) 
X € y ' 

2 
t 1 (2) 

-e,y 
n 

is 

(0, e 2 )-deficient with respect to e 1 ( 2 ). According to Proposi-
ne, X 

tion 5.18 in reference [5], 't 1 ( 1 )xf1 (2 ) will then be 
ne,y n.ery 

(0, e1+e 2 )-deficient with respect to { 1 ( 1 )xf1 ( 2 ). 
ne,x ne,x 

It is easy to realize from the definition of ® above that 

t 1 ( 1 ) X f1 ( 2 ) -.. f 1 (1 )tfly ( 2 ) 
-e y -e y -e y n' n' nm' 

and that 

Thus will be (O,E 1+E 2 )-deficient with respect to 

1 (1)_ (2)' 
-ex -x nm , 

and this shows that 

(1) .1!!!1 (2) -< (1) ~ (2) 
X ~ X + y ~ y • 

El E2 

Besides we remark that this result can be generalized to an 

arbitrary, finite number of factors. 

D 
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CHAPTER IV. DOT-DEFICIENCIES AS A MEASURE OF DISTANCE 

IV.1. Definition and calculation of dot-deficiency. 

We know that majorization is a pre-ordering on Rn. This 

means that -< has the following properties: 

( IV. 1 . 1 ) 

(IV. 1 • 2) 
, n 

Vx,y,zER x ~ y and y ~ z => x < z. 

If we consider the restriction to ~n, ~ will be a partial 

ordering, so < will in addition to (IV.1.1) and (IV.1.2) satisfy 

(IV. 1 • 3) 
n 

vx,yER X ~ y and y ~ X => X = Y• 

On the other hand ~ won•t be a total ordering, even though 

we restrict ourselves to consider vectors in :J n lying in the 

same hyperplane Ha = {xERnl?xj =a}. In fact there exists 
J 

x,yEH n~ such that x is not majorize.d by y and y is not a 

majorized by x. In that case we say that x and y are not 

comparable. 

When we consider E-majorization on the contrary, it is 

possible to compare arbitrary vectors in the same hyperplane H 
a 

by using a suitable €)0. The following statements all hold for 

PROPOSITION IV.1 .1. 

Let a be an arbitrary real number. Then the following 

statements hold: 

(IV. 1 • 4) 
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~e )Q,~xtRn: x ~ x 
E 

(IV. 1 • 5) 

(IV.1.6) 

(IV. 1 • 7) 

~e: 1 ,e:2 ) O,~x,y,ztHN: x < y andy~ z => x~ ~+E z 
~ El e:2 ~1 2 

~x,yEHa:,3e: )Q : x? y. 

PROOF: (IV. 1. 4) follows from the following well-known result: e 
is E-deficient With respeCt tO j: and T)) E => 1 e iS 

TJ-deficient with respect to ~. 

(IV.l.S) folla.vs from (IV.1.4) and the fact that f )f. 
(IV.1.6) follows from the following result: f is e-

deficient with respect to f and 'F is TJ-deficient with respect 

to j => e is (E+TJ)-deficient With respect tO j. 
(IV.1.7) is seen from the ~-criterion (Proposition III.2.1) 

by, for given x,ytHa:' choosing e: = Llx.i. 
j J 

In this chapter property (IV.1.7) will be studied closer. 

w 

This statement tells us that two arbitrary vectors x and y in 

the same hyperplane Ha: can be campared by simply choosing 

big enough. It is therefore natural to wonder how big it is 

e 

necessary to choose e to make x ~ y hold; or equivalently: 

what is the smallest E)Q such that x ~ y? 

We find the answer to this question by considering the dot-

deficiency 6 <t 1 , e1 between e1 and e1 This 
ne,y -e x n , ne' y -e x n , 

quantity is defined as 

6(f1 , t1 ) = ~infie>O i(1 
-e y n , -e x n , -e y n , 

is (O,e)-deficient with respect to t1 
-e x n , 

We now introduce the following definition: 
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DEFINITION IV.l .2. 

Let 
n x,yER and assume that ?x j = l:Y j · 

J J 
We then define 

6<y,x> = 6<l'1 ,[1 
ne' y ne' X 

and this quantity is denoted by the dot-deficiency between y and 

x. 

Furthermore we define 

~<y,x> = ~<el ,tl >. 
-e y -e x 
n ' n ' 

The existence of the dot-deficiency between y and x is assured 

by the fact that X -<. y 
e: 

for e: = <.I xj I, which implies that the 
J 

infimum is taken over a non-empty set that has 0 as a lower 

bound. 

Besides we note the following: 

Let and assume that LX. 
. J 
J 

= LY .• 
j J 

x ~ y <=> 6(y,x} = 0. 

Then 

• We shall now show a method of calculating o(x,y}. Let 

n 
x = (x 1, ... ,xn}ER. We then define 

x = (x[l]'x[l]+x[2 ], ... ,x[l]+ •.. +x[n]} 

k 
J : <x>tc= y x['J; k = l, ••• ,n. 

j=1 J 

This notation is used in our next proposition Which gives a 

simple formula for the dot-deficiency between y and x. 
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PROPOSITION IV.l .3. 

Let n 
X1 yER and assume that Then the following 

equation holds: 

5 (y~x> = (x-y) [ 1 J. 

PROOF: B(y~x) = ~inf{e>Oix ~ y} = 
E 

k k . 
= ~inf { e>O I L x [. j" < ) y [. J + f~ k = 1 1 ••• ~n-1 } 

j=1 J J=1 J 

k k 

= ~inf{E>OI2<ji1 x[j]- jily[j]) ( E1 k = 1 1 ••• 1 n-1} 

= ~( _ sup 2(x[jrY[j])vO) = (x-y)[l] 
k-1 1 ••• 1 n-1 

where the last equality is due to the fact that (x-y) [n] = 0 1 so 

that 

k 
sup ) (x[·fY[']) > 0. 

k=1 1 ••• 1 n-1 J=1 J J · 

By introducing the notation I xI = ( I x 1 I~·· .. 1 I xn I) when 

n 
x = (x 1 ~ ... lxn)ER we also have the following result: 

COROLLARY IV.1.4. 

Let n 
X 1 yER and assume that Ix · = LY · • . J . J 

J J 
Then we have 

,; ( y I X) = ( I i-y I ) [ 1 ] • 

PROOF: This is seen from Proposition IV.1.3 because 

6<£1 ~f1 = 6(y 1 x) v 6(x 1 y). 
nelx nely 

0 

0 
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EXAMPLE IV.1 .5. 

This is just a simple example showing how to find 5 • and !J.. 

Let n = 4 and 

X = ( 2 1 6 1 2 1 9) and Y = ( 41 8 1 7 1 0) • 

Then we have 

and 

- -x = (9,15,17,19) and y = (8,15,19,19) 

so we find 

x-y = (1,0,-2,0) 

y~x = (-1,0,2,0) 

1 i-¥ 1 = o , o, 2, o > • 

According to Proposition IV.1.3 and Corollary IV.1.4, we then get 

• 
<i-y)[1 J o(y,x) = = 

• 
<¥-i> [1 J o(x,y) = = 2 

• 
< I ¥-i I > [ 1 J !J.(y,x) = = 2. 

The dot-deficiency between y and x can also be given a 

geometrical interpretation, like the next proposition says. 

PROPOSITION IV.1.6. 

Let n 
x,yER . be such that ~X • = ~y. • 

? J <' J J J 
We then have 
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PROOF: A(y,x) = ~inf{e>Oie1 is (O,e)-deficient with respect 
n:e,y 

to f 1 } = ~inf{E>O lx ...{ y} = ~inf{e:>O l.d 0 (x,K ) <: e:} = ~d 0 (x,Ky) -e x e: . Y 
n , 

according to Corollary III.2.5. 0 

IV.2. Dot-deficiency and inequalities. 

We are sometimes interested in making inequalities of the 

type (III.2.8) for convex functions as sharp as possible. In such 

situations it can be useful to calculate the dot-deficiency first, 

and then apply the following result: 

PROPOSITION IV.2.1. 

Let 
n 

x,yER and assume that Ix · = LY. · 
j J j J 

convex function, the following will hold 

(IV. 2. 1 ) 

where and 

PROOF: We have 

26(y,x) = inf{e:>Oix ~ y}. 
e: 

Put now e:o = inf{e:>Oix ~ y} 0 First e: we shall 

From the definition of e:o we see that there 

{en }:=1 of positive, real numbers such that 

If $:R+R is a 

show that X ~ Y· 
e:o 

is a sequence 
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is (01 e:n)-deficient with respect to e 1 This means that { 1 
nely -e x n I 

for n = 1 1 2 I • • • • According to Proposition I. 2. 4 we know that 

is (0 1 e: 0 )-deficient With respect to e 1 
ne 1 X 

Hence x ~ Y 1 

0 

and (IV.2.1) now follows from Proposition 111.2.6. 

COROLLARY IV.2.2. 

Let n x1yER and assume that 

convex the following will hold: 

Ix. 
. J 
J 

= LY .• 
j J 

If is 

(IV.2.2) ?ct>(xj )-B(y 1x) (cf>- (y)-cf>+(q)) 
J 

..: Ict><y.>..: Ict><x.> 
. J . J 
J J 

• - - + 
+ o(x~y) (cf> (y)-ct> (q)). 

0 

PROOF: This follows directly from Proposition IV.2.1 by applying 

this result twice and the put the inqualities together. 0 

EXAMPLE IV.2.3. 

The entropy of a discrete probability distribution on at set 

with n elements and probabilities p 11 ... 1pn respectivly1 is 

defined as 

n 
= - I P .J!.np. 1 

j=1 J J 

where p = (p 1 ~··· 1 P )EK and where define p.J!.nr. = 0 when 
n n J J 

p. = 0. 
J 

We now define cf>:[0 11 ]+R by 

This implies that 

(IV.2.3) 

cf> ( x) = [ xJ!.nxl when 
/ 01 when 

X E <0 I 1 ] 

X = 0 

H(p) = -<.cf>(pj) 
J 
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and by two times derivation, we see that $ is convex ($ is 

also continous) . 

Let now p and q represent two probability distributions 

on a set with n elements l : we let p,qEK . We define 
n 

and 

and with the conventions .tnCD = CD and .tn 0 = -CD I we get from 

(IV.2.2) that 

(IV.2.4) L$(p.)-5(q,p).tn'X c; r,$(qJ.) c; ?$(pJ.)+6(p,q).tn'Xq. 
j J q J J 

By multiplying (IV.2.3) by -1 and using (IV.2.3), we get 

(IV.2.5) H(p)-6(p,q).tn Y c; H(q) c; H(p)+6(q,p).tn X. q q 

These inequalities give us an upper and a lower bound of the 

entropy in q, and these bounds are expressed by the entropy in 

P· 

We also have that 

IH(p)-H(q) I c; 6(q,p).tn X v 6(p,q).tn Y 
q q 

= (6(q,p) v 6(p,q).tn Y = ~(p,q).tn Y. 
q q 

Thus we have shown that 

-
(IV. 2. 6) IH(p)-H(q) I c; ~(p,q).tn Y. 

. q 

The inequality (IV.2.6) will also hold in a more general 

situation, like the next corollary says. 

COROLLARY IV.2.4. 

Let n x,yER and assume that LX' ' J J 
= LY '. 

j J 
Let further 
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<1>: [q,y]+R be a convex function (where q and y are defined as 

before). Then the following inequality will hold: 

(IV.2.7) 

PROOF: This is an immediate consequence of Corollary IV.2.2 by 

using the same approach as in Example IV.2.3. D 
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CHAPTER V. MULTI-DIMENSIONAL MAJORIZATION 

V.1. Multi-dimensional maorization. 

The concept of majorization can be extended to majorization 

between matrices. In this chapter we shall present such a con-

cept, and also point out how it can be studied within the theory 

of comparison of pseudo experiments. 

Let M denote the set of all real mxm matrices. We 
m,n 

then define a majorization-concept on M m,n in the following way 

(see page 430 in referance [3]): 

DEFINITION V.1.1. 

Let X,YEM . We then say that X is majorized by Y, and m,n 

in that case we write X-< Y, if there exists a dubly-stochastic 

nxn matrix M such that 

X = YM. 

We realize that this is a generalization of majorization between 

vectors, by simply choosing m = 1. 

DEFINITION V.1.2. 

Let 

by 

XEM 
m,n 

We then define the finite pseudo experiment e 

where I. = { 1 , ... , n}, vi = @(.I) , e = { 1 , ... , m+ 1 } and where 11 e, 

9E0 are decided by the pseudo experiment matrix Pt defined by 
X 

X 
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1 n I • • • I n 

x 1 , ••• ,x 
m mn 

where ( )m, n 
X= xijij,=1,1· 

With the aid of this definition it is now possible to find 

the connection between multi-dimensional majorization and the 

concept of "more informative". 

PROPOSITION V.1 .3. 

Let X,YEM 
m,n 

Then the following equivalence holds: 

x < y <=> e ~ t X y· 

PROOF: According to Corollary I.2.6 we will have: 

f ~ e <=> 3ME~ : P( = P, M. 
X Y n,n X ~Y 

But this again will be equivalent to the existance of 

such that X = YM. This is seen by writing out all the equations 

contained in the matrix equation = Pt M, and by noting that 
y 

1 1 1 1 (-, ... ,-) = (-, ... ,-)M n n n n 

if and only if M is doubly-stochastic. By using Definition 

V.1.1 the proof is then completed. 0 

Since multi-dimensional majorization now has been reduced to 

"more informative" between pseudo experiments, we can use this 

theory to give a couple of characterizations of X ~ Y. 
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PROPOSITION V.1 .4. 

Let X1 YEM . Then the following equivalence hold: m1 n 
X~ y 

~ 
I <V(*~Y(j)) 1 \i<j!E'I'(n+ 1 ) 1 

j=1 

where 
( . ) 

X J and 
( . ) 

y J denote the j-th coloum vector in X and 

Y respectivly. 

PROOF: According to Theorem I.2.2 we have 

Therefore it is needed to calculate <V(ex>· Let ~ be the 

counting measure on {1~···~n}, and put f. = d~ild~l where 
1 

={tj when i = 0 
~i({j}) when i > 0 

j = 1 1 ••• 1 n. Then 

=f tj when i = 0 
f. ( j) 

when i > 0 1 I 

j = 1 I o o o I nl and we have 

<V<e > = !<V<t.= ie{o,1, ... ,m}>d~ = 
X 1 

n 
I <V{f.(j): iE{O~ ... ,n}) 

j=1 1 

n 1 
= l <V(-~x1'1"""1x .) = 

j=1 n J mJ 
Y <V(~~x(j)). 

j=1 

The proposition follows from this equality. 

COROLLARY V. 1 . 5 . 

m+1 

Let X,YEM , and let 11•11 denote an arbitrary norm on 
m1 n 

R Then we have 

X -< y => 
n 1 n 1 L ll(-,x 1 ., ... ,x .)n.;; I ll(-,y 1 ., ... ,y .)II. 

j=1 n J IDJ j =1 n J IDJ 

D 
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PROOF: This follows from Proposition V.1.4 because every norm on 

Rm+l is a sublinear functional on Rm+l . 0 

Within the theory of comparison of pseudo experiments one 

speaks of "more informative for k-decision problems" (see I. 1), 

and it is therefore also possible to introduce a corresponding 

concept within multi-dimensional majorization. 

DEFINITION V.l .6. 

Let X,YEM and kE{1,2, ... }. We say that X is 
m,n 

majorized by Y for k-decision problems, and in that case we 

write X -< Y, if ~ <: Q 
k C. X k 6 y• 

We now know from the general theory that the following will 

hold: 

X_-< y => X < y 
k+1 k 

(V.1.1) 

(V.1.2) X< Y => VkE{1,2, ... }: X~ Y. 

When k = 2 the characterization in Proposition V.1.4 turns 

out to be of a more simple kind. 

PROPOSITION V.1.7. 

Let X,YEM 
m,n and assume that Ix .. 

. 1) 
J 

Then the following equivalences will hold 

(I.l .3) 

n m 
(I. 1 . 4) I la 0+ I a. x; . I 

j=1 i=l 1 1 ) 

(V.1.5) 

= LY . . I i = 
j 1) 

l, ••• ,m. 

m+1 V(a 0 , ••• ,a ) ER 
m 
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PROOF: This follows from Proposition V.1.4 by reducing a maxmum 

of two linear functionals to a simple type and then use that 

Ix .. = LY· .. This principle is the basis of Corollary B.2.3 in 
j l.J j l.J 

referance [4], which says: 

Assume 6 1 ({X,{Y) = o. Then 

(X< (y <=> ll(ai!J.ill < ll?aivill, \iaERm+ 1 , 
l. l. 

where e X = ( ll i: i E { 0 , ••• , m} ) and f y = ( vi: i E { 0 , ••• , m } ) . 

But now 

6 1 <fx,!y> = o 
1\ 

~ 
1J..({1, ..• ,n}) = v.({1, ... ,n}), i = o, ... ,m 

l. l. 

and furthermore 

II I a. ll· II 
• l. l. 
l. 

Ix .. = 
j l.J 

1\ 

~ 
LY· ., i = 1, ••• ,m 
j l.J 

The equivalence between (V.1.3) and (V.1.4) then follows y 

replacing b The equivalence between (V.1.4) and 

(V. 1 • 5) is simple and follONs from t x .. = ty . . , i = 1 , • • • , m, by 
~' l.J ~· l.J 
J J 

using the equation 
+ 

lbl = 2b -b. 

COROLLARY V. 1 . 8 • 

0 

Let X,YEM , and assume that m,n Ix .. 
• l.J 
J 

= LY . . , \ii. 
j l.J 

Let further 

kE{2,3, ... }. Then we have 



(V.l .6) 

(V.1.7) 

(V.1.8) 
+ 

L<a 0+La.x .. ) <: 
. . 1 1) 
J 1 
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X -c{ y 

II 
v 

x-<Y 
k 

II v 
+ 

L(a 0+La.y .. ) 1 

j i 1 1] 

PROOF: The first implication is seen from (V.1.2) 1 and the second 

from Proposition V.1 .7. 

PROPOSITION V.1.9. 

Let X1YEM 
m1n 

Then we have: 

X~ y 

/1. 

~ 
\f <V E 'Y ~ m+ 1 ) : ? <V ( ~ 1 x ( j ) ) <: 

J 

PROOF: This follows from Theorem I.2.2. 

The next proposition characterizes < and 

relations between the operating characteristics. 

PROPOSITION V.1 .10. 

Let X1YEM . Then we have m1n 

(V.1.9) X -< y 

~ 

by means of 

(V. 1 • 1 0) \fkE{1 12 1 •.. }1\fpEv'Cn1ki36E,fn1k: ~pjt 
J 

= Io.tl\ft 
j J 

and 

Xp =Yo. 

In addition the following equivalence holds: 

0 

0 
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(V.1.11) X < y 
k 
1\ 

~ 
(V.1.12) 'v'pE,tn, k' 36 EJtn, k: ~Pjt = z5 jt' 'v't 

J J 

and 

Xp = Y5. 

PROOF: Let £X = ( 1J. i: i E { 0, ..• , m}) 

According to Theorem I. 2. 2 t x'-f y 

holds: 

and f = ( v . : i E { 0, •.. , m}) . 
y 1 

if and only if the following 

To every kE{1,2, ... }, and to every randomization p from 

{1, ... ,n} to {1, ..• ,k} there exists a randomization 5 from 

{1, •.. ,n} to {1, ... ,k} such that 

IJ..p = v.5, 'v'i. 
1 1 

But a randomization p from {1, .•. ,n} to {1, .•• ,k} can 

be represented by a Markow-matrix p, where pq,f k. Furthermore n, 

we have 

= fp({t}lx)1J..(dx) = (IJ..p){{t}); iE{O, .•. ,m}, tE{1, .•. ,k}. 
1 1 

Thus we see that 

IJ..p = v. 5, 'v'i 
1 1 

1\ 

~ 
pf p = pt 0 

X y 
1\ 
II v 

1 1 
?fiPjt = I-5 't' 'v't and Xp = Y5 

.n J 
J J 

and the equivalence between (V.1.9) and (V.1.10) has been shown. 

The equivalence between (V.1.11) and (V.1.12) can be shown 

analogously. D 
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With the aid of Proposition V.1.10, we can say even more 

about the relation between and 

PROPOSITION V.1.11. 

Let X,YEM . Then we have m,n 

X -( Y <=> X -< Y. 
n 

-< 
k 

than (V.1.2) tells us. 

PROOF: The implication X -< Y => X < Y 
n 

is trivial (see. V.1.2). 

We shall now shaw the converse implication, and let us there-

fore assume that X < Y. 
n 

From Proposition V.1 .10 we then know: 

and 

'rfpEJ( , 3oEc/t : n, n n, n Ip.t = 
j J 

Xp = Yo. 

Let now I denote the nxn identity matrix and choose 
n 

P = I . Then there exists a ocu such that n ~ln,n 

and 

~ 0 = ~p = 1 1 t = 1 1 • • • 1 n 
L 't /, ]'t 
j J 

Yo = Xp = XI = X. 
n 

This means that there is a doubly-stochastic nxn matrix o 

such that X= Yo, and according to Definition V.1.1 X< Y must 

hold. 

COROLLARY V. 1 • 1 2. 

Let X,Y~M 2 and assume that 
n, 

2 
I X •• = 

j=1 1) 

2 
I y,, i = 1, .• ,m. 

j=1 1) 

D 
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Then the following equivalence will hold: 

X -< y 

~ v 
2 m 2 m 
L (a0+ I a.x .. )+ c; I (a0+ I a.y .. )+, V(a0 , .•. ,am)ERm+l. 

j=l i=l 1 1 ) j=l i=l 1 1 ) 

PROOF: This follows easily by combining Proposition V.1.11 and 

Proposition V.1.7. 0 
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