
COMMENTS ON BERGER'S CRITICISM OF SOME CLASSICAL SfATISTICAL 

PROCEDURES AND ON SANDVED'S CRITICISM OF BERGER'S CRITICISM 

by Ragnar Norberg 

Abstract 

In his book "Statistical Decision Theory" James Berger cites 

some examples of classical statistical methods that, so it is 

claimed, may produce nonsensible conclusions. In a recent 

discussion Else Sandved argues that these methods, being in 

conflict with ancillarity considerations, are not likely to be 

used by classical statisticians. The present note gives further 

reasons why I think the cited examples are not ki 11 ing to. 

classical statistics and that examples of this kind cannot 

settle the controversy Bayes vs. Classical. A reply from Berger 

is appended. 



2 

1. Introduction 

Berger's (1980) book is refreshening reading. The author gives 

the reader a part in his Bayesian revelations and lays open his 

reasons for converting to new convictions. Some of them were 

not convincing to me, however, and the foll~wing paragraph . 

explains why. On the whole I share the points of view put 

forward by Sandved (1987), and I add here some on my own 

account. I urge to say that I find both classical and Bayesian 

models perfectly meaningful: they are appropriate mathematical 

formulations of different attitudes depending on philosophical 

positions and - I think - also to some extent on the nature of 

the problem. Paragraph 3 presents some personal opinions of 

mine on these matters and concludes that efforts to establish 

that Classical is absurd and Bayes is meaningful, or vice 

versa, are futile. 

2. Two examples referred to by Berger 

Example 1. Let x1 •... ,X0 be a random sample from llf.l(-8-1/2, 

8+1/2). The pdf (probability density function) of the 

observations is 

max x. - ~ < 8 < min x. + ~ , 
1 1 (1) 

otherwise. 
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A convenient sufficient statistic is 

(Y,Z) = (max X.- min X .. ~(min X.+ max X.)), 
. 1 1 1 1 

the range and the midrange. Its distribution is given by 

Y - !'lie(n-1.2), 

Zly- ~(S- ~(1-Y), S + ~(1-Y)). (2) 

Thus y is an ancillary statistic, that is, y itself> 

contains no information about 8, but its value decides how 

accurately s ~be. determined by the point e~timator ~ = z.· 

An obvious t:onfidence interval based on (2) is 

~ :!: ~(1-a)(1-Y). (3) 

For each fixed Y its conditional confidence level is 1-a, 

and so this is also the unconditional confidence level. 

Many other confidence intervals can be constructed. For 

instance, the marginal pdf of ~ = Z is 

I I n-1 
. · { n(1 - 2 z-8 ) , 

gs(z) = o 
lz-sl < ~ • 

otherwise, 
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from which we obtain the 1-a confidence interval 

Berger (1980, p. 19) proclaims (4) "The classical 1-a 

confidence interval" and then denounces it: if n = 25, a = 

0.056, min X.= 3.1, max X.= 3.2 (Y = 0.1, ~ = 3.15), then 
1 1 

(4) turns out as (3.094, 3.206), which cannot reasonably by 

ascribed 95% confidence since "all that is really known about 

8 is that it lies somewhere between 2.7 and 3.6". 

Already the quoted statement takes the sting out of the 

criticism since the interval (2. 7, 3.6) is just the classical 

interval (3) with a= 0, the 100% confidence interval based on 

(2). Clearly, "The classical confidence interval" is a 

frauditive acquisition. The interval (4) is based solely on ~. 

which is not a sufficient statistic. It is only to be expected 

that for some outcomes x1 ... ,X0 it will produce conclusions. 

in apparent conflict with "final precision" considerations that 

take also Y into account. The interval (3), .which utilizes.· 

both ~ and Y, does not suffer from any such weaknesses. In 

the chosen numerical example it yields (2.72, 3.58), a 

completely sound 95% final precision statement. 

Classical statistics would be in trouble if one could 

construct a problem where it seems impossible to find a 

classical solution that avoids absurdities with regard to final 

precision considerations. The present example does not serve 

that purpose. 
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But, there is a but. It is not clear that classical 

statisticians will unanimously prefer interval {3} to interval 

{4} in all situations. All those who adopt the ancillarity 

principle advocated by Sandved (1987) will. But there might be 

others who would base their choice of method entirely on some 

decision theoretic performance criterion. e.g. the expected 

length of a confidence interval. The expected lengths of {3) 

and (4) are, respectively, 

and 

2 
(1-a) n+1 

1 ( ) 1 _ a1/n 
4 a,n = 

It is easy to verify that for each n ~ 3 there exists an 

a(n) c {0.1) such that 

according as < 
a~a(n). (5) 

Thus. as measured by expected length, (3) is better than ( 4) 

for small a, whereas for large a it is the other way around. 

For n = 2 ( 4) is the better for all a > 0. The following 

table indicates how a(n) depends on n. 
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Table 1. The values of a(n} given by (5} for some n. 

n 

a(n) 

3 

0.2500 

5 

0.2250 

10 

0.2137 

25 

0.2075 

50 

0.2054 

100 

0.2043 

It must be admitted that classical statisticians who judge 

confidence intervals only by their expected Lengths and are 

content with confidence levels less than 75%, are vulnerable to 

Berger's criticism. Paying regard only to average performance, 

they accept unreasonable conclusions in some sample points. It 

is, however, only fair to note that such outcomes are rare. 

Berger remarks to his numerical example that "it was unlucky to 

obtain such an uninformative sample". This is to say the least: 

the probabi 1 i ty that 

-23 

y ~ 0.1 in a sample of size 25 is 

2.26•10 . 

Now, to turn examples like these into compelling 

arguments in favour of Bayesianism, it is not sufficient to 

establish that some classical statisticians will sometimes 

present unreasonable answers. It must also be substantiated 

that all Bayesian answers will be reasonable. 

One prominent Bayesian procedure is to use a 

noninformative prior, which in the present case is the 

(improper) uniform distribution tU(-ro,ro}. This leads to the 

posterior distribution OU(~- ~(1-Y}), ~ + ~(1-Y)). Thus, a 

Bayesian 1-a credibility interval is (3), which was judged to 

be reasonable. It is a highest probability density credibility 

region, but so is any other subset of (~- ~{1-Y), ~ + ~{1-Y}) 

with measure {1-a}(1-Y) - it need not be an interval and it · 

need not contain ~-
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Another widely accepted Bayesian solution is to use a 

conjugate prior, which must be of the same form as (1), that 

is, a uniform distribution ~(8' ,8") (with 0 < 8"-8' <1 ?) . The 

corresponding posterior distribution is ~(max(8', max X.-~). 
·I 

min(8", min X. + ~)), provided that the indicated interval is 
1 

not empty. If the Bayesian's prior opinion is that 8 lies 

somewhere between 8' = 1.5 and 8" = 2.5 and the outcome of 

the observations is as in Berger's example, then the posterior 

does not exist and nothing can be stated as to the whereabouts 

of 8. This absurdity I would not call "The Bayesian 

credibility interval". There are as many Bayesian solutions as 

there are priors, and it would be unfair to judge the Bayesian 

approach by the prejudices of one particular Bayesian whose 

judgement is poor. Almost as unfair as to judge classical 

statistics by one poor confidence interval, but only almost: 

after all, the crux of Bayesianism is to defend subjective 

beliefs ("a prior is a prior is a prior"), including the 

totally mistaken ones. 

Example 2. An observation X which is 2 .N( 8,o ) is to be 

observed, and it is desired to test H0 : 8 = 0 versus H1: 8 = 

10. The experimenter will be supplied with one of two possible 

measuring instruments to obtain the observation X. The first 

has o = 1 (a new accurate instrument), while the second has 

o = 10 (an old inaccurate instrument). The experimenter will 

receive the first instrument with known probability p and the 

second with probability 1-p, and he will know which instrument 

he has received. 
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A.class of level a tests is of the following form. 

Reject H0 if X > K(a),. (6) 

where K(•) is chosen so that 

p[1 - ~{K(1)}] + (1-p)[1 - ~{K(10)/10}] =a. (7) 

Here ~ is the cumulative distribution function of N(0,1). 

Berger compares two special tests in the class: 

Test 1: K(a) = K1a, where K1 is the upper a-fractile of 

N(0,1), i.e. reject with conditional level 

instrument. 

a for each 

Test 2: K(1) = K2 , K(10) = -oo, with K2 determined by (7) 

(feasible if p. ) 1-a), i.e. reject if for the 

accurate instrument, and always reject with the inaccurate 

instrument. 

We quote from Berger (1980, p. 20): "It can be shown ... that 

for many values of a and p, Test 2 is more powerful than 

Test 1 ... hence a classical statistician concerned only with 

initial precision would recommend Test 2. One can imagine the 

reaction of the experimenter, who happens to get stuck with 

using the second instrument, when he is told by the 

statistician to ignore the experimental result and reject. If 



9 

the experimenter is doing a long series of similar experiments 

it might be possible to convince him to use Test 2; but if 

he is involved in a one-time experiment he will be considerably 

less than enthusiastic about the advice. The experimenter in 

the latter case is interested only in final precision (which is 

the precision he can obtain using the measuring instrument he 

is given}." 

Again Sandved (1987} points out that ancillari ty 

considerations lead to conditional inference: the test should 

be designed separately for each instrument with regard to the 

conditional (final precision} probabilities of errors of types 

I and II, not the unconditional (initial precision} 

probabilities. Note that it does not necessarily follow that 

she would use Test 1 since she is not compelled to use the same 

level for both instruments. I shall return to this shortly. 

The essence of Sandved's counter-argument is that initial 

precision criteria should not be used in the present situation. 

However, since initial precision considerations are just what 

Berger criticizes, it remains to see if they could be defended. 

Thus, let us take the position that the uncondi tiona! 

probabilities of erroneous decisions are all that matters. A 

typical situation would· be that the test is to be performed 

repeatedly as an acceptance control of articles which may be 

either intact (8 = 0} or defect (8 = 10}. The test is a sorting 

mechanism which is to be designed merely with regard to the 

fraction a of rejected intacts and the fraction of 

accepted defects in the long run. 
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As a first step the problem can be stated as that of 

maximizing the power 1-{3 for a given level a. The 

observables are the standard deviation 2 of the measuring 

instrument and the measured value X, whose joint pdf at (2,X) 

= (a,x) is 

f 8(a,x) 2 -~ 2 2 = {pi{ 1}(a) + (1-p)I{ 10}(a)}(2va ) exp{-(x-8) /2a }. 

where IA is the indicator function of the set A. Using the 

Neyman-Pearson lenuna, we easily find that the most powerful 

test is the following member of the class of tests given by (6) 

and (7). 

Test.3: K(1) = 5 + K3 . K(10) = 5 + 100K3 , with K3 determined 

by (7). 

Test 3 will be recommended by classical statisticians 

concerned with initial precision, and it is this test that has 

to be examined and possibly cri tized from a final precision 

point of view. Table 2 shows, for each of the Tests 1 and 3, 

the conditional rejection limits K(a), the conditional 

probabilities of type I error, a(a) = 1 - <l>{K(a)/a}, and of 

type II error, {3(a) = 4>{ (K(a)-10)/a}, and the unconditional 

probability of type II error, {3 = p{3(1) + (1-p){3(10), for some 

values of p and a= pa(1) + (1-p)a(10). 
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Table 2. Conditional and unconditional performance of Tests 1 

and 3 for some values of a and p. Small numbers are written 

shortly by indicating the number of zeros between the decimal 

point and the first nonzero digit by a subscript, e.g. . 231 

signifies 0.0031. 

Case a p Test K(l) 

.10 {: 
1.65 

1 .05 
5.11 

.05 .50 { 1 2 
3 5.08 

.90 {: 3 .05 
4.95 

.05 .99 { 1 4 
3 1.75 

5 "231 .99 3 5 

* 1-0.22455 

a(1) /3(1) K(10) a(lO) 13( 10) 13 

.05 "630 16.5 .05 .74 .667 

"616 "651 15.9 .056 .72 .650 

Same as for Case 1 .371 

"619 "643 12.8 .10 .61 .305 

Same as for Case 1 .074 

"637 "622 0 .50 .16 .016 

Same as for Case 1 "274 

.04 "167 -320 1* o** "1669 

5 .31 .31 

Cases 1-3 do not comply with the requirement p > 1-a 

(hence Test 2 cannot attain level a). They are included here 

because they bring forth an aspect that has not been touched 
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upon in the previous discussions by Cox (1958), Sverdrup 

(1966), Cornfield (1969), Berger (1980), and Sandved (1987), 

namely that it is not at all obvious that Test 1 is reasonable 

in general. Indeed, it seems rather unwise to reject H0 at 5% 

level in the presence of the accurate instrument since the 

quality of the article can then be determined virtually with 

certainty, see Fig.l. 

0 

0 

Fig.l. The densities of 

and a = 10. 

a = 1 

a = 10 

2 .N(O,a ) 
2 and .N(lO,a ) 

10 

10 

for a = 1 
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A rejection limit K(1) in the vicinity of 5 yields a(1) ~ 

13(1) ::::: 0. By lowering K(1) to 1 . 645 one increases the 

fraction of rejected intacts to 5% without gaining any 

essential decrease in the fraction of accepted defects. Test 3, 

based on initial precision, takes care of this viewpoint in 

Cases 1-3. 

The picture turns out differently in Case 4, where 1-a < 

p. The explanation is concealed in the great unbalance between 

-17 a = 0.05 and 13 = 6.9•10 . which implies a very special and, 

indeed, extreme judgement of the consequences of the two types 

of error. This point, which is crucial in classical as well as 

in Bayesian decision theory, has to be discussed more 

carefully. 

A complete classical analysis of the testing problem 

would include the specification of a loss function, typically 

of the form 

L(S,d) = { a~ 
if S = 0 and 

if S = 10 and 

otherwise, 

with a, b. > 0. Test 3 is only the first step in the 

construction of a decision rule o(x): it generates the set of 

admissible o. one for each ~- To fix K3 , one must introduce 

a criterion for evaluating the risk function, 

p(S.o) - { aa 
- b/3 

for S = 0, 

for S = 10. 
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One such criterion is the minimax principle: minimize 

max(aa,b~). It is easily verified that the minimax test for a 

= b (rejecting an intact and accepting a defect are considered 

equally serious) is the one with K3=0. This is Test 3 in Case 

5- reasonable, isn't it? 

Test 3 in Case 4 is the minimax solution corresponding to 

the rather extreme choice a/b = 1.4•10-15 . It is practically 

the same as Test 2, and it is now seen under which 

circumstances the classical statistician would tell the 

experimenter to as well reject in the seldom case where the 

inaccurate instrument is chosen: that is when the false 

rejections cost practically nothing. 

Another criterion consists in minimizing the weighted 

average risk, 

1raa + ( 1--v) b~ • 

which leads to Test 3 with 

(7) 

see e.g. Berger (1980). Mathematically this is just the Bayes 

solution with prior distribution (1T,1-1T) on (H0 .H1). To the 

classical statistician the prior is simply a pair of weights 

attached to the two hypotheses in order to summarize the 

properties of the test in one single scalar quantity, which can 

be optimized. To the Bayesian the prior expresses prior 
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beliefs. They may - and probably will - argue endlessly about 

their different interpretations of the prior, but they will 

agree upon which test to use if they happen to choose the same 

1r. Suppose that p = 0.99, a = b, and they both pick 1r = 

7.38•10-15 (again quite extreme). Then they would end up with 

Test 3 in Case 4 (in practice the same as Test 2) and 

unanimously tell the experimenter who is stuck with using the 

inaccurate instrument, to forget about X and reject H0 . 

The point is that the Bayes solutions coincide with the 

optimal classical solutions (varying 1r in (7) generates all 

K3 between -oo and +m), and so any criticism of the limiting 

Test 2 hits Bayes just as severely as it hits Classical. 

By way of conclusion, the criticism based on the present 

example is easily countered. In fact, the counter-argument -

the equivalence between Bayes solutions and admissible 

solutions in the present case - is easily compiled from Berger 

(1980). 

3. To believe or not to belive - that is the question 

Basic in any statistical model is the pdf of the data X 

for a fixed state ~ of the nature, the so-called likelihood 

function, 

x~!r. ~~'!!. (8) 
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The classical view of f as a long term frequency rests on the 

objectivistic conception of the world as a system governed by 

general laws, uniformity and reproducability. Bayesian thinking 

appears less standardized at this point. It seems that some 

Bayesians are willing to accept the frequency interpretation, 

some refuse it and refer to ideas of symmetry and the like, and 

yet some are not so specific and just take f for granted. 

However, even though different notions lie dormant in puristic 

minds, the likelihood is not a point at issue in the debate 

between Classical and Bayes: in practice there wi 11 be 

agreement as to the functional form of f. 

The controversy turns on the legitimacy of the prior 

distribution. The classical model is given by {8) alone, hence 

the data X and its relation to 8 through the likelihood is 

the only basis for inference. The Bayesian model extends the 

classical one by including also an a priori pdf, 

g(8). 8 E. ,. • (9) 

accommodating knowledge/beliefs prior to and independent of the 

data. In the extended model (8) - {9) the parameter becomes a 

random variable 

joint pdf 

8, and inference about it is based on the 

X E. !I, 8 E. ,. • (10) 
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As regards the mathematics, the difference between the two 

approaches is that classical statisticians confine themselves 

to conditional inference, given 8 = 8. The resulting methods 

wi 11, of course, remain valid/correct in the extended model, 

but will in general not be optimal there since they disregard 

the information contained in the marginal distribution (9). 

Thus, from a Bayesian point of view, the classical 

statisticians are not on the wrong scent, but they commit an 

error of default. 

This objection is valid only to those who allow 

subjective beliefs to be explicitly moulded into the model. To 

a classical statistician it is void since she insists that the 

inference be based exclusively on the objective facts (and 

indeed holds X and (8) to be objective entities). One cannot 

talk a non-believer into some beliefs on the grounds that 

believers draw stronger conclusions. 

In a scientific context it is clearly seen that classical 

and Bayes are rooted in different philosophical positions. 

Classical statistics, based on a frequency interpretation of 

probability, fits perfectly into the widely accepted 

objectivistic paradigm of natural science, whereas Bayes 

conflicts with it. It is not obvious to me how perfectly Bayes 

accords with the subjectivist school within the social 

sciences, but it is clear that Classical conflicts with it. At 

any rate, the dividing line between objectivism and 

subjectivism extends far beyond the area of statistics, and I 
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think statisticians should not invest too much energy in trying 

to settle today a dispute that will prevail as long as 

intellectuals inhabit the earth (hopefully, yet some few 

years). What they can do with their mathematical models is to 

set a surveyable stage for the discussion. 

In the non-scientific context the problems are of a 

different nature. Consider a clear-cut decision problem which 

re~uires action to be taken here and now on basis of the 

information you have - you cannot lean back in your arm-chair 

awaiting for evidence to accrue. For instance, you are an 

actuary in an insurance company, and one day you are asked to 

fix a premium for the insurance of a stamp collection. You 

order an outprint of the risk statistics for stamp collections. 

It turns out there is no such statistics because this stamp 

collection is the first one to be insured. You will be out of 

business if you tell the owner of the collection to come back 

in some twenty years when the company has got some statistics. 

What you do is, of course, to make a skilled guess (I say "of 

course" since I am sure you must agree). If you should 

formalize your subjective assessment, then you would make 

Bayesian statistics. You might now object that you would not do 

that because you are not a Bayesian (or would not like to be 

one). Then I would assert that the difference between you and a 

Bayesian is not that you abstain from subjective judgements -

you make them, all people do all the time, more or less 

consciously. The difference is only that you are unwilling to 

quantify your subjective opinions you abstain from 
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formulating mathematically something that is real to you and 

play an important role in your practical life. Personally, I 

consider it a great advantage that the elements of subjective 

assessments, which are inevitable in some situations, can be 

laid open and subjected to discussion by means of the Bayes 

formalism. 

Technically speaking, the situation described above is 

one were no X is at hand and a likelihood (8) cannot be made 

part of the analysis. The question is whether you are willing 

to perform an analysis at all. If yes, your only possibility to 

do so is to pick a prior (9). 

Suppose now instead that the company had a substantial 

portfolio of insured stamp collections and you were supplied 

with ample statistics. Then you would, perhaps, just proceed in 

the standard classical way, confident that the data will speak 

for themselves. In that case you must ask yourself: is this 

classical attitude of yours ad hoc, determined by the 

incidental circumstance that (8) is now very informative and 

you, therefore, can afford to forget about your a priori 

insights? If you found it necessary to rely on (9) in the 

former case with no observations, when did you switch to a 

different philosophy? What would you do if you had only some 

scanty data, not very informative? Would you then combine the 

elements (8) and (9) and perform an analysis based on (10)? 

Here is my own position. Faced with a typical decision 

situation with no data I have to rely on my subjective 

judgement. I find it perfectly meaningful to formalize my 
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deliberations in the Bayesian framework and, further, think 

this is the most honest thing to do - play with open cards. I 

would stick to this philosophy also in the presence of 

"objective" information. As the amount of data increases, the 

relative influence of the prior diminishes, and in the end I 

can dispence with it and join the classical statisticians in a 

study of the likelihood alone. {Our interpretations of 8 and 

8, respectively, will still be different, but our practical 

conclusions will be the same). 

Whether to use a prior or not 

question, depending to some extent on 

is a philosophical 

the nature of the 

statistical problem. It has to be decided prior to the choice 

of the mathematical framework - prior to specifying or not 

specifying a prior - and can certainly not be settled by 

excercises of the kind discussed in the previous section. It is 

highly desirable that statisticians reflect on their 

philosophical positions and, in particular, seek to clarify the 

thought contents of ClassiCal and Bayes. I am convinced that 

both are useful in their respective fields of application. At 

any rate, classical statisticians and Bayesians should rejoice 

at the fact that probability theory has proved able to serve 

both parties well in their attempts to express their ideas in 

precise mathematical terms. 

Finally, I will mention ·the empirical Bayes scheme 

because it mistakingly, I think is held by some 

statisticians to be a synthesis of Classical and Bayes. Robbins 

{1955, 1964), who coined the term "empirical Bayes", had in 
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mind situations where the same decision problem presents itself 

repeatedly and independently. Let the problems be labeled by i 

= 1 ,2, ... To each problem i 

unobservable "interest parameter" si 

there is associated an 

and an observable X .. 
1 

The pairs (Si, Xi). i = 1,2, ... , are taken as i.i.d. random 

elements with common distribution given by (8) - (10). Thus, 

the decision problems are independent in the stochastic sense, 

but they are still related since all 8. 
1 

stem from the same 

distribution. Such an assumption is appropriate when 8. 
1 

characterizes the i-th selection from a heterogeneous 

population of units that are basically of the same kind, but 

not identical. A typical example is acceptance control of 

batches of items from a certain manufacturing process: xi is 

the proportion of defectives in a sample from batch No. i 

(the "quality" of the sample), is the proportion of 

defectives in the batch (the "quality" of the batch), and g 

represents the "quality" of the manufacturing process itself. 

Suppose I batches have been controlled so far and we are to 

assess the quality of batch No. I+1. The former observations 

X., i = 1, ... , I, give partial information on the corresponding 
1 

e.-values and, thereby, on their common density 
1 

g, which 

generated the current 8I+1 . This piece of information can be 

combined with the current observation to give an 

improved estimate of 8I+1 . As I increases, g will typically 

be consistently estimated, and in the limit g and the Bayes 

estimate of 8I+1 based on XI+ 1 will become known. Then the 

mathematics of the current estimation problem will coincide 
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with that of a genuine Bayesian analysis with prior density g. 

One might say that the empirical Bayes model framework 

takes care of those situations where the a priori insights stem 

from previous collateral experiments. The model is, however, 

entirely classical since all probabilities are given a 

frequency interpretation. It may be helpful to note that the 

empirical Bayes model framework includes as special cases the 

random effects models in the analysis of variance. What is 

peculiar to the empirical Bayes formulation is not the model, 

but the purpose of the analysis: empirical Bayes centres on 

estimating each latent 8., whereas ANOVA centres on estimating 
1 

the distribution, viz. the mean and the variance components. 

I conclude that the empirical Bayes set-up does not 

abolish the controversy Classical vs. Bayes. This controversy 

presents itself here as in every other statistical inference 

problem. Classieal statisticians will base their analyses 

entirely on the above model, whereas Bayesians will extend the 

model by introducing a prior distribution on the space of 

densities g. Again your attitudes can be introspectively 

examined by considering the cases with (i) no previous 

experiments (I = 0), (ii) a large number of previous 

experiments (I ~ oo), (iii) some, but not overwhelmingly many 

previous experiments (the typical intermediate case). 

Further discussions of.the aspects treated here are found 

e.g. in Deeley and Lindley (1981) and Norberg (1979). 
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Appendix: reply from james Berger 

In a letter of March 15th, 1988, Berger writes: 

Dear Professor Norberg: 

Thank you for the copy of your conunents on my and Sandved's 
criticisms. I am enclosing a copy of a letter I sent to Sandved 
in response. 

I think it is important to distinguish between particular procedures 
and general methodologies. Frequentists have become good at append­
ing a variety of adhoc principles (ancillarity being one of the 
first) to the basic frequentist position to try to prevent 
absurdities. None of these additional principles works well all 
of the time, however. More troubling is that there is no way of 
knowing when these additional principles will or will not work. 
The incredible complexity that a frequentist gets involved with 
in trying to produce flexible enough versions of conditional 
analysis is illustrated very well by the articles of Kiefer on the 
subject (referred to in my book) . 

In contrast, for a Bayesian the only question as to whether he has 
done a good analysis is - has he used a reasonable prior? Actually, 
Bayesians tend to work towards analyses or presentations valid for 
a variety of reasonable priors. But, in any case, anyone can judge 
their acceptance of the result by examining the prior (and model, 
etc.) or choosing their own. When I see a frequentist analysis I 
have no basis for judging it, since it takes deep investigation 
to judge what kind of conditioning is necessary and possible in 
a given case. Your analyses provide good illustrations of the 
point. It is simply much harder to consider and evaluate all the 
options from the frequentist side. 
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Note, by the way, that I feel there are many examples where no 
sensible ·frequentist analysis exists. I refer to a couple in 
my letter to Sandved. Others occur in sequential settings (see, 
e.g., the enclosed paper). 

I question your claim on p. 17 that classical statistics fits 
perfectly into the objectivistic paradigm of natural science. 
Bayesians have claimed all along that frequentist methods are 
also subjective, and insidiously so. The sequential and 
"objectivity" papers enclosed reflect some of these arguments. 

The rest of your paper I, of course, wholeheartedly agree with. 
Note that I too see uses for frequentist methods, as described 
in the second edition of my book. These uses have to do with 
approximating or selecting among Bayesian analyses, however. 

Thank you for your paper. Your analyses of the two examples 
are definitely the most interesting I have seen. 

Best wishes, 

~~,?' 
James Berger 

In handwriting he adds: 

"I have no complaint with your representation of my views, 

except possibly that the intent of my "conditioning" examples 

seems to have been erroneously percieved as themselves arguing 

for Bayesian analysis. My original intent was simply to use 

them to show that some type of conditional (or likelihood) 

analysis is necessary .... It is the purpose of the rest of the 

book (not these examples) to argue that the Bayesian approach 

to conditioning is best. I will admit to not having been clear 

on this, however." 


