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The mechanisms governing occurrence and notification of 

claims are pictured by a basic stochastic model judged to be fairly 

realistic in a number of practical situations. IBNR-reserves are 

composed in a number of different cases obtained by variation of 

the levels of specificity of model and run-off data. The reserves 

are obtained by established principles of mathematical statistics 

and range from empirical Bayes methods, both exact and linear 

(credibility), to methods based on models that do not include 

latent random variables. The present work is mainly of a theoreti-

cal nature: an empirical follow up study is in preparation. 
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1. Introduction 

l .1. Background and purpose of the present study 

A. The problem of establishing provisions for IBNR (Incurred 

But Not Reported) claims has been a "hot subject" in actuarial cir

cuits for more than a decade now. The literature on this topic has 

shown a marked trend from rather straightforward methods based on 

crude models with little structure, often with no stochasticity in 

them, to models and methods of an ever-increasing degree of sophis

tication. This pattern of development is hardly peculiar to actua

rial research, but is certainly typical of it and reflects the con

ditions under which it is operating: the actuary is a decision-maker 

compelled to produce, currently and within narrow deadlines, deci

sions about premiums, reserves, retentions, ... At first he will 

often have to decide to the best of his intuitive abilities. Then, 

if the same kind of problem presents itself repeatedly, he will look 

for some method, that is, a device that automatizes the production 

of current decisions. And if at some instance there is time left 

for afterthought, he may try to express his ideas and knowledge of 

the nature of the problem in a model and search for an optimal 

method, or at least one that performs well. 

B. The present paper advocates the reverse ordering of these 

activities by demonstrating how the method for IBNR-reserving re

sults from established principles of mathematical statistics when a 
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model has been chosen and the purpose of the reserve has been 

defined precisely in the terms of this model. Moreover, the model 

framework presented here is proposed as a reasonable candidate de

scription of the process governing occurrence and notification of 

claims in a number of classes of insurance business, in particular 

those subject to fluctuations in collective risk conditions acting 

on all individual risks simultaneously. 

Once the model has been specified, a further circumstance that 

is decisive of the choice of method is the statistics that can be 

entered into the prediction. We shall distinguish between direct 

insurance, where one usually can observe both the number of claims 

and the individual claim amounts, and reinsurance, where one will 

typically have access only to certain total claims amounts. 

1 .2. Outline of the paper and a word of guidance to the reader 

A. Section 2 describes the basic model underlying all the 

special cases treated in the succeding sections. In section 3 a 

number of different principles of IBNR-reserving are proposed. In 

sections 4 through 11 IBNR-predictors are constructed by various 

specifications of the model and the statistical data. Section 12 

offers a survey of a selection of previous IBNR-studies related to 

the present one. In the final section 13 some lines of further devel

opment of the theory are indicated. For ease of reference, some 

selected results - mostly well known matters from risk theory - have 

been placed in an appendix. 
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B. As the scope of the present study is fairly broad, the 

presentation is organized in a manner that allows for a selective 

reading. The primary purpose is to present an assembly of methods 

for establishing IBNR-reserves. However, as the subject offers an 

exellent opportunity to discuss some general problems of modelling, 

a number of paragraphs and items have been included that are mainly 

of an educative nature. Such parts of the text are marked by an 

asterisk, and so are those parts concerned with pure technicalities 

or theoretical elaboration beyond what is required for an understan

ding of the principal message. Thus, earthbound readers seeking a 

quick way to results should simply avoid the stars. 
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2. Definitions and basic model assumptions 

2.1. Notational conventions 

A. Scalars are denoted by ordinary italics. Matrices and 

vectors are written in boldface. When speaking of a vector e• we 

shall always have a column vector in mind. Row vectors are marked 

by a prime signifying transposition, e.g. e'· By 

diag(a. ). 1 is meant the mxm matrix with the indicated 
l. l.= , ••• ,m 

elements on the principal diagonal and zeros elsewhere. 

B. Let x = (x ,x +1 , ... ,x )' be a vector with entries - r r s 

numbered consecutively from r to s (a segment of the inte-

gers). The vector consisting of the t-r+1 

is written 

and the sum of these elements is denoted by 

t 
I X. 

j=r J 

first elements of x 

Analogously we also write e>t = (xt+ 1 , ... ,xs)' and 

x>t = Ij=t+1xt · 

c. Let X and Y be random vectors of dimension m and 

n, respectively. We denote by Cov(~,y·) the mxn matrix which 

has Cov(Xi,Yj) as its (i,j)-entry. In particular we write 

Var ~ = Cov(~,~'). 

Let X and Y be random elements, X scalar-valued. 
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Whenever it exists, the conditional h'th central moment of X, 

given Y, is denoted by Mh(XjY), that is, 

M1 (XjY) = E(XjY), 

Mh(XjY) = E[{X-E(XjY)}hjY]: h=2,3, ... 
( 2. 1 ) 

2.2. The structure of the data 

A. The Lexis type of diagram shown in figure 1 is a handy 

tool for visualization of data on occurrence and notification of 

insurance claims. Calendar time is measured along the horizontal 

axis, and development time (the time elapsing between occurrence 

and notification of a claim) is measured along the vertical axis. 

Thus a claim occurred at time s and reported at time t is re-

presented by a diagonal line connecting the points ( s, 0) and 

(t,t-s). The "cohort" of claims occurred in year j can be traced 

along the band limited by the diagonals originating in the 

development 
time 

t-s - - - - -- - - -- - - - - - - ---

.....__---+----------'-----___, calendar time 
s 

Figure 1. Lexis diagram with representation of a claim occurred 
at time s and reported at time t. 
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points {j-1 ,0) and (j,O}, see figure 2. Quantities relating to 

the d-th year of development of that cohort are marked off in 

the parallelogram with corners {j-1+d,d-1), (j+d,d), {j+d,d+1), 

and {j-1+d,d). (The choice of the year as time unit is merely a 

matter of terminology. For long-tailed business, like marine, 

product liability, and accident, where claims may be reported 

several years after their occurrence, one year may be a suitable 

time unit. For short-tailed business a quarter of a year or a 

month may be more appropriate. Another piece of terminological 

convenience: when speaking of occurrence of a claim, we really 

mean occurrence of the event that gives rise to the claim.) 

D 

d+1 

d 
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1 

0 

Figure 2. 
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Lexis diagram with the parallelogram representing 
claims occurred in year j and reported in year j+d. 
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B. We consider one class of business and introduce the 

following quantities relating to the parallelogram in figure 2: 

the number of claims that occur in year j and are 

reported d years later, in year j+d, 

Y jdk , the size of the k-th of those claims that occur (2.2) 

in year j and reported in year j+d~ k=l,2, ···~ 

and, defining YjdO = 0, 

the total amount paid in respect of 

claims that occur in year j and are reported ( 2. 3) 

in year j+d. 

The domains of the indices are 

j=l ,2, ... and d=O,l, ... ,D, 

respectively, D being the maximum time that can elapse between 

occurrence and notification of a claim. 

2.3. Basic model assumptions 

A. We make the following assumptions about the stochastic 

mechanism that generates the quantities defined above. 

With each year j is associated a positive quantity P· J 

measuring the amount of risk exposed, e.g. the number of risks or 

risk years, the total mileage (in motor insurance), the premium of 

the direct business (in reinsurance), or some other appropriate 

measure of the volume of the business transacted in year j. The 

p.'s are observable and are viewed as,nonrandom. 
J 
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We also attach to each year j a pair of quantities 

representing the latent general risk conditions in 

that year, where T. 
J 

(capital Greek •) acts upon the number of 

claims and ~. acts upon the single claim amounts. (The decom-
J 

position of 3. 
J 

into two components is just a matter of notatio-

nal convenience: it implies no assumptional restriction as long 

as nothing has been said about the relation between the two com-

ponents. The quantities ~. 
J 

may be scalar- or vector-valued or 

even more general.) In keeping with the standard way of modelling 

fluctuating basic probabilities (see e.g. Beard et. al. (1969)), 

the 'H' •s 
~j 

are conceived as unobservable random elements, and it 

is assumed that 

I. 'H' 'H' 
~,'~2, ... are i . i. d. - U 

(independent and identically distributed in accordance with some 

distribution function U). 

As our conditional model for fixed 8 
j 

we adopt an extended 

version of the traditional generalized Poisson law. More specifi-

cally, we assume that is a positive quantity, and that con-T. 
J 

ditional on (T.,~.)= 
J J 

(• .,<jJ .), the total number of claims occur-
J J 

ring in year j is Poisson distributed with parameter p .•. 0 

J J 
way of example, one may interpret • . as the integral over the 

J 

By 

time interval [j-l,j) of a basic claim intensity acting on each 

of the p. risk units throughout that interval. About the 
J 

notifications we make the simplifying assumption that single 

claims are reported independently of one another, each with a 

probability nd of being reported d years after its occurrence. 

From these assumptions we gather: 
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II. Conditionally, given ( T . , '¥ . ) = ( 't' . , <jJ • ) , the K J. d' s 
J J J J 

are 

mutually independent, and 

K . d - Po ( 1t dp . 't' . ) 
J J J 

: d=O I ••• I D. 

Here Po(K) denotes the Poisson distribution with parameter K· 

Next we make assumptions about the claim amounts. 

III. Conditionally, given (T .,'¥ .) = ('t'.,<jJ.), the amounts YJ.dk 
J J J J 

are mutually independent and independent of the claim numbers 

Kjd , and 

By fixed 1t, u and the following assumption 

completes the specification of the joint distribution of the 

introduced random variables. 

IV. Quantities referring to different years of occurrence are 

stochastically indpendent. 

B. In practice the distributions ~' and G0 , ... ,G0 are not· 

known at the outset. Consequently, all parameters required in 

predictions of IBNR-outstandings have to be estimated from data. 

For this purpose we have to specify the sets of distributions that 

are possible a priori: 

v. d=O I ••• I D. 

The basic probability model I-IV together with the specifications 

in V constitute our statistical model. 
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3. General formulations of the reserving problem 

3.1. IBNR-triangle, prediction basis, and statistical basis 

A. Referring to figure 3, suppose we are presently at time 

J and are to forecast the contents of the IBNR-triangle. In 

particular we want to predict the total amount of IBNR claims, 

J 
R = L s . > 

j=J-D+1 J I 

( 3 • 1 ) 

where 

s. = s. . = 2: s .d 
J,> J,>J-J d>J-j J (3.2) 

is the amount of IBNR claims occurred in year j: J-D+1~j~J . 

J 
.... -, 

- - - ~ - ..... ..,. - - - - - ~ - - - -r- - ~ D ~ ,r , ,.: -" , 
/ I , I _, I , I I:BNR··. , 
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I, , 
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I I / I , / 
/ I 

'I 1 ,, , , ' , , ,, I " I ,. 
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... ~ , L Y.dk 
l' , 

sjd " I, I / I 1 
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, I : , 
" !., -0 
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Figure 3. The IBNR-triangle (cross-hatching), the prediction basis 
(simple hatching), and the statistical basis (simple or 
no hatching) 

I 

' 
I ,. 

J" +D 

.... , 



------------

- 3 0 2 -

Denote by the data available by time J in respect. of 

claims occurred in year j: j=1, ... ,J. The statistical basis 

is made up of all observations available by time 

J. A special role in 0 is played by the (direct) prediction 
I 

basis (or run-off triangle) P = (QJ-D+1 , ••. ,QJ), which consists 

of the statistical information from the not yet fully developed 

years. 

The definition (3.2) illustrates a short-hand that will be 

used extensively in the following: when applying the notational 

device introduced in item 2.1 .B to quantities like 

K. . , etc., we shall as a rule drop the obvious 
-],~J-] 

simply write s. , K. , etc. 
],> -].~ 

s • J • I ],> -] 

J-j and 

B. Taking items I-IV in the model as a basic framework, 

there are two circumstances that are decisive of the designation 

of the IBNR-reserve. In the first place it is the specificity of 

the statistical basis, that is, the kind of data contained in O: 

in direct insurance one will typically have access to the basic 

quantities and Yjdk , whereas in reinsurance one will often 

observe only the total amounts Sjd or possibly some even more 

summary statistics. In the second place it is the specificity of 

the model, that is, the extent to which the sets in V are speci-

fied by parametrization, assumptions of independence, etc. 

3.2. Outline of sections 4~11 

We are going to investigate a number of special cases, each 

of which will be treated in accordance with the following disposi-

tion. 
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1 . Description of the case. The statistical basis 0 and 

the model elements u and Qd i d=O, •.. ,D; are specified. (It is 

assumed throughout that II = {~; - nd>O for all d and 

D 
Id=on d = 1 } . ) 

2. Prediction by known parameters. If the estimable para-

meters were known, we would select a predictor in the class of all 

functions depending on these parameters and on the direct predic-

tion basis P. (By the independence assumption IV, P would then 

contain all relevant statistical information.) For a given P it 

is the set of available (i.e. estimable) parameters that con-

strains the choice of predictor. 

Consider first the case where the joint distribution of P 

and R is fully known, so that a full posterior analysis can be 

accomplished. A commonly used measure of the performance of a 

predictor R is the expected squared error, 

( v~e do not care to indicate explicitly that the expectation 

depends on n, U, G0 , ••• ,G ). 
- D 

We introduce the conditional 

central moments (recall the principle of notation in (2.1)) 

Mh J' = Mh ( s . I 0 . ) J I) -J 
h=1 1 2 I 3 • 

The optimal predictor in terms of (3.3) is 

R = E(R!Q) = 
J 

I M1 . I 

j=J-D+1 J 

the second equality being a consequence of the independence 

assumption IV. 

(3.3) 

( 3. 4) 

( 3. 5) 
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It may be argued that criterion (3.3) does not express 

perfectly the object of claims reserving since it implies that 

understating liabilities by a certain amount is equally undesir-

able as overstating them by the same amount. In fact, overreserv-

ing seems to be preferred by most claims departments and is cer-

tainly preferred by regulatory authorities, whose main concern is 

the adequacy of reserves to meet liabilities. An IBNR-reserve 

reflecting a cautious attitude is obtained by adding to the condi-

tional expected value in (3.5) a safety loading depending on the 

conditional variance of R, given Q· By virtue of assumption IV, 

the general form of this reserve is 

J J 
R = L M1 . 

j=J-D+1 J 
+ f ( L M2 . ) I 

j=J-D+1 J 
( 3. 6) 

where the are the conditional central moments defined in 

(3.4) and is the square root or some other non-negative and 

non-decreasing function. 

Another prudent principle, which has an obvious justifica-

-tion, consists in providing a reserve R equal to the (1-E)-

fractile of the predictive distribution, that is, 

P(R<RIE) = 1-E. ( 3 • 7) 

If calculation of the fractile in (3.7) is laborious, one could 

use some approximation method that employs only the first three 

moments of the distribution. One such method, which is very 

handy, is the so-called NP-approximation described in Beard et. 

al. ( 1984). It states that the ( 1-E )-fractile of a distribution 

can be approximated by 
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( 3. 8) 

where llh is the h' th central moment of the distribution; 

h = 1 '2' 3: c1 is the upper E-fractile of the standard normal 

distribution, and c 2 = (c~-1)/6. Again by virtue of assumption 

IV, the reserve delivered by this principle is 

( 3 • 9) 

where the Mhj's are given by (3.4) and all summations range over 

j =J-D+ 1 , . . . , J . 

Next consider the case where the joint distribution of P 

and R is not fully known (or, rather, is not estimable from 0). 

Then the reserves defined by (3.5)-(3.7) and (3.9) typically 

depend on unknown parameters and are, therefore, not feasible. 

If, however, we know certain unconditional moments up to second 

order, we can instead of (3.5) use a credibility predictor R, ~ 

which, roughly speaking, minimizes (3.3) as ~ ranges in the 

class of all inhomogeneous linear functions of certain statistics 

depending on P. By (A.18) in appendix A.3, the general form of 

R is 

J 
R = I s. > 

j=J-D+1 J' 
(3.10) 

where s. is some credibility predictor of s. based on 
J,> J,> 

By adding to (3.10) a security loading depending on the 

unconditional variance of R, we obtain a reserve of the form 

J J 

0 .• 
-J 

R= I s.>+ 
j=J-D+1 J, 

f( I Var S. ) • 
j=J-D+1 J, > 

(3.11) 
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Sometimes it is possible by credibility methods to approx-

-imate in (3.4) by a function M2 j that depends on certain 

higher order unconditional moments. Then, if these moments are 

known, we can construct the following credibility analogue to 

(3.6): 

J J 
R = I s . + f < I M2 . > • 

j=J-D+1 J,> j=J-0+1 J 
(3.12) 

(If the argument of f(•) becomes negative, we replace it by o.) 

If, furthermore, a credibility approximation M3 j of 

can be arranged, then a "credibility approximated NP-approxima-

tion" is obtained by instead of (3.9) using 

ii = Is. 
• J I) 
J 

(3.13) 

3. Parameter estimation. An estimation procedure is briefly 

indicated. Parameter estimation problems will not be focussed at 

in this paper. 

Upon replacing the parameters appearing in any one of the 

reserves in (3.5)-(3.7), (3.9)-(3.13) by their estimators, we 

finally obtain a genuine reserve -* R , which normally will be 

- -* -asymptotically equivalent to R in the sense that R /R tends to 

1 in probability as J increases. Often we shall not care to 

mention this final step explicitly in special cases since that 

would amount to little more than merely repeating the phrases 

above. Exceptions are made only in those cases where an explicit 

and appealing formula of is obtained. 

4. Comments. Notable features of the situation are briefly 

pointed out. 

-----1 
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4. Prediction based on numbers of claims and single claims 

amounts when varying latent risk conditions are not modelled 

as random variables: a preparatory study 

4.1. Description of the case 

A. Let the available observations be 

0 = {Kjd'yjdk: k=O, ... ,Kjd: d=O, ... ,D(j): j=1, •.• ,J}, ( 4. 1 ) 

where we have introduced 

D(j) = min(D,J-j). 

Thus we have access to the complete history of the individual 

claims as recorded by the direct insurance business. 

As all quantities in (4.1) are assumed known by time J, we 

have to accomodate definition (2.2) to claims that are reported, 

but not settled at that time. For these we must in practice let 

Yjdk be the sum of the payments made up to time J and the 

provision made at time J to meet payments that will fall due in 

the future. 

B. In this first case to be studied we apparently step aside 

from our basic model framework by leaving out assumption I in 

paragraph 2.3. Instead the latent risk conditions are represented 

by nonrandom parameters 

!;. = (,;.,<jl.) 
J J J 

j=1,2, •.. 

Assumptions II-V are retained as before, with the modification 

that we drop the conditioning clause in II and III and replace the 
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specification u E u in v by 't. > 0 and <jJ. E '¥; j=l 1 2 I • • • 

J J 
(Speaking of the <jJ • IS as "parameters" does not necessarily imply 

J 

that the families Qd are parametric in the sense that the set '¥ 

is of finite dimension.) 

c. We shall examine this reduced model in some detail for 

several reasons. In the first place, some may prefer the point of 

view taken here, that the I;. 's 
J 

are non-random, and to those the 

results in this section present an interest of their own. (Very 

plausibly they will, however, change their opinion after having 

read the comments in paragraph 4.4.) In the second place, 

comparison of the results obtained here to those obtained in the 

full model gives rise to a number of instructive comments. In the 

third place, the calculations made here are needed in some of the 

following sections. 

4.2. Prediction by known parameters 

A. The present model specifies no stochastic dependence 

between past and future. Consequently, prediction by known 

parameters reduces to calculations in the marginal distribution of 

R. Hence we set out to determine this distribution. 

* B . We pause here to supply a motivation of assumption II in 

paragraph 2.3. As is standard in risk theory, it is assumed that 

the total number of claims occurred in year j, K. , is distri-
J I ~D 

buted in accordance with Po(p.'t.). 
J J 

Combining this with the 

assumptions about the claims reporting described just before 
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assumption II, we obtain for any kjd = 0,1 , ... and kj = I~=Qkjd 
that 

D 
P( n K.d= 

d=O J 

= 

D 
kJ.d) = P( n K.d = 

d=O J 

k.! D k 'd 
J II1tJ) 

D d=O d 
II k.d! 

d=O J 

k 'd I K. D = k.) p (K. D = k . ) J J,( J J,( J 

k. 
(p.'t.) J -p.'t. 

J J e J J 
k.! 

J 

which is just assumption II in the conditional model. 

c. the marginal distribution of Sjd defined by (2.3) is 

and claim generalized Poisson with frequency parameter 1tdp ,'t. 
J J 

size distribution Gd(·l~j). In short-hand we write 

For S. defined by (3.2) we have, by the result (A.l5) in 
J I > 

appendix A.2, that 

s. - g.Po(1t J .p.'t., G>J .(·j~.)), 
J,> > -J J J -J J 

with 

The expression for the cumulative distribution function is 

P ( S . > ~ x) = 
J I 

k 
<X) (1t J .p.'t.) 
I > -J J J 

k=O k! 
( 4. 2) 

where "k*" designates k-th convolution. By (A. 7), (A. 8),. 

----, 
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(A.12), and (A.13) in appendix A.2, the first three central 

moments of s. 
J I) 

are 

~hJ' = 1t>J .p.-r .JyhdG>J .(yi~ .) -J J J -J J 

= p.-r. L 1tdJyhdGd(yl~ .) 
(4 0 3) 

J Jd>J-j J 
h=1 1 21 3 o 

Likewise we obtain for the total amount of IBNR claims in (3.1) 

that 

R ~ g.Po(K,H), 

with 

J 
K = L 1t ·P·'r· 

j=J-D+1 >J-J J J 
(4.4) 

and 

H( •) 
-1 J 

= K L 1t>J .p.-r.G>J .(·1~·>· 
j=J-D+1 -J J J -J J 

(4.5) 

The first three moments of R are obtained by summation of the 

moments in (4.3): 

I~=J-D+1~hj h=1 1 21 3 o 

The cumulative distribution function of R is 

P(Ro;;r) -K = e 
CD Kk k* 
L k! H (r). 

k=O 

D. We have now determined all elements required in the 

different IBNR-reserves defined in section 3. 

(4.6) 

In the present model the conditioning with respect to P 

drops out, and the reserve (3.5) reduces to 

J 
R = L ~1 . 

j=J-D+1 J 
(4.7) 

the ~ 1 j being defined by (4.3). 
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The reserve (3.6) becomes 

J J 
~ 

R = I Ill . + f ( I ll2 . ) • 
j=J-D+l J j=J-D+l J 

Appiication of principle (3.7) requires numerical calculation 

of the tail of the distribution function (4.6). A uniform£-

approximation of this function is obtained by including the n 

first terms in the sum on the right hand side of (4.6), where n 

-K,n k is the smallest integer satisfying e Lk=OK /k! ) 1-e. If K is 

large so that a large number of terms is required, then the recur-

sive procedure proposed by Panjer (1981) may reduce the computa-

tional work substantially. Alternatively one could use the NP-

approximation (3.9) with the ~j•s replaced by the unconditional 

moments in (4.3). 

4.3. Parameter estimation 

A. Estimation of the parameters n and ('t.,<jJ.): 
J J 

j = 1,2, ••• ,J; is based on the joint distribution of the observa-

tions in (4.1), which is given by 

= 

d=O, .•. ,D(j): j=l , ... ,J) 

J 
II 

j=l 

k=l 1 o o o ,kjd 

(4.8) 
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J k. ( ") D(j) 1 D k d d J k. ( ") 
= (II p. J,"D J II --)(II n "J-' }(II -..J'"D J} 

j=1 J d=O kjd! d=O d j=1 J 

J (4.9) 
-_I n"D(")P·•· J 

J=1 J J J 
e II 

j=1 

D(j) kjd 
II II dG(y.dk~~ .) 

d=O k=1 J J 

d=O , ... , D ( j ) ~ j=1,2, ... 

It is obvious how to interpret the above statements and 

expressions when kjd = 0. (Here and elsewhere the dependence of 

P, E, Var, etc. on the parameters is suppressed in the notation.) 

Inspection of the likelihood given by (4.8) tells us that 

inference about the 'Jt IS 
d 

and .. • IS should be based on the mar-
J 

ginal distribution of the Kjd 1 S, whereas for each j inference 

about ~. should be based on the conditional distribution of the 
J 

(which is "ancillary" for ~ . ) . 
J 

B. The parameters 'It and '"1'"""''"J can be estimated by 

maximizing the logarithm of the likelihood of the !Sj,"D{j)ls 

subject to the constraint I~=1 nd = 1 . From ( 4. 9) it is seen that 

the essential part of the Lagrange function for this problem is 

D J 
L = I K<;J-d dlog nd + _I KJ. <:D( J. )log -.. 

d=O ' J=1 ' J 

D 
- I ndp ·• . 

. d .. +d<; J J J J I I J 
- c I n 

d=O d 

(4.10) 

where c is the Lagrange multiplier. (It is assumed that D<;J 

since otherwise the parameters are not identifiable.) The maximum 

likelihood estimators are the solution of the 

following equations, where (4.11) and (4.12) result from equating 

to zero the derivatives of L with respect to the -.. 1 s and the 
J 
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nd's, respectively, and (4.13) is the side condition: 

K. ( . ) J I..; D J 
j= 1 I • 0 0 I J j (4.11) 

d=O I ••• I D i (4.12) 

D 

L n~ = 1 • 
d=O 

(4.13) 

These equations possess no explicit solution and have to be solved 

by numerical methods. 

-A 
C • If D is small compared to J-D, then the following 

simple procedure will be nearly as efficient as the full maximum 

likelihood procedure described above. First find the maximum 

likelihood estimator of and ,;1, ••• ,,;J-D based on the numbers 

of claims K. for the fully developed years j = 1 , •.. ,J-D. 
- ]i..; D 

Instead of (4.11 )-(4.13) we then get the equations 

Ko;>J-D,d 

D 

* L nd = 1 , 
d=O 

which in case K..;J-D,..;D > 0 

appealing solution 

* K . ..;niP· ,;, = 
J J I J 

* Ko;>J-D,d/K..;J-D,o;>D nd = 

and c = 0. Next estimate 

j=1, ... ,J-D; 

d=O I ••• I D i 

possess the explicit and intuitively 

j = 1, ••• ,J-D; (4.14) 

d=O, ..• ,D; (4.15) 

,; , •.. ,,; by maximizing the 
J-D+1 J 

likelihood of for each of the not fully developed years 

j=J-D+1, .•. ,J under the assumption that the n 's 
d 

are known, 
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and finally insert the * 1t 's 
d 

from (4.15). The resulting 

estimators are 

* * ~. = K. ~J .fn~J .p. J J,~ -] ~ -J J 
j =J-D+1 I-~. ,J. 

The estimator * 1t defined by (4.15) is consistent as 

(4.16) 

Consistency of the individual * ~.'s would require in addition 
J 

that p . +oo for each j . 
J 

D. We now turn to the problem of estimating the claim size 

parameters <jJ • • 
J 

Each particular specification of the families 

Qd i d=O I ••• I D i (or, equivalently, of !) would require an 

analysis of its own. Usually estimators * <jl. 
J 

can be obtained by 

standard methods, hence our further remarks shall be held in 

general terms. 

* E . The families Qd may be either parametric (! finite-

dimensional) or non-parametric (~ of infinite dimension). In 

any case the Gd(• I<Vj)'s of past book years, j+d.;;J, can always be 

estimated from Y.d , ••• ,Y.dK 
J 1 J jd 

by standard methods for samples 

of i.i.d. observations when Kjd>O. This is, however, of little 

interest in the present context since our concern is to predict 

the future. The model has to be structured in such a manner that 
/ 

the future Gd(• I<Vj)'s; d>J-j; can be estimated from the observed 

for each j =J-D+ 1 I • • • I J . This means, roughly y j dk I S j d" J- j j 

speaking, that <jl. has to be identifiable from 
J 

G0 < • I <V • ) , ••• , GJ . < • 1 <V • ) J -] J 
for each j, which is usually the case in 

parametric situations. An alternative way of making future claim 

size distributions estimable from past observations is treated 

under the next item. 
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F. Consider the special case where the risk conditions 

governing the claim sizes are invariable over time, that is, all 

~j have the same value ~· Then each Gd(·i~) can be estimated 

from all the Yjdk 1 s from the years j=1, .•• ,J-d. A distri

bution-free estimator of Gd(• I~) is the empirical distribution 

function G* based on all the 
d y jdk Is: 

j=1, ..• ,J-d. We have, with a selfexplaining notation, 

JydG~(y) = S~J-d,d/K~J-d,d • (4.17) 

The assumption that all the ~'IS 
J 

are equal may seem unsuit-

able in the absence of a similar assumption about the 't ' I So 
J 

Nevertheless it is often adopted in theoretical studies of the 

case with no delays (D = 0), and we shall work with it in some of 

the sections below. 

G. Genuine predictions are obtained upon replacing the para-

meters appearing in the formulas of paragraph 4.2 by their esti-

mators. In general no closed formula in terms of past observa-

tions can be arranged when the unrestricted maximum likelihood 

estimators given by (4.11 )-(4.13) are used. 

If we instead employ the simple estimators (4.14) and (4.15) 

. h . * * b . h together w1t some est1mators ~J-D+1 , •.. ,~J , we o ta1n t e 

following expression for the estimated expected value predictor in 

(4.7): 

~* 
R (4.18) 

h=1,2,3. 
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* H • Let us look a little closer into the special case 

discussed under item F above, where the single claim amounts are 

not influenced by varying risk conditions. Inserting (4.17) into 

(4.18), yields the easily interpretable formula 

J \ K~J-D,d L K. . L 
j=J-D+1 J,~J-] d>J-j K~J-D,~J-j K~J-d,d 

8~J-d,d (4.19) 

* 4.4. Comments 

* A • First we add one further remark on the model specified 

Informally, one might say that modelling ~ 1 ,~ 2 , ••• 

nonrandom parameters is consistent with assumption I in the basic 

in 4.1 . B. as 

model with U "diffuse" or "non-informative". 

Another point of view is that we operate in the full model, 

but confine ourselves to methods that rest entirely on the infor-

mation contained in the conditional distribution for given 

and thus do not utilize the fact that the ~ 
j 

are i.i.d. 

E. 
J 

random 

elements. The resulting methods remain perfectly meaningful also 

in the full model, but they are not optimal. Roughly speaking, 

their performance is poorer the more informative U is. 

* B . As remarked already in paragraph 4.2, past observations 

are of no use in prediction of the future in the present model 

when the parameters are considered as known. They come into play 

only in paragraph 4.3, where they are used to estimate the para-

meters; it is the structure imposed on the parameters that now 

bridges past and future and enables us to predict the latter. 
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c* . A remarkable feature of the present model is that the 

volumes p. essentially drop out of the analysis; they may be 
J 

absorbed in the 'J; • I S as these range in all of R . 
-+ 

This fact is 
J 

reflected also by the absence of the p. 1 s in the predictions 
J 

(4.18} and (4.19}. We conclude that if different years are not 

made comparable through the introduction of assumption I or some 

other way, then information about the amounts of risk exposure 

will be of no value. It may be felt that the irrelevance of 

measuring the size of the business is a shortcoming of the present 

model. 

* D . In item 4.3.E it was mentioned that predictions are 

possible only if <V. 
J 

can be estimated from past observations at 

each stage of development of year j. A similar remark applies 

also to the parameters governing the numbers of claims. We have 

assumed that the probability distribution n of the delay period 

is the same for all occurrence years. If we had not made this 

assumption and instead introduced a n. 
~J 

for each year j, we 

should be unable to predict the number of IBNR-claims. This is 

seen upon replacing nd in (4. 8} by njd then only the 

frequency parameters njd'tj j+d~J; are identifiable from the 

distribution of the past observations, and nothing could be 

inferred as to future Kjd 1 s; j+d>J. 

When a new parameter 1;. 
J 

is introduced for each year j I 

each I; . has to be estimated from the claims data of year j 
J 

alone. The accuracy of the estimators may be poor if the risk 

exposure is not great, especially at early stages of development. 

From the log likelihood (4.10} we easily obtain the asymptotic 

variances of the estimators defined by (4.11 }-(4.13}: 
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* 'tj/re,D( j)pj as. Var 't. = 
J 

(4.20) 

J-d 
as.Var * red/ L p.'t. red = 

j=l J J 

* As could be expected, re is consistent by increasing J, roughly 

speaking, whereas * 't. 
J 

is consistent only by increasing exposure 

in year j. This is a prise we have to pay for not being willing 

to specify any kind of connection between the risk conditions in 

different years. 

* E . The necessity of establishing some such connection 

appears even more clear when we face the problem of tariffication. 

In fact, the present model renders no possibility of fixing the 

premium level for a future year by statistical methods. 

* F . The circumstances mentioned in items B-E are inevitable 

consequences of our model assumptions. To the extent that they 

are incompatible with our intuition and conceptions about the 

nature of the IBNR-phenomenon, they point to deficiencies of the 

present reduced model. These will be overcome when we turn to the 

full model by including the i.i.d.-assumption I, which establishes 

a relation between the risk conditions in different years. But 

first we shall see in section 5 haw some of the problems can be 

remedied within the present fixed-parameter-approach by intro-

ducing more assumptions, viz. that basic risk conditions remain 

unchanged from one year to another. 
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5. Prediction based on numbers of claims and single claim 

amounts by permanent risk conditions 

5.1. Description of the case 

A. The data 0 is the same as in the previous section. 

B. The model in item 4.1 .B is retained, but we now introduce 

the additional assumption that the risk conditions are invariable 

over time, that is, all I;. 's 
J 

are equal. Let denote 

their common value. This assumption may be suitable for instance 

in direct accident insurance when the number of risks or risk 

years are taken as volumes p. 0 

J 

c. By inspection of (4.8), it is seen that the relevant para-

meters now are ~ and 

d=O, ••• ,D. ( 5 0 1 ) 

5.2. Prediction by known parameters 

Predictions are made as 1n paragraph 4.2. Formulas (4.3)-

(4.5) now become 

h 
~hj = pjp>J-jfy dG>J-j(yl~) 

h 
= p j I . p dJ y dG d ( y I~ ) 

d>J-J 

J 
K = I P .p . 

j=J-D+1 J >J-J 

J 

H ( • ) = K - 1 I p . I . p dG d ( • I~) . 
j=J-D+1 J d>J-J 

h= 1 , 2, 3; ( 5 0 2) 
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5.3. Parameter estimation 

A. Upon inserting ~. = ~ and ~. = ~ and introducing the 
J J 

pd's from (5.1 ), the essential part of (4.8) reduces to 

( IID pk~J-d,d -p~J-dpd { D J-d 
d e ) II IT 

d=O d=O j=1 

kjd 
II 

k=1 

The maximum likelihood estimator of pd is readily found to be 

d=O, .•. , D. (50 3) 

B. Estimation of ~ goes as in item 4.3.F. 

c. We mention here only one example of a genuine prediction. 

Inserting the estimators (4.17) and (5.3) into (5.2)for h=1, we 

obtain the estimated expected value predictor 

J 

R* = I Pj I s~J-d d/p~J-d 
j=J-D+1 d>J-j ' 

This result should be compared with (4.19). 

* 5.4. Comments 

* A. It is noteworthy that the volumes p. 
J 

play an essential 

role in the present case, confer the comment in item 4.4.C. 

* B . Another important feature of the present specification 

of the model is that the set of parameters, p0 , •.. ,p 0 ,~, does not 

increase as J increases. The maximum likelihood estimator of ~ 
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is * ID * with * defined by (5.3). variance is 't = d=Opd I pd Its 

D 
* • I nd/p~J-d (5. 4) Var 't = 

d=O 

which should be compared with (4.20). The expression in (5.4) 

tends to 0 as p~J-D increases, and in the present model it is 

always smaller than the expression in (4.20) for j ~ J-D. This 

observation points to the necessity of specifying parsimonious 

models with as few parameters as possible; if the risk conditions 

can be assumed to be virtually constant over time, then the intro-

duction of a new ~· for each year j represents an extravagancy 
J 

that has to be paid for by a loss of efficiency of the estimators. 
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6. Prediction based on numbers of claims and single claims 

amounts when single claim amounts are not affected by 

fluctuations in basic risk conditions and U is parametric 

6.1. Description of the case 

A. The statistical basis is the complete data 0 given by 

(4.1). 

B. We now return to the full model in paragraph 2.3, with 

basic risk conditions in different years represented by random 

variables as specified in assumption I. We assume, however, that 

only the number of claims are subject to such fluctuations. This 

means that all 'Jf ' IS 
J 

have the same value ~. which then becomes a 

parameter of the distributions. Accordingly, U is now taken to 

be the common distribution of the random variables T . . 
J 

In the present section we deal with the situation where U 

is a parametric class of distributions, that is, 

u = {u 
a 

a E ~} 

for some open set 
m 

Ac.R. 

c. All the parameters ~· ~· and ~ can be estimated from 

the data, hence any one of the principles of IBNR claim reserva-

tion presented in paragraph 3.2 can be employed. 
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6.2. Prediction by known parameters 

A. We first derive the predictive distribution of R. Due 

to assumption IV we have only to determine, for each j, the con-

ditional distribution of s. 
J I ) 

for given 0. . 
-J 

From (4.9) it is 

seen that K . .,. 
J, .. 

is sufficient for T. 
J 

in the Bayesian sense. 

Hence the only thing that is required is 

CD 

= ~ .£0 P(sj,> ~ xiTj = ~j' Kj,~ = m)dUj(~jlm), 
J 

( 6 • 1 ) 

is the conditional distribution of T., given 
J 

Kj,~ = m. As the conditional distribution of Kj,~ , given 

T. = ~. , is Po(n.,.J .p.~.), we find 
J J .. -J J J 

dU. (~.I m) = 
J J 

-TI .p .~ • 
m ~J-J J Jdu ( ) 

~ .e ~. 

J ~ J 

CD -n .p.~ 

J ~me ~J-J J dU (~) 
~=0 a 

By the conditional independence of the Kjd's for given T. 
J 

( 6. 2) 

(assumption II), we can replace the first factor appearing under 

the integration sign in (6.1) by the expression on the right of 

(4.2), with <V • = <V 
J 

for all j . We then obtain 

CD 

\' k* P(S. > ~ xiK . ., = m) = 1.. q.(kim)G>J .(xi<!J), 
J I J I .. k=O J - J 

where 

q.(kim) = P(K. > = kiK . .,. = m) J J, J, .. 

= 

k 
(n J .p.) 

> -J J 
k! 

CD 

f 
~=0 

-p.~ 

~k+me J dU (~) 
a 

k=O I 1 I ••• 

( 6. 3) 

( 6. 4) 
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Finally we have to form the convolution of the distributions 

(6.3) for j=J-D+1, ... ,J to obtain the predictive distribution of 

R. When this has been accomplished, we can calculate fractiles of 

this distribution and a reserve by principle (3.7). 

Each particular specification of U requires an analysis of 

its own, and the computational work may be extensive. We close 

this paragraph with an example of a family U that leads to trac-

table closed formulas for the counting probabilities in (6.4). 

Example (the gamma case). Let U be the family of gamma 

distributions given by 2 a = (y, o) E B+ 

{ 
oY y-1 -o't fTYT 't e 

dU~('t)/d't = O ~ 't" 0. 

and 

(6.5) 

By inspection of (6.2), we see that now also u.(•jm) 
J 

is a gamma 

distribution, na~ely with parameters (y+m,o+n,J .p.), hence (6.4) 
... -] J 

becomes 

q.(kjm) 
J 

k 1 o +n . p . n . p . k 
= (Y +m+ - ) ( "J- J J ) y +m ( > J- J J ) 

k o+p. o+p. 
J J 

k=O I 1 I ••• ~ 

a negative binomial distribution. In this case (6.3) can be 

calculated by the recursive procedure of Panjer (1981). 

(6.6) 

B. We are going to construct the reserves (3.5) and (3.6), 

and as the distribution involved in the above analysis may be 

cumbersome to calculate, it is of interest to construct also the 

the approximate fractile reserve (3.9), which involves only the 

predictive moments defined by (3.4). 

Our starting point is (4.3}, which in the present model 

becomes (confer (2.1 }) 
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Mh ( s . > I T . ) = ], J 
h=1 1 21 3 ~ ( 6. 7) 

where 

(6.8) 

We need also the noncentral posterior moments (confer (6.2)) 

= K. -n .p.,; J 1: J ' :s; e :s; J- J J dU ( 1: ) 
a 

and the relations 

(6.9) 

h=1 1 21 3 ~ 

~ h=1 1 2 1 3 ~ (6.10) 

the latter being a consequence of the conditional independence of 

and K. " ], ... for fixed T. • 
J 

c. Consider first the simple expected value predictor (3.5). 

The term in (3.4) now reduces to E ( S j, > I Kj, :s; ) , and by 

successive application of (6.10) and (6.7), 

(6.11) 

where and are defined by (6.8) and (6.9). 

Example (continued). The h-th noncentral moment of the gamma 

distribution (6.5) is readily seen to be {oYjr(y)}{r(y+h)/oy+h} = 

(y+h-1)(h)/oh. Thus, since U.(•lm) is the gamma distribution 
J 

with parameters ( y+m, o+n, J ·P . ) I ... -] J 

h=1 1 21 3 o 

Specifically, (6.11) assumes the simple form 

(6.12) 
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M1 J. = a 1 .(y+K. )/(o+n .p.), 
J ],~ ~J-] J 

which is to be entered into ( 3. 5). 

* D . To provide the reserve (3.6), we need also the second 

order predictive moments 

M2 ]' = M2 ( s . I K. ) ],> ],~ 

(6.13) 

Using in succession (6.10), (A.l) in appendix A.l, (6.7), and 

(6.9), we find that 

E(s2. >IK .... > = E{M2 (s. IT.)+ M21 (s. IT.)IK. } 
], ],... ],> J ],> J ],~ 

(6.14) 

Entering (6.11) and (6.14) into (6.13) yields 

(6.15) 

where the elements on the right hand side are defined by (6.8) and 

(6.9). 

The reserve (3.6) is now obtained by substitution of (6.11) 

and ( 6. 1 5). 

Example (continued). By use of (6.12),we find that (6.15) in 

the gamma case becomes 

M2 J. = (y+K .... Ha21 . + a2 .(o+n J .p .) }/(o+n J .p .) 2 • 
],... J J ~ -] J ~ -] J 

E*. Finally, to construct the reserve (3.9), we need the 

third order predictive moments 
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M3 j = M3 (sj,>IKj,.;;) 

= E ( s 3. > 1 K . ... ) - 3E ( s 2. > I K . .-) M1 . + 2M 31 J. ( 6. 1 6) J, ],... J, J,... J 

The latter equality results from (A.4) in appendix A.l. By 

successive use of (6.10), (A.2) in appendix A.l, (6.7), and (6.9), 

we get 

E ( s 3. > I K . "' ) = E { M 3 ( s . > I T . ) + 3M2 ( s . > I T . ) M 1 ( s . > I T . ) J, J,.. J, J J, J J, J 

(6.17) 

Substituting (6.11), (6.15), and (6.17) into (6.16), we obtain 

after some trivial rearrangements that 

M3 j = a 3 jBlj + 3a1 ja2 j(B2 j- B~j) 

+ a~j(B 3 j- 3B 1 jB 2 j + 2Bij)' 
(6.18) 

where the ahj 1 s and 

Assembling the 

Bhj 1 S are defined by (6.8) and (6.9). 

~j 1 s from ( 6. 1 1 ) , ( 6 . 1 5) , and ( 6 . 1 8) , we 

can now determine the reserve (3.9). 

Formula (6.18) does not simplify in the gamma case, so we do 

not pursue the example here. 

6.3. Parameter estimation 

A. The joint distribution of the observations is obtained by 

integrating the conditional probability (4.9) over the joint 

distribution of the T. Is. 
J 

Estimators of and a are obtained 

by maximizing the likelihood of the number of claims, the 

essential part of which is seen to be 



- 6.7 -

D K J 
( .;;J-d,d) II 

II n d 
d=O j=1 

(6.19) 

Another estimation method is proposed in item 7.3.C below. 

Example (continued). In the gamme case (6.5) the expression 

(6.19) reduces to 

(K . ( . ) ) 
(y+K. . -1) J,.;;D J 

J,.;;D(J) 

Maximization under the constraint ,n n - 1 Ld=O d -

by numerical methods. 

has to be performed 

B. Estimation of ~ goes as in item 4.3.F. 

* 6.4. Comments 

A*. With paragraph 4.2 in mind we note that in the present 

model past and future are stochastically related through their 

joint dependence on the latent T. Is. 
J 

As opposed to the analysis 

based on the model of section 4, P now plays a role in the IBNR-

prediction also when the parameters are considered as known~ 

K . .;; J, gives a pointer to the value of T. 
J 

the numbers of future notifications, K. > • 
- J' 

and, thereby, also to 

On the other hand, when it comes to genuine predictions, P 

plays a central role also in the model of section 4. In fact, in 

that model the estimate (4.16) of ... 
J 

rests entirely on the 

claims experience of year j alone (apart from the fact that n 

is estimated by statistics from all the fully developed years). 

In the present model T. 
J 

is estimated partly from all claims 
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. . d ( ~* ) exper1ence of year J an through ·- partly from that of 

other years. This circumstance has, of course, its root in the 

assumption that all T. Is 
J 

stern from the same distribution. By 

this assumption the risk conditions certainly vary from one year 

to another, but they are not completely uncornparable as they were 

in the model of section 4; one can learn something about the 

present year by looking at what happened in former years. 

* B . The volumes p. 
J 

model, recall item 4.4.C. 

play a significant role in the present 

* C . The number of parameters is dramatically reduced as corn-

pared to the situation in section 4, confer item 4.4.D. Instead 

of introducing a new frequency parameter for each year, we now 

have only the parameter a of the distribution that generates the 

T 's. 
j 
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1. Prediction based on numbers of claims and single claim 

amounts when single claim amounts are not affected by fluctu-

ations in basic risk conditions and U is nonparametric 

7.1. Description of the case 

A. The situation is the same as in section 6, see items 6.A 

and 6.B, except that U is now nonparametric. 

B. In this case estimation of U and the functionals 

appearing in the reserves constructed in section 6 is not feasible 

in general. We can, however, still estimate all parameters 

required in credibility predictors based on the sufficient (in 

Bayes sense) statistics K., : j=J-D+1, ... ,J. 
], .. The parameters in 

question turn out to be <jJ, TI' and the unconditional moments 

h 
vh = ET j h=1,2, ... ,m: 

where m depends on the choice of reserving formula. 

displayed in the following are assumed to exist. 

All 

c. Apart from <V the number of parameters is D+1+m. 

7.2. Prediction by known parameters 

( 7 • 1 ) 

V IS 
h 

A. In each item of this paragraph we assume that the known 

parameters are <jJ, n' v1 , ••• ,vm, where m is the number of vh's 

needed in the analysis. As U is not fully specified, a full 

posterior analysis cannot be accomplished, and we have to resort 

to credibility methods. 
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B. The credibility predictor of 

T. = I; . :r . + ( 1 -I; . ) ~I 
~ J J J J 

where 

/"),_ = T. 
J 

K. ,/n J .p. 1 
]I.. ..: -] J 

-1 
I;. = A(A+~/n;,J .p.) 

J .. -] J 

~ = ET j = v 1 

and and are defined by (7.1 ). 

T, 
J 

based on K. 
]I<: 

is 

( 7 • 2) 

( 7. 3) 

( 7. 4) 

( 7. 5) 

(The reparametrization 

(7.5) is made to facilitate reference to well known credibility 

formulas.) Formula (7.2) is demonstrated in item E below. It 

follows from (6.7) that the credibility predictor of s. 
J I ) 

where a, j is defined by (6.8). 

forecast (3.10) becomes 

J 

R = I a 1 j T j 
j=J-D+l 

By use of (6.7), 

vars . = var ( a 1 . T . ) + E ( a 2 . T . ) 
]I> J J J J 

= a~/'· + a2j~~ 

Thus the credibility IBNR-

is 

( 7 • 6) 

( 7. 7) 

with A and ~ defined by (7.5). From (7.6) and (7.7) we obtain 

the reserve by principle (3.11 )~ 

R = I a 1 . T . + f (A I a 12 . + ~I a 2 . ) 1 

J J J J 

all sums extending over j=J-D+l ~···~J. 
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c*. Following the ideas of paragraph 3.2, we shall construct 

a more sophisticated reserve of the form (3.12). For this purpose 

we need, in addition to (7.6), also some kind of approximations of 

the predictive second order moments in (6.15). We propose to 

replace and on the right hand side of (6.15) by credi-

bility approximations. Now the credibility approximation of Bhj 

happens to coincide with that of T~ 
J 

as is seen from the 

identity 

E{T~- C(K. /)}2 = 
J J' .. 

EVar(T~ IK. /) + E{E(Tl;IK. /) - C(K. /) }2. 
J J,.. J ],... ], ... 

Having already the credibility approximation (7.2) of Tj , we only 

need an approximation of In item E below the credibility 

formula based on is shown to be 

T '2. T~ ( 1 ) = Tl . . + -Tl . v 2 ' 
J J J J . 

( 7 0 8) 

where 

(2) 2 
K. //(n/J .p.) ],... ... -J J 

( 7 0 9) 

By the proposed recipe, we approximate (6.15) by 

2 2 ~2 = a 1 . ( T . -T . ) + a 2 . T . 
J J J J J 

(7.10) 

with T. and T~ defined by (7.2) and (7.8), respectively. 
J J 

Principle (3.12) can now be applied with §. 
J' > 

given by 

( 7 . 6) and ( 7 . 1 0) . 
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"* D . We shall pursue further the ideas of the previous item 

and arrange also a variation of the reserve formula (3.13). From 

(6.18) it is seen that, in addition to the already established 

credibility approximations of B 
1 j 

and B2j 

approximate B3j or, equivalently, T3. . In 
J 

demonstrate that the credibility predictor of 

is 

3 ~ 
T. = p.T. + (1-pJ.)v 3 , 

J J J 

where 

A 

T~ = 
J 

(3) 3 
K. ,/(n,J ·P .) 

]•" "" -J J 

I we need also 

item E below we 

T3. based on 
J 

-Approximate third order predictive moments M3 j are now 

obtained upon replacing B1 j , B2 j , and s 3 j in (6.18) by 

to 

K~3) 
J,( 

(7.11) 

(7.12) 

-T. I 

J 

2 T3. T. , and 
J J 

from ( 7 . 2) , ( 7 . 8) , and ( 7 . 1 1 ) • Finally, insert the 

~j's in (3.13) to obtain an "approximate NP-approximation" of 

the upper £-fractile of the predictive distribution of R. 

"* E . We shall sketch the calculations leading to the credibi-

lity formulas (7.2), (7.8), and (7.11). We need the relations 

(7.13) 

and 

h=1 1 2 I • • 0 ; (7.14) 
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which result from (A.6) in appendix A.2 and the fact that, con

ditional on Tj = ~, we have Kjd ~ Po(ndpj~) and 

t K. / ~ Po(n/J .p.~). Putting T. = ~. and recalling the 
J,~ ~ -J J J J 

definitions ( 7 . 3), ( 7. 9), and ( 7 . 1 2) 1 we have by ( 7 . 1 4) that 

h ~ 
ET j = ET j = vh 1 

(7.15) 

and,by (A.6) in appendix A.1, 

~ Var E ( T .j T.) = 
J J 

h Var T. 
J 

= v2h-vt . 

By use of (7.15) and the easy identities 

k2 = k(2) + kl 

(k(2))2 = k(4) + 4k( 3 ) + 2k( 2 ) 
I 

(k(3) )2 = k(6) + 9k( 5 ) + 18k ( 4 ) + 

we find that 

Var T~ = 
J 

E(K~h])2/(n/J .p .)2h- vh2 
]I~ ~ -J J 

v 2 + v 1 /nt.;;J-jpj - v~ ~ 

6k( 3 ) 
I 

= v 4 + 4v 3 /nt.;;J-jpj + 2v 2 /(nt.;;J-jpj)2 

v6 + 9v 5/n._J-jPj + 18v 4 /(n._J-jpj) 2 

+ 6v 3; ( nt.;;J-jp j) 3 - v2 0 

3 I 

h=1 ~ 

- v2 
2 h=2~ 

h=3. 

On identifying M and X in (A.17) in appendix A.3 with TJ; 
J 

~ T. I respectively, we obtain (7 .2) 1 (7 .8) 1 and (7 .11). 
J 

The credibility approximations derived in this section are 

and 

not optimal in general. They can be improved upon by including 

more than one factorial of K. / in the formulas. Such problems 
]I~ 

are treated by Neuhaus (1985). 
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7.3. Parameter estimation 

A. Estimations of n and the v 's 
h 

can be performed by 

some moment method based on the sufficient statistics K~J-d,d 
d=O, ... ,D; and K (); j=1, •.. ,J. 

j I~ D j 
A convenient starting point 

are the following relations, which result from (7.13) and (7.14): 

d=O, ... ,D; (7.16) 
j=1, ... ,J. 

h=1 1 2 1 • • • i (7.17) 

If D is small compared to J-D, a particularly simple 

procedure can be arranged. First base estimators of the v 's on h 

( 7.17) for the fully developed years j = 1 , ... 1 J-D, for which 

n~D(j) = 1. A class of unbiased estimators is given by 

J-D (h) J-D h 
= I whJ.KJ. ~D/ .I whJ.pJ. 

j=1 I ]=1 
h=1 1 2 1 • • • i (7.18) 

where the are some positive weights. wnen is found, 

(7.16) motivates that nd be estimated by 

d=O I ••• I D. (7.19) 

* B . An alternative procedure could be to start from the 

maximum likelihood estimates for the conditional model in section 

4, either those in (4.11 )-(4.13) based on all available observa-

tions 1or the simpler ones in (4.14)-(4.15). Consider those given 

by (4.11 )-(4.13) and rebaptize each * 't· 
J 

with the present model assumptions. Then 

as 

* n 

* T. 
J 

in accordance 

is obtained directly 

by solving (4.11 )-(4.13), and estimators of the two first moments 

- i 
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and can be based on the asymptotic properties (by 

increasing p. 's) of the 
J 

* as . E ( T . I T . ) = T . , 
J J J 

and (confer (4.20)) 

* T. Is i 
J 

* as.var(T.IT.) = T./rr."'D(')p. · 
J J J .. J J 

From(7.20) and (7.21) we find 

* E(T.) 2 = 
J 

* * Var T. + E2T. 
J J 

= VarE ( T~ IT . ) + EVar ( T~ IT . ) + E2 T*. 
J J J J J 

"" V ar T . + ET . / rr. D ( . ) p . + v 21 J J .;; J J 

= v 2 + v 1/rr..;;D(j)pj . 

(7 .20) 

(7.21) 

(7.22) 

(7.23) 

A class of asymptotic moment method estimators based on (7.22) and 

(7.23) is given by 

J 
* I w1 .T. 

j=1 J J 

J 
I w2 . (T~) 2 

j=1 J J 

where for each h = 1,2 the are positive weights summing 

to 1. 

* C • As an alternative to the laborious maximum likelihood 

procedure presented in paragraph 6.3, one could use moment methods 

based on the simple estimators (7.18) and (7.19). 
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Example (the gamma case continued). Estimators of (y,o) 

are obtained by substitution of 

(7.19) into the relations 

which yields 

* 7.4. Comments 

* * * o = r I v1 • 

and from ( 7 • 1 8) and 

* A . The credibility formulas derived in paragraph 7.2 shed 

more light on the comment made in 4.4.B. For instance, the empir-

ical counterpart of (7.2) obtained by inserting estimators for the 

parameters occurring in (7.3)-(7.5) shows clearly how the exper-

ience from occurrence year j is balanced against the experience 

from other years. 

* B . Referring to the discussion in item 4.4.C, we notice 

that the significance of the p. 's 
J 

in the present model is clear-

ly exhibited by formulas (7.2) and (7.4); by increasing p. the 
J 

weight attached to the experience in year j increases, as one 

should expect. 



-------------------------------------------

- 8.1 -

8. Prediction based on total claim amounts in the unrestricted 

framework model 

8.1. Description of the case 

A. The available data is now assumed to be 

0 = {sjd~ d=O, ... ,D(j)~ j=l, ..• ,J}, which is typical of a reinsur

ance business written on an underwriting year basis. 

~· No restrictions are imposed on the families of distribu-

tions U and Qd~ d=O, ... ,D~ except that the moments indicated 

below are assumed to exist. 

c. In the present case the joint distribution of 

is not estimable in general. It would be if the 

P. 's were equal, which is not likely to occur in practice. w·e 
J 

can, however, estimate the moments of the distribution of s. 
~J 

for 

each j . This circumstance is due to the distributional structure 

inherent in the basic model assumptions I-IV. 

Introduce 

h=1, •.. ,4~ d=O, ... ,D 

j=1,2, ... 

( 8. 1 ) 

The moments up to fourth order of the Sjd's turn out to depend 

on the following basic parameters. 

1st order parameters: 

Vd. 

2nd order parameters: 

d ~ e 

Vd. 

Number of parameters 

D+l 

D+l + ( D+l ) 
2 

D+l 
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* 4th order parameters : 
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d~e~ f 

d=e 
} 

d=i=e 

Vd. 

d=e=f 

d=i=e=f 

~ d<e, d=i=f, e=l=f 

d<e 

d=e 

d=l=e 

Vd. 

} 

D+1 + (D+1 )D + (D+ 1 ) 
3 

( D+1 ) 2 

D+1 

D+1 + (D+1 )D + (D+ 1 ) 
2 

+ ( D+ 1 ) ( ~ ) + ( D: 1 ) 

D+1 + ( D+1 ) D 

+ ( D+ 1 ) ( ~) 

( D+ 1 ) 
2 

( D+ 1 ) 
2 

( D+ 1 ) 2 

D+1 

Let nh(D) be the total number of parameters of order h or less. 

We find that n 2 (D) = (D+1 )(3+D/2), n 3 (D) = n 2 (D)+(D+1)(3+2D+D( 2 )/6), 

and n 4 (D) = n 3 (D)+(D+1 )(4+9D/2+D( 2 )+D( 3 )/24), and calculate 

n 2 ( 0 ) = 3 , n 2 ( 1 ) = 7 , n 2 ( 2 ) = 1 2 , n 2 ( 3 ) = 1 8 , n 2 ( 4 ) = 2 5 , 
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The order restrictions appearing in the definitions of the 

~·s are, of course, not essential. They have been introduced only 

for the purpose of keeping an account with the number of distinct 

parameters. By symmetry, ~ed = ~de etc. 

D. In the next paragraph we demonstrate the following formu-

las for the moments. 

lst order moments: 

2nd order moments: 

* 3rd order moments : 

E(S.dS. S.f) = p~Rd f. J Je J J~ e 

* 4th order moments : 

Vd. 

Vd 

d<e. 

( 8. 2) 

( 8. 3) 

( 8. 4) 

Vd ( 8. 5) 

d:fe (8.6) 

d<e<f (8.7) 

Vd (8.8) 

d :fe (8.9) 
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d<e (8.10} 

E(s S S2 } = p4Q + p3Q 
"d . "f ·I-'d ff "'"'d f2 J Je J J e J e 

d<e, f*{d,e}; (8.11} 

E(S.dS. S .fS. } = p~~d f 
J Je J Jg J e g 

d<e<f<g. (8.12} 

(As in the case of the ~·s above, the order restrictions can 

trivially be removed.} 

E*. We shall prove the formulas (8.2}-(8.12}. Upon replacing 

and 
h 

EY in appendix A.2 by 'ltdp .T. 
J J 

and and 

introducing the Bhjd's from (8.1 }, we obtain from (A.8}-(A.11} 

that 

E(Sjd~~j} = pjB1jd 

E(Sjdl~j} = pjB~jd + pjB2jd 

Using these expressions, we find the following formulas, which are 

just the ones given in (8.2}-(8.12}. 

Vd 

E(S .dS. } = E(p .B 1 .dp .B 1 . } d<e 
J Je J J J Je 

Vd 

E(S .ds2. } = E{p .B 1 .d(p~B21 . + p .B 2 . } } 
J Je J J J Je J Je 

d=i=e 
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E(S .dS. S 'f) = E(p .B 1 .dp .B 1 . P .B 1 'f) 
J Je J J J J Je J J 

d<e<f 

E(S .ds3. ) = E{p .B 1 .d(p3.B 31 . + 3p~Bl . B2 . + p .B 3 . ) } d:j:e 
J Je J J J Je J Je Je J Je 

E(S2.ds2. ) = E{ (p~B21 'd + p .B2 .d) (p~B21 . + p .B2. ) } 
J Je J J J J J Je J Je 

d<e 

d<e, f*{d,e} 

E(S .dS. S 'fS. ) = E(p .B 1 .dp .B 1 . p .B 1 'fp .B 1 . ) 
J Je J Jg J J J Je J J J Jg 

d<e<f<g. 

8.2. Prediction by known parameters 

A. As the joint distribution of the Sjd's is not fully 

specified, a full posterior analysis is not feasible. When the 1st 

and 2nd order parameters are known, we can, however, employ the 

principles (3.10) and (3.11 ). 

To construct the credibility predictor of S. 
J I ) 

based on 

S '. = ( S . , ... , S . . ) , we pick from ( 8. 2)- ( 8. 4) the moments 
-],~ ]0 ],J-] 

Cov ( S . > , S '. ,. ) 
], -], .. 

Var S., 
- J I ... 

ES . = p. ~ /J . I 
-],~ J - ... -] 

where we have introduced 

(8.13) 

(8.14) 

p~ 2: . . , 
J -];J-] 

(8.15) 

(8.16) 
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x.J-j (8.17) 

(8.18) 

(Note that Xd depends only on the stage of development and need 

not be calculated anew for each occurrence year.) By application of 

formula (A.16) in appendix A.3, we obtain from (8.13)-(8.16) the 

credibility predictor 

S. = p.~>J . + v' . ~-;-lJ .(S.-p.R)_..J . , J,> J -J ~J-J -J~ -J -J J~ ~ -J (8.19) 

where vJ' . and ~ . . 
~ -J -J~J-J 

are defined by (8.17) and (8.18). Finally 

insert (8.19) into (3.10) to obtain the credibility IBNR-predictor. 

From (8.2)-(8.4) we get 

Var S. > = ES~ >- E2s. > J, J, J, 

=I E(S.dS.)- <I ES.d) 2 
d,e>J-j J Je d>J-j J 

= di >J .<Pj~de + 0 dePj~d2) -I .Pj~dpj~e 
,e -J d,e>J-J 

= P~ I .<~de- ~d~ ) + P· I ~d2· 
J d,e>J-J e J d>J-j 

(8.20) 

On inserting (8.19) and (8.20) into (3.11), we obtain a reserve 

with a security loading. 

* B . We can arrange a recursive algorithm for calculation of 

~-: 1 J .. Let a. d 
-J~ -J J~ e 

denote the (d,e)-element in For each 

d = 1, ... ,D partition into 

(~ J'. d-1 
~ - I 

- j ~ d -
a' 
- j~ d 

!?:j~d) 
a j~dd 

(8.21) 

where 

£j~d- (aj~dO'''''aj~d,d-1). 
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is partitioned correspondingly~ 

(8.22) 

When P· J 
is known, the matrices L:-: 1 d ~ d=O, 1 , ... , D; may be 

], 

calculated recursively as follows. Once ~jid- 1 has been found, 

first calculate the auxiliary quantities 

(8.23) 

and then 

c . d = ( 0 j; dd - w. )-1 
J~ J; d 

(8.24) 

b. d = - c. d v. d I J; J ~ -J; (8.25) 

A. d = L: -1 - b. d v' 
- J ~ - j; d-1 -J~ - j ~ d 

(8.26) 

which determine L:-1 by (8.22). The recursion is initiated by 
- j; d 

"'-1 = c-1 
~ j; 0 j; 00 

The proof rests on the results in appendix A.4. Identify A 

in (A. 1 9) with in (8.21). Then (A.22) and (A.23) specialize 

to (8.24) and (8.25), respectively, and (A.20) becomes 

(8.27) 

Upon identifying ~ and b in (A.25) with L: and ·- -j~d-1 

-~ gj;d oj;dd in (8.27), we obtain (8.26). 
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When access is being had to powerful computer equipment with 

standard programs for matrix inversion, it may not be worth while 

implementing the algorithm (8.23)-(8.26). It also ought to be said 

that in empirical Bayes situations, where parameter estimates are 

currently updated along with the emergence of fresh data, recursion 

formulas valid for fixed parameter values are of little practical 

value. 

* C . To apply principle (3.12), we need, in addition to the 

credibility predictor (8.19), also a credibility approximation of 

the second central predictive moment 

(8.28) 

The best linear approximation to the first term on the right 

of (8.28) is just the credibility predictor of S~ . To construct 
J I) 

the credibility predictor based on S. , we compile from (8.3)
- J I~ 

(8.4) that 

ES~ =I E(S.dS. ) 
J,> d,e>J-j J Je 

= I <P~~d + 6 fp.~d2> 
d,e>J-j J e e J 

(8.29) 

= p. 0. 
J J 

where 

o j = P j I . ~de + I ~ d 2 ' 
d,e>J-J d>J-j 

(8.30) 

and from (8.2)-(8.7) that 

Cov(S~ >'S~ ,) = E(~ S. SJ.f S~ ,) - ES~ >ES~, 
J' -J,.. L Je -J,.. J, -J, ... e,f>J-j 

={I <P 3J·~def + 0 efP 2J.~de2>}d=O, ... ,J-J. 
e,f>J-j 

(8.31) 
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where 

E~ = {p. I (~d f- ~d~ef) +I .<~de2 - ~d~e2)}d1 'J-)' <8 · 32 ) 
-J J e,f>J-j e e>J-) ~ 

From (8.29), (8.31 ), (8.15), (8.16), and (A.16) in appendix 

A.3 we obtain the credibility approximation 

- 2 -1 E(s. >I?·,)= p.o. + E~ ~L .(s.-p.R) . ), -J,~ J J -J -);J-) -J )~ ~J-) 
(8.33) 

where 6 . and E '. are given by (8. 30) and (8. 32). 
J -J 

The credibility approximation of the conditional mean appea-

ring in the second term in (8.28) is just 

approximated by 

S. > , hence (8.28) is 
J' 

(8.34) 

where the terms on the right are defined by (8.19) and (8.33). 

The required IBNR-reserve is now obtained upon inserting 

( 8. 1 9) and ( 8. 34) into ( 3 . 1 2) . 

* D . To apply principle (3.13), we have to approximate predic-

tive moments up to third order. The first two moments are approxi-

mated by (8.19) and (8.34). In addition we need some credibility 

approximation of the predictive third central moment, which by 

(A.4) in appendix A.1 is 

~1 3 J. = M3 (s. Is. ) = E(s 3. 1s. ) 
),> -),~ ),> -),~ 

- 3E ( s~ > 1 § . , ) E ( s . > I§ . , ) 
), ),... ), ), ... (8.35) 

+ 2E 3 ( s . > I § . , ) . 
J' J' ... 
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The best linear approximation of the first term on the right 

of (8.35) is the credibility predictor of s~ . The credibility 
]I> 

predictor based on S. involves the moments ES 3. 1 
-]1<; ]I> 

Cov ( S 3. 1 S '. ) 1 and those in ( 8 . 1 5) and ( 8 . 1 6 ) . From ( 8 • 5 ) - ( 8 . 7 ) 
]I> -]1<; 

we find (all sums indicated range over indices d 1 e 1 f > J-j) 

ES~ =I E(S.dS. s 'f) 
] 1 > d 1 e 1 f>J-j J Je J 

where 

= 1<Pj~ddd + Pj~dd2 + pj~d3) 

+ 3I <P~~d + P~~d 2> + I P~~ 
d*e J ee J e d*e~d*f~e*f J def 

= p' p ' I 

J J 

P . = P2· I ~ d f+ P · <I ~ dd 2 
J J dle 1 f>J-j e J d>J-j 

(8.36) 

(8.37) 

From (8.5)-(8.12) we find for any d ~ J-j and e1f1g > J-j that 

Cov(S.diS. S .fS. ) = E(S.dS. S .fS. ) - ES.dE(S. S .fS. ) 
J Je J Jg J Je J Jg J Je J Jg 

p~~deee+pj~dee2+Pj~de3 - Pj~d(pj~eee+pj~ee2+pj~e3): e=f=g 

= Pj~deff + Pj~def 2 - Pj~d<Pj~eff+pj~ef2) 

similar expressions when f*e=g or e=f*g 

Pj~defg - pj~dPj~efg 

= Pj[Pj<~defg-~d~efg) + pj{ 0 efg(~dee 2 -~d~ee 2 ) 

+ ( 1 - 0 ef) 0 fg(~def 2 -~d~ef2 ) + ( 1 - 0 ef) 0 eg(~dfg2-~d~fg2) 

+ (l-ofg) 0 ef(~dge 2 - ~d~ge 2 )} + 0 efg(~de 3 -~d~e3)]. 
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It follows that 

cov(s3. > ,s•. ") = { I Cov(s 'd's .es .fs. ) }d<:J- · 
J, -],... e,f,g>J-j J J J Jg J 

(8.38) 

= p2. (J •. 
J -J 

where 

By (8.15), (8.16), (8.36), (8.38), and (A.16) in appendix A.3, 

the required credibility approximation is 

(8.40) 

with p . 
J 

and defined by (8.37) and (8.39). 

Upon replacing the conditional expected values occurring on 

the right of (8.35) by their credibility approximations, we obtain 

the approximate third order predictive moment 

(8.41) 

the single terms in which are defined by (8.19),(8.33), and (8.40). 

An approximate NP-approximation of the (1-E)-fractile IBNR-re

serve is now obtained by entering (8.19),(8.34) and (8.41) into (3.13). 

8.3. Parameter estimation 

A. We shall construct a class of simple weighted least squares 

estimators of the 1st and 2nd order parameters. Let wjd; 

d=O, ..• ,D; j=1, ... ,J-d; and w 'd ; O<:d<:e<:D; j=1, ... ,J-e; be some 
J e 

positive constants. A set of unbiased estimators of the parameters 

up to 2nd order is given by 
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J-d J-d 
~* = I w.d sjd I I w.d p. d j=O J j=O J J 

d=O, •.. ,D (8.42) 

* 
J-e J-e 

~de = I w.d sjd s. I I w.d p~ 
j=O J e Je j=O J e J 

O~d<e~D (8.43) 

* (a2dA2d - a3dA1 d) I (a4da2d a~d) ~dd = - d=O, ... ,D (8.44) 

* (a4dA1d a3dA2d) I (a4d a2d a~d) ~d2 = - - d=O, •.. ,D ; (8.45) 

where the ahd's and Ahd's are defined by 

J-d h 
ahd = I w.dd p. h=2,3,4 

j=1 J J 

J-d h 
Ahd = I w.dd p. sjd h=1 12 d=O I ••• I D . 

j=1 J J 

The unbiasedness of the estimators in (8.42) and (8.43) is a 

direct consequence of (8.2) and (8.4). The estimators in (8.44) and 

(8.45) are constructed by the technique of least squares based on 

the linear regression (8.3); for each d we minimize the weighted 

sum of squared deviations 

(8.46) 

It is well known (and easy to check) that the least squares estima-

tors are those in (8.44) and (8.45) and that they are unbiased. 

The question of how to specify the weights and is 

discussed in item B below. Let it suffice here to state, what is 

intuitively obvious, that in the case where all the p. 
J 

are equal 

one should lay equal emphasis on statistics from different years, 

that is, use the uniform weights w.d = w.d = 1. Often in practice 
J J e 

the p.'s do not vary much, so that uniform weights will produce 
J 

reasonably efficient estimates. 
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* B . We shall discuss the choice of weights in the estimations 

(8.42)-(845). The estimator ~* 
d 

defined by (8.42) is recognized as 

the weighted least squares estimator obtained by minimizing 

It is well known that the optimal choice of weights w .d/p. , in 
J J 

the sense of minimizing ( * ) 2 • E ~d - ~d I lS I -1 
w.d p. = (Var s.d) , 

J J J 
which by (8.2) and (8.3) is equivalent to 

j=1, ..• ,J-j. (8.47) 

Likewise, * ~de defined by (8.43) is the weighted least 

squares estimator that minimizes 

J-e 
I ( w . d fp2.) ( s . ds . - P~ ~ d ) 2 . 

j=O J e J J Je J e 

The optimal weights are w.d /p~ = {var(s.ds. >}- 1 , by (8.10) 
J e J J Je 

and ( 8. 4) , 

j=1, ... ,J-e. (8.48) 

The optimal choice of weights in (8.46) is wjdd = (Var sjd>- 1 

or, by (8.3) and (8.8), 

wjdd = {pj(~dddd- ~ad) + pj(~ddd2- 2 ~dd~d2) 
(8.49) 

2 2 } -1 
+ pj(~dd 3 - ~d2 ) + pj~d4 j=1, ... ,J-d. 

As the optimal weights depend on the parameters, no uniformly 

optimal choice can be made. Yet the formulas.(8.47)-(8.49) are use-

ful in our search for a good weighting~ any set of weights that are 

not of the general form given by these formulas, with appropriate 

values of the ~·s, cannot be optimal at any parameter point. A 
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reasonable procedure could be to specify a set of parameter values 

~ ~, ~ ~e , etc. for which we want the estimators to perform well, 

and to use the weights (8.47)-(8.49) corresponding to these values. 

(A variation of this idea is to pick values QO QO that are 
f-' d I f-' de I 0 0 0 

judged as "likely to be close to the true values of ~ d, ~de,... " 

This would, however, imply a willingness to specify a prior dis-

tribution on the parameter space, and to act in accordance with 

this attitude, we should estimate the parameters by Bayesian 

methods.) 

As an example, consider the problem of specifying the weights 

in (8.42). The choice wjd = 1; j=1, .•• ,J-d; which gives 

small compared to ~d2• On the other hand, the weights wjd 

j=1, ... ,J-d; are nearly optimal if the terms pj(~dd- ~~) 

-1 = p. 
J 

are 

large as compared to ~d2• As a hold in deliberations of this kind, 

note that ~ dd - ~~ = Var E(S.d/p.j~.) J J J 
measures the magnitude of 

the fluctuations in basic risk conditions from one year to another, 

whereas ~d2 = p.E Var(S.d/p. 1~.) measures the (average) pure 
J J J J 

random variation around the expected result by fixed risk condi-

tions for a portfolio with unit risk exposure. 

At any rate, the uniform weights wjd = wjde = 1 are close to 

the optimal ones when the exposures p. 
J 

do not vary too much, 

confer the closing remark in the previous paragraph. 

* C. The relations (8.5)-(8.12) specify linear regressions of 

cross products of 3rd and 4th order of the sjd's on parameters of 

3rd and 4th order. These parameters may, therefore, be estimated by 

linear methods as described by Norberg (1982). The resulting esti-

mates are needed if we want to use the predictors constructed in 
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8.2.C and 8.2.D above. They may also be utilized to construct empi-

rical generalized least squares estimators of the 1st and 2nd order 

parameters by the method proposed by Norberg (1982). 

Q· By insertion of the parameter estimators from paragraph 8.3 

into the formulas for the reserves derived in paragraph 8.2, we 

will not obtain any compact and appealing expressions, and the 

formulas shall not be displayed here. 

8.4. Discussion 

~· As was pointed out in paragraph 8.1, the number of parame

ters quickly becomes large as D increases. Already for D = 4 

the number of parameters required to construct the simplest reser

ving formula (8.19) amounts to 25, which is prohibitive if the sta-

tistical basis 0 is scanty, as it often is. Thus the present ana-

lysis based on the unrestricted framework model, is directly appli-

cable mainly to situations where D is small. Therefore, it becomes 

a central issue to specify additional assumptions V that on the 

one hand are sufficiently rigid to reduce the number of parameters 

to a manageable level and on the other hand are flexible enough to 

provide a realistic description of the situation at hand. 

In the following section we shall analyze the case where all 

the ~.are assumed to be equal, and it will turn out that this 
J 

restriction brings about a substantial reduction of the number of 

parameters. 

Another possibility is to assume that the parameters ~d , 

~de, etc. are certain parametric functions of the indices d,e,f,g. 

Specifically, by letting the ~·s be linear functions of some smal-

ler set of basic parameters, the expected values in (8.2)-(8.12) 

will remain linear functions of these parameters, and the estimation 



- 8.16 -

can still be based on linear regression techniques. For instance we 

could assume that the ~·s are linear or quadratic functions of the 

indices or some scalar functions thereof, e.g. ~d = a + ~d + yd2 

or -d 
~ = a + ~e . A next step would then be to develop test 

d 

procedures for further reduction of the parameter space, e.g. to 

test whether y can be deleted. The choice of parametrization and 

reduction hypotheses will depend on our a priori knowledge in each 

particular instance of application, and we shall not pursue these 

ideas further here. 

All formulas for reserves by known parameters obtained in 

paragraph 8.2 are, of course, valid for any particular specifica-

tion V, whereas the problem of parameter estimation will depend 

entirely on the assumptions made. 

* B . In the present analysis based on the total claim amounts 

Sjd in the unrestricted framework model, the assumption that 

is independent of E. 
J 

is of no significance. The parameter struc-

ture will remain unchanged if we drop this assumption. 
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9. Prediction based on total claim amounts when single claim 

amounts are not affected by fluctuations in basic risk 

conditions 

9.1. Description of the case 

A. The observable quantities 0 are those specified in 8.1 .A. 

B. In addition to the basic model assumptions I-IV it is now 

assumed that the single claim amounts are independent of variations 

in the basic risk conditions, that is, all '¥. 
J 

are equal to some 

fixed parameter ~ E I . 

c. The Bhjd's defined by (8.1) are now of the form 

where 

We put = ET~ 
J 

h=l ' .•• '4 

as before, and introduce 

h=2' 3' ..• 

h=l, ••. ,4 

( 9. 1 ) 

d=O, ••• , D. (9.2) 

( 9. 3) 

d=O, ••• , D. (9.4) 

Upon inserting (9.1) into the defining expressions in item 8.1 .c, 

we find that the ~·s depend on the basic parameters in (9.3) and 

(9.4) as follows: 

1st order parameters: 

\fd (9.5) 



2nd order parameters: 

* 3rd order parameters : 

= { 

~ d3 = T)3d 

4th order parameters * : 

~defg = K4TJ1d'll1e'll1f'll1g 

j 
6 K 3TJ~ dT) 2d 

~def2 = 3 K 3 Tl 1 d Tl 1 e Tl 2e 

K3TJ1dTl1eTl2f 

~ d2e2 = K2TJ2d'll2e 

{ 
K2(3T)~d + 4 '1l1dT)3d) 

~ de 3 = 
K2TJ1d'll3e 

= 

- 9.2 -

(9.6) 

Vd (9.7) 

; d:fe ; 

d=e 

Vd 

d~e~f~g 

d=e=f 

d:l=e=f 

d<e, d:f f 1 e:f f 

d<e 

d<e 

d=e 

d:fe 

Vd • 
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The ~·s are now tied together as they are all functions of 

the basic parameters Kh and nhd" Define the order of a basic 

parameter to be h if it is uniquely determined by values of ~·s 

of order h or less and h is the smallest number with this pro

perty. Then, by inspection of the above table of ~·s, always star

ting from the top, we obtain the following classification of the 

basic parameters. 

1st order parameters: Number of parameters 

n1d d=O I ••• I D D+1 

h-th order parameters h=2,3,4 

d=O I ••• I D . D+2 

In total there are nh(D) = h(D+2)-1 basic parameters of 

order h or less. If, for instance, D = 5, the number of parame

ters that have to be estimated in order to establish the simplest 

reserves based on 1st and 2nd order parameters, is n 2 (5) = 13. In 

the unrestricted model of section 8 we found n 2 (5) = 33. This 

illustrates what can be gained by working into the model any a 

priori insight one might be in possession of. 

9.2. Prediction by known parameters 

A. All results established in subsection 8.2 carry over to the 

present case. However, due to the structure now possessed by the 

~·s, the expressions simplify to closed formulas that are easy to 

interpret and compute. 

By substitution of (9.5)-(9.7), @ and the parameter functions 
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in (8.17) and (8.18) now assume the forms 

(9.8) 

(9.9) 

(9.10) 

The matrix is easily inverted by aid of (A. 25) in appendix 

A.4, and some simple calculations lead to 

where 

-

= p.(Q.- 1), 
J J 

(9.11) 

(9.12) 

(It is easy to check that Q. is the credibility approximation of 
J 

Q. = Tj/v 1 based on s. . ) On inserting (9.8)-(9.10) into (8.19) 
J -J,~ 

and then substituting (9.11), we obtain the credibility formula 

- -
sj,> = Pjn 1 ,>J-joj (9.13) 

-where Q. is given by (9.12). 
J 

Formula (8.20), which is needed for reserving by principle 

(3.11), now reduces to 

var s. > = p~(K 2-1)n 21 >J-· + p.n 2 J . · 
]t J I J J I) -J 

* B . Next we turn to the results in item 8.2.C on linear 

approximation of predictive moments of 1st and 2nd order. Substi-

tuting the expressions in 9.1 .c for the ~·s, we find that the 

quantities in (8.30) and (8.32) now beGome 
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(9.14) 

By inspection of (8.33), (9.14), and (9.11 ), it is seen that the 

quantity in (9.12) once more plays a key role. We easily gather that 

E(S~ >I§·,.>= p.(K2-1)-l[p.(K22-K3)TJ21 
J, J, J J (9.15) 

Upon entering (9.13) and (9.15) into (8.34) we find an expression 

for M2 j , which together with 

by principle (3.12). 

s. 
J I) 

from (9.13) deliver a reserve 

c*. Proceeding as in item B above, we find that (8.37) and 

(8.39) in the present case reduce to 

£j = {pj(K4-K3)TJi,>J-j + 3pj(K3-K2)TJ1,>J-jTJ2,>J-j 

+ (K2- 1 >TJ3,>J-jln1, .. J-j · 

Substitution of these expressions in (8.40) yields 

E:<sj,>l§j,,.> = pj(K 2-1)- 1 [pj{pj(K3 K2-K4 )TJi,>J-j 

2 } { 2 3 + 3 (K2-K3)TJ1,>J-jTI2,>J-j + pj(K4-K3)TJ1,>J-j 

+ 3p.(K3-K2)TJ1 >J •TJ2 >J, + (K2-1)TJ3 J .}Q.]. J I -] I -] I) -J J 

(9.16) 
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The elements in (8.41) are now given by (9.13), (9.15), and (9.16). 

9.3. Parameter estimation 

A. A class of consistent estimators of the 1st and 2nd order 

parameters appearing on the right of (9.5)-(9.7) is given by 

* * T]ld = ~d (9.17) 

* I * I I * * K2 = wde~de wde~d~e 
d<e d<e 

(9.18) 

* * T]2d = ~ d2 I 
(9.19) 

where the * ~ 's are picked from (8.42)-(8.45) and the wde are 

weights that sum to 1. The estimators (9.17) and (9.19) are trivi-

ally motivated by (9.5) and (9.7). The estimator (9.18) is obtained 

by inserting estimators for all parameters in (9.6), save K2, and 

forming a weighted sum. 

* B. A more refined procedure than the one proposed in item A 

would be to apply weighted least squares techniques to the non-

linear regressions 

Also higher order moments can be estimated by methods similar 

to those presented here. We shall not dwell upon the question of 

optimality properties of estimators. 
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9.4. Comments 

The assumption that claim amounts are not affected by varia

tions in basic risk conditions, may be judged as not fully realis

tic in a given situation. It is nevertheless of interest as an 

approximation hypothesis; it provides a means of a substantial 

reduction of the parameter space. 
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10. Prediction based on total claim amounts by permanent risk 

conditions 

10.1. Description of the case 

A. The statistical basis is still the one defined in 8.1 .A. 

B. We now assume that the basic risk conditions are not sub-

ject to fluctuations from one year to another, that is, we drop the 

basic assumption I and assume that all (Tj'~j)'s are equal to 

some constant (~,~). Thus the model is the same as in section 5. 

~· Putting T. = ~ 
J 

into the formulas in item 9.1 .c, we find 

that all the Kh's in (9.3) now become equal to 1, whereas the 

~hd's in (9.4) become 

h=1 1 2 I 3 d=O I ••• I D (10.1) 

with defined by (9.2): it turns out that the fourth order 

parameters ~ 4d are no longer needed. The ~hd's in (10.1) are now 

the basic parameters of the model: in total there are 3(D+1) of 

them. 

The formulas for the ~·s displayed in 9.1.C are still valid, 

only that all the Kh's are equal to 1. 

10.2. Prediction by known parameters 

As the exact distribution of the sja's is unknown, we have 

to resort to reserving methods that utilize only some first moments 

The central moments up to third order of Sjd are easily seen to 

be 

h=1 1 21 3 • (10.2) 
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The formula (10.2) may be picked e.g. from (5.2) by translation to 

the present parametrization. 

Reserves may now be constructed by any of the principles (3.5), 

(3.6), and (3.9) upon replacing the Mhj's by the ~hj's in (10.2). 

10.3. Parameter estimation 

Estimation of the parameters in (10.1) is straightforward by 

moment methods along the same lines as in paragraph 8.3. In the 

present case everything becomes simpler, of course, and we skip the 

details. 

10.4. Comments 

The present model is well structured, with a small number of 

parameters, and represents, therefore, one interesting answer to 

the problem discussed in item 8.4.A. On the other hand, it is clear 

that the present model is not suitable in situations where fluctua

tions in basic risk conditions may contribute substantially to the 

total risk, as is likely to be the case e.g. in product liability 

insurance and marine insurance. 
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11. Prediction based on total claim amounts as per accounting 

year in the unrestricted framework model 

11.1. Description of the case 

A. In this final case to be studied we shall discuss briefly a 

situation met with in a number of lines of reinsurance, where the 

only statistics are the total claims paid in each accounting year. 

Thus Q = {s .: j=1, ... ,J}, where 
J 

s. 
J = hr-. Dsh, j-h 

-]-

(11.1) 

Roughly speaking, the past is observed along the columns in figure 

3, and only through total sums. The upper left triangle in the 

figure should now be included in the statistical basis. 

~· The analysis will be based on the unrestricted framework 

model specified in item 8.1 .B. 

c. Since the statistical basis (11 .1) is far more summary than 

that in section 8, the necessity of a parsimonious specification of 

the model is now even more pressing. In practical applications one 

will have to reduce the parameter space, either by introducing the 

assumptions of section 9 or some assumptions of the kind mentioned 

in item 8.4.A, or a combination of the two. At any rate, the general 

formulas below will remain valid in all special cases. 

11 .2. Prediction by known parameters 

The moments needed in a credibility predictor of a future s : 
m 

J<m~J+D: based on 

k 

= I Ph~k-h 
h=k-D 

S.: j=m-D, ..• ,J: are 
J 

k=m-D, .•. ,J,m: (11.2) 
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(11.3) 

k~~: k,~=m-D,.,J,m: 

where the parameters on the right are defined in item 8.1 .c. 

The credibility predictor is now obtained from the general for 

mula (A.16) in appendix A.3, with M = S 
m 

and 

The expressions become messy and shall not be displayed here. 

11 .3. Parameter estimation 

In principle the 1st and 2nd order parameters can be estimated-

by moment methods based on (11.2) and (11.3). It is, however, of 

limited interest to carry through this analysis in the full frame-

work model, confer the remark in item 11.1 .c above. 

11.4. Comments 

Our description of the data in item 11.1 .A was intentionally 

superficial at one point: the definition of the s. 's implies that 
J 

the statistical basis rhombe in figure 3 be extended to a rectangle 

by including the upper left triangle. Actually this is the typical 

form of the data in so-called "short cut" reinsurance business kept 

on an accounting year basis. But then the problem arises, does the 

reinsurer really know the volumes p. 
J 

for the years 

j = -D+ 1 I •• .. ,-1, which are needed in the analysis of the obser-

vations s1 , ... ,s ? The answer is likely to be "no". In fact, 
D-1 
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the p.'s are usually not directly observed at all; one will only 
J 

have access to the more summary "earned premium" in each accounting 

year. 

The problems pointed out here and in item 11.1 .c suggest that 

the present case may put a limit to the practical applicability of 

the micro-theory approach advocated in the present work. It may be 

that some cruder "non-explaining fit-model" is more apt in situa-

tions with scanty data and little knowledge about the underlying 

processes. 
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12. A view to related literature 

12.1. Models with nonrandom basic risk conditions 

~· Provisions for IBNR claims have been established by accoun-

tants long before mathematical models were created for the purpose. 

The multifarious attempts of today's actuaries to forecast IBNR-

liabilities by aid of stochastic models seem to have their origin 

in papers by Verbeek (1972) and Straub (1972). 

Verbeek (1972) treats only the numbers of claims and assumes 

that Kjd- Po(Aj+d~d). Here the Aj+d's and ~d's are fixed 

parameters, which are estimated by the maximum likelihood method. 

Verbeek's multiplicative model is extended and applied to the 

total claim amounts by Taylor (1977), who assumes (the present 

author's interpretation) that the conditional expected value of 

Sjd , given the total number 

is of the form KjAj+d~d · 

K. ~D ), 
of claims occurred in year 

Verbeek's contemporaries Kramreiter and Straub (1973) (see 

also Straub (1972)) start from the total claim amount of 

year j as known by the end of development year d: d=O, •.. ,D: 

j=l,2, ..• Under various assumptions about the 1st and 2nd order 

moments of these quantities they predict R (essentially) by the 

J D( j) 
unbiased homogeneous linear function Ej=lEd=O ajdsj,~d that 

minimizes the expected squared error. Their framework model 

specifies that the moments are of the form ES . ~ d = p. a:d J I J 
and 

j I 

Cov(S. /d's./ ) = p a: which accords with the model in sections 
) I "' ) I "' e j de I 

5 and 10 above. The number of parameters is (D+l)(D/2+2). Further 

structure is added by assuming that SJ',/d+l = A S .. j,d+l j,.;;d 

+pjllj,d+l' where (Ajd'lljd): j=l,2, ••. : are i.i.d., and all Ajd's, 

lljd's , and sj0 •s are mutually independent. The number of para

meters is then reduced to 4D+2. 

! 
l 

I 
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B. Hoem (1973) analyses a model that comes out of the one in 

section 4 above if the total numbers of claims occurred in each 

year are regarded as fixed parameters, which essentially means that 

he operates in the conditional model, given Kj, ..;;n ; j=1 , 2, . • . In 

that it specifies assumptions about the joint distribution of the 

time lapse between occurrence and notification and the claim size 

for each single claim, Hoem' s work is a pioneering one in .the tra

dition of micro-modelling IBNR claims. 

A more ambitious attempt in the same direction is made by 

Blihlmann, Schnieper, and Straub (1980). They treat the problem of 

claims reserving in its entirety, modelling the frequency of claims 

and - for each single claim -the time lapse from occurrence until 

notification and the succeeding stream of payments up to final 

settlement. As far as pure IBNR-aspects are concerned, their model 

is the one for permanent risk conditions studied in section 5 above, 

extended with an assumption of exponential monetary inflation. 

Their supplementary set of assumptions as to how the amounts Yjdk 

of claims reported in development year d decompose into amounts 

Yjdke (say) paid in development years e = d,d+1, .•. 

among a number of possibilities. 

is only one 

Yet another notable contribution in the vein of micro-theory 

is Reid's (1978) paper. 
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12.2. Models with random basic risk conditions 

A. In all works reviewed above the basic risk conditions are 

represented by fixed parameters, either invariable over time as in 

sections 5 and 10 of the present paper, or depending on occurrence 

year as in section 4. However, already Verbeek (1972) remarks that 

there may be reasons to prefer a variable Kjd having a fluctua

ting basic probability structure. He abstains from such a model in 

view of the generally small numbers of observations available. It 

is pertinent to recall here that in going from the model of section 

5 with a fixed frequency parameter ~ to the model of paragraph 6 

with gamma-distributed 

creased only by 1 . 

T . 1 s , the number of parameters is in
J 

~· The idea of representing fluctuating basic risk conditions 

by random variables, which is at the base of the present work, is 

not new to actuaries. It was brought into the context of IBNR claims 

reserving by de Vylder (1982). He assumes that the vectors 

s. = (s. 0 , ••• ,s. 0 ) 1 

- J J J 
are of the form 'I' .s Q , where the 

J-J 
'I' • IS 

J 
are 

i.i.d. and independent of the Sq 1 s, which are also mutually inde
-J 

pendent with common expected value y and covariance matrices of 

the form 

j=1,2, •.. (12.1) 

We arrive at this model if we assume that the between years 

fluctuations in basic risk conditions affect only the claim sizes 

through latent "claims cost indexes" 'I'. and that the "deflated" 
J 

total claim amounts are independent of the 'I' • IS 
J 

and have 

moments as specified above. 
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The assumption (12.1) implies that all sjd: d=O, ... ,D: are 

equally variable. Although mathematically convenient, this assump-

tion is hardly appropriate as an a priori description of the IBNR-

process. A reasonable way of relaxing assumption (12.1) could be to 

replace pf by diag(p0 , ... ,p0 ). In order to limit the number of 

parameters, the p IS 
d 

could be taken as some simple parametric 

functions of d, e.g. pd = a + ~d. 

Also in the recent work by de Jong and Zehnwirth (1983) basic 

risk conditions are represented by random quantities, viz. as a 

stochastic process in the framework of Kalman-filtering. In other 

respects, however, their angle of attack is quite different from 

the one of the present paper: instead of composing a micro-theory 

from some conceptions of the evolution of the claim process, they 

fit a model that, hopefully, is sufficiently flexible to reflect 

the main features of the process. 

12.3. Further references 

Extensive surveys of works on claims reserving are given by 

van Eeghen (1981) and Taylor (1983). 
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13. Some final comments on the theory and suggested issues for 

further study 

~· One can easily think of circumstances that may influence 

the IBNR-development in some lines of insurance and that have not 

been taken into account in the basic model I-IV. This problem is 

universal. A model is not an attempt to describe all features of a 

phenomenon in their right proportions; modelling necessarily means 

magnifying some features and leaving others out, and a good model 

is one that magnifies the essentials and neglects the less impor-

tant details. 

It is the intent of this section to indicate some possible 

ways of extending the model I-IV to make it more realistic. 

Throughout we must, however, keep in mind what has been emphasized 

repeatedly in the previous discussions, that improved realism can 

only be gained at the sacrifice of model parsimony, that is, by 

increasing the number of parameters. 

B. One obvious way of introducing more flexibility in the 

basic model is to let the probability distribution n depend on 

~ . , thus allowing for a dependence between the number and type of 
J 

claims and their pattern of development. (As was pointed out 

already in item 8.4.B, this relaxation of our assumptions would not 

change the structure of the moments of the Sjd's in the unre-

stricted framework model. In other cases it may, however, compli-

cate matters a great deal.) A first attempt in this direction could 

be to replace nT. 
- J 

by a random vector and, possibly, add some 

assumptions about the moments, e.g. that the components are 

independent and have expected values that are simple parametric 

functions of d. 
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~· The reader may have observed that there is a lack of sym-

metry in our presentation of the different cases; the unrestricted 

framework model has been analysed only in conjunction with the 

statistical basis consisting of the Sjd's and not with the com-

plete records on numbers of claims and single claim amounts. It is 

an issue for further studies to find a specification of the joint 

distribution of T. 
J 

and '¥ . 
J 

that yields a tractable analysis in 

the latter case. We are here facing the old problem of credibility 

for severity treated by Hewitt (1970), Jewell (1973), and Blihlmann 

(1974), only more complex due to the inclusion of IBNR-effects. 

As a first step one could consider the case where T. and '¥. 
J J 

are independent. (In passing we note that this assumption would not 

bring about any simplification of the parameter structure of the 

s.'s, given in paragraph 8.1 .) 
-J 

A pragmatic way of circumventing the severity problem in prac-

tice would be simply to employ the reserving formulas in section 8 

based on the total claim amounts Sjd , deliberately sacrificing 

the details of information contained in the Kjd's and Yjdk's. 

D. We can, of course, not bring our discussions to a decent 

conclusion without having commented on inflation, a pet subject of 

people concerned with IBNR-problems. 

It is the present author's firm opinion that, if it can be 

avoided, inflationary effects should not be worked into the model. 

When inflation can be reasonably well determined from exogeneous 

sources, like index numbers of prices, then one should apply the 

analyses presented above to the price adjusted quantities. In the 

present context of claims reserving one would then, of course, have 

to make a skilled guess concerning the future development of prices. 
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However, in some lines of insurance the level of claim costs 

may develop more or less independently of general price indexes. 

For instance, liability insurance claims may be subject to a spec-

ial inflationary effect caused by a trend towards more victim-ori-

ented judicial decisions. In such cases it may be necessary to 

model the mechanism of inflation and to estimate it endogeneously 

from the claim statistics itself. 

Assume now that only the individual claim amounts are affected 

by inflation (in the liability insurance example one could imagine 

that also the number of claims is shoved up by a changed court 

ruling). A simple way of modelling inflation is to introduce a 

price index w. ; j=1 ,2, ... ; and assume that the deflated amounts 
J 

Yjdk = Yjdk/wj ; j=1 ,2, •.. ; k=1 ,2, ... ; are i.i.d. - Gd ; d=O, ... ,D. 

Further simplification is attained by letting _ w. 
J 

be described by 

wj or w. = 
J 

some simple parametric function of j, e.g. w. = 
J 

w'+ w"j. Then one can still estimate the distributions Gd and the 

w .'s by traditional methods for location/scale models. 
J 

Consider now reinsurance, where the Sjd's are the only 

observable claim statistics. Then the p.'s will typically be 
J 

premium incomes, and it is reasonable to assume that they follow 

the same pattern of inflation as the specifically, we 

assume that the deflated amounts 

Sjd's. More 

= sjd/wj+d and p '. = p . / w . 
J J J 

satisfy the framework model assumptions and thus have the moment 

structure given in paragraph 8.1, with ~d'~de' ... replaced by 

~d'~de'··· , say. It is easily seen that in the case of exponential 

growth of inflation, w. = wj, also the nominal quantities 
J 

and 

p. will fit into the moment structure in paragraph 8.1; the price 
J 

indexes will be absorbed into the parameters ~· In this case, there-

fore, we do not have to be much concerned with the inflation problem. 
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Appendix 

A.1. Relations between moments 

Let X be a real random variable. Provided they exist, denote 

by Ah and ~h the noncentral and central moment of order h, 

that is, 

Ah = EXh h=1 1 2 1 • • • 

h h=2 1 3 1 • • • ~1 = EX I ~h = E (X-~) 

By definition, A1 = ~ 1 . Furthermore, the moments up to third 

order are related by the following identities, which are easily 

verified: 

(A. 1 ) 

(A. 2) 

~2 = A2 A2 
1 

(A. 3) 

~3 = A3 3A 2A 1 + 2A 3 
1 I (A. 4) 

~4 = A4 - 4A 3A 1 + 6A 2 A~ - 3Ai· (A. 5) 

A.2. Some properties of Poisson distributions 

Assume that K- Po(~), that is, 

k 
P(K=k) ~ -~ 

= k! e k=O I 1 I ••• 

The h-th factorial of K is the product K(h) = K(K-1) .. 

•• (K-h+1): h=0,1, ... The h-th factorial moment of K is 
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EK(h) 
CD 

k(h) 
k 

I 't" -'t" = k! e 
k=O 

CD k-h -'t" h I 't" e = 't" (k-h) ! k=h 

h (A. 6) = 't" . 

Assume that Y 1 ,Y 2 , ..• are i.i.d. ~ G and that they are 

independent of K. The random variable 

K 
s = I yk I 

k=l 

which is defined as 0 when K = 0, has a generalized Poisson 

distribution, and we write S ~ g.Po('t",G). 

Assume that G possesses finite moments up to order 4, and put 

a = h 
h=l 1 2 1 3 14 • (A. 7) 

Then the first four moments of S exist and are given by 

ES = al (A. 8) 

ES2 = a2 + a2 (A. 9) 
1 

ES 3 = a3 
1 + 3a 1 a 2 + a3 I (A.lO) 

ES 4 = a4 + 6a~a 2 + 3a 2 + 4a 1 a 3 + a 4 I (A.ll) 
1 2 

or, by use of (A.3)-(A.5) and (A.8)-(A.ll), 

Var S = a 2 , (A.l2) 

(A.l3) 

(A.14) 



To prove (A.11), write 

K 
ES4 = E( I Yk) 4 

k=1 
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where the latter sum ranges over all k,i,m,n between 1 and K. In 

this sum there are K( 4 ) terms of the form YkYiYmYn with k,i,m, 

and n all different, (4!/2!1 !1 !)K{ 3 ) terms of the form YkY1Y~ 
with k,i, and m all different, (~)(~) = 3K( 2 ) terms of the form 

Y~Yi with k*i, 4K( 2 ) terms of the form YkYi with k*i, and K 

terms of the form Y~ . Thus, since the Yk's are independent of K, 

and by use of (A.6) we arrive at (A.11). The expressions in (A.B)-

(A.10) are obtained by similar arguments, only simpler. 

Convolutions of generalized Poisson distributions are 

generalized Poisson: if s 1 , ••• ,sn are independent random 

variables, and Si ~ g.Po(~i,Gi): i=1 , ... ,n: then 

n 
Is.~ g.Po(~,G), 

i=1 1. 

with 

n 
~=I ~. 

i=1 1. 

n 
G = ~-1 I ~.G. 

. 1 1. 1. 1.= 

A.3. Linear predictors and credibility formulas 

(A.15) 

Let M be a real random variable and X a random column 

vector of dimension n, both assumed to be square integrable. 

Consider the class of inhomogeneous linear functions of ~' 
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The element in M that minimizes E{~-M) 2 is 

M =EM+ Cov(M,~' )(Var~)-1(~-E~). (A.l6) 

For a proof of (A.l6), see e.g. Norberg (1980). 

If X is realvalued and M = E(XIE) for some random element 

E, then (A.l6) assumes the form of a credibility weighted mean, 

M =~X+ (1-~)EX, (A.l7) 

where the credibility weight ~ is given by 

~ = Var E(XiE)/Var X. 

For each i=l, .•• ,I let M. be a square integrable real 
l 

random variable and M. its ~-approximation defined by replacing 
l 

M by M. 
l 

in (A.l7). By the linearity of the operators 

it follows that the best ~-approximation of 

M = E M. 
i l 

A.4. Two results on matrices 

M = E M. 
i l 

E and Cov, 

is 

(A.l8) 

A. Let A be a nonsingular nxn matrix. Decompose A and its 

inverse into 

~~11 
~ = 

~21 

(A.l9) 

where ~ll and A11 are of order pxp (p<n). On inserting the 
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right hand side expressions in (A.19) into the defining relation 

AA-1 = I and multiplying blockwise, we easily obtain 

A 11 (~11 
-1 -1 = ~12~22~21 ) 

(A.20) 

A21 -1 11 = ~22~21 ~ 
(A.21) 

A22 (~22 
-1 -1 = - ~21 ~11 ~1 2) 

(A.22) 

A12 -1 22 = ~11 ~12~ (A.23) 

B. Let ~ be a nonsingular nxn matrix, D a pxp matrix, and 

B an nxp matrix. If -1 
A has already been calculated and p is 

much smaller than n, then the matrix (~ + §P§')-1 , whenever it 

exists, can conveniently be calculated by use of the classic 

identity 

(A. 24) 

In particular, when p = 1, D = -1, and A is symmetric, (A.24) 

reduces to 

(~- pp')-1 = A-1 + (1 

= A- 1 + (1 

with 

(A.25) 

For the sake of completeness, and in the absence of a suitable 

reference, we prove (A.24). Put 

c = ( ~ + l?Pl? I ) -1 
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By definition, we have 

(~ + ~~~·)~ =! , 

which is equivalent to 

-1 = A . (A.26) 

Premultiply in (A.26) by B' to get 

B'C + B'A- 1BDB'C = B'A- 1 - - --- -
or, equivalently, 

(A.27) 

Substituting (A.27) back into (A.26), we arrive at (A.24). To 

complete the proof, it remains to establish that the matrix 

t + ~·~- 1 ~g is invertible if and only if A+ BDB' is, which is 

equivalent to asserting that their determinants vanish simultaneous-

ly. This follows by use of the identity I! + ~~~ = I! + ~~~ (see 

e.g. Zellner, 1971, p.231), which gives I~+ ~Q§' I 

= 1~1 I! + ~- 1 ~Q~' I = I~ I I!+ ~·~- 1 §~1. 


