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This note is devoted to estimation of rates in inhomogeneous Poisson processes when the 
only obtained information is time (year) of first jump, time (year) oflast jump and the total 
number of jumps in a specified time interval. An EM-algorithm for obtaining the MLE of 
the year specific rates is derived. The EM-algorithm is applied to data on HIV-testing 
from the Norwegian study of sexual behavior. Standard errors of the estimated rates are 
obtained by jackknifing, bootstrapping and a Monte Carlo version of Louis' method and 
the techniques are compared. The rates to the first HIV-test are also computed both by 
the actuarial methods and as MLE's by the EM-algorithm. 
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1 lntrod uction 

In a survey study of sexual behavior in Norway (Stigum et al., 1995) questions regarding 
testing for HIV were included. However one did not obtain the complete history of testing 
for the individuals, but only the year of the first test, the year of the last test and the total 
number of test from 1985 when HIV-testing was introduced to 1992 when the survey was 
conducted. One problem to be addressed was the development in the rates of HIV-testing 
in the Norwegian population (Magnus et al., 1994). 

Due to the incomplete recorded individual histories of HIV-testing the likelihoods of the 
observed data can be quite complicated under many models. In section 2 of this note 
we point out how the EM-algorithm (Dempster et al., 1977) may be applied to obtain the 
maximum likelihood estimates (MLE) under the model of an inhomogeneous Poisson process 
with rates constant on each calendar year. In section 3 the EM-algorithm for estimation of 
rates of first HIV-test is presented and compared to the commonly applied actuarial method. 
In the last section it is also discussed how one may generalize the approach to heterogeneity 
models and models where the previous number of tests are predictive of further tests. 

2 Population rates for HIV-testing 

2.1 The model and the complete data specification 

Let Ni(t) equal the number of HIV-tests for individual i in the period [0, t]. We suppose 
that the Ni(t)'s are independent inhomogeneous Poisson processes with common rate >.(t), 
thus the Ni(t)'s are independent and Poisson distributed with expectation A(t) = f~ >.(s)ds. 

Since our knowledge of the time of the HIV-tests is restricted to the year tests took place we 
will assume that the >.(t) = Aj when j - 1 < t ~ j, i.e. >.(t) is piecewise constant. Letting 
Xji = Ni(j)- Ni(j- 1), i.e. the number of tests for individual in year j we get that the 
Xji are independent and Poisson distributed with expectation Aj. On complete recorded 
data the maximum likelihood estimates of the rates are the averages 5..j = (1/n) :Z::f=1 Xji· 

2.2 The observed incomplete data and the EM algorithm 

The individuals in the survey study were asked to record the total number of test during 
the period 1985 to 1992. We label the years as j = 1 corresponding to 1985 to j = 8 
corresponding to 1992. The total number of tests for each individual J7i1 = Ni(8) = :Z::J=1 Xji 
was observed. The year of first test Yi2 = j if Ni(j- 1) = 0 < Ni(j) and the year of last 
test J7i3 = j if Ni(j- 1) < Ni(j) = Ni(k) fork> j was also obtained for each individual. 

Letting Yi = (Yi1, Yi2 , Yi3 ) and Xi = (X1i, ... , Xai) we see that the Y[s are functions of the 
Xf s. Thus the Yfs are incomplete observations of the Xf s in the sense of Dempster et 
al. (1977) and an EM algorithm may be applied to estimate the >.js. Furthermore the 
complete data X = (X1, ... Xn) stems from an exponential class and the standard type of 
the EM algorithm may be applied. 
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We need to calculate the Xji(A) = E[XjiiYi] as a function of A = (A1, ... , As). Note that 
when the total number of tests is zero (i.e. fi1 = 0) then all Xji = 0, when fi1 = 1 then 
Xij = 1 when fi2 = fi3 = j and zero otherwise and when the total number of test equals 
2 with first and last test in different years (i.e. fi1 = 2 and fi2 < fi3 ) then Xji = 1 when 
fi2 = j and fi3 = j. Furthermore if fi1 > 1 with all test performed in the same year we 
have Xji = fi1 for j = fi2 = fi3 and zero otherwise. Also in general Xji = 0 for j < fi2 

and j > fi3 . In all these cases Xji(A) = Xji no matter what the value of A might be. 

We thus only need to calculate Xji(A) for fi1 > 2 and fi2 < fi3 . Note that X 1i, ... , Xsi 
given fi1 is multinomial with fi1 trials and probabilities Aj /'£. Aj. It turns out that given 
Yi = (y,j, k) then Xji, ... ,Xki has a multinomial distribution withy trials and probabilities 
Pir = Ar/ 'L.~=j Ar that is truncated to Xji ~ 1 and Xki ~ 1. Now let 

P? = P(Xji ~ 1,Xki ~ 1lfi1 = y,Xri = 0 for r < j,r > k). (1) 

If k = j + 1 then P? = 1 - PJj - PJk and we have 

X,··(')_ Pij- PJj 
J• 1\ - y 0 

Pi 
(2) 

and of course Xki = y- Xji· If on the other hand k > j + 1 then P? = 1- (1- Pij)Y- (1-
Pik)Y + (1 - Pij - Pik)Y and 

1 - (1 - Pis)Y-1 

YPir o 
Pi 

1- (1- Pij)y-1 - (1- Pik)Y-1 + (1- Pij- Pik)y-1 

YPir o 
Pi 

if r = j and s = k 

or if r = k and s = j 

ifj<r<k 

(3) 

Now the EM algorithm may be stated by the following E(stimation)- and M(aximation)­
steps. 

E-Step: Given estimates A(r) = (A~r), ... ,A};)) and observed incomplete data Y = (Y1 , ... Yn) 
calculate estimates of Xji by Xji(A(r)). 

M-Step: Update estimates for A= (A1, ... ,As) by A)r+l) == (1/n) "££=1 Xji(A(r)). 

Starting with arbitrary values of A)1) > 0 we have AY) --+ Aj where A*= (Ai, ... ,As) is the 
MLE of A (if the likelihood of the incomplete data Y has only one stationary point). Thus 
we were able to obtain the MLE without deriving the fairly complicated likelihood of Y. 
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2.3 Estimation of the covariance matrix 

The covariance matrix of A* is not obtained directly from the EM algorithm. Three ap­
proaches for estimating this matrix have been applied. Firstly by jackknifing, secondly by 
bootstrapping and finally by Louis' method (Louis, 1982, Tanner, 1993). 

In the jackknifing approach estimates A:~-i is calculated by the EM algorithm from incomplete 
data Y -i = Y \ Yi. The empirical covariance matrix of the .X~i is now a good approximation 
of the true covariance matrix of .X* (See e.g. Efron & Tibshirani, 1993). 

Similarly, with bootstrapping (Efron & Tibshirani, 1993) "data" y(r) = (Yir), ... ,YAr)) are 
sampled with replacement from Y = (Yt, ... , Yn)· On y(r) the EM-algorithm was applied to 
obtain estimates .X(r)' By repeating the resampling R times and calculating the empirical 
covariance matrix one also obtains an estimate of the covariance matrix. The variance­
covariance estimates obtained from jackknifing and bootstrapping is not likely to differ 
much. 

The third approach, Louis' method, makes more directly use of the assumed model. Let 
Sx and Ix be, respectively, the score function and the observed information matrix of the 
complete data X and similarly Iy the observed information matrix of Y. Generally one 
then have (Louis, 1982, Tanner, 1993) that 

Iy = E[IxiY]- V AR(SxiY] (4) 

where V AR(.) denotes a covariance matrix. 

In this particular case we have that the j-th component of Sx = (Sn, ... , Sx8) equals 

and that Ix is a diagonal matrix with terms l::f=1 Xji/.X]. It turns out that E[IxiY] is also a 

diagonal matrix with terms I:f=1 Xji(.X)/.X] which may be estimated simply by substituting 
A with .X*. 

Furthermore with Vjk being the jk-th term of V AR(SxiY], we get that 

When }i1 ::; 2 or }i2 = }i3 we know all Xji 's and so these variances / covariances are all 
zero. Otherwise it should in principle be possible to derive expressions corresponding to 
(2) and (3) for Cov(Xji, XkiiYi)· Instead of doing so one may apply simulation techniques. 
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Thus for each i with Yi = (y, j, k) we draw from the multinomial distribution withy trials 
and probabilities A.[ I L:?=j X[ until we have a draw with at least one outcome both in year 
j and in year k. By repeating the draws the Cov(X;j, X;kiY;) may estimated by empirical 
covariances. The number of draws needed is determined by observing when the estimates 
appears stable. Now estimates of the Vjk are obtained by substituting A. with )..*. Inserting 
the estimates of E[IxiY] and V AR(SxiY] into (4) we thus get an estimate Iy of Iy and 
then inverting this matrix we have an estimate of the covariance matrix of ).. *. 

2.4 Application to HIV-test data 

Among the 4760 individuals responding to the survey on sexual behavior a total of n = 4667 
individuals gave complete answers to the questions regarding HIV-testing (Magnus et al., 
1994). Among these 650 reported to have been tested for HIV. The total number ofreported 
test was 1115. A total of 422 had been tested exactly once, 139 had been tested exactly 
two times and 89 more than two times. Due to this we know the year the test was carried 
out in 878 cases. In addition the year of another 6 tests were known because 2 individuals 
had taken all tests in the same year. The maximum numbers of tests reported was 23. 

The HIV-test was introduced in in Norway in July 1985, thus the individuals had only 
a six months follow-up that year. Similarly the survey was carried out late November I 
early December in 1992, giving a follow-up time per individual of 11112 of a year. When 
estimating rates based on the number of HIV-tests carried out one thus divides by 2n and 
(12l11)n respectively. Thus a minor modification to the (M-step of the) EM-algorithm 
described in the previous section had to be made. 

The maximum likelihood estimates of the rate (per 100 person-years) along with their 
jackknifed estimates of the standard errors are given in Table 1. 

Table 1. Maximum likelihood estimates 

Year Estimated number of tests Rate per 100 person-years Standard error 
1985 34.3 1.47 0.36 
1986 39.7 0.85 0.14 
1987 83.4 1.79 0.22 
1988 144.7 3.10 0.31 
1989 162.4 3.48 0.34 
1990 217.0 4.65 0.42 
1991 207.2 4.44 0.40 
1992 225.9 5.28 0.46 

The incidence in HIV-testing in Norway appears to have dropped from 1985 to 1986, but 
from 1986 and on the incidence is essentially estimated to increase. 

An intuitive approach to this estimation problem would be to distribute the tests for which 
the exact year is not known evenly over the years that they can have been taken. This will 
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not differ much from the estimates after one iteration of the EM-algorithm if one starts 
out with all rates equal. As start values for the EM-algorithm we used ).)1) = 0.032 :::::: 
1115/34613, i.e. the average test-rate over the period. The first iteration gave the following 
results 

Table 2. Estimates after the first iteration 

Year Estimated number of tests Rate per 100 person-years 
1985 36.9 1.58 
1986 44.4 0.95 
1987 91.0 1.95 
1988 148.2 3.17 
1989 166.5 3.57 
1990 206.2 4.42 
1991 205.0 4.39 
1992 216.8 5.07 

Comparing Table 1 and Table 2 we see the same trends. In this dataset one iteration 
was thus sufficient to discover the tendency. However the fully iterated estimates gives a 
somewhat more pronounced picture of what has been going on. The algorithm converged 
(to 4th decimal) after 5 iterations. 

2.5 Comparison of the estimates of standard errors and correlations 

In subsection 2.2 it was discussed how to obtain covariance matrices of the estimated rates 
by jackknifing, bootstrapping and by Louis' method. Of course, one obtains estimates of 
standard errors by taking square roots of the diagonal of the covariance matrices and esti­
mates of the correlations by dividing the estimated covariances by the the standard errors. 
With jackknifing one formally gets 4667 estimates of ). although for the 4017 individuals 
that had never taken a HIV-test one will get the same estimates. The bootstrapping proce­
dure was repeated 2000 times. This is clearly more than is necessary to obtain acceptable 
standard errors, but for the correlation coefficients a quite high number of resamples were 
required. Luckily computational time was not inhibiting. For Louis' method 80 draws were 
taken for each of the 89 individual with more than 2 tests in different years. With this choice 
the correlations seemed to have two valid decimals and the standard errors were estimated 
to second valid digit. 

In the following table the estimated standard errors are given. 
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Table 3. Standard errors of estimated rates per 100 years by different methods 

Year jackknifing Bootstrapping Louis' method 
1985 0.36 0.37 0.26 
1986 0.14 0.15 0.14 
1987 0.22 0.22 0.21 
1988 0.31 0.32 0.29 
1989 0.34 0.35 0.31 
1990 0.42 0.44 0.36 
1991 0.40 0.43 0.34 
1992 0.46 0.48 0.37 

The agreement between the standard errors obtained by jackknifing and bootstrapping was, 
as anticipated, quite good. However Louis' method generally gave smaller standard errors 
than the two other methods and they are considerably smaller for 1985 and 1990-1992. 

In the next three tables the estimated correlations coefficients by the three methods are 
given. 

Table 4. The jackknifed correlation matrix 

Year 1985 1986 1987 1988 1989 1990 1991 1992 
1985 1.00 0.06 0.09 0.08 0.07 0.06 0.02 0.03 
1986 0.06 1.00 0.05 0.06 0.05 0.05 0.08 0.05 
1987 0.09 0.05 1.00 0.15 0.14 0.15 0.18 0.18 
1988 0.08 0.06 0.15 1.00 0.20 0.25 0.21 0.19 
1989 0.07 0.05 0.14 0.20 1.00 0.18 0.21 0.20 
1990 0.06 0.05 0.15 0.25 0.18 1.00 0.27 0.32 
1991 0.02 0.08 0.18 0.21 0.21 0.27 1.00 0.26 
1992 0.03 0.05 0.18 0.19 0.20 0.32 0.26 1.00 

Table 5. The bootstrapped correlation matrix 

Year 1985 1986 1987 1988 1989 1990 1991 1992 
1985 1.00 -0.02 0.06 0.05 0.07 0.06 0.04 0.02 
1986 -0.02 1.00 0.05 0.07 0.08 0.02 0.07 0.05 
1987 0.06 0.05 1.00 0.11 0.09 0.13 0.14 0.17 
1988 0.05 0.07 0.11 1.00 0.13 0.22 0.17 0.21 
1989 0.07 0.08 0.09 0.13 1.00 0.14 0.18 0.17 
1990 0.06 0.02 0.13 0.22 0.14 1.00 0.23 0.31 
1991 0.04 0.07 0.14 0.17 0.18 0.23 1.00 0.19 
1992 0.02 0.05 0.17 0.21 0.17 0.31 0.19 1.00 
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Table 6. The correlation matrix obtained by Louis' method 

Year 1985 1986 1987 1988 1989 1990 1991 1992 
1985 1.00 -0.01 -0.00 -0.01 -0.01 -0.00 -0.00 +0.00 
1986 -0.01 1.00 -0.01 -0.00 -0.01 -0.01 -0.00 -0.00 
1987 -0.00 -0.01 1.00 -0.01 -0.02 -0.02 -0.00 -0.01 
1988 -0.01 -0.00 -0.01 1.00 -0.06 -0.05 -0.03 -0.02 
1989 -0.01 -0.01 -0.02 -0.06 1.00 -0.07 -0.4 -0.02 
1990 -0.00 -0.01 -0.02 -0.05 -0.07 1.00 -0.08 -0.03 
1991 -0.00 -0.00 -0.00 -0.03 -0.04 -0.08 1.00 -0.05 
1992 +0.00 -0.00 -0.01 -0.02 -0.02 -0.03 -0.05 1.00 

If the data had been completely observed the estimated rates would have been uncorre­
lated. Here, however, one might expect negative correlation between the estimated rates. 
The reason for this is that the estimated number of test carried out in one year affects 
the corresponding number in other years. Louis' method gave negative correlations, but 
both bootstrapping and jackknifing gave positive correlations. This may be explained by 
considering the resampling plans. Excluding individuals with a high number of tests makes 
the estimates lower than the average. 

Furthermore for most of the tests we know what year they were carried out. One would 
thus here expect quite small correlations. This holds true for the correlations obtained with 
Louis' method, but some of the correlations obtained by jackknifing and bootstrapping are 
fairly large. 

2.6 Discussion 

The preceding paragraph showed that different methods of obtaining the standard errors 
and correlations of the estimated rates gave somewhat different results. A likely explanation 
is that the model does not fit the data very well. If the model was correct then the total 
number of tests per individual Y/ would be Poisson distributed with expectation A = 
!A1 + 2:::}=2 Aj + gAg. The estimate for A would be :X= !~~~ :::::: 0.24. With this value of 
A it would be very unlikely to observe any individual with 20 or more tests. A goodness 
of fit test on the number of individuals with 0, 1, 2 and 3+ tests given at the beginning of 
section 2.4 gives a Pearson X 2 = 1180 to be compared to a x2 distribution with 2 degrees 
of freedom. Thus there is some sort of heterogeneity in the data. This also shows up in the 
next section where the rates until first test are estimated to be considerably lower than the 
total population rates. Such a discrepancy would not occur if all individuals has the same 
rates of taking tests. 

As the model is likely not correct it is not immediately clear what is being estimated. 
However, what is actually being done is that the likelihood of a misspecified model is 
maximized. In the sense of Hjort (1992) it can be shown that such an estimator is consistent 
for the least false parameter value. Furthermore such an estimator will be approximately 
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normally distributed with a covariance matrix that will be estimated by the jackknifing 
and bootstrapping procedures that have been applied. It thus appears to be better to use 
the standard errors from one of these approaches than a method that is in meaningful only 
under a possibly false model. 

Also, if the individual number of tests in each year Xji had been known one might very 
well calculate the xj = ~ Li=l Xji as summary measure of total test activity regardless of 
whether the model is correct or not. With the present dataset a high percentage of Xji's 
are known and any sensible distributing method to obtain estimates of the remaining will 
not deviate much from Xi. Indeed the estimation method described by (2) and (3) are quite 
natural under a certain heterogeneity model, namely that Xji are independent and Poisson 
distributed with expectation Aji where 

(5) 

where the Zi's are independent and follow some common distribution. In this case we 
have given Yi = (y,j,k) that (Xji, ... ,Xki) has a multinomial distribution withy trials, 
probabilities Pir = Ari/ L~=j Ari = Ar/ L~=j Ar that is truncated to Xji ~ 1 and xki ~ 1. 

Thus Xji(A) retains the property of being the conditional expectations E[XjiiYi]. However 
as the model for the complete data is not in a exponential class, the previously suggested 
EM-algorithm will no longer give the MLE. 

3 Rates of first HIV -test 

For estimation of rates until first test one is essentially faced with a usual right censoring 
problem. The only complicating factor is that only the year of taking the test is reported. 
With such data one commonly applies the so-called actuarial method (Cox & Oakes, 1984) 
giving estimates 

' 1 
Ao·- d-j(r·- -d·) J - J J 2 J 

where r'j is the number not yet tested in the beginning of year number j and dj the number 
of tests in year j. (In general one will also in the actuarial estimator correct for the number 
of withdrawals in year j, but in the present data there are no withdrawals). 

As discussed by Cox & Oakes the actuarial estimator is an approximation to the MLE when 
the Aoj are small. They derive the full likelihood based on such data. One may, however, 
also find the MLE by an EM-algorithm. Define Ti as the possibly censored time until taking 
a test. Given rates Aoj = A we find that for Ti we have 

. . . 1- exp( -A)- A exp( -A) 
T(A) = E[Ti- (J- 1)i(J- 1) ~ Ti < J, Aoj =A]= A(1 - exp(-A)) · 

Now the EM-algorithm may be stated 
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E-Step: Given estimates A~j) and observed incomplete data I(j- 1 ~ Tij < j) calculate 

estimates of Ti- (j- 1) by T(A~)). 

M-Step: Update estimates for Aoj by the occurrence-exposure rates 

A (r+l) = dj 
OJ rj- djT(A~j)). 

The connection with the actuarial method is realized when noting that T(A) ~ ~ when A is 
small (e.g. A< 0.1). 

On the present data the actuarial estimator and the MLE differed on the fifth valid digit, 
so the rates in Table 4 represent both the estimators. The standard error is calculated by 
the usual estimator Vdj/(rj- ~dj)· Table 4 indicates that the rates have been at about 2-3 
per 100 person-years from 1988 and on. Furthermore comparing with Table 1 we see that 
the total rates are higher than the first test rates. A previous HIV-test can thus be taken 
as an indicator of a new test and it is of interest to estimate the rates of testing after the 
first test. 

Table 4. Rates of first HIV-test 

Year Rate per 100 person-years Standard error 
1985 1.16 0.11 
1986 0.77 0.13 
1987 1.51 0.18 
1988 2.39 0.23 
1989 2.49 0.23 
1990 2.96 0.25 
1991 2.77 0.22 
1992 2.20 0.20 

4 Extended models 

In this note it has been developed an EM-algorithm for obtaining the MLE of the rates 
in inhomogeneous Poisson processes when only the total number of events along with the 
time of first and last time event is recoreded. Furthermore an EM-algorithm for estimating 
the rate to the first event is developed and compared to the commonly applied actuarial 
method. The methods have been applied to data on HIV-testing. Regarding the total HIV­
test rates, however, a careful look at the data indicates that an inhomogeneous Poisson 
process is not an alltogether adequate model for the HIV-test activity in Norway, and so in 
order to describe the data better there is a need to construct better models. 

One such extension, the heterogeneity model (5) has been mentioned. In this model however 
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one will need to specify the distribution of the heterogeneity values Zi 's. Several choices 
are possible. One might think of the population as consisting of two subpopulations with 
heterogeneity values z1 = 1, say, and z2, respectively. This will induce a model with two 
new parameters z2 and the proportion Pl with Zi = z1 . A natural extension of such a 
model would be to assume that the population consisted of three or more subpopulations 
with unknown heterogeneity values and / or proportions in the subpopulations. Also in 
line with a typical heterogeneity model one might assume that the Z; 's have a gamma 
distribution with EZi = 1, say, and an unknown variance. Of course other, typically 
skewed, distributions could be appropriate. 

Another way of extending the model is related to the approach in section 3 where it was 
assumed that all individuals had the same rate of taking their first HIV-test. One may 
additionally assume that all individuals who have taken one (or more) HIV-tests have the 
same rate of taking a new test. Thus with Ti being the time of the first test the rate of 
individual i taking a test at time t would be 

if j ~ t < j + 1 and t ~ Ti 
(6) 

if j ~ t < j + 1 and t > Ti 

In principle one could fit models with a new set of rates whenever a new test was taken, 
but the data will hardly give reliable estimates under such a model. Another approach with 
a better chance of success could be to let a function of the previous number of tests be a 
covariate in a proportional hazard model. Indeed if the covariate was the indicator of a 
previous test Z~ a special case of model (6) could be Aj+ = exp(f3Z;). 

One could also try to combine and thus distinguish between the two above approaches 
by letting the rate of a test, now being called a;(t), depend on a heterogeneity value Z; 
through a;(t) = ZiAi(t) where A;(t) is given by (6). With a small estimated variance of Zi 
the approach of previous test would be considered the best and vice versa with estimates 
:>:jo ~ :>:j+ the heterogeneity would be the better choice. 
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