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ABSTRACT. The purpose of this paper is to develop and illustrate certain classes of graph­
ical plots that can be used for model verification in quite general survival data and life 
history data models. By suitably comparing nonparametric and parametric estimates of 
hazard rate functions over time a hazard comparison function can be constructed which 
under parametric model assumptions is approximately a zero-mean normal process. The 
test curves we propose are locally normalised versions of such hazard comparison func­
tions. Under model conditions the test function is approximately a standard normal for 
each time point. This makes the normalised local hazard curves easy to interpret. We give 
explicit constructions for the most commonly used models of survival analysis, including 
the exponential, the Weibull, the Gompertz, the gamma, and for parametric Cox regres­
sion. Algorithms carrying this out have been developed inS-Plus. Various theoretical and 
practical issues are discussed, including detection power and extensions to time-discrete 
models. illustrations are given on simulated and real data. 

KEY WOR.DS: counting processes, goodness of fit, hazard function models, normalised 
local hazard plots, parametric Cox model, S-Plus, time-discrete hazard models 

1. Introduction and summary. This paper discusses and illustrates certain graphical plots 
that can be used for model verification purposes in survival data situations and in fact also in much 
more general counting process models for life history data. Such models involve certain hazard rate 
functions. By suitably comparing nonparametric and parametric estimates of hazard rate functions 
over time we are able to produce a hazard comparison function which under the conditions of the 
parametric model is approximately a zero-mean normal process. And by normalising this local 
hazard function with a local estimate of the standard deviation we end up with a test function 
which is approximately a standard normal for each time point, provided the parametric model 
studied is valid. 

We call these test curves nonnalised local hazard plots. Such a test curve is a concise summary 
of the discrepancy between the parametric and nonparametric model, and is easy to judge by eye, 
since the precision is the same throughout the time axis, and since everybody knows the standard 
normal. If the model is right then the test curve should stay inside the ±1.96 horizontal band most 
of the time, and incorrect aspects of the model will lead to curves that wander outside this band. 

There are also formal goodness of fit testing procedures, see Hjort (1990) and Andersen, Bor­
gan, Gill & Keiding (1993, chapter VI), the latter henceforth referred to as ABGK. Such tests are 
valuable since they can guarantee e.g. a maximum 5% chance of incorrectly rejecting a model, of 
course, but the emphasis here is on graphical checking tools for various models. The plots will be 
useful when the statistician explores different modelling opportunities and can be more informative 
than the simple yes or no answer that a formal test provides, in that one is shown in what way 
or ways a given model does not hold. The formal tests can in this light be regarded as giving 
supplementary confirmatory information. 

To construct the test curves properly one essentially needs (a) proofs of limiting normality of 
the processes, (b) expressions for and consistent estimates for the variances of the limit processes. 
Sufficient theory for this has in fact already been developed in Hjort (1985, 1990). The model 
test plot idea was also briefly mentioned in these papers, as an attractive consequence of the 
general results. Arulchelvam (1992) implemented one version of these plots for a couple of models, 
and she illustrated their use on simulated and real data. The intention of the present paper is 
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to systematically work out variance estimation and other necessary details for the most popular 
models, and to demonstrate the usefulness of the plots on real and simulated data. 

For concreteness we choose to develop and discuss the plots mainly in the conte~t of 'tradi­
tional survival analysis', involving possibly right-censored observations of life-times, with or without 
covariate information. The basic methods and results hold with suitable modifications for general 
counting process models for life history data, as briefly discussed in section 6. The traditional 
framework for homogeneous data is as follows: Tf, . .. , T~ are i.i.d. life-times :&om a distribution 
with hazard rate h(s) and cumulative hazard rate H(t) = I: h(s) ds. The data may be censored 
from the right, so what one observes is t; = min(t,, c;) and 5; = J{t' ~ c;}, where c; is the pos­
sibly interfering censoring time. The censoring mechanism is assumed noninformative (see ABGK 
for discussion of this). A parametric model is considered, say of the form h( s) = h( s, 0) for some 
unknown parameter 0 = (01 , ... , Op)'. 

It is convenient to define and study both parametric and nonparametric estimation in terms 
of 

n n 

N(t) = LI{t; ~ t,5; = 1} and Y(t) = LI{t; ~ t}. (1.1) 
j=l j=l 

Here N(t) is the counting process, counting the number of observed failures, while the left­
continuous Y(t) is the at risk process, counting the number among the n original items that are 
still at risk just prior to time point t. Since N(.) is flat between observed life-times I: g(s) dN(s) 
means simply l:;:t; 9 g(t;)5;. Nonparametric estimation of His carried out using the Nelson-Aalen 
estimator 

fi(t) = 1t dN(s)fY(s)::::: L 5;/Y(t;). 
0 j:t;~t 

(1.2) 

As for parametric estimation, we work with the maximum likelihood (ML) estimator 0. The log­
likelihood can be written Io'T {log h(s, 0) dN(s)- Y(s)h(s, 0) ds}, where [0, T] is the finite or infinite 
time interval over which the processes are observed, see for example ABGK (chapter VI). 

Hjort ( 1990) studied a large class of goodness of fit processes of the type 

Dn(t) = Vn 1t Kn( s ){ dH( s) - h( s, 8) ds} = Vn 1t ~'(~)) { dN( s) - Y( s )h( s, 8) ds }. (1.3) 

This local hazard comparison function should take values around zero if the model holds. The 
weight function Kn(s) can be chosen to suit different aims, as exemplified later, and is here meant 
to be scaled in a stable way, so that it has a well-defined limit in probability function k( s) as n 
grows. Special cases of interest include the following, to be referred to later as Type A, Type B, 
Type C: 

= y'n{fi(t)- H(t, 8)}, for Kn(s) = 1, 
= n-112{N(t)- I: Y(s)h(s, 8) ds}, for Kn(s) = Y(s)/n, (1.4) 

I t ..... 
= n-1 2 Io Gn(s){dN(s)- Y(s)h(s,O)ds}, for Kn(s) = {Y(s)fn}Gn(s). 

Type A uses Kn(s) = 1, and then Dn(.) directly compares nonparametric versus parametric es­
timates of the cumulative hazard function. Type B employs Kn(s) = Y(s)fn, the proportion at 
risk at times, in which case Dn(.) compares the observed number of failures with the predicted 
number of failures under the parametric model. There are other ways of predicting the number of 
failures in the course of a time interval from the model, but this is a natural way based directly 
on the hazard rate interpretation; dN ( s), the number of failures in [ s, s + ds] among the Y ( s) that 
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are observed to be at risk just prior to time s, is simply a binomial with probability parameter 
h(s, 8) ds. This leads to I: Y(s)h(s, 8) ds as the 'expected' version of N[a, b]. Finally Type C, with 
Kn(s) = {Y(s)fn} Gn(s), is as general as (1.3), of course, but some interesting procedures that are 
tailor-made to have optimal detection power against certain departures from the model are of this 
form, sometimes with a deterministic weight function Gn(s) = g(s), as exemplified in 3.2. 

Under a mild set of regularity conditions Dn(.) tends in distribution to a certain zero-mean 
Gaufiian process D(.), see section 2. The basic normalised local hazard plot idea, as explained in 
the introductory paragraphs, is to draw the curve 

NLH(t) = Dn(t)f"K(t) versus timet E (0, T), (1.5) 

where the denominator is an estimate of the local standard deviation. This curve has the property 
of being approximately a standard normal for each t, provided the model is correct. 

The rest of the paper is organised as follows: Section 2 discusses some options for K(t) estima­
tion and gives detailed general descriptions for three types of NLH-plots. This is next applied in 
section 3 to a selection of the most popular parametric models of survival analysis: The exponential 
model with a constant hazard rate, the Weibull, the gamma, et cetera. In section 4 similar good­
ness of fit plots are developed and illustrated for the case of a parametric Cox regression model. 
Behaviour of the plots outside model conditions, and the plots' detection power against various 
kinds of alternatives, is discussed in section 5. Section 6 shows how the previous methods andre­
sults extend to more general models for life history data, like time-inhomogeneous Markov chains. 
Although our emphasis is on time-continuous models and methods we take time out in section 7 
to present the essential formulae for time-discrete hazard rate models. A number of supplemen­
tary remarks, including comparisons with other graphical goodness of fit methods that have been 
proposed in the literature, are placed in section 8. 

The paper concludes in visual mode, providing a number of illustrations on real and simulated 
data in section 9. User-friendly well-commented algorithms producing the different plots, as well 
as the necessary parameter estimates and standard deviations, have been implemented inS-Plus. 
These are available from the authors upon polite request and are briefly described in the Appendix. 

2. The three basic types of NLH-plots. We need the limit distribution of Dn(t) of (1.3), 
and we need consistent estimates of the limit variance function. 

2.1. LIMIT DISTRIBUTION OF THE GOODNESS OF FIT PROCESS. Some further notation and 
results are needed at this stage. A basic ingredient in the large-sample analysis of the behaviour 
of both parametric and nonparametric estimators is the limiting process V(t) of the martingale 
n-112{N(t)- I: Y(s)h(s) ds}. This is a zero-mean Gaufiian process with independent increments 
of size Var{ dV(s)} = y(s)h(s) ds, where y(s) is the limit in probability function of Y(s)fn, i.e. the 
limiting proportion of items at risk at time s. One can show that Jfi{H(t)- H(t)} tends in 
distribution to I: y(s)-1 dV(s), see ABGK (chapter IV). Let next tfJ(s, 8) = :8 log h(s, 8), a (p xI)­
vector. The p X p-matrix 

E = L.,. tfJ(s,8)tfJ(s,8)'y(s)h(s,8)ds (2.1) 

will enter several of our calculations. The ML estimator solves Io.,. t/J(s, 8){ dN(s)- Y(s)h(s, 8) ds} = 
0. It is consistent and satisfies 

(2.2) 
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The limit of Dn(t) can now be described: Under natural and mild regularity conditions, which 
include convergence in probability of the weight function K n ( s) to an appropriate k( s), it converges 
in distribution to 

t t I {"" 
D(t) = Jo {k(s)fy(s)}dV(s)- (Jo k(s)h(s,8)1f!(s,8)ds) ~-1 Jo 1f!(s,8)dV(s). 

This is proved in Hjort {1990, section 2). The limit is a zero-mean Gaufiian process, and some 
calculations show that the variance is 

t k(s)2 t I t 
n.(t)2 = Jo y(s) h(s,8)ds- (Jo k(s)h(s,8)1f!(s,8)ds) ~-1 (Jo k(s)h(s,8)1f!(s,8)ds). (2.3) 

Of course the covariance needs to be given too in order to fully describe the D(.) process, but our 
primary interest in this paper lies with the NLH-plots {1.5). Therefore the variance n.(t)2 is the 
quantity we need to estimate, at least fork(.) functions corresponding to Type A, Type B, Type 
C encountered in {1.4). 

2.2. EsTIMATING THE VARIANCE. There are several choices, each with its own merits. A 
parametric plug-in option is to use h(s, 0) and 1/l(s, 0), together with y(s) = Y(s)fn for y(s) and 
Kn(s) for k(s). A nonparametric plug-in option is to substitute dH(s) = dN(s)/Y(s) for h(s, 8) ds 
everywhere in {2.3), and again using Y(s)fn and Kn(s). It is shown in Hjort {1990, section 3) that 
each of these choices, or indeed combination of these choices, lead to consistent estimators of n.(t)2 • 

The natural parametric estimator of ~ is 

and is easy to calculate in cases where the integrals can be done explicitly. The natural nonpara­
metric alternative is 

~ _ ["" ·'·( 9'·'·( 8-)1Y(s) dN(s) _ _1 " ( -) ( - ) 1 _ 1 ~ ( Li\ ( Li\l ~np-}0 'l"s,u)'l"s, n Y(s) -n j:f'::
1

1/lt;,81f!t;,8; =n ~1f!t;,8J1flt;,8J5;, 

which is easier to calculate where the integrals do not allow explicit expressions. These are both 
consistent estimates, under model conditions. 

2.3. NLH-PLOTS, TYPE A. Type A of {1.4) uses Kn(s) = 1, and has 

t h(s 8) t I t 
KA(t) 2 = lo y(:) ds- (Jo h(s,8)1f!(s,8)ds) ~-1 (Jo h(s,8)1f!(s,8)ds). 

The parametric plug-in option is 

{2.5) 

where we write H*(t,8) for teH(t,8) = J: h(s,8)1fl(s,8)ds, for notational convenience. The first 
integral is easiest to calculate by adding over the ordered (t;_1 , t;] intervals to the left of time point t, 
since Y(s) is constant over each of these. One then gets a sum of type 'E;:t; 9 {n/Y(t;-d}{H(t;, 0) 
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- H(t3_ 1 ,0)} plus a similar term for the remaining (tz,t] interval, where tz is the last t; before t. 
The nonparametric option is 

~ 2 {t ndN(s) ( t ~ dN(s))'~-1 ( t n-.,dN(s)) 
KA(t) = }0 Y(s)2 - Jo 1/l(s, O) Y(s) I.:np Jo 1/l(s, OJ Y(s) · 

Note that the first term is n times the usual variance estimator for the Nelson-Aalen estimator, 
see ABGK (chapter IV). The second integral is just the finite sum :Et·<t 1/J(t;, 0)5;/Y(t;). 

1-

2.4. NLH-PLOTS, TYPE B. Next consider Type B of (1.4), which uses Kn(s) = Y(s)jn, and 
has 

t t ' t KB(t)2 = Jo y(s)h(s,O)ds- (Jo y(s)h(s,O)f/J(s,O)ds) I.:-1 (Jo y(s)h(s,O)f/J(s,O)ds). 

The parametric choice becomes 

n n 1 n 

KB(t) 2 = n-1 L H(t; 1\ t, 0)- ( n-1 L H*(t; 1\ t, 0)) lj;~ ( n-1 L H*(t; 1\ t, o)), (2.6) 
3=1 3=1 j=1 

while the nonparametric version is 

KB(t) 2 = N(t)fn- (n-1 L¢(t;,0)5;)'1j;;(n-1 L¢(t;,0)5;). 
t;9 t;9 

2.5. NLH-PLOTS, TYPE C. Finally consider the third choice in (1.4), which employs a weight 
function of the Kn(s) = {Y(s)fn}Gn(s). Suppose for example that an omnibus goodness of fit 
test for the h(s) = h(s,O) model is sought, that at the same time has good detection power for 
neighbouring alternatives of the form h(s,O,-y), where h(s,O) is the special case h(s,O,-yo). Then 
an optimal choice for weight function in (1.3) can be shown to be of the form 

where ¢( s, 0) = tr log h( s, 0, "Yo). There is also a nonparametric alternative. See Hjort (1990, 
section 5) and Koning (1991, section 4) for details, and 3.2 and 5.2 below for illustrations. 

The actual implementation of this case is reasonably similar to that of Type B above. One 
uses 

t n t;llt 
NLHc(t) = n-112{,0 Gn(s) dN(s)- L lo Gn(s)h(s, o) ds} /Kc(t), 

0 j=1 0 

where 

n t·llt 
Kc(t)2 = n-1 L Jn 1 Gn(s)2 h(s,O}ds 

j=1 0 

n {t; lit 1 n {t; 1\t 
- ( n - 1 L lo Gn( 8 )¢( s, O)h( s, o) ds) lj;~ ( n - 1 L lo Gn( s )¢( s, O)h( s, o) ds). 

j=1 0 j=1 0 

There is also a nonparametric alternative for K(t) estimation, for cases where calculating the above 
becomes too complicated. 
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2.6. DISCUSSION. The parametric plug-in versions are more statistically precise estimators 
than the nonparametric ones, and are chosen whenever they are not too cumbersome to compute. 
This means choosing Type A plots with (2.5) and Type B plots with (2.6). For some models, like 
the gamma and the log-normal, these can only be computed with numerical integration, however, 
in which case the nonparametric options are easier, involving only finite sums of explicit terms. We 
also note that positivity of the various K(. )-estimate functions as given here is guaranteed, unlike 
for other choices that may seem natural and are as permissible from the asymptotic statistics point 
of view. See Remark BE. 

3. Special models. 

3.1. A COMPLETELY SPECIFIED HAZARD FUNCTION. Sometimes one wants to compare the 
life-time distribution for a group of individuals with some established norm, say one with hazard 
rate ho(.). In this case the limit process of Dn(.) is simpler than in the case with estimated 
parameters. It is D(t) = J: {k(s)fy(s)} dV(s), which is simply time-transformed Brownian motion, 

W(K(t) 2 ), where K(t)2 = J:{k(s) 2 jy(s)}ho(s) ds. The test curve becomes 

t t 1/2 
NLH(t) = y'n Jo Kn(s){dH(s)- ho(s) ds} j {Jo Kn(s)2 {n/Y(s)}ho(s) ds} , (3.1) 

with appropriate simplifications for Type A and Type B. Its limit is a time-transformed normalised 
Brownian motion, see Remark SA. 

3.2. TESTING THE CONSTANT HAZARD RATE MODEL. Let the model be a constant rate 
h(s, 0) = 0. Then H(t, 0) = Ot and 1/l(s, 0) = 1/0. The ML estimator solves J; {dN(s)-Y(s)O ds} = 
0, that is, 

~ N(r) L:j=1 5; 
0= T = n • 

J0 Y(s) ds L:;=1 t; 

In this case both the parametric and nonparametric estimates of~ = u 2 = J; y(s){1/02}0ds 

become equal to u2 = n-1(L:j=1 t;)2 / L:j=1 5;. Note also that u2 = 1/(j2 in the case of non­
censored data. 

The NLH-plot of Type A for ex:ponentiality is 

y'n{il(t)- Bt}/KA(t), (3.2} 

where the parametric plug-in estimator for the variance is 

~ 2 n ~ 2 ~2 ~ n n ~ 2 Lt Lt 
KA(t) = 0 Y(s)Ods- t ju = 0{ 0 Y(s) ds- N(r)Ot }· 

The nonparametric alternative is 

~ ( ) 2 = t ndN(s) _ { t!. dN(s) } 2 /~2 = t ndN(s) _ {H~( )/Om 2 ;~2 
"A t lo Y(s) 2 } 0 8 Y(s) u }0 Y(s) 2 t UJ u · 

Similarly there is a NLH-plot of Type B for exponentiality: 

{t n 

n-1/ 2 { N(t)- Jo Y(s)8 ds} /Ks(t) = n-112 { N(t)- L B(t; At)} /Ks(t). 
0 j=1 

(3.3) 
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The parametric choice for variance estimation is 

n . n 2 

KB(t)2 = n-1 ~)t; A t}O- ( n-1 ~)t; At)) fu2 , 

j=1 j=1 

while the nonparametric version is n-1 N(t)- (n-1 N(t)f'i) 2 fu2 • 

Let us finally include a version of the Type C plots. H an overall test for exponentiality 
is sought that at the same time is good at detecting departures in the direction of Weibullness, 
then the general recipe described in 2.5 above leads to the tailor-made weight function Kn(s) = 
{Y(s)fn}Gn(s), with 

( ) _ ~ _ f0.,.Y(s)logsds _ ~j=1 (t;logt;- t;) 
Gn s -logs-</J-logs- ,.,. () -logs- "'n 

Jo Y s ds LJj=1 t; 

The result is 

It n r·l\t 
NLHc(t) = n-1 / 2 {Jo (logs-~) dN(s)- L Jo 1 (logs- ~)lids} /Kc(t), 

0 j=1 0 

where 
n rt·At n rt·At 2 

Kc(t)2 = n-1 L Jo 1 (logs- ~)2 9ds- { n-1 L Jo 1 (logs- ~)ds} fu 2 • 

j=1 0 j=1 0 

And of course the integrals here can be explicitly evaluated. 
These test curves are illustrated in examples 9.1-9.3. 
Note that the case of a model h(s,O) = Oho(s) specifying proportionality to a specified ho(s) 

can be treated in the same way, with small adjustments. 

3.3. A CLASS OF TWO-PARAMETER. MODELS. Suppose h(s, 0,{3) = 0ho(s,{3) for a specified ho 
function in terms of a single extra f3 parameter. Then H(t, 0,{3) = 0 J: h0 (s,f3) ds = OH0 (t,{3), and 
logh has derivatives .,P(s,0,/3) = (0-1 ,.,P0(s,{3)). The ML estimates maximise 

L( 0, {3) = 1.,. [{log 0 +log ho(s, {3)} dN( s) - Y(s )Oho(s, {3) ds]. (3.4) 

We see that 9({3) = N(r)/ J0.,. Y(s)ho(s,/3) ds, and P maximises the resulting profile log-likelihood, 
so this can be made into a one-dimensional problem. See the computational notes of the Appendix. 
Next we need to estimate the matrix 

IT ( 1/0 ) ( 1/0 ) I 
:E = lo t/Jo(s,/3) t/Jo(s,/3) y(s)Oho(s,f3)ds. 

The parametric estimate is 

Epm = n-1 t t; ( 1/0:. ~ ~~o((ss,,P0))~9) 9ho(s,P)ds, 
j=1 lo t/Jo(s,/3)/0 .,., 

(3.5) 

and in many cases of interest the integrals can be evaluated explicitly. The nonparametric version 
is the finite sum 

~ -1 ~ ( 1/0'A t/Jo(t;,P)/9) c. :Enp = n L..J ~ ~ ~ u3. 
j=1 t/Jo(t;,/3)/0 t/Jo(t;,/3)2 
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NLH-plots of Type A plots are now of the form Jii{H(t)- 9Ho(t,Ji)}/K.A(t) with 

K, (t)2 = t _!!_(iho(s f.i) ds _ ( _!lo(t,Jij ) 1 E-1 ( _Ho(t,Jij ) 
A Jo Y(s) 'fJ OH0(t,{3) pm OH0(t,{3) ' 

(3.6) 

in which H0(t,{3) = ~H0(t,{3). Similarly NLH-plots of Type B are of the form n-112{N(t)­

J: Y( s )9ho( s, Ji) ds} /K.B( t), with 

K,B(t)2 = n-1 t 9Ho(ti 1\ t,jj)- ( n_~~ 'EJ=1~Ho!ti 1\ t,Ji}_ ) 'E;! ( n-~1 'EJ=t~Ho!ti 1\ t, liJ. ) . 
i=1 n 'Ei=t OH0 (ti 1\ t, {3) n 'Ei=1 OH0 (t3 1\ t, {3) 

(3.7) 
The nonparametric options for variance estimation are also available and sometimes simpler to 
compute. 

3.4. WEIBULL. Here h(s,0,{3) = 0(3sf3-1 with cumulative hazard H(t,0,{3) = Otf3. The ML 
estimates maximise 'Ej=1 [{1og0 + log{3 + ({3- l)logt3}6i- Otj]. The construction above leads 
after some calculations to 

We are now in a position to properly define NLH-plots for Weibullness. Type A uses 

(3.8) 

where 

K,A(t)2 =lot Y~s)(jjjsfi-1 ds- ((fjj-t::logtfi)' E;! ({fjj-1::logtfi). 

And the NLH-plot of Type B is 

where the denominator is the square root of 

There are also nonparametric alternatives to these variance estimators. 
An illustration is given in example 9.2. 

3.5. FRAILTY MODELS. Suppose each individual has his own constant hazard rate, and that 
these are distributed in the population under study as a gamma distribution with mean 0 and 
variance 0{3. Then the hazard rate for observed individuals is of the form h(s, 0,{3) = 0/(1 + {3s), 
nonincreasing a priori. The cumulative increases logarithmically. We call this the simple frailty 
model. 
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The ML estimates are found by maximising L:j=1[{1og9 -log(1 + ,Bt;)}c5;- 9,B-1 log(1 + ,Bt;)]. 
With some efforts the entries of ljpm are found: 

n 

lj1,2 = -n-1 L:,8-2{log(1 + ,Bt;) + (1 + ,Bt;)-1 -1}, 
j=1 

NLH-plots to check the fit of the model can now be properly defined, parallelling (3.8) and 
(3.9). The Type A plot is 

NLHA(t) = vfn{H(t)- 0,8-1 log(1 + ,8t}}/KA(t), (3.10) 

where 
t ~ 

~ 2 1 n 9 ~ ,~-1 ~ ttA(t) = Y( ) ~ ds- C(t) :EpmC(t), 
o s 1 + ,Bs 

in which 
~ ( ,8-1 log(1 + ,Bt) ) 
C(t) = 0,8-2 { -4. -log(1 + ,Bt)} · 

HJ3t 

And the Type B plot uses 

t ~ n 

n-112 { N(t)- f Y(s) 9 ~ ds} /Ks(t) = n-112 { N(t)- L O,B-1 log(1+P(t;At))} /Ks(t), (3.11) 
lo 1 + ,Bs ;=1 

where 

n n n 

Ks(t)2 = n-1 L O,B-1log(1 + ,B(t; At))- ( n-1 L C(t; At) )'lj;~ ( n-1 L C(t; At)). 
j=1 j=1 j=1 

An illustration is given in example 9.3. 
This simple frailty model should by its motivation and construction have ,B ~ 0. H the 

likelihood is maximised only in this region then the ML estimator will be equal to zero with 
positive probability, and one encounters the more involved 'comer asymptotics' problems associated 
with zero not being an inner point of the parameter space. In particular the plots would not be 
approximately standard normal any more. We avoid these difficulties by allowing an expanded 
parameter space ,8 > -e, where 1/e is twice the largest observed t;. And of course if the Nelson­
Aalen plot for data suggests an increasing hazard rate one should immediately abandon the frailty 
model. 

There are more general models based on frailty distributions and that have found uses in 
survival analysis and demography, see Aalen (1992). One important class of models is as follows. 
Let A(t) be a hazard rate function with cumulative A(t) = J: A(s) ds. The individuals in the 
population under study have all hazard rates of the type ZA(t), but with Z, the unobservable 
frailty factor, varying from individual to individual. When Z has the particular compound Poisson 
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distribution considered by Aalen, with certain parameters a and 6, then the life-time of a randomly 
chosen individual has 

~(t) 
hazard rate h(t) = { 1 + (6/a)A(t)}a' 

with cumulative H(t) = a: 1 i [ 1- ( 1 + ~A(t) r-a]. 

(3.12) 

The last formula is valid for a ::J 1. For a = 1 one has H(t) = 6-1log{1 + 6A(t)}, and the special 
case above is of this form. H the underlying ~(.) is parametrised with two parameters then the 
scheme above leads to a four-parameter hazard model, for example. And the validity of these can 
all be tested with the NLH plot machinery. See example 9.6 for an illustration. · 

3.6. GOMPERTZ. Here h(s) = 8exp(f3s) on [0, r]. The ML estimators maximise :Ej=tf(log8+ 

f3t; )6;- ep-1 { exp(/3t;) -1}], and this function is actually concave in (loge, /3). The entries of Epm 
are 

n 
~ 1~1~~1 ~ 
:E1,1 = n- e- £._,/3- {exp(f3t;)- 1}, 

i=1 
n 

E1,2 = n-1 L,8-2 {(,8t;- 1) exp(,Bt;) + 1}, 
i=1 

n 

E2,2 = n-18L,8-3 [{(,8t;)2 - 2,8t; + 2}exp(,8t;)- 2]. 
i=1 

And quite similarly to the cases above the A-plot and the B-plot take the forms 

vn[H(t)- O,B-1{exp(,8t)- 1}]/KA(t) and n-1/2 { N(t) -1t Y(s}Oexp(,8s) ds} /Ks(t), 

in which 

and 

n n n 

Ks(t) 2 = n-1 L O,B-1{exp(,8(t; At))- 1}- ( n-1 L C(t; At)) 1E;! ( n-1 L C(t; At)). 
i=l i=1 i=1 

This time 
ct -( ,8-1{exp(,8t)-1} ) 

( ) - O,B-2{(,8t- 1) exp(,Bt) + 1} · 

3. 7. GAMMA. The gamma distribution has density f(t, a, 8) = {ea /f(a)}ta-1 exp( -Ot), and 
is a useful class to work with in connection with life history data. In some situations a priori reasons 
could suggest a known integer value for the shape parameter a, in which case one also uses the 
name Erlang distribution. The constant hazard model corresponds to a= 1, and with a= 3, for 
example, the hazard function h(t, a, 8) = f(t, a, 8)/{1-F(t, a, 8)} becomes (J te2t2 /{1+8t+ te2t2}, 
smoothly increasing from 0 to its asymptote 8. It is not very difficult to construct NLH-plots for 
testing the fit of this one-parameter hazard model, or the other models with known integer a. 

The general two-parameter model also fits into our general framework, but its analysis is 
more cumbersome than for the previous examples in that its hazard function and its derivates 
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w .r. t. model parameters involve special mathematical functions like the incomplete gamma integral. 
The cumulative distribution is F(t,a,O) = F0 (0t,a), where F0 (t,a) = J:r(a)-1ua-1e-udu, for 
example. This function is available inS-Plus and other computer package libraries. Let us present 
the necessary formulae. First, the ML estimators maximise 

L {alog(Ot;) -logr(a)- Ot;} + L log{1- F0 (0t;, a)}. 
j:6;=1 j:6;=0 

In this case the parametric options for estimating I: and the ~t{.) functions are complicated, although 
they can be managed via numerical integrations, and the nonparametric options are easier. The 
two plots to test gamma-ness become 

n 

vfn[H(t) + log{1- F0 (0t, a)}]/KA(t) and n-1/ 2 [N(t) + Llog{1- F0 (0(t; At), a)}] /KB(t), 
j=t 

where the denominators involve Enp and are the nonparametric options as given generally in 2.3 
and 2.4. These are finite sums involving the model's 1/J( t, a, 0) function, with components 

1/Ja(t, a, 0) = log(Ot) -1/J(a) + {1- Fo(Ot, a)} - 1 1t {log(Os) -1/J(a)} f(s, a, 0) ds 

= log(Ot) -1/J(a) + {1- F0 (9t,a)}-t{F;(ot,a) -1/J(a)Fo(Ot,a)}, 

1/Js(t,a,O) = o-t(a- 9t) + {1- F0 (0t,a)}- 1 1t e-1(a- Os)f(s,a,O)ds 

= o-t (a- Ot) + {1 - F0 (0t, a)} -to-t ( Ot)a exp( -Ot)jr( a). 

Here 1/J(a) = r'(a)jr(a), and in addition to Fo(t, a) one needs its relative F.)(t, a)= I: r(a)-tlogu 
Ua-1e-UdU. 

3.8. OTHER MODELS. Constructing NLH curves for other parametric models for survival data 
should not be difficult given the general machinery and the examples above. Some useful models 
include the Gompertz-Makeham one with h( s) = a+ b exp( cs ), the lognormal, the log-logistic, the 
inverse normal, and the three-parameter h(s) = exp(,80 + ,81s + ,82s2 ), capable of representing a 
wide variety of hazard curves on [0, r]. 

4. NLH-plots for the parametric Cox regression model. Suppose covariate infor­
mation in the form of features or measurements z; = {z;,l, ... , z;,p)' are available for individ­
ual j, in addition to the possibly right-censored life-time information ( t;, 5;). The widely used 
semiparametric Cox regression model postulates that individual j has hazard rate of the form 
h;(s) = ho(s)exp(,B'z;), but without further specifying ho(.), the hazard rate for individuals with 
covariate zero. NLH-plots can be constructed to check the validity of a parametric Cox model, 
where 

h;(s) = h(s, 0) exp(,81Zj,l + · · · + ,8pz;,p) for j = 1, ... , n. {4.1) 

H such a parametric form for the baseline hazard can be validated it makes for a better under­
standing of the survival mechanisms under study, and also makes it possible to estimate the ,8 
parameters with increased precision. 

We shall be content to illustrate the use of our plots for the important special case where the 
baseline hazard is a constant 0. This is sometimes a quite effective model. We also assume that the 
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covariates are constant in time. Generalisations to time-dependent covariates and to other h( s, 8) 
models are reasonably straightforward, in view of the theory developed in Hjort {1990, section 6). 

The ML estimates are computed from the log-likelihood 

n 1.,. n 

:E {(logO+ (31 z;) dN;(s)- Yj(s)Oexp(f3' z;) ds} = :E {(logO+ {31 z;)6;- 8exp(f3' z;) t;}. 
i=1 0 i=1 

Here Y;(s) = I{t; ~ s} is the at risk indicator and N;(t) = I{t;::::; t,6; = 1} the 0-1 counting 
process for no. j, summing to theN= E7=1 N; counting process. Define 

n n n 
~ -1~-1~ ~, ~ -1~ ~, ~ -1~~ I ~, 
:E1,1 = n 8 L..Jexp((3 z;)t;, :E2,1 = n L..Jz;exp((3 z;)t;, :E2,2 = n 8 L..Jz;z3exp((3 z;)t;. 

i=1 i=1 i=1 

These are the blocks of a consistent estimator ~ for the inverse variance matrix for the limit 
distribution of yn(if- O,fj- (3), under the (4.1) model, as can be shown from more general results 
of Hjort (1990, section 6). 

A NLH-plot of Type A takes as its starting point 

~ ~ {1t dN(s) ~} Dn(t) = y'n{H(t)- Ot} = vfn n ~ - Ot . 
o E i=1 Y;( s) exp(f3' z;) 

(4.2) 

One might also argue in favour of plugging in the maximum partial likelihood estimator P here, 
but the following formulae relate to the ML estimate from the parametric regression. Several 
natural consistent estimates for its limit variance can be constructed along the general lines of Hjort 
(1990, section 6). One version is as follows. Let R(s,(3) = n-1 E7=1 Y;(s)exp((3'z;), R(l)(s,(3) = 
n-1 E7=1 Y;(s)z; exp((3'z;), and finally E(s,(3) = R(1)(s,(3)/ R(s,(3). These are next used to define 

In the end define 
t ~ 

2 1 (} ds ~ ,~ 1 ~ KA(t) = ~ - C A(t) :E- C A(t), 
o R(s,(3) 

and use NLHA{t) = yn{H(t)- Ot}/KA(t). 
Similarly a NLH-plot of Type B would use 

Dn(t) = n-1 / 2 { N(t)- t Lt Y;(s)iexp(fj'z;) ds} = n-1 / 2 { N(t)- t Oexp(fj'z;)(t; 1\ t) }· 
i=1 ° i=1 

t -- - - - -In this case one may use Ks{t)2 = J0 R(s,(3)8ds- Cs(t)':E-1Cs(t), with Cs(t) as above. The 
simplest way to compute the various integrals appearing here is by noting that the integrands are 
constant over the ordered intervals (t3_1 , t;], turning the integrals into finite sums. 

We also note that the log-likelihood is concave once reparametrised with 8 = exp((30 ), making 
computation relatively easy, and, incidentally, making rigorous proofs of the necessary large-sample 
distribution statements easier. That the required NLHA{t) ---+d N{O, 1} and NLHs{t) ---+d N{O, 1} 
hold, under standard regularity conditions, follows indeed from the general results of Hjort (1990, 
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section 6), but can be proven relatively easily under almost minimal regularity assumptions when 
one uses methods of Hjort and Pollard {1993, section 7). 

See example 9.5 for an illustration of these techniques. 

5. Detection power. Some analysis makes it possible to predict the behaviour ofNLH-plots 
outside model conditions. Information in this section should also help in pinpointing exactly which 
aspects of a proposed model are wrong, in cases where the test curve determinedly wanders outside 
the ±1.96 band. 

5.1. A FIXED ALTERNATIVE. Suppose the true hazard is h(.) rather than belonging to the 
parametric class h( ., 0). Then one can establish 

Dn(t)/.;n = Lt Kn(s){dH(s)- h(s, 0) ds} -tP 1r(t) = Lt k(s){h(s)- h(s, Oo)} ds, (5.1) 

and there is uniform convergence in probability under suitable assumptions, see Hjort (1990, section 
5). For Type A plots this is simply H(t)- H(t, 00 ). The 00 parameter value here is not 'true' but 
rather 'least false' in the sense of making h( s, 00 ) the best parametric approximant to h( s), see 
Hjort (1992) for details necessary to prove this and for the precise distance measure which is being 
minimised. 

This result shows that one can expect the NLH plot to decrease in regions where h(t) < 
h(t, Oo) and increase in regions where h(t) > h(t, 00 ) (this assumes k(t) positive, as with Type A 
and Type B). It also indicates that NLH(t)/Jii is estimating a well-defined discrepancy function 
7r(t)/Ko(t), and which is zero only if the model being tested is correct. Yet another pleasing 
theoretical consequence is that every departure from the model will be detected by the NLH plots 
with probability 1 as n grows; a non-zero 1r(t) will send INLH(t)l towards infinity with speed 
v'nl1r(t)l. 

If the model being tested is that of a constant hazard 0, then Oo = J0"' y(s)h(s) ds/ J; y(s) ds. 
Each of the NLH plots of 3.2 will then tend to decrease in regions where the true hazard is less 
than Oo and tend to increase when it is greater than 00 • If the true state of affairs is a Wei bull with 
(3 > 1, for example, then the expected plot decreases up to certain t 0 and increases afterwards. The 
opposite happens if the true hazard is a Weibull with (3 < 1. 

5.2. LOCAL ALTERNATIVES. Suppose hn(s)::::: h(s,0){1 + f/J(s,0)5jy'n}. If one for example 
considers model alternatives of the form h(s,0,(3), where (3 = (30 gives back h(s,O), then f!J(s,O) = 
~ logh(s,0,(30 ). Methods of Hjort (1990, section 5) can be used to prove 

NLH(t) -td D(t)/~t(t) + 5a(t)/~t(t) "'N{5a(t)/~t(t), 1}, (5.2) 

where 

a( t) = Lt k( s )h( s, O)f!J( s, 0) ds - (fot k( s )h( s, O).,P( s, 0) ds) 1 E-1 (fo"' y( s )f!J( s, O)h( s, O).,P( s, 0) ds). 

This indicates the local detection power of the NLH plots. The optimal choice for weight function 
is as in (2. 7), leading to a test curve of Type C. 

For illustration take the constant 0 model again, and suppose the true hazard is 0{1 + 
f/J(s)5/.;n} for a suitable fjJ function. Then calculations show that NLH(t) is approximately a 
normal with variance one and mean parameter 

5 J: k(s){f/J(s)- 4)} ds 

(J; {k(s)2 /y(s)} ds- {J; k(s) ds P / J0"' y(s) ds] 112 ' 
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in which if>= J0.,. y(8)t/>(8) d8/ J; y(8) d8. The optimal choice corresponds to k(8) = y(8){t/>(8)- i/>}. 
For another illustration, consider the heterogeneity situation where there is a 'hidden covari­

ate'. H the true hazard for individual i is of the proportional hazard form hi(8) = h(8lzi) = 
ho ( 8) exp(,B Zi), and the frailty factor exp(,B Zi) has a gamma distribution with mean 1 and variance 
u2 (which amounts to gamma parameters equal to 1/u2 and 1/u2), then calculations show that the 
hazard rate for a randomly selected individual is of the form ho(8)/{1 + u 2 Ho(8)}, where Ho(.) is 
the cumulative hazard for ho(.). Suppose in particular that hi(8) = 9exp(,Bzi) for an unobserved 
covariate of this form, with population variance u 2 = 5/ Vn· Then the framework above is ap­
propriate with hn(8) = 9(1 - 985/y'n). H we further assume that there is no censoring and the 
observation window is the full halfline then calculations with t/>(8, 9) = -98, for the B plot, give 

a(t) = 9texp( -9t) and K(t)2 = {1- exp( -9t)} exp( -9t). 

In the end this leads to 

{ 2 9tex:p(-t9t) } 
NLHB(t) ~ N vnu {1 - exp( _ 9t)}l/2, 1 · (5.3) 

This detection power approximation is valid for small u 2 , but illustrates well the plot's ability to 
detect the presence of a missing covariate. Note also that the whole B plot will tend to lie above 
the time axis, according to these calculations, if there is such a frailty departure from the constant 
hazard model. The A plot, on the other hand, will tend to lie above the time axis as long as 9t < 2 
and below the time axis when 9t > 2, as borne out by similar calculations. The optimal C plot 
uses Gn(8) = 1- 08, and gives most weight to the smallest and then the largest time values. 

Results similar to those given here can also be reached for the parametric Cox regression plots 
of section 4. 

6. General counting process models. Our paper has so far been concerned with right­
censored survival times, with or without covariate information. The plots and the results about 
them can be generalised with surprisingly few modifications to much more general counting pro­
cess models for life history data, see Hjort (1990). The necessary nonparametric and parametric 
machinery work specifically for Aalen's multiplicative intensity model, as broadly surveyed in the 
ABGK book. Examples include models with left truncated entry times, competing risks, and 
time-inhomogeneous Markov chains, where individuals move between states with certain hazard or 
transition rates. 

The practical consequence, as far as the normalised local hazard plots are concerned, is that 
the formulae developed earlier are still true as long as Y(8)/n is used everywhere to estimate 
the asymptotic y(8) function, where Y(8) is the number of individuals at risk (for the particular 
transition in question) just prior to time 8. Formulae based on the Z:j=1 I { tj ~ 8} identity are 

not true in this more general situation, however. For example, the first expression for Epm of (2.4) 
is still valid in these more general models, but the second is not. We illustrate our plots in a 
competing risk situation in example 9.3 and in a left-truncated entry study in example 9.4. 

An important fact about situations with several transition rates is that the collection ofNelson­
Aalen estimates are statistically independent asymptotically. This is a fruit of the martingale 
theory developed by Aalen. It also follows that the different Type B plots, say, for testing different 
parametric models for the transition rates under study, become approximately independent. This 
makes it easier to judge separate models for separate transition mechanisms in a many-state study. 
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7. Time-discrete models. There are quite similar models and methods for time-discrete 
survival analysis. Although our emphasis has been clearly on the time-continuous case we take the 
necessary time out to provide the most important results for the time-discrete case. These are of 
interest in their own right, since data even on time-continuous phenomena often are recorded on a 
time-discrete basis, e.g. in demography, the social sciences, national health statistics, and for many 
censuses of central bureau of statistics type. The results can also be used to construct correction 
factors to the time-continuous formulae in case where data are grouped in time. 

7.1. GENERAL RESULTS. Suppose that life-times observations are recorded only at time points 
ao < a1 < · · · < a1c = T, where T could be infinity. If a distribution has point mass /i at ai then 
the hazard rate at that point is hi = /if E;~i f;. Suppose a p-parametric model is considered of 
the form hi = hi(8), and let there be fiNi observed failures at ai among the Yi at risk at that 
point. Then the log-likelihood can be written L:{!iNiloghi + (Yi- f1Ni)log(1- hi)}, see e.g. Cox 
and Oakes (1984, chapter 3). The nonparametric estimate is hi = fiNi/Yi. The parametric ML 
estimator 0 solves 

(7.1) 

where hi(8) = ~hi(O), a p-vector. One can prove that y'n(O- 8) tends to a Np{O, :E-1 }, where 

:E = L hi( B)(/~ hi(O)) hi(8)hi(8)* = L ri1/Ji(8)'t/Ji(8)'hi(8)/(1- hi(8)), (7.2) 
~sT ~sT 

writing 1/Ji(8) = : 9 log hi(8) = hi(8)/hi(8). Here ri is the limit in probability of Yi/n, the limiting 
proportion of individuals present just before time ai. We omit the proofhere, but it proceeds along 
lines similar to those for the time-continuous case, as presented in Hjort {1992) and ABGK (chapter 
VI), with the crucial modification that the time-discrete martingale M(t) = Ea·<t(tiNi- Yihi) 
has variance process (M, M)(t) = Ea·<t Yihi(1 - hi) whereas the time-contin~ous martingale 

M(t) = N(t)- J:Y(s)h(s) ds has varian~; process (M, M)(t) = J: Y(s)h(s) ds. Note the similarity 
but also the slight correction to the time-continuous case, cf. {2.1)-(2.2). 

The weighted hazard difference function takes the form 

for suitable weight function Ki converging in probability to some ki. Limit theorems for time­
discrete martingales can be used to prove 

Dn(t) -d D(t) = L(ki/ri)Vi- (L kihi(O))':E-1 L hi{8)V;/{hi(8)(1- hi{O))}, 
a,St a,St a,ST 

where the V;s are independent and Vi ""N{O, rihi(1- hi)}. The variance is 

K{t)2 = L(ki/ri)hi(0)(1- hi(O))- (L kihi(8))':E-1 (L kihi(8)), (7.4) 
a,St a,St a,St 

which can be estimated consistently. The end product is therefore a NLH plot of the form 
Dn(t)/'K(t), plotted for each t = ai. 
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As an illustration, consider the constant hazard rate model hi = 8. Note that 8 E (0, 1) in the 

present framework. The estimate is 'ii = L:o·<T ll.Ni/ L:a·<T Yi, and ·- ,_ 

n-112 " (!:iN· - Y:i' W 0 ( (t)) 
NLHB(t) = L....to,<t ' ' 11 J P ar{o 1} 

1/2 -td {p(t) _ p(t)2}1/2 "'JV ' ('ii(1- 'ii)v(T)2{P(t)- P(t)2}) 

7.2. OBSERVING TIME-CONTINUOUS PHENOMENA ON A TIME-DISCRETE SCALE. Suppose 
life-times have a continuous distribution and that a hazard rate model is considered of the form 
h(s) = h(s,8). Assume however that data only are collected on a time-discrete basis, will cells 
Ii = [i, i + 1) fori= 0, 1, .... This means a time-discrete framework with hazards 

hi(8) = FB[i, i + 1)/ FB[i, oo) = 1- e:x:p[-{H(i + 1, 8)- H(i, 8)}), 

and the framework above applies. Note that hi(8) = (1- hi(8))~{H(i + 1,8)- H(i,8)}. 
examples 9.4 and 9.6 for illustrations. 

Let us finally mention that the above methods also lead to 

See 

(7.5) 

where wl = kl{r;1hi(8)(1- hi(8))- hi(8)21/1i(8)':E-1 1/1i(8)}. Plotting ll.Dn(t) is nugatory in 
situations with small time cells and correspondingly small values of ll.Nihi('ii), but in many large­
scale studies in demography and social sciences one would have substantial }'is and not too small 
ll.Nis. Aalen's (1992) two examples are of this sort, for example, and one of these are analysed as 
example 9.6 below. In such situations plotting of vn{ll.Ni/Yi- hi('ii)}fwi (taking Ki = 1) is quite 
informative regarding the validity of the model. 

8. Concluding remarks. 

SA. MAXIMAL VALUES OF TEST CURVES. Our test curves will at each given time point by 
construction stay inside ±1.96 with probability approximately 0.95. This is a point-wise statement, 
and the maximal absolute value of the random curve is substantially larger in distribution than the 
absolute value of a standard normal. In the notation of section 2 the maximal absolute value over 
[a1 , a2] tends in distribution to max01 <t<o2 ID(t)l/ K(t), as a consequence of process convergence. 
This limit distribution is quite intricate in general, but can be handled in special cases. 

Consider a general one-parametric model h(s,8), and use NLH plots of Type C with Kn(s) = 
n-1Y(s)1f1(s,'ii). Notice that the Dn(.) process of(1.4) then starts and ends at zero, by definition of 
the ML estimator. By covariance calculations and Gaufiianeity one can show that Dn(t) -.d 

v(T)W0 (p(t)), a scaled and time-transformed Brownian bridge, where v(t)2 = J: y(s)1/1(s, 8)2 

h(s,8)ds and p(t) = v(t)2fv(T) 2. One can also see from (2.3) that K(t)2 = v(T)2p(t)(1- p(t)). 
It follows that 

D(t) W 0 (p(t)) 
NLHc(t) -.d K(t) = {p(t)(1 _ p(t))}l/2 over (0, T), 

using convergence of stochastic processes theory. Consequently 
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where b1 = p(at) and b2 = p(a2 ), involving the normalised Brownian bridge. An approximation to 
this distribution is 

Pr{M ~ m} ='= 4</>(m)/m + </>(m)(m- m-1 ) log(cafct), 

where c1 = bt/(1- bt) and c2 = ba/(1- b2 ); see Miller and Siegmund {1982). 
If the model considered is h(.s) = 6ho(s), then 1/J(s, 6) = 1/6 is constant and factors out, which 

means that the Type C plot is in fact the same as the Type B plot, and the above applies. Study 
a Type B plot for constant hazard rate, for example, and let a1 and a2 be chosen as the empirical 
versions of p(at) = 0.10 and p(az) = 0.90, where p(t) = I: y(s) dsf I; y(s) ds. Then the above 
shows that the maximal absolute value of the plot, over the [ a1 , a2) interval, exceeds the pointwise 
1.96limit with probability about 0.49, and that an upper 5% limit for this maximum is about 3.05. 

Similar and in fact somewhat simpler calculations can be carried out for the fully specified 
case of 3.1, where the test curve is asymptotically distributed as W(K(t)2)/ K(t), a time-transformed 
normalised Brownian motion process. Here K(t)2 =I: {k(s)2 fy(s)}ho(s) ds. 

8B. OTHER. EMPIRICAL TEST CURVES. Our methods and results rely on the weak convergence 
results described in section 2. Similar results can be and have been reached for Jfi{F(t)- F(t, 0)}, 
for example, where F is the Kaplan-Meier estimate. Test curves and test statistics can be con­
structed based on this. We have found it most useful to work with weighted versions of hazard 
differences instead, however, partly since the hazard rate quantity is more central and more easily 
generalisable to other survival data models, and partly since results tend to be simpler. Our results 
belong to the tradition originating with the work by Durbin (1973) for empirical processes with 
estimated parameters. We find satisfaction in seeing practical and even visual uses of theoretical 
results in which "interest ... died down when the intractable limit processes asserted themselves", 
as Pollard (1984, p. 118) remarked. 

8C. TESTING VALIDITY OVER. A SUBINTERVAL. Suppose that one wishes to test a parametric 
model only over the subinterval [a, b), perhaps because it is obvious that the model cannot hold to 
the left of time a. One can then use a C plot with Gn equal to 1 on the interval and zero outside, 
but this is not quite satisfactory since the plot uses "if, the ML estimate calculated from the full 
time interval [0, r). The natural remedy is to use test curves with parameter estimates 7f that only 
use [a, b)-information. 

Consider in general terms the estimator 7f that solves Io-r w( s ){log h( s, 6) dN ( s)-Y( s )h( s, 6) ds} 
= 0. This is an M-estimator, or a maximum weighted likelihood estimator, and its large-sample 
properties are known, see Hjort {1985, 1992) and ABGK (chapter VI). Some work, involving the 
combination of large-sample arguments of Hjort {1990) with such of Hjort (1992), leads to the 
following generalisation of the basic result of section 2.1: 

Dn(t) = Vn it Kn(s){dH(s)- h(s,7f)ds} 

t t , r 
-+d D(t) = Jo {k(s)fy(s)}dV(s)- (Jo k(s),P(s,6)h(s,6)ds) J;;/ Jo w(s),P(.s,6)dV(s), 

and this zero-mean Gaufiian limit process has variance function 

K(t)2 = 1t(k2 fy)hds-2(1t k,Phds)'J;/(fot kw,Phds)+(fot k,Phds)'J;;1 KwJ;;1 (1t k,Phds). 

Here Jw = Io-r wy,P,P'h ds and Kw = Io-r w2y,P,P'h ds. The results previously used in this paper 
correspond to the special case w( s) = 1 on the whole interval. 
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Let now w = 1 on [a, b] and zero outside, affecting the parameter estimate, and let also the 
test weight function Kn be zero outside the interval, affecting the test curve. Then the natural 
NLH curve is 

NLH(t) = y'n lt Kn(s){dH(s)- h(s})ds}li(t) on [a,b], 

where the denominator is the square root of a suitable estimator of 

lt ( k2 I y )h ds - (Lt kt/Jh ds )' E[a~b) (Lt kt/Jh ds), 

and where E[a,b) = J: y1/J1/J'h ds. This gives A, B and C plots for the validity of the model on [a, b]. 
~ A plot for ~onstant hazard rate on ~ a,_}J] is for examyle fo{ i1 (!) - i1 (a) - 0( t - a)} li( t), where 
(} = N[a, b]l fa Y(s) ds and i(t)2 = fa {OIY(s)} ds- O(t- a)2 I fa y(s) ds. See also Hjort {1993a) 
for use of such interval tests to dynamic likelihood hazard rate estimation. 

The results reported on here are also relevant to the question of making plots with robustly 
estimated parameter values. 

8D. THE FIRST FEW AND THE LAST FEW VALUES. The basic property of the plots is that 
NLH(t) is approximately distributed as a standard normal if the model in question is correct. This 
is really a large-sample statement for each fixed t, as n grows, and we cannot necessarily trust 
the ±1.96 limits to correspond precisely to 95% coverage probability for the smallest values oft. 

Consider the (3.2) and (3.3) plots for the exponential model, for example. Assume that there is no 
censoring, and let the observed life times be ordered as t1 < t2 < · · ·. A well known transformation 
is to new random variables nt1 , (n -1)(t2 - tt), (n- 2)(t3 - t 2 ) and so on; these are independent 
and exponentially distributed with parameter (}. Using this fact one can prove, in the framework 
with fixed t1e and increasing n, that 

both NLHA(t~e) and NLHB(t~e) -+d Vk(1- V~e)IV~/2 , 

where V1e is the average of independent unit exponentials Vi, ... , V~e. Using V1e = X~~el2k one can 
therefore compute approximate probabilities for exceeding 1.96 in absolute value at t~e, valid at 
least for k small and n large. The first few probabilities are 0.165, 0.111, 0.092, 0.081, 0.075, and 
there is convergence to 0.05. This shows that somewhat higher values than under the normal can 
be expected for the first five or so t~es, and that not too much emphasis should be placed on the 
behaviour of the test curve here. (H the nonparametric K(.) estimators are used instead of the 
parametric ones, in (3.2) and (3.3), then the limit here is Vk(1- V~e) instead.) 

The last few values have a similar behaviour, at least for the Type B plots. With some­
what more work than for the first few one can prove, for the uncensored exponential case, that 
NLHB{tn-d -+d Ji(Wz -1)IW1

112 , where W, is the average ofi.i.d. unit exponentials W1 , ••• , w,. 
Some remedies could be thought of in connection with these calculations, including a slight 

down-weighing at the start and end of the plot and also skewness-reducing transformations, but 
this is not pursued here. 

8E. POSITIVITY OF VARIANCE ESTIMATES. Some natural-looking estimates of the K2(.) func­
tion of (2.3) will turn out negative in places, even if they are perfect from a large-sample point 
of view. The estimators used in this paper are however safe from such embarrassments. To see 
this, note first that the following holds, for any measure v( ds ), provided only that J: vv' dv has an 
inverse: 
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for any functions u: [0, s)--+ Dl and v: [0, 1)--+ fflP. This is actually a generalisation of the Cauchy­
Schwartz inequality, and is true since the matrix 

r = ( Ii u2 dv I: uv' dv) 
Io uv dv I: vv' dv 

is non-negative definite, and consequently f 1 ,1 - f1 ,2 f2,~f2 ,1 , in usual block notation, is non­
negative definite too. And this implies 

and again for any measure v( ds ). In our setting v( ds) would be an estimate of h( s, 0) ds and y( s) 
would be replaced with Y(s)fn. 

SF. OTHER GRAPHICAL TEST PLOTS. One of the independent origins of the Nelson-Aalen 
estimator is the 1972 paper by Nelson, advocating the sensible idea of plotting both the nonpara­
metric H(t) and a parametric H(t,O) (and sometimes with ad hoc estimates for the parameters) 
in the same diagram. The difficulty of judging such pairs of estimated cumulative hazards is that 
the variability differs both between the two curves and over time. One may view our Type A plots 
as more worked out and sophisticated versions of the same idea, incorporating the correct local 
stabilising scaling of the difference. 

Another sensible idea is to plot a nonparametric estimate h( s) of the hazard rate itself with 
the parametric h(s,O). Versions ofh(.) are discussed in ABGK (chapter IV) and in Hjort (1991, 
1993a). Some of the latter ones are inspired by the idea of making nonparametric corrections to 
parametric estimates, and will directly or indirectly give indications of the fit of the parametric 
model. Again a direct comparison can be difficult since the precision of the curves are quite different. 
Still other graphical model plots are discussed in ABGK (chapter VI). They include in particular 
a non-normalised version of our Type B plot, and plotted against N(t) instead of direct timet. 

8G. THE SEMIPARAMETRIC Cox MODEL. We gave methods for checking the parametric 
Cox model in section 4. The possibly overused semi parametric version postulates only h;( s) = 
ho ( s) exp(f3' z;) with no structure imposed on the baseline hazard ho (.). With notation as in sec­
tion 4 we have dN;(s) = Y;(s) ex.p({3' z;)ho(s) ds +noise. The cumulative baseline hazard H 0 (.) is 
usually estimated using 

~ 1t d ~J=l N;(s) 
Ho(t) = n - , 

o ~j=l Yj(s) ex.p(f3'z;) ds 

where {3 is the partial likelihood Cox estimator. Now consider the test function 

Dn(t) = n-1 / 2 f 1t k;(s){dN;(s)- Yj(s)ex.p(,B'z;)dHo(s)}, 
j=l 0 . 

for suitable weight functions k;(. ). The choice k;( s) = 1 gives simply zero, but other choices like 
k;(s) = exp(-P'z;) will give curves of interest and that if the Cox model is correct should lie 
around zero. We can work out the necessary asymptotic theory to find the limiting variance K(t)2 
of Dn(t), after which we would have a NLH curve Dn(t)/K.(t) to test the validity of the Cox model, 
but this is not pursued here. 
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An increasingly popular alternative to the multiplicative Cox model is Aalen's linear hazard 
nonparametric regression model, see Aalen (1989) and ABGK (chapter Vll). Hjort (1993b) dis­
cusses also parametric versions of this model, and the validity of such can again be assessed using 
appropriate test curve constructions of the NLH variety. We have worked out the necessary theory 
but this will be presented elsewhere. 

9. Examples and illustrations. 

EXAMPLE 9.1. TESTING A CONSTANT HAZARD. Figure 9.1a displays NLH plots of Type A 
and Type B for 100 simulated unit exponentials (i.e. having constant hazard rate 1). Figure 9.1b 
presents A and B curves in a situation with 100 simulated unit exponentials but censored with 
another 100 simulated unit exponentials. The plots behave as expected, cf. also Remark SA. 

FIGURE 9.1. NLH plots of Type A (line) and Type B (dashed) are shown in 9.1a for 100 
simulated unit exponentials. 9.1b shows A and B curves for 100 unit exponentials in a 
situation with about 50% censoring (the censoring variables are another set of 100 unit 
exponentials). 

EXAMPLE 9.2. TESTING A WEIBULL. 100 variables simulated from the Weibull (10,1.3) 
distribution, i.e. with hazard rate 13s0 ·3 , gave rise to the plots of 9.2a and 9.2b. Type A plots 
for the exponential and the Weibull are shown in 9.2a and Type B plots in 9.2b. The curves for 
the exponential model clearly wanders away from the acceptable band while the Weibull curves 
stay within. Note also that the plots indicate a Weibull shape parameter greater than 1, in view 
of remarks made in section 5. A Weibull (10,0. 7) distribution would for example give exponential 
model plots that first increased and then decreased. 

FIGURE 9.2. NLH plots of Type A are shown for the exponential model (line) and Weibull 
model (dashed) are shown in 9.2a for 100 simulated Weibull (10,1.3) variables. NLH plots 
of Type B for the same data are shown in 9.2b. 

EXAMPLE 9.3. IUD EXPULSION AND REMOVAL DATA. These data are from Peterson (1975) 
and are the experience of a sample of 100 women using an experimental intrauterine contraceptive 
device (IUD). There are several competing risks in this experiment, and following Aalen's 1982 
analysis we have focused on two: unplanned removal and expulsion of the IUD. Most of the re­
movals were planned, leading to heavy censoring. A plot of the Nelson-Aalen estimator of the two 
cumulative hazards are given in figure 9.3a. The cumulative hazard for unplanned removal appears 
to be linear, and that for expulsion appears to increase logarithmically. This suggests an exponen­
tial model for removals and a simple frailty model for expulsions. The NLH plots for unplanned 
removal are given in figure 9.3b and show good agreement with the model. Figure 9.3c, comparing 
the IUD expulsions with the simple frailty model, shows close agreement. The dramatic step in the 
model at a time of one year is due to the planned removal of IUDs (censoring) in a large proportion 
of the remaining women at this time. Our conclusions agree with more informal analysis by Aalen 
(1982). 

FIGURE 9.3. Nelson-Aalen estimators for the cumulative hazard rates for expulsion (dot­
ted line) and unplanned removal (line) are shown in 9.3a. NLH plots for constant hazard 
rate are given in 9.3b for unplanned removal and for the simple frailty model of 3.5 in 9.3c 
for expulsion. As in figures 9.1 and 9.2 the A plots are with a line and the B plots are 
dashed. In both cases there is close agreement with the model. 
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EXAMPLE 9.4. GOMPERTZ MORTALITY RATES FOR FYN DIABETICS. ABGK (example 1.3.2 
and later on) discuss several aspects of data that have been obtained by Green et al. (1981) on 
the mortality for 716 women and 783 men suffering from insulin-dependent diabetes mellitus in 
the Danish county of Fyn. We have got the full data set from Andersen and Borgan (personal 
communication). The life-times are partly right-censored since the study was finished 1 January 
1982, and also partly left-truncated, since only persons alive by 1 July 1973 could enter the study. 
Although the traditional framework of sections 2 and 3 is too narrow our methods still work, as 
explained in section 6, with Y(8) of the form L,:j=1 I{t; ~ 8 > v;}, where v; denotes entry age and 
t; is exit age (age of death if death occurred before 01.01.1982 and age at this date otherwise). 

ABGK consider the women group of this example in some depth in their chapter VI, and 
we shall complement their analysis by studying the fit of the time-continuous Gompertz model 
h( 8) = (} exp(/38) for the mortality rate. The data are only given in whole years, and there are ties, 
so we shall in fact use the time-discrete machinery outlined in section 7. There are Yi women alive 
and diagnosed with diabetes when entering year interval [i, i + 1), and ll.Ni of these die during 
this year, where i = 1, 2, ... , 98. This framework is slightly more precise, presumably, given the 
grouped data, although the time-continuous apparatus also is acceptable here as an approximation, 
since the time intervals are relatively short (ABGK use time-continuous techniques). The hazard 
for the ith year interval is 

hi( 0,/3) = F[i, i + 1)/ F[i, oo) = 1 - exp{ -H[i, i + 1)} = 1 - exp [ -( (} / /3)( eCi+l)J3 - ei.B)]. (9.1) 

ML estimates 0.957/103 (0.317 /103 ) and 61.110/103 ( 4.668/103 ) for (} and f3 were found by a 
Newton-Raphson algorithm (estimated standard deviations in parentheses). ABGK use an alter­
native parametrisation bc•-60 and finds (p. 413) 0.0199 and 1.066 for b and c using a likelihood 
appropriate to time-continuous data; our values give instead 0.0203 and 1.063. Using our ML 
estimates we can display nonparametric versus parametric estimates of cumulative hazards, and 
thereby produce a close relative of figure IV.3.5 in ABGK, but perhaps with even better fit for age 
~ 80 years. 

FIGURE 9.4. Time-discreteNLH plots of Type A (connected dots) and Type B (connected 
plusses) for the Gompertz model are shown for the group of 716 women in 9 .4a and for 
the 783 men in 9.4b. In both cases there is close agreement with the model. NLH plots to 
compare the mortality rate for men with diabetes with the estimated Gompertz mortality 
rate for women with diabetes are given in 9.4c, and shows that the mortality rate for men 
is higher. 

The A and B plots to assess the validity of the Gompertz model, or strictly speaking rather 
the inherited model (9.1) for yearly hazards, are shown in figure 9.4a, and are a convincing show of 
support for the model. We note that ABGK were able to detect a certain unexplained departure 
from the Gompertz model using a Khmaladze test (see their example VI.3.9). This difference in 
opinion might partly stem from their use of time-continuous machinery and perhaps partly from 
their use of aT value at the very end of the time scale (note their discussion of this "very delicate 
matter" on p. 466). To indicate the time-discreteness the A plot is shown with yearly dots. A similar 
analysis was carried out for the men group (not similarly analysed in ABGK). ML estimates (again 
using the time-discrete likelihood) are 1.097/103 (0.314/103 ) and 64.809/103 ( 4.390/103 ) for(} and 
/3. This translates to 0.028 and 1.067 forb and c. The A and B plots for this group are given in 
9.4b. We conclude that both men and women of Fyn look perfectly Gompertzian to us. To show 
that men and women are different we have also included a Type A plot to assess the hypothesis 
that the men have the hazard rates hi = hi,o as specified by (9.1) with parameter estimates from 
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the women stratum. In this fully specified case the variance expression (7.4} simplifies by losing its 
second term, cf. 3.1. 

EXAMPLE 9.5. PARAMETRIC COX REGRESSION FOR DANISH MELANOMA SURVIVAL DATA. 

This data set, though with fewer variables, was analysed extensively in ABGK. The full set has 
been given us by Andersen and Borgan (personal communication). They relate to 205 patients 
who had a particular operation to remove malignant melanoma (a form of skin cancer) in Odense, 
Denmark in the period 1962-77. Various risk factors were recorded at the time of the operation. 
The patients were observed until 1977, and the time (in days) until they died of melanoma was 
recorded. Patients dead of other causes or still alive in 1977 are treated as censored observations. 

One of the analyses performed by ABGK was a semiparametric Cox regression. The estimated 
baseline cumulative hazard appeared fairly nearly linear, leading us to select these data for a 
parametric analysis with constant baseline hazard. We used the 'Poisson error trick' of Aitkin and 
Clayton (1980} to fit the model as a generalised linear model with Poisson error and log link. ABGK 
used thickness of the tumour (in mm} and sex of the patient as covariates, and our data set has a 
further three: the layer of skin to which the tumour penetrated (coded 1 to 4), presence of ulceration 
on the tumour, and presence of a certain type of cell ( epithelioide cells) in the tumour. Men had a 
higher hazard than women, and the actions of the other variables were all in the directions which 
would be expected. In the parlance of generalised linear models the deviance of the resulting model 
was 187.1 on 198 degrees of freedom (null deviance was 232.1 on 204 df}, giving an acceptable 
fit. A measure of the effect of a variable z is the range of values of {3z, which measures how much 
deviation from uniform hazard is attributable to this variable. The variables with the highest values 
of Var(f3izi}, and so associated with the greatest variation in hazard, were 'presence of ulceration' 
and 'skin layer penetrated'. 

The NLH plots of this exponential regression model show the expected relationship between 
the exponential and regression model plots. In the type B plot, figure 9.5b, the curve for the 
exponential model lies above that for the regression model, and in the Type A plot, figure 9.5a, the 
curves cross as expected, cf. remarks at the end of section 5. The plots do not, however, indicate a 
better fit from the regression model. This calls into question the assumption of constant baseline 
hazard over the whole time period. Looking at the data we find that are no deaths from melanoma 
after about 9 years, and fewer than would be expected in the first two years. The sparse nature of 
the data after 9 years means that the estimated variance is very high and so the NLH-plots only 
show the initial dip in hazard. The nonparametric variance estimates are not as sensitive to the 
spacing of points and should work better at the end of the time interval, and in fact figure 9.5c 
shows that they allow the exponential model to be rejected by a Type A plot. 

Figure 9.5d displays an estimate of the baseline hazard for a semiparametric Cox model fitted 
to these data. The hazard is estimated by kernel smoothing J b-1K(h-1(s- t)) dH0(t) of the 
estimated cumulative hazard given in 8G. The kernel function chosen is K(z) = 1: (1- 8z2 + 16z4 ) 

on [-t, tJ, since it is the simplest one obeying the natural requirements of being a symmetric 
unimodal probability density with existing derivatives zero at ± t (the hazard estimate will not have 
a continuous derivative without the last requirement, which is why we avoided the Yepanechnikov 
kernel). We have worked out some theory for cross validation and for adaptive smoothing and 
also experimented with orthogonal expansion estimators. A uniform bandwidth value of 4 years 
was found to be satisfactory. An estimate for times near zero was achieved by augmenting the 
observed points t1, t2, ... with 'reflected' points -t1, -t2, ... , following a boundary technique for 
density estimation, see for example Scott (1992, section 6.2.3.5}. This allows estimation of the 
baseline hazard down to s = 0 but constrains it to have zero derivative at s = 0. 
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The plots we have given show that the constant baseline hazard suggested by the cumulative 
hazard plot cannot be justified under closer examination. We also mention that ABGK (example 
Vll.3.1) as well as Murphy (1993) have pointed to some problems with the proportional hazards 
assumptions for these data. It should be noted, however, that a semiparametric Cox model that 
was fitted in order to produce figure 9.5d gave almost identical coefficient estimates and overall 
significance level, suggesting that the conclusions in this case are not very sensitive to assumptions 
made in the analysis. 

FIGURE 9.5. NLH-plots of Type A and B are in respectively 9.5a and 9.5b for the 
parametric Cox regression model (dashed lines) and the homogeneous exponential model 
(solid line). In 9.5c an A plot for the homogeneous exponential model is given, suggesting 
that the true hazard is lower at the beginning and at the end of the time interval. Figure 
9.5d gives a kernel smoothed estimate of the baseline hazard in a semiparametric Cox 
model for the melanoma data. 

EXAMPLE 9.6. TIME-DISCRETE FOUR-PARAMETER HETEROGENEITY MODEL FOR THE TIME 

TO NEXT BIRTH. Data have been extracted from the Norwegian Medical Birth Registry by 0. Aalen 
and B. Sandstad to find the time to next birth for young women experiencing a stillbirth. The 
data set consists of all the 451 Norwegian women who had their first birth during 1967 to 1971, 
who were at the time of this birth below 25 years of age and married, and for whom the child 
was stillborn. We have got the data from Aalen (personal communication). Aalen (1992) discusses 
this data set and fits a four-parameter frailty model: woman j is thought of as having 'hazard' or 
intensity rate Z;A(t), where A(t) is a Weibull starting after nine months, while the distribution of 
the Z;s among the women is thought to have a certain compound Poisson distribution. The result 
is as in (3.12), with 

A(t) = a(t- 9/12)1e and A(t) = a(t- 9/12)k+1 /(k + 1), fort ~ 9/12. (9.2) 

The data are only collected time-discretely, however, so we cannot produce NLH plots to test (9.2) 
directly. There are 24 time intervals of variable lengths, starting with (9/12, 10/12), (10/12, 11/12) 
and ending with (12, 13), (13, 15) (years). Letting the ith time interval be (ti,r, ti,r) the number Yi 
of women having not yet given birth after the stillbirth when entering this time interval is known, 
as is the number !l.Ni of these that then give birth within this interval. The hazard rate for the 
ith interval is 

hi = hi(a, k, a, 6) = 1- exp[-{H(ti,r, a, k, a, 6)- H(ti,l, a, k, a, 6)}], {9.3) 

with the H (.) function as in ( 3.12 ), and the log-likelihood is l:;!1 { !l.Ni log hi + (Yi - !l.Ni) log( 1 -
hi)}. We wrote a Newton-Raphson programme in S-Plus to find ML estimates 5.141 (1.600) for 
a, 1.152 (0.193) for k, 1.305 (0.114) for a, and 1.551 (0.315) for 6. This required lengthy partial 
derivatives calculations. The numbers in parentheses are the estimated standard errors, obtained 
from :E-1 fn and (7.2). The a value is incorrectly given in Aalen (1992), but his plots showing 
a quite good agreement between model and data are correct. (He also estimated the standard 
errors differently.) In figure 9.6 the time-discrete normalised hazard difference -/ii{!l.Ni/Yi -
hi(a, k, a, 5)}jwi is plotted against the midpoints of the time intervals, see (7.5). The plot indicates 
a very good fit. Similarly the three-parameter model where k = 1, corresponding to a linearly 
increasing individual intensity rate, would also give a quite accurate fit. 

Of course these three- and four-parameter classes are quite rich and one should not overstate 
this particular probabilistical explanation of .Nature. It is nevertheless an attractive model with a 
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natural socio-biological interpretation and an impressive fit. Note that each woman has a steadily 
increasing intensity rate for giving birth a second time (up to 40 years of age). A feature of the 
model is also that a certain proportion of the women, namely exp(- a~1 5) and here estimated to 
be 6.4%, will never have the second birth. 

FIGURE 9.6. Time-discrete normalised hazard difference plot assessing the compound 
Poisson heterogeneity model for the time to next birth following stillbirth for 451 young 
Norwegian women. 

Appendix: 5-Plus procedures. A package of 5-Plus procedures has been produced to 
produce the Type A and Type B plots and to perform the necessary parameter estimation for the 
exponential, Weibull, Gompertz, simple frailty and exponential (Cox) regression models. These 
procedures were used to produce the plots in this paper, and are available by electronic mail from 
either of the authors upon receipt of an ethnic postcard. 

The package consists of a single function for the user to call that then sorts the data and calls 
separate procedures to compute the appropriate maximum likelihood parameter estimates and 
calculate and draw all the requested plots. The parameter estimates and approximate standard 
deviations are also reported. 

These procedures calculate the normalised local hazards only at times when cases are observed, 
and interpolates linearly between these points. This does not change the asymptotic behaviour of 
the plots, but saves computation and produces smoother pictures for small samples. The parameter 
estimates use a variety of methods. There is an explicit formula for the exponential model. The 
exponential regression model can be rewritten as a generalised linear model using the Poisson error 
trick explained for example in Aitkin and Clayton (1980), and is then fitted using the glm procedure 
in 5-Plus. The other models are fitted by direct numerical maximisation of the log-likelihood. The 
variance-covariance matrix of the parameter estimates is approximated by :E-1 /n, with the same 
matrix :E-1 as is used in calculating the plots. The calculations for the plots are carried out entirely 
within 5-Plus, rather than using C or FORTRAN routines. While 5-Plus procedures are easier 
to write, debug and extend than C or FORTRAN, they can be much slower; a plot for 500 cases 
can take a couple of minutes. 

It should be a straightforward exercise to extend the procedures to compute different NLH 
plots, once the correct formulae are derived. The only significant complications arise from the 
structure of 5-Plus. While there are efficient commands for manipulating matrices, vectors and 
lists as single objects, loops to manipulate components of these structures can run very slowly. For 
this reason, the integrals required in the plots are calculated by first working out the increments 
between successive time points and then taking cumulative sums of these increments. If other 
systems were used instead of 5-Plus, it would probably be easiest to use the simpler finite-sum 
expressions. 

Acknowledgements. We are grateful to Odd Aalen, 0mulf Borgan and Per Kragh Andersen 
for giving us copies of various data sets with necessary explanations, for permission to use them, 
and for their interest. This work was carried out while the first author was visiting Oxford with a 
grant from the Royal Norwegian Research Council. 

References 

Aitkin, M. and Clayton, D.G. {1980). The fitting of exponential, Weibull and extreme value 
distributions to complex censored survival data using GLIM. Applied Statistics 29, 156-163. 

NLH plots 24 May 1993 



Andersen, P.K., Borgan, 0., Gill, R.D., and Keiding, N. (1993). Statistical Models Based on 
Counting Processes. Springer-Verlag, New York. 

Arulchelvam, M. (1992). Some topics pertaining to parametric survival data models. Cand. Sci­
ent. thesis, Department of Mathematics and Statistics, University of Oslo. 

Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, London. 

Durbin (1973). Distribution Theory for Tests Based on the Sample Distribution Function. SIAM, 
Philadelphia. 

Green, A., Hauge, M., Holm, N.V. and Rasch, L.L. (1981). Epidemiological studies of diabetes 
mellitus in Denmark. IT. A prevalence study based on insulin prescriptions. Diabetologia 20, 
468-470. 

Hjort, N.L. (1985). Contribution to the discussion of Andersen and Borgan's 'Counting process 
models for life history data: a review'. Scandinavian Journal of Statistics 12, 141-150. 

Hjort, N.L. (1990). Goodness of fit tests in models for life history data based on cumulative hazard 
rates. Annals of Statistics 18, 1221-1258. 

Hjort, N.L. (1991). Semiparametric estimation of parametric hazard rates. In Survival Analysis: 
State of the Art, Kluwer, Dordrecht, pp. 211-236. Proceedings of the NATO Advanced Study 
Workshop on Survival Analysis and Related Topics, Columbus, Ohio, eds. P.S. Goel and 
J.P. Klein. 

Hjort, N.L. (1992). On inference in parametric survival data models. International Statistical 
Review 60, 355-387. 

Hjort, N.L. (1993a). Dynamic likelihood hazard rate estimation. Submitted for publication. 

Hjort, N.L. (1993b ). Efficiency of three estimators in Aalen's linear hazard rate regression model. 
Submitted for publication. 

Hjort, N.L. and Pollard, D.B. (1993). Asymptotics for minimisers of convex processes. Submitted 
for publication. 

Koning, A. (1991). Stochastic integrals and goodness-of-fit tests. Proefschrift ter verkrijging van 
de graad van doctor, Universiteit Twente. 

Miller, R.G. and Siegmund, D. (1982). Maximally selected chi-square statistics. Biometrics 38, 
1011-1016. 

Murphy, S.A. (1993). Testing for a time dependent coefficient in Cox's regression model. Scandi­
navian Journal of Statistics 20, 35-50. 

Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data. Techno­
metrics 14, 945-965. 

Peterson, A. V. (1975). Nonparametric estimation in the competing risks problem. PhD thesis, 
Department of Statistics, Stanford University. 

Pollard, D.B. (1984). Convergence of Stochastic Processes. Springer-Verlag, New York. 

Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, 
New York. 

Aalen, 0.0. (1982). Practical applications of the non-parametric statistical theory for counting 
processes. Statistical Research Report, Department of Mathematics and Statistics, University 
of Oslo. 

Aalen, 0.0. {1989). A linear regression model for the analysis of life times. Statistics in Medicine 
8, 907-925. 

Aalen, 0.0. (1992). Modelling heterogeneity in survival analysis by the compound Poisson distri­
bution. Annals of Applied Probability 2, 951-972. 

Hjort and Lumley 25 May 1993 



"E 
ro 
N 
ro 
..c 
ro 
() 
0 

"0 
()) 
en 
ro 
E 
:1..... 

0 
c 

1 2 

r--, 
/ ' 

' I ' ',' ', 
' ' ' ' 

time 

?. I. (,\ . 

' ' ' ' ' ' ' ' 

4 

' ' ' ' ' ' ' ' ' 

5 



"E 
ctS 
N 
ctS 
..c 
ctS 
(.) 
0 

"0 
Q) 
en 
ctS 
E ,_ 
0~ c i 

0.0 0.5 1.0 1.5 2.0 
time 



r---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1 ' 

~--1 

co 
.c 0-i 
c 

~--1 
I I 

~ 
II 
I I 

• I I 
Ill I ' 

I I\ 
I 1 I I 
11 I 1 I I 

1111 I 

1[ 11 \ I 
1 II I 
"V 

1\ 

,...- \ 
J \ 

I I \ 
I I I I\ 1 \ 

L I I I I I 1 
"I II I I 
h t I I I 
I I I 
I I 
I J 

I\ 
I I 
I I 

I 
I 

\ 
\ 
\ 
\ 
\ 
\ 

\ " ,, ' 
-J 

I 
I 

I 
I 

"' 

I' 

I '' 
I ' 

I ' 
I ' 
I ', 

I ' 
I ' 
I ' 

" ... .., " 
" " " 

L-----y>•·----------------- -----------------------.. ------------------------------------------.-------------------------------------------,.----------------------- • •---- •---- • • 
I I I I 

o:o o: 1 o:2 o:3 
time 



r---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1 
C\J--1 

..c 

..c 

T'"""" 

0-

c T'"" __ 
I 

C\1.-
1 

C')__ 
I 

..;t __ 
I 

I 

I, ,, • I : 

II I I II I" 
I I ~I I II I 

1\: I I~ II I I 
I I I I I I I 

I II I II 
I I I I \1 
111 I I I 
, I ~I I I 

\Ill I I 
11 I I 
' II I I 

1'1 
1111 

v 

.J 

I 
I 

,, 
,/ \ 

' I 
I 
I 
I 
I II I 

""' I ''\ I 
1 I 1 I 
I I I I 
tl \ I 
1 1 I 

I I 

"' 

~ 

I \ 
I \ 

' ' ' ' .... 
\ 

"' .... .... , 
,.-' 

I 

I' .... 
I ' 

I ', 
I ', 

I ', 
I ' 
I ', 

' ' ' ' ' 
' I 'J 

L--a :a ------------------------------------a:1·------------------------------------a:2·------------------------------------a: 3·---------------------------------

time 



lO 

a 

CD a ca 
Ec:::i 
~ 
(]) 

"0 
i...LC) 
co~ N . 
coo 
..c 
(]) 

> 
~a - ~ :::J • 
EO 
:::J 
(.) 

lO 

a 

a 
a 

------------------·-------------------------------------­
r·----·------------ __ , 

r·-----• . 
r-------~ 

.. 
I 

.. 
., ___ , 

1 0 2 0 3 0 
time since IUD implanted (days) 

4 0 5 0 



"E ca 
N ca 

..c 
ca 
(.) 
0 

"'0 
Q) 
(J) 

ca 
E 
lo-

0~ 
C I 

1 0 2 0 3 0 4 0 5 0 
time since IUD implanted (days) 



"E 
co 
N co 
.c 
co 
u 
0 

"0 
Q) 
rn 
co 
E~ 
11.... 

0 
c 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

----- -----

\ 
\ 

\ 
\ 
\ 

------------------------------------------------------------------------------------------------------------ ---~-- -------------------------------------------------------

1 0 2 0 3 0 

\ 
\ 
\ 

time since IUD implanted (days) 
4 0 5 0 



"0 
llo... co 
N co 
..c 
co 
(.) 
0 

"0 
Q) 
CJ) 

co 
E 
llo... 

0 
c 

-----------------------------------------------------------------;------------------------------------------------------------------~rr·;~--------;.~---------------

i\ ,. k ·~ i : 

I \ t ,.. 1 ·\+\ t \ 
: ++\ \i \ 
: \ : + • \; \ 
I It \ '• + : + ., • + • I 

i ,-._ • + + :. { \ 1\ \ 
..•••..• ,,::··· ~ ~ Jj \1 \.:~~\ /\ ,~ .\/. .\ + ..... 

+ + • • • j •* ... ., I \ . + • •• • \ • . • : 
+ + •• .:t +,• .~. l '\ . : : 

+ + .! +, ! + •• : ~ ! ~ .. :, t 1 . \ 
+ : + ·. : ":\ "';\ . .•. \ 
+: +_.f l· ·, .: \· ,•, I+ \i + ~ 

+ + : • ,: :. •: + :: 
~ + • : ~ + : :: 
!.· ~ : ~ ,' ·. i • ::. 

. . . . . . . . . . . . . ... . . . . . . . ... . . . . . . . . . ... . . .. .. . ............................................ ~.\L .... -~. -~.. .. . . .. . . . ... . ... . . . . . . . . .. . .. . . . . . . ...... -\]. . ... . 

• 

20 40 60 80 
age (years) 



"E co 
N 
CO . 
..c 
co 
0 
0 

"0 
Q) 
en 
co 
E 
11... 

0 
c 

20 40 60 80 1 0 
age (years) 



-.:::1" 

"E 
ctS 
N 
ctS 
.c 
ctS 
() 
0 

"0 
Q) 
en 
ctS 
E 
J.... 

0 
c 

++ +++++++ 
++ 

+ ++++./ 
+.+ 

i •• \ •• \ +1' .. \.• .I· .. 
/:j. \ .\ 

+ + I . . : . . . : . 
+ /+ ... r .\ 

++ . + : • : I • 1: •• •• 
+ + + \ +++ + + I \ + . "++ •. ; \ +++ • 

--------------------------------------------------------------------j--~-------~~.;;~-----;:i..----------l---f-----------------------------------------~~---;-------------
. + •••• • I 

+ •• •• \ . \ . 
e e I e . .· \ ,• , ..... . 

:+; + •• • 
: . . .' 

++ ++ • 
++ I 

•••••••• • •• • t;···· + ; •••• 
++ ••• ,... --~ 

++ •: + ........ ~ 
++ i + . +. + +: 

+ +: ·+ 
+ 

20 40 60 80 
age (years) 

1 0 



"E 
ctS 
N 
ctS 
..c 
ctS 
() 
0 

"'0 
Q) 
C/) 

ctS 
E 
L... 

0~ 
C I 

-------

5 10 15 
time since operation (years) 



"E 
ctS 
N 
ctS 
..c 

ctS 
(.) 
0 

"'0 
Q) 
(/) 

ctl 
E 
11... 

0~ 
C I 

"' I 1\ I\ r 
1 \ ~r 
I ~ 

I'~ 
I 

A ~~ 
""\ I \, ~J 

~ I' "" I 
I ---------v----------\J---------------------------------------------------------------------------------------------------------------------------------------------------

5 10 15 
time since operation (years) 



"E ca 
N ca 

..C I 

ca 
() 
0 

"0 
ID...;;t 
.~ I 

ca 
E 
lo... 

0 
c 

5 10 15 
time since operation (years) 



Q) 

ca 

0 

co 
0 

lo...<O 

"0 
lo... • 

ctSO 
N 
ctS 
.c 
"0 
Q) 

ca~ 
E . 
·- 0 -Cl) 
Q) 

C\1 

0 

0 
0 

5 10 15 
time since operation (years) 



"'0 
"-
ctS 
N 
ctS 
..c 
ctS 
(.) 
0 

"'0 
Q) 
en 
ctS 
E 
"-
0~ 
C I 

• ------------------------------------------/ ---------------------------------------------------------------------------------------------------------------------------

• ... 
• 

• 

I • 
• 

• 

• 

• 

2 

• 

4 

• 

• 

\ 
• 

• 

10 
time until next birth (years) 

12 14 


