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STOCHASTIC ORDERS AND COMPARISON 
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Erik Torgersen 
University of Oslo 

Abstract 
Exploring criteria for majorization, exact and approximate, univariate and 
multivariate, we relate them to criteria for information orderings of statistical 
experiments. After having provided some of the basic criteria for comparison 
of experiments we observe their straight forward generalizations to general 
families of measures. Thus LeCam's randomization criterion extends to a cri­
terion for comparison of families of measures. Reversing the randomizations 
we obtain dilation like kernels mapping densities, exactly or approximately, 
into densities. 

Using this we derive criteria for comparison of measures in terms of inte­
grals of given functions. In particular we obtain well-known criteria for one 
measure being a dilation of another measure and for stochastic orderings of 
distributions on partially ordered sets. 

Experiments having two point paramters sets, i.e. dichotomies, enjoy a va­
riety of striking properties which are not shared by experiments in general. 
Dichotomies may be studied in terms of their Neyman-Pearson functions 
which are functions describing the relationships between the probabilities 
of errors of the two kinds for most powerful tests. These functions are the 
inverses of the Lorenz functions of econometrics. Observing this we read­
ily obtain various criteria for one distribution being approximately Lorenz 
maj orized by another. 

Introduction. Majorization and 
of experiments. 

• comparison 

The purpose of this paper is to discuss relationships between developments within the 
theory of comparison of statistical experiments on the one hand and various notions of 
"stochastic" orders on the other. As we shall see the theory of comparison of experiments 
not only throw light on standard notions of stochastic order but also provides interesting 
generalizations of well-known results. 

The paper provides the required results from the theory of statistical experiments. 
However proofs are often incomplete. IT the reader wants more background then he or 
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The inequality for r = 1 is, by the first condition, necessarily an equality. 

(iii) Ei(Pi- c)+ ~Ei(qi- c)+; cER. 

(iv) Ei(Pi- ct ~Ei(qi- ct; cER. 

(v) liP- cell1 ~ llq- cell1; cER. 

(vi) Ei g(pi) ~Ei g(qi); when g is convex on R. 

(vii) c.p(p) ~ c.p(q) when c.p is quasiconvex and permutation symmetric on Rd. 

(viii) q = Mp for a dxd doubly stochastic matrix M. 

(ix) q E< {1r(p) : 1r E II} > where <> denotes convex hull and II is the group of 
coordinate permutations on Rd. 

(x) AP ~ Aq. 

(xi) f3P (a) ~ /3q (a); 0:::; a :::; 1. 

(xii) (e~d)M = (e~d) for a (necessarily doubly stochastic) dxd Markov matrix M. 

(xiii) The empirical distribution function based on the observations Pb ... ,Pd is a 
dilation of the empirical distribution function based on the observations q1, ... , qd. 

H p and q are probability vectors then these conditions are equivalent with 

Remark. Criteria (i)-(ix) are well-known and may be found in e.g. Marshall and 
Olkin (1979). The other criteria are not so well-known. Criteria (x)-(xii) and (xiv) are 
discussed in Dahl (1983). 

Criterion (xiv) is only stated for probability vectors p and q. This restriction does 
not however amount to much. Indeed if c E R and t > 0 then p >- q if and only if 
f(p-ce) >- f(q- ce). If l:Pi =E qi then the last vectors are probability vectors provided 
c < min(P(l), q(I)) and t = l:i(Pi- c). 

If the vectors p and q are probability vectors in Rd then several of the criteria of the 
theorem have interesting interpretations in terms of statistical decision theory. 

Consider a statistical model obtained by observing a random variable X whose dis­
tribution Pe depends on an unknown parameter fJ. Assume for the moment that we 
know that fJ is one of the numbers 0 and 1 and that X is one of the numbers 1, 2, ... , d. 
Assume also that X is uniformly distributed when fJ = 0 while the distribution of X is 
given by the probability vector p when f)= 1. In other words: 
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t2 ~ t1 ~ 0 then we may choose u2 = v2 = 0, u1 = t1 and v1 = t 2 and we arrive at the 
same conclusion by reparametrization. For a model (efd,p) reparametrization amounts 
here to replacing it with the reversed model (p, efd). 

Generalizing this idea we see that p ~ q for probability vectors p and q in Rd provided 
the fraction qi/pi is monotonically increasing in Pi as long as this fraction is defined i.e. as 
long as Pi+ qi > 0. Indeed then the experiment ( efd,p, q) has monotonically inccreasing 
likelihood ratio in Pi and thus the dichotomy (e/d,p) is at most as informative as the 
dichotomy ( e / d, q). 

Two weaker concepts of majorization are those of weak sub majorization and of weak 
super majorization. Also these concepts fit nicely into a decision theoretial framework. 
Before discussing that however we shall find it convenient to consider approximate ma­
jorization. 

Recall the notation llxll1 = :L:f=1 lxil for a vector x E Rd. The notation reflects that 
llxll1 is the L1 norm of x based on the counting distribution on subsets of {1, ... , d}. 

Considering two vectors p and q in Rd and a constant E 2:: 0 we shall say that p E­
majorizes q if p majorizes a vector ij such that llii- qll1 ~E. Thus p majorizes q if and 
only if p 0-majorizes q. On the other hand p E-majorizes q whenever E2:: liP- qll1· 

Again there is a variety of equivalent conditions. 
Before deriving the analogs of the criteria listed in Theorem 1.1 let us note some 

reformulations of E-majorization. Observe first that p E-majorizes q if and only if q 
admits a decomposition q = ij + v where ij -< p while llvll1 ~ E. It follows that the 
support function of the convex set consisting of vectors q which is E-majorized by p is 
a---+ V1r :L:f=1 a1r(i)Pi+EVf=1lail where 1r runs through the permutation group on {1, ... , n }. 

Hence q is E-majorized by p if and only if (q,a) ~ Y1r(rr(a),p) + E Vi laili a E Rd where 
rr( a) = ( a1r(i)l· .. , a1r(d)). 

Observe next that it suffices to consider vectors a such that Vilail~l. Furthermore a 
vector a satisfies this condition if and ony if it is of the form 2b- e where 0 ~ bi ~ 1; i = 
1, ... , d. Thus q is E-majorized by p if and only if V1r( rr(b ),p) 2:: (b, q) - ! Li(qi -Pi) -
E/2; 0 ~ b ~e. Now the set of extreme points of the order interval [0, e] consists precisely 
of the vectors b whose coordinates are 0 or 1. 

It follows that q is E-majorized by p if and only if V1r(rr(b),p)2::(V1r(rr(b),q) 
-! L:(qi- Pi)- E/2 for all vectorsb whose coordinates are 0 or 1. By Neyman-Pearson's 
lemma this amounts to the condition that :L:f=r P(i) 2:: :L:f=r q(i)- ~(:L:f= 1 (qi-Pi))- E/2; r= 
1, ... , d + 1 where we put :L:f=d+I = 0. 

H d 2::2 then the last condition may, as observed by Dahl (1983) when LPi = I: qi, 
be reduced to 0-majorization (i.e. majorization) since it expresses that pE :>- q where: 

Pi = P(I) - ~ E + ~ ~ ( qi -Pi) 
' 

P~ =P(i)i i=1, ... ,d-1 

and 
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Remark 1 Dahl (1983) established the equivalence of conditions (i)-(xii) and (xiv) 
when LPi =I: qi. 

Remark 2 By the terminology of Torgersen (1985) these conditions amount to the 
condition that the measure pair ( ejd,p) is (0, €) deficient w.r.t. the measure pair ( ef d, q). 
The equivalence of the conditions above follows then from the general theory of measure 
familes. It may however be instructive first to consider the direct proof given here. 

Proof: We have observed above that conditions (it)-(ii2) were all equivalent. By 
theorem 1.1 these conditions are also equivalent with conditions (viii), (ix) and (xii). 

If (it) holds then llq- §'lh::::; € for a vector q such that p >- q. Then llq-cellt -llp-celh ::::; 
llq-cellt- 11§'-celh ::::; llq-§'llt ::::; €. Thus (h) :::;.(v). Furthermore, by the identities 
z± =Hz± lzl), conditions (iii) and (iv) are both equivalent with condition (v). 

If condition (vi1 ) holds and if the convex function g is such that the quantities 
g' ( ±oo) = limx-+±oo g' ( x) are finite then we may replace g in the inequality in (vi) with 
the function x --+ g( x) - ! [g' ( -oo) + g' ( oo ))x. This shows that the inequality in ( vi2) 
holds for g. 

Applying (vi2) to g(x) = (x- ce)+ we see that (iii) holds. Letting c--+ ±oo in (iii) 
we find that I I: Pi - I: qi I ::::; €. If so and if ( vh) holds for g then 

~[g'(-oo) + g(oo)]t(qi- Pi)+ ~[g'(oo)- g'(-oo))€ 
•=1 

is between g'( oo )€ and -g'( -oo )€. Thus (vi2) implies that the inequality in (vi1 ) holds 
when the quantities g' ( ±oo) are finite. If, however, one of the quantities g' ( ±oo) are 
infinite then (vi) is trivial for g unless € = 0. By the above observation (vh) ::;.(iii) and 
(iii) amounts, by Theorem 1.1, to the condition that p>-q when €=0. Thus, by theorem 
1.1 again, (vi2) implies (vi1) in any case. This shows that conditions (vh) and (vi2) are 
equivalent and that these conditions imply conditions (iii)-(v). On the other hand if (iii) 
holds then condition (vi2) holds whenever g is of the form g(x)=l(x) + L:i=t bi(x- ti)+ 
where l is linear and b1 , ... , bs ~ 0. Any polygonal convex function g is of this form and 
thus (vi2) follows by approximation. Altogether this shows that conditions (iii)-(vi2) are 
equivalent. 

Note next that the support function of the planar convex set Ax= {1/d(81 + ... + 
8d),L:f=t8ixi): 0::::; 8::::; e} is e,ry)--+ Li(e/d + 'f/Xi)+ while the support function of the 
segment {0} x [-E/2, E/2) is (e, ry)--+ !l'fll€. Thus condition (x) may be expressed: 

1 1 
2;:('f!Pi + e/d)+ + 21"11€ + 2"1 2;:(qi- Pi) ~ 2;:( ryqi + e/d)+; e, 'f/ E R. 

t ' ' 
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Corollary 1.4 (Weak majorization). 
Let p and q be vectors in Rd. Then: 

(i) p weakly sub majorizes q if and only if e = Ei Pi - Ei qi ~ 0 and p e-majorizes q. 

(ii) p weakly super majorizes q if and only if e = l:i qi- l:i Pi ~ 0 and p e-majorizes q. 

Thus theorem 1.3 furnishes equivalent criteria for weak majorization. 

Remark By Torgersen (1985) these concepts of weak majorization extend naturally 
to general measure familes. 

Theorem 1.3 provides several expressions for the smallest quantity e such that p e­
majorizes q. Denoting this quantity by 8(p, q) we obtain from criteria (iit), (v) and 
(xi) the expressions: 

d+l 

8(p, q) v 2[ L (%)- P(i))- L(qi- Pi)] 

- V [ llq-celh -llp-celll] 
c 

2 V [/1q(a)- /1p(a)- L(qi-Pi)] 
O$a$1 

Trivially 0 $ 8(p, q) $ llp-qll1 and 8(p, q) = 0 if and only if p majorizes q. 
Furthermore 8(p',p"')$8(p',p")+ 8(p",p"') for any three vectors p',p" and p"' in Rd. 
Symmetrizing we obtain the majorization pseudo metric A on Rd which to vectors 

p and q assigns the distance 

~(p, q) max ( 8(p, q), 8(q,p )) 
d+l - v 12 L (%) -P(i))- L(qi-Pi)l 

V lllp-celll - llq-cell1l 
c 

2 V I /1p(a)-j1q(a)- L(Pi-qi)l. 
O$a$1 

Example 1.5 (Majorization between vectors ofpossibly different dimensjons). 
Let p =(PI, ... ,Pm) and q = (q1, ... , qn) be probability vectors in, respectively; Rm and 
Rn. Let also, fork= 1, 2, ... , the probability vector (1/k, ... , 1/k) in Rk be denoted as 
(~ . u . 

By sufficiency the dichotomy ( u(m) ,p) is at least as informative as the dichotomy 
( u(n), q) if and only if the product dichotomy ( u(m) ,p )x( u(n), u(n)) is at least as informative 
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(ii) Ef=l'P(Pt1 (i), ... ,ptr(i)) ~ Ef=1 cp(qt1 (i), ... ,qtr(i)) whenever t1, ... ,tr ET and cp 
is convex on R:. (Actually it suffices to consider functions cp which are maxima of 
at most d linear functionals.) 

(iii) The empirical distribution function Fp based on the observations p. ( 1), ... , p. (d) 
is a dilation of the empirical distribution function F9 based on the observations 
q.(1 ), ... , q.( d). (The observations are all real valued functions on T.) 

Proceeding to €-deficiency, see section 3, this extends as follows: 

Theorem 1.7 {Approximate multivariate majorization). 
Let (Pt : t E T) and ( qt : t E T) be two familes of probability vectors in Rd. 

Consider also a family f = ( Et : t E T) of non negative numbers. Then the following 
conditions are equivalent: 

(i) llqt-MPtlll ~ fti tET for a doubly stochastic matrix M. 

i=l 
d 

~ L ¢(1, qt1 (i), • • • 'qtr(i)) 
i=l 

- ~ ~ [t.(qtv(i)-Ptv(i))(¢(0, ev)-¢(0, -ev))] 
1 r 

-2 L(¢(0, ev)+¢(0, -e11 ))€11 

v=l 
whenever t1 , ... , tr E T and¢ is sublinear on Rr+l. Here e11 = (0, ... 1, ... 0); 
v = 1, ... , r is the v-th unit vector in Rr. 

(iii) The empirical distribution function Fp based on the observations p.(1 ), ... ,p.( d) is a 
(F9 , E/d) dilation of the empirical distribution function F9 based on the observations 
q.(1), ... , q.(d). Here a Markov kernel Dis called a (F9, E) dilation if III XtD(dxly)­
YtiF9(dy) ~ Et when tET. 

The analogous results for infinite populations will be consided in section 5. Before doing 
so however we shall provide some useful tools from decision theory and in particular from 
the theory of statistical experiments. 

2 The framework of decision theory 

A non sequential statistical decision problem is defined by a statistical model ( experi­
ment) along with a loss function defined on some decision space. The problem is to select 
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sup norm. 
As sample spaces also decision spaces come with their measurable subsets. Mathe­

matically a decision space (T, S) is just a measurable space. We shall find it convenient 
to write 11!11 for the supremum norm supt lf(t)l for a real valued function fonT. Con­
sidering the finite decision spaces Tk = {1, ... , k }; k = 1, 2, ... , it is tacitly assumed that 
all sub sets are measurable. 

We shall admit as a possible loss function L on a decision space (T, S) any family 
L = (Le : () E E>) of real valued measurable functions on (T, S). In order to ensure 
existence of expected loss we shall here assume that the functions Le : () E E> are all 
bounded from below. 

Within this set up a decision rule in an experiment & = (X, A; P8 : () E E>) is just a 
Markov kernel from the sample space (X, A) to the decision space (T, S). 

Decision rules, being Markov kernels, transport distributions forwards and functions 
backwards. Thus if p is a decision rule from & to the decision space (T, S) and J-l is a 
finite measure on the sample space (X, A) of & then J-lP is the measure on S assigning 
mass J p( Sl· )dJ-l to a set S in S. It is also convenient to have the notation J-l x p for the 
unique measure on AxS assigning mass fA p(SI·)dJ-l to AxS when AEA and SES. 

The decision rule p transports a bounded measurable function g on (T, S) into the 
bounded measurable function pg = fg(t)p(dtl·) on the sample space of&. 

Assume now that we in addition to the decision rule pare given both a finite measure 
J-l on (x, A) and a bounded measurable function g on (T, S). It is a fundamental fact 
that then the three integrals J gdJ-Lp, f(pg )dJ-l and J gd(J-l x p) are all equal and thus that 
we without ambiguity may write this quantity as J-lP9· 

As a function of the pair (J-L, g) where J-l E L( &) and g is bounded measurable on (T, S) 
the quantity J-Lpg is bilinear and this functional describes pup to equivalence. 

Considering the map J-l--+ 1-"P as a map from the L-space of finite measure on A to 
the L-space of finite measures on S we observe that it is linear, non negative (images of 
non negative elements are non negative) and preserves total masses. A map from one 
L-space to another having these properties is called a transition. Thus the decision rule 
p defines a transition from the L-space L( &) of & into the L-space of bounded additive 
set funtions on S. 

Just as the concept of a bounded random variable also the concept of a decision rule 
is too narrow for many purposes. We shall here admit any transition p from L( &) to the 
L-space ba(T, S) of bounded additive set functions as a generalized decision rule. As the 
class of decision rules (of the Markov kernel type) is dense within the class of generalized 
decision rules for pointwise convergence on L( &)xba(T, S) this is not a dramatic extension. 
Permitting generalized decision rules we are however able to provide smoother statements 
which otherwise would require cumbersome reqularity conditions. 

H the set-functions P8p : () E E> are all a--additive, if (T, S) is Euclidean and if & is 
dominated then the generalized decision rule p is definable in terms of a decision rule 
p from & to (T, S). H p is a generalized decision rule and g is a bounded measurable 
function on (T, S) then pg is the image of g by the conjugate map p*, which also will be 
denoted as p. H in addition J-l E L( &) then the fundamental identity f gdJ-lp = f(pg )dJ-l 
may be expressed as (J-Lp, g) = (p, 1-"9) and again this number is written J-lpg. 
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Theorem 3.1 (Deficiency for k-decision problems). 
Consider the set Tk = {1, 2, ... , k} as a decision space. 

Let € = ( €0 : 8 E 8) be a non negative real valued function on the parameter set 8. 
Then the following conditions are equivalent for experiments £ = (x, A; Po : BE 8) 

and :F = (Y,B: Qo: BE 8): 

(i) Pointwise comparison of risks: 
To each loss function L (family L 0 : BE e of real valued functions on Tk) and each 
decision rule (Markov kernel) a form :F to T corresponds a generalized decision 
rule (transition) p from £ to T so that: 

(ii) Comparison of Bayes risks: 
To each finite subset 8 0 of 8 and to each loss function L (family Lo : BE 8 of 
real valued functions on Tk) and each decision rule (Markov kernel) a from :F to T 
corresponds a decision rule (Markov kernel) p from £to T so that: 

L PopLo :::; L QoaLo + L €oiiLoll 
eo eo eo 

(iii) Comparison of maximum Bayes utilities. The sub linear function criterion: 
f'ljJ(dPo:BE80 )?:.J'I/J(dQo:BE80 )-"£e0 €o['I/J(-e0 )V'IjJ(e0 )] for each finite subset 8o 
of e and for each function '1/J on Reo which is a maximum of k linear functionals. 

B 
Here e0 = (0, ... , 1, ... , 0) denotes the 8-th unit vector in Reo. 

(iv) Comparison of performance functions: 
To each decision rule (Markov kernel) a in :F corresponds a generalized decision 
rule pin £so that: 

Proof: The implications (iv) :::;.(i) :::;.(ii) are all more or less immediate. Replacing the 
loss function L with the utility function U = -L the inequality of (ii) may be written: 

LPopUo?:. LQoaUo- L€oiiUoll· 
~ eo ~ 

Maximizing first w.r.t. p and then w.r.t. a it may be seen that (iii) is essentially a refor­
mulation of (ii). The implication (ii) :::;.(iv) follows, see e.g. Torgersen (1970), by standard 
minimax theory. o 

The theorem is stated in order to make the generalization to general mass distributions 
more or less obvious. Knowing however that the distributions Po and Qo have the same 
total masses the deficiency term 'Le0 €o['I/J(-eo) V '1/J(eo)] in (iii) may be replaced with 
the linear (in '1/J) term ~Leo €o['I/J( -eo) + '1/J( eo)]. Actually we may in this case restrict 
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common measurable space. Doing that the other comments and definitions remain valid 
except that the equivalence induced by the deficiency distance b.2 is no longer the same 
as the equivalences induced by the deficiencies b.3 , b.4 , ••• and b.. The latter are however 
still the same. Of course it may not make much sense of interpreting the orderings 
~I, ~2, ••• and ~ as information orderings. 

We summarize these observations as: 

Theorem 3.3 (Comparison of measure families). 
Theorems 3.1-2 remain valid for general measure families £ = (Po : () E E>) and :F = ( Q o : 
8 E E>) provided they are read as explained above. 

Remark. The sub linear function criterion, condition (iii) of Theorem 3.1, may be 
linearized by adding the requirement that €o ~ IPo(X)- Qo(Y)i; () E E> and then replacing 
the deficiency term Lo€o[~(-e0 )V~(e0 )] by 

1 1 2 L€o[~( -eo)+~( eo)]+ 2 L[Qo(Y)- Po(x)][~( eo)-~( -eo)]. 
0 0 

As remarked before we may then even restrict attention to sub linear functions ~ such 
that ~(-eo) =o ~(eo) and then the deficiency term in both cases reduces to Lo €o~( eo). 

Let us conclude this section by some remarks on functionals of experiments having a 
common finite parameter set E>. 

We observed at the end of the previous section how we might construct an integral 
h(£) = fh(dPo : 8 E E>) for an experiment £ = (Po : () E E>) and for a homogeneous 
measurable function on [0, oo[9 . If h is non negative or if h is bounded on bounded sets 
then h( £) is defined this way for all experiments £. 

In both cases the functional £--+ h( £) behaves as an affine function for the operation 
of mixing experiments according to known mixing distributions. 

If, in addition, h is continuous then 7i is continuous for the topology of the deficiency 
distrance b.. By Torgersen (1990), any affine continuous functional of experiments is of 
the form £--+ h( £) for a continuous homogeneous function h on [0, oo[9 . If, furthermore, 
h is sub linear on R9 then this functional is, by theorem 3.2, monotonically increasing. 
Conversely any continuous affine monotonically increasing functional is of this form for 
a sub linear function h on R 9 . 

Example 3.4 (Multivariate Gini index). 
Consider measure families £ = (JNJ : () E E>) having a common finite parameter set E>. 

An interesting set valued functional of measure families is the functional which to a 
given measure family assigns the convex hull r( £) of the range of the vector valued (i.e. 
R9 valued) measure £ = (po : () E E> ). This set defines £ up to b.2 equivalence and for 
experiments b.2 equivalence is the same as full equivalence i.e. b.-equivalence. It follows 
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(ii) If X= {1, ... , r} and /li(j) = aii; i = 1, ... , n, j = 1, ... , r then the identity reduces 
to: 

(*) Lt:5it <···<in:5r I det( a.,it, ... , a.,in I) = Volume ( < 0, a.,t > + ... + < 0, a.,r >) 

where<> denotes convex hull. 

If the vectors a.,1 , ... , a.,r are linearily dependent then both sides of (*) are zero. 
If r=n and a.,t, ... , a.,r are linearily independent then(*) may, by (i), be reduced 

to the statement that the volume of a cube is the product of the lengths of its sides. 
The validity of(*) follows now by induction on r. (Using (i) we may assume that 

ai,r =0 or =s ~0 as i <nor i =n.) 

(iii) Both sides of the desired equality are continuous for weak convergence of standard 
measures. (These measures are defined in the next section.) It suffices therefore, 
since the set of finitely supported standard measures is dense, to consider the finite 
case. 

4 Comparison in terms of densities. Dilations. 

By the randomization criterion, theorem 3.3, the measure family £ = (X, A; /10 : () E 8) 
is e-dficient w.r.t. the measure family :F = (Y, B; vo : () E 8) if and only if II 11oM- vo II :S; 
eo; () E 8 for some transition M from L( £) to L( :F). 

Before applying this note that most of the measure families encountered in section 1 
admitted a particular parameter value () = ()0 such that the distributions for this parameter 
value was uniform. Furthermore the concepts of approximate majorization required that 
approximation should be exact when this parameter value prevailed. Within the context 
of section 1 this amounted to the condition that certain Markov matrices were doubly 
stochastic. 

Generalizing this let us assume that there is a distinguished parameter value () = 00 

such that the measures /lOo and v00 are non negative and dominates, respectively, £ and 
:F. Assume also that eo0 =0. Then£ is €-deficient w.r.t. :F if and only if vo0 =/1o0M for 
a transition M such that lllloM-voll :S; eo;OE8. 

Let us, in order to escape difficult technical problems, assume that the underlying 
measurable spaces (X, A) and (Y, B) are both Euclidean. Then the transition M may 
be represented by a Markov kernel which, by abuse of notation, also will be denoted by 
M. The joint distribution /lOo x M on Ax B may be factorized as /lOo x M = D x vo0 for a 
Markov kernel D from :F til£. This implies in particular that /lOo =Dvo0. 

The basic property of the kernel D is that it, for each (), within an error of at most 
eo maps the density fo = d11o I d11oo in £ into the corresponding density go = dvo I dvo0 
in :F. Indeed d11oMidvo0 = Ifo(x)D(dxl·) and thus ll11oM -voll =III fo(x)D(dxly)-
9o(Y)Ivo0(dy). Hence, by €-deficiency 

j lfo(x)D(dxly)- 9o(Y)Ivo0(dy) :S; Eo: 0E8. 
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(iv) The measure family ( c.pP : c.p E <I>) is ( e<P : c.p E <I>) deficient w .r. t. the measure family 
(c.pQ:c.pE<l>). 

Remark 1 The distributions PI, ... , Pk and QI, ... , Qk are not necessarily probability 
distributions. They may be non negative, non positive or neither. In any case"~" in (i) 
is in the sense of the left hand side being 0-deficient w.r.t the right hand side. 

Remark 2 IT J-l is a measure and h is a measurable function then hp denotes the 
measure (if it exists) having density h w.r.t. J-l· 

Proof: By theorem 3.3 condition (i) amounts to the condition that I 1/;(1, v~, ... , v~)dP ~ 
I 1/;(1, v~, ... , v~)dQ when 1/J is sub linear on Rk+I. Putting c.p( x) = 1/;(1, v~ ( x ), ... , v~( x)) 
when x E V this inequality may also be written I c.pdP ~ I c.pdQ. As c.p is convex it is 
clear that (ii)::::}(i). The converse implication is a consequence of the fact that a convex 
function c.p on V which is a maximum of a finite set of affine functionals is of the form 
x--+ 1/;(1, v~ ( x ), ... , vH x)) for a sub linear function 1/J on Rk+I. 

On the other hand condition (i) is, by theorem 4.1, equivalent with the condition that 
P= DQ for a Markov kernel D such that IvHx )D( dxjy) = vi(y); i = 1, ... , k when y E V. 
As any linear functional on V is a linear combination of v~, ... , v~ the last requirement 
on D expresses that D is a dilation. Thus also conditions (i) and (iii) are equivalent. 
Furthermore the very statement of condition (iv) implies that the quantities e<P : c.p E <I> 

are non negative i.e. that (ii) holds. 
Assume finally that conditions (i)-(iii) are satisfied. Let c.p17 •.. , 'Ps E <I> and let 1/J be a 

maximum of a finite set of non negative linear functionals on R6 • Then 1/;( 'PI, ... , 'Ps) E <I> 

so that 

j 1/;( d( c.pP), .. . , d( c.p8 P)) = j 1/J( 'PI, ... , 'Ps )dP ~ 

J 1/J( 'Pb · · ·, 'Ps )dQ = J 1/J( d( 'PI Q), · · · , d( 'PsQ) ). 

Consider so any maximum 1/J of a finite set of linear functionals on R8 • Putting ,f(z) = 
w -

1/;(z)+L:i=I¢(0, ... ,-1, ... ,0)zi when z = (zi, ... ,z8 ) E Rk we see that 1/J satisfies 
the above requirements. Furthermore I,f(d(c.piP), ... ,d(c.psP)) = I1/J(c.pt, ... ,c.ps)dP + 

( i) 
L:i=I 1/;(0, ... , -1, ... , 0) I 'PidP where P throughout may be replaced by Q. Thus 

8 ( i) J 1/J( d( 'PIP), ... , d( c.p8 P)) ~ J 1/J( d( 'PI Q), ... , d( 'PsQ))- :?= 1/;(0, ... , -1, ... , O)e<Pi. 
I=I 

Condition (iv) follows now by theorem 3.3. D 
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Condition (iv) of theorem 4.2 permits interesting generalizations and variations. An 
immediate generalization is obtained by replacing the probability distributions P and Q 
by non negative finite measures p and von a measurable space (x, A) and by replacing 
the class «P of convex functions by a convex set H of p + v integrable functions. Looking 
over the proof of the theorem we see that we needed some additional structure of «P. We 
shall here assume that H shares with cp the properties that it contains the null function 
and that ht V h2 E H whenever h1 E H and h2 E H. Under these conditions we may 
derive a characterization in terms of transitions of the situation where fhdp 2: fhdv 
when hE H. Indeed if this is so and if €h = J hdp - J hdv when hE H then the measure 
family (hp: hEH) is (€h: hEH) deficient w.r.t. (hv: hEH). 

In order to see this consider functions h1 , .•• , hs in H along with a sub linear func­
tion '1/J on R 8 which is a maximum of a finite set of non negative linear functionals. 
If z ~ z::::r=I aizi is one of these functionals then at, ... , a5 2: 0 and thus, by convexity, 
~ z::::r=I aihi = (1- ~ z::::;=I ai)O+ z::::;=1( ai/N)hi E H when N is suficiently large. It follows 
that also ~,P(ht, ... , hs) E H when N is sufficiently large and thus J,P(ht, ... , hs)dp = 
N f[,P(ht, ... , hs)/N]dp 2: N f[,P(ht, ... , hs)/N]dv = J'I/J(ht, ... , hs)dv. 

As in the proof of theorem 4.2 we derive from this the asserted statement on deficien­
Cies. 

By the randomization criterion this amounts to the conditions that ll(hp)M -hvll ::; 
fhdp- f hdv; hE H for a transition M from L1 (p) to L1(v). Now the total variation 
llull of any finite measure u may be expressed as llo-11 = jju+ll+llu-11 = llu+ll-llu-11+ 
2jju-ll = 2jju-ll+f1du. Applying this to the measures (hp)M- hv and utilizing that 
f1d[( hp )M -hv] = f1d[( hp )M]-f1d( hv) = f1d( hp )- f1d( hv) = f hdp-f hdv we find that 
the last inequality may be written [(hp)M- (hv)t = 0 i.e. that (hp)M 2: hv; hE H. 
The last "2:" indicates then simply that the measures (hp)M- hv, hE H are all non 
negative. 

Assume now that 1 E H and that the measures p and v both have the same total 
mass i.e. that IIPII = llvll. Inserting h = 1 above we find that p,M 2: v and hence, 
since IIPMII = IIPII = llvll, p,M = v. In the Euclidean case this yields the factorization 
p X M = D x v for a Markov kernel D. Now the density of (hp)M w.r.t. v = p,M 
may be specified as fh(x)D(dxl·) and thus the above requirement in terms of densities 
is expressed by the inequalities: fh(x)D(dxjy)2:h(y) for v almost ally whenever hE H. 

We summarize these considerations as: 

Theorem 4.4 (Transition criteria for the ordering of measures by integrals 
of given functions). 
Let H be a convex family of real valued measurable functions on a measurable space 
(X, A). Assume that 0 E H and that h1 V h2 E H when h1 , h2 E H. 

Let p and v be non negative finite measures on A such that each function h E H 
is p + v integrable. Put €h = J hdp- J hdv; h E H. Then the following conditions are 
equivalent: 

(i) €h2:0; hEH. 
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5 Dichotomies. Lorenz functions and Neyman­
Pearson functions. 

Experiments having two point parameter sets, i.e. dichotomies, enjoy a variety of striking 
properties which are not shared by experiments in general. 

Thus comparison of dichotomies may be expressed solely in terms of testing problems 
and the information ordering is in this case a lattice ordering. The crucial property 
of dichotomies is that they all have monotone likelihood in some statistics. Indeed, by 
Lehmann (1988) and Torgersen (1989), many properties of dichotomies extend, properly 
formulated, to such experiments. 

We shall here present some of the basic properties of dichotomies. A discussion of the 
more general case of measure pairs, i.e. R 2-valued measures, will appear in Torgersen 
(1990). 

The basic assumption in this section is thus that the parameter set is a two point set 
and we shall proceed assuming that this set actually is 8 = {0, 1 }. Thus a dichotomy 
V is an ordered pair V = (Po, P1 ) of probability distribution on a common measurable 
space. Convenient tools are then: 

(i) The relationship between level of significance and maximum power for testing, say, 
"(} = 0" against "(} = 1". 

(ii) The relationship between prior distribution and minimum Bayes risk for testing 
"(} = 0" against "(} = 1" with 0-1 loss. 

(iii) Variations of standard measures and Blackwell measures. 

(iv) The Hellinger transform. 

The relationship (i) is given by functions which in one form or another, appear to 
play important roles at the most diverse occasions, not all of them in statistics. Although 
not widely recoqnized, even among statisticians, their genesis may be regarded as rooted 
in the Neyman-Pearson lemma. We shall here say that a function is a Neyman-Pearson 
function (N-P function) if it is a continuous concave function from the unit interval [0,1] 
to itself which leaves 1 fixed. Of course concavity ensures continuity on the open interval 
]0, 1[ and if, in addition, it is assumed that 1 is a fixed point then it is automatically 
continuous on ]0,1]. Thus a function f3 from the unit interval to itself is a N-P function 
if and only if it is concave, /3(0+) = /3(0) and /3(1) = 1. 

In statistics N-P functions arise in testing theory in many situations which are not 
directly related to the Neyman-Pearson lemma. Thus e.g. the maximin level a power 
defines a N-P function f3 of a provided we ensure that /3(0+) = f3(0).[H the weak com­
pactness lemma holds then this is automatic. In general we may just define /3(0) as 
/3(0+ ).] 

More generally we may consider maximin level a power for test functions belonging 
to a given convex class of test functions containing the constants in [0,1]. 
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Any N-P function is the N-P function of a dichotomy and, as we shall explain soon, 
any dichotomy is defined up to equivalence by its N-P function. Accepting this for the 
moment we realize that operations on dichotomies and on N-P functions are the same 
thing. 

Thus if V1 and V2 have, respectively, N-P functions /31 and /32 then the mixture 
(1-p)V1 + pV2 and the product V1 xV2 have, respectively, N-P functions f3 and r given 
by: 

and 

It is not imediate from these formulas that products are distributive w.r.t. mixtures. 
This is however clear from the fact that the Hellinger transform, which is defined for 
dichotomies later in this section, is multiplicative for products and affine under mixtures. 

Proceeding the other way round we find that the class of N-P functions is closed for 
several standard operations on numerical functions. Thus convex combinations of N-P 
functions are themselves N-P functions. It follows that if V1 and V2 are dicholomies 
having N-P functions /31 and /32 and if pis a number in [0,1] then there is, up to equiva­
lence, a unique dichotomy V having (1-p)/31 + pf32 as its N-P function. This dichotomy 
is at most as informative as (1-p )V1 + pV2 , and generally it is less informative than this 
mixture. 

By Torgersen (1970) any dichotomy has an essentially unique decomposition as a 
mixture of a totally ordered family of double dichotomies. 

Other interesting operations are the lattice operations derived from the information 
ordering and the operation of functional composition of N-P functions. 

Consider a family (Vi : i E I) of dichotomies. IT f3i is the N-P function of Vi then the 
pointwise infimum i~ f3i is also a N-P function. Any dicholomy V having this function 

I 

as its N-P function possesses necessarily the following properties: Firstly V ::; Vi for all 
i E I. Secondly: IT Vis any dichotomy such that V::; Vi for all i E I then V::; V. Thus 
Vis a greatest lower bound (infimum) of the family (Vi : i E I). 

It follows that the collection of dichotomies is order complete for the informational 
ordering. Note however that the sup operation expressed for N-P functions is not the 
pointwise supremum. It corresponds of course to the supremum operation on N-P func­
tions for the informational ordering. 

Monotone likelihood experiments are, Torgersen (1989), very naturally represented 
as families of N-P functions. These families are characterized by being closed for the 
"natural" functional compositions. In general if V 1 and V2 are dichotomies having, 
respectively N-P functions /31 and /32 then the composed function /31 (/32) = f3t of32 is also a 
N-P function. IT Vis a dichotomy having f31 (f32 ) as its N-P function then Vis at most as 
informative as the product dichotomy V 1 X V2. Indeed if r is the N-P function of 'D1 X 'D2 
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and that 

K = £((3'(U)) when .C(U) = R(O, 1). 

The observed significance level & for a dichotomy ( P0 , P1) for testing "(} = 0" against 
"(} = 1" may be expressed in terms of K by: 

& = K(]dPtfdP0 , oo[) +UK( { dPtfdP0 }) 

where U is independent of dPtfdP0 and uniformly distributed on [0,1]. 
Putting bcx = 1 or =0 as & :::; a or & > a we obtain in this way a right continuous (in 

a) monotonically increasing family of test functions bcx: a E [0, 1] such that 

Of course we do not need the random variable U. Conditioning w.r.t. the sufficent 
statistic dP1 / dP0 we may ensure that bcx is the unique most powerful level a test which 
is functionally dependent on dPtfdP0 • If so then there are constants Ccx and rex such that 
Ocx = 1, = rex or = 0 as 

More generally if r is any N-P function such that r( a) :::; (3( aiP0 , P1 ) for all a E [0, 1] then 
there is a right continuous monotonically increasing family of test functions 'Pcx : a E [0, 1] 
in 1J =(Po, P1 ) such that 

If e.g. r is given as the upper boundary of the convex hull of points (0, b), (p1 , q1 ), (p2 , q2 ) 

and (1,1) where 0:::; p1 :::; p2 :::; 1 and r(O) = b, r(Pi) = qi; i = 1, 2 then we may construct 
the family 'Pcx : a E [0, 1] in the following steps: 

(i) Let Ocx : a E [0, 1] be given as above. 

(ii) Put cpo = [b/ (3(0IPo, Pt)]bo. 

(iii) Let a 1 be the smallest number a1 ~ 0 such that the graph of (3( ·I Po, P1) intersects 
the line through (0, b) and (p1, qt) in the point ( a 1, (3( a 1IP0 , P1) ). Put so 'Pcx = 
(1-8)cp0 + Bba1 for a= (1-8)0 + 8a1 in [O,p1]. 

(iv) Let a 2 be the smallest number a 2 ~ a 1 such that the line through (Pt, q1) and (P2, q2) 
intersects the graph of (3( ·I Po, P1) in ( a 2, (3( a2IP0 , Pt)). Put so 'Pcx = (1-8)cpp1 +Bba2 

for a= (1-B)Pt +8a2 in (pt,P2]· 

(v) Put 'Pcx = (1-8)cpp2 + 8 · 1 for a= (1-8)p2 + (} · 1 in (p2, 1]. 
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(i) ,B(·IV ~ ,B(·IV). 

(ii) b(·IV) ~ b(·IV). 

(iii) fcp(dPtfdPo)dP0 ~ fcp(dQtfdQ0 )dQ0 when cp is convex on [O,oo[. 

(iv) ~T=Qi; i=O, 1 for a transition T. 

(v) £(dPtfdPoiPo) = D£(dQtfdQ0 jQ0 ) for a dilation Don [0, oo[. 

These conditions imply all 

Remarks. The equivalent conditions (i)-(v) express all that V is at least as infor­
mative as iJ. A dilation on [0, oo[ is a Markov kernel D from [0, oo[ to [0, oo[ such that 
fxD(dxjy) = y; y ~ 0. 

The integral f ( dPI/ dP0 Y dP0 for a dichotomy V = ( P0 , PI) is, as a function oft E [0, 1], 
the Hellinger transform of V. It defines V up to equivalence. The ordering described by 
(vi) does not however, see Torgersen (1970), imply that V is at least as informative as 
V. Within the theory of statistical experiments the Hellinger transforms have a similar 
role as characteristic functions have in probability theory. 

In terms of the N-P function ,8 of V the Hellinger transform may be expressed as: 

where 

K = £(dPlldPoiPo). 

Turning to econometric applications we obtain the following well-known characterizations 
of the Lorenz ordering: 

Corollary 5.4 (The Lorenz ordering). 
Let X and Y be non negative random variables having finite positive expectations. 

Let F be the distribution of X and let G be the distribution of Y. 
Let F1 be the distribution having density x -+ xI EX w.r.t. F and let G1 be the 

distribution having density y-+yiEY w.r.t. G. 
Then the following conditions are equivalent: 

(i) F Lorenz majorizes G. 

(ii) E( X- cEX)± I EX ~ E(Y- cEY)± I EY; c E R where the ± signs in exponential 
positions may either both be replaced by + or both be replaced with - or both be 
deleted provided (X -c) and (Y -c) are replaced by, respectively, IX -cl and jY -cj. 

(iii) Ecp(XI EX) ~ Ecp(YI EY) when cp is convex on [0, oo, [. 
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G = II(Po XPt)- (Pt xPo)ll/2 = 1 -II(Po X Pt)A(Pt X Po)ll 

of the convex hull of the range of the vector valued measure (Po, Pt) depends on 'D only 
via its type. IT'D has Neyman-Pearson function (3 then it is equivalent with (R[O, 1], (3) 
and thus II(PoXPt)A(PtXPo)ll = JJ1(3'(a2)1\(3'(at)]da1da2 = 2ffcx >ex (3'(a2)da1da2 = 

1 1 2 

2 fo (1- (3( at))da1 . Hence 

G = 211 (3(a)da-1 = 1-211 L(a)da 

where L(a) =a 1- (3(1-a) is a Lorenz function provided P0 :::;}> P1 . 
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