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ABSTRACT. The usual parametric models for survival data are of the 
following form. Some parametrically specified hazard rate a( s, 8) is as­
sumed for possibly censored random life times Xf, ... , X~; one observes 
only Xi = min{ X?, ci} and hi = I {X? ~ ci} for certain censoring times 
Ci that either are given or come from some censoring distribution. We 
study the following problems: What do the maximum likelihood estima­
tor and other estimators really estimate when the true hazard rate a( s) 
is different from the parametric hazard rates? What is the limit dis­
tribution of an estimator under such outside-the-model circumstances? 
How can traditional model-based analyses be made model-robust? Does 
the model-agnostic viewpoint invite alternative estimation approaches? 
What are the consequences of carrying out model-based and model­
robust bootstrapping? How do theoretical and empirical influence func­
tions generalise to situations with censored data? How do methods and 
results carry over to more complex models for life history data like re­
gression models and Markov chains? 

KEY WORDS: agnostic parameter estimation; censored data; distance 
measures; hazard regression; incorrect model; influence function; maxi­
mum likelihood; parametric and nonparametric bootstrapping 

1. Introduction 

This paper is about aspects of maximum likelihood and related estimation methods 
applied to parametric survival data models. The aspects we shall care about include large­
sample behaviour when the parametric model is a nonperfect approximation to the true 
model; distance measures from true to parametric model; model-based and model-robust 
estimation of the approximate covariance matrix; measures of influence; natural alternative 
estimation procedures suggested by the agnostic point of view; model-based and model­
robust ways of bootstrapping; and similar questions for hazard rate regression models. 
Indeed, Section 2 studies limit behaviour of the maximum likelihood estimator when the 
parametric model is incorrect, Section 3 finds influence functions under censoring, and in 
Section 4 the general methods are used to assess the behaviour of various bootstrapping 
schemes. The apparatus developed in Sections 3 and 4 can be used to prove some known 
results anew, and should be useful also in other survival data models and for other esti­
mators than the maximum likelihood one. Some new estimation methods are discussed in 
Section 5, and Section 6 treats two regression models for hazard rates. Complementary 
remarks are offered in the final Section 7. 

A recurrent theme underlying our article is the point of view that (i) parametric 
models are usually incorrect, (ii) that estimation and inference in parametric models nev­
ertheless can be a useful enterprise, (iii) provided the statistician knows what she is doing. 
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Even statisticians admit (i). Traditional and valid arguments favouring (ii) include mat­
ters of sample size versus nonparametrics and the value of simplifying and synthesising to 
aid understanding of complex phenomena. The following reasoning also supports (ii) and 
pertains to the present paper. We view a parametric estimation procedure as an attempt 
to find the best fitting or most appropriate parametric approximant to the more elusive 
true model. An estimator for the parameter vector () will typically be consistent for a 
certain 8o that is most appropriate, or least false, in the sense of minimising a suitable 
distance measure between true model and parametric model. Accordingly estimating the 
least false parameter is a meaningful statistical operation, even outside model conditions 
(i.e. even if the minimum distance is positive), provided only that the distance measure it­
self is reasonable. Regarding (iii) above, as far as the first order large sample consequences 
of an incorrect parametric model is concerned the single technical complication will be 
seen to be a different expression for the limiting covariance matrix of the estimators. A 
consistent estimator for this more general covariance matrix can be constructed explic­
itly, or approximated by appropriate resampling, or reached as a by-product of empirical 
influence functions. 

Different estimation methods may correspond to different distance measures and thus 
different least false parameters. It often enhances one's understanding of an estimation 
procedure to view it in this light, i.e. by exhibiting the accompanying distance measure 
between truth and approximating model. Of course this agnostic point of view can be the 
explicit motivation for some estimators in the first place; an empirical counterpart can be 
constructed for a given distance measure and then be minimised for the given data. 

The results of this paper give precise statistical substance to fitting and analysing 
data with a wrong model, and suggest that it even can be fruitful. This is not to say that 
one shouldn't assess the adequacy of one's model or compare different natural models; one 
should indeed, and general methods for doing this can be found in Hjort (1990a). But the 
agnostic point of view and results under such is meant to free statisticians from the irongrip 
of that part of traditional methodology which has 'the parametric model is assumed to be 
absolutely correct' as basic assumption. This should have some pragmatic value as well, 
since practitioners often try out a variety of models while knowing that neither of them 
is likely to be quite correct. The theory developed below gives a recipe for bettering this 
practice by using corrected approximate covariance matrices for the estimators. 

One can also usefully define and study situations where the amount of misspecification 
is moderate. This is done on a general basis in Hjort (1990b ). Included there is a result 
which says that it is actually advantageous, in terms of precision of estimators, to stick 
to a given model even when it is moderately incorrect, and the precise 'tolerance radius' 
around the model against various types of model departures is also found. 

The points of view expressed above are not entirely new, but relatively few publications 
have discussed behaviour of model-derived estimates under fixed alternative conditions. 
The basic and not so difficult result (1.3) below has appeared a couple of times under 
various guises, and sometimes rather implicitly, see Cox (1962) and Reeds (1978) for early 
examples and Hjort (1986a, 1986b, 1988) and Linhart and Zucchini (1986) for recent ones 
in different settings. The remainder of this section is a concise treatment of the simpler 
non-censored i.i.d.-case. It is included here since the viewpoint and results do not appear to 
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be well known, and since our results perhaps will be easiest to understand and appreciate 
when compared to corresponding statements for this simpler classical framework. 

Let X 1 , ... , X n be independent from some unknown distribution F with density f, 
and suppose the data are to be fitted to some p-dimensional parametric family of densities 
{fe:8 E 0}. Where notationally convenient we shall write f(x,8) instead of fe(x) and 
so on. Note that we do not assume the true f to belong to the parametric class, unlike 
what is typically the case in text book treatments of this problem. The maximum likelihood 
estimator 1f maximises the observed likelihood Ln( 8) w.r.t. the parameter. Since the simple 
average n- 1 logLn(8) tends to EFlogfe(X) = J flogfedx in probability 1f intuitively 
aims at becoming close to the parameter value 80 that maximises this expression, or, 
equivalently, minimises the Kullback-Leibler distance 

d[f,fe] = J f(x)log{f(x)/fe(x)}dx {1.1) 

from true model to parametric model. We think of Bo = Bo(F), which is indeed uniquely 
defined in most cases, as the least false or most fitting parameter value. 

We summarise below the behaviour of 1f for large n under the present outside-the­
model circumstances. The arguments needed to prove the results can be seen as more 
careful versions of the 'traditional ones' that are used under model circumstances {see 
e.g. Lehmann, 1983, Ch. 6). Consider the p-vector Un of first order derivatives and the 
pxp-matrix In of second order derivatives of n- 1 log Ln(B). 1fis a solution to the maximum 
likelihood equations Un(B) = 0, so by Taylor expansion 0 = Un(1f) = Un(8o)+ln(B)(1f-8o), 
which leads to 

(1.2) 

in which B lies somewhere between 80 and 1f. Two matrices therefore determine the limit 
distribution: the limit J = J( F, Bo) of -In( Bo ), obtained by the law of large numbers, 
and the covariance matrix K = K( F, 80 ) of vnU n( 80 ), obtained from the central limit 
theorem. More precisely, 

J = -! a2 logf(x,8o) dF( ) 
{)(}{)(} X 

Natural estimators for these p X p matrices are J = J(F,1i) and K = K(K,1f), that is 

F is the empirical distribution which places weight 1/n on each data point. 

RESULT. Under traditional regularity conditions 1f is consistent for the least false 
parameter 80 . Furthermore, 

and J and K are coi1sistent estimators for J and K. 
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The result (1.3) is the appropriate generalisation of the classical textbook result, in 
which /( x) = /( x, 80 ) is assumed, and where it is easy to show that the two matrices are 
equal, 

J(Fu,8) = K(Fu,8). (1.4) 

We can now distinguish between model-based and model-robust inference about 80 • In 
the first case 80 is true, and one uses J- 1 /n as the estimate of the covariance matrix for 
0, where J could be either J(F, 0) or J(F( ., 8), 8). In the second case 80 has the wider 
interpretation of being merely most fitting, and one uses J-1R J-I jn instead. 

EXAMPLE 1.1. Suppose nonnegative data are fitted to the exponential distribu­
tion with density /u(x) = 8exp(-8x). Then d[/,/e] = J0

00 f(x)logf(x)dx- J0
00 (log8-

8x) f ( x) dx is minimised for the least false parameter 8o = 1/ JL( F), where JL( F) = E F X. 
One finds J = 1/8~ and K = VarpX = u2 (F). The model-based asymptotic vari­
ance of B = 1/Ji is n-180 (F)2 , estimated by n-1 '82, whereas the model-robust version 
is n-1 u2 (F)80 (F)4 , estimated by n- 1u2 B4 • D 

Next turn attention to bootstrapping. Model-based bootstrapping consists of drawing 
samples x;, .. . , X~ from the parametrically estimated F( ., 8), and computing bootstrap 
estimates 8* = O(X;, ... , X~). Nonparametric or model-robust bootstrapping on the other 
hand samples Xt's from F. The (first-order) large sample behaviour of 8* can be analysed 
and characterised by the methods already used. Think of 80 = ml(F), the maximiser of 
J log /e( x) dF( x ), as a functional operating on the space of distributions. Observe that 
both ml(F) and ml(F(.,B)) are equal to 0. By (1.2) and (1.3) we have 

Jii{mi(f)- ml{F)} ,;,d J(F,mi(FW';.. t. illogf(!~'ml(F)), (1.5) 

where Un ~d Vn means that Un- Vn tends to zero in probability. More precise information 
can be gathered using methods presented in Section 4. 

Consider first parametric bootstrapping, which uses 8* computed from F( ., B)*, say, 
the empirical distribution of Xt 's from F( ., B). Then 

n ""' 
""'* .... .... * .... • .... .-.. _ 1 1 "81ogf(Xt ,8) 

vfn(8pb- 8) = vfn{ml(F(.,8) ) - ml(F(.,8))} =d J(F(.,8),8) ¢ii t:t 88 

. ....... ....... -1 ........ ........ ........ ........ -1 
=d J(F(.,8),8) Np{O,K(F(.,8),8)} = Np{O,J(F(.,8),8) }. 

(1.6) 
Correspondingly, for nonparametric bootstrapping one has 

n ""' 

Jii(8:b - 8) = Jii{ ml{ F•) - ml( F)} ,;,d J ( F, 8) -• Jn ~ Olog ~~x;' O) 
(1.7) 

. ........ ....... -1 ......... ........ ........ -1 ....... .-. -1 
=d J(F, 8) Np{O, K(F, 8)} = Np{O, J K J }. 

Several conclusions can be drawn from this. First, the nonparametric bootstrap always 
works, in the large sample first order sense, in that the bootstrap distribution always 
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mimics the true distribution, even when the parametric model is incorrect; the distribution 
of Jn(B;b -B) tends with probability one to the same as does Jn(B-80 ), cf. (1.3). Secondly, 
the parametric bootstrap only works when the model is correct, otherwise it does not reflect 
the real sampling variability. Thirdly, we should note that the sampling variability of e;b 
is typically much larger than that of B;b. This is related to the observation that if the 

model happens to be correct, then both J-1 K J-1 and J- 1 estimate the same quantity, 
namely the asymptotic covariance matrix of Jn(B- 8o ), but the first is less stable than 
the second. 

In situations where interest centres on another parameter I" = I"( 8) the discussion here 
applies to j1 = 1-L(B) and /1* = 1-"(B*) instead. 

EXAMPLE 1.2. Let Vnb and Vpb be the bootstrap estimates of the variance of e in the 
exponential situation treated above. Then it can be shown that 

Var{Vpb} . Var{~ /n} . 48Vn 1 
...... = ...... =-4-=-

Var{Vnb} Var{84u2 /n} 880 /n 2 

if the exponential model prevails. See also further comments, examples, and amendments 
in Hjort (1988). D 

2. Theory for incorrectly specified parametric survival data models 

Suppose Xf, ... , X~ are lifetimes for n individuals drawn from a homogeneous popula­
tion with underlying hazard rate a( 8) = /(8 )/ F[8, oo) for 8 ;? 0. Suppose that one observes 
only Xi= min{Xf, ci} and hi= I{Xf ~ ci}, where the censoring variables Ci are indepen­
dent of the lifetimes and come from some censoring distribution G. A parametric model is 
proposed of the type a( 8) ~ ae( 8) = a( 8, 8). In this section the large-sample properties of 
the maximum likelihood estimator outside model conditions are derived, parallelling the 
treatment of the traditional non-censored type problem in Section 1. 

The treatment below extends that of Horgan (1984) and Hjort (1986a). The mathe­
matical techniques needed to derive results involve central limit theorems and inequalities 
for martingales and integrals of previsible functions with respect to martingales. The 
necessary technicalities resemble those thoroughly presented in Andersen and Gill (1982), 
Horgan (1984), Andersen and Horgan (1985), and Hjort (1986a). This allows us to skip 
most of the formal details here. New proofs of some of the older results can also be con­
structed as a by-product of the general machinery of influence functions and differentiable 
functionals developed in Sections 3 and 4 below. 

We must start by defining the maximum likelihood estimator. Introduce the counting 
process N, the at-risk process Y, and the associated martingale M by 

M(t) = N(t) -1t Y(8)a(8) d8. 

(2.1) 

Notice that M employs the true hazard rate a( 8) rather than some a( s, 8o ). With condi­
tions about the censoring mechanism much weaker than the random censorship assumption 

n n 

N(t) = L I{Xi ~ t,bi = 1}, Y(t) = L !{Xi:? t}, 
i=l i=l 
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used here the likelihood can be written 

Ln( 9) = exp [1T {logo:( s, 9)dN( s) - Y( s )o:( s, 9) ds}], 

where [0, T] is the time interval over which the processes are observed. We will assume T fi­
nite to get certain martingale arguments below easily through, but extension to the full half­
line is possible with appropriate extra conditions. Among the important properties of M 
is the fact that Wn = Jot Hn( s) dM(s )/ y'n converges in distribution to W = J0t h( s) dV( s ), 
provided Hn is previsible (the value of Hn(s) is known already at times-) and converges 
uniformly, in probability, to a deterministic function h. Here V is a Gaussian zero-mean 
process with independent increments and Var dV( s) = y( s )a:( s) ds, and y( s) is the limit in 
probability of Y(s)/n, namely 

y(s) = Pr{Xi 2: s} = Pr{X? 2: s,ci 2: s} = F[s,oo)G[s,oo). (2.2) 

Note that W is normal with mean zero and variance J0t h2 yo: ds. 
Consider first 

1 11T -log Ln( 9) = - {logo:( s, 9)dN( s) - Y(s )o:( s, 9)ds} 
n n 0 

= .!. {T {log o:9( dM +Yo: ds) - Y o:9ds} -?P {T y( o: log 0:9- 0:9) ds. n lo lo 
Maximising Ln( 9) should therefore in the end amount to maximising the right hand ex­
pression here, which is the same as minimising the distance 

d[o:, o:9] = 1T y{ o:(log o: -log 0:9) - ( o: - 0:9)} ds (2.3) 

from the true model to the approximating parametric model. d[o:, o:o0 ] is always non­
negative and is zero only if o:(s) = o:(s,90 ) a.e. on [O,T], in which case 90 indeed is the 
"true" parameter. In general we can only reckon with a least false parameter value 90 

which minimises (2.3). Observe that the value of 90 may depend upon the censoring dis­
tribution through y( s) = F[s, oo )G[s, oo ). Note also that (2.3) properly generalises the 
Kullback-Leibler distance (1.1). See Remark 7A and Section 5B. 

THEOREM 2.1. Suppose that there is a unique minimiser 90 of (2.3); that o:(s,9) 
is three times differentiable in a neighbourhood N( 90 ) of 90 ; that these functions are 
bounded over [O,T] x N(90 ); that o:(s) and o:(s,9o) are bounded away from zero ass runs 
from 0 to T; and finally that the J matrix appearing below is positive definite. {Somewhat 
weaker sufHcient conditions can be put up in the style of Borgan (1 984, Section 4; note 
the corrigendum p. 275 ).] Then the maximum likelihood estimator i is consistent for the 
least false parameter 90 • Consider matrices J = J( o:, y, 90 ) and K = K( o:, y, 9o) defined as 
follows: 

J = 1T y(s)[1f(s,90 )1f(s,90 )'o:(s,90 )- D1f(s,90 ){o:(s)- o:(s,9o)}] ds, 

K = J,T y( 8) [ 1/>( 8, e, )1/>( 8, e, )'a( 8) + { 1/>( 8, e, )E(8 )' + E(8 )1/>( 8, eo )'}a(8, eo)] d8, 
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in wl1ich ,P(s,9) = 8logo:(s,9)j89, D,P(s,9) = 82 logo:(s,9)/8988, and E(s) = J:y(t) 
,P(t,90 ){o:(t)- o:(t,90 )}dt (in particular, E(O) = E(T) = 0). Then 

Jri,(9- 9o) -+d J-1 Np{O,K} = Np{O,J(o:,y,9o)- 1 K(o:,y,9o)J(o:,y,9o)- 1 }. 

PROOF: It was indeed shown already in Hjort (1986a) that 9 is consistent for this 
most fitting parameter 80 • There is even almost sure convergence in the present random 
censorship situation, a fact used in Section 4. 

Next turn to the limit distribution of 9. The idea is to consider the vector Un of first 
order partial derivatives and the matrix In of second order partial derivatives of n-1 log Ln 
and apply (1.2) again, in this more difficult situation. One finds 

11T Un(8) =- 1,b(s,8){dN(s)- Y(s)o:(s,9)ds} 
n o 

11T 1T =- '1/Je{dM+Y(o:-o:e)ds}-+p y'I/Je(o:-o:e)ds 
n o o 

and 

11T In(8) =- [D,P(s,fJ){dN(s)- Y(s)o:(s,8)ds}- ,P(s,8)Y(s)o:(s,8),P(s,8)' ds] 
n o 

-+p 1T y{ D,P( ., 8)( o: - o:e) ds - '1/Je'I/J~o:e ds}. 

In particular -In(9o) tends to the J matrix in probability. Note next that Un(9) tends to 
zero when (J = 90 • Furthermore, 

/iiUn(90 ) = 1T t/J(s,80 )[dM(s)/vn + /ii{Y(s)/n- y(s)}{o:(s)- o:(s,80 )}ds]. 

Here Vn = M/yn has a limit process V described before (2.2) and Zn = yn(Y/n- y) 
converges in distribution to a Gaussian zero-mean process Z(. ), in the function space 
D[O, T] of left-continuous functions with right hand limits, by the theory presented for 
example in Billingsley (1968, Section 13). One has 

cov{Zn(s),Zn(t)} =cov[I{Xf ~S,Ci ~s},J{Xf ~t,ci ~t}] =y(sVt)-y(s)y(t), 

writings V t = max{s, t}. Also, ifNi, Yi, Mi are the counting process, at risk process, and 
martingale for individual no. i, then 

cov{ dVn(s ), Zn(t)} = cov{dMi(s ), Yi(t)} = E{dNi(s) - Yi(s )o:(s) ds }Yi(t) 

can be seen to equal -a(s)dsy(t) for s < t and 0 for s ~ t. These are also expressions for 
cov{Z(s ), Z(t)} and cov{dV(s ), Z(t)}. That indeed (Vn, Zn) -+d (V, Z) in D[O, T] X D[O, T] 
and 

Vn Un( 80 ) -+d 1T ,P( s, 8o )[dV( s) + Z( s ){ o:( s) - o:( s, 9o)} ds] =one+ two (2.4) 
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hold, where an expression for K = VAR{ one+ two} for this necessarily Gaussian limit vec­
tor is derived below, can be shown combining function space asymptotics from Billingsley 
(1968) and Andersen and Horgan (1985). 

To find K, observe first that 

VAR{one} = 1T y(s),P(s,8o),P(s,8o)'a(s)ds. 

Write ~( s) = a( s)-a( s, Bo) for the difference between true hazard and most fitting hazard. 
Then 

VAR{ two} = 1T 1T ,P( s, Bo ),P(t, Bo )' ~( s )~(t){y(s V t) - y(s )y(t)} dsdt 

= 1T lt {1/J(s,Bo),P(t,Bo)' + ,P(t,Bo),P(s,Bo)'}~(s)~(t)y(t)dsdt, 

since Jt y( s ),P( s, Bo )~( s) ds is zero. Finally we need 

E[{one}{two}' +{two}{ one}'] 

= -1T 1t{,P(s,8o),P(t,8o)' +1/J(t,80 ),P(s,80 )'}a(s)~(t)y(t)dsdt. 
Write a( s) = a( s, 80 ) + ~( s) here, and find that some terms luckily cancel each other out: 

The alternative formula given in the theorem follows upon clever integration by parts. 0 
Suppose for a minute that the model is in fact true, so that a( s) = a( s, 80 ). Then J 

and K agree, and there is an identity 

J(ae,y,8) = K(ae,y,8) = 1T y(s),P(s,8),P(s,8)'a(s,8)ds (2.5) 

which generalises (1.4). The model-based statement .Jii,(i- 80 ) -+d Np{O, J-1 } was one of 
the main results of Horgan (1984), and further discussion, including matters of optimality, 
can be found in Hjort (1986a). 

To carry out valid large-sample inference about the most fitting parameter 80 , for 
example setting an approximate confidence interval for one of the parameter components, 
one needs a consistent estimator for the asymptotic covariance matrix. Estimators for J 
and K can be constructed in several ways. The most natural estimators come forward 
when we express them as functions of the true cumulative hazard A(.)= J~ a(s)ds, the 
limiting at risk proportion y(. ), and the parameter Bo, and then insert consistent estimators 
A(.)= J~ dN(s)/Y(s), Y(.) = Y(.)/n, and 8 for these. This leads to 

-. {TY(s) -. -. -. {TY(s) "{dN(s) -. } 
J = Jo ---;;-1f•(s,8),P(s,8)'a(s,8)ds- Jo ---;;-Dt/J(s,8) Y(s) - a(s,B)ds , (2.6) 
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..... 
and three different expressions for K: 

..... 1T Y(s) ..... ..... dN(s) 1T ..... ..... ..... ..... ..... 
K = 

0 
~1/J(s,(})l/J(s,(})' Y(s) + 

0 
{1/J(t,(})E(t)' + E(t)¢(t,(})'}a(t,(})dt, 

= 1T 1/J( s, 0)1/J( s, 0)' dN( s) 
o n 

1T ft ..... ..... ..... ..... ..... { dN(t) Y(t) ..... } 
-

0 
Jo {1/J(s,(})l/J(t,(})' +1/J(t,(})l/J(s,(})'}a(s,(})ds -n-- ---;;:-a(t,(})dt 

(2.7) 

n 
1 "' ..... d ..... } { ..... d ..... }' = - L.) ~~(xi, (})hi -A (xi,(}) 1/J(xi, (})hi -A (xi,(}) . 
n i=1 

Here E(t) = Iot {Y( s )/n }1/J(s, B){ dN(s )/Y(s)- a(s, 0) ds} and Ad(t, (}) = I: ~'eae ds is the 

derivative w.r.t. (} of A(t, (}) = I: ae ds. It takes some algebraic skill to show that these 
are equivalent expressions. The third formula is computationally more convenient and 
also emerges naturally from the discussion of influence functions in the next section. The 
important statistical consistency property is however most easily proved using the first 
formula. 

This impliues, for an example, that the ellipsoid 

defines an asymptotically correct and model-robust 90% confidence region for the most 
fitting parameter eo, when {p,.90 is the upper 10% point of the x; distribution. 

EXAMPLE 2.1. Study once .!_llore the ex~onential model where a(s,(}) = e. The 
maximum likelihood estimator is(}= N(T)/ Io Y(s)ds = :E~1 6i/:E~ 1 Xi· It converges 

to the most appropriate parameter value eo= It y(s)a(s)ds/ It y(s)ds, i.e. a y-weighted 
average of the true hazard rate, by an application of the theorem. Furthermore, the second 
term of the J expression vanishes, and 

1 1T J = (}2 ya ds, 
0 0 

1 1T 21T1t K = (}2 yads + 8 y(s){a(s)- eo}dsdt, 
0 0 0 0 0 

with accompanying estimates J = {N(T)/n}/fP, K = ~ "£7=1(hi/B- xi)2 , cf. (2.6) and 

(2. 7). The asymptotic variance of y'n(B- (}0 ) is estimated by respectively 

N(T)/n 
or 

under and outside model circumstances. Note that these expressions reduce to those of 
Example 1.1 when there is no censoring. 0 

3. Influence functions 

This section studies influence functions for estimator functionals in the presence of 
censoring, and some of their uses are indicated. 
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The influence function of an estimator is an infinite population concept. Consider for 
concreteness the non-censored situation of Section 1 first, where data come from F. Assume 
that an estimator 1f can be expressed as S(F), where F is the empirical distribution. Its 
target value is Bo = S( F). The influence function I( F, x) for such a functional is the 
derivative of S(Fe) = S((1- c)F + da:) at c = 0, writing fa: to denote point mass at x. 
The ordinary maximum likelihood estimator is for example 1f = ml(F), where ml(F) is t.he 
maximiser of J log fe( x) dF( x ). One can demonstrate that 

I(F,x) =lim c-1{ml(Fe)- ml(F)} = J(F,ml(F))_ 1 alogf(;~ml(F)), (3.1) 
e---+0 

cf. (1.2) and (1.3). - Influence functions are useful for several purposes. It can indicate 
sensitivity against possible outliers; it provides a tool with which to find the limit distribu­
tion of estimators; data-based empirical influence function8 can be constructed and used 
to assess the influence of individual data points; it can sometimes be used to construct new 
estimators with specific desiderata; and empirical and theoretical influence functions enter 
naturally in studies of the bootstrap and other resampling procedures. General references 
include Efron (1982), Reid (1983), and Hampel, Ronchetti, Rousseeuw, and Stahel (1986). 

A natural task is now to explore influence functions for estimators in the random 
censorship model of Section 2. Reid (1981) and Reid, Crepeau, and Knafl (1985) have also 
studied influence functions with censored data, but the present situation is not covered 
by their work. Let us redescribe the problem in a way suiting the task. We will limit 
discussion to the maximum likelihood method. The model has been described by saying 
that partially observed (Xf, ci) pairs come from F x G. Let H = HF,G be the inherited 
distribution for data pairs (Xi,bi) = (min{Xf,ci},I{Xf :Sci}) in [O,oo) X {0,1}. H has 
subdistribution functions H 0(t) = Pr{Xi :S t,bi = 0} and H 1(t) = Pr{Xi :S t,bi = 1}. 
The data collection can be represented by the N and Y processes of (2.1 ), or equivalently 
by the proportion at risk process y(s) = Y(s)/n with limit y(s) = F[s,oo)G[s,oo), and 
the Nelson-Aalen estimator A(t) = J: dN(s)/Y(s) with limit A(t) = J0t a(s)ds. The 1f 
estimator solves j 0T ¢( s, 8)y( s ){ dA( s) - a( s, 8) ds} = 0 and converges to 8o, the solution 

of JoT ¢(s,8)y(s){dA(s)- a(s,8)ds} = 0. We may view Boas defined by the pair (F,G), 
or by (A,y), or by H = (H0 ,H1 ). Observe that A andy can be recovered from H, by 

y(s) = Pr{Xi ~ s} = (H0 + H 1)[s,oo), 

y(s)dA(s) = dH1(s) = Pr{Xi E [s,s +ds],bi = 1}. 
(3.2) 

In particular, the maximum likelihood method can be viewed as a functional ml{H) on the 
space of H = (H0 , H 1 ) distributions, and 1f = ml{H), where His the empirical distribution 
of data pairs (xi, hi), ... , (xn, hn)· 

One might consider several influence measures, corresponding to altering different 
aspects of the model. One can consider variations in ml(A, y) when F is replaced by 
Fe = (1- c)F +cia:, when G is replaced by Ge = (1- c)G + clc, or both, or replacing 
(F, G) by (1- c )F x G + cl(x,c)· These would give different generalisations I(F, G, x, c) of 
(3.1). The way data are captured suggests however that we should consider local variation 
of H in the direction of a given point ( x, b) in [0, oo) x {0, 1 }. 
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THEOREM 3.1. Let Oo = ml(H) for some H under consideration. Under the regularity 
conditions of Theorem 2.1 the maximum likelihood estimator has influence function 

I(H, (x, h)) = !~ c-1 { ml((1- c)H + cl(:e,t5))- ml(H)} 

8 t 
= J(H,90 )-1 [1P(x,90 )I{h = 1}- 89 Jo a(s,Oo)ds] 

= J( H, Oo )-1 1T 1j1( s, Oo ){ dN :e,6( s) - Y:e,6( s )a( s, Oo) ds }. 

Here J(H,Oo) is J(a,y,Oo) from Section 2, and N:e,6(t) = I{x ~ t,h = 1} and Y:e,6(s) = 
I{x ~ s} are counting process and at risk process for the single pair (x,h). 

PROOF: Write He = (1- c)H + cl(:e,6)· This He gives rise to Ye and Ae as follows, 
using (3.2): 

Ye( S) = {1 - c )y( S) + c I {X ~ S }, 

Ye ( s )dAe ( s) = ( 1 - c )y( s) dA( s) + c I { x E [ s, s + ds], h = 1}. 

We are to find Be = ml(He ), the solution of 

This can be done by carrying out a first order Taylor expansion analysis. The result is 
() e - 90 ~ {- ~: } 0 1 { ~; } 0 c, where the partial derivatives of Ue ( 9) are evaluated at c = 0 
and () = 90 • Some analysis demonstrates that c - 1 ( () e - 90 ) tends to the limit given in 
the theorem. When evaluating :e ue( 9) it is crucial to note that Ae has a point mass of 
size __:_ c I { h = 1} / y( x) at x. See also Section 4 for a refinement. D 

The result of the theorem generalises (3.1), since logf(x,O) = loga(x,O)- A(x,O) 
with derivative 1j1(x,9)- Ad(x,O), and h = 1 in the non-censored case. 

The result of Theorem 3.1 is also suggested by the proof of Theorem 2.1, where we in 
effect showed 

n T 
~ ~ 11"'{ 
9-90 = ml(H)-ml(H) ~d J(H,90 )- - LJ Jo 1j1(s,9o){dNi(s)-Yi(s)a(s,9o)ds}, (3.3) 

n i=1 o 

writing Ni and Yi for the counting process and at risk process of individual no. i. Theorem 
2.1 could alternatively have been derived after Theorem 3.1 using general asymptotic theory 
of estimators with influence functions, see e.g. Reid (1983), Gill (1989), and the present 
Section 4. 

~ 

Measures of influence for the individual data pairs can be proposed. Let H(i) be the 
empirical distribution when (Xi, hi) is deleted from the data set. Then 

~ 1 ~ 1 ) ~ 1 (~ ) () = ml((1- ;)H(i) + ;I(:e;,6i) ~ ml(H(i)) +;I H(i),(xi,hi) , 
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which invites using a cross validation type influence measure I(fi(i)' (xi, hi)) ~ n(B- B(i)) 
for the i'th data pair, where B(i) is computed leaving this pair out. It is somewhat simpler 
to use the approximation 

i; ~ I(H,(x;,6;)) ~ J(H,i)-1 J.T ,P(s,i){dN;(s)- Y;(s)a(s,8)ds} ~ J-1£, (3.4) 

,.... ........ ...... n ......... 
instead. Note that J(H,8) simply is the J of (2.6), that L:i=1 Ii = 0, and that 

~ t LlJ = J-1 { !_ t iii~ }J-1 = J-1f? J-1 = ~' 
i=1 n i=1 

(3.5) 

the estimated asymptotic covariance matrix for y'n(B- 80 ), cf. some algebraic manipula­
tions summed up in (2. 7). 

We propose using the L 's as a data-analytic tool, to screen data for possible outliers 
and to identify data pairs with possibly unduly influence. A further suggestion is to 
"sphere" them, computing ~- 1 12 L = J'll 2 f?-112 J-112 Li instead. These have mean zero 

and covariance matrix the identity, which should make outliers more easily detectable. 

REMARK. Note that we end up with the model-robust covariance estimator since 
Theorem 3.1 was derived under the agnostic point of view. The influence function under 
model conditions is similar but with a simpler J-1 matrix, see Theorem 2.1. As an example, 
suppose F9(t) = 1- exp( -t9) is the Weibull distribution (with a single parameter). Then 
the estimated influence function is 

I(x,h) = J-1{(1 +logx9)h- x9logx9}/B, 

where J is J(H(., B), B) in the model-based case aud J(fi, B) = ~ 2::~ 1 { hi+xf(log xf)2 }/~ 
in the model-agnostic case. These are different. In the uncensored [0, oo) case the first 

number is simply 1.35042 /~ [from 1 + r"(2) = (1 -{')2 + 11' 2 /6 = 1.35042 ]. 0 

4. Model-based and model-robust bootstrapping 

This section briefly studies the large sample behaviour of some natural bootstrapping 
schemes. The aim is to use the available data to come up with simulated versions B* of 
the maximum likelihood estimator B in such a way that important quantities related to 
the (partially unknown) distribution of B can be estimated from the empiric.al distribution 
of 0*. If interest focusses on some real-valued J.L = J.L( 8), then the discussion below applies 

to P, = J.L( B) aud P,* = J.L( B*) instead. 

4A. Preliminaries: the maximum likelihood functional. Recall from Section 3 that the 
maximum likelihood procedure can be seen as a functional operating on distributions H = 

(H 0 , H 1) for (X, h). The estimator aims at ml(H), the maximiser of Jt y(log a9dA-a9 ds ), 
or, equivalently, the solution of c/>( H, 8) = 0, where 

¢(H,8) ~ J.T y(s),P(s,8){dA(s)- a(s,O)ds} 

= 1T 1f1(s,8){dH1(s)- (H0 +H1 )[s,oo)a(s,8)ds}, 

(4.1) 
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utilising the ( 3.2) correspondence between (A, y) and H (and we could think of ml( H) 
as ml( A, y) instead). The non parametric estimate fi for H is the empirical distribution 
of the data pairs (Xi' 6i). There is a small class of parametric counterparts H( ., e) that 
corresponds to ~sing A( t, 8) = J0t a( s, 8) ds for A and any consistent estimate y( t) for y( t), 
for example y(t) = exp{-A(t,B)}G[t,oo), employing the Kaplan-Meier estimate G for G. 
Observe that both ml(H) and ml(H(.,B)) indeed are equal to e. 

We shall establish that the ml functional is sufficiently smooth, in a precise sense, 
and shall have occasion to use this to rigorously justify that various natural bootstrapping 
schemes actually work. For a pair of distributions H = (H0 , H 1 ) and H0 = (H8, HJ) for 
(X, 6), consider the supremum type norm 

IIH- Ho 11 2 = II Hi - H~ 11 2 + IIHf - Hg 11 2 

= sup I Hi (t)- H~ (t)l 2 + sup IHf(t)- ng(t)l 2 • 
09~T O~t~T 

LEMMA. The ml functional is locally Lipschitz differentiable w.r.t. the norm IIH -H0 11, 

under the conditions underlying Theorems 2.1 and 3.1. In other words 

ml(H)- ml(Ho) = [ I(Ho, (x, 6)) d(H- Ho)(x, 6) + r(Ho, H), 
J[o,oo)x{O,l} 

where r(Ho, H) = O(IIH - Ho 11 2 ) as this distance tends to zero. 

PROOF: Single out some H0 and write 80 = ml(Ho) in what follows. Consider 

B(H,(x,6)) = 1T '!jJ(s,ml(H)){dN:z:,.s(s)- Y:z:,.s(s)a(s,ml(H))ds}, 

so that the influence function I(H,(:c,6)) of Theorem 3.1 can be written J(H,ml(H))-1 

B(H,(x,6)). Note that B(.,.) acts as afunctional derivative of¢(H,8) w.r.t. H in that 

4>(H,8o)- <P(Ho,8o) =I B(Ho,(x,6))d(H- Ho)(x,6) 

(even without a remainder term). Write for convenience D</l( H, 8) for the p x p matrix of 
(ordinary) partial derivatives of <jl(H,8) w.r.t. 8. Note that D¢J(H0 ,80 ) is nothing but the 
-J(H0 , 80 ) matrix involved in Theorems 2.1 and 3.L 

We have accordingly derivatives of <jl(H, 8) in both directions, and can try Taylor 
expansion. Assume that 

¢J(H,8) = <jl(H0 ,80 )+D</J(H0 ,8o)(8-8o)+ J B(Ho,(x,6))d(H-Ho)(x,6)+ro(H,8) (4.2) 

for suitable remainder term r0 (H, 8). Then solving <fJ(H, 8) = 0 to find ml(H) gives 

ml(H)- ml(Ho) = -D</J(Ho, 8o )-1 [/ B(Ho, (x, 6)) d(H- Ho)(x, 6) + ro(H, ml(H))] 

=I I(Ho,(x,6))d(H- H0 )(x,6) + J(H0 ,8o)-1 r 0 (H,ml(H)), 
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and the lemma is proved provided we can show r 0 (H,ml(H)) = O(IIH- Holl 2 ). For this 
is suffices to prove that ro(H,B) = O(IIH- HoiiiiB- Boll) in (4.2), in conjunction with 
ml(H)- ml(Ho) = O(IIH- Holl). But 

ro(H,B) = ¢>(H,8)- ¢>(H,Bo)- D¢>(Ho,Bo)(8- 8o) 

-= [D¢>(H,Bo) + 0(118- Boll)- D¢>(Ho,Bo)] (8- Bo) 

= O(IIH- HoiiiiB- Boll), 

using regularity conditions about third order partial derivatives etcetera. 0 
- -Suppose H is some estimate of H, and let H* be the empirical distribution of data 

pairs (xi, hi) obtained via some scheme or other. Then 

8* - 8 = ml(H*)- ml(H) 

1 ~ - - -
=- LJI(H,(xt,h;))+r(H,H*) 

n i=1 ( 4.3) 

n {T 
= J(H,8)- 1 "! L Jo tf1(s,8){dNt(s)- Y/(s)a(s,8)ds} +r(H,H*), 

n i=1 o 

where Nt(t) = I{xi ::::; t,hi = 1} and Yi*(t) = I{xi ~ t} are associated with data pair 
(xi, hi), cf. Theorem 3.1. To arrive safely at an a.s.limit distribution result for yn(B*- B) 
a necessity is a.s. convergence to 0 of vn r( jj' H"' ). This follows if ii* is close enough to 
H (a statistical question) and ml(.) is smooth enough (a function space calculus quest!_on). 
The latter point is dealt with in the lemma. Regarding the first point, note that if H* is 
the empirical distribution of data from ii, then IIH*- Hll = O({n-1 loglognp12 ) with 
probability 1 by well-known fluctuation estimates in the Glivenko-Cantelli theorem, from 
which it follows that vniiH*-: Hll 2_= O(n-1 12 loglogn) a.s. This is also true when jj 
is non-continuous, an~ when H = Hn itself is random and converges to some fixed H, 
i.e. vniiH~_:- Hnll 2 is still O(n-112 loglogn) a.s. when jj~ is the empirical distribution of 
data from Hn. See Shao (1989) for similar remarks. 

4B. Parametric bootstrapping. Simulate pseudo-data (X;, ht), ... , (X~, h~) from the 
parametrically estimated model. In other words, simulate Xf* from the distribution with 
hazard rate a(.,U) and ci from G, independently, and form Xt = min{Xf*,ci}, hi = 
I{Xf* ::::; ci}. (This is actually semi-parametric bootstrapping.) Compute 0* from this 
pseudo-data set, i.e. from the empirical distribution H~, 0)*, say, of the n pseudo-pairs. 
Then from (4.3), letting dMt(s) = dNt(s)- Yi*(s)a(s,B)ds, 

vn(o;b- 0) = vn{ml(H(.,O)*)- ml(H(.,B))} 
n T 

= J(H(.,9),9)-1 ;.. ~f. ,P(s,9)dM;'(s) + .,,nr(H(.,9),H(.,9)'). 

This can be used to prove 

( 4.4) 
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The notation emphasises that there is convergence in distribution with probability 1, i.e. the 
data-conditional distribution converges to the right limit for almost all sequences of out­
comes (Xi, 6i). Note that the J matrix obtained here is of the 'under true model' type, 
and is simpler than in the general case described in Theorem 2.1; in fact 

J(H(.,90),90) = J.T y(s),P(s,9o).P(s,9o)'a(s,9o)ds. 

The first technical point to observe when proving ( 4.4) is that the Mt's become or­
thogonal martingales in the conditional framework given data, with variance processes 
Yi*( s )a( s, 0) ds, and that the proof of Theorem 2.1 works in this framework, with a( s) = 
a( s, 0) as the underlying true model. See Akritas (1988) for somewhat similar arguments 
carefully spelled out in a somewhat similar situation. The second point is that the remain­
der term goes a.s. to zero, actually as O(n-112 loglogn) by the lemma and the remark 
ending 4A. 

Sometimes Ci 's are known, in which case it is natural to just put ci = Ci in the 
bootstrapping scheme above, or perhaps more information is otherwise available about the 
distribution G. Suppose ci is drawn from Gi instead of the sometimes coarse Kaplan­
Meier estimate 8. The limit distribution argument above rests crucially on convergence of 
n- 112 L:7= 1 Jt 1/J(s,B)dMt(s). This is a martingale with variance equal to the mean value 

T ~ - ~ T - - -of n- 1 L:7:1 J0 'f/J(s,B)'f/J(s,B)'Yt(s)a(s,B)ds, which is ] 0 1/J(s,B)'f/J(s,B)'y(s)a(s,B)ds, 
where y( s) = exp{ -A( s, O)}G[s, oo) and G[s, oo) = n-1 L:7= 1 Gi[s, oo ). If only G(.) tends 
in probability to the true G(.) then martingale limit methods of Helland (1982) can be 
called upon to show that ( 4.4) holds again. This takes in particular care of the situation 
with known c/s. One has the same (first order) limit distribution as with 8 but presumably 
less sampling variability for fixed n. 

4C. Nonparametric bootstrapping. This time draw Xf* from the nonparametric Kap­
lan-Meier estimate F instead, in tandem with an independent ci from 8, as above. This 
happens to be equivalent to drawing (Xi, 6i) pairs independently from fi, as explained in 
Efron (1981). Somewhat more elaborate arguments are needed in this case. Let dMt(s) = 
dNt( s) - Yi* ( s) dA( s ). The Mt's become orthogonal martingales in the data-conditional 
framework, with variance process Yi*(s)dA(s){1- dA(s)}. From (4.3) 

vn(enb- B)= vn{ml(H*)- ml{H)} 
n T 

= J(fi,0)-1 )n ~ J. ,P(s,i)[dMi(s) + Y;'(s){di(s)- a(s,i)ds}] 

+ vnr(il,il*). 

The remainder term again goes a.s. to zero by the efforts of 4A, and J(fi, B), which is J 
of (2.6), is strongly consistent for J = J(H,80 ) under the present conditions. The middle 

term can be written 

1T ~(s,O)[dM*(s)/vn + vn{Y*(s)/n- y(s)} {dA(s)- a(s,B)ds}] 
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and resembles an expression used in the proof of Theorem 2.1. This proof can in fact be 
copied and used in the present problem with suitable delicate alterations, to show that 
the middle term tends in distribution a.s. to Np{O, K(H, 80 )}, where the K matrix is as in 
Theorem 2.1. The details require some modest machinery for discrete time martingales, 
as in Helland (1982), and can be taken care of by means similar to those in the Appendix 
of Hjort (1985b ). The end result is 

(4.5) 

4D. Discussion. The consequences of ( 4.4) and ( 4.5) are more or less as for the classical 
non-censored case, discussed briefly after (1. 7). The non parametric bootstrap always works 
correctly, in the first order large sample sense, as a consequence of ( 4.5) and Theorem 2.1. 
The parametric bootstrap creates the correct amount of variability only if the model itself 
is correct. Otherwise either under- or overestimation could result. ( 4.4) is statistically 
meaningful even when the model is wrong, in that it tells about the estimation uncertainty 
in a situation with data from a correct model at the least false 80 • If the model does 
happen to be adequate, then both B:;b and e;b have the same limit distributions, but the 
nonparametric one will usually have larger sampling variability. This is for example clear 
when one writes down the necessary expressions in the situation with censored data from 
an exponential distribution. 

There are other bootstrapping schemes. We noted that all sensible ways of drawing 
c;'s in the parametric case gives the same large sample behaviour for B;b. This is not quite 

the case for O*b. If one uses the empirical distribution G in the case of known Ci 's, then 
n ~ 

the non parametric scheme with Xf* 's from F is first of all not equivalent to drawing pairs 
(Xt, oi)'s from fi anymore, and secondly the limit distribution of Jn"(O~b - 0) exists but 
is slightly different from that of fo(B- Bo ). 

Our justification proof for the bootstrap schemes used local Lipschitz differentiability 
of the ml functional. Results ( 4.4) and ( 4.5) could have been reached in other ways as 
well. Rather general function space methods in Gill (1989) and Csorg8 and Mason (1989) 
could be used, but would give somewhat weaker results, without the extra bonus of speed 
of convergence which our Lipschitz method gives. On the other hands the methods used 
by these authors would give results even without the almost sure convergence details 
that partly underlie our proof, and this is relevant in more complex counting process 
models where perhaps only weak consistency can be proved for e. It is also worth pointing 
out that the technical matters were helped by the assumed finiteness of the observation 
interval [0, T]. With likelihoods on the full halfl.ine [0, oo) the ml functional would not 
be quite Lipschitz differentiable, and there would also have been difficulties with applying 
the implicit function theorem, when solving for 8 in ¢>(H, 8) = 0, if one were to use Gill's 
machinery. 

5. Other estimation methods 
~ 

We have concentrated on the maximum likelihood estimator 8 in previous sections. 
Hjort (1986a, Section 3) proved that several of the familiar asymptotic optimality proper­
ties enjoyed by this method in classical situations carry over to the present censored data 
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framework. These properties have however as basic assumption that the parametric model 
is indeed correct. There is therefore still interest in studying other estimation schemes, 
that perhaps might be somewhat less inefficient than B under the ideal model's home turf 
conditions but that for example could have better robustness properties outside model 
conditions. This section briefly discusses some possibilities. 

5A. Bayes estimators. If 1r( B) dB is a prior density for B then the Bayes estimator is 
BB = E{Bjdata} = I BLn(B)1r(B) dB/ I Ln(B)1r(B) dB. But as far as first order asymptotic 
behaviour is concerned such estimators are equivalent to the maximum likelihood solution, 
i.e. yn(BB - 8) goes to zero in probability, even outside model conditions, according to 
Hjort (1986a, Section 2). 

5B. M-type estimators. We saw in Example 2.1 that the maximum likelihood solution 
in the constant hazard rate model tends to Bo = It ya ds / It y ds, a weighted average of 
the true hazard rate over the observation interval. As a consequence small s-values are 
given much more weight than larger s-values. Perhaps more disturbing is the fact that the 
somewhat problem-irrelevant censoring distribution G is involved in B0 , through y( s) = 
F[s, oo )G[s, oo ). This is a general feature of the maximum likelihood approach, see (2.3). 
One could argue that the most fitting constant hazard rate should be B1 = IoTa ds / IoT ds 
instead, or at least that it should be freed of its dependence upon G. 

This corresponds to a different weighting of the log-likelihood. Consider in general 
terms the weighted likelihood 

W Ln(B) = exp [1T Wn(s ){log ao(s) dN(s)- Y(s )ao(s) ds} J, (5.1) 

where Wn(.) is a weight function tending in probability to some w(.), and where the 
notation is as in Section 2. The corresponding maximum weighted likelihood estimator 
Bw maximises this function, and also solves It Wnt/Jo{ dN - Y ao ds} = 0. An alternative 
term suggested by an analogy to the non-censored i.i.d. situation is M-eatimators. 

A result about the asymptotic behaviour of such estimators (and more general ones) 
was reached in Hjort (1985a, Section 4), but only under model conditions. It is now 
possible to go through the arguments of Section 2 and 3 and apply them toM-estimators. 
Under appropriate and mild regularity conditions, which include Wn( s) .-P w( s ), it holds 

that n-1 log WLn(B) tends to It wy(alogao- ao)ds, that Bw is consistent for the (new) 
least false parameter Bo,w that minimises the differently weighted distance measure 

dw[<>, <>9[ = J.T wy{ <>(log<> -log <>9) - ( <> - <>9)} d8, 

cf. (2.3), in particular each M-estimator is consistent at the model, and that 

in which 

Jw = 1T wy[t/J(.,Bo,w)t/J(.,Bo,w)'a(.,Bo,w)- Dt/J(.,Bo,w){a- a(.,Bo,w)}] ds, 
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Kw = VAR 1T w(s)¢(s,8o,w)[dV(s)- Z(s){a(s)- a(s,8o,w)}ds], 

cf. (2.4). We point out that the weight function Wn(s) is allowed to be random here, it 
can for example be previsible (its value at time s is known at time s- ), or of the form 
Gn( s, B), where Gn( s, 8o,w) is previsible and converges to w( s, 8o,w) in probability. (Such 
a function's value at time s is not known at time s-, since it employs i, which requires all 
the [0, T]-data to be computed.) 

__ This apparatus can now be used to construct a modified mazimum likelihood estima­
tor 8m that avoids being dependent upon the censoring distribution G. The point is to 
use Wn(s) = G[s,oo)-1, where G[s,oo) = flu<s{1- dNc(u)IY(u)} is the Kaplan-Meier 
estimator based on the observed censoring times. The accompanying distance measure 
for Bm is (5.2) above with y(s)w(s) = y(s)G[s,oo)- 1 = F[s,oo) = exp{-A(s)}, and is 
perhaps an even more appropriate generalisation of Kullback-Leibler's information dis­
tance than (2.3), see Remark 7 A. The modified 'im is consistent for 80 ,m, for example, 

80 ,m = Jt e-Aa dsl J0T e-A ds in the exponential model. This points out anew that differ­
ent estimators might converge to different least false values when the model is incorrect; 
Om aims here at a value more tied to the 'inverse expected time to failure' interpretation 
of 8 than to the 'constant hazard rate' interpretation. 

Another interesting choice is Wn(s) = y(s)-1 = F[s,oo)-1 G[s,oo)-1 • It converges to 
y( s) - 1 and has the effect of freeing the estimator from its dependence on y(.), i.e. from 
favouring portions of [0, T] with large y over portions with small y. In the exponential case 
this modificator estimates 80 ,w = Jt a( s) ds IT, the neutrally weighted hazard rate. 

Using the modified estimator entails a loss in efficiency at the model, as J;;1 KwJ;; 1 

is a larger matrix than J- 1 • As an example, study the exponential model, suppose that 
a( s) = 80 prevails, and assume that the censoring distribution is G( t) = 1 - exp(-g8o), 
which corresponds to au expected frequency 11(9 + 1) of (xi,6i) pairs where x? is truly 
observed. The maximum likelihood estimator i and the two modificators Bm1 and Bm2 

mentioned above all take the form J0T WndN I Jt WnY ds, using respectively Wn( s) = 1, 

Wn(s) = G[s,oo)-1, and Wn(s) = y(s)-1 • All three are consistent for 8o (since the model 
is in command), and their asymptotic variances can be shown to be respectively 

1 (12 
0 ---

n 1- c' 
1 8~ (1lc)1+9 - 1 
;;, 1 + g (log 1 I c )2 ' 

in which Pr{X0 :::; T} = 1- exp( -80T) = 1- c. The third estimator is too defensive it 
its avoidance of the model, and is much worse than the two others for most combinations 
of g and c. The second estimator does not lose much efficiency for values of g that signal 
low or moderate amounts of censoring, say g :::; t. The efficiency loss becomes significant 
in cases with more than a moderate amount of censoring. 

The influence function of an M-estimator can also be found, using arguments presented 
in Section 3. With notation as there it becomes 

I(H,(x,6)) = J;; 1 1T w(s)¢(s,8o,w){dNo(s)- Yo(s)a(s,8o,w)ds}, (5.4) 
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and an estimator for it can easily be constructed, along with empirical influence measures 
of the type L = I(H,(xi,hi)). If the maximum likelihood method looks non-robust, in 
that the influence function given in Theorem 3.1 is sensitive to large values of x, then a 
more robust estimator can be constructed by using au appropriate deflating w-function. 

50. Dynamic likelihood and smoothing. A choice of Wn different in spirit from those 
considered above is WnL") = w(s) = I{s E B}, for a suitable subinterval B of [O,T]. 
The resulting estimator 8B uses only data for individuals who are at risk at the beginning 
of B and information about what happens to them during B, and aims at a locally most 
appropriate Bo,B, the parameter value that minimises dB[a, ae], say, which is as in (2.3) but 
integrated only over B. Such estimates could be computed for different subintervals and 
compared, for example for model checking purposes. (Much more general model checking 
procedures are in Hjort (1990a).) 

A similar but more ambitious idea, both statistically and computationally, is to use 
a local B(s) = (s- !h,s + !hJ around each givens, to compute an estimate e(s) = eB(•) 

based only on local data. This corresponds to a dynamic or local likelihood approach, 
and is somewhat similar in motivation to work by Hastie and Tibshirani (1987). Choosing 
once again the constant hazard rate model as an example, B( s) = N { B( s)} / J B( 3 ) Y ( s) ds 
becomes the dynamic hazard rate estimate at s. This is similar to but not the same 
as kernel smoothing of the Nelson-Aalen estimator J~ dN/Y, which is Ramlau-Hansen's 
(1983) way of nonparametrically estimating a hazard rate. We can also pass to general 
kernel function smoothing, and for each s maximise 

1T K(s- u){logae(u)dN(u)- Y(u)ae(u)du} 

to obtain the local or dynamic or smoothing 8( s ), where K is symmetric with maximum 
at zero. We view these methods as semiparametric approaches to the estimation of a para­
metric model. (Other useful approaches sharing this particular characteristic are discussed 
in Hjort (1986b).) Observe that our method can be used also to construct a "dynamic 
semiparametric density estimator" via fe(t) = ae(t) exp{ -Ae(t}, and of course works in 
cases without censoring as well. A dynamic estimator of the normal density can for ex­
ample easily be constructed, of the form [(t) = N {;L(t), 0:2(t)}, where ;L(t) and O:(t) are 
obtained locally. These matters will be pursued elsewhere. 

6. Regression models for hazard rates 

So far we have considered lifetimes to have been drawn from a homogeneous popu­
lation. Statistically more challenging and important problems arise when the individuals 
under study also have covariate measurements that may influence the lifetime distribu­
tion. In this section two regression models for hazard rates are studied, the traditional 
semiparametric Cox model with unspecified baseline hazard rate and the fully parametric 
Cox model with parametric baseline hazard rate. Once more the questions to be dis­
cussed include behaviour of the maximum likelihood estimators outside the narrow model 
assumptions, agnostic estimation of the covariance matrix, and influence measures. 
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The data set is (xi,61,zt), ... ,(xn,Dn,zn), where Xi and Di are as in previous sections 
and Zi is a q-dimensional covariate measurement vector for individual no. i. The hazard 
rate for this individual is ai(s) = a(slzi)· The Cox model postulates that 

ai( s) = a( s) exp(,B' zi) = a( s) exp(,B1 Zi,l + .. · ,Bqzi,q ), i = 1, ... , n, (6.1) 

where a(.) is an unspecified hazard rate and ,B is a vector of coefficients. These are 
traditionally estimated by maximum partial likelihood, see Gill {1984) for a good account 
of the theory. However, the behaviour of the estimates outside the narrow proportional 
hazards assumption seems not to have been studied in the literature, except for Hjort 
(1986a), where the point limit ,80 of the estimates is identified outside model conditions. 
In 6B below also the limit distribution is found, and a consistent estimate is provided for 
the covariance matrix. 

The success of Cox regression analysis has perhaps had the unintended side effect that 
practitioners too seldomly invest efforts in studying the baseline hazard a(.). A parametric 
versiOn, say 

ai(s) = a(s,8) exp(,B'zi), i = 1, ... ,n, (6.2) 

for some p-dimensional 8, if found to be adequate, would lead to more precise estimation 
of survival probabilities and related quantities and concurrently contribute to a better 
understanding of the survival phenomenon under study. This is the model studied in 6A 
below. References where such models have been used, with a(s,8) corresponding to the 
exponential, Weibull, log-normal distribution, or to piece-wise constant hazards, can be 
found in Kalbfleisch and Prentice (1980, Chapter 3) and Borgan (1984). Hjort (1990a) 
provides goodness of fit tests for models of type (6.2). 

REMARK. For ease of exposition we shall assume throughout this section that data are 
i.i.d. realisations of a triple (X,~' Z), with appropriate distribution H in (0, oo) x {0, 1} x 
'Rq, and that (X,~) come from life time X 0 and censoring time C in the manner described 
in Section 2. The sequence (Ni,Yi,Mi) of individual analogues to (2.1), that is dNi(s)= 
l{Xi E [s,s+ds],~i = 1}, Yi(s) = l{Xi 2: s}, andMi(t) = Ni(t)-J0tYi(s)ai(s)ds, 
also become i.i.d. The i.i.d.-assumption is not crucial; most of the reasoning and results 
below continue to be valid for example in a setting with non-random censoring times and 
covariates, with suitable modifications. 0 

6A. Parametric Cox regression. The model postulates (6.2). Assume that the true 
state of affairs is of the form ai(s) = a(sjzi) = ao(s)ho(zi) for some ao(.) and some ho(.); 
this is the hazard rate that would have been seen if a large data set were collected from 
individuals with the same covariate vector Zi· The maximum likelihood estimators i, fj 
maximise 

1 1 n {T 
~logLn = ~ L Jo [{loga(s,8) +,B'zi}dNi(s)- Yi(s)a(s,8)exp(,B'zi)ds]. 

i=l 0 
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They also solve Un(8,{3) = 0, where Un has components 

A certain amount of exra notation is necessary here. We use 

1 n 
dG~0 )(s) = ;;: L dNi(s) ---+p dG(o)(s) = EI{X E [s, s + ds], ~ = 1} = r< 0 )(s )a0 (s) ds, 

i=l 

1 n 

dG~1 >(s) =- L zidNi(s) ---+p dG(l)(s) = EZI{X E [s,s + ds],~ = 1} = r(l)(s)a0 (s)ds, 
n i=l 

If the model is perfect, then h0 ( z) = exp(f3~ z) for some {30 and R~0 ) ( s) = Q~0 ) ( s, {30 ), 

r< 0 )(s) = q< 0>(s,f3o), etc. 
To study the behaviour of the estimators, observe that the components of Un(8,{3) 

have limits 

,p >( 9, p) = J.T ¢•{ dG(o) - q(o)( ., P)<>• ds} = J.T 1/>•{ r(o) <>o - q(o)( ., P)<>•} ds, 

u< 2 )(8,{3) = 1T{dG(l) -q(1)(.,{3)aeds} = 1T{r(l)a0 -q< 1 )(.,{3)ae}ds. 
(6.3) 

These functions determine the limit ( Bo, {30 ) of ( B, jj), see the theorem below. Taking second 
partial derivatives of n-1 log Ln(8,{3) gives a matrix In(8,{3), and an expression for its limit 
in probability can be found. Let J be the limit of -In(Bo,f3o). It has blocks 

Ju = J.T q(O )(.,Po )1/>( ., 9o )1/>( ., 9o )'a(., 9o) ds- J.T D,P( ., 9o ){ r(O) <>o- q(O)( ., Po )a(., 9o)} ds, 
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J12 = 1T 1/J(.,8o)q(l>(.,f3o)1o:(.,8o)ds, J22 = 1T q< 2>(.,f3o)o:(.,8o)ds. 

Let finally 

K = VAR [Jt 1fjs,8o){dNi(s)- Yi(s)o:(s,8o)exp(j3~Zi)ds}l· 
fo Zi{dNi(s)- Yi(s)o:(s,8o)exp(j3~Zi)ds} 

A somewhat complicated explicit expression can be given forK, as in the proof of Theorem 
2.1, this time involving o:0 and h0 , but we will be content with this description and the 
consistent estimator below. The following result generalises a theorem of Borg an ( 1984) 
to outside-the-model conditions. 

THEOREM 6.1. Assume tl1at the equations u(l>(8,j3) = 0, u< 2>(8,j3) = 0 have a 
unique solution ( 80 ,/30 ). Suppose further tl1at the regularity conditions on o:( s, 8) stated in 
Theorem 2.1 hold, that J is positive definite, that the covariates Zi are uniformly bounded 
as n grows, and that h0 (z) is bounded away from zero and infinity in this bounded domain. 
Then the maximum likelihood estimators (B, jj) are consistent for the least false parameter 
values ( 90 ,/30 ). These also minimise the distance measure d[o:0(. )ho (. ), 0:9(.) exp(/31 • )] given 
in (6.6) below. Furthermore, 

where J and K are given above. A consistent estimator for J is J, with blocks 

~ _ (0) .-... ~ .-...I .-... ~ (0) (0) .-... .-... 1T 1T Ju-
0 

Qn (.,j3)1f(.,8)1f(.,9) o:(.,8)ds-
0 

D'ljJ(.,lJ){dGn (s)- Qn (.,j3)o:(.,8)ds}, 

~ ~ (1) ..-.. I ~ 1T 
J12 = 

0 
1/J(.,8)Qn (.,j3) o:(.,8)ds, 

~ (2) ~ ~ 1T 
J22 = 

0 
Qn (.,j3)o:(.,lJ)ds. 

Finally 

is a consistent estimator for K. 

We note that the regularity conditions can be weakened, along the lines of Borgan 
(1984, Section 6), but that those given here should be satisfied in most practical applica­
tions. Note also that uniqueness of the root of 1t(9,j3) = 0, or of the minimiser of the (6.6) 
distance, follows if the log-likelihood function is concave. 

PROOF: The consistency part can essentially be handled using methods of Hjort 
(1986a, Theorem 2.3). The asymptotic normality part is similar to the proof of Theorem 
2.1, again using the Taylor expansion argument (1.2). One has to employ the martingales 

Mi(t) = Ni(t)- J:Yi(s)o: 0 (s)ho(zi)ds where Borgan (1984) was allowed by the model to 

use Ni(t)- J0
1 Yi(s)o:(s,lJ0 )exp(f3~zi)ds, and take the additional variability into account. 

The variables whose covariance matrix defines K above split into a martingale term and an 
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additional more complicated term that comes from incorrectness of the model; only under 
model circumstances does the second term vanish and K become equal to J. Consistency 
of J and K can be established using martingale inequalities and uniform convergence in 
probability arguments that for example can be gleaned from Hjort {1990a, Section 2). 
Let's leave it at that. 0 

Measures of influence become even more important in the presence of covariates. 
Let H be the distribution of (X,.6.,Z), and let (x,b,z) be fixed. Then He= (1- c:)H + 
ci(z,6,z) represents a small perturbation of H in direction ( x, b, z ), and the least false (Be, f3e) 

determined by He can be studied. It is by the theorem the solution to u~1 )( 8, {3) = 0, 
u~2)(8,{3) = 0, where Ue is as in (6.3), but with 

dG~i)(s) = {1- c:)dG(j)(s) + c:zj I{x E [s,s + ds],b = 1}, 

q~i)( s, {3) = {1 - c: )q(i)( s, {3) + c:zi I { x 2: s} exp(/3' z ), 
(6.4) 

for j equal to 0 and 1. Note that G~o) and G~1 ) have positive point masses at x if b = 1. 
Analysis as in the simpler case covered by Theorem 3.1 gives at the end of the night the 

·influence function 

( ) . [{8o(He)-8o(H)}/c:] 
I H,(x,b,z) = !~ {f3o(He)-f3o(H)}/c: 

_ J- 1 [1/J{x,Bo)b- exp(f3~z)Ad(x,8o)] 
- z{h- exp(f3~z)A(xi,8o)} 

= J-1 [It 1/J~s,Bo){dNo(s)- Yo(s)a(s,8o)exp(f3~z)ds}], 
Io z{dNo(s)- Yo(s)a(s,8o)exp(f3~z)ds} 

in which N 0 and Yo are counting process and at risk process for (x, b). Natural diagnostic 
measures for influence are 

I~. -I(H~ ( . c. ·)) _ J~-1£~. _ J""'-1 [It 1/J(s,i){dNi(s)- Yi(s)a(s,i)exp(P'zi)ds}l 
t - ' x,, Vq z, - t - T ...... ...... ' 

Io zi{ dNi( s) - Yi( s )a( s, B) exp(f3' zi) ds} 
(6.5) 

where an alternative expression for Li is given in the theorem, and fi is the empirical 
distribution of then triples (xi,hi,Zi)· It is also an approximation to the crossvalidated 
I(fi(i),(xi,bi,zi)) and to (n(B- ~i)),n(,B- ,B(i))), see Section 3. A further important 
property of these empirical influence measures is that their empirical covariance matrix 
becomes E = J-1 K J-1 , as in (3.5). We propose computing the sphered influence measures 
E-1 / 2 J:, which have mean zero and empirical covariance matrix the identity in dimension 
p + q, to screen data for outliers and for individual data triples with particular influence. 

Let us end this subsection with exhibiting the distance measure between hazard rates 
with respect to which ( 80 , {30 ) chosen by the maximum likelihood procedure is least false, 
cf. the first part of the Introduction. We reach slightly more general insight by writ­
ing a(siz) = a 9(s)h,B(z) for the parametric model, instead of the special case (6.2), and 
a 0 ( s )ho ( z) for the true model. Under these circumstances one can show that 

1 1T -log Ln(B,{3) -+p {r(o){s)log ae(s) a0 (s) + r( 1)(s,{3)ao(s)- q< 0 )(s,{3)ae(s)} ds, 
n o 
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where the functions entering the integrand are given below, and also expressed as integrals 
over the covariate space Z with respect to the covariate distribution D( dz) for Z: 

r< 0>(s) = EI{X ~ s}h0 (Z) = Ly(siz)ho(z)D(dz), 

r(l>(s,/3) = EI{X ~ s}ho(Z)logh13(Z) = Ly(siz)ho(z)loghf3(z)D(dz), 

q< 0>(s,/3) = EI{X ~ s}h13(Z) = Ly(siz)h13(z)D(dz). 

These equations also feature the z-dependent y(siz) = Pr{X ~ siz}. Consider the z­
dependent hazard distance from ao(.)h0 (z) to ae(.)h13(z), as measured by the already 
encountered distance measure (2.3), that is 

1T [ ao(s)ho(z) 
dz[a 0 (.)h 0 (z),ae(.)hf3(z)] = 0 y(siz) ao(s)ho(z)log ae(s)h~3(z) 

- {ao(s)ho(z)- ae(s)h13(z)}] ds. 

It is now a matter of careful checking to see that maximising the limit of n-1 log Ln(8,{3) 
is the same as minimising the z-weighted distance function 

d[aoho,aehf3] = L dz[ao(.)ho(z),ae(.)hf3(z)]D(dz). (6.6) 

6B. Semiparametric Cox regression. The model postulates (6.1), where a(.) is left un­
specified. Let us, conservatively and counterbalancedly, assume only that ai( s) = a( si Zi) = 
a(s)h0 (zi) for some a(.) and some ho(.). The Cox estimator maximises the partial log like­
lihood 

logLn(/3) = t 1T[f3'zi -log{tYj(s)exp(f3'zi)}] dNi(s), 
i=l 0 j=l 

see for example Gill (1984). It is also a root of 

where notation is as in 6A and En= Q~1 ) /Q~0>, with limit e(s,/3) = q< 1>(s,{3)jq<0>(s,f3). 
We have 

U.(f3) ->p u(j3) = [ { dG(l)( 8)- e( 8,j3) dG(')( 8)} = [ { r(l)( .) - :::;t::~ r<•>(.)} dA( 8 ). 

(6.7) 
If the model is perfect, then r(o) = q< 0>( ., /30 ) and r(l) = q< 1>( ., f3o) for some f3o, and in 
particular u(/30 ) = 0. The consistency part of the theorem below generalises this; once 
more there is a least false parameter /30 even when the (6.1) model is incorrect. 
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We shall also need the second order partial derivatives of n - 1 log Ln, aiming once more 
at establishing limit distributions via Taylor expansion and (1.2). One finds 

T (2)( ) 
-In(f3o) = { { Q~) s,f3o - En(s,f3o)En(s,f3o)'} dG~0 )(s) 

Jo Qn (s,f3o) 

~P J = { { :~::~::~:~ - e(s,/>0 )e(s,/>0 )'} r<0l(s) dA(s). 

Observe that the formula usually given in the literature for this information matrix has 
the model-based q< 0>(s,f30 ) in lieu of our agnostic r< 0)(s). Let finally 

{T { r<o)(s) } 
K = VAR Jo {Z - e(s,f3o)} dNo(s) - Yo(s) exp(f3~Z) q(O)(s,f3o) a(s) ds , 

where No(t) = I{X S t,A = 1}, Yo(s) = {X 2': s}, and (X,A,Z) has distribution 
H. A long and complicated explicit expression can be obtained for K = K( H), but the 
description here suffices for our purposes. What is important is knowing the existence 
of this matrix and how it enters the limit distribution, and having an explicit consistent 
estimator, which we provide below. 

THEOREM 6.2. Suppose that the regularity conditions of Hjort (1986a, Tl1eorem 
4.1) hold. Then the Cox estimator~ is consistent for the least false parameter value f3o 
that uniquely solves u(f3) = 0. This parameter value also minimises the distance function 
d(h0 (.),exp(f3'.)] given in (6.9) below. Furthermore 

where J and K are given above, and 

T (2)( "') "' 1 { Qn s,/3 ( ~) ( ~)'} (O)( ) J = (o) ~ -En s,/3 En s,/3 dGn s , 
o Qn (s,/3) 

are consistent estimators. 

PROOF: Consistency and uniqueness of {30 was established~ Hjort (1986a, Section 4). 
Methods provided there are also sufficient to demonstrate -In(f3) -+p J in the appropriate 
analogue of (1.2). What remains to be shown, therefore, is that .JiiUn(f3o) -+d Nq{O,K}. 
This can be done along the lines of the proof of Theorem 2.1, though matters become 
much more involved. One establishes that 
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where Mi(t) = Ni(t)- J0tYi(s)a(s)ho(zi)ds is a martingale and where 

1 n { r< 0)( s) 1 } 
Wn(s) =- L Yi(s){zi- e(s,,Bo)} h(zi)- (O)( ,B ) exp(,l30 zi) 

n i=1 q s, o 

with expected value w(s) = r(l>(s)- e(s,,B0 )r< 0>(s). Note that our Mi is different from 
the traditionally employed Ni(t)- J:Yi(s)a(s)exp(f3~zi)ds, see Andersen and Gill (1982) 
and Gill (1984). These authors found themselves in the luxurious possession of a perfect 
model, in which case the second term above vanishes, since Wn( s) then is zero. The rest of 
the proof therefore generalises the model-based proof by establishing joint convergence in 
distribution ofthe martingale n -l/2 2":~ 1 J0'{ Zi-En( s, ,Bo)} dMi(s) and yln{Wn( s )-w( s )}, 
in the function space D[O, T] x D[O, T], and finally computing the covariance matrix, which 
indeed becomes K. Inserting consistent estima!?rs for unknown parameters and functions 
in this expression gives a consistent estimator K. A long algebraic exercise reminiscent of 
the manipulations that led to the simplified third expression in (2. 7) shows that K = K. 
D 

Let us also provide the influence function for the semiparametric Cox model. This 
can be found by analysis similar to that carried out in 6A for the parametric Cox model. 
Suppose /3o(H~) is the least false parameter vector under H~ = (1-e)H +el(:z:,E,z)' i.e. the 

solution to u~(/3) = 0, where ue: is as in (6.7) but with appropriate dG~o) and dG~1 ) instead, 

as in (6.4). One finds that {/30 (H~)- /3o(H)} / e tends to {- ~~ }01 { :; }o, where the partial 

derivatives are evaluated at /3 = ,80 and e = 0. The first matrix {- ~~ }0 is. simply J. 

Taking the point masses at x for both G~o) and G~1 ) into account one reaches 

I(H,(x,8,z)) =J- 1 [{z- q<l)(x,/3o)}8- r exp(/3~z) {z- q(l>(s,/3o)}dc<0>(s)] 
q(O)(x,/3o) Jo q(O)(s,/3o) q(O)(s,,Bo) 

_ 1 [T{ q< 1>(s,/3o)}{ 1 r<0>(s) } 
= J Jo z- q(O)(s,/3o) dNo(s)- Yo(s)exp(/30 z) q(O)(s,,Bo) a(s)ds ; 

No and Yo belong once more to the single triple (x,8,z). 
The discussion ending subsection 6A can now be repeated with small changes. The 

empirical influence function is I(H,(x,8,z)), and the natural influence measure for data 
triple (Xi, 8i, zi) becomes 

(6.8) 
~ 

where Li is given the Theorem 6.2. These sum to zero and have empirical covariance matrix 
equal to the important E, the estimate for the limiting covariance matrix of yln(jj- /30 ). 

The sphered versions E-112 J: have the identity matrix as empirical covariance matrix, and 
sore thumbs should stick out. 

Reid, Crepeau, and Knafl (1985) also gave an influence function for the Cox regression 
model. They used another method and did not make it clear that their evaluations in fact 
were valid also outside the model conditions. They reached an influence measure in their 
formula (2), given in a form very different from ours, but it turns out to be identical to 

(6.8). 
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Let us finally provide the distance measure under which the {30 parameter chosen by 
the Cox method is least false, in the spirit of the introductory remarks of Section 1. Let us 
be slightly more general and allow a(sJz) = a(s)h.a(z) for the model, instead of (6.1), and 
suppose the truth is a(s)ho(z). Then~ log Ln(f3) can be shown to converge in probability 
to 

using the same notation as in {6.6). One can now show that the maximum of >.(h0 ,g) 
over all g functions is >.( ho, ho ). [One possibility is to prove it first in the simple case 
of a finite support { z1, ... , zm} for the design variable distribution D( dz) for Z, where 
the problem becomes one of maximising a given function with respect to g(zt), ... ,g(zm)· 
Then one can pass to the general case with appropriate limit arguments.] Hence there 
is a natural distance measure with respect to which Cox's maximum partial likelihood 
estimator converges to the least false value: 

d[ho(.),h.a(.)] = >.(ho,ho)- >.(ho,h.a) 

fT[ ho(Z) EI{X>s}h0 (Z)] 
= Jo EI{X 2: s}ho(Z)log h.a(Z)- EI{X 2: s}h0 (Z)log EI{X ~ s}h.a(Z) dA(s) 

{ {T [ ho(z) · EI{X 2: s}h0(z)] 
= Jzlo y(sJz) log h.a(z) -log EI{X 2: s}h.a(z) dA(s)ho(z)D(dz). 

(6.9) 

7. Discussion and concluding remarks 

In this final section a couple of complementary remarks are offered, some of which 
point to further research. 

7 A. Some identities in tl1e absence of censoring. General formulae were derived under 
censoring circumstances in Section 2, and these should reduce to the more familar ones 
of Section 1 when no censoring is present and the observation period is [0, oo ). Without 
censoring the y of (2.2) is simply exp( -A), writing A and As for the cumulative hazard 
rates. The identities below are valid in this y = exp( -A) case. 

The new formula for the limit of n - 1 log Ln( 0) is Jt y( a log as- as) dt. The densities 
can be written fs = ae exp( -As) and f = a exp( -A). Integration by parts yields 

1T y(alogas- as)dt = 1T flogfsdt- e-A(t)As(T), (7.1) 

and we have J0
00 flog fe dt when T grows. When this identity for a is applied also to as, 

we find for the new distance measure {2.3) between hazard rates 

d[a,as] = 1T flog(f/fs)dt- e-A(T){A(T)- As(T)}. (7.2) 

Accordingly this distance generalises the Kullbak-Leibler information distance. 
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The new formula for the limit of n-181ogLn(8)/88 is Jt yt/Je(a- ae)dt. Taking 
partial derivatives of the first identity gives 

and we have the appropriate limit when T grows. Taking second order partial derivatives 
of the same identity yields 

In particular the J matrix of Section 2 becomes -Ep82 log fe/8888 when T reaches infinity. 
Consider finally the K matrix. One can show that 

K = 1T e -AtP80 ( tP80 )'a dt + 1T [ E( tP80 )' + tP80 E'] a eo dt 

= 1T(.1. -Ad ) (·1· -Ad )' e-Aa dt + e-A(T) Ad (T)Ad (T)' 'P8o 8o 'P8o 8o 6o 6o ' 
0 

where A~(t) = fot ae(s)t/Je(s)ds is the derivative of Ae(t) w.r.t. 8. Note that the usual 
score function is the derivative of the logarithm of fe(t) = ae(t) exp{ -Ae(t)}, that is, 
Le(t) = t/Je(t)- A~(t). In the limit as T grows we have K = ] 0

00 Le(t)Le(t)' dF(t), as we 
should. 

7B. General counting process models. For ease of exposition our basic framework has 
been that of the random censorship model. Most of our arguments use martingale theory 
only, however, and go through with minor modifications for general and multivariate para­
metric counting process models, see Andersen and Borgan (1985) for a review of relevant 
methods. One particular detail that does become more difficult is that of almost sure 
convergence of the maximum likelihood estimator. In the structurally simplest versions of 
a parametric counting process models, as in Borgan (1984) and Hjort (1986a), only conver­
gence in probability has been established. This does not affect the theory of Sections 2, 3, 
.5, but some small amendments are called for regarding the equivalent of Section 4 for such 
general models. The principal difference is that results (4.4) and (4.5) for the bootstrap 
must be phrased differently; the bootstrap distributions converge in probability only. This 
will follow by applying the apparatus of Section 4 without Lipschitz diffentiability but with 
Hadamard differentiability instead, see Gill (1989, Section 4). The methods of Csorgo and 
Mason could conceivably also be used. 

7C. Bootstrapping in regression models for survival data. Section 4 treated only ho­
mogeneous models. Consider for concreteness the parametric Cox model (6.2) for data 
(Xi, hi, zi) with distribution H. More than simply 'model-based' and 'model-robust' boot­
strapping schemes can be proposed in such a situation. Scheme 1 could be to generate 
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z; from some estimated covariance distribution, nonparametric or parametric, and then 
X?* from the distribution with hazard a( s, e) exp(/3' zi) along with ci from some suitable 
Gi, for example the Kaplan-Meier estimate for the censoring distribution. One might also 
just keep z; = Zi for individual i. This scheme gives one way of obtaining (Xi, bi, zi), 
trying to be as faithful to the postulated model as possible. Scheme 2 could be to resample 
triplets, i.e. from the empirical distribution fi. This method ignores all the finer structure 
of the model. Scheme 3 could be in the semiparametric Cox spirit and simulate Xf* from 

the estimated distribution F'i(t) = 1- f1(o,t]{1- dA(s)}exp(,8'zd, cf. Hjort (1985b, Section 
1 ). Scheme 4 could use a non parametric smoother for the relative risk part instead of 
exp(/3' Zi)· As indicated each of these schemes will have its sub-schemes. 

The first order behaviour of all these schemes can be sorted out with the methods 
developed in this paper, under and outside model conditions. This also goes for similar 
schemes for the semiparametric Cox model. This careful cataloguing is left for future work. 
Let us merely mention one result, which judicious calculations will show: All schemes 
indicated above are first order asymptotically correct if the (6.2) model is correct, in the 
sense that ( y'n(B*- B), fo(/3*- /3) )' has the same limiting distribution, with probability 1, 
as ( y'n(B- Oo ), y'n(/3- f3o ))'. See the first part of Hjort (1985b) for the kind of arguments 
that would be needed, in addition to Sections 3 and 4 of the present paper. Scheme 1 
would however display smaller sampling variability than Scheme 2. 

7D. Finer bootstrap analysis. Our study has been a first order large sample one, 
regarding both behaviour of estimates and of bootstrapped versions of them. One could 
enter the more difficult world of second order expansions and second order correct con­
fidence intervals as well. At least in the random censorship model it should be possible 
to show that bootstrapping based on studentised statistics provide second order correct 
intervals, that is, approximate the distribution of t = fo{p(ii) - J.L( Oo)} j'T with that of 
t* = fo{p(8-*) - p(B)} /'T*, where 'T is an estimate of the limiting standard deviation for 
fo{p(ii)- fl·( 00 )} and 'T* its bootstrap sister. Methods of Hall (1988) are relevant here, as 
would second order methods for martingales, as rudimentarily presented in the Appendix 
of Hjort (1985b ). In the latter paper second order correct intervals of Efron's ABC variety 
are constructed for the parameters in Cox' regression model. 
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