
Abstract 

USING EXPERT OPINIONS IN BAYESIAN 
ESTIMATION OF SYSTEM RELIABILITY* 

BENT NATVIG, University of Oslo 

In this paper combining the opinions of k experts about the reliabilities of n components 
of a binary system is considered. Especially the case n = 2 is treated in detail. This 
work generalizes papers by Huseby (1986, 1988) on the single component case. Since the 
experts often share data, he argues that their assessments will typically be dependent 
and that this difficulty cannot be handled without making judgements concerning the 
underlying sources of information and to what extent these are avai_lable to each of the 
experts. In the former paper the information available to the experts is modeled as a set of 
observations Yi, · · · , Y m. These observations are then reconstructed as far as possible from 
the information provided by the experts and used as a basis for the combined judgement. 
This is called the retrospective approach. In the latter paper, the uncertain quantity 
is modeled as a future observation, Y, from the same distribution as the Yi 's. This is 
called the predictive approach. For the case, n > 1, where each expert is giving opinions 
about more than one component, additional dependencies between the reliabilities of the 
components come into play. This is for instance true if two or more components are of 
similar type, are sharing a common environment or are exposed to common cause failures. 
In the generalized retrospective approach the joint prior distribution of the reliabilities is 
arrived at. When this is MT P2 (Multivariate Totally Positive of Order 2), it is shown 
that the machinary of Natvig and Eide (1987) can be applied to arrive at the posterior 
distribution of system reliability, based on data both on the component and system level. 
Hence a key question to be answered is the following. When does the joint prior distribution 
of the reliabilities based on expert opinions in fact possess the MTP2 property? A partial 
answer to this question is given. 

1. Introduction 

Consider, for a fixed point of time, t, a binary system of n binary components. Let 
(i = 1,···,n): 

Xi = { 1 if the i~h component functions 
0 otherwise, 

X= (XI,··· ,Xn), 

¢(X)= { 1 if the s~stem functions 
0 otherwise. 
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Let furthermore: 

E(XiiPi) =Pi= the reliability of the ith component, 

E(tP(X)Ih) = h = the reliability of the system. 

If we assume that X 1 , • • ·, Xn are independent given E.= (p1 , • • • ,pn), we write: 

h = E( tP(X)IE.) = h(E.). 

In Natvig and Eide (1987) it was assumed that the joint prior distribution of the reli­
abilities, before running any experiments on the component level, 7r(f), can be written 
as: 

n 

7r(E.) =II 1ri(pi), (1.1) 
i=l 

where 7ri(pi) is the prior marginal distribution of Pi, i.e. we assumed that the components 
have independent prior reliabilities. 

In this paper we assume that k experts will provide the information about the reliabilities 
of the components. This work generalizes papers by Huseby (1986, 1988) on the single 
component case. Since the experts often share data, he argues that their assessments 
will typically be dependent and that this difficulty cannot be handled without making 
judgements concerning the underlying sources of information and to what extent these 
are available to each of the experts. In the former paper the information available to 
the experts is modeled as a set of observations Y1 , • • • , Y m. These observations are then 
reconstructed as far as possible from the information provided by the experts and used as a 
basis for the combined judgement of a decision maker (DM). This is called the retrospective 
approach. In the latter paper, the uncertain quantity is modeled as a future observation, 
Y, from the same distribution as the Yi 's. This is called the predictive approach. 

For the case, n > 1, where each expert is giving opinions about more than one component, 
adclitional dependencies between the reliabilities of the components come into play. This 
is for instance true if two or more components are of similar type, are sharing a common 
environment or are exposed to common cause failures. In the case of X 1 , • · · , X n inde­
pendent given E.• and the lifetimes being exponentially distributed with unknown failure 
rates >. 1 , • • ·, >.n, this problem is considered by Lindley and Singpurwalla (1986). Then 
obviously: 

Pi = exp( ->.it) i = 1, · · ·, n. 

In the latter paper the jth expert, j = 1, · · ·, k, expresses his opinion about >.i and hence 
of Pi in terms of a normal distribution for Bi = ln>.i, i = 1, · · ·, n. He provides its mean 
ffiji and standard deviation Sji but also Piir being the personal correlation between Bi and 
Br,i = 1, · · ·, k; i, r = 1, · · ·, n, i =I r. In addition the DM has to provide his personal 
correlations between the ffiji's for fixed expert j and different components, for fixed com­
ponent i and different experts and finally for both different experts and components. The 
great drawback of this approach is the difficulty of assessing these correlations directly 
without having an underlying model as in Huseby (1986, 1988). 
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Lindley and Singpurwalla (1986) use an approximation technique suggested by Laplace, 
which has been pointed out to be quite good by Tierney and Kadane (1984), to arrive at 
the corresponding uncertainty in h(l!) for a parallell system of independent components. 
They claim that the results may easily be generalized to cover any coherent system of inde­
pendent components. This is not true since representing a coherent system of independent 
components by a series-parallel structure introduces replicated components which of course 
are dependent. For details see the excellent textbook Barlow and Proschan (1975). 

In Section 2 and 3 of the present paper the case n = 2 is treated in detail. The generalized 
predictive approach is treated in the former section. Here the uncertain quantities (Z1, Z2) 
are the lifetimes of the two components. These are assumed to have a bivariate exponential 
distribution. In the latter section the generalized retrospective approach is considered. For 
the fixed point of time, t, let: 

Then obviously: 

ri = P[only the ith component functions), i = 1, 2 

r3 = P[both component functions). 

PI = rl + TJ 'P2 = r2 + TJ. 

Based on expert opinions the joint prior distribution 1r(p1,p2) is arrived at. 

(1.2) 

In Section 4 it is shown, for general n, that when 1r{2) is MT P2 {Multivariate Totally 
Positive of Order 2), then the machinary of Natvig and Eide (1987) can be applied to arrive 
at the posterior distribution of system reliability, based on data both an the component 
and system level. Hence a key question to be answered is the following. When does 1r{f) 
based on expert opinions in fact possess the MT P2 property? For the case treated in 
Section 3 this is shown to be true for the non trivial case where either r1 = 0 or r2 = 0. 

2. The predictive approach 

The deductions in this section follow the main lines of the example given in Section 3 
of Huseby {1988). The jump from the univariate to the bivariate case, however, gives 
sufficient obstacles to overcome. Let ( Z1, Z2) be the lifetimes of the two components. The 
DM specifies a set of vectors of nonnegative numbers: 

He then asks the jth expert to describe his uncertainty about (Z1, Z2) by specifying a set 
of vectors of probabilities: 

such that: 
(2.1) 
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The DM then faces the problem of computing his posterior distribution for (Zl! Z2) given 
7r;6 ,j = 1,···,k;s = 1,···,r. 

We assume that the DM assesses that given the hyperparameters 81 , 82 , 83 , ( Z1 , Z2 ) and the 
imaginary observations (Z1i, Z2i), i = 1, · · ·, m are mutually independent with a bivariate 
exponential distribution of the Marshall-Olkin type, i.e. 

where ZJ = max(z1 , z2). For details on the properties of this distribution we refer to Barlow 
and Proschan (1975). Furthermore, we assume that the prior distributions of 8,, I= 1, 2, 3 
both for the DM and the jth expert are independent gamma distributions with shape 
parameter and scale parameter respectively equal to (a,,b,) for the DM and (a;t,b;t) for 
the jth expert, j = 1, · · ·, k; I= 1, 2, 3. In Huseby (1988) just a vague gamma distribution 
with parameters close to zero is used as a prior for the single parameter 8. 

As in the latter paper let Bo,Bb"',Bk be disjoint subsets of the index set {1, .. ·,m} 
such that: 

It is then assessed that the jth expert has access to information on the (Z1i, Z2i)'s with 
indices in the set A; = ( Bo UBi), j = 1, · · · , k. Thus Bo is the set of common information, 
while the B;'s are the sets of individual informations. As opposed to Huseby (1988) we 
express the information as survivals of the two components beyond specific time points; 
1.e. 

instead of just observed lifetimes. This turns out to be at least mathematically advanta­
geous. 

Introduce: 

ZJi = max(zli, Z2i) 

t;t = L Zli ,j = 1,···,k;l = 1,2,3 
ifAj 

m 

t, = L Zli ' l = 1' 2, 3 
i=l 
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We now have by standard calculations involving Bayes theorem: 

m 

P[(Z1 > Z1, z2 > Z2)1 ncz1i > Z1it z2i > Z2i)] 
i=1 

00 00 00 

= k J J J P(Z1 > Z1,Z2 > Z2IBI,92,93) 
81 =0 82=0 8a=O 

m 3 bfJIIJIII-1 

. P[n(z1i > Z1i,Z2i > Z2i)IBI,92,93]IJ 'rc~) exp(-b,Bt)d91d92d93 
•=1 1=1 I 

3 

= II ( b, + it )a' 
I=I bt + it + Zt 

(2.2) 

The constant k is determined by noting that ZI = Z2 = 0 gives a joint survival probability 
of 1. Similarly we get: 

P[Z1 > ZI, z2 > Z2)1 n (Zli > Zli, Z2i > Z2i)] 
itAj 

(2.3) 

Introducing ZJv• = max(zlv,,Z2v.),v = 1,2,3;s = 1,···,r, we get by combining (2.1) and 
(2.3) the following r sets of 3 equations to determine, for fixed j = 1, · · ·, k, the information 
ijt,l=l,2,3: 

v = 1, 2, 3; s = 1, ... , r. (2.4) 

Note that for fixed s there is no guarantee that we end up by a unique solution to these 3 
equations satisfying the obvious claim: 

(2.5) 

Furthermore, even if all of the r sets of equations give a unique, acceptable solution these 
will in general be different. Ideally we should calculate a posterior distribution for ijt, l = 
1, 2, 3 based on the assessments 7rj 11,, v = 1, 2, 3; s = 1, · · ·, r. However, as an approximation 
we will at the present stage of research suggest as Huseby (1988) that one should base the 
subsequent calculations for fixed j = 1, · · ·, k and fixed I = 1, 2, 3 on the averages of ijt, 
for the sets of equations having a unique, acceptable solution. 

A general investigation into the set of equations (2.4), for instance by a computer program 
performing algebraic manupulations, is outside the scope of the present paper. However, 
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the DM can design his experiment in a clever way leading both to easier assessments for 
the experts and simpler calculations. For instance he can specify: 

3.., = (z,,z,,z,,O,O,z,),s = 1,·· ·,r (2.6) 

leading to rather easy assessments in (2.1). Let us furthermore for simplicity assume that 
the j th expert assesses: 

By introducing 

-1 

Yiv• = (1rjv 1 ti 1 ,j = 1,···,k;v = 1,2,3';s = 1,··· ,r, 

and then suppressing the indices j and s, (2.4) reduces to: 

x1x2x3 = YI(XI + z)(x2 + z)(x3 + z) 

x1x2x3 = Y2Cx1 + z)x2(x3 + z) 

x1x2x3 = y3x1(x2 + z){x3 + z) 

(2.7) 

{2.8) 

Disregarding unacceptable solutions involving either x 1 = 0, x2 = 0 or both, the system 
above is easily solved for the variables x ,j ( x 1 + z ), I = 1, 2, 3. This leads to the following 
solution: 

X1 = YIZ/(Y3- yi) 

x2 = Ylz/(Y2- yi) 

X3 = Y2Y3Z/(Yl - Y2Y3) 

Hence we get (;" = 1 · · · k· s = 1 · · · r)· , , , , , . 

(2.9) 

(2.10) 

Let us give some comments on when (2.10) satisfies the claim (2.5) of being a set of 
acceptable solutions. 

A necessary condition for tj1 to be nonnegative is that: 

1rj3• = P(Zr > 0, Z2 > z,) ~ P(Z1 > z,, Z2 > z,) = 1rjt~, 

which is always true. The same argument applies to tj2 • Hence a necessary and sufficient 
condition for min(tj1 , tj2) to be nonnegative is that 
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A necessary condition for tj3 to be nonnegative is that: 

'lrjJ• = P(ZI > z,, z2 > z,) ~ P(ZI > z,, z2 > O)P(ZI > 0, z2 > z,) 

This is again always true if the expert's assessments are consistent with the bivariate 
exponential distribution. Suflicient conditions for having t j3 ~ max( t ji, t j2) are: 

bj3 :5min{bj1,bj2} 

1r]1, ~ 7rj2,7rj3• min( 7rj2" 7rj31) 
{2.11) 

Due to {2.7} the first of the conditions in {2.11} means that thejth expert assesses the prior 
mean of 83 not less than the prior means of 81 and 82. The latter condition is true if the 
expert's assessments of the 'lrjv• 's are consistent with the bivariate exponential distribution 
having 83 :5 min( 81, 82 ), which in a way is the opposite condition. This makes sense since 
if the first condition is true the expert is allowed to be consistent by breaking the second 
one. If on the other hand the first one is not true, the expert is forced to be consistent by 
satisfying the second one. 

Assume now that we have found ti,j = 1, · · ·, k; I= 1, 2, 3 for instance by taking averages 
of the acceptable solutions to {2.10). Remember for the bivariate exponential distribution 
that: 

zli = min(V1i, V3i) 
z2i = min(V2i, v3i), 

where the V,i 's are mutually independent and exponentially distributed with failure rates 
8,, I= 1, 2, 3; i = 1, · · ·, m. The final aim of the DM is to compute his posterior distribution 
for {Z11 Z2) given the information ti,j = 1,···,k;l = 1,2,3. When Bo = 0, i.e. when 
the experts share no common information, this information is sufficient. Let Tjl,j = 
1, · · ·, k; I = 1,2,3 be mutually independent and exponentially distributed with failure 
rates 8,. Then the DM calculates similar to (2.2}: 

i 3 

P[ZI > Z1, z2 > Z21 n n<Tjl > fjl)] 
j=11=1 

i 

3 b, + E ti' 
=II< /=1 )G' 

I= I b, + E t jl + Zl 
j=1 

i 
This is nothing else than {2.2} since E til are the calculations oft,, I = 1, 2, 3 based on 

j=l 

{2.10). 
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When Bo =F 0, t;1,j = 1, · · ·, k; l = 1, 2, 3 is not sufficient information to perlorm our 
calculations. Let T0 ,, l = 1, 2, 3 be mutually independent and exponentially distributed 
with failure rates 8,, l = 1, 2, 3 and also independent of the T;1's. Let us now assume that 
the k experts agree to specify their conunon information as: 

3 

n(Tol > c,), where 0 < Cl < t;,,j = 1, ... 'k; l = 1, 2, 3 
1=1 

The DM now has to calculate: 

k 3 3 

P[Z1 > Zt, z2 > z2l n n(Tol + Tjl > t;l) n n(Tol > c,)] 
j=11=1 1=1 

00 00 00 

= k1 J J J P(Z1 > Zt, z2 > Z2l8b 82, 83) 
81=0 82=0 83 =0 

00 00 00 k3 3 J J J P[n n(To1 +T;1 > t;,)l n(To1 = v,),81,82,83] 
v1=c1 v2=c2 va=ca J=1 1=1 1=1 

3 3 ba'8a,-1 n 8, exp( -v,8,)dvldv2dv3 n 'rc~,) exp( -b,8,)d8ld82d83 

oo oo oo oo oo ook3 

=k1 J J J J J J lJV:8,exp(-(vl+max(tjl-Vl,0))8l)dvidv2dv3 

8t=O 82=0 8a=O v1=c1 v2=c2 va=ca J-1 1-1 

3 ba'8a,-1 n 'rc~,) exp( -(b, + z,)8,)d81d82d83 

= k, j j j p j ~;!:; 
Vt=Ct v2=c2 va=ca - 18,=0 

k 

exp(-(kv, + L:max(t;1- v,,O) + b, + z,)8,)d8,dv1dv2dv3 
j=1 

3 00 k 

= k2 IT j [kv1 + ?:max(t;1- v,,O) + b, + z,]-(a'+1>dv1 

l=1v,=c, J=1 

Now for fixed l = 1, 2, 3 let t~j) be the ordered version of t;1,j = 1, · · ·, k. By letting 
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t~o) ....: ct, t~k+l) = co, the probability above equals: 

c<; > 
3 k+l I i 

= k, n ~ L .. If; tji> + b, + Zf + (i- l)v,j-<••+0 Jv, 

u,=t1 

3 i 

= k2 IT HL tjt + bt + z,]-(ca,+l)(tP> - ct} 
1=1 j=l 

i+l i 
+ L .1 ([(i- 2}t~i-l) + L t~j) + bt + zt]-ca' 

. 2 at('- 1} .. •= J=•-1 

i 

- r<i -l}t~i) + L: tP> + b, + z,rca·n 
j=i 

3 i 

= k2 n HI: tjt + b, + z,r<o,+l)(tP>- Ct) 
1=1 j=I 

k k+l k 

+ :. ~~~ ljl + b1 + Zl]-•' - ~ (i _ l;( j _ 2) ((i- 2)tl;-l) + j~,'lj) + b1 + z,j-"']} 

Hence we have shown that the OM's final assessment now is given by: 

3. The retrospective approach 

The deductions in this section follow the main lines of the example given in Section 5 of 
Huseby (1986}. The jump from the univariate to the bivariate case is much easier than for 
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the predictive approach treated in the previous section. Let r1,l = 1, 2, 3 and Pi, i = 1, 2 
3 

be defined as in (1.2). Also let r4 = 1- E r,. As in Huseby (1986) we let the number of 
l=I 

experts k be equal to 3. 

Assume that the information on the two components is given by the imaginary observa­
tions: 

The DM assesses that: 

(3.1) 

and mutually independent, i = 1,2,3. The jth expert has access to the observations: 

(Yit, Yi2, Yi3), iEAj = {1,2,3} - {j},j = 1,2,3. , 

However, their assessments are noisy, so instead of observing the "correct" values of the 
Yil's, the jth expert observes: 

The DM assumes that the jth expert assesses that: 

(3.2) 

and mutually independent, iEA;,j = 1,2,3. Finally, the DM assesses that the common 
prior of the experts, g0(r11 r 2, r 3), is a density function of a Dirichlet-distribution with 
parameters close to zero. 

Introduce the following notation (i = 1,2,3;j = 1,2,3; l = 1,2,3,4): 

3 

Yi4 = ni- LYil 
l=l 

m; = Lni 
itA; 

t;1 = L Yil/m; 
itA; 

3 

Zji4 =ni-L Zjil 
l=l 

Zjl = L Zjil/m; 
itA; 

Then it is a standard result that the updated distribution for the jth expert is given by: 

9;(rl!r2,r31Zjl,l = 1,2,3) 

"' Dirichlet (r1, r2, r3; m;z;l! m;z;2, ffijZjJ, m;z;4) 
(3.3) 

The Bayes sufficient statistic of the data (Yil ),1 = 1,2,3; i = 1,2,3 is obviously: 
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3 

where we define Sl = E Yil, l = 1, 2, 3, 4. Moreover, asswne that the DM's prior distri­
i=l 

bution for r1,r2,r3 is Dirichlet (rl!r2,ra;a~,a2 ,aa,a•)· It then follows that his updated 
distribution is given by: 

It remains to compute the DM's uncertainty about~ after having observed the gj's from 
the experts given by {3.3), i.e. f{~k) where: 

To do this the DM must specify the distribution of .l. given: 

and rz, l = 1, 2, 3. We asswne that the DM assesses that 

are mutually independent given lb rz, l = 1, 2, 3 and that in particular 

/j(.~.j IJl.i rz, l = 1, 2, 3) 

"' Dirichlet (z;l! z;2, z;a; >.;t;1 + f, >.;t;2 + f, >.;t;a + f, >.;t;4 +f) 
(3.5) 

where f, AI, >.2, >.a are positive numbers specified by the DM. As in Huseby (1986) to get 
a better impression of this model, we set up the means, variances and covariances of this 
distribution. For j = 1, 2, 3 these are given by: 

t ., + e/ >. · 
E(Zjlll!;r,,l= 1,2,3)= {+ 4e/>.;' 

1=1,2,3 

(til+ f/>.;)(1- t;1 + 3f/>.;) 
Var(z;ll1li rz, l = 1, 2, 3) = >.;(1 + 4f/ >.;)2(1 + (4e + 1)/>.;)' 

1=1,2,3 

I (t;1 + f/Aj)(t;v + ej>.;) 
Cov(z;l,ZjvJliTI,l = 1,2,3) = >.;(1 + 4e/>.;)2(1 +(4e+ 1)/>.;)' 

l = 1, 2, 3; v = 1, 2, 3, l =F v 

We observe that if >.; --+ oo, then 

E(z;ziJt;rz,l = 1,2,3)--+ t;1 

Var(z;tl.u;r,,l = 1,2,3)--+ 0 

Cov(z;z, z;vl1li r,, I= 1, 2, 3) --+ 0. 
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Hence the Zj1 1S are consistent and asymptotically unbiased estimators for the til's as the 
). j's increase. Especially, if t < < >. i, j = 1, 2, 3 the bias is negligible. The term t is included 
to ensure that the distribution /i(ijll!i r,, I = 1, 2, 3) exists for all possible values of the 
t jl 's. Note that the distributions are independent of r,, I = 1, 2, 3. 

In order to derive f{Jtl.i), we first have to find f(l!l.i). This follows from Bayes' theorem: 

/(j!~) ex /(.ill!)/(~) (3.6) 

The first factor follows easily, since from {3.5): 

/(.ill!) = /(.&:IJ!i r,, I = 1, 2, 3) 
3 4 >.i Cjr+f-1 z ., 

= II r(>.i + 4e) J1 r(>.. . ) 
j=l l=l JtJ, + f 

(3.7) 

Concerning the second factor, we obtain from {3.1): 

1 1 1 

/(~) = j j j /(~lr~tr2,ra)/{rt,r2,r3)dr1dr2dra 
r1 =0 r2=0 ra=O 

= /1 /1 /1 IT ni! ii r~i; r(al + 02 + 03 +a,.) IT rrc:<·-l>drtdr2dra (3.8) 
·- - Y•l· - a. r1 =0 r2=0 ra=O •-1 l-1 •-1 

4 3 
r(al + 02 + 03 +a.) 11 r(s, +a,) 11 ni! 

= r(nl + n2 + na +OJ + 02 + Oa +a.) l=l r(a,) i=l Yil! 

By combining {3.7) a.nd {3.8) we get from (3.6): 

f(y~) ex r(al + 02 + 03 + 04) IT ni!r(>.i + 4t) IT z~iCir+f-lr(s, +a,) 
- r{nl + n2 + na +OJ+ 02 + 03 + 04) i=l l=l r(>.itil + t)r(al)Yil! 

By denoting: 

we get: 

/(~~) = L /(J!IL) 
!fY.!. 

Introducing 
S = {~10 ~ s1 + s2 +sa ~ n1 + n2 + na}, 

from {3.4), (3.8) and (3.9) we finally end up with: · 

g(rt, r2, ra~) = L g(r1, r2, ra~)/{~lz) 
s 

ex LA.!. Dirichlet(rlt r2, r3; 01 + s1, 02 + s2, oa +sa, 04 + s.), 
s 

12 
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where 

r( ) 3 4 >.;t;,+£-lr( ) 
A - ~ 0!} + 0!2 + 0!3 + 0!4 II ·•r(A· 4 ) II zil Sl + O!t 

.!. - ~ r(n1 + n2 + n3 + 0'1 + 0'2 + 0'3 + 0'4) i=1 n,. I+ f 1=1 r(Aitil + f)r(at)Yil! 

Hence g( r~, r2, r31.&:) is a weighted average of Dirichlet distributions. 

The joint distribution of the DM's assessment of the reliabilities of the two components, 
given the opinions of the experts, is then from (1.2) and (3.10): 

where 

min(p1,p2) 

1r(p1, P2ll:) = j g(p1 - r3, P2 - r3, r3 ~)dr3 
ra=O 

min(p1,p2) 

ex L B!.. j (PI _ r 3)o1 +•1-l(p2 _ r3 )o2+•2-lr~a+•a-l 
s ra=O 

4 1 
B, = A,r(nt + n2 + n3 + O!t + 0!2 + 0!3 + 0!4) IT rc r - - sz + O!t 

I= I 

Introducing f3z = a,+ sz - 1,1 = 1, 2, 3, 4, the integral above, I, can be written as: 
min(p1,p2) 

I= j (p1 - x )'81 (p2 - x ),82 X,83 (1 -PI - P2 + x ),B"dx 

0 

,8-a ({3 ) L ; (1- Pt- P2)"xP"-kdx 
k=O 

= t E f (~1) (~2) (~4)PiP~(1- PI - P2)"( -1),81 +,82 -i-j 
t=OJ=Ok=O ) 

min(p1,p2) J xP1+.82+Pa+.B.a-(i+j+k)dx 

0 

Hence we have: 
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4. The link to the paper Natvig and Eide (1987) 

In this section we will try to link our work on using expert opinions to the approach 
of Natvig and Eide {1987). We then start out with the joint prior distribution of the 
reliabilities, 1r{f), arrived at as in the previous section. Let us first consider the case of 
independent components given 1!: Suppose that we run experiments on the component 
level and get the data D = ( D1 , • • • , Dn) where Di is the data from the experiment on the 
ith component. Let 1r(Die) be the corresponding likelihood function. Hence the posterior 
distribution of the reliabilities, 1r(eiD), is given by: 

{4.1) 

The corresponding distribution of system reliability 11' { h(e) 1.12} can in principle be a.rri ved 
at by using the transformation formula for joint probability distributions. The prior de­
pendencies between p1 , • • · , Pn are not creating too much extra trouble here. By now using 
expert opinion on the system level, in the spirit of Huseby {1986), 1r{h{E)ID} may be 
updated to the prior distribution of system reliability 11'o{h(e)ID}. H we now finally run 
an experiment on the system level and get the data D, we end up with the posterior 
distribution of system reliability 1r{h(2ID,D}. 

Let us next consider the case of associated components given E: Then from (4.1) the 
marginal posterior distribution of Pi, 1r(PiiD), is given by: 

(4.2) 

where (·i,E) = (pl! ···,Pi-ll ·,Pi+l! · · · ,pn)· This leads to the moments up till order m(i = 
1 .. · n · ;· - 1 · · · m)· ',,-, '. 

E(p~ 112) = I pf11'(12.1P )1r(p )dp 
· I 1r( n le)1r(e)de 

(4.3) 

by for instance applying the mentioned approximation technique suggested by Laplace. 
From { 4.3) by applying results of Natvig and Eide (1987) we arrive at bounds on: 

E(hil.12) j = 1, .. ·, m, {4.4) 

However, the best bounds in the latter paper are based on the assumption that p1 , • · • , Pn 
are independent given D. Sufficient conditions for this are that the components have 
independent prior reliabilities, which is unrealistic when the opinions of experts are used, 
and that D1 , • • ·, Dn are independent given J!., which is reasonable if for instance different 
laboratories are used for different components. From {4.4) one may adjust a proper 1r(hlD), 
which may be further updated to 11'o(hl12) and 1r(hl12,D) as in the case of independent 
components. 
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The rather good lower bounds of Theorem 2.7 of Natvig and Eide (1987) are valid also 
under the weaker assumption that p1, .. ·, Pn are associated given D. From ( 4.1) and 
a fundamental inequality given in Corollary 4.1 of Karlin and llinott (1980) a sufficient 
condition for this to be true is that 1r(DI2) and 1r{E) both are MTP2 (Multivariate Totally 
Positive of order 2) in 1!· 

Note that a. random vector ( zl I ••• I Zn) is MT p2 if and only if its density, /(.l..), is MT p2 I 
i.e. if: 

!(~ v y.)/(* "I) ?: /(*)/(I), 
where for*.= (x1, · · ·, Xn)1Jl =(til!···, tin) 

*. V 1l = (ma.x(xt, yi), · · ·, max(xn, !In)) 

~"l = (min(xl!!ll),···,min(xn,!ln)). 

For the time being we have no idea of how the MT P2 property can be converted into as­
sumptions on observable random quantities. In the case where D1, · · ·, Dn are independent 
given J!., we have: 

n 

11'(D!E) =II 1r(DiiPi), (4.5) 
i=l 

a.nd it follows from Proposition 3.3 of Karlin and llinott (1980) that 11'(Dif) is MTP2. 
Hence a. key question to be answered is the following. When does 1r{l!) established by 
using expert opinions in fact possess the MTP2 property? According to Theorem 4.2 of 
Karlin and Rinott (1980) this property is stronger than the property of association. 

· For the case treated in Section 3 one may ask more specifically whether 11'{pl,P2I.l..) given 
by (3.11) is MTP2. According to Proposition 3.2 and 3.3 of Karlin and llinott (1980) a 
su!Beient condition for this to be true is that each of the functions (p1 - r3), (p2- r3) and 
(1 - P1 - P2 + r3) is MTP2 • It is easy to check that the first two functions in fact are 
MTP2 , but, alas, the last one is not. 

The best we can do at the present stage of research is to consider the non trivial, but 
strongly dependent case, where r2 = 0 with probability 1. Then it is rather easy to check 
that (3.11) reduces to: 

7r(pl,P21.l..) ex: LB.!(pl- P2)~1P~8 (1- pi}~\ 
s 

where o2 = 0 in the expression for B •. It now follows from the latter proposition that 
1r((p1,P2Il:) is MTP2 • Of course the s~e holds when r 1 = 0 with probability 1. 

Consider now a parallel system of the two components in the case r2 = 0 with probability 
1. Then: 

2 

h = E[l -IT (1- Xi)] = EXl + EX2 - EX1X2 
i=l 

= P1 + P2 - r3 = P1 

15 



Hence: 
PI 

1f(h~) = 1f(PI~) = J 7f(pi,p:z~)dp:z 
0 

1 

oc LB.!P:t+P2+1(1- pi)P• !(1- z)PtzP•dx 

s 0 

_ ""'B r({J1 + 1)r({J3 + 1) P1+P2+1(1 _ )P• - "s .!. r({J1 + fJ3 + 2) P1 P1 

Correspondingly for a series system in this case: 

1 

7r( h il:) = 1f(P2Il:) = J 1f(PI, P2il:)dp1 

P2 

5. Conclusions 

It seems that generalizing Sections 2 and 3 to the case n > 3 is more a matter of stamina 
than of new ideas. Concerning the MT P2 connection things are less obvious and new 
ideas seem very welcome. A paper at least worth mentioning is Faluny et al. (1982) being 
interested in the influence of the sample on the posterior distribution. 
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