
Hypermedia RDF for driving
applications
How to enable smarter clients using true REST

Kristoffer Lie Braathen
Master’s Thesis Autumn 2015

Hypermedia RDF for driving applications

Kristoffer Lie Braathen

17th August 2015

ii

Acknowledgments

First of all, I would like to thank my supervisor, Kjetil Kjernsmo, for
guiding me through this bumpy road. He has been essential for this thesis
with his feedback when it comes to the development of the prototype and
the writings.

I would also like to thank my co-supervisor, Ruben Verborgh, who is
settled in Gent. He have helped me through the development given me
input on how particular parts should be solved.

Writing the master thesis is not only an individual and lonely process.
My fellow master students have helped me; the guys in 10th floor who
have been keeping me busy playing chess, and especially the people in the
ninth floor for all the fun conversations, the forever lasting coffee breaks
and the card games.

At last, I would like to thank my family and friends who have believed
in me, and supported me throughout this period, which made it possible
for me to accomplish this.

Thank you all. This could not be done without you.

iii

iv

Abstract

In this thesis we will examine how we can make use of Semantic
Web technologies, such as RDF, to create an application based on the
Representational State Transfer architectural style, with a client that is both
generic and autonomous. Further, we will look at how hypermedia enables
self-descriptiveness, both for humans and machines.

The study is based on the development of the client. We have focused
the work around the hypermedia messages, enabling the client to consume
APIs, understand actions and relate those actions to its goals. To explore
the self-descriptiveness, or the readability, we held a workshop with other
developers.

Results shows us that it is feasible to develop a client that can be both
generic and autonomous, through the use of true REST. With a relative new
RDF serialization we could express semantic hypermedia which makes it
possible to use a generic format, with the power of being specific. This
again let the participants of the workshop relatively easy understand an
API they had never seen before.

We hope that this thesis strengthens the understanding of REST, and
that it encourage others to investigate the capabilities of clients interacting
with hypermedia.

v

vi

Contents

1 Introduction 1
1.1 Research . 2
1.2 Related work . 2
1.3 Chapter overview . 3

2 Background 5
2.1 Semantic Web . 5
2.2 World Wide Web . 9

2.2.1 Identification . 9
2.2.2 Interaction . 10
2.2.3 Data Formats . 10
2.2.4 General Architectural Principles 11

2.3 Resource Description Framework 12
2.4 RDF Schema . 13
2.5 Web Ontology Language and Reasoning 13
2.6 Linked Data . 15

2.6.1 Linked Data principles 16
2.6.2 Linked Open Data . 17
2.6.3 The Linked Data Technology Stack 18

2.7 SPARQL Query Language . 18

3 Hypermedia 21
3.1 Representational State Transfer 21

3.1.1 Uniform interface constraints 22
3.1.2 The rest of the Web’s architectural constraints 22

3.2 What is hypermedia? . 23
3.3 Affordance . 24
3.4 Hypermedia Factors . 26
3.5 Hypermedia Design Elements 27

3.5.1 Base format . 27
3.5.2 State Transfer . 28
3.5.3 Defining Domain . 30
3.5.4 Application Flow . 34

4 Prototype 37
4.1 General overview . 37

4.1.1 Concert server . 37

vii

4.1.2 Physician domain . 38
4.1.3 Intelligence . 38
4.1.4 Programming language 38
4.1.5 Server platform . 38
4.1.6 Web framework . 38
4.1.7 Code . 38

4.2 Prerequisites . 39
4.3 Base format . 39

4.3.1 JSON-LD . 40
4.3.2 From JSON to JSON-LD 40
4.3.3 Hydra . 42

4.4 State transfer . 45
4.5 Domain . 45
4.6 Application Flow . 46
4.7 The autonomous, generic client 46

4.7.1 The goal and other predefined input 46
4.7.2 The generic code . 47
4.7.3 The domain-specific code 50
4.7.4 Other helping modules 50

4.8 Issues . 51
4.8.1 Rapid spec changes . 51
4.8.2 Where to use domain-specific knowledge 51
4.8.3 Asynchronous calls in JavaScript 51

4.9 Other considerations . 52
4.9.1 Storage . 52
4.9.2 RESTdesc . 52

5 Exploring view source capabilities 53
5.1 Preparations . 53
5.2 Participants . 54
5.3 Material . 54
5.4 The workshop and methodology 57

5.4.1 Individual workshop 58
5.4.2 Group workshop . 58

5.5 Results . 59
5.5.1 Individual workshop 59
5.5.2 Group workshop . 60
5.5.3 Final remarks . 61

5.6 Possible drawbacks with the study 62

6 Results 65
6.1 What hypermedia controls are present in the Hydra API? . . 65

6.1.1 Link Factors . 65
6.1.2 Control Factors . 66

6.2 Is the prototype truly RESTful? 67
6.3 Can the client work with the affordance? 69

6.3.1 Concert server . 69
6.3.2 Physician server . 69

viii

7 Discussion 71
7.1 Autonomous consumption of APIs 71
7.2 Relation to its own goal . 72
7.3 The role of hypermedia and RDF 73
7.4 Readability and prior knowledge 74
7.5 Existence of the client . 75
7.6 Constraints and limitations 76
7.7 Future research . 78

8 Conclusion 81

A The code base 89

B The Hydra API 91

C The RESTdesc descriptions 93

ix

x

List of Figures

2.1 The Semantic Web technology stack. 6
2.2 The structure of OWL Web Ontology Language. 14
2.3 The Linked Open Data cloud. 17

4.1 The Hydra vocabulary. 42

6.1 Richardson Maturity Model; the steps toward true REST. . . 67

xi

xii

List of Tables

3.1 H-Factor table . 26

xiii

xiv

Listings

2.1 RDF document in Turtle syntax. 12
2.2 A SPARQL query where we CONSTRUCT a graph with data

about Led Zeppelin. 18
3.1 Example of domain-specific design. 30
3.2 Example of domain-specific hypermedia design. 31
3.3 Example of a domain-general format. 32
3.4 Example of domain-general hypermedia format. 32
3.5 Example of agnostic design (HTML) with hypermedia af-

fordance. 33
4.1 A plain JSON representation. 40
4.2 A beginning of a JSON-LD representation. 40
4.3 A full JSON-LD representation of a concert. 41
4.4 Hydra description of a class. 43
4.5 Snippet of concert representation with external context. . . . 44
4.6 Context example. 44
4.7 The goal for the client working on the physician server. . . . 46
4.8 The goal for the client working on the concert server. 47
5.1 Example of how a GET operation is described in the Hydra

API. 55
5.2 Example of how the context of an operation is described in

the Hydra API. 55
5.3 Example of how a GET operation is described in RESTdesc. 56

xv

xvi

Abbreviations

API Application Programming Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IRI International Resource Identifier
JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data
LD Linked Data

LOD Linked Open Data
N3 Notation3

OWL Web Ontology Language
RDF Resource Description Framework

RDFS Resource Description Framework Schema
REST Representational State Transfer

SPARQL SPARQL Protocol and RDF Query Language
URI Uniform Resource Identifier
URL Uniform Resource Locator

WWW World Wide Web
W3C World Wide Web Consortium
XML Extensible Markup Language

xvii

xviii

Chapter 1

Introduction

The Web today contains a tremendous amount of data, where most of
it is human-readable documents. From Vannevar Bush’s article about
the Memex[14], Ted Nelson’s Hypertext[40] and to Tim Berners-Lee
articulation of the World Wide Web and Linked Data, the thoughts of
linking documents together have existed. Bush had the idea of creating
a machine where you could look up related articles and use it in science
so other fields of studies could also access them. While Nelson first
introduces us to the term hypertext that could be used for this purpose.
What the Semantic Web community strives to achieve, next to make the
data machine-readable, is to link all this data together, which was clearly
stated on the first ever published Web page:

World Wide Web is a wide-area hypermedia information
retrieval initiative aiming to give universal access to a large
universe of documents.[59]

Semantic Web can, in short, be seen as a layer outside today’s Web. By
some it is proposed as Web 3.0 since it takes the Web from one stage to
another. The reason for this, is because it uses new technologies to give
meaning to the already existing data that is available on the Web. By
meaning, it is meant that computers can understand the content as well,
not only human beings. This concept, together with the principles of how
to link data togheter, through the Linked Data principles, are the core of the
visions Tim Berners-Lee had for the Web.

Representational State Transfer, or the abbreviation REST, is an archi-
tectural style that is popular on the Web. The term is heavily used the
last couple of years, and there are many APIs that claim to follow this
style. In most cases, since it is frequently misunderstood, they are prob-
ably not. This means that there exists many APIs that do not really take
full advantage of the style. The problem is that developers tend to forget
the essence: applications that are RESTful must be driven by the messages
that are passed in the system, between the server and the client, and not an
API that is externally documented. Hypermedia is the term we use for the
content that enables this.

1

When developing websites or other programs, a developer should
always make the design so understandable that other humans can interact
with it. This is something we would like to achieve for computers as well —
let the documentation both be understandable for humans and computers.
If we design the documentation right, we can achieve what we call view
source capability. By that we mean that developers should be able to view
the data that is sent, and easily get an understanding on how the API
works. We believe that such a view source approach will win over time
over APIs that have external documentation because of the ease of use.

A way of expressing data like that, is through the use of RDF or a
serialization of it. RDF is one of the Semantic Web technologies that enables
us to provide both the data and make it clear for the application what it can
do with the message.

1.1 Research

In this thesis we will explore the capabilities that lays within REST and
RDF, and create a client that is generic and autonomous. By this we mean
that the client can work on different APIs and that it makes actions without
human interaction. With this client we will investigate the following
research questions:

• To what extent can a client be autonomous and consume an API it has
never seen before?

• Can it reason about the consequences of actions, will it be able to
relate it to its own goals?

• And if so, what role do hypermedia and RDF play therein?

To be able to test the client, the back-end must serve it. Through
the thesis we will get an understanding of what decisions were made
throughout the development of the application, both server and client
side. The most essential part here is how the hypermedia messages were
designed to contain valuable information for the client, so that it could
drive the application. Hypermedia enables us further to explore the view
source capabilities that lays within our chosen serialization of RDF.

1.2 Related work

The last couple of years there have been attempts on enabling generic and
autonomous clients. Still, we have not seen much of the actual clients, only
the technologies that are supposed to enable it. This calls for that it is a
complex task.

Amundsen[1] shows us three different application that is driven by
hypermedia. He has also been the author to several hypermedia formats.
The drawback with his implementations is the lack of autonomy and

2

genericity. If one feature is present in one application, the other one is
missing.

One of the driving forces within the hypermedia field is Lanthaler with
his Hydra Console[30]. This is a generic tool that consumes all APIs that
are based on a particular vocabulary, i.e. Hydra. This tool helps humans
browse such APIs and was constructed to proof the generic nature of the
vocabulary. The problem arises since it is not autonomous, which is a factor
that we take into consideration as well.

Another attempt, from this year, by Bergwinkl[5] was to create a client
that makes use of Hydra as well. This is a promising project which at the
moment lacks the generic feature. So far the client is given all URIs that is
needed.

This thesis will try to make a contribution of showing a proof of concept,
that we are capable of making a client that is both generic and autonomous
based on existing technologies.

1.3 Chapter overview

• Chapter 2 - Background will give us a deeper understanding
of the different terms and technologies that where mentioned in
the introduction and we dive into other relevant Semantic Web
technologies.

• Chapter 3 - Hypermedia is where we will introduce REST and how
to construct self-descriptive messages with hypermedia controls.

• Chapter 4 - Prototype will bring us through the steps of the
implementation of the prototype; the generic and autonomous client.
This is a way of exploring the capabilities of the technologies.

• Chapter 5 - Exploring view source capabilities takes us through the
workshop that were held to validate the view source capabilities of
the API created in the implementation.

• Chapter 6 - Results presents the hypermedia controls that were
implemented and how the prototype did execute.

• Chapter 7 - Discussion is the chapter where we review our research
questions, and discuss our findings, and recommend future work.

• Chapter 8 - Conclusion finalizes this thesis with concluding remarks
and the contributions of this thesis.

3

4

Chapter 2

Background

The Semantic Web makes use of different technologies to function. Some
of them are essential for the Web as well, after all, we have already claimed
that it is an extension to the existing Web[9] and thus makes use of the same
fundamental parts, and some are solely unique to the Semantic Web. In this
chapter we are going to introduce the most important parts of the complete
Semantic Web’s technology stack, which can be seen in figure 2.11, and the
architecture of the Web. This is essential to understand and be able to see
the capabilities which lies within the Semantic Web, and therefor also our
application and domain.

As a reminder, the structure of this chapter will be as following: first
we will go through the basic ideas of the Semantic Web. We will then move
on to the architectural properties of the Web which is the fundamentals of
how the Web is built and how it works. This is followed with the important
Semantic Web technologies; RDF as the knowledge format, RFDS and OWL
to express more semantics and ontologies, URIs to avoid name conflicts,
and SPARQL which enables querying of semantic data. In the end we
will look into the principles of Linked Data that is an important part of
the creation of the Semantic Web.

2.1 Semantic Web

The visions of the Semantic Web were expressed by Berners-Lee, Handler
and Lassila as a “new form of Web content that is meaningful to
computers”[9] and that establishes new possibilities compared to the
existing Web.

If there existed an intelligent Semantic Web agent that could reason
over data and information that human users provided it with, possible
tasks it could carry out would maybe be something like the three following
scenarios:

One scenario could be that based on your favorite genre of music, you
would like a Semantic Web agent to produce a schedule for a festival,
where it only schedules the bands that fits your taste of music, and it also

1Visit http://semanticweb.org/images/3/37/Semantic-web-stack.png for bigger version.

5

http://semanticweb.org/images/3/37/Semantic-web-stack.png

Figure 2.1: The Semantic Web technology stack.

considers time; two concerts, on two different stages, at the same time, are
impossible for one person to reach. In this case, the input from the user
would be the preferred kind of music and what festival you will attend. The
job for the agent would then be to produce the schedule, and then provides
it to the user through an interface, like a Web browser for instance.

Another scenario could be that you feel sick, you have a terrible
headache and wants to go to the doctor. What you will then do, is to
provide the Semantic Web agent your personal details and what you are
struggling with. The agent will then find a doctor that is available, that
have the right kind of knowledge to heal you and sets up and appointment.

A third scenario could be that you would like to go to a concert on
a specific date. In this case, dependent on the implementation, you may
have to provide the agent with information about your preferred genre of
music, how many tickets you want, what date and what the price limit
is. The agent will then crawl the Semantic Web for venues close to your
location and book the tickets for you. If a venue hosts a concert that fits the
provided data, the Semantic Web agent could book the tickets for the user.

In this thesis, our prototype, or implementation, will be consuming two
APIs based on the two last scenarios, which it can relate to its own goal and
carry out tasks to achieve it. To be able to develop such a Semantic Web
agent, we need to establish the fundamental parts of what the Semantic
Web consists of.

Expressing Meaning

Berners-Lee et al.[9] first articulates the need for a way of expressing
meaning to already existing content on the Web, and future content. Today

6

is still most of the content on the Web not understandable for machines.
This fact might change, especially since Google have added support for a
way of giving content meaning[47], which is an important for the Semantic
Web. There does not exist many applications today that combines data
from several different sources. This is because most of the content is
published in a way that is only human readable and therefor needs hard-
coding to being used in applications. The Semantic Web tries do something
about that.

The Semantic Web will make it possible for computers to browse
through different web pages and understand the meaning of the content,
it will also be able to see if the content of different pages can be used
together, if it contains the same information and whatnot. In on way, it
can be seen as an extension of the current Web. This enables agents to
carry out complex tasks for users, like the ones we illustrated in the above
scenarios. According to Berners-Lee et al.[9], will the Web evolve into the
Semantic Web which makes it possible for computers to understand and
process automatically the data and information that exists on the Web. At
that stage, it is then we really can see how powerful hyperlinks can be.
Agents will be able to gather structured data with meaning from different
sources and carry out tasks with this data that gives meaning.

Knowledge Representation

To be able to let the Semantic Web function when it comes to expressing
meaning for computers, there is a need for a structured way of expressing
the information and the data. Berners-Lee et al. describes that there is also
a need for sets of inference rules as well for enabling automated reasoning,
which brings us to one of the challenges that is to provide a language “that
expresses both data and rules for reasoning about the data that allows rules
from any existing knowledge-representation system to be exported onto
the Web.”[9] The good thing is that there already exist technologies that
provides us with these capabilities. These technologies are XML and RDF.
XML lets everyone create their own tag which is helpful for structuring
data. To express meaning and connect data to each other we do need RDF.

RDF is the technology this thesis will be focusing on and it is described
in more details further down in the chapter. The most important element to
remark is that RDF is built up by URIs, which stands for Universal Resource
Identifier, which again works like any link on any web page; it helps us
associate resources with links, and when a resource has a link, anyone on
the Web can retrieve the representation of it and create new concepts and
resources that might be related to it[8].

Ontologies

When a computer program tries to understand the meaning of the data
that it is provided with from a web page, then it need something to relate it
to. This is especially essential if it tries to process data meaningfully from
two different sources. What the computer program needs is collections of

7

information called ontologies; in the world of Web-researchers ontologies
are documents that defines relations between terms formally[9].

If we look at a word that gives meaning to human beings reading from
a web page, for example the term spouse. Typically, this term will in a
ontology be typically defined as inverted. This means that if we are stating
that Joan has the spouse Bob, then we are implicitly stating that Bob has the
spouse Joan. Berners-Lee et al.[9] states that this helps us create programs
that are more advanced in the fashion of creating more accurate searches,
the program can, based on inference rules, reason over the data and connect
data in a sophisticated way. We will later go into further depth on how
ontologies are built.

Agents

One time in the future, when there exist a significant amount of computer
programs that enhances the technologies of the Semantic Web, then we
really can see the power of it. The diverse range of programs will then,
according to Berners-Lee et al.[9] gather data from different sources on the
Web, process the content and exchange the results.

Put in another way, we could say that one program can create
knowledge about a topic and share it on the Web while another program
can do this about another topic. For a third computer program to use the
information created by the two programs it needs a vocabulary, which
contains the ontology as well, to understand the meaning of data and
how the data is connected to each other through the inference rules of
the ontology. Through the use of ontologies and and computer programs
publishing meaningful content, the Semantic Web will grow and make it
better and more valuable. If an ontology was to be built by using RDF,
such as OWL, the ontology could refer to terms in other ontologies.[8]
The ontologies becomes distributed and reusable which is perfect for the
Semantic Web. And this brings us to the evolution of knowledge.

Evolution of Knowledge

The last thing of Berners-Lee et al.[9] visions of the Semantic Web, is the
evolution of knowledge. We have already touched upon it; by naming
every concept, or term, by a URI, it enables everyone to create new
concepts. These concepts can again be described by ontologies which again
makes it possible for programs to infer knowledge and reason over it. This
will again create new links to other resources and concepts and the Web
will evolve. Humans creating web content, whatever it is, will, by making
use of the Semantic Web technologies, be able to be reached on the Web,
not only by humans, but also by agents that are looking for data.

If we bear the above information in mind throughout this chapter, we will
see that these visions are indeed the fundamentals of the Semantic Web.

8

Following up is the underlying architecture the Semantic Web relies on.

2.2 World Wide Web

The creation of the World Wide Web (WWW or the Web) was one of the first
steps towards the Semantic Web, because the Semantic Web are functioning
as a layer on top of the Web. As we will see in this section, while we
are going through the architecture of the WWW, it uses technologies that
achieves scalability, that means that it scales well based on how many users
that are using it and connects to wast amount of different parts of it.

Because of its efficiency and utility as well, it have grown into the
single, largest information space of linked information, in the world. This
information is often referred to as resources and as we have seen in the
section of Semantic Web, the way we identify resources is with Uniform
Resource Identifiers (URIs). Further in this section we are looking into
the architectural properties of the Web, defined by the World Wide Web
Consortium (W3C)[11].

2.2.1 Identification

First of all, when you have a global network of information there
definitely should exist a clever way of identify all the different resources
of information in the network. And it does exist. There is a lot of different
syntaxes of global identifiers for distinguish different artifacts from each
other, like the ISBN for books. The way the Web have made use of unique
identifiers to distinguish between resources in the global network, is, as
mentioned above, the URIs. One example of how a URI could look like is
http://www.example.com/pages/coffee. This URI could for instance identify
a resource that tells us something about coffee.

The URI enables one of the goals of the Web that is to let any part “share
information with any other part” within the global network and by giving
your resource of information a URI then it can be identified and accessed
by anyone.[11] The main benefit of the URI is that if two different sources
of information are talking about the same thing, then the two sources
can provide the URI to the referred source. These three different sources
will of course have their own URIs. This is what we call linking and is
made possible through the use of hyperlinks[40]. Other benefits of the URI
that W3C[11] mentions are bookmarking, caching and that it is possible
indexing it for search engines.

When we are referring to resources, we are referring to what ever that
might be identified by a URI; a web page, an image, a word. To be a bit
more precise, all information that have an URI and that can be transmitted
in a message over the Web are “information resources”[11], or in short just
resources.

So far, in the world of the Web, we do have URIs for identification of
resources that essentially is information within a global network.

9

http://www.example.com/pages/coffee

2.2.2 Interaction

The second thing we have to consider is how the interaction between
the different agents should happen. What is common to consist in
communication between the agents are URIs, messages and data. We
already know that the URI identifies the resource, while the message
include data and metadata about the identified resource, the data in the
message and the message itself[11].

The protocols of the Web takes care of the exchange of the messages in
different situations, and some of them that are used today are:

• HTTP HyperText Transfer Protocol

• FTP File Transfer Protocol

• SMTP Simple Mail Transfer Protocol

• IMAP Internet Message Access Protocol

HTTP is the most important protocol for the Web and is the most
common one when it comes to interaction with regular web pages. This
protocol is the one we will be using in the examples throughout the thesis.

HTTP is called a request/response protocol[20] because the client sends
a request to the server, while the server responds to this request. The
request contains different information such as the URI, what kind of
method is used and protocol version, client information and a possible
message-body. The server responds in a similar way where the most
notably is the success or error code and body-content if that is what the
request triggered.

For accessing a resource, the agent dereferences the URI, and with
HTTP it is done with the method called GET. For other protocols,
other methods are used. The HTTP GET will let the agent retrieve a
representation of the accessed resource. There exist other method for
adding or modifying the resource with POST or PUT, and you can delete
the representation of the resource with DELETE.

2.2.3 Data Formats

The data that is sent in the message over the Web through HTTP is on
a particular format. This format varies from application to application,
it could even vary from different request within an application, and is
specified in the message as metadata as well so that agents can state
that they only accept messages that contains data on the format e.g.
application/json or text/rdf. Data formats are there for structure
the data so that agents can agree on how to interpret the data of the
resource.[11] Because of the constant evolution of applications, the Web
needs to be flexible and, hence the formats, the Web architecture does not
constraint when it comes to which data format content providers could
choose to use. That said, a preferred way is to use data formats that
already exist. To create and implement new data formats is expensive,

10

so generation of new ones often builds upon or extends already existing
ones[11], e.g. application/ld+json can be seen as an extension to
application/json.

2.2.4 General Architectural Principles

Orthogonal Specification

This term, orthogonality, in the context of the World Wide Web, means that
different features of the Web can be used in arbitrary combinations, but still
end up with the same result[45, p. 228]. For the Web will this mean that the
technologies behind the architectural properties of the Web, identification,
interaction, and representations enables them to be orthogonal concepts
and will therefor be able to evolve independently without any disorder in
the functioning of the Web[11].

E.g. URIs are used for identifying resources, but you can still publish
URIs on the Web without having any representations of the resource. This
is confusing and breaks the principles of REST that we will introduce in the
next chapter. For now, we can note that the orthogonal specification helps
the Web stay robust and and flexible.

Extensibility

By extensibility, since the Web is evolving, we mean that the Web have the
power of being extended; both by more information and the technologies
that are used to represent and exchange that information.[11] Both the
information and the technologies can change as well without the Web to
break. E.g. one resource on the Web can either be change by an agent that
extends it with more information, or it can be moved to another URI. With
the technologies it can either change the way it handles the information,
or that you extends the functionality of it, or create something new like a
new media type. This helps us realize that the Web consist of orthogonal
concepts and specifications.

Error handling

The Web is a global network of information and errors occur. When this
happens the technologies and the different components of the network
needs a way of handling those errors. The way the Web handles errors
is in the way that agents takes care of it, not the users. If an error occurs
when an agent tries to connect to a web page, then it receives an error
code from the server2, e.g. 500 Internal Server Error. W3C[11] states that
based on the error message, the agent knows if it needs to go through
error correction which means that the agent repairs what was broken and
the system operates as the error never occurred. Another way of handling
errors is error recovery, which means that the agent does not repair the error
and keeps on processing in a state that it knows that the error happened.

2This is what happens when the communication goes over HTTP.

11

Protocol-based Interoperability

The principle of protocol-based interoperability is quite self-describing.
The Web consist of many parts that vary in in how they work. To be able
to function in a proper way together there needs to be structured standards
for how to act in the global network. I.e. if there were no standards or
protocols no part would be able to know how to send a message or how to
interpret a received one.

After diving into the architectural principles of the Web, we have now a
better understand of the underlying architecture that is part of enabling
the Semantic Web. Now we need a way to express meaning and represent
knowledge.

2.3 Resource Description Framework

As mentioned in the introduction, we do have a framework for describing
data that enhance the principles of the Semantic Web — the Resource
Description Framework, or RDF in short. This is a model that can be used
for interchanging data on the Web. It extends the existing linking structures
of the Web by using URIs as names for relationships and resources.[15]
This way of naming and structuring the data is reflected through the triple
pattern. Triple patterns are built with a subject, a predicate and an object.
This means that all data on RDF triple pattern format3 looks something like
this:

Listing 2.1: RDF document in Turtle syntax.
@prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ > .
@prefix rdf : <ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
@prefix dbpedia−owl : <http :// dbpedia . org/owl/> .
@prefix dbpedia : <http :// dbpedia . org/resource/> .

<dbpedia : Led_Zeppelin > rdf : type dbpedia−owl : Band ;
f o a f : name " Led Zeppelin " ;
dbpedia−owl : recordLabel dbpedia : At lant ic_Records .

In the example above we state that this thing with the URI that we are
going to describe is of the type band, that this band is called Led Zeppelin
and that they are connected to the record label Atlantic Records. The URI,
dbpedia.org/resource/Led_Zeppelin, is the subject in all of the three triples.
Then the predicate, or what can be seen as the relation, comes before the
object. So the predicate connects the subject and the object to each other. If
we decide to draw these triples, we can easily see that this linking structure
creates directed, labeled graphs.[15] And this graphs are what the Semantic
Web consists of, thus it helps us express meaning and represent knowledge.

3These triples are written in Turtle[4] syntax which is a more readable syntax than native
RDF where all URIs are written fully out.

12

dbpedia.org/resource/Led_Zeppelin

The visions for RDF, in the Semantic Web, was to provide the existing
Web with a way of expressing meaning and knowledge representations.[8]
Speaking in such terms, we have to say that RDF have been successful by
the means that RDF represents knowledge readable both for humans and
for machines.

2.4 RDF Schema

RDF Schema also helps us express meaning and gives us the capability
of representing knowledge, just as with RDF. This is because RDFS can
be seen as an extension to RDF. More formally does this mean that RDFS
provides RDF data with a data-modeling vocabulary.[13] What the basic
RDF vocabulary gives us is e.g. the possibility of describing what resources
are. This is done by the rdf:type predicate e.g.

<dbpedia:Led_Zeppelin> rdf:type dbpedia-owl:Band .

With the extension, RDFS, we can bring more semantic to to the data we are
describing. We can describe “groups of related resources and relationship
between these resources.”[13] For example, if you have a schedule for a
festival, and would like to state that a specific band is playing, then you
can you state, helped by RDFS that

vocab:performer rdfs:range dbpedia-owl:Band .

The benefit of being able to implement semantics like this, is that if an
automated agent wants to find all performers at a festival, then it can divide
the performances into different groups, if some of the performers are not
bands, like painters.

This approach of describing data, that RDF and RDFS does, is called
property-centric[13] and helps us maintain the architectural principles of
the Web, extensibility[11], by letting anyone extend the descriptions of
resources without interrupting parts in the global network.

RDFS and OWL can be used together to reuse and create vocabularies.
The co-existence of them gives us the third property of the Semantic Web;
ontologies to help us create complex structures, meanings and inference
rules to the data.

2.5 Web Ontology Language and Reasoning

As we now know, ontologies are one of the building blocks needed to fulfill
the power of the Semantic Web. Ontologies are the first level above RDF
where we “formally describe the meaning of terminology used in Web
documents”[38]. We will in this section go into further depth on what
OWL is, how it functions and what the capabilities of the technology is.
The reason we present OWL here is because it is widely used and it helps
us get an understanding on how ontologies and vocabularies are built.

13

Figure 2.2: The structure of OWL Web Ontology Language.

The structure of OWL can be seen in figure 2.24. The oval in the
middle represents the ontology, or vocabulary, where the terms used in an
application domain are stated. On top are different syntaxes, which usually
there is only one of. At the bottom are the specifications of the semantics in
the ontology.

The first thing we need to understand is what an ontology is. “Ontology
is a term borrowed from philosophy that refers to the science of describing
the kinds of entities in the world and how they are related.”[46] Since
ontologies has something to do about describing what exist in the world,
OWL is therefor a language for describing what exist on the Web, by
defining and instantiating Web ontologies. These ontologies consists of
descriptions of classes and properties, and instances of them. Based on
the OWL ontology, a computer program would be able to perform useful
reasoning over the data that is given. This is because the semantics of OWL
“specifies how to derive logical consequences”[46]; it exceeds the semantics
of RDFS.

If an ontology states that Robert Plant is a band member of Led
Zeppelin, and that Jimmy page is a band member in the same band as
Robert Plant, then the computer program can infer that Jimmy Page is a
band member of Led Zeppelin as well because of the semantics that will
be stated in an ontology like that. If the above example where stated in
N3 language[7], the reasoner called EYE[44] could have done the job to
infer that Jimmy Page also was a band member of Led Zeppelin. We see
that OWL helps us create applications that not only present information to
humans through the Web browser, but gives us the capabilities of enabling
applications that processes the content of information as well.

There are no definite way of distinguishing the difference between

4Visit http://www.w3.org/TR/owl2-overview/ for larger version.

14

http://www.w3.org/TR/owl2-overview/

a vocabulary and an ontology. We will in this thesis see vocabularies
as smaller, with less complex structures and rules than ontologies. Still,
what they share is that they define concepts and relations to describe and
represent resources. This involves e.g. defining constraints on how to use
a term, if data is gathered from different sources you can state that to terms
have the same meaning, or you can state how a term is related to other
terms.[57]

Since OWL is one of the building blocks of the Semantic Web, one of
the aims of the creation of OWL is to enable automated reasoning and
processing over Web content. It is too big of a task to re-structure all the
content of the Web, and as we remember, one of the principles of the Web
is extensibility. Smith, Welty and McGuinness[46] states that OWL must
work in a way where you can add information to already existing resources
as well. Another requirement is that OWL must work with distributed
sources since the Semantic Web is a global distributed information system.
Ontologies could thus be related. An example of this is if you create your
own ontology, but uses terms from already existing ontologies like The
Music Ontology5.

As a result of this, that descriptions of resources does not only exist
within one file, we can say that OWL, as well as the Semantic Web, “makes
an open world assumption”[46]. To have an open world assumption means
that everything that is not stated can be true. Or it can be false. In an closed
world assumption it is opposite; everything that is not known is false. A class
MusicGroup might be defined in The Music Ontology, the description of the
class can be extended in other ontologies, e.g. you could define a sub-class
of MusicGroup called Band. In both worlds it would be true that Band is a
sub-class of MusicGroup. The difference shows if we want to know if Pink
Floyd is a Band. We the limited knowledge we have in this case, the answer
would be “no” in an closed world assumption, but it would be “I can not
tell” in the other world.

One of the problems of this is that the new information that is added to a
class can not retract the already existing information, and as a consequence
the new information can create contradictions. You can never delete facts
and entailments, only add it. Since it is a possibility for creation of
contradictions, this is something the designer of the ontology has to keep
in mind.[46]

2.6 Linked Data

Linked Data is a term that is important within the field of Semantic Web,
and we understands that it has something to do with linking resources, as
data, together through URIs or URLs. More formally, we can state it like
Bizer, Heath and the founder of the Web, Bernes-Lee, that it “refers to a
set of best practices for publishing and connecting structured data on the
Web.”[12] This have helped the evolution of the Web from being a global
network of linked documents growing into a global network of linked

5Available via the link http://musicontology.com/.

15

http://musicontology.com/

documents and data. As we will learn more about below, hypertext has
been crucial in this development. The hypertext links have enabled users
to easily access documents via other documents through Web browsers.

Linked Data refers to data published on the Web in such a way
that it is machine-readable, its meaning is explicitly defined, it
is linked to other external data sets, and can in turn be linked to
from external data sets.[12]

To achieve this we need, again, turn to RDF. With Linked Data we are
creating typed links, using RDF, between data that are hosted at different
sources. Without RDF, a computer program would most probably not be
able to understand data from two different sources, unless it was hard-
coded to understand exactly those two sources. This breaks with the
intention of enabling automated processing of data on the Web. Linked
Data makes use of RDF to create typed statements about things in the
world, thus link them together. The result is something that Bizer et al.
call the “Web of Data”[12], which also can be seen as a web of things that
is described by data on the Web. This helps us realize that one of the most
important factors that are being enabled through Linked Data, is that it
helps data from different sources on the Web to be used together, either by
being tied to each other by a link or that a computer program can extract
data from each source that occurs in its universe of discourse and process
it in a meaningful way.

Linked Data makes it easier for computers to answer questions like what
band members did Led Zeppelin have? The reason why this is possible, is if a
music blog has written something about Led Zeppelin and linked to their
DBPedia page, then it is really easy to look up what band members that
took part of the band.

2.6.1 Linked Data principles

Further on, Berners-Lee[6] articulates four principles of Linked Data6:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL).

• Include links to other URIs, so that they can discover more things.

As we will see in the next chapter, these four principles all fits well to
Fielding’s vision of how large-scale distributed hypermedia systems like
the Web should be structured; by stating that you should name resources
with URIs so that others can look it up. When looking up resources,
useful information like links to related resources should be provided — this

6The principles have been known before, but not articulated in this particular way.

16

Figure 2.3: The Linked Open Data cloud.

encourages discovering of more information. Of course, these principles
are not in-depth architectural constraints, but they serve as guidance for
how to link data to each other. When it comes to how to consume Linked
Data, the nature of it provides the necessary semantics for a computer to
e.g. use the “follow your nose”[58] technique, which means that the it can
follow links based on what it is looking for. This again is an enabler for
autonomous clients.

2.6.2 Linked Open Data

To encourage data owners, especially governments, to publish what can
be categorized as good Linked Data, Berners-Lee[6] have made a rating
system for how well the open data is integrated with the the Linked Data
principles. In relation to this, he introduces the term Linked Open Data,
which is basically Linked Data that is publicly open. This rating system
could also be used on regular Linked Data, only that to be open, everyone
must be able to access them. For each star, the data must fulfill the
requirements of the previous stars.

1. Available on the web (whatever format) but with an open license, to
be Open Data

2. Available as machine-readable structured data (e.g. excel instead of
image scan of a table)

3. As (2) plus non-proprietary format (e.g. CSV instead of excel)

4. All the above plus, Use open standards from W3C (RDF and
SPARQL) to identify things, so that people can refer to your data

17

5. All the above, plus: Link your data to other peoples data to provide
context

Please see figure 2.37 to get an image of how intricate the Linked Data
world is with all its major Linked Open Data sources.

2.6.3 The Linked Data Technology Stack

Linked Data relies on two technologies that are part of the architectural
principles of the Web; to identify resources it needs URIs and for interaction
it needs HTTP. We are using HTTP to dereference URIs, this helps us
retrieve descriptions of resources that can not be sent over the network
itself[12] — such as a band, e.g. Led Zeppelin — but the description of
the band can be sent. Those two technologies are again supported by
RDF. Since Linked Data is using URIs as identifiers, HTTP for interaction
and RDF for representing resources it directly builds upon the Webs
architecture. Once again we can see that the Semantic Web, the Web of
Data, can be seen as a layer on top of the existing Web we already know.

As we remember in the Semantic Web section, the idea of a Semantic
Web started out with the desire to extend the capabilities of the Web by
extending it to becoming a space where you can publish structured data.
The goal of the Semantic Web is to create a global network, or a Web of data,
that is machine-readable. To achieve this we need to fulfill the process of
publishing machine-readable data on the Web, to create that Web of data.
Linked Data is a way to reach that goal.[12]

2.7 SPARQL Query Language

As a last technology of the Semantic Web technology stack, SPARQL must
be mentioned. SPARQL is a query language for RDF where you can
express the queries across different data sources[24]. It contains support
for aggregation, sub-queries, negation, value testing, value expressions
and you could constrain a query to a given source. Through the built in
CONSTRUCT you can build your own graphs of RDF; basically, if the data
is expressed in RDF, you can build whatever graph wanted. As an example,
if you want to create a query that retrieves all triples about Led Zeppelin
on their dpbedia page, the query could look like the following listing:

Listing 2.2: A SPARQL query where we CONSTRUCT a graph with data
about Led Zeppelin.
CONSTRUCT { ? s ?p ?o }
WHERE {
GRAPH

<http :// dbpedia . org/resource/led_zeppel in >
{ ? s ?p ?o } .

}

7Visit http://lod-cloud.net/versions/2014-08-30/lod-cloud.svg for larger version.

18

http://lod-cloud.net/versions/2014-08-30/lod-cloud.svg

If you are building your own application where you use data from the
Semantic Web, gathering it and structuring it, you usually store the triples
from the SPARQL queries in triple stores like OWLIM-Lite[49]. Triple
stores are basically graph data bases, because they store RDF data which
again is graphs.

Summary

In this chapter we have gone through the most essential terms and
technologies, their capabilities and what value they bring computers, that
takes part of the Semantic Web world. As a starter, we encompassed the
visions of the Semantic Web, followed up with different sections on how
to achieve it. First up was an introduction to the architecture of the World
Wide Web that made us understand how data can be interchange over the
Web. Then we looked into the different technologies that helps machines
uniformly understand the content on the Web. These technologies were
RDF, as a common way of expressing knowledge, RDS as an extension to
RDF, OWL as a further extension to express complex rules that again can
be used to reason over. The Semantic Web is made up of Linked Data and
makes it possible for machines to understand the content on the Web. As
a way of gathering semantic data from different sources SPARQL can be
used.

As a whole, this is what makes up the foundations of the Semantic
Web, and have brought us a bit closer to understand how we can achieve
Berners-Lee’s ultimate goal; developing autonomous, generic client that
takes part as a consumer of Web content, just as a human being.

19

20

Chapter 3

Hypermedia

We have now successfully been diving into the what the Semantic Web
consist of. In this chapter we, will introduce an architecture for modern
Web applications which is called REST. One of the essential constraints of
the architectural principles of REST concerns around the term hypermedia.
How REST is connected to the Semantic Web is through our belief that RDF
is a great way of defining hypermedia messages. To fully understand this
concept, we dedicated the whole chapter to this term.

To start with, we will go into details of the architectural principles of
REST. We then move on to hypermedia itself, where different concepts
and terms as affordance and H-factor will give us a better understanding
of how we can apply hypermedia in applications. In the end we will look
into what developers have to consider when implementing hypermedia in
applications. This makes up the foundation of our prototype that will be
presented in the next chapter.

3.1 Representational State Transfer

Why is REST suddenly such a hot topic, and where does hypermedia
become relevant for this abbreviation? REST were first introduced by
Roy Fielding in his PhD dissertation[17] and stands for Representational
State Transfer. This term basically grasps around how clients should
communicate with servers over e.g. HTTP.

REST is an architectural style that tells us how we should design large-
scale distributed hypermedia systems. The Web is a system like that, and
one of the most important requirements to that system is scalability[19];
it must be able to handle tremendous amount of requests and data over
the network. REST takes this into account and defines five constraints1

that must be followed if the application are to be called a RESTful Web
application. We understand that REST makes use of the Web’s architectural
principles and adds some constraints to it. Following is what constraints
Fielding defines in REST[17]:

1Also called Fielding’s constraints.

21

3.1.1 Uniform interface constraints

This term is the most famous of Fielding’s constraints and grasps around
the following constraints:

Identification of resource

Every resource must be identified by a URI. On the Web, every URI is
a URL that means that you are guarantied to get a representation of a
resource. In RDF you are not obligated to use dereferenceable URIs to
identify resources. This will break the constraint. If RDF is to be used in
an application, make sure to follow the Linked Data principles[6] and use
HTTP URIs, i.e. URIs that retrieves a resource.

Manipulation of resource through these representations

Through the representations of resource state the server sends to clients,
clients will be able to manipulate resource state by sending representations
to the server. The resource state can be manipulated by e.g. incrementing a
counter with one.

Self-descriptive messages

The message that is sent between client and server must provide all
necessary information to be able to understand the request or response.
This information can either be contained in the message or be linked to.

Hypermedia as the engine of application state

The client can choose between different actions or options from the
hypermedia controls that the server provides with the message, which
means that the client is responsible for the application state. This state,
the application state, can only be changed by the client doing a HTTP
request. Based on the response from the server, the client would have to
make a new action based on the hypermedia controls again and change the
application state. We see that hypermedia is what makes the application
change states. An often used abbreviation for Hypermedia As The Engine
Of Application State is HATEOAS.

3.1.2 The rest of the Web’s architectural constraints

Further is Fielding[17] highlighting some of the Web’s constraints that
enables REST.

Client-server

The communication on the Web is between two sides, one-to-one commu-
nication.

22

Caching

The client can save requests that have to go over the network by using
responses from before that is stored in the cache.

Layered system

The system that is used, i.e. the Web, is layered which means that you can
put intermediaries between the server and the client, like gateways.

Code on demand

The server can send executable code to the client. An example of this is
in HTML where the server can send executable code through the <script>
tag.

Statelessness

This is quite essential for REST, state is, as we know, part of the
abbreviation. When talking about statelessness, we are talking about that
the interaction between client and server must be stateless. Resource state
and application state are two versions of states that can be recorded by
the server. Verborgh[53] articulates that the difference between these two
states is that resource state, that is the state of all the resources contained
in an application. These states must be stored by the server to be able
to give reasonable responses to requests. Application state on the other
hand, is where the client is in the interaction with resources, what links it is
following, etc, and this is not the server’s responsibility. Storing all of this
information would require tremendous amount of server space, and the
messages sent over HTTP would contain too much data to be efficient. This
would definitely not pass the goal of REST to focus on scalability because
it would been impossible, or to costly, to maintain a service like that with a
lot of users.

Here we have seen a list with explanations of how the Web’s architectural
constrains are. These constraints are part of fulfilling the Web’s four
architectural properties low entry-barrier, extensibility, distributed hypermedia
and Internet-scale, also defined by Fielding[17]. In short we can summarize
them with that the Web is easy to use, it is capable of handle extensions
like adding resources to it, the presentation and control information can be
stored at remote locations and, again, it must scale well. The architectural
constraints takes care of realizing this as we have seen.

3.2 What is hypermedia?

Hypermedia is a term that might seem a bit ungraspable at a first glance,
but it is closely related to the term hypertext. Just like hypertext connects

23

documents to each other through hyperlinks,

Hypermedia connects resources2 to each other, and describes
their capabilities in machine-readable ways. Properly used,
hypermedia can solve — or at least mitigate — the usability and
stability problems found in today’s web APIs.[43, p. 45]

Based on this quote, we can say that hypermedia is part of making
it possible to describe an environment around the message that is sent.
When the client receives a message from the server, the client knows the
capabilities of the message. These descriptions are also called hypermedia
controls, and according to Amundsen and Richardson[43, p. 52] do they
have three jobs:

• It tells the client how to construct an HTTP request, what
HTTP method to use, what URL to use, what HTTP
headers and/or entity-body to send.

• They make promises about the HTTP response, suggesting
the status code, the HTTP headers, and/or the data the
servers is likely to send in response to a request.

• They suggest how the client should integrate the response
in into its workflow.

This makes us understand that hypermedia is all about letting the
message contain as much as possible of valuable information, e.g. links
to the album if you are looking up the resource of one song on an album. It
helps the guiding of the message, it is making promises about response and
the added affordance3 helps out with controlling the workflow.[43, pp. 52-
55] It can be seen as a festival, hosted by the server, where clients have to
choose between bands to see. The server knows what bands that the client
can choose from, while the client decides what concerts it wants to retrieve
a representation of.

3.3 Affordance

The self-descriptive nature of hypermedia is part of enabling smarter
clients. In a way we can say that hypermedia controls helps the client to
understand what the data in the response affords. But what is actual an
affordance?

An affordance is a relationship between the properties of an
object and the capabilities of the agent that determine just how
the object could possibly be used.[41, p. 11]

2A resource is in a hypermedia perspective something that has a representation from a
HTTP GET request.

3This term will be presented in further depth below.

24

The term was used by Donald Norman[41], in the context of everyday
design, wether it is good or bad. Generally, in good design, the affordance
is visible, or easy to understand. As an example, affordance are all actions
that can be performed on an object, or an resource on the Web[16]. When
it comes to hypermedia, an affordance could invite you to POST some data
to manipulate the state of both the application and the resource. Another
example is that a cup’s affordance is that you can hold it and have liquids
in it. A typical example of bad design is when you do not understand how
to open a door. In such cases are the affordance missing.

Roy Fielding puts the term in the context of hypertext, and by that also
hypermedia, where we understand that affordance provides the message
with actions and choices for users to explore:

When I say Hypertext, I mean the simultaneous presentation of
information and controls such that the information becomes the
affordance through which the user obtains choices and selects
actions.[18]

Hypermedia affordance have four common characteristics in applica-
tions that works in the context of a distributed network, such as the Web.
These characteristics can work in any combination to produce different Hy-
permedia Factors4:[3]

• Mutability If the affordance supports mutability, the client knows that
by using that affordance, something will change, e.g. POSTing data.
It can also be immutable.

• Presentation The presentation characteristic of the affordance gives
the client information about how the related information is presented,
either transclusional like a picture or navigational like links.

• Idempotence This affordance represent an action, which again means
a method if the application works over HTTP. GET is a typical
idempotence action, because you can do one action multiple times
without changing the outcome, while POST is non-idempotence.

• Safety The affordance can either be a safe or unsafe action. Once again,
if the communication goes over HTTP, it comes to methods; GET
is a safe action, while DELETE is an unsafe action. This is because
deletion can cause side-effects the client can not take account for.

Amundsen[3] makes a point out of that the client is responsible
for the presentation of the affordance, which means mutability and the
presentation affordance. While the server takes care of the two other, in
the way that it handles the requests based on the action. The server needs
to be responsible of the idempotent and the safety affordance, to serve a
reliable service. Of course this is dependent on the implementation of the
server, but if it is implemented right, GET operations are implemented as

4See next section.

25

Links LE Embedded Links
LO Outobund Links
LT Templated Links
LI Idempotent Links
LN Non-Idempotent Links

Control Data CR Read Controls
CU Update Controls
CM Method Controls
CL Link Annotation Controls

Table 3.1: H-Factor table taken from from [1, p. 14]

safe. If a GET operation is implemented as an unsafe operation, where the
operation actually adds resources, this will end up in a huge mess where
the server can break down in the end. This is also why the client can not be
responsible of defining if a POST request should be safe — which it in no
cases should be because it can affect the server.

3.4 Hypermedia Factors

Mike Amundsen[1] defined nine different affordances, that in the context
of hypermedia is called the Hypermedia Factors — or H-Factors. See
them in Table 3.1. When constructing hypermedia messages, which is a
design process, you have to concider how the requested data should be
represented. This includes the metadata about the data and metadata about
the application as well. This metadata could state, e.g. what format the data
should be on when sent to the server for storage. The way this metadata is
represented varies from what format and media type the server responds
with. The H-factors are an abstraction of these options and can be applied
to all formats and media types.

The Hypermedia Factors are divided into to two groups. Link factors
and control factors. The link factors are defining the different kinds of
linking interactions between server and client, while the control factors
provides us with the support of being able to customize the metadata
details. A link factor could be invoked by clicking an image which is
provided with a link to another page. A control factor could be to define
the HTTP Headers, such as defining what media types to accept.

As we have seen in this section, hypermedia helps computers to
understand the message that is sent because it makes it self-descriptive.
This means that if the client gets a representation of a person, the
representation also contains information about relations to other people as
well, like friends or spouse. For a client that gets this representation it will
be easy to maneuver to these other relations that also has a representation.
The client will, just by getting a representation that contains hypermedia,
have a great understanding of the context of the message and become
smarter because it is in possession of more knowledge than just one
representation that does not lead any way.

26

The minimum requirement when it comes to hypermedia-oriented ap-
proaches, is that the client knows a valid URI where it receive a represent-
ation and that the client and the server shares the same knowledge of the
hypermedia affordance[3].

3.5 Hypermedia Design Elements

For a client to be autonomous it needs to have a server to interact with.
With hypermedia we are a bit further on the road because the client
now gets an understand of the environment based on the self-descriptive
messages. In this section we are going to look into what design elements
that needs to be addressed when constructing the hypermedia messages.
Since our application are going to work on the Web, we also look at how to
apply semantics, hence Semantic Web.

3.5.1 Base format

All data needs a structured format so it can be processed and interpreted
by computers. If data was not leveraged in a structured way, it would
have been nearly impossible for machines to understand how to interpret
the content. In such a situation every client that would have received a
response with data not structured, would interpret the data in their own
way. The most common formats to structure data in over HTTP is JSON,
XML and HTML. In the Semantic Web it is RDF, or serializations5 of it.

XML

Extensible Markup Language is a mature format that many technologies
supports. This must be one of the main positive factors to consider when
choosing a format. Knowing that your chosen media type is supported.
How to interpret the format is standardized so using it with application
clients will give consistent interpretations of the data.

XML has no native hypermedia controls, so this needs to be added if
we are going to use it in the prototype.

JSON

Today, JavaScript Object Notation, or more commonly JSON, is widely used
in Web applications. This is because it is supported by JavaScript which
again is highly rated by Web developers. The programming language
is default used in a wide range of applications both front-end, back-end
and databases; Express.js[50], Node.js[22] and MongoDB[39] are some
examples.

JSON is built up by objects with key-value pairs. Even though it does
not have native hypermedia control, we will see in the next chapter how
it can be integrated with RDF to express these controls. It must also be

5Serialization format means the chosen format the RDF is translated to.

27

consider as an option in our prototype because we are building a Web
applicaiton.

HTML

HTML is not widely common when it comes to being used as base format
in applications. We are more used to see it as the holders of the data that is
presented in the Web browser.

The reason why HTML should be considered is because it supports a
number of hypermedia controls[1, p. 23]. If used in the context where there
is expected output to users through the Web browser, it would be easy to
render the results because HTML is what Web pages are built up by. With
the other base formats, this rendering is a bigger effort because there must
be some kind of mapping between the other structures, in the way of what
will be displayed in the different elements.

RDF

We have already explained what RDF is and why it is essential to the
Semantic Web. Amundsen[1, p. 23] argues that it is neither a format or a
media type, but a standard for interchanging data, based on a triple pattern
using URIs. When serializing it to a format we will see in the next chapter
that it can work well in the context of a generic, autonomous client.

3.5.2 State Transfer

Another aspect of our hypermedia application is how the client will change
the state of the server. This is one of the key aspect of REST, as we
have explained earlier, and is the aspect of REST that most do not fully
understand when it comes to actually creating RESTful applications[18].
Amundsen[1], once again, guides us through three different terms that
describes approaches to client-initiated state transfers.

Read-only

Read-only applications is exactly what you believe it is. A client can only
retrieve representations of the data through, e.g., HTTP GET requests.
Services on the Web that often have a design like this, are for example
online news papers, where a client can only follow links to different articles
while no data from the users are gathered by the client and sent to the
server of the news paper.

This does not mean that the hypermedia affordance is abandoned. The
hypermedia controls can still be present in the message sent to the client as
links to related articles, the front page, or even the next page if the article is
distributed in such a manner.

However, this is not a suitable variant for our application since we want
it to interact in smarter way; it should be able to POST data as well and do
actions based on that response again.

28

Predefined

Another way of solving the problem is that a client might have to initiate
valid state transfers by the use of predefined message bodies. These
bodies for state transfer must be understood by the client before initiating
requests.

A way of solving this, except from hard-coding the transfer bodies
the client are supposed to use, is to let the server provide the client with
documentation with the set of valid message bodies. The client can then
pre-load the documentation so it knows how to construct a valid body for
a certain operations. This makes the coding of the client easier.

The documentation sent from the server need to consist of details about
how clients can recognize state transfers, how clients should construct valid
state transfer requests, with what protocol method to use and how the
server should respond.[1, p. 25]

In our application, the server would then needed to provide the client
with documentation on how the client can know where the client can
initiate a state transfer. E.g. how to create a valid body for initiating the
state transfer of booking tickets to one of the concerts. The documentation
also need to provide the information on which method that is used and
what kind of response the client should expect. As a response, the
documentation could say that if there was a successful, e.g. PUT, the client
can expect a 200 - Ok.

Ad-Hoc

In ad-hoc state transfer designs, details about the what a valid state transfer
must contain is sent with the hypermedia message.

Clients need to know how to recognize the hypermedia controls,
the H-factors, since a message can contain several of them, as well as
understanding how to interpret the rules for constructing valid state
transfers as the messages appear. Ad-hoc means that the client need to
be ready to respond to whatever type of state transfer rules it receives from
the server in a response.

Main advantage is flexibility[1, p. 26] since their does not exist a strict
rule on how many elements should be contained in a transfer body. In
one request their might be needed one element, while in another there
might be needed ten. This calls for a complex client because it needs to
recognize what elements need what input. For a client that is initiated by
humans, this is not a problem because a human can ,e.g., easily divide a
name into given and surname, if one action calls for that. An autonomous
client would trouble more with that if it only knows the name as one whole
part. This problem could to some extent be solved with more semantics,
e.g. if the person had a FOAF6 profile.

Bottom line is that in an ad-hoc design for hypermedia, client applica-
tions needs to know how to create messages that correspond with the re-
quest body expected by the server. In our case that would mean that, let

6FOAF is a project for structuring data about peoples relations.

29

us say that you needed to log in with credentials to get to the entry point.
When trying to GET /parkteateret, then the client would get a response con-
taining information about how to compose a valid request. The request
would most likely need to contain a password and a user name or an email
address. When receiving the the response containing the entry point there
might be additional information about how to POST the preferred genre of
music which would take another form than the request body of the creden-
tials.

3.5.3 Defining Domain

At one point we need to define what the domain of the server should be.
Domain is in this setting the “application domain, or the problem space”[1,
p. 26]. We understand this as what kind of data is the server going to
retrieve to clients sending requests to it. E.g. is it a commercial site where
you can click links to other merchandisers, or will it solely focus on aiding
clients with data about items for dog owners.

In our case7, one of the domains, is a venue providing data about
different concerts in that location. If we look at an example from a
Norwegian venue, we could say that Parkteateret8 provides a list of
concerts on their Web page. If you click on the link to a concert, you will get
more information about that particular concert, like who is playing, what
kind of music the band is playing, what a ticket costs and the exact date
and time. This is what we try to simulate in our implementation. Modeling
the domain with the right attributes and elements of the problem space
makes it easier to understand and make use of the expressed information
in applications.

Amundsen[1] presents three categories of domain styles when it comes
to how a hypermedia format is directly related to the domain it describes:

Specific

This term is very descriptive for what it means. Domain-specific design
concentrate the work of incorporate existing names and patterns of a
problem space. This means that if we would have used a domain-specific
format for describing a concert, it might have used terms like in listing 3.1.

Listing 3.1: Example of domain-specific design.
<concert >

<concertPerformer > . . . < / concertPerformer >
< c o n c e r t S t a r t > . . . < / c o n c e r t S t a r t >
<concertEnd > . . . < / concertEnd >
<c o n c e r t P r i c e > . . . < / c o n c e r t P r i c e >

</concert >

This is a good approach if your application and domain is not supposed
to live long, or if the domain space is well-established. In our scenario, a

7The prototype will be thoroughly explain in the next chapter.
8Their actual web page is http://www.parkteateret.no/.

30

/parkteateret
http://www.parkteateret.no/

venue presenting information about concerts, must be seen as a problem
space that is well established. This means that we have to consider using a
domain-specific style when storing our data on the server.

What comes to mind when looking at the above example, is that there
is no kind of semantic expressions of the data. This will definitely abolish
the thoughts of using it in a Web application where we in the Semantic Web
strive to publish semantic data.

If we give it another look we will see that it have a XML-like suit, which
again looks similar to pure RDF9. This means that there are possibilities to
e.g. add URIs in the element-tags to refer to resources, or add a separate
document describes the semantic of the element. Since this comes to light
it means that we again can consider using the domain-specific style to
represent our data.

But how is it about hypermedia affordance in this design? Our client
still need self-descriptive messages to be able to initiate state transfers to the
server. “In domain-specific designs, the hypermedia controls have names
that relate directly to application-domain information”[1, p. 150] as we can
see in listing 3.2.

Listing 3.2: Example of domain-specific hypermedia design.
< c r e a t e hre f =" ht tp :// example . com/ c o n c e r t s ">

<concertPerformer > . . . < / concertPerformer >
. . .

<c o n c e r t P r i c e > . . . < / c o n c e r t P r i c e >
</crea te >

<concer t1 hre f =" ht tp :// example . com/ c o n c e r t s /1">

< c o n c e r t s hre f =" ht tp :// example . com/ c o n c e r t s /">

< d e l e t e hre f =" ht tp :// example . com/ c o n c e r t s /1">

If a client receives a response that looks like listing 3.2, it will
understand that it can follow different links which makes the message
more self-descriptive, since it knows that href means that the following
URI can be dereferenced. E.g. if it follows the concerts-element it will most
likely receive a list or a collection of concerts and it can create a concert
if following the URI provided in the element. We can say that this data
provides affordance to the client. Still, it can not be completely sure what
lays behind the link at this stage, because there is still little semantic added.

General

As a step away from the specific, we there exist a style that is called domain-
general, or generic. This style makes use of more general element terms,
which can be used in more settings, and then give the elements attributes
that are more domain-specific. This design can look something like listing
3.3.

9RDF is built up by triples as we already know. What we refer to here is the elements
embraced by < and >.

31

Listing 3.3: Example of a domain-general format.
{

" concer t " : {
" id " : " . . . " ,
" performer " : { " type " : " concertPerformer " ,

" performerName " : " . . . " } ,
" s t a r t D a t e " : { " type " : " c o n c e r t S t a r t " , " date " : " . . . " } ,
" endDate " : { " type " : " concertEnd " , " date " : " . . . " } ,
" p r i c e " : { " type " : " c o n c e r t P r i c e " , " value " : " . . . " } ,

}
}

A design like listing 3.3 can be used by more applications, because of
the more general terms used in the elements that builds up the format. A
performer is not necessarily just a musician playing a concert, it could also
be an actress on a stage playing a drama written by Henrik Ibsen as well.
The same aspect counts for startDate, endDate and price. With startDate
and endDate we can see that both have the attribute date which means that
we can re-use attributes in different elements. The more domain-specific
attributes is applied in the “type”-indicator.

Even though this approach is more flexible than the pure domain-
specific style, it needs more processing, thus more code, to traverse both
the domain-general element and the domain-specific type attribute. And
we still need to hard-code software to actually make use of it since there
is no semantics added to it. Semantics in a format and style like the above
example could be given semantic meaning by adding the semantics in a
separate document. The above document would then look like a JSON-LD
document, which is a format we will present in depth below.

Still, this approach will be a good fit for our application if the domain is
not likely to change and has a core set of elements that can be reused.

So, how about the hypermedia affordance in this domain-general
design? In this approach we need to define the hypermedia controls with
actions they support on a protocol-level[1, p. 151] . This means that if data
are supposed to be passed over HTTP, the hypermedia controls should be
identified with the actions that HTTP supports.

Listing 3.4: Example of domain-general hypermedia format.
{

" l i n k " : {
" a c t i o n " : " read " ,
" hre f " : " ht tp :// example . com/ c o n c e r t s /" ,
" r e l " : " c o n c e r t s "

}
}
{

" l i n k " : {
" a c t i o n " : " remove " ,
" hre f " : " ht tp :// example . com/ c o n c e r t s /1" ,
" r e l " : " e d i t "

}
}

32

In listing 3.4 we can see that the response contains two links. One
where you can read some data from the URI contained in the href property.
Following the other link will remove the resource identified by the URI
provided. The actions here must be seen in association with the HTTP
methods. We can also see that the hypermedia controls in a domain-general
design must be integrated in such a way that the controls can be associated
with the information which is domain-specific. This principle can be seen
in the rel property.[1, p. 151]

Agnostic

The last approach for domain styles is domain-agnostic. This is the most
flexible variant because of its use of completely generic terms on the
elements, e.g. form. If we look at an example in HTML (listing 3.5) it will
make more sense.

Listing 3.5: Example of agnostic design (HTML) with hypermedia afford-
ance.
<div c l a s s =" concer t ">

<div c l a s s =" id ">
. . .

</div >
<div c l a s s =" performer ">

<div c l a s s ="performerName">
. . .

</div >
</div >

</div >

In this example, the only element that is used is the HTML’s div. In
another data format it might have had the name data. To make any
sense of these elements, we need to use context-setting values[1, p. 28] like
concert and performer, and we understand that these values are often more
domain-specific.

The positives of this approach is that a design like this does not need
a huge set of elements to express a domain. To paraphrase Amundsen[1,
p. 29]: The trick is to employ a rich set of decorators to the elements. HTML
is already mentioned, and the id and class attributes can be added to almost
all the elements in the language. This means that many applications can
adopt the format.

The biggest problem with the domain-agnostic design approach is that
it might end up becoming too agnostic, so that the different elements
does not provide either humans nor computers with sufficiently clear
information. This can happen either if the element has too few attributes as
decorators, or even too many.

We know that HTML can be given semantic meaning by adding
RDFa[25] as decorators. This will lift10 the applications readability for
computers.

10When speaking of lifting, we speak of semantic lifting which means that we are adding
meaning to the content. The more semantics we apply, the higher we lift it.

33

If your domain will evolve and the design will be used on different
domains then this approach will suit you, because of the flexibility in the
agnostic elements that can be used in a variety of ways.

When it comes to HTML and its hypermedia support, the language
has native support for hypermedia affordance, that we will see in a later
section.

3.5.4 Application Flow

Adding hypermedia to your application can help your messages contain
application flow options for the client to choose between. With application
flow elements, the client will be able to advance the application, or put in
another way, skip states, when wanted. This require more than just links in
the hypermedia message, it also needs identifiers for those different state
transfers options.[1, p. 29]

Earlier, in the read-only state transfer scenario, we used an online news
paper as an example. To extend that and describe the application flow in
further depth, we have to bring back the different options we introduced:
related articles, next page, last page, home page. The application flow
options here can bring the application from one state to another state with
the client only following one link. A natural step-wise procedure would
bring the application from one page to the next in the article, but here the
application state could be changed from page 1, to the last page, in one
request. We can now really start to understand why we say hypermedia is
all about self-descriptive messages (referanse).

In our prototype a typical application flow option could be to book a
ticket. Below we will go through Amundsen’s[1, p. 30] three different ways
of hypermedia to handling application flow.

None

There is not every implementations that need hypermedia that takes care
of distributing options to the client about application flow. In those cases
we say, logical enough that there exist none application flow options.

Amundsen[1, p. 31] gives us an understanding of that this type of
design can be used in automated systems. This means that we really have
to consider using this approach in our prototype. Application flow options
might be seen as “noise” for automated machines trying to reach their goal.
Another consideration we have to take in account is if the system also
should provide affordance for human interaction, i.e. that the application
not only are made for machines, but humans as well. This is something we
already touched upon and which is one of the main goal for the semantic
web[9].

Intrinsic

On the other hand, if the application could benefit from having hypermedia
that supports application flow, a design possibility is to use a format that

34

have this feature integrated. By that we mean that there exist identifiers
for such application flow in the media type itself. If you design your
own media type Amundsen[1, p. 31] states that this can be done by
either identifying specific elements that represents application flow options
in your design, like <book>...</book>, which can resemble a XML-like
format; it can be achieved by identifying specific attributes in the same way,
and this could look something like <enter type="book" >...</enter>; or
at last, it can be reached by using decorators, as in HTML, that you identify
to represent an application flow and apply to elements and attributes. This
approach could look like <div rel="book".../>. Using application flow
embedded in the format like this is called intrinsic.

An implementation with an intrinsic application flow can work well
when you want your application to avoid relying on external definitions
or specifications, and if the application flow can be expressed by a limited
amount of elements and attributes[1, p. 32]. The reason for this is that if you
apply a lot of different elements or attributes to identify application flow,
it might accelerate the level of how difficult it is to read and understand
for humans. With the limited set of elements and attributes, the intrinsic
variant should be used in general use cases where the application flow does
not change often.

Applied

Applied hypermedia design should be considered in situations where
application flow can evolve over time, or can be used in various scenarios.
This means that the server can, in various situations, respond with the same
data, but provide a client with different kinds of external documentation
depending on the use case. In the external documentation, there should
be provided information about the application flow, of course, and how
it should be interpreted as well. This document should be provided with
e.g. a link in a hypermedia response in the the link header if we talk about
HTTP requests.[1, p. 32]

The positives with the applied design for application flow is that it is
flexible because of unlimited amount possibilities, independence and can
be applied to any base format. It also enables evolvability to the media
format because of because it is completely independent from the server.

Downsides are that clients need to control not only the main media
type received, but also a second document it have to interpret. This calls
for more complexity to the clients. With rapid changes in the external
document, or that there is changes on the server itself, it may cause many
invalid requests from clients.

In HTML, the relation from the main HTML document to the styling
in the CSS file, is an example of how applied hypermedia documents
can work. To state an example from our own prototype we could
have supplied the code with a meta tag, if our chosen media type
where HTML, the applied document could be related in the response
in a manner that looks something like this: <meta name="profile"
content="http://example.com/concerts.html" >. The important take

35

away is that the applied document with the application flow must be
reachable in an intuitive way for the client.

Summary

In this chapter we have been introduced to REST, and how to actual be
able to create truly RESTful service. To achieve this we need a complete
understanding of the HATEOAS constraint, or hypermedia as the engine
of application state. We got that by examine the term hypermedia, where
we also introduced affordance and hypermedia factors. All over, we got
the understanding that hypermedia helps the client to understand what
the data in the response from the server affords. This again is done
through different hypermedia controls, or Hypermedia Factors. In the
last section we dived into what needs to be considered when designing
these hypermedia messages; what format is suitable, how should state
transfers be expressed, in what way should the domain of the application
be structured and how could the server provide the client with an
understanding of the aplication state.

36

Chapter 4

Prototype

We have so far been going through what the Semantic Web are and what
technologies enables the visions of it and its capabilities. Throughout this
chapter we will show and explain how to use these technologies to develop
a prototype. This will help us getting a better understanding of what we
are dealing with.

The aim of this chapter is to bridge the understanding of the technolo-
gies we took a look at in chapter 2, and to show how they can be used in a
practical example. The implementation of the client-server application will
lead us to the research of how autonomous a client can be, based on the
message that is sent from the server. We will also explore if the client can
be generic by let it consume two different APIs. This is essential to see that
hypermedia and REST enables reuse of code.

This chapter can be seen as four different parts. At first we will
briefly get a general overview of the application that has been developed.
Second we will see how the hypermedia design elements have been
implemented. Third we look at the client, how it was developed and how
it functions. Lastly, we look at other considerations and reflections on the
implementation of the prototype.

4.1 General overview

We are going to develop a client that can work with multiple servers,
consume their APIs and relate it to its own goal. More precisely are
we going to develop a client/server application where the client works
autonomously. To be able to work autonomously, the client needs a goal,
to achieve the goal it must vary from server to server. In this prototype we
have developed two different servers with completely different domains
and the generic, autonomously client.

4.1.1 Concert server

The first server is the concert server. This server hosts data for a concert
venue. A concert’s information contains what band are playing, what it
costs, how many tickets are left and what genre it is. In this scenario the

37

client will connect to the server, and based on some predefined input, it
will try find a suited concert and obtain a ticket.

4.1.2 Physician domain

The other server hosts data for a physicians office. Here a client can register
a patients medical condition, i.e. what kind of disease or injury that is
needed treatment, and look at what physicians are connected to the office.
In this scenario will the client try to book an appointment with a physician
based on some predefined input. Here must the physician be available and
have the right medical specialty for the appointment to be booked.

4.1.3 Intelligence

What is worth noting is that all intelligence is possessed by the client. For
both scenarios. It will be the client’s job to understand if a physician is not
available or if it does not have the required medical specialty. The only
smartness the server possesses is to check if the request is valid.

This is all according to Verborgh’s[52] visions for enabling smarter
clients. We are going to try to make the environment enable the client to
act smart. Such an approach fits well with REST and the Web’s scalability
since the server is offloaded work.

4.1.4 Programming language

The programming language that were used throughout the whole proto-
type was JavaScript. We have been arguing that in Web applications, JavaS-
cript have become popular through that a lot of external projects is based
on the language.

4.1.5 Server platform

As the core of the server we are using Node.js. “Node.js is a platform built
on Chrome’s JavaScript runtime for easily building fast, scalable network
applications.”[22] Together with Express.js it enables us to easily set up a
server that hosts the service.

4.1.6 Web framework

On the server side, on top of the Node.js distribution we are using
Express.js which is a “Fast, unopinionated, minimalist web framework for
Node.js”[50]. It helps us with easy routing and handling of the requests
from the client.

4.1.7 Code

The prototype has been continuously developed throughout the last twelve
months, and the code has been stored in a GitHub repository. It has
undergone major changes from the first commit, which this chapter will

38

reflect to some extent. See appendix A for further details on were to find
the code in its entirety.

4.2 Prerequisites

As we got to know in chapter 3 about Hypermedia, what we definitely need
in our hypermedia-oriented approach, is that the client we are developing
knows a valid URI which leads it to what we will refer to as the entry point.
The entry point is basically a representation of the underlying data on the
first page you see when requesting a Web page. This could typically be the
index-page if we put in the perspective of regular commercial sites.

The second thing we need, is the shared knowledge between the client
and the server of the hypermedia affordance.

Lanthaler[33] introduces three steps of how it is common to make an
API.

1. Define URL structures

2. Expose the objects as JSON

3. Write API documentation

However, he does not believe that this i a RESTful way of making an
API. Therefor, in the companionship of Hydra and JSON-LD he introduces
us for these new steps:

1. Do not care about defining URL structures. This is a matter for
providers, not consumers.

2. Expose you objects as JSON-LD. When serializing your RDF into
JSON-LD we get the advantage that also machines can understand
the content. We know that the LD in JSON-LD stands for Linked
Data, and therefor it is relevant to look at the guidelines for it.
Lanthaler means that we should use URLs instead of URIs so it can be
dereferenced. With the JSON-LD we also introduces self-descriptive
messages with the @context tag.

3. Instead of writing external API documentation, we are going to use
Hydra, the lightweight vocabulary for describing APIs.

We will see through this chapter that this is indeed the the way we have
implemented our API.

4.3 Base format

Our chosen base format for data that is to be sent from the server to
represent different resources, is JSON. It provides an well-known structure
for most Web application developers, and since we are using various
JavaScript libraries and technologies it makes sense to extend that line with

39

JSON as it works well with the programming language. The question is if
we are capable of extending the JSON with the necessary semantics and
hypermedia controls so that a client can consume, understand and interact
with it autonomously.

4.3.1 JSON-LD

Our selected hypermedia type for the prototype were JSON-LD[35, 48].
As we have understood, does it exist several other hypermedia types that
builds upon plain JSON.

One of the reasons we chose JSON-LD was because it is a serialization
of RDF[35], which means that if we can express hypermedia controls with
this media type, we are then using hypermedia RDF in the prototype. The
integration of LD in the type also emphasizes the relation to RDF and thus
is perfect for the Semantic Web since we are linking resources together and
expressing meaning. How this is done will follow. Other serializations of
RDF could also been used, but we will see that JSON-LD and Hydra is a
good combination for expressing hypermedia controls. Another benefir
of JSON-LD is that it enables self-descriptiveness both for humans and
machines[35].

The rest of the thesis will then give us an answer to our research
question, simplified; if a client can be both generic and autonomously, and
solve its goals based on the JSON-LD responses the server provide it with.

So how does JSON-LD function, how is it structured and how can we
express semantics and hypermedia controls with it?

4.3.2 From JSON to JSON-LD

A regular JSON object could look something like the listing 4.1.

Listing 4.1: A plain JSON representation.
{

"name " : " Led Zeppelin " ,
" s t a r t D a t e " : "2015−06−06T20 : 0 0 " ,
" genre " : " Rock " ,
" p r i c e " : " 2 4 9 . 0 0 " ,

}

For a human, it is possible to understand what this is a representation
of. Especially since it is a well-known band that performs; it is a
representation of a concert will many resemble. For a computer is this
ambiguous in best case. It can only understand that it is a JSON object.
To apply semantics to the JSON documents, JSON-LD have introduced the
@context keyword.

Listing 4.2: A beginning of a JSON-LD representation.
{

" @context " : " ht tp :// schema . org /"
"name " : " Led Zeppelin " ,
" s t a r t D a t e " : "2015−06−06T20 : 0 0 " ,

40

" genre " : " Rock " ,
" p r i c e " : " 2 4 9 . 0 0 " ,

}

The context property is given a URL which is a documentation of the
meaning of the property when applied to the other properties[35]. In this
case is the URL in the context functioning as the base, which means that it
is applied to the other properties. The ambiguous property name, becomes
the unambiguous property http://schema.org/name.

Usually, when speaking of RDF and what it is describing, their is a class
defined. In the example in listing 4.2, a computer can not be sure what the
representation is about. This is because a http://schema.org/name can be a
various amount of things.

If we look at the documentation, we see that the described property
is used on the type Thing. We know that Led Zeppelin is a band, while a
computer with the above descriptions does not know. Another downside is
that there is no information in the representation on where to access it. This
means that we need to be more specific if we want to apply this response
in a application for autonomous clients.

We need to first introduce the way of identify the given resource. That
is done by having a working URI as the value of the @id property. The way
of expressing what kind of class is done with the keyword @type.

Listing 4.3: A full JSON-LD representation of a concert.

{
" @context " : " ht tp :// schema . org /" ,
" @id " : "/ r o c k e f e l l e r / c o n c e r t s /1" ,
" @type " : " MusicEvent " ,
"name " : " Led Zeppelin " ,
" performer " : {

" @type " : " MusicGroup " ,
"name " : " Led Zeppelin "

} ,
" s t a r t D a t e " : "2015−06−06T20 : 0 0 " ,
" genre " : " Rock " ,
" o f f e r s " : {

" @type " : " AggregateOffer " ,
" offerCount " : " 1 5 " ,
" p r i c e " : " 2 4 9 . 0 0 " ,
" priceCurrency " : "NOK"

}
}

Listing 4.3 is a representation that can be retrieved from the URI
/rockefeller/concerts/1, and is a representation of a http://schema.org/
MusicEvent. The performer of the concert is of the type MusicGroup, and the
name of the group is Led Zeppelin. By adding these property keywords
that is related to dereferenceable URIs with documentation, we get the
semantics both for humans and machines incorporated in one document.
Mark that the URI is relative URI, which can be used if the base URI is

41

http://schema.org/name
http://schema.org/name
/rockefeller/concerts/1
http://schema.org/MusicEvent
http://schema.org/MusicEvent

Figure 4.1: The Hydra vocabulary.

known[10]. In this implementation is the base http://localhost:3000 which
the relative URI is applied to when dereferencing the URI.

4.3.3 Hydra

We now have the semantics, but were are the hypermedia controls? In
listing 4.3 we can see that it affords us to follow the URI that identifies
the resource, or the URIs in the @context. Hydra[34, 31] is a lightweight
vocabulary that we will use together with JSON-LD to be able to afford
more hypermedia controls so that the client can understand how to create
HTTP requests to modify the server’s state. Hydra will work as the shared
knowledge between the server and client where the client can look up what
different URIs means. This knowledge is discovered at runtime.

An overview of the core elements of the vocabulary can be seen in figure
4.1. The ApiDocumentation represent the possibility it gives us to document
our Web API[34]. It enables us to define a main entry point1, which in our

1All URIs should be an entry point. By this we mean that all information that is needed
should be provided in each response, whatever URI you follow. In this setting will the main
entry point be similar to a defined starting point.

42

http://localhost:3000

case is /rockefeller for the concert domain and /physician for the physician
domain.

Further, it enables us to document what classes, properties, and
operation the API supports. The two different API documentations, or
from now on Hydra APIs, can be retrieved when running the projects from
/rockefeller/vocab and /physician/vocab. The reason why the API is called
a vocab, or vocabulary, is because that was the common trend at the point
of the implementation. API could have been used as well. Vocabulary is
not wrong to use since the Hydra API in its essence is a vocabulary, or an
ontology, were the terms used in the application is described.

Listing 4.4: Hydra description of a class.

{
" @id " : " schema : Physic ian " ,
" @type " : " hydra : Class " ,
" subClassOf " : nul l ,
" l a b e l " : " Physic ian " ,
" d e s c r i p t i o n " : "A physic ian " ,
" supportedOperation " : [

{
" @id " : " _ : r e t r i e v e _ p h y s i c i a n " ,
" @type " : " hydra : Operation " ,
" method " : "GET" ,
" l a b e l " : " R e t r i e v e s a Physic ian e n t i t y " ,
" d e s c r i p t i o n " : nul l ,
" expects " : nul l ,
" re turns " : " schema : Physic ian " ,
" statusCodes " : []

}
] ,
" supportedProperty " : [

{
" property " : " schema : name " ,
" hydra : t i t l e " : "name " ,
" hydra : d e s c r i p t i o n " : "Name of the physic ian " ,
" required " : true ,
" readonly " : f a l s e ,
" wri teonly " : f a l s e

} ,
{

" property " : " schema : m e d i c a l S p e c i a l i t y " ,
" hydra : t i t l e " : " m e d i c a l S p e c i a l i t y " ,
" hydra : d e s c r i p t i o n " : " The phys ic ians medical

s p e c i a l i t y " ,
" required " : true ,
" readonly " : f a l s e ,
" wri teonly " : f a l s e

}
]

}

Listing 4.4 shows us a description of a class using Hydra. It describes

43

/rockefeller
/physician
/rockefeller/vocab
/physician/vocab

a http://schema.org/Physician, were you can do a GET operation2 were you
can expect a http://schema.org/Physician in return which maybe does not
make very much sense right now, but we will see how this is mapped
to the resources below. Further, we see that a http://schema.org/Physician
have two properties; a http://schema.org/name which is required and a
http://schema.org/medicalSpeciality which also is required.

The API mapping

How to apply Hydra to our existing JSON-LD can vary from each use
case. In some scenarios it can make sense to apply it in the JSON-LD
representation itself. Our choice were to have an external document were
all the hypermedia controls are defined.

Each resource in our application have a @context property according to
the specification of JSON-LD[48]. The value of the property is in our case a
dereferenceable URI, which leads us to another resource were the context
is defined. This can be seen in listing 4.5.

Listing 4.5: Snippet of concert representation with external context.
{

" @context " : "/ physic ian/c o n t e x t s /Phyis ican . j s o n l d " ,
" @id " : "/ physic ian/phys ic ians /1" ,
" @type " : " Physic ian " ,
"name " : " Marc van Overmars " ,
. . .

}

By dereferencing the context URI, we will meet the resource that defines
the semantics of the properties in the received response. What we see in
the listing 4.6 is that here is it a property called vocab, which value is a
dereferencable URI as well.

Listing 4.6: Context example.
{

" @context " : {
" hydra " : " ht tp ://www. w3 . org/ns/hydra/core # " ,
" vocab " : " ht tp :// l o c a l h o s t :3000/ physic ian/vocab # " ,
" Physic ian " : " ht tp :// schema . org/Physic ian " ,
"name " : " ht tp :// schema . org/name " ,
" m e d i c a l S p e c i a l i t y " :

" ht tp :// schema . org/ m e d i c a l S p e c i a l i t y "
}

}

It is here we see how the documentation is mapped with the resource
retrieved from the server. The @type we saw in listing 4.5, is defined in
the context in listing 4.6 which gives it the semantic meaning, and further
it is defined in the API, or the vocabulary in listing 4.4 were we see the
hypermedia controls. We are now approaching what Verborgh[53] defines
as semantic hypermedia which is hypermedia following the LD principles.

2The operations specified in Hydra corresponds to the HTTP methods.

44

http://schema.org/Physician
http://schema.org/Physician
http://schema.org/Physician
http://schema.org/name
http://schema.org/medicalSpeciality

4.4 State transfer

We have so far in the implementation seen what format our data is in,
and how we have applied hypermedia controls to it. As we now know
is one key aspect of hypermedia applications how the state is changed by
the client.

With the help of Hydra, the prototype uses a predefined way of stating
valid state transfers. This is because Hydra enables the server to share
a vocabulary for what is valid state transfers to the client[34]. With
this predefined documentation the client then can construct valid HTTP
requests and drive the application state to achieve its desired goal.

As we did see, this documentation is accessible in both the prototypes
vocabulary. When looking at the listing 4.4, we see that it describes a state
transfer with the GET request. In that request there is not needed anything
in the request body because it states that the request expects: null.

A huge benefit with Hydra and the predefined, shared knowledge
between the server and the client is that it enables decoupling[34]. This is
because the documentation on how to construct the valid state transfers is
designed in a machine-interpretable way. The computer can then consume
the information at runtime and not being hard-coded to work with the
documentation at design-time. The client, server and the documentation
can evolve independently.

4.5 Domain

We have now reached the step where we need to decide how the domain
should be represented in the responses from the server. Since our
application, does not have to be agnostic, we are choosing the a design
style that resembles the domain-general one. The reason why we do not
need to be agnostic is because that we have a defined problem domain, the
concerts, and we will use attributes that are associated with an event like
that. The same for the physician domain.

The reason why we ended up with the domain-general is because it
gives us the flexibility to be both general and specific. We can be general
when defining e.g. collections of concerts, and then be more specific when
we add semantics to the information contained. Our goal is to be as
generic as possible, and that is one other reason that we chose JSON-LD
as format. JSON-LD is perfect for us in this situation; we can use JSON-LD
as generic media-type[35] with the use of general terms like collections, and
it provides us with the possibility to be specific by defining the semantics
in the context. The generic nature of JSON-LD means that it can be applied
to any domain.

JSON-LD, with its generic appearance, enables us to focus on defining
the set of legal interactions; the domain application protocol[35]. In our
prototype is this done in the Hydra API, which means that we have built
up our own universe of discourse, or problem space, with a vocabulary.
This approach is exactly how the Semantic Web are functioning, and as

45

such are we expanding it by publishing data on the Web in a semantic way,
and we can further make use of other Semantic Web tools if that is wanted.

4.6 Application Flow

With the Hydra API, we understand that the prototype is developed with
an applied application flow. Within each response from the server, we
provide the client with a link to the Hydra API in the HTTP link header.
This means that the client for each response it gets, it can look up in the
API and understand what it can expect from each link that is present in the
representation.

4.7 The autonomous, generic client

So far, we have seen all that enables a client to be smarter. But how do we
implement the actual client to interact with the hypermedia affordance? In
this section we will describe the different parts of the client and how they
makes use of the affordance to achieve its goal.

In both implementations are the client related code found in the folder
public/javascripts and contains the following elements:

1. a goal

2. the generic client code

3. domain-specific code

4. other helping modules like jsonld.js

4.7.1 The goal and other predefined input

First of all, the client can not be completely autonomous because we have
not implemented artificial intelligence, and the client can therefor not come
up with its own goal or know what information to feed the server with.

The goal

The goal on the concert server is to obtain a ticket based on preferred taste
of music amount of tickets and the maximum price you are willing to pay.
While on the physician server we would like to obtain an appointment with
a physician based on the relevant specialty to the medical condition of the
patient and preferred date.

Both goals are defined as a JSON object, and can be reviewed in listing
4.7 and 4.8.

Listing 4.7: The goal for the client working on the physician server.
{

" @type " :
’ ht tp :// l o c a l h o s t :3000/ physic ian/vocab#Appointment ’ ,

46

" s t a r t D a t e " : "2015−02−08T10 : 1 5 " ,
}

Listing 4.8: The goal for the client working on the concert server.
{

’ @type ’ : " ht tp :// l o c a l h o s t :3000/ r o c k e f e l l e r /vocab# T i c k e t " ,
’ genre ’ : " Rock " ,
’ offerCount ’ : 2 ,
’ pr ice ’ : 500 ,

}

Predefined input

In the concert implementation there is no need for other predefined input
that the goal, but for the physician example, a registration is needed;
by that we mean a patient that needs treatment. Such a registration, in
this implementation needs a name, a cause for the incident and relevant
specialty which will be checked to see if there is a doctor available to see
the patient. All of those terms are based on http://schema.org/.

4.7.2 The generic code

Based on the provided goal, and a given main entry point, the client code
start doing its job. The generic client is found under public/javascripts/
generic-client.js in both projects.

This prototype is developed as a Web application, so to start the project,
you need to start the server, and direct your Web browser to localhost:3000
and then the client starts running. The Web browser then works as one
of the components in a REST application, and is the agent for the client
code[19].

If the client works on the physician server, the provided main entry
point is localhost:3000/physician, while for the concert server it is localhost:
3000/rockefeller.

The work flow for the client is then as following:

Discovering the API

As recommended in the Hydra specification[31], for each response from the
server there is a defined a link header with a relation to the documentation
that looks something like the following:

Link: <http://localhost:3000/physician/vocab/>;
rel="http://www.w3.org/ns/hydra/core#apiDocumentation"

What the link header tells the client is that by following that link, it
will retrieve a Hydra API documentation, and as a Hydra driven client it
understands this term. More precise, it needs the Hydra documentation to
function.

47

http://schema.org/
localhost:3000
localhost:3000/physician
localhost:3000/rockefeller
localhost:3000/rockefeller

Relate to its own goal

The client have now obtained the documentation of the API. As a helper
for making use of the API, we have borrowed3 a module for structuring the
documentation making it easily accessible for the client. In our prototype
is this code found under public/javascripts/hydra-core.js.

The Hydra API is basically a large JSON-LD object, and what the the
hydra-core module is used to, is structure that object and provide it with
some functions to easily look up wanted information. An example is that
it provides us with the possibility to find a wanted class without our main
code needed to loop through.

Another essential part is that it maps the resources identifiers that is
present in the application to where it is described in the API. E.g. when
the hydra-core module receives the URI from the main entry point, http:
//localhost:3000/rockefeller, it finds the API documentation through the
HTTP Link Header in the response and starts the structuring and mapping.
In the API is it specified a hydra:Link from the entry point, which got the
identifier (IRI) http://localhost:3000/rockefeller/vocab#EntryPoint/concerts.
This is the IRI to the description of the resource that is identified by this
URI: http://localhost:3000/rockefeller/concerts/.

So, when the Hydra API is mapped with the identifiers in the
application, we then finally can start reaching the clients goal. The is
defined as a JSON object with a @type. For the client to know if it is
possible to reach such a goal — to obtain the right class — we search the
mapped API for the wanted class. If it is not present, the client will stop the
execution.

On the other hand, if it is present the client, the client will look to the
API an see what is needed in a request for obtaining the wanted class. In
the concert example we see that it is needed a related concert of the @type
MusicEvent, a total price with the range of @type Number and the number
of wanted tickets with the range of @type Integer4.

The next step for the client, is to start explore the rest of the API, gather
the right information and obtain that ticket.

Start exploring

When the client is looping through the API to try to solve its goal, it always
conferences with the mapped API.

In its essence, what the client code does, is that it for each targeted value,
that is the values needed to create the request to reach its goal, starts at the
main entry point, and explores it. By exploring, we mean that it follows
all of the possible properties that is a dereferenceable URI. E.g. on the
concert server there is only one property to explore, while there is three
in the physician example.

3The project the code is borrowed from is found at https://github.com/bergos/
hydra-core.

4Bear with us that the way this is solved might not be the most logical or appropriate
way. It is meant as an example to show that the client can work autonomously.

48

http://localhost:3000/rockefeller
http://localhost:3000/rockefeller
http://localhost:3000/rockefeller/vocab#EntryPoint/concerts
http://localhost:3000/rockefeller/concerts/
https://github.com/bergos/hydra-core
https://github.com/bergos/hydra-core

For each of those properties, the client checks what operations it can
do, and further, what it can expect as a response. We are here using IRIs as
identifiers, because this identifier leads us to the description of the resource
in the API. The @id is the identifier which is a dereferencable URI and
identifies the actual resource.

If the returned value is what the client is targeting, we execute the
operation5. If the returned value is a Collection, it needs special
treatment6. And finally, if the returned value is something we do not look
for, go to the next property and check its operations. Ideally, the client
could have gone deeper, followed the links and seen what laid behind this
first step, but in this prototype we know that there is a maximum depth of
three7 and we know that to reach depth level three, you need to retrieve
a collection first. Anyway, we see a clear pattern here that the client is
following its nose, but in a bit more sophisticated manner, since it now
can make up its mind and make itself known with the environment to the
received resource based on the Hydra API.

Do operations

So, if the operation we are about to execute returns the value we are
targeting, e.g. a MusicEvent, the client is ready to execute the operation
on the associated URI.

The client then first need to check what operation is to be performed.
If it is a GET or a DELETE it can just go on and perform it. If it is
a PUT or POST, then it needs a request body. This is checked in the
provided domain-specific code. After finding the right request body, then
the operation can be executed.

When the client receives the response, it performs a compaction with
the given API documentation of the response according to the JSON-LD
compaction algorithm[37]. This gives the client a response with full URI
identifying the properties so that the client can use this in a unambiguous
way when looking for its goal. When the client receives a response, it
returns to check if the final request can be executed. If not, it starts looking
for the next needed element to the request.

Handle collections

If the target of the client is not a collection, the we need to look into
what it contains. This is one problem with the public/javascripts/
hydra-core.js code, that we do not see the members without the actual
resource.

Therefor, when an operation returns a Collection, we need to follow
the URI, and see what @type the members have. If they are what the client

5See section Do operations.
6See section Handle collections.
7We define the depth by each resource layer you follow. The main entry point is one, if

you follow a URI from here you are on depth level to, and if you follow one URI from the
depth level two, you are on level three.

49

is targeting, then we GET each and one of them, compact them and checks
with the domain-specific code if there are any necessary processing needed
to be done. When the process is done, the client checks if the final request
can be done, if not, find the next target.

4.7.3 The domain-specific code

The domain-specific code is were we handle everything that is specific for
the application domain. The code is found under public/javascripts/
domain-specifics.js in both projects.

For example, if we look at the physician server; for a generic client, it
is possible to understand that it needs a registration, a date and an physician.
The problem arises when it comes to understanding that the physician have
to be available at the wanted date, and need the relevant medical specialty.
This must either be stated in an external document with rules, that again
needs to be processed by external code, or let the server provide the client
with domain-specific code.

After conferencing with Ruben Verborgh, the author’s co-supervisor,
we decided that in this case we could let the server provide the client
with domain-specific modules. Ideally, the client could have discovered
the code through, e.g a HTTP Link Header when the code was needed, but
in this prototype we have taken a shortcut and the whole code is provided
at runtime.

The main benefits of using an external rule set, written in e.g. the RDF
serialization N3, then you can reuse components, like the EYE reasoner[44].
Still, some glue-code would most probably been used to get it work with
the client, but as for our case, where we want to show the capabilities of
hypermedia, the modules provided by the server works.

What the domain-specific code does is that it takes care of the special
cases when it comes to what the client is looking for. When wanting to
obtain a ticket for a concert, a generic client can not know that it needs to
check if the wanted genre fits. so, when the client receives a response with
a representation of a concert, it sends the response to the domain-specific
code which checks if the concert fits the user input. If it does not, it keeps
on looking, if it fits, it tells the client that the concert is good and that the
final request can be made.

4.7.4 Other helping modules

Other helping modules that were used, were

• public/javascripts/jsonld.js which is an implementation of the
JSON-LD specification[37, 48]. This file is gotten from node-modules/
jsonld/js.

• public/javascripts/es6-promise.js which helps us handle asyn-
chronous JavaScript calls. It helps us state that this operation is not
done yet, but we expect it to be in the future. It is the file from the
node-modules/es6-promise/dist.

50

• public/javascripts/jquery.min.js jQuery helps the application
more easily work with browsers, i.e. manipulate the HTML[21]. This
is mostly used when we see the output from the client.

These helpers are usually loaded through the browser and stored in the
memory as long as you are on a particular Web page, but we decided to
store it on the client side because some of the work were done with limited
Internet access.

4.8 Issues

When developing the prototype we faced some issues. Some of minor effect
on the development, others with bigger impact.

4.8.1 Rapid spec changes

In the beginning, it was the rapid changes of the Hydra specification. This
made it a bit hard to decide how to use the specifications. At one point we
had to move on and stick to what we got. In the end it looks like it is not
that big of a difference in our use of terms and what the specification looks
like today.

4.8.2 Where to use domain-specific knowledge

The fact that the author struggled understanding how the client could be
100% generic was a huge part of the process, so it is worth mentioning
again. The way it was solved have already been discussed, so that is not
going to be brought up again.

4.8.3 Asynchronous calls in JavaScript

When the client were handling the collections, it needed to GET each of
the members. With the asynchronous nature of JavaScript, this caused us
some troubles; the client finished all it checks in the search of constructing
a valid HTTP request to obtain the wanted goal, but since the client uses
jQuery.ajax to perform the HTTP request, the response from these request
came too late so the client were done executing and ended up not being able
to solve its goal.

To solve this we used both promises8 and we forced the execution of the
code to be sequential. The properties, the operations and the members of
the collections were structured in arrays. So for each element in the arrays,
the client had a promise that the operation would finish, and it waited until
the operation were finished before it moved on.

8See the public/javascripts/es6-promise.js.

51

4.9 Other considerations

Throughout the development several files were started coded, but not
everything ended up being in the final prototype. One of those were the in-
tegration with a triple store. Something that on the other hand still is in the
prototype is some of the attempts to create a fully generic client. As already
discussed, when understanding that the client needed some help by
domain-specific knowledge, the public/javascripts/generic-client.js
was created. This is the actual working code, while the other clients just il-
lustrates the different attempts.

4.9.1 Storage

So why is there no storage in the prototype? First of all, the prototype is just
a way of showing the theories behind hypermedia and how the client can
work on its own and handle different APIs. And that is the essence of the
prototype, how the client handles the hypermedia affordance. This means
that the server side handling of the data is not that important. The server
responds to requests with plain, predefined JSON-LD files.

Early in the development there were some experiments with triple
stores and SPARQL integration. But as we decided to go for a implement-
ation with JSON-LD, a MongoDB[39] integration were halfway developed.
A MongoDB makes sense to use when handling data on JSON format. An-
other positive is that SPARQL endpoints’ availability is rather limited with
its downtime on 1.5 days per month[56].

These parts are now deleted from the project because this was not the
essence of the final prototype.

4.9.2 RESTdesc

Early in the development there was an intention to create two different
clients to compare them with each other, which used a different way of
describing the API. The intention were to use RESTdesc9, but when we
realized that the task were to big to complete both implementations, we
decided to go with Hydra based on the reasons already given.

Summary

In this chapter have we seen how to develop a Web application that we
will argue is truly RESTful. We have gone through the steps on how
to turn regular JSON into a format that makes use of the Linked Data
principles — JSON-LD. This format together with Hydra makes us capable
of the expressing self-descriptive messages so that the client can work
autonomously without human interaction. How this client were developed
and functions were reviewed as well.

9For more information see next chapter. There we will use these descriptions in
comparison to Hydra.

52

Chapter 5

Exploring view source
capabilities

In the previous chapters we have illuminated and demonstrated how we
can enable machines to take a meaningful part of the Web, just as Berners-
Lee visioned.

One aspect we have not highlighted yet, and that is often neglected
when working with the development of specifications, is the readability
of the specifications and the technology. Other developers are to read
the specification, understand it and use it in their own projects. If this
aspect is neglected, bright and revolutionary ideas and creations might
not be used, because of its fall when it comes to being understood. To let
developers easily make use of the technologies that enable clients to work
autonomously, the technologies must be accessible and understandable.

In this chapter we are going to present a study of the view source
capabilities of Hydra compared to RESTdesc. The Hydra vocabulary aims
to enable the creation of APIs that contains both human-readable and
machine-readable information. By having all information in the API, a
developer is supposed to not need to look up external documentation.
RESTdesc were chosen as comparison because it is also a quite new
technology and it also describes APIs.

To validate these capabilities we were having a workshop to gain useful
data for this matter.

We will first introduce the preparations for the study, before we take a
look at the participants. After that we are presenting the material that were
provided to the participants and how the study was carried out. Before we
look at the what flaws the study had, we will see the results.

5.1 Preparations

The first thing that needed to be settled before executing the study was
to choose in what form the study should be performed in. In our case it
made most sense to have a workshop. The reasons for this was that in a
workshop, we could provide the participants with tasks and afterwards
have a discussion around how they found working with the different APIs.

53

To prepare the workshop, a workshop guide, similar to an interview
guide, was created. You can see the steps of it in the section The workshop
and methodology. A workshop guide contains the different steps of the
workshop that is going to be carried out. An example could be step 1)
introduce yourself, your study and tell the participants why they are here.

Another aspect that we needed to keen in mind before executing the
study, was to choose what kind of data we wanted to gather. In our case,
in the context of a workshop, it made sense to gather qualitative data. The
goal of the study was to understand if the self-descriptive nature of Hydra
and RESTdesc was satisfying for the participants. In such cases, numeric
values from 1 to 5 can give meaning, but we feel that the discussion were
the participants can tell us what parts were good or bad, or what was easy to
understand were more valuable in this case.

Before holding the actual workshop, a pilot workshop was carried out
with one person. This was done to make sure that everything that was
presented during the workshop would make sense, and to prepare the
workshop leader, i.e. the author of this thesis. The feedback from the
person in the pilot workshop is also reviewed as one of the workshop
participants.

5.2 Participants

All of the seven participants of the study were master students at the
University of Oslo, writing their thesis at the Department of Informatics.
Six of them finished their degree in 2015, while one is scheduled to deliver
in 2016.

The participants were all volunteers assembled from the workplace for
the master students. They varied in background within informatics, were
three had a bachelor within interaction design — all of them continued on
that field in their thesis. The rest, four of the participants, came from a
programming directed bachelor. Two carried on with that on their master,
while the two others entered their research within global infrastructures.

Two of the participants had little or no experience with JSON. One had
some experience working with triple based formats, and one other had
some general knowledge about semantic structures.

All of the participants have had two or more courses in programming
throughout their studies.

28.6% of the participants were females and the average age were 26.6.
Since they have different knowledge and varied experience with both

programming and in the owrk with the formats they were going to explore,
it is interesting to compare either how different their experience are with
the APIs, or how similar.

5.3 Material

The material that was used in the workshop and handed to the participants
were:

54

• Hydra API What this API describes is the domain were an appoint-
ment with a physician can be booked. The complete API can be found
in appendix B.

• RESTdesc API This API describes how a concert ticket can be bought.
The complete API can be found in appendix C.

Both of the APIs carried out other information as well, like how to
retrieve a representation of a concert or how to register a medical condition.
Since we in the prototype had goals for booking a concert ticket and
schedule a physician appointment, this is what we have highlighted here.

To get a grasp around what the participants had to deal with, listing
5.1 gives an example on how the operation of retrieving the entrypoint is
described in the Hydra API1.

Listing 5.1: Example of how a GET operation is described in the Hydra API.
" supportedOperation " : [

{
" @id " : " _ : r e t r i e v e _ c o l l e c t i o n _ a p p o i n t m e n t s " ,
" @type " : " hydra : Operation " ,
" method " : "GET" ,
" l a b e l " : " Re t r i eve appointments " ,
" d e s c r i p t i o n " : nul l ,
" expects " : " n u l l " ,
" re turns " : " ht tp ://www. w3 . org/ns/hydra/core # C o l l e c t i o n " ,
" statusCodes " : []

}
]

To be clear, listing 5.1 tells us that we have something of the type
hydra:Operation. By now, we know that it can be translated into that
it is a HTTP operation, more precise a GET method. When we read the
label and what the operation returns, we understand that we are GETing a
collection of appointments. By looking at this example, we do not know
anything more, like what kinds of appointments. If the context of this
particular operation were to be given, as we can see in listing 5.2, we would
hopefully understand more. When given this extra information, it would
be interesting to see if the participants understands that the operation
invites to dereference a URL. There are specifics that might be looked up
in the Hydra specification, but everyone understands what a link is; on the
Web it is something that brings you to another Web page.

Listing 5.2: Example of how the context of an operation is described in the
Hydra API.
" property " : {

" @id " : " vocab : EntryPoint/appointment " ,
" @type " : " hydra : Link " ,
" l a b e l " : " appointment " ,
" d e s c r i p t i o n " : " appointments " ,

1A small remark, the semantics in the listings are removed because of space issues.

55

" domain " : " vocab : EntryPoint " ,
" range " : " ht tp ://www. w3 . org/ns/hydra/core # C o l l e c t i o n " ,
" supportedOperation " : [. . .] ,

} ,
" hydra : t i t l e " : " appoinment " ,
" hydra : d e s c r i p t i o n " : " C o l l e c t i o n of r e g i s t e r e d medical

condi t ions . " ,
" required " : nul l ,
" readonly " : true ,
" wri teonly " : f a l s e

To finish the description in listing 5.2. The domain property tells us that
we are at the main entry point, and we will retrieve a collection. The
hydra:description here might be useful to understand the context, by
stating that here you can get the collection of the medical conditions that are
registered in our database.

To move over to a completely different syntax, listing 5.3 describes to
us what the participants were to meet, and gives us an example on how a
similar operation is described with RESTdesc.

Listing 5.3: Example of how a GET operation is described in RESTdesc.
{

? concer t : concer t Id ? concer t Id .
}
=>
{

_ : request ht tp : methodName "GET " ;
tmpl : requestURI ("/ r o c k e f e l l e r / c o n c e r t s /" ? concer t Id) ;
ht tp : resp [tmpl : r e p r e s e n t s ? concer t] .

} .

What comes to mind first is that the example is much smaller, it is more
compact. In short, RESTdesc[54, 55] is a combination of the RDF superset
N3[7] and a vocabulary for expressing HTTP requests[28]. The way we can
read the example in listing 5.3 is like this:

• if we have an ID to a concert.

• then we can do a GET request to the specified URI, were we will get
a response with a representation of the concert.

Together with the two APIs that were handed out, we wanted to find
out how well the participants could read the APIs and a set of tasks were
created before the workshop took place.

For the Hydra API, we defined these tasks as for a starter2:

• Retrieve entrypoint — mark where the operation is described.

• Book an appointment — mark where the operation is described, and
since it is a POST request, we wanted the participants to find out what
elements are needed in such a request.

2More throughly tasks and descriptions of the participants thoughts was brought up
during the discussion.

56

• Register a medical condition — mark where the operation is
described and understand what is needed in such a request.

• Retrieve physicians mark were the operation is described.

While for the RESTdesc descriptions we defined these ones:

• Retrieve concerts — mark were the operation is described.

• Retrieve a concert — mark were the operation is described.

• Buy a ticket — mark were the operation is described and what is
needed for a valid request.

These tasks were either given so that they could solve them on their
own, and then tell the other participants afterwards, or the task was given
after the individual part so it was part of the discussion.

5.4 The workshop and methodology

A group workshop with five participants and two single workshops were
carried out, including the pilot workshop.

One of the positives with doing it in this way was to see if the results
were the same, if the group were pointing at the same things as the ones
that completed the workshop alone.

The workshop had six stages, four of them were with the participants
being active. To keep the workshop semi-structured, we established a
workshop guide that was tested in the pilot workshop. Why we call it
semi-structured is because based on the feedback from the participants
during the four steps they were active, we wanted to keep an open mind in
case they had any point of views or interesting feedback that were worth
following. In the end, the workshop guide looked like this:

1. Introduction: The workshop started out with an introduction of the
topic, what the author’s study is all about and why the participants
were involved.

2. Explanation: After having the pilot workshop, there came to light that
a small explanation was appropriate. Not everyone are familiar with
the RESTdesc syntax, and neither working with contexts in JSON.

3. Reviewing the APIs: Then the two APIs was handed out to the
participants for them to review and get a feeling of what it describes.

4. Tasks: After some minutes of reviewing the APIs, there were given
tasks to solve. Either individually or as a duo. The tasks differed
from each workshop. All of the tasks had something to do with how
to handle an operation, or what a operation did.

57

5. Questions: The questions depended on how the tasks were solved.
There were always a question where the participants were to solve a
task together.

6. Discussion: In the end there were time to discussion and reflections
for the participants, giving the author valuable data on the readability
of the to different ways of describing an API.

Since the workshop was held in two different ways; two single
workshops and one group workshop, did the completion of the session
have minor variations.

5.4.1 Individual workshop

When holding the workshop with one person we encourage the person
to “think loud”, according to the think-aloud protocol[26]. This was
especially important when the participant were reviewing the APIs and
solving tasks. The think-aloud protocol involves the process of letting the
participants state their thoughts out loud. By doing this the participant
explicitly states whatever that comes into their mind.

The feedback from the think-aloud process is valuable in the sense of
that we get an understanding of how users read an API, what were difficult
to understand and what were easy.

Another aspect of the one-person-workshop was that the discussion
part was more like a semi-structured interview. The questions and the
tasks that were to be carried out were the same, but as in the nature of a
semi-structured interview, the interviewer follows interesting thoughts of
the participant[42, p. 299].

A positive side of having an interview with one person is that it allows
us to go deeper. With one person present, you can really allow that person
to give detailed thoughts and feedback about their experience with the
APIs.

5.4.2 Group workshop

In the group workshop, one or two persons reviewed the APIs, together or
alone, taking notes on what they were thinking about the readability, how
easy it was to understand and how it was to see the whole picture.

When the participants got the tasks to solve, once again they worked
either individually or in par of two, discussing and taking notes.

The question part and the discussion part of the workshop, had a blurry
line and melted into each other and we can draw a lot of similarities to
focus groups as described by Lazar, Feng and Hochheiser[36]. A focus
group is basically an interview with more people present where it is room
for discussion. This method for gathering data is good because you can
gather more data in one session than with an interview. By more data,
other than that there are more people present, we mean that the discussion
often highlights a broader range of viewpoints. A reason for that is when

58

two persons have different points of view, it is easier to make them explain
why they have that point of view and then compare the two statements.

5.5 Results

The main aim of this workshop were to explore the readability of two
different ways of describing APIs. Therefor, at first, we thought of giving
no information prior the hand outs, other than the introduction to the two
first steps in the workshop guide. The reason for this was that we wanted to
see how easily developers could understand and make use of an unknown
API, maybe also on an unfamiliar format.

During the pilot workshop we understood that some information was
needed. For example, the triple pattern does not make very much sense
for developers that have had nothing to do with it before, hence RESTdec.
Another remark, now for Hydra, was that JSON users are not familiar with
the @context-key.

As for the matter of the workshop and the results, we understood that
it would be realistic to let the participants first review the APIs without any
information about the format and syntax, and see what the feedback was.
If no one were to understand anything, we would give a brief introduction
to the formats and syntax.

Such an approach would give us valuable data on how easy it is to
understand these new ways of describing APIs.

5.5.1 Individual workshop

As for a starter, we look into what feedback got out from the individual
workshops other that the above descriptions. This were where we
encouraged the participants to carry out their thoughts verbally according
to the think-aloud protocol. One of the individual workshop participants
did see the RESTdesc API first, while the other one started with the Hydra
API.

RESTdesc

The RESTdesc API the participants understood fast that it had something
to do with concerts.

One of the participants that took part of the individual workshop was
not familiar with triple patterns from before, therefor he stated that it was
difficult for him to understand anything else than that it had something to
with concerts. The other one had minor knowledge about triple patterns
and understood quite fast what the descriptions stated. He said: “This is
not very different from how you make calls in JavaScript.”

For the other participant, after a small introduction to triple patterns
and the N3 format, he understood the descriptions. But for him, it was
not intuitive, and as for the self-descriptiveness we are looking for, and
readability of the descriptions, he thought it was not well documented.

59

Another aspect for him that he remarked, when you are not familiar
with the different HTTP methods either, it is difficult to understand what
actually happens when e.g. following a link. If he was to use RESTdesc,
further documentation was needed.

Hydra

What we fast understood was that the participants thought the Hydra API
was big, a bit overwhelming at a first glance. It contained several pages
with JSON-LD. Almost the whole first page contained the context, which
the participants used notable time to explore, before they started look at
the rest of the API. The fact was that they did not understand what is was
for.

When looking at the actual descriptions of what the API contains, they
did not understand what the @id-key was for or were they could find the
URLs to follow.

One of the participants had a hard time understanding anything at all
before the brief introduction. After that he realized that the API contained
descriptions of all actions and properties. When he realized that, he could
solve all the task that were given. A for reason for his incapabilities of
reading the API, he stated explicitly that it was overwhelming getting a
specification on seven pages.

For the other participant, he discovered the descriptions straight away.
He was one of the programming students with background that had given
him experience with JSON, and he summed up his experience with Hydra
in this manner:

The hydra:description is very good. If developers of these
APIs use that property for what it is worth, it is just to read the
value of that property and you understand what it is doing. [...]
I think it is really nice that everything is self-documented.

As we recall, this looks like what the aim of Hydra is, to be self-
descriptive.

5.5.2 Group workshop

In the group workshop, five participants were present. This were where we
got our main feedback through the method that resembles a focus group
with a discussion. One noticeable aspect to have in mind is that none of the
participants had any knowledge about triple formats and two had none or
minor knowledge about JSON.

RESTdesc

Once again, the participants could understand that it had something to do
with concerts. One of the participants that were familiar with JavaScript
programming said:

60

This looks like something I could have coded. I mean, the
structure of it; you have something, following a path and based
on the method you’ll get something back. [...] I guess it depends
what you are used to work with.

Since he was familiar working with JavaScript and JSON, the above
enthusiasm were maybe guessed to be pointed at Hydra since that is
JSON based. Another thing he marked as good was how the semantics
were specified with prefixes in the top of the document. This could have
something to do with that the document were fairly small.

The two that had minor JSON knowledge did not enjoy reading the
RESTdesc documentation at all; they meant it was to little information.
This statement might have been biased by that they looked at the Hydra
API first. Anyway, it gives an understanding of that at a first glance you
must be familiar with this kind of syntax to interpret it well.

Even after a brief introduction to the triple format, three of the
participant were not comfortable with the API. One participant stated that
it was a difficult syntax to read, “it misses the readability for humans.” He
admitted that it had something to do with the triples, which he were not
comfortable working with. The two others, read it well.

Hydra

When it comes to the Hydra API, we once again must admit that the
participants got a bit overwhelmed at first, but after some time looking at it,
two of the participants quite easily understood where to find the operation
for register a medical condition and what a request for an appointment
needed.

The characteristics that were mentioned for this way of describing an
API was that it was a big plus with the hydra:description, one said
that it was “like reading source code” meant in a positive way. Other
characteristics were that it was not intuitive and once again the question
about where the request URL were came up.

5.5.3 Final remarks

Out of the seven that took part of the workshop, five had a strong opinion
that they preferred to have the API described with Hydra, while the last
two did not have a clear meaning. They found the readability of the
RESTdesc descriptions better, but had to admit that one of the reasons for
that might have been the size of the documents.

Else, it seems like the characteristics of the two APIs were quite divided
in the sense that both had negative and positive sides. If we would dare to
conclude, it must be that the efforts of Hydra to become a vocabulary that
helps describing Hypermedia APIs in a accessible and readable way have
succeeded to some extent.

Based on the quote from the participant in the individual workshop
we see that he is pinpointing the core of what Hydra is trying to achieve.

61

A link for a computer is only something it can dereference. With some
machine-readable documentation, it can know more about what will be
retrieved if following that link. As well, a human user also need readable
documentation within a document to be able to know how to interact with
the code, or how to create a valid request following a link. We see that
Hydra enables self-descriptiveness in messages both for humans and for
computers.

5.6 Possible drawbacks with the study

When holding the workshop, some aspects came to light when it comes to
how the participants chose to answer.

Size

First of all, there is a considerable size difference of the to different
descriptions of the APIs. While the provided description of the concert
API in RESTdesc is only on 49 lines of code, the Hydra API is over eight
times bigger with 397 lines. This made it noticeably easier to get an overall
understanding of the smaller API.

The size differences were also a matter of the nature of the two
different specifications. Hydra is a much richer language when it comes
to hypermedia affordance than RESTdesc.

Another aspect that is worth mentioning is that the Hydra API
described the more complex physician scenario. This means that the API
necessarily will be bigger, because it needs to cover more information.

Hand outs

The participants got one copy each of the two APIs on paper. The RESTdesc
API covered only one A4 page, while the Hydra API covered almost seven
full A4 pages. What the participants noticed here as a setback was that the
print was on both sides of the pages. This made it even more difficult to
get the whole picture of the Hydra API. Once again, as we see, was this the
considerable difference in size a factor.

The prototype

If the prototype had been in a better shape when the workshop was
conducted, it would have been really interesting to see the participants
actually work with the different APIs and actually write some code to
interact with it.

In such a case we could really have seen the view source capabilities,
because when looking up the documentation on a computer, working with
the code would been more authentic to an actual developing situation.

Unfortunately, such a workshop was not possible to conduct at that
time.

62

The number of participants

Lazar et al.[36] discusses what is an appropriate amount of participants in
a study. This discussion comes up under the topic of user-based testing,
which might not be too far from what we did in the testing. They state
that user-based testing is “a group of representative users attempting a
set of representative tasks.”[36, p. 260] We will argue that this is what we
do in the workshop. The representative users are the participants, which
one day might work with different APIs. The representative tasks are then
understanding the API and finding information in it in various ways.

The point is that there are no definite number of participants in a study
that is ideal. One might say that seven participants are too few, while some
might think it is an okay amount.

As a concluding remark, we will state that the more participants, the
more data you got, and again that means that you have a broader specter
to make an evaluation of.

Reflections

These drawbacks might have been corrected if there were held a deeper
pilot study in front of the workshop. If the workshop were to be more
structured, also when holding the pilot study, corrections would most
probably have been easier to make. This is of course because you are
stricter to stick to the workshop guide.

Corrections that could have been made here was that we could have
provided the participants with the same APIs, only with opposite way
of describing them. By that we mean that the larger API, the physician
domain, could have been described with RESTdesc, to eliminate some
hypermedia affordance, and to have the concert domain described with
Hydra.

That said, having a too structured workshop makes it more difficult to
following interesting patterns and topics the participants takes.

Summary

We have in this chapter gone through the process of a minor study
were we wanted to explore the view source capabilities of Hydra and
RESTdesc. Both are technologies for describing APIs. The study were
carried out through a workshop gathering data based on feedback from
the participants. The participants had to read through two different APIs,
solve some tasks and answer some questions which took more form as a
discussion.

63

64

Chapter 6

Results

The results of the prototype is not easy to define, after all we are evaluating
some qualitative measures like the client could too some extent operate
autonomously. We are anyway going to try to put some words on how the
client manage, but before that are we going to look into what hypermedia
factors we were able to express in our application. Secondly, we are
going to use Richardson Maturity Model too see if the application is truly
RESTful. The results will make up the foundation together with the
research question in the discussion.

6.1 What hypermedia controls are present in the Hy-
dra API?

When extending the capabilities of JSON with JSON-LD and Hydra we
have gone from using a format that does not have any native hypermedia
controls to use a hypermedia rich format. What of the hypermedia factors
that Amundsen[1] defined are presented to the client when it receives a
response?

Mark that all of the hypermedia link factors can be present in a Hydra
API, but we have limited the scope to provide the client with minimal, but
sufficient with information. When it comes to the control factors, not all of
them can be represented in a Hydra API.

6.1.1 Link Factors

The Link Factors is the links that enables the client to change the state of
the application.

Embedded Links

The LE affordance is not present. This factor indicates for the client that the
URI can be dereferenced by using the applications read operation. In this
case it is the HTTP GET method. The reason why this is not present in this
API is that the EL factor is transclusional and that means that the resource
“on the other side of the link” is embedded in the source resource.

65

Outbound Links

On the other hand is LO supported. The LO factor represents navigational
links and that is basically what the whole Hydra API is built upon. It
indicates to the client that it can dereference the URI by using the HTTP
GET method and the response replaces the source resource in the browser.

Templated Links

LT factors are not present in the application. This factor is also a read-only
operation provided with HTTP GET, but in this case the client provides
the request with a body. Read operations with a message body is not
supported. It can be used when wanting to retrieve limited information
like in a search, but in this application it is not needed.

Idempotent Links

Idempotent Links, or the LI factor is supported. It is a way to define
support for HTTP PUT and HTTP DELETE operations. The concert server
supports the PUT operation. It is used when booking a ticket because the
resource is updated; the counter for how many tickets that are left. In the
physician server there are possibilities to DELETE a registration and an
appointment.

Non-Idempotent Links

The LN factor is supported in the physician server because it provides
the possibilities to perform a HTTP POST method. The POST method is
non-idempotent because doing the same operation several times will not
give the same result within the application. Doing several POST request
will most probably end up creating several similar resources with different
identifiers.

6.1.2 Control Factors

The control factors are used to apply more metadata to the link operations
we have been looking at. They can vary from protocol to protocol, but we
are sticking to the use of HTTP.

Read Controls

If the CR factor is supported in the media-type it can help control the data in
read operations. This is done by manipulating the HTTP Header. JSON-LD
and Hydra does not have any support for this, so this is static through the
application flow. In the header one can define that it only accepts requests
on a particular format.

66

Figure 6.1: Richardson Maturity Model; the steps toward true REST.

Update Controls

The CU factor is not supported by Hydra or JSON-LD either. This control
can set the content type of the message in the header. In the application this
is done on the server side for each request.

Method Controls

On the other hand, method control is supported. For some of the links are
there several methods, or operations, that can be performed, and Hydra
helps us present this to the client. This can be controlled by the media-type
and therefor is it supported in the application.

Link Annotation Controls

In the end we have the CL factor. This is a way of defining metadata
about the links itself. We must say that this hypermedia factor definitely
is present. By providing the Hydra API, we are describing the links so that
the client can understand them and make use of them.

6.2 Is the prototype truly RESTful?

We have now confirmed that the application delivered a hypermedia API to
the client. To truly validate the RESTfulness of the prototype we developed,
we will now match the affordance provided through the hypermedia
messages with the REST maturity model.

Richardson Maturity Model[23] in figure 6.1. shows us four levels that
needs to be present in an application to claim the title as RESTful.

67

Level 0: The Swamp of POX

The title here is just a euphemism to state that HTTP is used as tunnel for
the communication between server and client. This level can be seen as
a prerequisite that needs to be established before moving on to the other
levels. And for our application, we have only used HTTP as the transfer
protocol so we can move on to level 1.

Level 1: Resources

Instead of having the client only interact with one main entry point,
only retrieving data from that spot, it interacts with several entry points.
Let’s say the client would only retrieve data from http://localhost:3000/
rockefeller, that would not be RESTful. In such an architecture, the server
would most probably have done the main job, finding what data that to
respond with. This would make the server scale badly, which breaks one
of the design goals of REST.

In REST, and in our application, the client interacts with several
resources, each with its unique identifier.

Level 2: HTTP Verbs

This level encourages usage of the different HTTP Verbs. In our application
we have seen the use of GET, POST and PUT, while DELETE also is
a possibility in the prototype. The reason why it is encouraged to use
different verbs, or methods, is that it removes unnecessary variations in
the usage when handling similar situations in the same way.

Another aspect is the terms that we saw in the chapter Hypermedia;
the safe and unsafe operations. E.g. GET is a safe, operation that does not
affect any other parts other than possibly itself; any other resource will not
be affected by the retrieval of another.

If using an unsafe operation like PUT, it might affect other resources.
When updating one resource, if it in one way is connected to another, but
this link breaks after the request, it has done some harm. This is why
different HTTP Verbs should be used in different situations so that the
client and developers can be aware of unsafe operations.

Level 3: Hypermedia Controls

The last level to achieve the RESTful status is to have hypermedia controls
present. Without further ado, we can state that the application is RESTful
since we have already gone through the hypermedia controls present
in the application. The presence of the hypermedia controls enables
discoverability and makes the application more self-descriptive.

68

http://localhost:3000/rockefeller
http://localhost:3000/rockefeller

6.3 Can the client work with the affordance?

To validate if the client can understand its environment based on the self-
descriptive messages, did a minor set of test on the two servers. The tests
were carried out using the same client to validate the genericity.

6.3.1 Concert server

Test 1

On the concert server, there were run a test where the clients goal were
reachable. By reachable we mean that there existed a concert that had the
same genre, the price were right and it was tickets left. In the scenario, it
was only three concerts available for the client, still, it needed 15 requests
to obtain the final goal. This is the worst case scenario, were the last concert
the client checks is the fitting one.

We have to admit that this could have been further optimized because
now it loops through the document in the search for the number of tickets
wanted, while this is data the client already possesses. Still, the client needs
to check the context for each resource, which means that for each request,
there is one additional one.

This test were mainly run to see if it could obtain a ticket, and it was
able to do that.

Test 2

When the client were given input that did not match any of the concerts,
it was unable to find a matching concert. Still, since it uses the follow you
nose principle, it needed to check each of the concerts, since it found that
the API contained a matching type of what it wanted.

The main reason for this test were to see if the client were able to
understand that the goal was unreachable, and it passed.

Test 3

This test were to see if it could abort the execution if the wanted type of the
goal were not present, and it did pass the test.

6.3.2 Physician server

To be short, the same tests were run on the physician server, and we got
the same results. This means that we have proven the client can be both
generic and autonomous.

Summary

In this chapter we have looked at the results from the development of the
prototype:

69

1. The prototype contains several hypermedia factors that is provided
to the client which enables the messages sent to be self-descriptive.

2. Based on the hypermedia factors, and the rest of the architecture of
the prototype we can state that it is a truly RESTful application.

3. We can state that due to the given hypermedia controls, the client can
be both generic and autonomous.

70

Chapter 7

Discussion

We will in this chapter discuss the results from the workshop and the
previous chapter. These results will be viewed in the light of the research
questions so that we can get a broader insight on how truly RESTful APIs
enables clients to be generic and autonomous, and how well humans can
interact with it as well. This discussion will also work as a review of the
research questions to see if we at all were able to answer them.

7.1 Autonomous consumption of APIs

Throughout this thesis we have mentioned the autonomous client several
times. After all, it is Berners-Lee’s[9] ultimate vision for the Semantic Web.
For a machine to work autonomously it needs something to interact with,
an interface, and this leads us to the first research question that is reviewed:

To what extent can a client be autonomous and consume an API it has
never seen before?

One approach to this question was to develop a client that would connect
to a server and retrieve the API. We also wanted to see if we, based on the
technologies, could make the client consume several APIs to prove that it
could be generic as well, and therefor encourage reuse of code. If we were
capable of making a generic client then we are one step closer to making
clients that can be used in several use cases, instead of making many clients
that only can be used in limited use cases.

The API were provided to the client at runtime, and was found in the
HTTP Link Header. Our client needs the API to be discovered there, or else
it will fail with the consumption. This is a part of the consumption of the
API — how to discover it. As we have already mentioned, the discovering
of the API happens at runtime when the client connects to a server. With the
first response, it looks in the link header to see if there is a link relation to
the http://www.w3.org/ns/hydra/core#apiDocumentation which defines that
by following the related link, we have obtained the API for the application.

The result of this were that we found out that we were able to develop a
client that were both generic and that could discover and consume at least

71

http://www.w3.org/ns/hydra/core#apiDocumentation

two different APIs. In one way we could say that the first step for a client
to actually be a functioning, autonomous part of the Web, it must be able
to consume an API. If it can not consume it, it does not have anything to
interact with.

The positives are that we now have successfully proved that the first
step for the client to take part of the Semantic Web is achievable. This as
long as the server provides the API in the desired way that the client want
it to.

7.2 Relation to its own goal

The second step for an autonomous client, after consuming an API, is to
start interacting with it. To prove that it can be generic as well, we need it
to interact with two different APIs. A client with no artificial intelligence,
must have gotten some kind of goal or task from a user to perform. How it
is possible for it to carry out that task, leads us to the next research question:

Can the client reason about the consequences of actions, will it be able
to relate it to its own goals?

If a client can relate its goal to an API, it needs to know some terms. The
generic client that were developed knows its goal which in this scenario is
stated as a JSON object where the @type entity is essential. In the provided
goal, which a user most probably would have given the client, the @type is
a URI. If this URI can not be found in the shared knowledge base, the API,
the client will not execute any operations on that given API.

On the other hand, if it finds the particular type matching its own goal,
it figures out how it can obtain its goal, usually by creating a valid HTTP
request, and performs the operation on the server.

The reasoning, when it comes to implementing inference rules, is
excluded from the prototype. Ideally, each term in the API could have had a
rule set expressed in e.g. N3 so that a reasoner could have used the triples to
give the client valuable instructions on how to obtain a particular resource
or to express domain-specific knowledge. Instead we have implemented
the server such that it provides the client with domain-specific modules.
This is not reasoning by any means, but we have in a way simulated the
reasoning part; for each URI that is dereferenceable, the client can check
what it can expect as response. This means that by the help of explicitly
stated triples, the client can make a choice, based on its goal, if it needs to
follow the URI or not.

If a rule set were to be used instead, the client would need to be
provided a reasoner from the server as well. The reasoner, e.g. EYE, could
have given the client inferred statements, or even maybe instructions on
how to solve its goal. This could mean that the client can be even more
generic, but have not been explored in this thesis. In our prototype we end
up with a similar result by providing the domain-specific code where the

72

client checks each resource it receives from the server to use the domain-
specific knowledge.

Still, without pure Semantic Web reasoning, we are using the principles
of Web APIs that makes us create generic clients. Thanks to Hydra and
JSON-LD we can share machine-processable documentation between the
client and the server at runtime[29] which makes it possible for both to
evolve independently and the client does not need any prior knowledge
about the server and the API.

7.3 The role of hypermedia and RDF

Now that we know that a client can be both generic and autonomous. How
was this achieved? The last research question leads us to the fundamentals
of how it is possible, what kind of technologies that were used:

What role do hypermedia and RDF play therein?

Through the chapters in this thesis we have dived into the world of
hypermedia and how to express affordance with JSON-LD and Hydra. The
result chapter showed us that the H-Factors OL, LI, LN, CM and CL were
present in the application through the use of Hydra, while CU and CR were
supported through the servers implementation.

The H-Factors is the essential part of enabling a client to be autonom-
ous. When a message sent from the server affords a menu of link choices to
the client, it enables the client to understand the environment and explore
the content in a more sophisticated way than just following every link just
to reveal what lays on the other side.

When hypermedia is present in an application, we finally starting to
understand what REST truly is about. The server should only care about
storing the resource state, e.g. that there is only 16 tickets left for the concert
with the @id rockefeller/concerts/3. If someone wants to obtain a ticket, and
let the client do it for them, the client will then have to make use of the
hypermedia controls to understand what links brings the application to
the concert resource, e.g. by GETing resources and thereby changing the
application state, and in the end PUTing a request changing the resource
state. This automation of a task was enabled by hypermedia and we
understand that it has a rather important role, but what about RDF?

JSON-LD is a serialization of RDF. There exist other formats that have
hypermedia features such as Siren[51], HAL[27] and Collection+JSON[2],
but that does not contain the semantic bit, the integration with Linked Data.
These three formats, as well as JSON-LD extends the capabilities of JSON
to let it express hypermedia controls. But why do we think that JSON-LD
is superior the other formats?

By using the RDF serialization, JSON-LD, we enables a higher
autonomy of the clients, according to Verborgh[53]. This is because we
are here using a semantic media type where the content can easily be un-
derstood by the client if the LD principles are applied. We are here at a

73

rockefeller/concerts/3

point where we can use the term semantic hypermedia. The reasons why we
achieve a higher autonomy is the following:

1. First of all can the client now ignore irrelevant information. Since
everything is identified by dereferenecable URIs, the client can follow
information that it want.

2. Secondly, if applied, the server can afford vocabularies with inference
rules.

3. Lastly, as we have discussed already, will the client be able to perform
tasks that needs domain-specific knowledge because this if provided
by the server, either as rule sets or executable modules.

Further, semantic hypermedia enables the client to be more generic as
well, since the client is less and less tied to the server implementation. In
the end it performs operations based on triples which is what the Semantic
Web consists of.

7.4 Readability and prior knowledge

When working with Hydra we understood that one feature about it were
that it enables us to write documentation that is both readable for humans
and processable for machines. In the chapter about exploring view source
capabilities we tried to validate its effort by holding a workshop.

In the workshop where we compared it to RESTdesc, which also is
an effort to describe APIs and is a quite new technology, we first let
the participants review the two APIs to try to understand them. By
understand them we meant that they could tell us what a developer needed
to do to obtain a specific entity, e.g. a concert or a registration for an
appointment. These tasks and questions developed into a discussion of
what the participants found as good features about the APIs and what they
did find as less intuitive.

When talking about self-descriptive messages, and documentation that
is both human readable and machine-processable the way the information
is expressed must be balanced. For the ones that did not have much prior
knowledge about JSON they found the hydra:description really helpful,
as well as the more experienced ones. Looking into an API you have never
seen before can be challenging, especially if you do not have a computer
to try out different operations. What we found were that Hydra indeed
are both machine-processable, hence the prototype, and human readable,
hence that the participants understood it.

One of the participants gave us the impression that knowing what the
different HTTP methods did, were hard in RESTdesc, while it in Hydra
could easily be understood, again with the hydra:description property.
Of course, developing application needs prior knowledge about many
technologies, but what Hydra and JSON-LD have achieved is maybe to
have lowered the bar for making use of semantic technologies. Lanthaler

74

and Gütl[32] talks about semaphobia as the fear of average Web developers
to make use of these technologies. All developers have a different kind
of skill set. Someone knows PHP, some JavaScript while others uses only
Phyton. Unfortunately we did not get the time to see if the participants in
the workshop were actually able to do some coding and interaction with
the API, but we showed that it is possible for them to understand Hydra.
Understanding the documentation is a major step to make use of it.

7.5 Existence of the client

A question that came up during the workshop were: “in what space is
this client supposed to live?” and the participant followed up with that
he did not understand what the use of a autonomous, generic client were.
This grasps around the existence of of this research and takes us back to
Berners-Lee visions:

A client of this nature will easily be able to crawl the Web, first to
discover Hydra powered APIs, then browse the API. By crawling the Web
in such a manner enables us to use data from several different sources
within one application. When using a client that consumes Hydra API, the
client further can convert the data in any wanted RDF serialization. This
brings us to one point that needs further research; develop an application
of the nature that we have in this thesis, only with rule sets that enable the
application to discover and create new knowledge through reasoning. If
we let the client do the browsing for us, solving tasks on the Web for us, we
lower the entry barrier[17] even more.

For our client, we can say that it justifies its existence since it is generic.
The public/javascripts/generic-client.js can be implemented in
other projects to explore Hydra APIs autonomous, if it is given domain-
specific knowledge through modules provided by the server, according to
the REST principles.

To further justify the existence of such a client and application,
Lanthaler and Gütl[35] points out some of the benefits of a REST
application based on JSON-LD such as ours:

Loose coupling

Because of the hypermedia controls in the resource representation, the
client of the application do not need any prior knowledge about the
domain. If the client were more domain-specific, changes on the server
would break the client, thus domain-specific implementations are tight
coupled.

Evolvability

Because of the loose coupling, we then enable the evolvability of each
component individually. Without changing the server of our application,
we could go on and make the client more robust without breaking
application as a whole. Another aspect is that we could let the resources

75

evolve as well. This is common in applications, either by that clients change
the resource state, or that publishers changes the content. Still, if this
happens, the client will know, based on the hypermedia controls where
to obtain the resources.

Scalability

Since our client is the smart part of the application, we have enabled
the server to scale good because it is there just to respond to requests,
and provide the client with choices, the hypermedia controls. This is
an essential design goal of REST[17] because we are here talking about
something that is going to exist in a distributed network and the server
should be able to handle many requests.

Self-descriptiveness

We have already touched upon this benefit in chapter 5 and discussed its
positive sides in section 7.4.

Maintainability

The maintainability of the different components of application is heavily
strengthened because of the loose coupling. Now, maintaining one part
of the application does not mean that other parts necessarily also must be
looked at. For instance, if the server breaks, we only need to maintain that
component, not look at all of the parts of the application.

7.6 Constraints and limitations

So far we have seen all the good parts of REST and hypermedia. But
what are the limitations and constraints in such an application, i.e. our
prototype?

Complexity

First of all, the JSON-LD can get quite complex as we did see in the chapter
5. When the JSON becomes complex, and the semantics in the @context
becomes various, there is needed processing of the data for the client to
interpret the properties in the right way.

Latency and efficiency

This brings us to another downside, that is efficiency and latency of an
application. If an application is mission critical, hence a pacemaker that
need to process data fast to make the right decisions, our prototype of
REST is not to be considered of course. This is because, the processing
of the properties, e.g. JSON-LD expansion[37] takes time. Worse efficiency

76

is followed by increased latency which is not acceptable in mission critical
services.

Processing

The need for possible extensible processing of the data retrieved from the
server also makes this type of architecture possibly not suitable for devices
with poor specifications, i.e. minimal of RAM. In a world where Internet of
things will emerge, REST might be asking to much of the clients. This might
perhaps call for another architecture. Let us say that you want to control
different things in the environment at home, e.g. temperature, humidity
and the amount of day light. This data is gathered from small sensors
that sends this to a micro-controller. This micro-controller might not have
sufficient with processing power to know what to do with the data, then it
needs to send it to a central server that processes it. One can argue that this
example is not part of a large distributed network, but at least it shows us
that REST is not suitable in all use cases.

To take the above thoughts further: one of the architectural properties
of REST that have been mentioned throughout this thesis is scalability.
When developing the prototype, a question often came in mind: Can not
the server take responsibility of solving this? By this the author meant
operations that needed domain-specific knowledge. Let us look at an
example:

If the physician server were to be implemented with more server
intelligence, the work flow could have looked something like the following.
The client will still book an appointment with a physician and still have
some predefined user input. In this case the client would have posted its
user input for the registration of the medical condition and the preferred
date. With a smart server, the server would then do the remaining steps we
remember from the chapter about the prototype. The server would then
look up all the physicians and found a fitting one.

In this scenario, we would still be needing hypermedia, because the
client needs to know where it should POST the registration. This sounds
like REST, since the HATEOAS constraint is present. Where the REST is
breaking, is when the server is starting to look up different resources, i.e.
changing the state of the application. Such an approach does not scale
well since the server needs to the the work and is not appropriate in a
distributed information network such as the Web.

At this stage we have an understanding of that REST works in Web
applications while there might be use cases it does not fit that well to.

Bandwidth

Lastly, with the possibly complex JSON-LD, much metadata in the HTTP
Header and extra HTTP requests for each resource retrieved to understand
the semantics in the @context, the application will use extensible more
bandwidth.

77

7.7 Future research

As our research was focused on the proof of the concept of the client we
have developed, there are obvious limitations in the research that we were
unable to test. These parts are we encouraging others to research further.
The parts are also closely related to the limitations with such an approach
to develop an application.

For example, in what situations are REST not a good fit. In this research
we have only reveled that a generic client code can be reused. Further
research could have tested the implementation on a device with poor
specification. Will it be able to process the data? In situations were a lot
of data must be processed, will it be able to do that or does it need help
from other devices to do some of the processing? All of these questions are
related to the Internet-scale property of the Web were we want the server
to do as little as possible.

Another part of future research could be to look at how the hypermedia
extensions in the response will affect the network. If the hypermedia
controls are present in the representation of the resource, will it affect the
size of the message sent; will this ever be a problem that the message is
too large? One more aspect related to this issue is when the hypermedia
controls are present in a separate document, were the client for each
resource must do at least one more HTTP request to obtain the hypermedia
controls. To test if this will cause any troubles for either the server or
the network, large messages must be transmitted by many requests from
different clients.

A part that could have been done, were to see the differences in the
client using rule set to explore domain-specific knowledge and what we
did, let the server provide the client with modules. Will the rule sets, using
more Semantic Web technologies, enable even more generic clients?

As a last point, what needs to be done, not necessarily as research,
is to realize the opportunities that lies within true REST; there must be
consensus on standards and practices that enhances all aspects of REST,
even the bit about hypermedia. At the moment it is too much confusion
on what REST actually is, and hopefully have this thesis helped getting a
better understanding of it.

Summary

In this chapter we have reviewed and discussed the research question for
this thesis. Through the discussion we highlighted the strengths of this
research and how we were able to answer the questions. The arguments
that were given were mainly based on the prototype that were developed
throughout the process, and showed us that a client can consume two
different APIs, relate to its own goals and perform actions on it. This were
achieved by the use of semantic hypermedia, a format with hypermedia
controls that applies Linked Data principles, i.e. JSON-LD and Hydra. As
such were RDF a part of the creation and enabling of the prototype to be

78

generic and autonomous. We then discussed the readability and what prior
knowledge developers need when using Hydra, and we looked at where
such a client has its space, before looking at limitations and what can be
done in future research.

79

80

Chapter 8

Conclusion

With the demand of better application and services, data must be created,
found and used. The Web today is a tremendous web of data where you can
find whatever you are looking for. Some information is easy to find while
other calls for more processing. With the Web, and its low-entry barrier and
easy access the possibilities with it is endless. Research on these capabilities
are continuous and have brought us to the creation of Semantic Web and
further how machines can be part of this Web, being autonomous, creating
its own data and make it accessible for others.

In this thesis we have investigated the possibilities of enabling Berners-
Lee’s visions for the future Web with computers working autonomously on
several APIs based on hypermedia messages provided by the server to the
client. As a product of the nature of hypermedia, we also investigated the
readability of a particular format, to get a better understanding of what do
developers need of prior knowledge when working with such a REST API.

In order to achieve this, we developed a client that consumes two
different APIs, and based on its goal tries to reach it solely through the
interaction with the server’s hypermedia messages. Since there have not
been developed such a client before, we see this as a proof of concept. Thus
can the development of the prototype and exploring possibilities be seen as
our research, were the execution of it being the tests. Another aspect is that
since REST is misunderstood, we have checked if our prototype is a truly
RESTful application based on the hypermedia.

Our results tells us that it indeed is possible to let a client be both
generic and autonomous. This means that in the future, such a software
can be implemented in other applications. It can then be used to crawl the
Semantic Web for wanted data based on the goal that the user provides it
with. If the client has some knowledge, discovers new one and combines
this, new knowledge can have been created and since it works with
the Linked Data principles, this new knowledge will be accessible for
everyone.

Truly RESTful clients is recommended to use when the scope is an
application that are working on the Web. Since our research is limited, we
do not have any data on the efficiency, but with genericity, more processing
is needed to convert data to the proper format. In smaller scale projects

81

within companies, at home, or in a field where you need high performance,
REST might not be the best fit either because the components actually
should be tight coupled.

Based on our research, we conclude that:

• A client can be autonomous and consume APIs it have never seen
before.

• It can then perform actions, understand what an action does and
relate the action to its goal.

• In this scenario hypermedia were essential to let the client understand
the actions and its consequences. The RDF helped us extend the
application with semantics that were important for the relation to the
goal.

• Semantic hypermedia formats enables us to lower the bar for the
understanding of an API that is discovered through the HTTP
message.

82

Bibliography

[1] Mike Amundsen. Building Hypermedia APIs with HTML5 and Node.
O’Reilly, 2012.

[2] Mike Amundsen. Collection+JSON - Document Format. 2013. URL:
http : / / amundsen . com/media - types / collection / format/ (visited on
01/08/2015).

[3] Mike Amundsen. ‘Hypermedia-Oriented Design’. In: W3C Workshop
on Data and Services Integration. Oct. 2011. URL: http://www.w3.org/
2011/10/integration-workshop/p/hypermedia-oriented-design.pdf.

[4] David Beckett et al. RDF 1.1 Turtle. Terse RDF Triple Language. W3C
Recommendation. 2014. URL: http://www.w3.org/TR/turtle/ (visited
on 03/05/2015).

[5] Thomas Bergwinkl. Hydra Core. URL: https : / / github . com/bergos /
hydra-core (visited on 01/06/2015).

[6] Tim Berners-Lee. Linked Data. 2009. URL: http : / / www . w3 . org /
DesignIssues/LinkedData.html (visited on 07/01/2015).

[7] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF
syntax. W3C Team Submission. 28th Mar. 2011. URL: http://www.w3.
org/TeamSubmission/n3/ (visited on 27/06/2015).

[8] Tim Berners-Lee, Wendy Hall and Nigel Shadbolt. ‘The Semantic
Web Revisited’. In: IEEE Computer Society (2006).

[9] Tim Berners-Lee, James Hendler and Ora Lassila. ‘The Semantic
Web’. In: Scientific American 284 (5 May 2001), pp. 34–43.

[10] Tim Berners-Lee, Larry Masinter and Mark McCahill. Uniform Re-
source Locators (URL). 1994. URL: http://tools . ietf .org/html/rfc1738
(visited on 25/07/2015).

[11] Tim Berners-Lee et al. Architecture of the World Wide Web, Volume One.
W3C Recommendation. 2004. URL: http://www.w3.org/TR/webarch/
(visited on 01/07/2015).

[12] Christian Biezer, Tom Heath and Tim Berners-Lee. ‘Linked Data
– The Story So Far’. In: International Journal on Semantic Web and
Information Systems 3 (5 Mar. 2009), pp. 1–22. URL: http://tomheath.
com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf.

83

http://amundsen.com/media-types/collection/format/
http://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf
http://www.w3.org/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf
http://www.w3.org/TR/turtle/
https://github.com/bergos/hydra-core
https://github.com/bergos/hydra-core
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://tools.ietf.org/html/rfc1738
http://www.w3.org/TR/webarch/
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf

[13] Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C Recommenda-
tion. 2014. URL: http : / /www .w3 . org /TR/ rdf - schema/ (visited on
20/06/2015).

[14] Vannevar Bush. ‘As we may think’. In: The Atlantic Monthly 176 (1
July 1945), pp. 101–108. URL: http://www.theatlantic.com/magazine/
archive/1945/07/as-we-may-think/303881/.

[15] Richard Cyaniak, David Wood and Markus Lanthaler. RDF 1.1
Concepts and Abstract Syntax. W3C Recommendation. 2014. URL: www.
w3 . org / TR / 2014 / REC - rdf11 - concepts - 20140225/ (visited on
20/06/2015).

[16] Eric Elliott. ‘Building RESTful APIs’. In: Programming JavaScript
Applications. O’Reilly, 2014. Chap. 8.

[17] Roy Thomas Fielding. ‘Architectural Styles and Desing of Network-
based Software Architectures’. PhD thesis. University of California,
Irvine, 2000.

[18] Roy Thomas Fielding. REST APIs must be hypertext-driven. Oct. 2008.
URL: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven (visited on 31/02/2015).

[19] Roy Thomas Fielding and Richard N. Taylor. ‘Principled Design of
the Modern Web Architecture’. In: Transactions of Internet Technology
2 (2 May 2002), pp. 115–150. URL: http://www.ics.uci.edu/~fielding/
pubs/webarch_icse2000.pdf.

[20] Roy Thomas Fielding et al. Hypertext Transfer Protocol – HTTP/1.1.
1999. URL: http://tools.ietf.org/html/rfc2616 (visited on 25/07/2015).

[21] The jQuery Foundation. jQUERY. 2015. URL: https : / / jquery. com/
(visited on 04/08/2015).

[22] Node.js Fountdation. Node.js. 2015. URL: https://nodejs.org/ (visited
on 26/07/2015).

[23] Robert Fowler. Richardson Maturity Model. 2010. URL: http : / /
martinfowler . com / articles / richardsonMaturityModel . html (visited on
28/07/2015).

[24] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
Recommendation. 2013. URL: http://www.w3.org/TR/sparql11-query/
(visited on 11/05/2015).

[25] Ivan Herman et al. RDFa 1.1 Primer - Third Edition. Rich Structured
Data Markup for Web Documents. W3C Working Group Note. 2015.
URL: http : / / www . w3 . org / TR / xhtml - rdfa - primer/ (visited on
20/07/2015).

[26] Riitta Jääskeläinen. ‘Think-aloud protocol’. In: Handbook of Translation
Studies. Volume 1. John Benjamins Publishing Company, 2010,
pp. 371–373.

[27] Mike Kelly. HAL — Hypertext Markup Language. 2013. URL: http://
stateless.co/hal_specification.html (visited on 01/08/2015).

84

http://www.w3.org/TR/rdf-schema/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
http://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
http://tools.ietf.org/html/rfc2616
https://jquery.com/
https://nodejs.org/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

[28] Johannes Koch, Carlos A. Velasco and Philip Ackermann. HTTP
Vocabulary in RDF 1.0. W3C Working Draft. 2011. URL: http://www.
w3.org/TR/HTTP-in-RDF10/ (visited on 30/07/2015).

[29] Markus Lanthaler. ‘Creating 3rd Generation Web APIs with Hydra’.
In: Proceedings of the 22nd international conference on World Wide Web
— Companion. May 2013. URL: http : //www.markus - lanthaler . com/
research/creating-3rd-generation-web-apis-with-hydra.pdf.

[30] Markus Lanthaler. Hydra Console. URL: http://www.markus-lanthaler.
com/hydra/console/ (visited on 10/08/2015).

[31] Markus Lanthaler. Hydra Core Vocabulary. A Vocabulary for Hypermedia-
Driven Web APIs. Unofficial Draft. 2015. URL: http://www.hydra-cg.
com/spec/latest/core/ (visited on 09/07/2015).

[32] Markus Lanthaler and Christian Gütl. ‘A semantic description
language for RESTful Data Services to combat Semaphobia’. In:
Proceedings of the 2011 5th IEEE International Conference on Digital
Ecosystems and Technologies Conference (DEST). 2011.

[33] Markus Lanthaler and Christian Gütl. ‘Model Your Application
Domain, Not Your JSON Structures’. In: Proceedings of the 22nd
International World Wide Web Conference — Companion. May 2013.

[34] Markus Lanthaler and Christian Christian Gütl. ‘Hydra: A Vocab-
ulary for Hypermedia-Driven Web APIs’. In: Proceedings of the 6th
Workshop on Linked Data on the Web. May 2013. URL: http : / / ceur -
ws.org/Vol-996/papers/ldow2013-paper-03.pdf.

[35] Markus Lanthaler and Christian Christian Gütl. ‘On Usin JSON-
LD to Crete Evolvable RESTful Services’. In: Proceedings of the Third
International Workshop on RESTful Design. Apr. 2012. URL: http://www.
markus- lanthaler.com/research/on-using- json- ld- to- create- evolvable-
restful-services.pdf.

[36] Jonathan Lazar, Jinjuan Heidi Feng and Harry Hochheiser. Research
Methods. In Human-Computer Interaction. Wiley, 2010.

[37] Dave Longley et al. JSON-LD 1.0 Processing Algorithms and API. W3C
Recommendation. 2014. URL: http://www.w3.org/TR/json- ld- api/
(visited on 08/06/2015).

[38] Deborah L. McGuinness and Frank van Harmelen. OWL Web On-
tology Language. Overview. W3C Recommendation. 2014. URL: http :
//www.w3.org/TR/owl-features/ (visited on 20/06/2015).

[39] Inc. MongoDB. MongoDB. 2015. URL: https : / /www .mongodb . org/
(visited on 26/07/2015).

[40] Ted Nelson. ‘Complex information processing: a file structure for the
complex, the changing and the indeterminate’. In: Proceedings of the
ACM 20th National Conference. 1965, pp. 84–100.

[41] Donald Norman. Design of Everyday Things. Basic Books, 2013.

[42] Jenny Preece, Yvonne Rogers and Helene Sharp. Interaction Design.
beyond human-computer interaction. 2nd. John Wiley & Sons, Ltd, 2007.

85

http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.markus-lanthaler.com/research/creating-3rd-generation-web-apis-with-hydra.pdf
http://www.markus-lanthaler.com/research/creating-3rd-generation-web-apis-with-hydra.pdf
http://www.markus-lanthaler.com/hydra/console/
http://www.markus-lanthaler.com/hydra/console/
http://www.hydra-cg.com/spec/latest/core/
http://www.hydra-cg.com/spec/latest/core/
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf
http://www.markus-lanthaler.com/research/on-using-json-ld-to-create-evolvable-restful-services.pdf
http://www.markus-lanthaler.com/research/on-using-json-ld-to-create-evolvable-restful-services.pdf
http://www.markus-lanthaler.com/research/on-using-json-ld-to-create-evolvable-restful-services.pdf
http://www.w3.org/TR/json-ld-api/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
https://www.mongodb.org/

[43] Leonard Richardson and Mike Amundsen. RESTful Web APIs.
O’Reilly, 2013.

[44] Jos De Roo. Euler Yet another another proof Engine. URL: http : / /
eulersharp.sourceforge.net/ (visited on 23/07/2015).

[45] Michael L. Scott. Programming Language Pragmatics. 3rd ed. Morgan
Kaufmann, 2009.

[46] Michael K. Smith, Chris Welty and Deborah L. McGuinness. OWL
Web Ontology Language. Guide. W3C Recommendation. 2004. URL:
http://www.w3.org/TR/owl-guide/ (visited on 21/06/2015).

[47] Manu Sporny. Google adds JSON-LD support to Search and Google Now.
2013. URL: http://manu.sporny.org/2013/json-ld-google-search/ (visited
on 20/07/2015).

[48] Manu Sporny et al. JSON-LD 1.0. A JSON-based Serialization for Linked
Data. W3C Recommendation. Hydra W3C Community Group, 2014.
URL: http://www.w3.org/TR/json-ld/ (visited on 07/06/2015).

[49] Dobri Stoilov. OWLIM-Lite. 2011. URL: http://owlim.ontotext .com/
display/OWLIMv40/OWLIM-Lite (visited on 23/07/2015).

[50] Inc. StrongLoop. Express.js. 2015. URL: http://expressjs.com/ (visited
on 26/07/2015).

[51] Kevin Swiber. Siren: a hypermedia specification for representing entities.
URL: https://github.com/kevinswiber/siren (visited on 01/08/2015).

[52] Ruben Verborgh. Fostering intelligence by enabling it. Intelligent agents
require an environment that allows them to act smart. 2015. URL: http :
/ / ruben . verborgh . org /blog /2015/02/25/ fostering - intelligence - by -
enabling-it/ (visited on 04/08/2015).

[53] Ruben Verborgh. ‘Serendipitous Web Applications through Semantic
Hypermedia’. PhD thesis. Ghent University, Belgium, 2014.

[54] Ruben Verborgh et al. ‘Capturing the functionality of Web services
with functional descriptions’. In: Multimedia Tools and Applications 64
(2 May 2013), pp. 365–387.

[55] Ruben Verborgh et al. ‘Functional Descriptions as the Bridge between
Hypermedia APIs and the Semantic Web’. In: Proceedings of the Third
International Workshop on RESTful Design. Apr. 2012, pp. 33–40.

[56] Ruben Verborgh et al. ‘Querying Datasets on the Web with High
Availability’. In: Proceedings of the 7th Workshop on Linked Data on the
Web. Oct. 2014. URL: http : / / linkeddatafragments . org / publications /
iswc2014.pdf.

[57] W3C. Vocabularies. 2015. URL: http : / / www . w3 . org / standards /
semanticweb/ontology (visited on 20/07/2015).

[58] David Wood, Marsha Zaidman and Luke Ruth. Linked Data. Struc-
tured data on the Web. Manning, 2014.

[59] World Wide Web. URL: http : / / info . cern . ch / hypertext / WWW /
TheProject.html (visited on 11/03/2015).

86

http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.w3.org/TR/owl-guide/
http://manu.sporny.org/2013/json-ld-google-search/
http://www.w3.org/TR/json-ld/
http://owlim.ontotext.com/display/OWLIMv40/OWLIM-Lite
http://owlim.ontotext.com/display/OWLIMv40/OWLIM-Lite
http://expressjs.com/
https://github.com/kevinswiber/siren
http://ruben.verborgh.org/blog/2015/02/25/fostering-intelligence-by-enabling-it/
http://ruben.verborgh.org/blog/2015/02/25/fostering-intelligence-by-enabling-it/
http://ruben.verborgh.org/blog/2015/02/25/fostering-intelligence-by-enabling-it/
http://linkeddatafragments.org/publications/iswc2014.pdf
http://linkeddatafragments.org/publications/iswc2014.pdf
http://www.w3.org/standards/semanticweb/ontology
http://www.w3.org/standards/semanticweb/ontology
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html

Appendices

87

Appendix A

The code base

The code base was too big to display in the thesis, so all the code can be
found in two projects:

• Concert server https://github.com/kurtwood/concert_server

• Physician server https://github.com/kurtwood/master_hydra_example

89

https://github.com/kurtwood/concert_server
https://github.com/kurtwood/master_hydra_example

90

Appendix B

The Hydra API

The Hydra descriptiosn of the physician API the participants of the
workshop were provided with can be viewed at https://github.com/
kurtwood/master_hydra_example/blob/master/data/vocab.json.

91

https://github.com/kurtwood/master_hydra_example/blob/master/data/vocab.json
https://github.com/kurtwood/master_hydra_example/blob/master/data/vocab.json

92

Appendix C

The RESTdesc descriptions

The RESTdesc descriptions of the concert API the participants of the
workshop were provided with can be viewed at https://github.com/
kurtwood/concert_server/blob/master/descriptions/concerts.n3.

93

https://github.com/kurtwood/concert_server/blob/master/descriptions/concerts.n3
https://github.com/kurtwood/concert_server/blob/master/descriptions/concerts.n3

	Introduction
	Research
	Related work
	Chapter overview

	Background
	Semantic Web
	World Wide Web
	Identification
	Interaction
	Data Formats
	General Architectural Principles

	Resource Description Framework
	RDF Schema
	Web Ontology Language and Reasoning
	Linked Data
	Linked Data principles
	Linked Open Data
	The Linked Data Technology Stack

	SPARQL Query Language

	Hypermedia
	Representational State Transfer
	Uniform interface constraints
	The rest of the Web's architectural constraints

	What is hypermedia?
	Affordance
	Hypermedia Factors
	Hypermedia Design Elements
	Base format
	State Transfer
	Defining Domain
	Application Flow

	Prototype
	General overview
	Concert server
	Physician domain
	Intelligence
	Programming language
	Server platform
	Web framework
	Code

	Prerequisites
	Base format
	JSON-LD
	From JSON to JSON-LD
	Hydra

	State transfer
	Domain
	Application Flow
	The autonomous, generic client
	The goal and other predefined input
	The generic code
	The domain-specific code
	Other helping modules

	Issues
	Rapid spec changes
	Where to use domain-specific knowledge
	Asynchronous calls in JavaScript

	Other considerations
	Storage
	RESTdesc

	Exploring view source capabilities
	Preparations
	Participants
	Material
	The workshop and methodology
	Individual workshop
	Group workshop

	Results
	Individual workshop
	Group workshop
	Final remarks

	Possible drawbacks with the study

	Results
	What hypermedia controls are present in the Hydra API?
	Link Factors
	Control Factors

	Is the prototype truly RESTful?
	Can the client work with the affordance?
	Concert server
	Physician server

	Discussion
	Autonomous consumption of APIs
	Relation to its own goal
	The role of hypermedia and RDF
	Readability and prior knowledge
	Existence of the client
	Constraints and limitations
	Future research

	Conclusion
	The code base
	The Hydra API
	The RESTdesc descriptions

