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Abstract
In this thesis I have taken a step towards establishing a mathematical model of
the effect of the extracellular matrix on the firing rate of the neuron it surrounds,
namely the Kazantsev model, as a model that can be used to further research
the effects of the extracellular matrix in general, and the perineuronal nets in
particular. Part of this work has been studying the dynamics of the model
system, where we see that the model facilitates two separate activity dependent
steady states, and how a short period of high activity can lead to a shift between
these states. In the activity region between these states we see a tendency for
the system to fluctuate relatively strongly in terms of the concentration of the
ECM components. It remains to be studied further whether this fluctuation is
simply an artifact in the model, or if it reflects legitimate behavior. The model
describes a system where two contrasting time scales are at play, and to facilitate
this I have an effort to make the model more computationally inexpensive by
simplifying the spike modeling within the model. This is done by means of a
simple integrate-and-fire model.





”Don’t be afraid to scrape the paint off and do it again. This is the way you
learn, trial and error, over and over, repetition. It pays you great dividends,

great, great dividends.”

Bob Ross
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Chapter 1

Introduction and Motivation

Neuroscience is a wide, extensive and exciting field. It is a field where people from
a wide range of disciplines and backgrounds work together towards a common
goal of getting a better understanding of the complex and fascinating part of
biology that is our nervous system. Even though we today believe we have a
good understanding of the core units making up the nervous system, the nerve
cells, and how they function individually, a lot of work remains before we can
claim to fully understand the system they make up, and its many functions.

This is partly due to the great complexity of the nervous system and the
brain in particular; billions of nerve cells interact in a multitude of ways giving
rise to a myriad of varying functionality. Another complicating factor is the level
of redundancy seen in this organ which can obscure a researche’s view.

One of the bigger questions in this field that still needs answers concerns the
creation and storage of long-term memories. There is currently little definitive
knowledge regarding this undeniably important question. The process in ques-
tion would require a mechanism facilitating storage of information for up to the
duration of a life time, without too much deterioration occurring.

There are several current competing theories, most of which are based around
different macromolecules present in the post-synaptic spines [Tsien, 2013]. How-
ever, due to metabolic turnover the lifetime of these molecules will be far shorter
than that of our memories. These theories therefore require a process for copying
information from old to new molecules using a mechanism robust enough to with-
stand thousands of duplications without too severe degradation of the original
information.

A theory offering a differing approach is based on a molecular structure that
can be found surrounding mature neurons, perineuronal nets (PNNs). The idea
is that very long-term memories can be stored as holes in this matrix. These
nets are believed to deter the formation of new synapses while stabilizing existing
connections, and their formation has been found to be dependent on firing activity
[Reimers et al., 2007].

In this thesis I have built my work around a model that (to my knowledge) is
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2 Introduction and Motivation Chapter 1

the first major mathematical model focusing on the interplay between the extra-
cellular matrix (of which PNNs are a special case) and the neuron it surrounds
in terms of levels of firing activity and matrix composition.

This project is thus placed in the exciting junction between biology, physics,
and numerical modeling, and relates to the early stages of a compelling theory
for the formation of long-term memories and the functionality of the extracellular
matrix. In it we will take a step towards establishing a numerical model that can
contribute to further research and advances within this field.

1.1 Overview of This Text

This text is made up of eight chapters, plus a bibliography. The first three
chapters after this one will give an introduction to the principles and background
needed to get an understanding of the rest of the work. The first of these, chapter
2, begins by giving a quick overview of the neurobiology of the nervous system
and in particular the brain. It also delves into the functionality of the above
mentioned perineuronal nets and their suggested relation to the formation of
long-term memories.

In chapter 3 we move on to look at the computational side of this field,
focusing on the background needed to model the electrical activity in nerve cells.
For this purpose we introduce the Hodgkin-Huxley model, and we also look at a
simpler model called the integrate-and-fire model.

Following this, chapter 4 introduces the model that is the basis for this thesis
work, the model I have dubbed the Kazantsev model. We look at the different
components making up this model, from the spike generation modeled according
to the Hodgkin-Huxley model from the previous chapter, to the components of
the extracellular matrix.

Chapter 5 deals with my implementation of the model from chapter 4. Here I
explain my choice of structure as well as programming language and environment,
and I discuss the numerical schemes chosen.

In chapter 6 we find my results from exploring the implemented model. This
chapter can be seen as having two parts; first the model is used to reproduce
results from the original paper in order to verify my own implementation, before
I investigate the model further. This includes studying its behavior under varying
conditions, as well as seeing if it can be successfully simplified or expanded upon,
depending on the needs at hand.

Chapter 7 brings us to a discussion. What have I found and what does it
tell us? Should the model be modified, and if so, in what way? Here I also
look towards future work and I contemplate what the way forward entails for the
Kazantsev model.

Finally, in chapter 8, we reach a quick summary of the thesis as a whole.
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1.2 Code

The code produced during my work on this thesis and used to create the results
presented in the following chapters is available from:

https://emiliefj@bitbucket.org/emiliefj/neuron model with ecm.git

https://emiliefj@bitbucket.org/emiliefj/neuron_model_with_ecm.git




Chapter 2

Introduction to Neurobiology

The focus of neuroscience lies in working towards understanding the mechanics
of the nervous system, and how the (human) brain works. It is a highly inter-
disciplinary field with contributers stemming from a wide range of other fields,
including biology, medicine, computer science and even linguistics. This is partly
due to the broad scope of the field. Neuroscience can be described as the study
of the nervous system from its cellular and molecular level all the way up to the
behavioral level. Many aspects of the system are studied, including its develop-
ment, structure, function and anatomy; its relation to learning, human behavior
and psychology; and of course its medical aspects. At the same time this is
done using a multitude of techniques ranging from behavioral studies to various
imaging techniques, through to computational modeling.

In this chapter the goal is to give the reader a brief introduction to neurobiol-
ogy, focusing on the nervous system and its structure. Although not necessarily
essential to understanding content of the later chapters, I think it can be useful
as a way of setting the scene for what is to come. Hopefully it will provide an
overview of the greater picture, before we dive into the details. The contents
of this chapter as well as the next are based mainly on what is given in [Squire
et al., 2008], [Sterrat et al., 2011], and [Thompson, 1993].

2.1 The Nervous System

Almost all multicellular animals have some form of a nervous system, but its
complexity varies greatly. In vertebrates the nervous system is divided into the
central nervous system (CNS) and the peripheral nervous system (PNS). The
CNS is made up of the brain and spinal cord, while the PNS includes all the nerves
and ganglia outside of this, including motor neurons, the autonomic nervous
system as well as the enteric nervous system. The PNS connects the CNS to the
rest of the body, including limbs and organs.

The CNS makes up the majority of the nervous system, and it is distinguished
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6 Introduction to Neurobiology Chapter 2

from the PNS not only by location but also by composition. While the PNS
mainly consists of axon bundles, or nerves, stretching out to the extremities of
the human body, the CNS is made up of so-called gray and white brain matter.
Both these substances contain glial cells, with white matter contain more of them,
and gray matter consisting mostly of neurons.

2.1.1 The Brain

The center of the nervous system is arguably the brain, and it is also the most
complex of the organs, at least in vertebrates. Mammalian brains all have a simi-
lar structure, and this holds true also for our human brain. The main distinction
of the human brain is its comparatively larger and more developed cerebral cor-
tex.

The cerebral cortex is the thick, outer layer of the brain. It has a strongly
folded structure which maximizes its surface area. When thinking of the brain
it is typically this characteristic wrinkly and folded structure we imagine. It is
commonly divided into sections referred to as “lobes”; the frontal, the parietal,
the temporal, and the occipital lobe, see figure 2.1. The division into these lobes
is mostly arbitrary, reflecting only the bones of the skull that overlie them. The
lobes therefore do not indicate any functional division and all contain brain areas
of limited functional relationship. The exception is the occipital lobe which is
only involved in tasks relating to vision.

The cerebral cortex with its lobes makes up the greater part of what is known
as the cerebrum. The cerebrum is split into a left and a right hemisphere, and
it is the largest component of the human brain. Underneath it we find the
hippocampi, one in each hemisphere. The hippocampus plays an important role
in spatial navigation and the formation of long-term memories [Vianna et al.,
2000].

The brain stem, a stalk like structure connecting the spinal cord with the
cerebrum, lies underneath the cerebrum and to the back of the brain. In addition
to transmitting signals between the brain and the rest of the body, it helps
regulate the sleep cycle, as well as cardiac and respiratory function, and it is also
crucial in maintaining consciousness. Behind it we find the cerebellum or “little
brain” whose main function relates to motor control. It may also be involved in
language, mental imagery and learning.

The thalamus as well as the hypothalamus are located in between the cere-
brum and the brain stem. The thalamus has been found to act as a type of relay
point between different sub-cortical (“below the cortex”) areas as well as the
cerebral cortex. It is believed to process as well as transfer the incoming signals.
In addition it plays a central role in regulating both sleep and alertness. The
hypothalamus has been found to a have a variety of functions, most importantly
it links together the nervous system and the endocrine system. It also synthesizes



Section 2.1 The Nervous System 7
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Figure 2.1: A schematic illustration of the human brain, showing the location
of its main areas, as well as the lobes of the cerebrum. Figure adapted from
Cancer Research UK / Wikimedia Commons.

and secretes neurohormones, such as oxytocin.

2.1.2 Neurons

The main building blocks of the nervous system are nerve cells, often called
neurons. A nerve cell is a highly specialized, electrically excitable cell, and the
human brain is estimated to contain roughly 85 billion of them [Williams and
Herrup, 1988]. These neurons are interconnected through an even larger num-
ber of connections called synapses, where nerve signals are transferred between
individual nerve cells.

Although different neurons can vary widely with respect to shape, size, and
electrochemical properties, they share some common features. Like other cells
a neuron is made up of a cell body surrounded by a cell membrane, and within
this we find a nucleus as well as cytoplasm, mitochondria and other organelles.
The cell body of a neuron is called the soma, and in contrast to other cell types
the neurons have structures, or neurites, extending away from this soma, called
dendrites and axons, see figure 2.2. Dendrites propagate incoming signals from
other neurons to the soma, while outgoing signals are transmitted along the axon.
Each neuron may have a large number of dendrites, but only one axon.

The cell membrane separates the inside and the outside of the cell. It is made
up of a lipid bilayer making it impermeable to organic molecules and charged
ions. However, the membrane does contain several pores called ion channels and
ion pumps. These pores in the membrane are made up of proteins and they make
it possible for selected ions to pass through the membrane.

There are many different so-called ion channels, and they are typically divided
into two categories, active and passive. Active ion channels can be either open
or closed to penetrating ions depending on factors such as the electric potential
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across the membrane and the presence of neurotransmitters, while passive ion
channels are “passive” in that they have a constant permeability. Generally ion
channels are only permeable to a specific ion type.

Unlike ion channels, ion pumps do not simply allow ions to pass through, put
actively pump specific ions and molecules against the concentration gradient.

With the use of ion channels and ion pumps, a potential difference is main-
tained between the inside and outside of the cell, by controlling the movement
of charged ions across the membrane. This potential difference is known as the
membrane potential, and the value it has when the neuron is unperturbed is
called the resting membrane potential. It typically has a value of about −65 mV.
As we shall see later, neurons make use of this membrane potential and the cell
membrane’s selective permeability when transferring information between each
other.

Neurons are typically divided into three main groups which differ according
to specialization:

• Motor neurons are neurons which cause muscle contractions when stimu-
lated. The cell body of a motor neuron is located in the spinal cord, while
its axons extend to the various parts of the body and control the muscles
there.

• Sensory neurons are neurons whose function is to respond to various sensory
input, such as sight, feeling, sound etc., and transmit the information to
the brain and spinal cord.

• Finally, the interneurons connect together neurons in the same region,
thereby facilitating communication between sensory or motor neurons, and
the central nervous system.

Neurons can also be classified according to location, shape, or the type of
transmitter they synthesize and release.

2.1.3 Glial Cells

The nervous system also contains another specialized cell type called glial cells.
As their main function is to provide the networks of neurons with structural
and metabolic support they are often referred to as the support cells of the
neurons. The glial cells provide support mainly by holding the neurons in place
and isolating them from each other, supplying them with necessary nutrients, and
by destroying various pathogens and removing dead neurons. In newer research
they have also been found to contribute in some degree to neurotransmission
[Auld and Robitaille, 2003].

About half of the total volume of the brain and spinal chord is made up of
glial cells, but the ratio of glia to neuron varies strongly in different parts of the
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Figure 2.2: A schematic illustration showing the typical structure of a neu-
ron. Figure adapted from [wpclipart, 2015].

brain. For instance about two-thirds of the cells in the cerebral cortex are glial
cells, while they in the cerebellum make up less than one-fifth of the total number
of cells.

2.1.4 The Action Potential

Most biological cells have an electric potential difference across the cell mem-
brane, as we have seen is the case for neurons. However, in excitable cells such
as neurons, this potential fluctuates and these fluctuations can lead to the gen-
eration of electrical signals called action potentials. The action potential is the
basis of the communication between neurons. It is by means of the transmission
of these electrical signals that information is transferred through the nervous
system. The action potential itself is a fluctuation of the membrane potential
identified by a characteristic, rapid rise followed by an equally rapid fall, see the
illustration given in figure 2.3.

When measuring the voltage across the cell membrane of a neuron, one finds
that there is an electrical potential difference across this membrane of about
−65 mV. This is the resting membrane potential, and in the absence of pertur-
bations the potential difference will stay in this steady state. The generation of
an action potential is initiated by synaptic input from a connected neuron per-
turbing the affected neuron. Depending on the type of input, this can have two
different effects on the membrane potential. Either the input is what is known as
excitatory, which leads to a depolarization of the membrane (a rise in membrane
potential), or it is inhibitory, which leads to a hyperpolarization instead (a fall
in membrane potential below the resting potential).

Excitatory input may lead to the creation of an action potential. Often,
several excitatory inputs must happen within a small time frame to result in an
action potential. The excitatory input causes a local change in the permeability
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of the membrane, allowing charged ions to flow through. This leads to an increase
in the membrane potential, and if this response is large enough for the potential
to exceed a threshold value (typically about 15 mV above the resting membrane
potential) an action potential is created.

As mentioned in the previous section, the permeability of some ion channels
will depend on the value of the membrane potential. This is for instance true for
the sodium channels, and when the membrane potential exceeds the aforemen-
tioned threshold these channels respond by opening, allowing positively charged
sodium ions to enter the cell. The membrane potential then rises in a rapid fash-
ion. Following this change in membrane potential the potassium channels also
open, and potassium ions exit the cell. This leads to a drop in the membrane
potential, which generally overshoots the resting membrane potential leading to
a hyperpolarization of the cell, before the resting value is finally reached. This
phase of the action potential where the cell is hyperpolarized is known as the
refractory period, during which the neuron is incapable of firing another action
potential. The refractory period typically lasts about 1 ms. Figure 2.3 shows an
illustration of a typical action potential.

Time (ms)

M
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e
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V
)

Resting potential

Threshold

0

+40

-70

-55

Action potential

Depolarization Repolarization

Hyperpolarization Resting potentialStimulus

Figure 2.3: Plot of the membrane potential during a typical action poten-
tial. The potential is at its resting value, when a stimulus pushes it over the
threshold value. This results in a sharp increase (depolarization) followed by
a sharp decrease (repolarization) of the membrane potential, before it again
returns to its resting value. Notice how the potential first undershoots the
resting potential (hyperpolarization).

Very few ions need to cross the membrane of the cell for this large change in
membrane potential to occur, and as such the changes in the internal and external
concentrations of the involved ion species can in most cases be neglected.

The resulting action potential will propagate along the axon of the neuron
spreading the signal to connected neurons. Different neurons display a large
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disparity in how frequently they fire an action potential. This frequency is known
as the firing rate of the neuron.

2.1.5 Synapses

Communication between neurons is facilitated by the action potentials, but the
actual transmission of a signal from one neuron to another occurs through the
synapse. A synapse is a connection between the axon of one neuron, and the
dendrite or soma (or even axon) of another. There are two main categories of
synapses; electrical and chemical.

The main mediators of neuronal communication are the chemical synapses.
In a chemical synapse the action potential from the pre-synaptic neuron stimu-
lates the pre-synaptic terminal in such a way that neurotransmitters are released.
These neurotransmitters, which are endogenous messenger chemicals, then dif-
fuse across the synaptic cleft, the narrow gap between the pre- and post-synaptic
cell. In the membrane of the post-synaptic cell there are specialized neurotrans-
mitter receptors which bind to the diffusing neurotransmitters. This binding can
have different effects depending on the type of receptor that is activated. Some
receptors are excitatory, and increase the receiving neuron’s firing rate, others
are inhibitory, decreasing the firing rate, or they can be modulatory, meaning
that their effect is not directly linked to firing rate.

An electrical synapse is an electrical conductive link between two border-
ing neurons. Here the membrane potential can be directly transmitted between
neurons through a type of pore that connect the neurons directly across the in-
tracellular space between them. Such a pore is known as a connexon, and it is a
type of channel made up of six proteins. Each electrical synapse contains several
such pores and these pores actually cross the membrane of both cells, thereby
connecting their cytoplasms, and allowing ions and signaling molecules to travel
from one neuron to the next.

The electrical synapses allow for much more rapid transfer of signals between
neurons, but they admit for less varied response to these signals. Where a signal
stemming from a chemical synapse can lead to everything from a larger response
in the post-synaptic neuron than the original signal, to a negative response, the
resulting signal transferred by an electrical signal will always be equal or smaller
than the signal it originates from.

2.2 Perineuronal Nets and Long Term Memory

Our bodies as well as all other forms of living tissue are made up up a large
number of different cells, and surrounding these cells is what is known as the
extracellular space. This space is filled with an intricate structure called the
extracellular matrix (ECM). The relative amount of ECM varies widely between
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different types of tissue, with it being most abundant in connective tissue, and
comparatively scarce in the central nervous system (CNS) [Frantz et al., 2010]. It
is not only the amount of the ECM that varies, its structure also differs strongly
between the different types of tissue, and this results in the wide range of existing
tissue types. For instance the ECM in bone tissue creates a thick, mineralized
structure, and as a result bone tissue is hard and rigid. In other parts of our
body, such as for instance the brain, the tissue is found to be much more soft
and elastic, as the ECM here has a different composition.

The main components of the ECM are fibrous proteins and proteoglycans, as
well as water. Proteoglycans are large molecules consisting of a protein core with
long carbohydrate polymer chains called glycosaminoglycans (GAGs) attached.
Of the fibrous proteins collagen is the most abundant. It is strong and stretch-
resistant, and as such it provides strength to tissue. Other notable examples of
fibrous proteins are elastin, which gives tissue a stretchy property, and fibronectin
which connects cells with the collagen fibers.

By varying its composition the ECM can give tissue a wide range of different
properties, but it has also been found to have a strong impact on the cells it
surrounds. In addition to providing structural support for these cells, the ECM
has been found to influence cell differentiation, development, and function.

As mentioned there is comparatively little ECM in the CNS compared to
other tissue. However, the ECM that is located in the CNS has been found to
be highly involved in brain development and it seems to be directly involved in
regulating plasticity in this area [Wang and Fawcett, 2012, Tsien, 2013, Kwok
et al., 2011]. A specialized form of ECM known as the perineuronal nets (PNN)
is found only in the CNS. These nets surround the soma and dendrites of cer-
tain sub-populations of neurons, and are mainly found in the cortex, thalamus,
hippocampus, brainstem and spinal chord. Although these structures were dis-
covered in the late 19th century, they were not widely studied until the past few
decades. An image showing the PNN in the cortex of a rat is shown in figure 2.4.

PNNs surround mature neurons, and although the full scope of their role is
not yet fully understood, they have been found to have several functions, includ-
ing stabilizing the milieu of the neurons they envelope and protecting them from
harmful agents [Karetko and Skangiel-Kramska, 2009]. The PNNs have also been
found to limit neuronal plasticity and regeneration, and restrict synapse forma-
tion [Tsien, 2013]. It has been proposed that very long-term memories may be
stored as the holes in the PNNs by strengthening selected synapse connections
while deterring the formation of new ones. This theory is based on the Heb-
bian plasticity hypothesis, popularly summarized with the saying “cells that fire
together, wire together”. Due to being linked to neuroplasticity and memory
formation, the PNNs have become an increasingly popular research topic in the
later years.

Neuroplasticity or brain plasticity is a term describing the possibility of



Section 2.2 Perineuronal Nets and Long Term Memory 13

changes occurring in synapses and neuronal pathways in response to varying
conditions. Plasticity refers to the quality of being modifiable or changeable, and
it was long thought that the brain was not a particularly plastic organ. However,
more recent research has shown otherwise [Greenough, 1988]. Plasticity is tightly
linked to learning, memory and neural development.

Brain plasticity is greatest by far during so-called critical periods. These
are periods where the brain exhibits strongly heightened plasticity allowing the
CNS to undergo large-scale changes, both physical and functional. These critical
periods occur in early development, and are the reason why it is much easier for
a child to learn a new language, for instance, than it is for an adult. In the adult
brain the plasticity is much lower, although some events such as for instance
brain damage can lead to a temporary increase in plasticity in and around the
damaged area.

As it turns out, the end of the critical period coincides with the formation
of PNNs, and removal of these nets through the use of a bacterial enzyme has
been shown to increase plasticity in adult rat brains matching that of a critical
period [Hockfield et al., 1990]. This discovery is what led to the belief that PNNs
and plasticity are tightly linked.

Now that we have gotten a brief introduction to neurobiology, we move on to
look at how biological entities like neurons are modeled in the field of computa-
tional neuroscience.
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Figure 2.4: Image created with the use of confocal microscopy showing the
PNN surrounding a neuron in a rat cortex. The PNN is shown in green due
to being dyed with Wisteria Fluribunda Agglutin (WFA). Image taken by
Kristian Lensjø.



Chapter 3

Computational Neuroscience

The nervous system is a large and complex system. It can be studied at many lev-
els, and as such a wide range of models have been and continue to be constructed
and analyzed to describe it and understand how it functions. This includes mod-
els of the individual nerve cell, synapses, the movement of specific ions, and the
behavior of networks of neurons, to mention some examples.

One such model, the Hodgkin Huxley model, aims to model the neuron and
its electrical properties. Created in the early 1950s, this model is often regarded
as a gold standard amongst biological models. There are several reasons for
this. The model is conceptually simple, its components have direct connections
to the biological constituents, and it is experimentally verifiable to a high degree
of accuracy. To this day the model is still widely used, albeit often with some
additions or alterations.

In this chapter the goal is to give an overview of the Hodgkin-Huxley model,
but to better understand the basis of this model and how it came to be, we
begin by looking at the mechanisms behind the electrical activity of neurons.
We will look at what drives the movement of charged ions in the neuron, and
how the semi-permeable neuronal membrane influences the resting membrane
potential. We follow this with an overview of the Hodgkin-Huxley model and its
components, before ending the chapter by looking at a model taking a simpler
approach, the integrate-and-fire model.

3.1 Modeling Electrical Activity in Neurons

The Hodgkin-Huxley model is a mathematical model of how action potentials are
initiated and propagated. The model is the result of the impressive work done
by Hodgkin and Huxley studying the squid giant axon, which resulted in five
landmark articles published in 1952 as well as the 1963 Nobel Price in Physiology
or Medicine. Although later experiments have revealed some shortcomings of this
model, it is still widely used both in its original and extended forms.

15
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The Hodgkin-Huxley model is a quantitative model of a neuron’s active mem-
brane properties, and it is based on experiments performed on the squid giant
axon, popularly used in experiments due to its large size (up to 1 mm in diame-
ter), making it easier to perform measurements on. The base of the model is the
electrical circuit shown in figure 3.1. It is very common to describe the neuronal
membrane in this way, using an equivalent electrical circuit, due to the electrical
properties of its components. The membrane itself is in many ways like a capac-
itor, while the ion channels can be represented by a battery and a resistor, as
they allow for current to flow across the membrane.

Figure 3.1: The equivalent circuit of a cell membrane compartment as in the
Hodgkin-Huxley model. Figure inspired by figure 3.2 on page 50 in [Sterrat
et al., 2011].

In later years many different ion channels have been discovered, but they
were not known in Hodgkin and Huxley’s day, and as so their model includes
only three ionic currents: a potassium current, IK , a sodium current, INa, as well
as a leak current, IL. This leak current is the current resulting from other ion
types flowing through the membrane, mostly chloride.

Before we introduce the specific expressions making up the Hodgkin-Huxley
model we will look at the concepts and dynamics that stand behind it, and how
these can be described mathematically. This will give us a better understanding
of the model and the reasoning behind it.
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3.1.1 The Nernst-Planck Equation

Both the extracellular and the intracellular medium contain charged ions, with
the mediums being separated by the cell membrane. The potential is more nega-
tive on the inside than the outside, creating an electric field across the membrane.
In this way the membrane acts as a capacitor. As we saw in the previous chapter
the basis of the electrical activity in neurons is the flow of charged ions across
this membrane. We will now first look more closely at the dynamics governing
this flow.

The electrical field across the cell membrane leads to an electric force on the
charged ions. The magnitude of this force will depend on the charge of the ions,
as well as the strength of the field, and the force will lead to a drift of charged
ions, called electric drift. Across the membrane the particles move in narrow ion
channels, and within these channels movement can be seen as occurring in one
dimension. The resulting flux for a particle species X moving in one dimension
becomes the sum of these contributions:

JX,drift = −DXF

RT
zX[X]

dV

dx
. (3.1)

In this expression DX is the diffusion coefficient of molecule X, zX is this ion
type’s valency, meaning the charge of the ion in number of elementary charges,
R is the gas constant, F is Faraday’s constant, and T is the temperature.

In addition to this electric drift, a difference in the concentration of the various
ions on the inside versus the outside of the cell will give rise to diffusion. Diffusion
is the net movement of particles down their concentration gradient. This means
that the particles are inclined to move from areas of high concentrations to areas
of low concentration, thereby evening out the concentration difference.

The molar flux of one particle species X, in one dimension, resulting from
diffusion is according to Fick’s law given by:

JX,diff = −DX
d[X]

dx
, (3.2)

The total flux of ion type X then becomes:

JX = −DX

(
d[X]

dx
+
FzX

RT
[X]

dV

dx

)
. (3.3)

This equation is called the Nernst-Planck equation, here given in its one
dimensional form. As we have now seen it describes the movement of charged
ions in the form of flux. In other, more precise, words it describes the amount
of ion species X flowing through a unit area cross-section of the membrane, per
time. In our applications we are more interested in the current resulting from this
flux, or more specifically the current density. The flux describes the movement
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of the ions themselves, while current is instead the movement of charge, and as
such the current density can be found as:

IX = FzXJX, (3.4)

since Faraday’s constant is given by Avogadro’s constant (the number of par-
ticles in one mole) multiplied by the unit electric charge.

3.1.2 A Permeable Membrane

Now we have seen how the concentration gradient as well as the electric field
across the neuronal membrane affects the movement of the charged ions on both
sides of it. At the time of Hodgkin and Huxley’s ground breaking work, not
much was yet known of the membrane itself, and it was for instance not yet
known that it contained ion channels allowing for specific ions to pass through
the membrane. Yet the membrane potential was seen to change rapidly during
the creation of an action potential, and this implied that the membrane had to
be permeable to ions. Let us now take a look at what the implications of this
selective permeability are.

We begin by looking at a membrane that is permeable to only one ion type.
Other ions are not allowed to cross the membrane. From the Nernst-Planck equa-
tion we see that the flux of this ion type will be a combination of electric drift and
diffusion. If we imagine that one side of the membrane has a higher concentration
of ions, the result will be a flux across the membrane due to diffusion. This will
create a surplus of charge on one side of the membrane, resulting in electric drift
in the opposite direction of the diffusion. Eventually these two contributions will
balance each other out, and the net flux becomes zero.

At this steady state we have what is called the equilibrium potential, EX, of
the ion type; the potential difference across the membrane where there is no net
flux.

The Nernst-Planck equation gives us this steady state:

[X]
d[X]

dx
= −FzX

RT

dV

dt
. (3.5)

Solving this with the concentrations on the inside and outside of the mem-
brane denoted [X]in and [X]out, respectively, we are left with the following expres-
sion for the equilibrium potential:

EX =
RT

FzX

ln
[X]out

[X]in
. (3.6)

EX is then called the Nernst potential for ion type X, often also referred to
as the equilibrium or reversal potential.
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3.1.3 The Goldman-Hodgkin-Katz equations

The neuronal membrane is, however, not only permeable to one ion type, but to
several. To find the equilibrium potential in this case we can use the result known
as the Goldman-Hodgkin-Katz (GHK) current equation [Sterrat et al., 2011].
This formula predicts the current across the membrane resulting from a specific
ionic species for a given membrane potential V . Making several assumptions;

1. The ions cross the membrane independently,

2. The electric field within the membrane is constant, and

3. The movement of ions is determined by the internal concentration gradient
and the electric field across the membrane,

they found the following expression for the current resulting from the flux of
ion species X:

IX = PXV
(zXF )2

RT

(
[X]in − [X]out exp(−V zXF

RT
)

1− exp(−V zXF
RT

)

)
. (3.7)

In this model of the membrane the permeability, PX, is treated as homoge-
neous, and proportional to DX.

To find an expression for the equilibrium potential we set the total membrane
current I to zero, use one GHK current equation for each of the contributing
ions, and solve for voltage. For a membrane permeable to sodium, potassium
and chloride ions, the result is:

Em =
RT

F
ln
PK[K+]out + PNa[Na+]out + PCl[Cl−]in
PK[K+]in + PNa[Na+]in + PCl[Cl−]out

. (3.8)

It is readily seen that this reduces to the earlier result from the Nernst-Planck
equation, for a membrane permeable to only one ion type.

The GHK current equation gives us an expression for the current resulting
from the flux of a given ion type for membrane potential V . However, it does
require that we know the concentration of said ion type both outside and inside
the cell. As it turns out, a simpler approximation of this equation will often
suffice in the voltage range where cells normally operate, namely the straight
line:

IX = gX(V − EX). (3.9)

Here EX is the equilibrium potential of ion type X, and gX is the conductance
per area. Conductance is simply the multiplicative inverse of resistance.

Now that we have gained a better understanding of how we model current
flow across the neuronal membrane, and the membrane voltage resulting from
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this flow of charged ions, we move on to introduce the Hodgkin-Huxley model
and its components.

3.2 The Hodgkin-Huxley Model

As previously mentioned Hodgkin and Huxley included three currents in their
model, namely a sodium current, a potassium current and a leak current. In
their experimental results they found that the conductances for the potassium
and sodium ions were dependent on voltage, and in searching for a way to model
this behavior they found that the concept of gating particles gave a good fit.
The idea is that the membrane contains a number of gates, and these gates can
be either open or closed to passing ions. The state of each gate is decided by a
set of independent gating particles. These gating particles can each be either in
a permissive or in a non-permissive state. For a gate to be open, all its gating
particles must be in the permissive state. One can express the movement of a
gating particle between its two states, permissive (P ) and non-permissive (NP ),
as a chemical reaction:

NP
α−−⇀↽−−
β

P.

Here the variables α and β are rate coefficients describing the rate of the reac-
tion in either of the two directions. The voltage dependence of the conductances
is incorporated through these rate coefficients, whose value will depend on the
current membrane voltage.

Hodgkin and Huxley found the conductance of the membrane to potassium
ions to be best described by a gate made up of four identical and independent
gating particles, which they dubbed n:

gK = gKn
4, (3.10)

where gK is the maximum potassium conductance.
The gating variable n then represents the probability of a potassium gating

particle being in the permissive state, and the rate coefficients for the movement
of the potassium gating particles between the permissive and non-permissive state
are dubbed αn and βn. The first order kinetic equation then gives how n changes
with time:

dn

dt
= αn(1− n)− βnn. (3.11)

The cell membrane of a typical neuron will contain many ion channels of each
type. There will then be a large number of potassium gating particles, and the
proportion of these that are in the permissive state will then be approximately
equal to n, the probability of one particle being in the permissive state. The
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proportion of gates that are open is then given by the same expression giving the
probability of one gate being open, n4, as seen above. The specific expression with
n to the fourth power was chosen because it gave a good fit to the experimental
data.

Similarly the sodium ionic conductance was found to be best described by two
different gating particles, m and h. Equivalently to n, m can be described as an
activation particle giving the rate of gating particles that are in the permissive
state, and its time development is governed by the equivalent equation:

dm

dt
= αm(1−m)− βmm. (3.12)

The variable h on the other hand is often referred to as an inactivation vari-
able, and it represents a gating particle that can be in one of two states, an
inactivated state, or a non-inactivated state. The behavior of this variable with
time is given in the same way as for n:

dh

dt
= αh(1− h)− βhh, (3.13)

with αh and βh being the rate coefficients of the transition between the two
states of the particle.

The resulting model of the sodium conductance uses three independent m
gating particles, and one inactivation particle h:

gNa = gNam
3h. (3.14)

The final current, the leak current, was modeled using a simpler approach,
as they assumed this current was a resting background current, and as such its
conductance is independent of the voltage:

g = gL. (3.15)

Putting all these elements together we arrive at the full Hodgkin-Huxley
model:

dV

dt
= Iext − (IK + INa + IL), (3.16)

with the various currents modeled as:

IK = gK(V − EK) (3.17)

INa = gNa(V − ENa) (3.18)

IL = gL(V − EL). (3.19)

Here EX is the equilibrium potential of ion type X, as we saw earlier in this
chapter.
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The net contribution of axial current from neighboring regions is represented
by the variable Iext. In experimental conditions known as space clamp conditions
the membrane potential is constant over the membrane, and as a result this term
reduces to zero.

To summarize we have now seen that the Hodgkin-Huxley model uses a set
of four ordinary differential equations to model how the membrane potential,
V , changes with time. These differential equations are highly nonlinear, and as
such the system can not be solved analytically. Instead we must use numerical
methods to solve them approximately. This is what Hodgkin and Huxley did,
solving for each time step by hand. Naturally this was a lot of work, and as a
result they did not calculate the entire slope of every action potentials. They saw
that the action potentials all had the same shape in the repolarization phase, and
as such stopped once they had passed the peak. This is shown clearly in the top
half of figure 3.2, taken from the final of their iconic 1952 articles. Thankfully,
today we can let computers do the dirty work for us.

3.3 Integrate-and-Fire Neuron

The Hodgkin-Huxley model of a neuron is based on experimental measurements
of real neurons, and is constructed with the goal of accurately reproducing their
behavior. As such it includes elements such as ion currents, a membrane capac-
itance and so forth, elements known to play a part in determining a neuron’s
electrical activity. Building a model that represents the neuron being modeled as
accurately as possible is an obvious objective, and as such the Hodgkin-Huxley
model has been expanded and modified in a myriad of ways to create far more
detailed and complicated models.

The integrate-and-fire model of a neuron, as well as similar models, represent
a different approach all together. In this model all but the essentials are stripped
away, leaving us with a very simple, if not very biological model. This may
seem counter-intuitive, but does offer some benefits. For one, a simpler model is
also one where it will be easier to understand and interpret the core mechanisms
at work. Simplicity can bring clarity where added details can confuse and ob-
struct. Simpler models are also useful if one wants to study networks of neurons.
Simulating each and every neuron to painstaking detail is then often computa-
tionally unfeasible, and describing only the essential function of the neurons is
often satisfactory.

In the integrate-and-fire model one has moved away from the standard pro-
cedure of describing the activity of the neuron using a set of coupled, non-linear
differential equations. Instead of accurately trying to model the underlying mech-
anisms, this phenomenological model is based on the simple fact that an action
potential is fired whenever the threshold for the membrane potential is reached.
As action potentials are generally virtually identical, there is no need to model
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Figure 3.2: Figure taken from the last of the four 1952 articles by Hodgkin
and Huxley, namely “A Quantitative Description of Membrane Current and
its Application to Conduction and Excitation in Nerve” [Hodgkin and Huxley,
1952].
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Figure 3.3: The RC-circuit that is the basis of the IF model, with a switch
that closes when the threshold needed for an action potential to be generated,
is reached. Figure inspired by figure 8.5(a) on page 204 in [Sterrat et al., 2011].
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them explicitly.
The basis of the integrate-and-fire model is a simple RC-circuit with a reset

mechanism in the form of a switch, as seen in figure 3.3. Incoming current leads to
the membrane voltage increasing, and when the threshold value is reached, the
switch closes, effectively short-circuiting the membrane resistance and thereby
bringing the membrane potential back to its resting value.

Below this threshold value the voltage follows the equation for an RC circuit
found from Kirchoff’s current law:

Cm
dV

dt
= −V − Vm

Rm

+ I. (3.20)

Here Cm represents the membrane capacitance as before, while I is the to-
tal current into the cell. The parameter Vm represents the resting value of the
membrane potential V , while Rm is the membrane resistance seen in figure 3.3.

The current I could be any incoming current, be it from an electrode or
connected synapses, and due to this current the membrane voltage V increases
with an initially high derivative that decreases exponentially. If the current is
large enough, the voltage will reach the threshold, θ, a spike is fired, and the
switch closes resetting the voltage to Vm.

For a (constant) above-threshold current I this model will lead to a constant
firing frequency for the modeled neuron, with an increase in I giving an increase
in this frequency. If the current is below the threshold, the neuron will never fire.

To make the model more realistic one can also implement a refractory period
following the firing of a spike, in which the voltage does not increase (above the
threshold).





Chapter 4

The Kazantsev Model

The starting point of this thesis has been the article “A Homeostatic Model of
Neuronal Firing Governed by Feedback Signals from the Extracellular Matrix”
by Kazantsev et al. [Kazantsev et al., 2012]. In this article a first attempt is
made at creating a model that simulates how neuronal spiking is influenced by
the surrounding extracellular matrix (ECM). The model is based on existing ex-
perimental results indicating how the various components of the ECM influences
the firing rate of the neuron it surrounds, as well as how this firing again impacts
the production and destruction of these components. This knowledge is used in
a qualitative way to create a simplified mathematical model.

The following chapter gives an overview of the model, as presented in [Kazant-
sev et al., 2012].

4.1 Model Outline

The focus of this model is to gain insight in how the ECM affects the neuron it
surrounds in terms of how it influences the neuron’s firing rate. The activity of
the neuron is modeled using the standard Hodgkin-Huxley formalism receiving
input from connected neurons in the form of a Poisson spike train. The ECM
is represented through the concentration of its various components, and these
concentrations will influence the neuron’s tendency to fire an action potential,
the strength of the synaptic input, as well as the concentrations themselves. The
illustration given of the model in the article is shown in figure 4.1, whereas a more
detailed schematic figure giving an illustrative overview of the model components
is shown in figure 4.3.

4.1.1 The Neuron and the Average Activity

The generation of spikes by the neuronal cell is modeled using the standard
Hodgkin-Huxley equations, with a few minor additions. The membrane potential
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is governed by the following differential equation:

C
dV

dt
= −(Imem − Ith + Isyn). (4.1)

Here Imem is the sum of the transmembrane currents responsible for spike
generation; a potassium current, a sodium current, as well as a leak current:

Imem = INa + IK + Ileak. (4.2)

These transmembrane currents are given by the standard Hodgkin-Huxley
formalism, as seen in chapter 3:

IK = gK(V − EK) (4.3)

INa = gNa(V − ENa) (4.4)

IL = gL(V − EL). (4.5)

The line over the conductance for the leak current indicates that this is treated
as a constant. The other two conductances are treated in the standard way using
the concept of gating particles, with:

gNa = gNam
3h, (4.6)

and

gK = gKn
4. (4.7)

Here, the gating variables m, n, and h follow the equations:

dx

dt
= αx(1− x)− βxx, x = m,n, h. (4.8)

The term Ith is an applied current which regulates the effective spike exci-
tation threshold. Higher values of Ith result in hyperpolarization of the neuron,
which means that a larger input is needed for the membrane potential to reach
the threshold value, and an action potential to be generated. The final current
contribution, Isyn, describes the total synaptic input to the neuron, here modeled
in the form of a Poisson spike train.

The typical duration of an action potential is in the magnitude of about 1
ms, but the changes occurring in the ECM are very much slower than that,
taking from hours to days. Because these regulations in ECM concentration are
happening on a very long timescale compared to the typical duration of an action
potential, a variable is introduced describing the average activity of the neuron.
This variable, Q, is given by:

dQ

dt
= −αqQ+ βqHq(V ), Hq(V ) =

1

1 + exp(−V/kq)
. (4.9)
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Here αq is a rate constant, and βq is a scaling coefficient with 0 < αq < βq.
kq is the inverse slope of the activation function Hq(V ), restricted by kq < 1. For
n spikes generated with an average frequency f = n/T, Q(n) will then converge
to the limit in the following way:

Q∞ = lim
(n,t)→(∞,∞)

f=const.

Q(n) =
βqτ exp(−αq/f)

(1− exp(−αq/f))
≈ βqτ

αq
f. (4.10)

This variable, Q, can be seen as a sliding window average of the neuron’s firing
activity, and it quantifies the activity level of the neuron over longer timescales.
It is this variable that will influence the creation and destruction of the various
components of the ECM, a process happening over quite long timescales.

4.1.2 Neuronal Input

In the Kazantsev model the synaptic input is modeled in the form of a Pois-
son spike train. This input stems from the fact that a neuron, such as the one
modeled here, will be part of a large network of neurons communicating through
the sending and receiving of action potentials. In the Kazantsev model the as-
sumption is made that the spiking events experienced by the neuron can be seen
as being uncorrelated, in which case modeling them as Poisson processes is a
sensible approach.

The synaptic input being in the form of a Poisson spike train means that the
timing of each incoming spike event follows the discrete probability distribution
known as the Poisson distribution. Let us first look a bit more closely into this
distribution, before we continue on to see how we can make sure that Isyn follows
it.

The Poisson distribution gives the probability that a certain number of events
will occur in a finite time interval. If a discrete random variable X is the number
of successes resulting from a Poisson experiment, we call it a Poisson random
variable and its probability distribution will be this Poisson distribution. The
Poisson distribution is given by the Poisson formula:

P (k;λ) = Pr(X = k) =
λke−λ

k!
. (4.11)

Here k = 0, 1, 2, ... represents the number of successes (or firing events in
our case) while λ represents the average number of successes within a region, or
the expected value of X. For a Poisson random variable it so happens that the
expected value coincides with that variable’s variance:

λ = E(X) = Var(X). (4.12)

We begin by defining what we will refer to as the neural response function for
a spike train, ρ(t):
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ρ(t) =
k∑
i=1

δ(t− ti). (4.13)

This function represents a sum of pulses, with each pulse corresponding to
an action potential. In this expression k is the total number of spikes or action
potentials in the spike train, and ti are the spike occurrence times. The unit
impulse signal δ(t) is defined as:

δ(X) =

{
1 if t = 0

0 otherwise

The neural response function can be seen as a list of spike times in the spike
train, and from it we can find an expression for the spike count, n, meaning the
number of spikes in the spike train in the time interval between t1 and t2:

n =

∫ t2

t1

ρ(t)dt. (4.14)

The neural response function also gives us an expression for the instantaneous
firing rate:

r(t) = 〈ρ(t)〉. (4.15)

Combining equation 4.14 and 4.15 we find the following expression for the
average spike count:

〈n〉 =

∫ t2

t1

r(t)dt. (4.16)

If the time interval t2 − t1 = δt is small enough the average spike count can
be approximated by:

〈n〉 = r(t)δt. (4.17)

Extending on this, δt can be reduced until the probability of more than one
spike occurring within this interval is small enough to be ignored. Then the
average spike count becomes equal to the probability of firing a single spike.

Combining the result from equation 4.17 with the Poisson formula from equa-
tion 4.11, we get:

P (n spikes during ∆t) =
(r∆t)ne−r∆t

n!
, (4.18)

for the probability of n spikes occurring in the time interval ∆t. Here we have
assumed a homogeneous Poisson process, which implies that the instantaneous
firing rate is a constant, r(t) = r.
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Let us take a quick recap. So far we have defined the neural response function
ρ(t) and used this to find an expression for the average spike count, which, for a
homogeneous Poisson process became r∆t. From this we were then able to find
the expression in equation 4.18 for the probability of finding n spikes within the
interval ∆t.

Now, in order to implement the synaptic input in the model what we need is
the spike times; when does the neuron being modeled experience synaptic input
from the surrounding neurons? To do this we begin by looking again at a time
interval. We call this time interval τ . What is now the probability that no spikes
occur within this interval? Using equation 4.18 with n = 0 and ∆t = τ we find:

P (next spike occurs after τ) = e−rτ . (4.19)

The probability that the next spike occurs before the time interval τ is up is
then:

P (next spike occurs before τ) = 1− e−rτ . (4.20)

Equation 4.20 is the cumulative distribution function for the probability of a
spike occurring within the interval τ . The probability density function for the
waiting time until the next spike is the derivative of this cumulative distribution:

p(τ) =
d

dt

(
1− e−rτ

)
= re−rτ . (4.21)

Now our work has paid off, and we have arrived at an expression for the
probability density function for the time in between the spikes in the spike train.
Drawing from this distribution gives us the time until the next spike of the
synaptic input, for synaptic input in the form of a Poisson spike train.

Each spike is given an amplitude drawn from the following probability distri-
bution:

P (x) =
2x

b2
exp

(
− x2

b2

)
, (4.22)

∫ +∞

0

P (x) dx = Γ(1) = 1. (4.23)

Here Γ is the gamma function, and b is the scaling factor accounting for the
effective strength of the synaptic input.

4.1.3 The Extracellular Matrix

In this model the ECM surrounding the neuron is represented through three vari-
ables. While Z describes the concentration of ECM molecules, R describes the
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concentration of ECM receptors, and P represents the concentration of extracel-
lular proteases.

As mentioned the basis of this model is various experimental results quanti-
fying the effects of the ECM on the neurons it surrounds, and vice versa. Experi-
mental observations have shown that neuronal firing stimulates ECM production.
The average activity, or firing rate, is represented by Q, and an increase in Q will
therefore lead to an increased value for Z. In addition to this, increasing concen-
trations of ECM molecules have been shown to increase the excitation threshold
for action potential generation. This is accounted for through the threshold cur-
rent’s dependence on the concentration Z, Ith(Z).

The ECM may slowly dissolve spontaneously and degrade due to the activa-
tion of extracellular proteases, and experimental results show that higher activity
levels lead to an increase in production, secretion and activity of numerous pro-
teases. To account for this behavior P will therefore increase when Q is large,
while increasing concentrations of P will lead to a decrease in Z.

ECM receptors such as integrins, also play an important factor, and the as-
sumption is made that their concentration, R, depends on the average activity
level. Experiments indicate that R is higher if the average neuronal activity
decreases below some critical level. This too is accounted for in the model.

In other words, increased neuronal activity is taken to increase the concen-
tration of ECM molecules as well as proteases, while decreasing the production
of receptors. At the same time the available proteases will cause degradation of
the ECM molecules.

To account for how the ECM then influences the firing rate of the neuron, the
production of ECM molecules and the expression of ECM receptors are assumed
to be statistically uncorrelated processes, and the synaptic strength, meaning the
strength of the synaptic connection to other neurons, is taken to be proportional
to the product ZR. Figure 4.3 shows an illustration of these effects.

To account for the ECM-mediated homeostatic regulation, the article pro-
poses a two-part feedback circuit to summarize these effects. This feedback circuit
aims to describe the basic effects the ECM-influence has on neuronal excitability
as well as the efficacy of synaptic transmission. This circuit comprises two basic
feedback mechanisms:

• The excitation threshold is regulated through Ith in an activity dependent
way. Ith will depend on both the concentration of ECM molecules and
proteases, and will lead to fluctuations in the resulting firing rate of the
neuron.

• The concentration of ECM-receptors will influence the effective strength of
the synaptic input to the neuron, which again will influence the firing rate.

This circuit is in [Kazantsev et al., 2012] visualized as in figure 4.1.
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Figure 4.1: Schematic illustration of ECM-induced homeostatic regulation
of average activity, as given in [Kazantsev et al., 2012].

Figure 4.2: Figure (A) shows how the activation functions of Z, R and P
depend on Q, while (B) shows steady state distribution profiles for Z∞, P∞
and R∞ as a function of Q.
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On the basis of recreating the mechanisms described, the following mathemat-
ical model for ECM-induced homeostatic regulation of firing rates is proposed.
The following three differential equations govern the time evolution of the con-
centration of ECM molecules, proteases and receptors:

dZ

dt
= −(αz + γpP )Z + βzHz(Q, z0, z1, θz, kz) (4.24)

dP

dt
= −αPP + βpHp(Q, p0, p1, θp, kp) (4.25)

dR

dt
= −αrR + βrHr(Q, r0, r1, θr, kr). (4.26)

Here the activation functions Hz,p,r are approximated with a two-level sigmoid
function of the following form:

Hx(Q, x0, x1, θx, kx) = x0 −
x0 − x1

1 + exp

(
− (Q−θx)

kx

) , x = z, p, r. (4.27)

These activation functions describe the activation kinetics for the concentra-
tions of ECM molecules, proteases and ECM receptors. The parameters x0 and
x1 are the asymptotic levels as Q→ ±∞, respectively, θx is the activation mid-
point, and kx is the inverse slope of the activation curve. The parameters αx
define the rate of spontaneous degradation of ECM concentration, proteases and
ECM receptors, while βx describes the activation rate of these variables.

The parameters where chosen based on phenomenological observations.
In addition, the neuronal dynamics are modulated following two feedback

functions:

Ith = Ith(Z) = I0(1 + γZZ) (4.28)

b = b(ZR) = b0(1 + γZRZR). (4.29)

Through equation (4.28) the activity level of the neuron is modified by chang-
ing the effective excitation threshold. This is modeled in the simplest form, by
changing the depolarization level necessary to elicit an action potential. The
feedback gain is described by the parameter γZ .

In a similar way, the synaptic weights are modified following equation (4.29),
depending on the product ZR and with gain γZR. The result is a potentiation
or depression of the synaptic input. The feedback mediated by proteases is
implemented in equations (4.24)-(4.26) as a nonlinear relaxation of the ECM
concentration controlled by the gain parameter γP .

Now that the Kazantsev model has been introduced, we move on to look at
my implementation of it.
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Figure 4.3: A schematic illustration of the model introduced in [Kazantsev
et al., 2012].





Chapter 5

Implementation

When implementing the model from [Kazantsev et al., 2012] introduced in the
previous chapter, the Kazantsev model, there were many choices that I had
to make. My starting point was the set of differential equations making up
the model, and from that I had to determine what programming language to
use, what environment to program in, whether I was to use an object-oriented
approach, as well as how to test my program, amongst other things. In the
following I will give an overview of the various aspects of my implementation,
and I will attempt to convey my reasons for making the choices that I have made.

5.1 Programming Language and Environment

The system to be implemented is fairly small, consisting of only eight ordinary
differential equations. These were, however, coupled and highly non-linear. Due
to it being a relatively small system I still figured I could choose programming
language quite freely. Nevertheless, the system at hand was one where two con-
trasting timescales were at play, and as such I wanted to choose one were the
performance and efficiency would not be unnecessarily limiting.

When I was only getting started, I knew only what the model I wanted to
implement looked like, while it was still unclear where I would go from there, and
how I would choose to modify or explore the model further. As such I naturally
wanted to use a flexible language, where my options would be wide open.

I also needed to settle on a general structure for the program to be made,
and I felt using object-oriented programming seemed most natural for the prob-
lem at hand. I will go further into the details of the structure in the following
section. With all these preferences in mind a very logical choice was to use the
programming language C++.

Having made my choice of language a natural next step is the environment
in which to work. My personal preference is to always choose as simple of an
approach to this as possible, to avoid unnecessary errors and complications that

37
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are due to the framework and not the program itself. My experience with various
developing environments have demonstrated how the debugging process can be
frustratingly complicated by bugs present in the framework, or the interplay
between the framework and the program being made.

Despite my general dislike for such frameworks, however, they have several
redeeming qualities. It was easy to see that the model to be implemented would
lead to a fairly large program, which could quickly become disorganized. With
larger programs consisting of several separate files, frameworks can be a big
help in keeping the whole thing neat and organized. A common feature is also a
simplified process of compilation and build for the program, which can be a great
relief. These features will also be useful if my code is to be used be others after
me, who will then have an easier time grasping the structure of the program, and
how to use it.

Taking all this into regard I decided to use the development environment
Qt Creator [Project, 2015], which seemed to fit my needs nicely. I chose this
particular framework partly as I was familiar with it already, and have had pos-
itive experiences using it. Another reason for choosing Qt Creator, specifically
was that I also wanted to integrate testing into my program in a simple, straight-
forward, and clear cut way, and I knew that Qt Creator worked well integrated
with the unit testing framework UnitTest++.

5.2 Unit testing

Unit testing is a very useful way of testing one’s implementation. The idea
is to individually test each unit, with a unit being a module or component of
a program, with the goal of testing independently that each unit behaves as
intended. A unit can have various sizes, from an individual method to an entire
class.

Imagine for instance that you have made a method that takes two integers,
a and b as input, and the desired output is the product of these numbers. We
call this method muliply, and have it be a method in the class Calculator. A
typical unit test will then look as follows (in C++ using the UnitTest++ testing
framework):

#include <unittest++/UnitTest++.h>

#include <calculator.h>

TEST(Calculator) {

Calculator calc;

CHECK(calc.multiply(3,5) == 15);

}
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int main()

{

return UnitTest::RunAllTests();

}

Running this test should then give you an output with information about
the result, whether it succeeded or failed, how long it took, and if it failed the
expected as well as the actual value is printed.

A successful run will an output similar to this:

Success: 1 test passed.

Test time: 0.01 seconds.

whereas a failed test may give:

../../projectname/tests/main.cpp:95: error:

Failure in Calculator: Expected 15 but was 5

FAILURE: 1 out of 1 tests failed (1 failures).

Test time: 0.01 seconds.

You might also want to include a test that checks for multiplying two negative
numbers, a negative and a positive number, and so forth. We want to check that
the output is as expected for any possible logical input the function may get, and
it may also be a good idea to test unreasonable input, to check the error handling
within the function.

Generally it may be a good idea to write the tests for a method before the
method itself. Then you assure that you have thought through what the desired
behavior is, and that the method you create is easy to test. The tests then act
as a sort of design document, specifying the desired interface and behavior of the
method to be implemented.

Unit testing is beneficial for several reasons. Making the unit tests continually
as the units are being created allows errors and bugs to be discovered early, and
forces the developer to think more thoroughly at what the desired behavior of
the unit is. When making unit tests throughout the development one is also
more likely to write “testable” code, meaning code that is more simply tested,
containing smaller, more specific functions that are more likely to be reusable
later on. It is also a good way to notice errors that turn up unexpectedly later in
the development process. The resulting behavior should then remain unchanged,
and the unit tests will warn you if this is not the case.

UnitTest++ [Blume, 2015] is a framework for unit testing in C++ that is very
light weight and easy to use. It integrates nicely with Qt Creator, and as such it
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seemed a very good choice for my needs. It can be set up to run all tests at every
new build, so that changes that cause failure in one or more tests are noticed
right away.

Let us now move on to look at the structure of my program.

5.3 Program Structure

As previously mentioned I have implemented the model using object-oriented
programming. In this programming paradigm the main constituents are objects.
Each object is an instance of a class, and as such contains the methods defined in
the class. This allows for a lot of flexibility and tends to make the final program
a more organized one, that is easier to get a quick overview of.

In figure 5.1 one can see a schematic overview of the program structure. The
top half, labeled Interface, shows how the model and solver are separated into
two different classes, while experiments can be made by allowing a solver object
to work on a model object. Unit tests were of course made for the methods of
both these classes. In addition I created several support classes, for tasks such
as writing the results to file.

This way of implementing the model, separating the implementation into a
problem/model class and a solver class allows for a great deal of flexibility. The
Solver class has very little dependency on the specifics of the implementation of
the particular model to be solved. As such it can be used to solve many similar
problems without needing to be changed or adapted to the specific problem at
hand. A solver object simply advances the model one step in time using one of
the numerical schemes at its disposal (currently three).

In my implementation, shown schematically in the lower half of figure 5.1, I
chose to create a virtual parent class dubbed Neuron Model. This virtual class
acts as an interface, and a specific neuron model can be constructed as a daughter
class, implementing the virtual methods in Neuron Model. This way it is easy to
create a model that can be solved by use of the Solver class. The Solver class I
have designed solves a model problem implementing the Neuron Model interface
by accessing the right hand side of the voltage equation, as well as the right
hand side of ODEs governing any gating or non-gating variables present in the
model. To solve the issue of different models having different numbers of gating
and non-gating variables, these variables are stored in arrays. The solver can be
used both with a constant size time step as well as an adaptive one, as the user
can specify the step size for each step taken.

Looking at the specific model problem at hand, the Kazantsev model, we
see that it can be can be viewed as an extension of the Hodgkin-Huxley model
[Hodgkin and Huxley, 1952]. The Hodgkin-Huxley model is simply one specific
model for the electrical activity of a neuron, and as such I created a model
class dubbed HodgkinHuxley, implementing the virtual Neuron Model class. The
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Kazantsev model was then implemented as a daughter class of this Hodgkin
Huxley class, to minimize redundancy.

This is a useful approach for several reasons. For one, creating a Hodgkin-
Huxley class allows for objects to be created that are instances of this class. The
Hodgkin-Huxley model is a very popular model, and having it implemented in
this way, separate from the Kazantsev model, allows me to test my implemen-
tation against the thoroughly verified results of others. It is also handy in that
very many existing neuron models are extensions of the Hodgkin-Huxley model,
often with additional ion currents added. Having the Hodgkin-Huxley model
implemented as a base model lets these more extensive models be implemented
more easily. In addition it will be easier to see how the addition of the extra
components present in the Kazantsev model affects a neuron, as comparing with
a neuron lacking these additions is now straightforward.

Model

Parameters
Analytical Expressions
Right-hand sides

Solver

Numerical scheme
Defines forward step

Kazantsev
(Class)

Interface

Implementation

Solver
(Class)

Forward EulerHodgkin-Huxley
(Class)

Experiments

Uses solver to generate results

Testing
Unit testing and verification

Neuron Model
(Virtual class)

Inherits

Inherits

Methods

Rush-Larsen

Runge-Kutta 4

Figure 5.1: A schematic overview of the program structure.

The various components shown in figure 5.1 are made so as to be easily reused
and expanded. Letting the Neuron Model class be a virtual class allows for fairly
few restrictions in regards to which models can be implemented in this set up,
and solved by the methods in the Solver class. A wide variation of models may
be implemented as its descendants. It simply acts as an umbrella class, with the
Solver class being able to be used on any object that inherits from the neuron
model class and as such “is” a neuron model.
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In the following section we embark on the next step, which is to look more
closely at this Solver class, and the numerical methods it employs.

5.4 The Solver

With the model implemented in a way that allows for a fair amount of flexibility
when it comes to expanding on the model or changing it, we want a method for
solving such a general model. Regardless of modifications the model to be solved
will consist of a set of ordinary differential equations, one describing the time
evolution of the membrane voltage V , a set for the gating variables, and a set
for the remaining time dependent variables, which I have chosen to refer to as
non-gating variables.

A natural choice is to make a solver class containing the methods for solving
such a model system, and the goals for this class is for it to be intuitive and easy
to use, preferably allowing for several solver methods. It should also be general
enough to be able to solve all model systems that inherit the neuron system
virtual class without needing any modifications.

5.4.1 Choice of Numerical Scheme(s)

The goal when solving a system of differential equations is generally to determine
how the system evolves in time (and/or another variable, such as space, depend-
ing on the system). Such systems quickly become too complicated to be solved
analytically, and this is when we turn to numerical solvers. The Solver class
is currently implemented with a choice of three different numerical schemes for
solving the system of ordinary differential equations that make up a specific neu-
ron model. New solver schemes can also be added in a relatively straightforward
way, should it be needed.

There are several reasons why having multiple numerical schemes to choose
between is desirable. For one thing, comparing the results when using different
schemes is a good way to check your implementation for errors and bugs. If you
get equivalent results using several numerical schemes, that points to a correct
implementation of the schemes themselves.

Another clear advantage of having more than one numerical scheme to choose
between is that different schemes naturally have varying strengths and weak-
nesses, as well as different stability characteristics. Depending on the problem
at hand and your desired level of accuracy in the resulting solution, solvers of
different complexities are needed.

It might be tempting to say that a more complex and thereby (hopefully) more
accurate solver is always the desired choice, but increased complexity goes hand
in hand with an increased need for computational power. When solving large
systems and/or for long time periods, any unnecessary increase in complexity is
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undesirable as it will lead to a noticeable increase in running time. An example
where this is an important consideration is when doing parameter fittings. In
such situations the model to be fitted needs to be run for every parameter set
included in the fitting, which can naturally be very time consuming. The larger
number of parameter sets tested, the more accurate the parameter fitting will
generally be.

Weighing your needs for accuracy, stability and efficiency, you can then choose
the numerical scheme best suited to your needs.

The three numerical schemes that I have chosen to implement are the explicit
forward Euler scheme, the Runge-Kutta scheme (RK4), as well as the Rush-
Larsen scheme. In the following I will introduce each of these solver schemes,
and discuss their respective strengths and weaknesses.

The Explicit Forward Euler Scheme

We begin by looking at the simplest of the implemented solvers. A general initial
value problem to be solved can be formulated as follows:

dy

dt
= f(t, y(t)), y(t0) = y0. (5.1)

We wish to find an algorithm allowing us to solve this problem numerically.
A simple first approach is the standard Euler method. This method can be
derived by considering the Taylor expansion of the function y around the point
t0. Expanding to the second order this becomes:

y(t0 + h) = y(t0) + hy′(t0) +
1

2
h2y′′(t0) +O(h3). (5.2)

Inserting equation 5.1 into this expression, and renaming h as ∆t while dis-
carding the second-order and higher order terms, we are left with:

y(t0 + ∆t) = y(t0) + ∆tf(t0, y0) (5.3)

which is generalized to:

yn+1 = yn + ∆tf(tn, yn), (5.4)

with yn = y(tn) = y(n ∗∆t) for time step n.
This is the explicit forward Euler method, where the next step forward is

calculated using the previous step and the right hand side of the differential
equation. The local truncation error, E, of this method, meaning the error after
one time step, is easily found by comparing the result when taking one step using
the method, y1 = y0 + ∆tf(t0, y0), with the Taylor expansion from equation 5.2.
The difference between these results is:
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E(∆t) = y(t0 + ∆t)− y1 =
1

2
∆t2y′′(t0) +O(∆t3). (5.5)

From this we see that the error when taking one step with the forward Euler
method is approximately proportional to ∆t2 for small step sizes. This is called
the local truncation error. Solving for a total time T , means we take a total of
T
∆t

steps, and from this the global error, GE, of the method becomes:

GE(∆t) = O(∆t2)× T

∆t
= O(∆t) (5.6)

As such we see that the forward Euler scheme is not amongst the most accu-
rate methods, and why it is referred to as a first-order method. In addition to
this fairly large global error, the Euler method has a tendency to be numerically
unstable. As such it is not the most reliable of solver methods, often requiring
the use of very small time steps to give acceptable results. Nonetheless it is a
regularly used solver scheme, primarily due to its simplicity and ease of imple-
mentation.

The Explicit Runge-Kutta Scheme

A far more numerically accurate scheme is the Runge-Kutta method, also known
as Runge-Kutta 4 or the fourth order Runge-Kutta method. It is the most
popular of a family of similar Runge-Kutta methods containing both implicit
and explicit methods. It is far more complicated than the simple Euler method
described above, but with the reward of increased accuracy and stability.

When using numerical integration to solve a system of differential equations
the standard procedure is to divide the time interval (or that of the equivalent
variable) into very many small intervals, under the assumption that for such a
small interval we can assume that the slope of our function is approximately
constant. Where the various methods vary is generally in how this slope is
determined.

In the Euler method described above we saw that the slope was based simply
on the value at the previous interval or time step. It is easy to see that this
procedure may lead to an under- or overestimation of the slope. Many methods
are variations of this approach, such as the midpoint method where the slope is
instead determined from the value obtained halfway between the previous step
and the one being calculated, at t = tn + ∆t

2
. Then we arrive at the expression:

yn+1 = yn + ∆tf(tn +
∆t

2
, yn +

∆t

2
f(tn, yn)). (5.7)

The Runge-Kutta method takes this general approach a few steps further. In
order to calculate a more accurate value for the slope it adopts a weighted average
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of four different approaches. As such the next step given by the Runge-Kutta
method becomes:

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4). (5.8)

Each of these four k’s are different slope approximations, and the hope is that
they together will produce a more accurate result than they do on their own. The
first one, k1 is found by simply using Euler’s method from the previous section,
k2 takes it a (half-) step further with the midpoint method, k3 uses the midpoint
method again, but now using the result for k2, while k4 is based on the value at
the end of the interval. The expressions become:

k1 =f(tn, yn), (5.9)

k2 =f(tn +
∆t

2
, yn +

∆t

2
k1), (5.10)

k3 =f(tn +
∆t

2
, yn +

∆t

2
k2), (5.11)

k4 =f(tn + ∆t, yn + ∆tk3). (5.12)

Being a fourth order method, the local truncation error of the Runge-Kutta
method is in the order of O(∆t5), giving a fourth order global error. This can
be found in the same way as we did for the forward Euler method, by Taylor
expanding y and finding the difference between the resulting expression and that
shown in 5.8. This is a big improvement in accuracy compared to the forward
Euler scheme, but the with the cost of a higher complexity. The Runge-Kutta
scheme is more computationally demanding, and the implementation is more
troublesome. Being an explicit method it will also have some stability issues. I
will expand on these stability issues later on in the chapter.

The Rush-Larsen Method

The final of the three methods implemented is the Rush-Larsen method. This
method was especially designed with the goal of solving systems like the Hodgkin-
Huxley model in a labor efficient way, without losing accuracy. It takes advantage
of a handy rewrite of the ODEs for the gating variables. The Rush-Larsen method
is a popular solver, particularly when studying myocardial cell models, by virtue
of being easy to implement while outperforming other simple integrators like for
instance the forward Euler method.

As we have previously seen the gating variables in the Hodgkin-Huxley model
all satisfy the following first order differential equation:

dxi
dt

= αxi(1− xi)− βxixi. (5.13)
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Here αxi and βxi are the rate coefficients of xi, gating variable i. In the
standard Hodgkin-Huxley model we operate with three gating variables, h, n
and m, but other more extensive models may have included many additional
ionic currents, and as such many more gating variables.

The rate coefficients will be dependent on the current value of the membrane
potential, but let us now assume that they are instead constants. We rewrite
equation 5.13 as:

dxi
dt

= αxi − xi(αxi + βxi). (5.14)

It is then clear that under this assumption the solution of the differential
equation will approach a constant steady state. Calling this constant solution
xi,∞, we get:

dxi
dt

= 0 = αxi − xi,∞(αxi + βxi), (5.15)

giving:

xi,∞ =
αxi

αxi + βxi
. (5.16)

With this expression for xi,∞, and the substitution τ ≡ 1
αxi+βxi

we can rewrite

the differential equation as:

dxi
dt

=
xi,∞ − xi

τ
. (5.17)

These manipulations have led us from the original expression in equation 5.13,
where the ODE was expressed in terms of the rate constants αxi and βxi , to the
above expression using instead xi,∞ and τ . This may seem arbitrary, but the
reward for our work is that we are now able to solve this equation analytically.
Using (for instance) the substitution u = xi,∞ − xi, we find that the solution
becomes:

xi = xi,∞ − (xi,∞ − xi,0) exp(−t/τ). (5.18)

Now naturally the rate coefficients will not actually be constants, but are
instead dependent on the membrane voltage V , but we can make the assumption
that they are constant over the duration of one time step, ∆t. The scheme for
gating variable x becomes:

xn+1 = xn,∞ + (xn − xn,∞) exp(−∆t/τn), (5.19)

with:

τn =
1

αn + βn
, (5.20)
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and:

xn,∞ = αnτn. (5.21)

In these expressions n indicates the current time step as in the previous nu-
merical schemes, and I have dropped the i indicating that this is the i’th gating
variable, for simplicity.

For the remaining (non-gating) variables, including the membrane voltage V ,
a simple forward Euler scheme is commonly used.

5.4.2 Stability of the Schemes

The methods I have implemented are explicit ones, and this comes with the
price of limited stability. Explicit methods are methods where the next step
of the solution is calculated directly from the current values of the variables.
In contrast implicit methods will also use information from a later time step.
Implicit methods are generally more complex to implement, and require greater
computational expenses. They are also more difficult to program in a general
as opposed to problem specific fashion. However they have the upside of being
numerically stable methods, meaning that they produce well behaved solutions
even for large time steps.

The typical form of an explicit method is as follows:

yn+1 = yn + ∆t× f(..). (5.22)

The next step in the solution is calculated using the previous step, plus the
time step multiplied with some function whose form will vary between the dif-
ferent schemes. It is easy to see from this that a too large ∆t can quickly lead
to trouble with a rapidly growing solution (in the positive and/or negative direc-
tion), thus giving instability for the method.

For the Rush-Larsen method the situation is a bit more complicated. The
membrane voltage, as well as any non-gating variable, is in this scheme solved
using the simple forward Euler method, and as such the stability here is as for
the standard explicit forward Euler scheme. The differential equations for the
gating variables are instead solved using a exponential integrator. We saw in
the section on the Rush-Larsen method that the analytical solution for these
differential equations was as in equation 5.18. Looking at this expression we see
that the last term contains a decaying exponential, meaning that that the solution
for xi will approach xi,∞, as the difference (xi,∞ − xi) decays exponentially.

We know that the values of the gating variables indicate a probability that a
gate is open, and as such they can only take values between 0 and 1. Looking at
the Rush-Larsen scheme given in equation 5.19, we see that in this scheme xn+1

can never take a value that is greater than 1, even for a large ∆t. The solution
can never “blow up”, it will simply approach x∞.
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Taylor expanding the exponential gives:

exp(−∆t/τn) = 1−
(

∆t

τ

)
+

1

2

(
∆t

τ

)2

− 1

6

(
∆t

τ

)3

+O(∆t4). (5.23)

For a small enough ∆t the higher order terms will approach zero, and we are
left with 1− ∆t

τ
. Using this in place of the exponential in equation 5.18 gives:

xi = xi,∞ − (xi,∞ − xi,0)(1− ∆t

τ
), (5.24)

which is easily seen to not have the property of assuring that xi < 1. This
expression also reduces to the explicit forward Euler scheme when expanding the
parentheses. In other words the Rush-Larsen scheme reduces to a forward Euler
scheme for small ∆t. This quality of the Rush-Larsen scheme is utilized in a
version of the scheme often labeled an adaptive Rush-Larsen scheme. In this
variant the forward Euler scheme is used also for the gating variables, so long as
∆t
τ

is small enough.
This also illustrates what constitutes a “small enough” time step for the

explicit forward Euler method to be numerically stable. When τ is big, this
means that the state of the gating particle changes more slowly, and a larger step
size can be used.

5.4.3 A Note on Stiffness

When solving systems of differential equations numerically, it is often beneficial
to examine the stiffness of the equations at hand. As there is no universally
accepted theoretic definition of stiffness, this is not always easy to do. Generally,
a differential equation is regarded as stiff if an impractically small step size is
required for the numerical solution to remain stable. Stiffness is regarded as
a property of the differential system itself, and if not addressed it can lead to
notable inaccuracies in the final solution.

A large number of cell models, including the Kazantsev model that we ex-
amine here, consist of a system of ODEs. These models are often based on the
Hodgkin-Huxley model, and contain ODEs that are typically non-linear, and gen-
erally include a transmembrane potential, a set of ionic concentrations, as well
as a number of gating particles. For these systems stiffness can often become
an issue, with some of the equations being stiff, at least in specific intervals. To
avoid instability in the solution it is therefore beneficial to address this stiffness
and find ways to deal with it.

How can stiffness be dealt with? Often it is a matter of using an appropriate
solver method. As mentioned in the previous sections different solvers have vary-
ing strengths and weaknesses, and as such some solvers are better suited to solve
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stiff equations than others. It is the level of stiffness in an equation that will
determine if a specific numerical method will be able to solve a model efficiently
(without requiring en unrealistically small step size). The difficulty then lies in
determining the level of stiffness in the system, and as stiffness has not been
precisely defined this is not necessarily trivial.

One common approach when determining stiffness is to regard the ODE as
stiff on a time interval (with respect to the numerical method used and the
error tolerance chosen) if stability requirements force the numerical method to
advance the solution using smaller step sizes than what is dictated by accuracy
requirements [Ascher and Petzold, 1998].

Another approach that can give information on the stiffness of the system uses
the eigenvalues of the Jacobian matrix of the equation set. Given an initial value
problem as in equation 5.1, the Jacobian matrix can be found from J= ∂f

∂y
(t, y).

The stiffness of such an initial value problem is associated with the eigenvalues of
this Jacobian matrix, evaluated over time. If the equation at hand is stiff, these
eigenvalues typically have large negative real parts. We see this from the fact that
a large negative eigenvalue λ means that the time step ∆t has to be small, else
λ∆t will lie outside the stability region of the numerical method [Marsh et al.,
2012].

There are several options when it comes to combating stiffness. Using implicit
methods as explained above will assure a stable solution, but it is not always
feasible to do. Other solutions include using self-correcting methods, but this also
tends to increase the complexity of the implementation, and the computational
demand at each time step. The extra required computational demand may be
offset by the possibility for using larger time steps, but sometimes simply assuring
the time step chosen is small enough is the easiest solution. Using multiple solver
schemes and comparing the results will also give confidence in the found solution.





Chapter 6

Exploring the Model

Having looked at the more technical aspects of my implementation we move on to
look more closely at the model itself, and how it behaves. A first step in exploring
the model further is to assure first and foremost that my implementation of it
is correct, and that the model behaves as expected. Once it has been assured
that the model implementation is satisfactory, we continue ahead and explore
the model and its behavior. The goal is to get an understanding of the workings
of the model and how it relates to experiments, while examining how it can be
simplified or expanded upon, depending on need.

6.1 Reproduction of the Kazantsev Model

As the model described in [Kazantsev et al., 2012] has been the basis of this
thesis an important first step has been to evaluate whether my implementation
of the model behaves as expected, by reproducing some of the results included in
the article. This is a good strategy to check for errors in my own implementation
of the model, before the model is explored further.

As I have been using unit testing to test all methods used in the model, I
could be fairly confident that my methods did what I expected them to. Still, it
is wise to investigate whether or not they together create the expected behavior.
We start by looking at the core of the model, the modeling of the spike generation
in the neuron.

6.1.1 Testing the Core of the Model

The Kazantsev model is based on the Hodgkin-Huxley formalism and uses it to
model the activity of the neuron, and as such this can be seen as the core of
the model. It is essential for the rest of my implementation that this part of my
implementation works as intended, and we test this by comparing my model with
available results.

51
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The Hodgkin-Huxley model of a neuron is a thoroughly tested and much used
model, and as such it should be more than possible to verify my implementation
against existing results. To do this I decided to recreate figure 3.11(a) in [Sterrat
et al., 2011], which is seen in figure 6.1. In this plot there is no input current,
not even a pulse. Instead the simulation is started with the initial membrane
potential being at various distances above the resting membrane potential. With
all parameters chosen as in [Sterrat et al., 2011], I attempt to recreate this result
and the plot I get using my implementation is shown in figure 6.2.

Figure 6.1: Solutions of the Hodgkin-Huxley equations for various initial
polarizations above resting potential, as indicated by the numbers on the lines.
Figure taken from [Sterrat et al., 2011]

Comparing these figures we can conclude there seems to be a good agreement
between my implementation and the expected behavior for a Hodgkin-Huxley
system. The resulting action potentials produced have very similar shapes, last
for the same time period, and reach a similar amplitude. The firing thresholds
also seem to agree, with V0 + 7 mV resulting in a spike in both cases, while
V0 + 6 mV does not lead to a spike for either.

With the model foundation working as it should, the next step is to look at
the synaptic input current in to the system.

6.1.2 Synaptic Input

The neuron modeled in the Kazantsev model receives synaptic input in the form
of excitatory post synaptic current (EPSC) from surrounding neurons. This input
is included in the form of a Poisson spike train. The amplitudes of these incoming
spikes obey a probability distribution given by the expression:
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Figure 6.2: Experimental solutions of the Hodgkin-Huxley equations for
various initial polarizations above resting potential, using my implementation
of the Kazantsev model, removing the threshold current Ith and the synaptic
input current Isyn so we are left with a simple Hodgkin-Huxley system.
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P (x) =
2x

b2
exp

(
− x2

b2

)
. (6.1)

Comparing this theoretical distribution with the amplitudes generated in my
implementation, as seen in figure 6.3, we see that they seem to be in very good
agreement. The figure shows the result for two different scaling factors of the
input, b = 6 and b = 10, in the form of a histogram of the current amplitudes
produced, with the red dotted line indicating the matching theoretical distribu-
tion. The histograms follow the theoretical distribution nicely for both scaling
factors, and as such it seems the amplitudes of the incoming spikes are as they
should be.

0 5 10 15 20 25
IEPSC

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

b=6

(a)

0 5 10 15 20 25
IEPSC

0.00

0.02

0.04

0.06

0.08

0.10
Pr

ob
ab

ili
ty

b=10

(b)

Figure 6.3: Histogram showing the probability densities of the amplitude of
the synaptic input, together with the theoretical distribution for b = 6 (a),
and b = 10 (b).

Knowing that the amplitudes of the incoming excitatory post synaptic current
are as expected, there is still the possibility that they do have the correct am-
plitude, but are produced at the wrong frequency. Figure 6.4 shows a histogram
of the probability distribution for interspike times, meaning the time in between
spikes, produced by my implementation. The histogram is plotted together with
a red line showing the expected distribution, given by:

P (t) = fin exp(−finx). (6.2)

As seen in figure 6.4 the interspike times produced look to be in very good
agreement with the theoretical distribution.

Having verified that the incoming EPSC given as input to the neuron has the
expected frequency as well as amplitude, I feel confident that my implementation
of the synaptic input works as intended. With this part of my implementation
verified, together with the Hodgkin-Huxley model of the neuron, we move on
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Figure 6.4: A histogram showing the probability density of the time be-
tween the spikes of the synaptic input. The red line shows the theoretical
distribution. The input frequency fin = 0.2 kHz.
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to look at the resulting firing activity of the model, and the average activity
resulting from it, Q.

6.1.3 Firing Activity

A key component in the model is the variable Q, representing the average firing
activity of the neuron being modeled. Figure 6.5 illustrates how this variable
in [Kazantsev et al., 2012] is showed to relate to the input frequency finput, which
is the characteristic frequency of the synaptic input. The solid line shows the
logistic curve fitted to the data, given by the expression:

Q = A2 +
A1 − A2

1 + (finput/f0)2
, (6.3)

with A1 = 0.02861, A2 = 2.80585, and f0 = 0.83012 Hz [Kazantsev et al.,
2012].

Figure 6.5: The average activity Q as a function of the input frequency of
the Poisson synaptic input. Figure taken from [Kazantsev et al., 2012].

An attempt at recreating this plot is shown in figure 6.6. In creating this plot
the model is run for two minutes for each value of finput, and the value for Q is
found by averaging over the last minute. In figure 6.7 we see that after about a
minute of run time, the value for Q has stabilized around its steady state value,
and as such this is a sensible procedure.

The red dots in figure 6.6 show the average activity Q measured for various
values of the input frequency finput. The blue line shows the line given by equation
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Figure 6.6: The average activity Q as a function of the input frequency of
the Poisson synaptic input in my reproduction of the Kazantsev model. The
figure is created by running the model for two minutes so that the average
activity stabilizes, for each of the input frequencies tested. Each data point is
the average activity measured in the last minute of the run. Parameter values
as given in figure 2 in [Kazantsev et al., 2012]. Solver is explicit forward Euler
with a time step dt = 0.0005 ms.
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Figure 6.7: The average activity Q seen as a function of time to show that it
stabilizes around its steady state value after about a minute. Parameter values
as given in figure 2 in [Kazantsev et al., 2012]. Solver is explicit forward Euler
with a time step dt = 0.0005 ms.
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6.3, which is seen to be a good fit with the data points in figure 6.5. In figure 6.6
however, the measured data point lie high above this line for all input frequencies.
In other words, my implementation results in a markedly higher average activity,
given the same input frequency. This is clearly a serious discrepancy, and there
are multiple possible reasons that could explain this dissimilarity.

In the article, a number of the parameters used when creating the plot are not
mentioned explicitly, so these had to be determined in some other way. To do this
I have in general opted for using parameters corresponding to those used in other
parts of the paper. The parameters for the Hodgkin-Huxley part of the model
however, meaning the modeling of the ionic transmembrane currents, were not
given anywhere, and as such had to be found elsewhere. I used the parameters
given on page 61 in [Sterrat et al., 2011]. This is of course not a perfect solution,
but one that may possibly have led to at least some of the discrepancy seen.

Figure 6.8: The average activity Q as a function of the input frequency of
the Poisson synaptic input in my reproduction of the Kazantsev model. Figure
created as 6.6, but with the scaling of the synaptic input reduced to b = 2.5.

Let us explore this discrepancy further. Looking at figure 6.6 we see that the
measured values for Q give a plot that does seem to have a similar shape to the
curve fitted to the results in the article. It looks like the disparity between the
results lie in the amplitude/scaling as the behavior seems to be quite similar oth-
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Figure 6.9: The average activity Q as a function of the input frequency of
the Poisson synaptic input in my reproduction of the Kazantsev model. Figure
created as 6.6, but with the threshold current increased to Ith = 15 µA/cm2.

erwise. We move on to explore this further by modifying parameters controlling
this scaling.

A first exploration was done by simply lowering the scaling factor, b, of the
synaptic input, as lowered synaptic input is expected to give a lowered firing
frequency. The result is shown in figure 6.8. I also attempted to increase the
spike excitation threshold, and the result is seen in figure 6.9. In both these
attempts of lowering the activity we see a tendency to undershoot the activity
for low input frequencies, and overshoot for higher input frequencies. Lowering
the synaptic input does seem to give a noticeably better fit to the given curve,
but there are still clear discrepancies.

When looking at the dependence of the average activity, Q, on the current
Ith, we see again that although the general trend is as in the article, the values for
the activity are noticeably higher. A plot is shown in figure 6.11, and comparing
with the original plot from [Kazantsev et al., 2012], shown in figure 6.10, we see
this clearly.

It is worth mentioning that I have also checked that my error is not simply in
the implementation of Q, it is the actual activity of the neuron which is higher
than expected. I confirmed this by reproducing the plot in figure 6.6 from the
membrane voltage V alone. I did this by using the membrane voltage produced
by my implementation to find the spike frequency and spike duration. A value
for Q can then by found by using equation 4.10 in chapter 4. The results from



Section 6.2 Reproduction of the Kazantsev Model 61

Figure 6.10: The average activity Q as a function of threshold current Ith.
Figure taken from [Kazantsev et al., 2012].

this procedure were near identical to that seen in figure 6.6. It is then clear
that the discrepancy does not lie with Q, but instead with the membrane voltage
produced by the neuron model.

With the base system working as it should, as well as the synaptic input,
I can find no obvious error in my implementation of the Kazantsev model. As
an extra measure of quality control I did also re-implement the model using
the programming language Python, and my results were identical to my original
implementation. As such I draw the conclusion that the discrepancy is not due
to an error in my implementation, and in my further work I will simply expect a
higher level of activity than what has been found in [Kazantsev et al., 2012].

I now move on to look at the molecules, receptors and proteases of the ex-
tracellular matrix (ECM), responsible for the homeostatic regulation of firing
activity in the model.
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Figure 6.11: The average activity Q as a function of the threshold current
Ith in my reproduction of the Kazantsev model. Figure created using the same
parameters as in figure 6.10.

6.2 Steady State Behavior of the Extracellular

Matrix

The key part of the Kazantsev model is its inclusion of the extracellular matrix
and this structure’s effect on the neuron it surrounds. Being an early attempt
at modeling this interplay, it is modeled in a quite straightforward way, where
the various molecules associated with the ECM are included in the form of three
coupled differential equations. These molecules affect and modulate the activity
of the neuron through two additional equations for the synaptic strength and
the threshold current. A first step now that the implementation of the core of
the model has been tested and verified, is to look more closely at these ECM
molecules and their effect on the model dynamics.

The differential equations controlling the dynamics of the ECM molecules, Z,
receptors, R, and proteases, P , are all made up of a simple decay term, as well as
a growth term controlled by an activation function, with Z having an additional
decay term. The shape of these activation functions are shown in figure 6.12.

From this figure there is clearly seen to exist two different steady states, one
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Figure 6.12: The activation functions for the various molecules of the ECM,
as a function of the average activity Q. Reproduction of figure 4 in [Kazantsev
et al., 2012].



64 Exploring the Model Chapter 6

5.5 6.0 6.5 7.0 7.5 8.0 8.5
Q

0.5

0.0

0.5

1.0

1.5

2.0

2.5
H
x

Hz

Hp

Hr

Figure 6.13: The activation functions for the various molecules of the ECM,
as a function of the average activity Q, when shifted to the right by 5.5 points.

for low activity, with Q < 0.5, and another in the high activity regime, where
Q > 2.5. Now, as we have seen, the activity in my implementation is noticeably
higher than what is seen in [Kazantsev et al., 2012], and as so it is natural
to shift the activation functions shown in figure 6.12 towards higher activities.
Recall from the chapter on the Kazantsev model, that the activation functions
are given by:

Hx(Q, x0, x1, θx, kx) = x0 −
x0 − x1

1 + exp

(
− (Q−θx)

kx

) , x = z, p, r. (6.4)

Here, θx, gives the shift of the function in terms of Q = 0, with bigger
values for θx giving a shift towards higher activity. In figure 6.12 the values used
are θz = 1, θp = 1.5, and θr = 1.8. I shift all these upwards by 5.5, giving
θz = 6.5, θp = 7.0, and θr = 7.3. The result is shown in figure 6.13.

We move on to look at the behavior of the various molecules associated with
the ECM. We begin by exploring the two steady states, looking first at the low
activity steady state, which is seen from figure 6.13 to be found for an average
activity Q < 6. Comparing this with figure 6.6, we see that with input frequency
fin lower than about 1.1 kHz should give the desired activity level.

Running the model then with fin = 0.5 kHz, we expect to see the various
molecules approaching a steady state. Looking at the result from such a run
in figure 6.14, we see that a steady state is indeed reached, and it is reached
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Figure 6.14: Plot of Q, R, Z and P for an input frequency giving a low
firing activity. Parameter values for the simulation: τ = 1.0 msec, b0 =
6.0, γZR = 0.065, I0 = 4.5 µA/cm2, γZ = 0.0345, αz = 0.001 msec−1, γp =
0.1, βz = 0.01 msec−1, z0 = 0, z1 = 1, θz = 6.5, kz = 0.15, Z0 = 0.0, αp =
0.001, βp = 0.01 msec−1, p0 = 0, p1 = 1, θp = 7.0, kp = 0.05, P0 =
0.0, αr = 0.01 msec−1, βr = 0.01 msec−1, r0 = 2.0, r1 = 1.0, θr = 7.3, kr =
0.1, R0 = 0.0, αq = 0.0001 msec−1, βq = 0.01 msec−1, q0 = 0, q1 = 1, θq =
0, kq = 0.01, Q0 = 0.0, Cm = 1.0, gNa = 120 mS/cm2, VNa = 50 mV, gK =
36 mS/cm2, VK = −77 mV, gl = 0.3 mS/cm2, Vl = −54.4 mV. These are
the parameter values used in all the following figures unless other values are
given.
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Figure 6.15: Plot of Q, R, Z and P for an input frequency giving a high
firing activity.
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quite quickly. Not surprisingly the ECM molecules Z and the proteases P stay
put at their initial value of zero. Both have activation functions that are in the
inactivated region and equal zero for this low activity level, meaning that they
experience no activation. The ECM receptors, R, rise quickly to their steady
state level of R = 2, the increase from the initial value of 0 to the steady state
value of 2 happening in less than a second.

In figure 6.15 we see a similar plot but for the high activity steady state. In
this run of the model the input frequency is set to fin = 3.0 kHz. Here we see
the same tendency, though it takes a bit longer reaching the steady state. This
can be easily explained by the seen trend in the plots for the average activity
Q. It takes activity some time to grow, and as such the activity noticed by the
various ECM molecules matches the low steady state in the beginning, before it
increases into the high activity regime. We see the shift between the two steady
states when Q is between 6 and 8, with Z responding by first increasing rapidly
in response to its activation function rising from 0 to 1. It then drops again quite
rapidly, as the decay of Z rises with Z as well as P , and it finally reaches its
steady state slightly above zero. The proteases follow suit with a large increase
following its own activation function being “activated”, while the ECM receptors
decrease as their activation function gradually lowers from 2 to 1.

Looking at figure 6.15 we see that the concentration of ECM molecules, Z, is
only slightly above zero in the high activity steady state. If we look to figure 4B
in the article where the Kazantsev model is described [Kazantsev et al., 2012],
given in chapter 4 as figure 4.12, we see an expected value for Z of around five in
this steady state. The article gives the relation between the steady state value
of Z, and the activity Q , as:

Z∞ =
βzHz(Q, z0, z1, θz, kz)

αz + γpβpHp(Q, p0, p1, θp, kp)/αp
. (6.5)

But when solving this equation in the high activity limit using the parameter
values given in the figure (which coincide with the parameter values used in my
plots), the result is only slightly above zero, with for instance Z∞(Q = 10) ≈ 0.01.
From this I gather that there is a mistake in the article, and that the desired
behavior of Z is closer to what is seen in figure 4B in [Kazantsev et al., 2012],
that the results seen when using the given parameter values. A higher value of
Z for high firing activity seems more in place with the indication that increased
firing activity leads to increased production of ECM molecules [Dityatev et al.,
2007], and it is also more interesting then to examine how changes in Z affect Q.

In order to obtain a behavior similar to that shown in figure 4B in the
article, I change the parameters for spontaneous degradation and activation
of ECM molecules, αz and βz. In the figure these parameters are given as
αz = 0.001 msec−1 and βz = 0.01 msec−1, but in order to achieve a Z∞ that
rises to a maximum almost reaching nine, and then stabilizing around five, I set
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Figure 6.16: Figure as in 6.15, but with updated parameters for the activa-
tion function Hz, αz = 1 msec−1 and βz = 5 msec−1.
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αz = 1 msec−1 and βz = 5 msec−1. With this change implemented, the plot we
saw in figure 6.15 becomes instead as in figure 6.16. The behavior of Z is now as
expected in this high activity regime.

Figure 6.17: A plot showing the result when running the Kazantsev model
using fin = 1.75 kHz. All other parameter values as in figure 6.14.

Now let us look more closely into the region between the two steady states, to
see how the system behaves in this region. I expect the plots to be more varied
in this region, with the random behavior of the synaptic input having more of
an impact on the model dynamics. Note that in the following figures, figure
6.17, 6.18 and 6.19, I have used the values for αz and βz given in the article
αz = 0.001 msec−1 and βz = 0.01 msec−1, as I noticed the error in Z at a late
point in my work, and did not have time to change it. However, the results are
expected to be fairly equivalent. Figure 6.17 shows a plot of Q, R, Z and P
using an input frequency of fin = 1.75 kHz, giving an average activity Q of about
7. This places us approximately in the middle of the activation function for the
proteases, as seen in figure 6.13, and as seen in figure 6.17 the result is a strongly
varying concentration of proteases.

In figures 6.18 and 6.19 we see the same tendency in the concentrations for
Z and R, for activity levels correspondent with the slope of their activation
functions.
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Figure 6.18: A plot showing the result when running the Kazantsev model
using fin = 1.40 kHz. All other parameter values as in figure 6.14.
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Figure 6.19: A plot showing the result when running the Kazantsev model
using fin = 2.00 kHz. All other parameter values as in figure 6.14.
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From this we see that there are indeed two steady states for the system, one
for low activity and one for high activity, as expected. We also see that in the
activity region between these steady states the concentrations Z, P and R are
seen to fluctuate with fluctuations that can become quite large.

It is also interesting to look at the consequence of a short period of strongly
increased synaptic input. In figure 6.20 I ran the Kazantsev model with synaptic
input fin = 0.5 kHz, placing the system in the region for the low activity steady
state. After 5 ms, a strong synaptic pulse is added, lasting for 2 ms, and we clearly
see how this pulse perturbs the system, pushing it over in the high activity state.
The system eventually returns to the lower activity steady state, but this happens
long after the original pulse. We can compare this with the plots shown in figure
6.21. Here the Kazantsev model is run without synaptic input, and as such it
is solidly in the low activity steady state. After 5 ms the same pulse is added
as in figure 6.20, and we see this has a very similar effect. However, now that
that there is no synaptic input, Z and R cannot influence the strength of the
synaptic input, and as a result the system stays in the high activity region for
a noticeably shorter duration, about half as long (note the different run times).
Another reason for the prolonged lingering in the high activity region is likely be
that the total incoming current is larger in figure 6.20, and further investigations
are needed to distinguish these effects.

6.3 Modifying the Kazantsev Model

Now that we have tested and validated the model implementation, it is time to
look more closely at the model dynamics at play, to see if we can learn more
about the model, and how the model can be used to learn more about the brain,
and the interplay between neurons and the ECM.

6.3.1 A Simplified Model with an IF Neuron

An interesting aspect of the Kazantsev model is that the mechanisms it models
operate on widely different timescales. The modeling of the electrical activity
of the neuron including the generation of action potentials has a timescale of
about 1 ms, whereas the changes in the structure and composition of the ECM
is a process with a timescale of hours or even days. In [Kazantsev et al., 2012]
this complication is solved by assuming that the time scale can be adjusted by a
tuning of the necessary parameters. Still it is clear that if we want to model this
system to get insight into the variations in ECM composition that happen over
the duration of hours or days, and how this again affects the neuronal activity, we
are interested in running long simulations. However, this is quite computationally
expensive, largely due to the portion of the model involved in spike generation.
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Figure 6.20: The Kazantsev modeled using an input frequency fin = 0.5 kHz.
After 5 ms a strong input current is added, lasting 2 ms. A plot showing
the result when running the Kazantsev model using fin = 1.75 kHz. The
parameter values are as in figure 6.14, but with αz = 1 msec−1 and βz =
5 msec−1.
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Figure 6.21: The Kazantsev modeled without any synaptic input at all.
After 5 ms a strong input current is added, lasting 2 ms. The parameter
values are as in figure 6.14, but with αz = 1 msec−1 and βz = 5 msec−1

Now, what we are interested in in this model is how the firing activity of
the neuron affects the ECM and vice versa. As the firing activity is included
through the average activity Q, which is simply increased by ∆Q = βqτ , where τ
is the spike duration, for each generated action potential, decaying exponentially
between spikes, it seems the computational labor used to model the spike gener-
ation is unnecessarily excessive. The Kazantsev model as it stands now consists
primarily of eight differential equations, of which three are due to the explicit
modeling of the membrane currents.

It is then tempting to look for ways to simplify the model. And one option is to
forgo modeling the membrane currents entirely, and instead model the electrical
activity of the neuron as a simple integrate-and-fire (IF) neuron. This effectively
removes three eights, almost half, of the computational cost of the model.

We want to check if such an integrate-and-fire model of the neuron can re-
place the Hodgkin-Huxley model used until now. A first step is then to com-
pare the behavior of these two models. We begin by running the model for two
minutes, using an integrate-and-fire neuron with simple constant input current
I = 1.544µ A/cm2 as the only input current. The resulting Q is seen in figure
6.22. Plotted together with it is the result when using the standard Kazant-
sev model with Hodgkin-Huxley modeling the cross membrane currents, with
fin = 3.0 kHz. Apart from the integrate-and-fire version of the model not dis-
playing the irregularity of the standard model the two seem to be in very good
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Figure 6.22: A plot comparing the average activity, Q, in the Kazantsev
model when the neuron is modeled using the Hodgkin-Huxley model, versus
the more simple integrate-and-fire neuron. The Hodgkin-Huxley model gets
synaptic input in the form of a Poisson spike train, with fin = 3.0 kHz, while
the current into the cell is a constant I = 1.544µA/cm2 for the integrate-
and-fire neuron. Parameters used: Rm = 22 kΩ, Em = −64 mV, θ =
−49 mV, Cm = 1 µF.



76 Exploring the Model Chapter 6

Figure 6.23: A plot of the average activity, Q, and the concentration of Z, R
and P in the Kazantsev model when the neuron is modeled using the integrate-
and-fire model. The current into the cell is set at a constant I = 1.544µ A/cm2.
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agreement, reaching the steady state in a very similar manner. This irregularity
is due to the standard model experiencing a random synaptic input, and as such
it is not reproduced using an IF neuron with constant input current.

Let us now look at the variables representing the concentrations of the various
ECM components, and how using and IF model affects these. A plot of the
concentrations over time is shown in figure 6.23, where the neuronal activity
is modeled as an integrate-and-fire neuron in the same way as in figure 6.22.
Comparing this plot with the same plot for a Hodgkin-Huxley style neuron, as
seen in figure 6.15, we see that the plots exhibit the same trends and seem to be
in very good agreement.
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Figure 6.24: A plot illustrating the random dynamics of the average activity
Q that arrive due to the random nature of the synaptic input Isyn of the
standard Kazantsev model.

We have now seen that the much simpler integrate-and-fire (IF) neuron seems
to give results that are in good agreement with the original Hodgkin-Huxley
modeled neuron. However, as of now the IF model has been given a constant input
current. This we saw gave the same general behavior as when using Hodgkin-
Huxley formalism, except for giving smoother plots, in particular for Q. This
is not easily seen in for instance figure 6.23 due to the long run time, but when
taking a closer look it is evident that the randomness of the synaptic input Isyn

transfers to the average activity Q, as seen more clearly in figure 6.24.
To recreate this behavior as well, while still using an IF neuron for compu-

tational efficiency, we simply let the incoming current I in the IF neuron be in
the form of a Poisson train. This is done in the exact same way as for Isyn in
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Figure 6.25: A plot comparing the average activity, Q, when using the
standard Kazantsev model, versus one where the neuron is modeled using an
integrate-and-fire neuron receiving synaptic input in the form om a Poisson
train. The input frequency fin = 3.0 kHz for the standard Kazantsev model,
and 1.28 kHz for the IF model.
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Table 6.1: Run times when simulating for various model times for the Kazant-
sev model with the neuron modeled first as an integrate-and-fire neuron, and
then using the Hodgkin-Huxley model. The ratio is simply the runtime of the
first divided by the runtime of the last. Both models were run using a forward
Euler numerical scheme with dt = 0.001 ms.

IF HH Ratio
1 min 15.669 25.182 0.622
2 min 29.310 48.910 0.599
3 min 45.075 73.748 0.611
5 min 74.340 122.531 0.607
10 min 147.357 243.036 0.606

the standard Kazantsev model, although it seems the IF neuron requires a lower
fin to give the same activity level. A plot comparing the resulting average activ-
ity for these two models is shown in figure 6.25. Here fin is set to 3.0 kHz for
the standard Kazantsev model, and 1.28 kHz for the Kazantsev model using an
integrate-and-fire neuron. We see from this plot that they display a very similar
trend, but the random variations in Q are noticeably larger for the latter.

With the results we have seen so far it seems that using an IF model to
model the activity of the neuron in the Kazantsev model gives result that are
comparable with the full model using Hodgkin-Huxley to model the neuron’s
activity. The results seen are very similar for both variations of the model, and
using random input for the IF version is seen to give similar random variations in
the average activity. Our main motivation for doing this substitution, aside from
ease of implementation, was an expected lowering of the computational cost of
running the model. To see if such a result was achieved we move on to compare
the models in terms of computational cost.

I ran both models for a few total simulation times; 1, 2, 3, 5 and 10 minutes,
and compared the resulting run times. A table showing a summary of the results
is shown in table 6.1. Also shown in this table is the ratio of the run times for
the two model variations. What we see is that the ratio stays fairly constant at
approximately 0.6, meaning that both models have a linear complexity O(N),
where N is the number of time steps, but the IF-model has a better coefficient.
It is also interesting to note that 5

8
≈ 0.6, while the IF-Kazantsev model consists

of five differential equations, and HH-Kazantsev of eight.

All in all we have managed to almost cut the run time of the simulation in half
by using a simple integrate-and-fire model for the neuron, while still obtaining
near identical results.
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6.4 Relating the Model to Experiments

The Kazantsev model is a good and necessary first step towards modeling the
influence of the ECM on the neurons it surrounds. However, it is only a first
step, and as such it is lacking in some aspects. One way forward is by creating
a closer link between the model and experiments. As the model is now, there is
only a loose connection between the various parameters and experimental mea-
surements. The model is founded on experimental results, but in a qualitative
way more than a quantitative one, with the goal of reproducing the general be-
havior and dynamics reported in various experimental studies. This includes for
instance an increase in the production of ECM molecules when the firing activity
is increased [Dityatev et al., 2007] [Dityatev and Schachner, 2003].

To change this, and get a firmer relation between experiments and model, a
next step is to find a link between the two. How can we measure the quantities
represented in the model, and their response times?

In the Kazantsev model we model the average activity of a neuron enveloped
by an ECM, receiving synaptic input from the network it is part of, and the
concentration of the ECM molecules, ECM receptors and proteases surround-
ing it. The concentrations of these molecules are regulated by parameters for
spontaneous decay and activation, as well as an activation function depended on
the neuron’s activity level. By manipulating the decay and activation parame-
ters we can influence the system’s behavior, and study how the various molecule
concentrations influence each other, as well as the neuronal firing activity.

If one in an experiment can measure the spiking from a neuron, giving the
average activity, one can then manipulate the composition of the ECM, and see
how the firing activity is affected. If one for instance injected an enzyme or other
substance that breaks down the ECM molecules, one can compare the resulting
effect on the firing activity with the results when simulating this procedure using
the Kazantsev model. This can be done by increasing the degradation rate of the
ECM molecules in the model, αZ, and looking at the effects on the firing activity,
Q.

Now I want to test how the model reacts to a substantial increase in the
degradation parameter of Z, αz, simulating the injection of a substance breaking
down the ECM molecules. Figure 6.26 shows a standard simulation where the
degradation parameters are left unchanged through its entire duration. The plot
of Q is slightly zoomed in, to better show variations when comparing this figure
with figure 6.27. In figure 6.27 αz is increased after simulating for 60 s, and we
clearly see the effect of this in the plot for Z. The concentration Z drops rapidly
at this point, eventually reaching a value of about 1.5. The degradation of Z can
be made to happen over a longer timespan by gradually increasing αz over several
time steps, but right now we are only interested in a first approach to study the
effects on the average firing activity Q. Comparing the plot of Q in figures 6.26
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Figure 6.26: A plot showing Q, Z, R and P under normal conditions, with
fin = 3.0 kHz, and no change in the degration rates during the simulation.
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Figure 6.27: This plot shows a simulation under the exact same conditions as
in figure 6.26, except the degration rate of the ECM molecules, αz is increased
after 60 s, from αz = 1.0msec−1 to αz = 5.0msec−1.

and 6.27, we clearly see that the degradation of Z has led to a decrease in the
firing activity of the neuron. This is as we would expect from the model, due to
the dependence of the scaling of the synaptic input, b, as well as the threshold
current, Ith, on Z. The effect on Q is not large enough to affect the levels of P
and R, who stay in their high activity steady state.
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Discussion and Suggestions for
Further Work

This thesis has revolved around modeling the extracellular matrix and the ef-
fect it has on the neuron it surrounds, focusing on the first model developed
specifically to model this behavior, the Kazantsev model. I begun by focusing on
reproducing the results available for this model, but this process was complicated
by a lack of accurate and comprehensive documentation of the procedure and pa-
rameters used. The outtake from this exemplifies the importance of facilitating
reproducibility. I have studied the dynamics of the model, proposed a simplified
version using an integrate-and-fire neuron, and also looked at ways to link the
model more closely to experiments.

7.1 Reproducible Science

Reproduction and verification are important components of the groundwork of
science, and to make this process possible accurate and detailed information
is crucial. It is only when the same results have been obtained in several in-
dependent instances that they gain the weight needed to be taken as a good
representation of reality. It is by equivalent results being reported independently
in several instances, that theories gain credibility, but when information needed
to do this is missing, it becomes a difficult task. It is understandable that small
errors and bugs are particularly difficult to pick up one when there are (as of yet)
no substantial results to compare with, as the case often is when creating a new
model. But thorough documentation reduces the risk of this, and allows other
to verify your work.

As the dynamics in this case are modeled qualitatively, and the general be-
havior of my implementation matches that of the original paper in a qualitative
way, the discrepancies between the implementations are not so crucial. It is the
general behavior we are interested in studying. This is the case for the disparity
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between the firing activity in the two implementations of the model. The cause
of this inconsistency can stem from a mismatch in parameters, a fault in my im-
plementation or theirs, or a combination of these. As the resulting behavior was
found to be very similar qualitatively, this ended up being of lesser importance.

The error in Z∞ had as such a greater significance, but also seems to be more
obviously an error in the original paper, as the behavior reported there did not
match the expression given for this quantity.

7.2 Findings in Kazantsev Model

In exploring the Kazantsev model I have looked at the two fairly clear steady
states present in the system, one for low and one for high activity. These steady
states looked to be quite stable states with very little variation or perturbation.
We saw however that in the activity interval between these steady state levels
there was a tendency for some rather large fluctuations in the concentrations of
Z, P and R. In this area in particular it could be interesting to investigate more
thoroughly the effect of temporary perturbations of the system such as a sudden
increase of excitatory synaptic input or oppositely a blocking or reduction of
input. We saw that such a perturbation in the positive direction could bump the
system into the higher activity region, and that the effect of the ECM on the
strength of the synaptic input possibly prolonged its stay in this region. This
is particularly interesting as it indicates a mechanism that extends periods of
higher activity, and memory formation is linked to increased activity. However,
the mechanisms here need to be studied more comprehensively.

7.3 Simplifying the Kazantsev model

The model in question is one where the fast dynamics of the spike generation co-
exist with the slow, modulatory dynamics of the ECM, resulting in two opposing
modeling needs. To model the fast spiking accurately we want a small time step
and an accurate solver, while the modeling of the slow dynamics requires longer
run times, which again is more easily achieved by larger time steps and a solver
requiring less computational complexity.

It is the modeling of the spike generation in the nerve cell which requires the
most computational power, particularly due to the highly non-linear differential
equations for the gating particles. But in the modeling of the effects of the
ECM the neurons membrane voltage is not even included directly, but through
the activity variable Q. As such the computationally demanding modeling of
this voltage seemed unnecessarily excessive. With this in mind I exchanged this
part of the model with a far more simple integrate-and-fire neuron model. What
we then saw was that this new simplified version of the Kazantsev model was
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capable of giving the same or similar results as the original, but at almost half
the computational cost. This seems like a clear improvement over the original
model. The resulting behavior of the variables were equivalent, except for a lack
of statistic fluctuations in the variable Q. We saw then that these fluctuations
could be obtained by letting the input to the IF neuron be in the form of a
Poisson train of input spikes. This gave larger fluctuations than in the original
model, but this seems possible to adjust by modifying the various parameters in
the model. It is also worth noting that in doing this the ODEs we are rid of are
those for the gating variables, which due to their strong non-linearity can often
lead to stiffness in the system. So in addition to creating a smaller system by
this substitution, it may now be more robust to an increased dt.

This approach can be taken even further by replacing the explicit modeling
of the spike generation with a rate-based model. In the model it is the variable
Q that is used to modulate the concentrations of the various components of the
ECM. The timing of the individual spikes of the neuron itself are not given much
weight as it is the average firing rate that is critical to the model development.
This makes sense as we are looking at changes over longer time scales. The in-
dividual spike is not expected to have much impact. In a rate-based model the
crucial parameter is the firing rate of the neuron. Instead of modeling the gen-
eration of each spike in detail through the integration of a differential equation,
such a model contains a characteristic function f(I) that converts an input cur-
rent to a firing frequency directly. An example of such a function is the following
sigmoid function [Sterrat et al., 2011]:

f(I) =
f

1 + exp(−k(I − θ))
, (7.1)

where f gives the maximum firing rate, while θ represents the firing threshold,
as before. The desired random fluctuations of Q can still be obtained, either by
giving I as some random input, or by adding noise to the resulting Q. The
differential equation dQ

dt
would however have to be altered slightly, as V is no

longer explicitly modeled.
Such rate-based models can be good models despite their simplicity when

used in appropriate settings. The Kazantsev model is a good candidate as the
timing of individual spikes are not given much weight. The average activity Q
can already be seen as a variable for the firing rate in the original model.

7.3.1 Towards Comparison With Experiments

Computational models such as the Kazantsev models and many others are es-
sential to neuroscience as a whole. The nervous system in general and the brain
in particular are vastly complex structures and we are dependent on the help of
numerical models if we want to get closer to an understanding of its workings.
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Models by definition give a simplified view of reality and this allows us to get an
overview of complex systems, and a clearer understanding of specific elements of
the system.

Experimental results are what tie theories and models to reality and the
key to new understanding is often found in the interplay between a model and
experiments. In order to create such a link between the Kazantsev model and
possible experiments it would be beneficial if the constituents and parameters of
the model were given a tighter connection measurable quantities. In particular
a more clear conformity between the parameters and variables for the various
constituents of the ECM, and measurable properties.

With this in mind a sensible step forward might be to expand the model to
include a finer division of the variables relating to the concentrations of the ECM
components. This can for instance be done by dividing the ECM receptors into
specific receptor types. It is likely that various receptor types will have differing
responses to a varied stimuli such as an increase in firing activity. In order to be
able to give predictions for experimental results it is beneficial if this and similar
behaviors are accounted for. This also encompasses responses to enzymes and
the like that can be added to the system to break down (parts of) the ECM,
which may for instance only target specific ECM molecules.



Chapter 8

Conclusion

This thesis has been based around the modeling of the effect of the extracellular
matrix on the firing rate of the neuron it surrounds. We have looked at an early
model for this interplay, the Kazantsev model, and examined the dynamics of
the system it describes. In this work we discovered that there were quantitative
discrepancies between the results given by my implementation, and the original
paper. However, the qualitative behavior was seen to be analogous, and as the
model aimed to describe the dynamics in a qualitative way, the disparities were
taken to be of lesser concern.

Being a first approach to modeling the aforementioned interplay between the
neuron and the surrounding ECM, the model takes a fairly simplistic approach.
To move forward one may want to expand upon the model, making it more
detailed and with a clearer link to experimentally measurable quantities, with the
goal of being able to use the model to make experimentally verifiable predictions.
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