
Improved Exact Confidence Intervals for Discrete 

Distributions 

Helge Blaker 

University of Oslo 

November 1998 

Abstract 

An explicit method is given for improving standard "exact" confidence in­

tervals in discrete distributions. The improved intervals have smaller size but 

correct coverage probability. It is argued that one should consider confidence 

sets for all possible confidence levels as generated by a confidence curve. Im­

proved confidence curves then lead to improved confidence sets. A general 

method for constructing confidence curves is given. For the special case of a 

one-parameter exponential family, the resulting confidence curve is Spj¢tvoll's 

acceptability function. This confidence curve yields improved intervals for all 

discrete distributions; details are provided for the binomial, Poisson, negative 

binomial, and hypergeometric distribution. Nonparametric confidence intervals 

for a quantile are also considered. 

Key words: Acceptability; Confidence curve, Binomial distribution; Poisson dis­

tribution; Negative binomial distribution; Hypergeometric distribution. 
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1 Introduction 

Construction of confidence intervals in discrete distributions is an old problem where 

no definite solution seems to have been reached. The usual approach is based on 

inverting an equal-tailed test, giving standard "exact" intervals in distributions such 

as binomial, Poisson, negative binomial, or hypergeometric. Following Blyth and 

Still (1983), an exact confidence set has coverage probability larger than or equal 

to the nominal level for each possible parameter value. Standard exact confidence 

intervals tend to be very conservative, in particular for small and moderate sample 

sizes, and hence too wide. There are two different approaches for obtaining improved 

confidence intervals. The first is to use approximate solutions based on the normal 

distribution, see e.g. Vollset (1993) or Agresti and Coull (1998) for the binomial 

case. Such procedures typically yield shorter intervals, but the coverage probabil­

ity is not above the nominal level for all parameter values and hence they are not 

correct confidence sets in the strict sense. The second approach is to look for less 

conservative exact intervals. For the binomial distribution, this is done by Sterne 

(1954), Crow (1956), and Blyth and Still (1983) and for the Poisson distribution 

by Crow and Gardner (1959). Casella and Robert (1989) address the question of 

improving confidence procedures with respect to length while maintaining correct 

confidence level through a numerical procedure they call a refinement process. The 

purpose of this article is to present an analytical approach which gives improved ex­

act confidence intervals compared to the standard equal-tailed intervals for discrete 

distributions. Our approach builds on Spj0tvoll's (1983) acceptability function and 

is related to a procedure for improving binomial confidence intervals presented in 

Sterne (1954). It is no more difficult to use than the standard method and does not 

involve detailed analysis of acceptance regions for every possible parameter value, 

like the methods in Blyth and Still (1983). In fact, the improvement emanates from 

treating a confidence interval (or two-sided test) as a problem in its own right and 

not just as the intersection of two one-sided problems. Numerical calculations of 

intervals and coverage probabilities for the binomial, Poisson, negative binomial, 

and hypergeometric distribution show that our approach yields confidence intervals 

with considerably smaller size and coverage probability much closer to the nominal 

level. These distributions all have monotone likelihood ratio. Improved confidence 

2 



sets can be constructed for all discrete distributions, but outside the class of distri­

butions with monotone likelihood ratio, uniformly most powerful one-sided tests do 

not exist and hence the choice of statistic is more difficult. Also, it is no longer clear 

that we necessarily want a confidence interval rather than a more complicated set. 

In the next section, we formulate the problem in terms of confidence curves and 

present a general method for constructing exact confidence sets. Section 3 introduces 

the acceptability function and shows why it leads to improved intervals compared to 

the standard method. The rest of the paper then studies the improved intervals for 

the binomial, Poisson, negative binomial, and hypergeometric distributions. We also 

look at nonparametric confidence intervals for a quantile. The appendix contains 

S-plus functions for computing the acceptability functions for the cases discussed so 

the reader can compute his own tables. 

2 Preliminaries 

Let X have a discrete distribution indexed by a real-valued parameter() and let Pe(x) 

be the density with respect to counting measure on the natural numbers. Assume 

a test of H : () = Oo against K : () = ()1 is based on the statistic T(X), such that 

H is rejected when T is large if ()1 > ()0 and when T is small if ()1 < 00 . Denote 

an observed value ofT by t. In particular, this holds if the family of distributions 

has monotone likelihood ratio in T(x), i.e. the ratio of densities Pe'(x)/pe(x) is a 

nondecreasing function of T(x) for all()< 01• This includes the binomial, Poisson, 

negative binomial, and hypergeometric distributions, see Lehmann (1986) chapter 3. 

We are interested in constructing confidence sets at level 1- a for (), i.e. sets Ca(t) 

such that inf e Pe ( () E Ca (T)) 2: 1-a. If Tis stochastically increasing, i.e. Pe (T :S t) 

is decreasing in ()for all t, it is natural to restrict attention to intervals. Families with 

monotone likelihood ratio are always stochastically increasing. Standard confidence 

intervals for() are found by inverting the equal-tailed test of H: () = Oo, so Ca(t) = 
(OL, Ou) where ()Lis the largest ()such that Pe(T 2: t) :S a/2 and Ou is the smallest 

()such that Pe(T :S t) :S a/2, except for boundary cases. This interval will be exact, 

i.e. the coverage probability is at least 1 -a for every possible 0. However, there 

must be some room for improvement since we have replaced the condition 

Pe(OL(T) < () < Ou(T)) 2: 1- a (1) 
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by the stronger condition 

Po(fh(T) ~ 0) ~ a/2 and Po(Ou(T) ~ 0) ~ a/2. (2) 

The p-value of the equal-tailed test of H: 0 = 00 is f3(0;t) = min{f3°(0;t), 1} where 

Notice that (OL, Ou) = {0: (3(0; t) > a} = Ua(t), say. The function (3(0; t) is the 

confidence curve corresponding to this confidence procedure, as advocated in Birn­

baum (1961) and f3(0;t) as a function of 0 for a fixed (observed) t gives all possible 

confidence intervals at all levels and ranks all possible 0-values according to how 

reasonable they are after T = t is observed. It is a preference function in the sense 

of Spj0tvoll (1983) and its interpretation is akin to the likelihood function. In other 

words, 81 is better than 82 if (3(81; t) > (3(82; t) and the most preferable value is the 

one maximizing (3(0; t). In this discrete setting, we will see that there is an interval 

of 0-values that are most preferable, but we can see that the median-unbiased es­

timator is one most preferable value. The improved confidence intervals are based 

on the idea of finding a better confidence curve than (3(0; t), i.e. a function a(O; t) 

such that a(O; t) ~ (3(0; t) for all 0 and t while Po[a(O; T) >a]~ 1- a. Confidence 

intervals based on a( 0; t) are then shorter than the standard intervals but have the 

same minimum coverage probability. The next lemma gives the basic idea. 

Lemma 1 Let X have density PB ( x) and let 'Y ( 0, x) be any function of x and 0. 

Define >.(0; x) = Po['Y(O, X)~ 'Y(O, x)]. Then the set Sa(X) = {0: >.(0; X)> a} is a 

1 - a confidence set for 0 and the test which rejects if>.( 00 ; x) ~ a is a level a test 

of the hypothesis H : 0 = Oo. 

Proof. Set Z = 7(8, X) which is a random variable. Then >.(0; x) = Po(Z ~ z) = 

Ho(z), say, and consequently Po(O ~ Sa(X)) = Po(.X(O; X) ~ a) = Po(Ho(Z) ~ 

a)~ a. D 

The level is exactly a for a and 0 such that a= Ho(z) for some z (or equivalently 

a= 'Y(O, x) for some x). In particular, the level is a for all 0 if Ho(z) is continuous 

and strictly increasing. If 'Y ( (), x) is a constant in x, Lemma 1 is still true but 

vacuous. 
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One possible choice is "!((}, x) = pe(x). Then A(B; x) is the probability of ob­

taining a likelihood equal to or smaller than the one observed when (} is the true 

parameter. This function is used to obtain improved confidence limits for the bino­

mial success probability by Sterne (1954). Notice that the sets from Lemma 1 will 

not in general be intervals, even if "( ( (}, x) = pg ( x) and the density has monotone 

likelihood ratio. For instance, if pg ( x) is increasing or decreasing for all x, we get 

one-sided intervals and if pe ( x) is not unimodal, the resulting sets may be unions 

of disjoint intervals. For this reason, and to ease comparison with the standard 

approach, we prefer the choice"!((}, x) = min{Pe(T;:::: t), Pe(T::; t)} where t = t(x). 

3 The acceptability function 

The following theorem provides valid 1 - a confidence sets and unifies calculations 

in many standard problems. 

Theorem 1 Let the distribution of X be indexed by (} and let T = T(X) be any 

statistic. Define the function"!((}, t) = min{Pe(T;:::: t), Pe(T::; t)} and let a(B; t) = 
Pe["f(B, T) ::; "f(B, t)]. Then 

1. The set S01 (T) = { 8: a( B; T) > a} is a 1 - a confidence set for (}. 

2. The following expressions hold: 

a(B; t) = Pe(T 2:: t) + Pe(T::; t*) 

if Pe(T;:::: t) < Pe(T::; t) andt* is the largestu such that Pe(T::; u)::; Pe(T 2:: 

t), 

a(B; t) = 1 

if Pe(T;:::: t) = Pe(T::; t) and 

a(B;t) = Pe(T::; t) + Pe(T 2:: t**) 

if Pe (T ;:::: t) > Pe (T ::; t) and t** is the smallest v such that Pe (T ;:::: v) < 

Pe(T ::; t). 
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Proof. 

1. Follows from Lemma 1. 

2. Fix 0 and define g(t) = Po(T ~ t) and h(t) = P9 (T ~ t). Then g(t) is 

nonincreasing and h(t) is nondecreasing. If 'Y(O, t) = g(t), 

a( 0; t) Po[min{g(T), h(T)} ~ g(t)] 

Po[g(T) ~ g(t)] + Po[h(T) ~ g(t)] 

Po(T ~ t) + P9(T ~ h-1(g(t))] 

where h-1 (t) = sup{ u : h(u) ~ t}. The case 'Y(O, t) = h(t) is similar. If 

g(t) = h(t), 'Y(O, t) is maximized and hence Po['Y(O, T) ~ 'Y(O, t)] = 1. D 

If T is the sufficient statistic in a one-parameter exponential family, the function 

a(O; t) is the acceptability function defined in Spj0tvoll {1983) and Theorem 1 is 

contained in that paper. Viewed as a preference function, the acceptability function 

has some optimality properties for this family. Here, we only view it as a convenient 

way of generating confidence sets which by Theorem 1 are the level sets of a(O; t), i.e. 

the set of 0-values for which a(O; t) is above a when T =tis observed. The following 

corollary is an immediate consequence of Theorem 1 and shows why a(O; t) leads to 

improved confidence sets in discrete distributions. Recall U01 (t) = {0: (3(0; t) > a} 

is the standard 1 - a confidence interval. 

Corollary 1 It always holds true that a(O; t) ~ (3(0; t) and consequently S01 (t) C 

U01 (t) while 1- a~ Po(O E S01 (T)) ~ Po(O E U01 (T)). 

This corollary shows that the confidence sets S01 (t) based on the acceptability func­

tion are subsets, sometimes proper subsets, of the standard intervals U01 (t) and 

are less conservative but have the correct confidence coefficient. The rest of this 

paper investigates the actual improvement for spesific discrete distributions. For 

continuous distributions, a(O; t) = (3(0; t) and no improvement is possible. It should 

be mentioned that there is a minuscule possibility that 801 (t) is a union of several 

disjoint intervals rather than one interval. In that case, we use as our confidence 

interval the smallest interval containing S01 (t), i.e. (OL, Ou) where OL is the small­

est 0 such that a(O; t) ~ a and Ou is the largest 0 such that a(O; t) ~ a. Since 
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a(O; t) ~ {3(0; t) and {3(0; t) always gives intervals for stochastically increasing dis­

tributions, it is clear that these modified intervals are still subsets of the standard 

intervals and have the required minimum coverage probability. 

4 Binomial distribution 

Let X denote a binomial variate for sample size n with success probability p. The 

confidence interval based on {3 ( 8; x) is 

say, where PL satisfies PPL (X ~ x) = a/2 and Pu satisfies Ppu(X ~ x) = a/2 

if x rJ. {0, n}. This confidence interval is known as the Clapper-Pearson "exact" 

confidence interval for p. Let !a,v1 ,v2 denote the upper a quantile in the Fisher 

distribution with v1 and v2 degrees of freedom. Using the fact that Pp(X ~ x) = 

P[F2x,2(n-x+l) < (n-x+1)pj(x(1-p))], Leemis and Trivedi (1996) p.67 show that 

the interval can be written 

[ l-1 [ l-1 n-x+1 n-x 
1+ <p< 1+ ' 

xf2x,2(n-x+l),l-a/2 (x + 1)f2(x+l),2(n-x),a/2 

This interval is usually treated as a gold standard when comparison between 

different confidence sets for pis made, but is often criticised for being too conserva­

tive. The confidence set 8 01 ( x) = {p: a(p; x) > a} is superior to U 01 ( x) since it has 

the same nominal level but is shorter. This is illustrated in Figure 1 where we plot 

a(p; x) and {J(p; x) together with coverage probabilities as a function of p for a= .05. 

Table 1 shows the improvement in mean coverage probability, i.e. f01 Cn(p)dp where 

Cn(P) is the coverage probability if pis the true value. 

4.1 Comparison with approximate methods 

A number of authors have been concerned with confidence intervals for p, e.g. Vollset 

(1993), Leemis and Trivedi (1996) and Agresti and Coull (1998). The consensus in 

these papers is that one should use some approximate method such as (continuity 

corrected) score intervals or adjusted Wald intervals since these intervals have al­

most the right level and are shorter than the Clapper-Pearson intervals. It is our 
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contention that no approximate solution is necessary, since the interval Sa ( x) has 

level 1- a for all nand is considerably shorter than Ua(x). Table 1 shows average 

width of the Clopper-Pearson(C-P) and acceptability (ACC) intervals as well as 

average widths of the adjusted Wald (AW) and score (SC) intervals. Let p = Xjn 

and let <P(-) be the cdf of the standard normal. Then the score interval is based on 

the approximate confidence curve 2<P(-Ifi- pjfy'p(1- p)jn) and the Wald interval 

on 2<P(-Ifi- pjjy'p(1- p)jn). For adjusted Wald interval, replace n with n + 4 

and p with (X+ 2)/(n + 4), see Agresti and Coull (1998) who recommend these 

intervals rather than the Clapper-Pearson intervals. However,these procedures have 

confidence coefficient well below the nominal level. The acceptability intervals are 

about halfway in length between the Clapper-Pearson intervals and the score inter­

vals and have approximately the same average length as the adjusted Wald intervals. 

In fact, the average width of the acceptability intervals is the shortest possible for 

any confidence interval with the correct coverage probability, at least for the cases 

studied in Table 1 and Figure 2. 

4.2 Comparison with other exact procedures 

Significant contributions to the construction of exact binomial confidence intervals 

are Sterne (1954), Crow (1956), and, more recently, Blyth and Still (1983). Sterne 

(1954) works with ideas close to ours. He considers the probability of obtaining 

a number of successes as probable as or less probable than the observed x, i.e . 

.X(p;x) = Pp["y(p,X) ~ f'(p,x)] where f'(p,x) = Pp(X = x) = (;)px(l- p)n-x in 

the notation of Lemma 1. He then argues that one should consider as a confidence 

set for p all values of p such that .X(p; x) > a. Lemma 1 then guarantees that the 

Table 1: Coverage Probabilities and Widths when 1 - a = .95 

Mean Coverage Minimum Coverage Average Width 

n C-P ACC AW sc C-P ACC AW sc C-P ACC AW sc 
5 .990 .980 .965 .955 .975 .950 .879 .832 .678 .626 .586 .558 

10 .984 .973 .964 .954 .961 .950 .917 .835 .508 .475 .457 .435 

30 .973 .963 .960 .953 .951 .950 .934 .837 .299 .282 .279 .271 

50 .969 .960 .958 .952 .953 .950 .935 .838 .231 .220 .218 .213 
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corresponding confidence statement holds with the desired accuracy. The resulting 

confidence sets are numerically close, but not identical, to those obtained from 

acceptability. There are two disadvantages with the Sterne system, as pointed out 

by Crow (1956). Firstly, the resulting confidence sets may be the union of several 

disjoint intervals rather than one single interval (though this seems to happen only 

at very low levels, e.g. for n = 3; 1 - a = .442 as cited in Casella and Berger 

1990 p.417). Secondly, the resulting intervals are not necessarily subsets of the 

corresponding Clopper-Pearson intervals, so there is no uniform improvement like 

there is for acceptability. The confidence sets from acceptability may also be unions 

of several disjoint intervals (though this does not happen at reasonable significance 

levels in practice), but this is not a big disadvantage since we then use the smallest 

single interval containing all values and the resulting confidence interval is still a 

subset of the Clopper-Pearson intervals and hence Corollary 1 still applies. 

The intervals considered by Crow (1956) and Blyth and Still (1983) are based 

on the same technique, which is essentially to adjust Sterne's system to avoid unrea­

sonable behavior. For each n and p0 , there is an acceptance interval An(Po) ~ X ~ 

B(po) of the hypothesis H: p =Po against K : p =1- Po· These acceptance regions are 

then chosen to be as short as possible, i.e. include as few X -values as possible. Crow 

(1956) proved that every confidence interval given by a family of minimum-length 

acceptance intervals makes the sum of the n + 1 possible lenghts of the confidence 

interval as small as possible for the given level. In many cases, there are several 

equally short acceptance intervals. If one of them is the Clopper-Pearson accep­

tance interval, this should be chosen to guarantee that the corresponding intervals 

are included in the Clopper-Pearson intervals. Further, one must make sure that the 

acceptance intervals are nested, i.e. if p0 increases, we must only include larger and 

not smaller X -values. This makes sure that the corresponding confidence sets are 

intervals. These requirements are not sufficient to guarantee uniqueness, so further 

rules must be introduced, see Blyth and Still (1983) p.llO. For instance, when n = 8, 

1- a= .95, the possible shortest acceptance regions for .3155 ~ p0 ~ .3995 are now 

(0 ~ X ~ 5) or (1 ~ X ~ 6). Blyth and Still now changes their acceptance region 

at the midpoint p0 = .3575 while Crow always chooses the acceptance interval fur­

thest to the right. The latter rule leads to some anomaly as the confidence intervals 

sometimes do not change regularly as X increases. For instance, if n = 14, a= .05, 
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X = 6, 7, 8, Crow's intervals are (.206, .688), (.206, .794),and (.312, .794) while the 

acceptability intervals are (.201, .688), (.231, .769), and (.312, .799), respectively. To 

see that the intervals in Blyth and Still (1983) are not the same as Sa(x), notice 

that their acceptance interval for n = 8, 1 - a = .95 is 1 ~ X ~ 6 for p = .3575 

while the acceptability region is 0 ~ X ~ 5 (it includes X = 6 for p = .3585, so the 

difference is not great). The acceptability intervals are very close to the Blyth-Still 

system, and compared to the Crow system, the acceptability intervals are longer 

when X is near 0 or n and shorter when X is close to n/2. The improved inter­

vals in Crow (1956) and Blyth and Still (1983) all involve some arbitrary choice 

between acceptance regions and hence are not completely satisfactory. Also, it is 

a formidable task to compute the intervals to find e.g. the smallest a for which a 

given pis in the interval when X is observed. In practice, a fine grid of parameter 

values must be generated and then one needs to find shortest acceptance regions 

according to their rules. They do however have guaranteed minimum total lenght 

due to their acceptance region origin, and this property is not shared by the accept­

ability intervals in theory (but it is for all examples considered here, e.g in Table 1). 

A counterexample is n = 40, when a(.75, 27) = .1994 and a(.75, 35) = .1507, so the 

acceptance interval from acceptability is [27, 35] but the shortest acceptance region 

is [28, 35]. The acceptability intervals have the advantage of being a more natural 

construction, directed at improving the standard interval, and with a precise control 

of the coverage probability. 

4.3 When is the confidence coefficient exactly 1 - a? 

As can be seen from Figure 1, Clapper-Pearson intervals have the undesirable feature 

that for p near 0 or 1, the actual coverage is about 1- a/2 rather than 1- a (Vollset 

1993 p.822). For n ~ 5 this is true for all p. No such problems arise with Sa(x). 

Consider the case n = 1 which is most transparent. Let a < 1/2. Then Ua(x) 

is [0, 1- a/2) if x = 0 and (a/2, 1] if x = 1, while Sa(x) = [0, 1- a] or [a, 1] 

respectively. It follows that Sa(X) has minimum coverage probability 1 - a and 

U0 (X) has 1- aj2. 

It may be of some interest to see when the coverage probability is exactly 1 - a. 

From Lemma 1, if J'(p, x) = min{Pp(X ~ x), Pp(X ~ x)} and Z = J'(p, X), the the 
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level is exactly 1 - a for p such that 

n n 

Hp(z) = L Pp(Z ~ ziX = k)Pv(X = k) = L I{!(P, k) ~ z}Pp(X = k) =a 
k=O k=O 

for some z. Figure 3 shows Hp(z) as a function of z for the eight values of p such that 

Hp(z) = .05 for some z when n = 5. The coverage probability of the acceptability 

intervals is therefore exactly .95 for these values of p, which can also be seen in 

Figure 1. 

Since the acceptability function is not continuous, confidence intervals are not 

available at all levels. There are intervals I such that {p: a(p; x) > a} is the same 

for a E I= [aL, au], i.e. the confidence intervals at level 1 - aL and 1- au are 

the same. For example, when n = 1 and a > 1/2, {p: a(p; X) > a} = [0, 1/2] when 

X= 0 and [1/2, 1] when X= 1. This is due to the discreteness and shows that the 

entire confidence curve should be shown, not just the level sets. 

We can in fact see directly which levels are available from a(O, t). Recall!((}, t) = 

min{Pe(T ~ t), Po(T ~ t)} and a(O; t) = Po[/(0, T) ~ 'Y(O; t)]. The 1- a confidence 

set from acceptability is Sa(t) = {O:a(O;t) > 1- a}. A confidence set has exact 

level 1- a if info P((} E Sa(T)) = 1- a. From Lemma 1, Sa(t) has exact level 

1- a if Ho(z) = a(O; t) attains the value a, i.e. if there are values Oo, to such that 

a(00 ; t0 ) =a. If there are no values of(}, t such that a(O; t) =a, then the confidence 

sets Sa(t) must be equal for all a E [aL, au), say, and consequently Sa can not have 

confidence coefficient 1- a for a E (aL, au). If there are only a finite number of 

possible values oft, we can generate all possible functions a(O; t) as a function of 

(} for fixed t. A plot of these then shows which levels 1 - a that can be achieved 

exactly. 

Figures 4, 5 and 6 show the situation for X rv Bin(n,p), n = 1, 2, and 3. For 

n = 1, 1 - a ~ 1/2 is attainable, and for n = 2, 1 - a ~ ..;2 - 1 is attainable. 

Since Sa(t) does not shrink to a point as a approaches 1, it is clear that there 

will always be an interval of a-values near 1 where the acceptability intervals are 

not exact. We could hope that this was the only exception, but the case n = 3 

shows more complicated behavior. Here, the attainable levels are 1 - a ~ 0.5 and 

0.375 ~ 1 - a ~ 0.444. Notice that the values of a which are unattainable are 

exactly the values of y which the equation y = a(p; x) has no solution for any 

xE{0,1, ... ,n}. 

11 



Finally, notice from Figure 1 that the acceptability of p is 1 in an interval in­

cluding the median-unbiased estimator p, which means that all values of p in this 

interval will never be rejected at any level in a test when x is observed. This is 

quite reasonable and again reflects the discrete nature of the problem. If we observe 

x = 3 when n = 5 and test the hypothesis H : p = .59 against I< : p =f. .59, one 

should never reject at any level because no other observed x-value supports the null 

hypothesis more than x = 3. 

5 Poisson distribution 

Let X be a Poisson variate with mean .\. The confidence interval based on (3(.\; x) 

is Ua(x) which can be written (1/2)(X~X,l-a/2 , X~(X+l),a/2) since P>.(X ::; x) = 

1- G2(x+1)(2.\) where Gv(·) is the cdf in the chi-square distribution with v degrees 

of freedom. This interval was first given by Garwood (1936). The Garwood intervals 

suffer from the same problem as the Clopper-Pearson intervals, being too wide and 

yielding coverage probabilities strictly greater than 1-a, especially for small ,\where 

the level is effectively 1- a/2. The intervals Sa(X) = {,\:a(.\; X) > a} based on the 

level sets of the acceptability function alleviate these problems and have coverage 

probabilities much closer to the nominal level, see Figure 8. We have also plotted the 

corresponding confidence curves when X = 5 is observed in Figure 7. Some authors, 

e.g. Agresti and Coull (1998) suggest using some approximate interval with close 

to the nominal level to get shorter intervals. Improvement on the Garwood interval 

while maintaining exact level 1- a is considered by Crow and Gardner (1959) and 

Casella and Robert (1989). In the latter paper, a numerical procedure for improv­

ing confidence sets is given and the confidence limits using this procedure are very 

close, but not identical, to the corresponding confidence sets from the acceptability 

function. The improvement in length using the procedure of Crow and Gardner 

(1959) is larger but those intervals have the disadvantage that the endpoints are not 

strictly increasing in x, which is rather counterintuitive. For instance, for a = .1 

and x = 8, 9, 10, 11, 12, 13, their confidence intervals are (4.53, 13.55), (4.53, 15.30), 

(5.98, 15.99), (5.98, 17.81), (7.51, 18.40) and (7.51, 20.05). The corresponding accept­

ability intervals are (4.31, 14.23), (4.72, 15.29), (5.81, 16.74), (6.23, 17.81), (7.30, 19.23), 

and (7.72, 20.26). 
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6 Negative binomial distribution 

Let X be the number of noncases before r cases are observed with prevalence rate 

p so X follows the negative binomial distribution with parameters r and p, 

( ) (
X + r - 1) r ( )x p X = X = . p 1 - p ' X = 0, 1 ... 

r-1 . 

where r is known and p is unknown. This family of distributions has monontone 

likelihood ratio in T(x) = -x. The case r = 1 is the geometric distribution. Lui 

(1995) gives tables for the standard interval Ua(x) for a = .05. In Figure 9, the 

confidence curves a(O; x) and {3(0; x) are plotted when x = 5 is observed and r is 1, 

5 or 20. The interpretation of these curves is that they show all possible confidence 

intervals for 0 when X = x is observed. For example, a(.185; 5) = a(.749; 5) = .05 

when r = 5 means the 95% interval when X= 5 is (.185, .749) using acceptability. 

The standard interval is found to be (.187, .788) since {3(.187; 5) = {3(.788; 5) = .05. 

In Figure 9, we have also plotted the coverage probabilities for the standard 

interval and the acceptability interval when a = .05. The standard interval has 

the undesirable feature that for p near 1, the level is about 1 - a/2 rather than 

1 - a. The problem is worse when r is small. No such problems arise with the 

acceptability interval. For small a and p not too close to 0, the improved interval 

from the acceptability function is close to the interval obtained from the standard 

formula by using the a-quantile instead of the a/2-quantile in the upper limit. This 

works well in particular for the geometric distribution. 

7 Hypergeometric distribution 

Assume a finite universe consisting of N units of which an unknown number A has 

a particular attribute. We sample n units from the universe without replacement 

and record the number of observed element with the attribute, x. It follows that X 

follows a hypergeometric distribution, 

We can work with A or P = A/N as unknown parameter. Following Wright (1991), 

we regard A as the unknown parameter. It follows from Lehmann (1986) p.80 that 
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this distribution has monotone likelihood ratio in T(x) = x. A standard reference 

on inference in this distribution is Wright (1991), which also contains extensive 

tables of standard confidence sets. Since A takes values in {0, 1, ... , N}, we are now 

considering confidence sets rather than intervals, but as shorthand, let [At, A2] mean 

the set {At, At+ 1, ... , A2}. Once again, the standard confidence set is obtained 

by inverting the equal-tailed test (Buonaccorsi 1987) and can hence be written 

Ua(x) ={A: min(PA(X ~ x), PA(X ~ x)) > a/2}, 

while our improved set is Sa(x) ={A: a(A; x) >a}. In Figure 10, we have plotted 

the confidence curves a(A; x) and ,B(A; x) for x = 10 when N = 100, n = 13. Fig­

ure 11 shows coverage probabilities for the standard and improved intervals at level 

1 -a = .95 for for N = 20, n = 4 and N = 100, n = 13 which corresponds to exam­

ples 3.8 and 3.9 in Wright (1991). The standard intervals are very conservative in 

these cases, having coverage probability at least .9855 and .9641, respectively. There 

is room for improvement, and our procedure, which also only uses the hypergeomet­

ric distribution, has level .9566 and .9510 in the two cases. Wright (1991), p.51, 

incorrectly states that the excess probability for the standard interval is as small as 

possible. In both cases, the 95% interval S.05 (x) is a proper subset of the standard 

interval for all x. For N = 20, n = 4, the standard 95% sets for x E {0, 1, 2, 3, 4} are 

[0, 11], [1, 15], [2, 18], [5, 19], [9, 20], 

Wright (1991) p.51, while the improved sets are 

[0, 10], [1, 14], [3, 17], [6, 19], [11, 20]. 

We can also obtain tests for H : A = A0 against I< : A =f. A0 that are better 

than the standard equal-tailed test in the sense of having a type !-error closer to 

the nominal level, which in turn will give higher power. For instance, if A0 = 50 

when N = 100, n = 13, then the standard test at level .05 rejects when X ~ 11 or 

X ~ 2 with actual level .0147, while the test which rejects when a(A0 ; x) ~ .05 also 

includes X = 10 in the rejection region and has actual level .0430. 

8 Confidence intervals for quantiles 

Let Xt, ... , Xn be i.i.d. with continuous distribution F(x) and let F(xc) = E, i.e. 

xc is the €-quantile for this distribution. Nonparametric inference about xc can 
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be based on the statistic Sn ( 0) = I:i=l I {xi > 0} since Sn (X e) has a binomial 

distribution with parameters n and 1 - E. The p-value of the equal-tailed test of 

H: Xc: = 0 against K : Xc: =F 0, is {3(0; X)= min{f3°(0; X), 1} where 

{3°(0; X)= 2 min{P(Z ~ Sn(O)), P(Z ~ Sn(O))} 

and Z""' Bin(n, 1- E). The set Ua(X) = {0: {3(0; X)~ a} is a 1- a nonparametric 

confidence interval for Xc: (Lehmann 1975 p.185). Theorem 1 is applicable and the 

acceptability of 0 can be found from the formula in Theorem 1, replacing t with 

Sn(O). 

The corresponding confidence interval Sa (X) = { 0: a( 0; X) > a} is consequently 

a subset of the standard interval and has confidence level at least 1- a. Figure 12 

shows a(O; X) and {3(0; X) when 0 = x.25 and n = 25. This is plotted for Xi= i for 

i = 1, 2, ... , 25, which is of course artificial but convenient since X(i) = i. The stan­

dard 95% interval is (X(z), X(Iz)) while the improved interval is (X(z), X(n)), and 

the coverage probabilities are .982 and .963, respectively. Since, if Z""' Bin(25, .25), 

P(Z ~ 1) = .007, P(Z ~ 2) = .032, P(Z ~ 12) = .011 and P(Z ~ 11) = .030, it 

is obvious that we can obtain a shorter interval in this case by requiring (1) rather 

than (2), and in this simple situation it is clear how acceptability works. But it is 

interesting that these conclusions are obtained through Theorem 1. For E = 1/2, 

Z""' Bin(n, 1/2) so P(Z ~ z) = P(Z ~ n- z) and consequently a(O; X)= {3(0; X) 

so this method does not give improved confidence intervals for the median. 

9 Summary and discussion 

We have introduced a new method for constructing exact confidence sets that leads 

to shorter and less conservative exact confidence sets for discrete distributions. For 

stochastically increasing distributions, attention can be restricted to intervals and 

the method gives intervals that are easy to compute and do not involve anything 

except the distribution at hand. Numerical results show that the improved intervals 

are much less conservative than standard exact intervals. Since our improved inter­

vals do not have coverage probability equal to the nominal level for all parameter 

values, and indeed this can not be achieved by any non-randomized procedure, it 

may be possible to construct even more accurate exact confidence intervals. For in­

stance, procedures like the construction in Crow and Gardner (1959) may be used, 
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but the resulting intervals have some non-intuitive flavor since some arbitrary choice 

between acceptance regions has to be made. They will not uniformly dominate ac­

ceptability, but may give shorter intervals in an average sense, at the expense of 

even more conservative behavior in some parts of the parameter space. We find the 

intervals based on the acceptability function to have a more intuitive appeal. In 

conclusion, the improved intervals are always subsets of the standard intervals and 

are guaranteed to have the nominal confidence level, so there is nothing to lose but 

there may be a substantial gain from adapting the new procedure. 

Appendix: S-Plus functions 

This section contains S-Plus code (Venables and Ripley 1994) for computing the 

acceptability function a( 0; x) as a function of x and 0 in the binomial, Poisson, 

negative binomial, and hypergeometric distributions. Recall that in S-plus, the 

quantile function Q ( u) for discrete distributions gives the smallest integer m such 

that F( m) 2 u. The checks for the negative binomial and hypergeometric distri­

butions are necessary because Q ( u) sometimes breaks down for u very close to 0 or 

1. 

acceptbin_function(x, n, p){ 

#Computes the acceptability of p in the 

#binomial distribution when x is the 

#observed number of successes on n attempts 

} 

p1_1 - pbinom(x - 1, n, p) 

p2_pbinom(x, n, p) 

a1_p1 + pbinom(qbinom(p1, n, p) - 1, n, p) 

a2_p2 + 1- pbinom(qbinom(1- p2, n, p),n,p) 

return(min(a1,a2)) 
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acceptpoisson_function(x, lambda){ 

#Computes the acceptability of lambda in 

#the poisson distribution when x is observed 

} 

pi_i - ppois(x-i, lambda) 

p2_ppois(x, lambda) 

ai_i 

if (x != 0){ 

ai_pi + ppois(qpois(pi, lambda) -i,lambda) 

} 

a2_p2 + i- ppois(qpois(i- p2, lambda), lambda) 

return(min(ai,a2)) 

acceptnegbin_function(x, r, p){ 

#Computes the acceptability in the negative binomial distribution when x 

#is the observed number of failures before r successes is observed 

} 

if (x !=0){ 

pi_i - pnbinom(x - i, r, p) 

if (pi > 0.99999) ai_i 

if (pi < O.OOOOi) ai_O 

if (pi < 0.99999 && pi > O.OOOOi) { 

ai_pi + pnbinom(qnbinom(pi, r, p) -i, r, p) 

} 

} 

p2_pnbinom(x, r, p) 

if (p2 > 0.99999) a2_i 

if (p2 < O.OOOOi) a2_0 

if (p2 < 0.99999 && p2 > O.OOOOi) { 

a2_p2 + i- pnbinom(qnbinom(i- p2, r, p), r, p) 

} 

if (x == 0) return(a2) 

return(min(ai, a2)) 
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accepthyper_function(x, A, N, n){ 

#Computes the acceptability of A (taking values 0, i, ... ,N) when xis 

#an observation from the hypergeometric distribution with N units, A of 

#which are of a particular type, and x of this type are obtained on n attempts. 

if (A < x) return(O) 

} 

if (A > N - (n - x)) return(O) 

pi_i - phyper(x - i, A, N-A, n) 

if (pi > 0.99999) ai_i 

if (pi < O.OOOOi) ai_O 

if (pi < 0.99999 && pi > O.OOOOi){ 

ai_pi + phyper(qhyper(pi, A, N-A, n) - i, A, N-A, n) 

} 

p2_phyper(x, A, N-A, n) 

if (p2 > 0.99999) a2_i 

if (p2 < O.OOOOi) a2_0 

if (p2 < 0.99999 && p2 > O.OOOOi){ 

a2_p2 + i- phyper(qhyper(i- p2, A, N-A, n), A, N-A, n) 

} 

return(min(ai,a2)) 
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95% confidence interval. 

21 

0.6 1.0 

0.6 1.0 



N 
d 

0 
d 

n=10 

10 

N 
d 

0 
d 

Figure 2: Length of different intervals for n = 5, 10 and 30. 

22 

10 

n=30 

---·- Clopper-Pearson 
- Acceptability 
-- Score 

15 20 25 30 



p=0.0102 p=0.0765 P=0.189 p=0.342 

:3 .- :3 - 0 0 

"' 

m m 
~ m 

0 0 0 

-
m m m m 
0 0 0 0 

E ~ i E 
:I: :I: 

" d d " 0 0 

-

I£ N :;: :;: :;: 0 

,~ ............................. 
0 J ~ 0 0 
0 0 0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0 0.0 0.2 0.4 0.6 

p=0.658 p=0.811 p=0.9235 p=0.9898 

0 0 0 0 

"' 

m m 
~ 

m 
0 0 0 

:g ~ m m 
0 0 

E E ¥ E 
:I: :I: :I: 

" .. d " 0 0 0 

N :£_ :;: N N 
0 0 0 

0 ~ 0 ~ ,J 0 0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0 0.0 0.2 0.4 

Figure 3: The function Hp(z) in the binomial distribution when n = 5, p = .0102, 

.0765, .189, .342, .658, .811, .9235, .9898 which are the eight values for which Hp(z) = 

.05 for some z so the corresponding confidence interval has exact coverage probability 

.95 for these values of p. 

23 

0.6 

0.8 1.0 

0.8 1.0 



]_ 
li c: 

0 

~­
li c: 

o· ~ a·o g·o ~-o ;::·o o·o 
19A81 

o· ~ a·o s·o v·o ;::·a o·o 

1"'"1 

"' 0 

,----------------------------------------- C! 

·-----------------.•. \ __________ _ 

·· .... 
..... 

., 
0 

"' 0 

\,\ : 
~--~--~--T---~--~ 0 
o· ~ a·o g·o 1"0 ;::·o o·o 

19A91 

.-· "! 

---· 

I // 
., 
0 

"' 0 

... 
0 

·---------------------................ _________ _ "' 0 

0 
0 

o· ~ a·o g·o 1"0 ;::·o o·o 
IBA81 

"! 

., 
_ ....... 

0 

, ............... /·······/ 
"' 0 

... 
0 

"' 0 

·----------------------------------------- 0 
0 

o·~ a·o s·o v·o ;::·o o·o 
18A91 

0. 

0. 

C') 
II 
X 
(") 
II c: 

li 
X 
(") 
II c: 

0 

~ 
C')-

II c: 

,----------------------------------······- C! 

················\. ...... ._\ .... , 
., 
0 

"' 0 

\; 
~--~--~--~--~--~ 0 
o· ~ a·o s·o v·o ;::·o o·o 

19/\91 

.-------------------, "! 

., 
0 

"' 0 

... 
0 

"' 0 

0 
0 

o· ~ a·o s·o v·o ;::·o o·o 

1"'"1 

.-------------------, "! 

--.. 

., 
0 

"' 0 

... 
0 

"' 0 

0 

~--~--~--~--~--~ 0 
o· ~ s·o s·o v·o ;::·o o·o 

1"'"1 

.-------------------, "! 

., 
0 

"' 0 

[ < ,!~ ; 

~--~--~--T---~--~ 0 
o· ~ a·o s·o v·o ;::·o o·o 

19/\91 

Figure 4: All possible confidence curves a(p; x) in the binomial distribution when 

n = 1, 2 or 3. 

24 

0. 



3 
a:l 
~ "' c. d 
iii 
II v "' 
~ 

d 

..,. 
0'" d 
'{l 

C\J 

C\i "! 
II 0 

c 
0 
d 

o·~ a·o s·o r·o ~·o o·o 
A!mqeqOJd e5eJaAo:) 

g C! 

t::: 
0'" "' IJl d 

c\1 
v "' a:l d 
~ c. 
iii ..,. 
II d 
v 

£:! 
~ 

C\i 
II c 0 

d 

o· ~ a·o s·o r·o ~·o o·o 
Al!I!QBQOJd afh:US/\0~ 

C! C! 

"' £:! "' £:! d ~ d 
~ v 
II a:l 
A "' ~ ~ d c. 
a:l iii ~ c. c. 
c. II 
iii ... v ..,. 

d ~ 0 

li 
~ 

"' C\i ~ c d II c 
0 0 
d d 

o·~ a·o s·o r·o ~·o o·o o· ~ a·o s·o r·o ~·o o·o 
A!mqeqoJd e5eJeAO:) Al!I!QBQOJd efi'BJaAO:J 

C! C! 

"' "' £:! d 
~ 

d 

~ ~ 

v "' v "' a:l d a:l d 
~ ~ c. c. c. 
iii ..,. iii ..,. 

d d - C\i li II 
c "' c 

~ d 

0 0 
d d 

o·~ a·o 9'0 r·o ~·o o·o o·~ a·o s·o r·o ~·o o·o 
illmqeqoJd a5eJaAo:) illmqeqoJd a5eJaAO:) 

Figure 5: Coverage probabilities for 1 - a acceptability intervals when n = 1 or 2. 

The intervals do not have correct confidence coefficient when 1 - a < 1/2 for n = 1 

and when 1 - a < y2 - 1 when n = 2. The broken line is y = 1 - a. 

25 



"! "! "! 

1'- CD co CD CD 
1'- ci 1.0 ci ci 
C\1 
0 1.0 (\j 

0 s::. v v a. 
(\j <0 (\j <0 Iii <0 

s::. ci s::. ci II ci 
a. 
Iii a. v 

Iii c. 1.0 c. 
II II C\1 v ..,. v d 

co ..,. 
1.0 ci 1.0 0 0 
C\1 
0 0 (") 

(") (") II c 
II "' II "! "' c ci c 0 ci 

0 0 0 
ci ci ci 

a·~ a·a 9"a p·a ~·a a·a a·~ a·a 9·a p·a ~·a a· a a·~ a·a 9·a p·a ~·a a·a 
.l!mqeqoJd aDeJaAoO .li!l!qBqOJd a5BJ8A00 .l!tuqeqoJd aDeJaAOO 

0 "! 3 .-' 

1.0 1.0 CD 1.0 CD C\1 CD 
C\1 ci 0 ci co ci 
0 0 v v 
(\j (\j v 

s::. <0 s::. <0 
(\j <0 

a. ci a. ci s::. ci 

Iii Iii a. 
II II Iii c. 
v v II 

..,. 0> v 
1.0 c;; 

..,. 
""'" 

..,. 
C\1 ci 0 ci 
~ 

0 

0 0 co 
0 

(") (") 
(") 

II "' II "' "' c ci c ci II ci c 

0 0 0 
ci ci ci 

a·~ a·a 9·a p·a ~·a a·a a·~ a·a 9"a p·a ~·a a·a a·~ a·a 9·a p·a ~·a a·a 
~mqaqoJd aBBJBAOQ .li!l!qBqOJd a5BJ9A00 AlmqeqOJd aDeJaAOO 

"! "! "! 

CD 
0> 

CD ""'" 
CD c;; 0 ci ci co ci 

1.0 0 0 
C\1 v v 
~ 

(\j (\j 
0 <0 s::. <0 s::. <0 

v ci a. ci a. ci 

(\j Iii c. Iii 
s::. II II 
a. v v 
Iii ..,. 

1'-
..,. 

co d ci ci 
(") 1'- 1.0 

C\1 1.0 
II 0 0 c 

"' 
(") 

"! 
(") "! 

ci II 0 II 0 c c 

0 0 0 
ci ci ci 

a·~ a·a 9"a p·a ~·a a·a a·~ a·a 9"a p·a ~·a a· a a·~ a·a 9·a I• a ~·a a·a 
.li!llqBqOJd a5BJ9A00 fil!I!QBQOJd 85BJ8AO:J fil!I!Q'BQOJd allBJB/\O:J 

Figure 6: Coverage probabilities for 1 - a acceptability intervals when n = 3. The 

intervals do not have correct confidence coefficient when .444 < 1 - a < 0.5 or 

1-a< .375. The broken line is y = 1- a. 

26 



Qi 
> 

.l!1 

00 
c::i 

(l) 

c::i 

""" c::i 

C\1 
c::i 

0 
c::i 

0 

Poisson, x=5 

Garwood 
Improved 

5 10 15 

lambda 

Figure 7: Confidence curves from acceptability and standard method in Poisson 

distribution when X = 5 is observed. 

27 



Garwood 
0 
C! 

~ 
:0 co ca .c 0> 

e c:i 
c. 
Q) 
Cl <0 
~ 0> 
Q) c:i 
> 
0 

(.) 

""" 0> 
c:i 

0 10 20 30 40 

lambda 

Improved 
0 
C! 

§' 
:0 co ca .c 0> 

e c:i 
c. 
Q) 
Cl <0 
~ 0> 
Q) c:i 
> 
0 

(.) 

""" 0> 
c:i 

0 10 20 30 40 

lambda 

Figure 8: Top: Coverage probability for 95% Garwood intervals. Bottom: Coverage 

probability for 95% acceptability intervals. 

28 

50 

50 



r;1 ,x;f; r;5,x;5 r;2Q,x;f; 

:: 0 0 

m 
0 0 0 

0 0 
~ 

- Standard 
0 0 ·---- Improved 

1 1 '•. ] 
:; :; d 

• . .. 
N N 

~ 0 0 

~ ~ ~ 
0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 0.4 0.5 0.6 0.7 0.6 

Standard, r; 1 Standard, r;S Standard, r;2Q 

~ § § 

ill ill ill 
~ 

0 

f 
0 

.~ 
0 

l ill ill I ill 0 1 0 0 

~ :;; ~ ~ ~ :;; 
~ 0 ~ ~ 

0 

8 i!i 8 :g i!i 
0 0 0 

ill ill ~ 0 0 
0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 

Improved, r;1 Improved, r;S Improved, r;2Q 

§ ~ ~ 
ill ill ill 

i 
0 

.~ 
0 

f 
0 

.ll ill I ill ~ ~ 0 0 1 
~ :;; ~ :;; ~ :;; 

~ 
0 

~ 
0 

~ 
0 

~ ~ ~ 
ill ill ill 
0 0 0 

0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 

Figure 9: Top:Confidence curves for the negative binomial distribution based on 

standard approach and acceptability. Middle:Coverage probability for standard 95% 

confidence interval. Bottom: Coverage probability for 95% confidence interval based 

on acceptability. 

29 

0.9 1.0 

0.6 1.0 

0.6 1.0 



00 
c:i 

0 
c:i 

40 

Hypergeometric, N=1 00, n=13, x=1 0 

•••••••• 
+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

50 60 70 80 

A 

+ 

+ 

+ 

+ 
0 

0 + 
0 + 

oo+ 

90 

o+ 
o~o••• 

100 

Figure 10: Confidence curves for A in the hypergeometric distribution, crosses are 

,B(A; x), squares are a(A; x). 
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Figure 11: Coverage probabilities for standard and improved intervals. Standard 

interval is marked by cross, improved interval by box. 
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Figure 12: Non parametric confidence curves for the lower quartile if X1, ... , X25 = 

1, ... , 25 is observed. The horizontal line is a = .05. 
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